xref: /linux/drivers/regulator/helpers.c (revision d163d60258c755845cbc9cfe0e45fca71e649488)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/regulator/driver.h>
16 
17 #include "internal.h"
18 
19 /**
20  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21  *
22  * @rdev: regulator to operate on
23  *
24  * Regulators that use regmap for their register I/O can set the
25  * enable_reg and enable_mask fields in their descriptor and then use
26  * this as their is_enabled operation, saving some code.
27  */
28 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29 {
30 	unsigned int val;
31 	int ret;
32 
33 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
34 	if (ret != 0)
35 		return ret;
36 
37 	val &= rdev->desc->enable_mask;
38 
39 	if (rdev->desc->enable_is_inverted) {
40 		if (rdev->desc->enable_val)
41 			return val != rdev->desc->enable_val;
42 		return val == 0;
43 	} else {
44 		if (rdev->desc->enable_val)
45 			return val == rdev->desc->enable_val;
46 		return val != 0;
47 	}
48 }
49 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50 
51 /**
52  * regulator_enable_regmap - standard enable() for regmap users
53  *
54  * @rdev: regulator to operate on
55  *
56  * Regulators that use regmap for their register I/O can set the
57  * enable_reg and enable_mask fields in their descriptor and then use
58  * this as their enable() operation, saving some code.
59  */
60 int regulator_enable_regmap(struct regulator_dev *rdev)
61 {
62 	unsigned int val;
63 
64 	if (rdev->desc->enable_is_inverted) {
65 		val = rdev->desc->disable_val;
66 	} else {
67 		val = rdev->desc->enable_val;
68 		if (!val)
69 			val = rdev->desc->enable_mask;
70 	}
71 
72 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
73 				  rdev->desc->enable_mask, val);
74 }
75 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76 
77 /**
78  * regulator_disable_regmap - standard disable() for regmap users
79  *
80  * @rdev: regulator to operate on
81  *
82  * Regulators that use regmap for their register I/O can set the
83  * enable_reg and enable_mask fields in their descriptor and then use
84  * this as their disable() operation, saving some code.
85  */
86 int regulator_disable_regmap(struct regulator_dev *rdev)
87 {
88 	unsigned int val;
89 
90 	if (rdev->desc->enable_is_inverted) {
91 		val = rdev->desc->enable_val;
92 		if (!val)
93 			val = rdev->desc->enable_mask;
94 	} else {
95 		val = rdev->desc->disable_val;
96 	}
97 
98 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
99 				  rdev->desc->enable_mask, val);
100 }
101 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102 
103 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104 					     unsigned int rval)
105 {
106 	int i;
107 
108 	if (!rdev->desc->linear_range_selectors_bitfield)
109 		return -EINVAL;
110 
111 	rval &= rdev->desc->vsel_range_mask;
112 	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113 
114 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115 		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116 			return i;
117 	}
118 	return -EINVAL;
119 }
120 
121 /**
122  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123  *
124  * @rdev: regulator to operate on
125  *
126  * Regulators that use regmap for their register I/O and use pickable
127  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128  * fields in their descriptor and then use this as their get_voltage_vsel
129  * operation, saving some code.
130  */
131 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132 {
133 	unsigned int r_val;
134 	int range;
135 	unsigned int val;
136 	int ret;
137 	unsigned int voltages = 0;
138 	const struct linear_range *r = rdev->desc->linear_ranges;
139 
140 	if (!r)
141 		return -EINVAL;
142 
143 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144 	if (ret != 0)
145 		return ret;
146 
147 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148 	if (ret != 0)
149 		return ret;
150 
151 	val &= rdev->desc->vsel_mask;
152 	val >>= ffs(rdev->desc->vsel_mask) - 1;
153 
154 	range = regulator_range_selector_to_index(rdev, r_val);
155 	if (range < 0)
156 		return -EINVAL;
157 
158 	voltages = linear_range_values_in_range_array(r, range);
159 
160 	return val + voltages;
161 }
162 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163 
164 static int write_separate_vsel_and_range(struct regulator_dev *rdev,
165 					 unsigned int sel, unsigned int range)
166 {
167 	bool range_updated;
168 	int ret;
169 
170 	ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg,
171 				      rdev->desc->vsel_range_mask,
172 				      range, &range_updated, false, false);
173 	if (ret)
174 		return ret;
175 
176 	/*
177 	 * Some PMICs treat the vsel_reg same as apply-bit. Force it to be
178 	 * written if the range changed, even if the old selector was same as
179 	 * the new one
180 	 */
181 	if (rdev->desc->range_applied_by_vsel && range_updated)
182 		return regmap_write_bits(rdev->regmap,
183 					rdev->desc->vsel_reg,
184 					rdev->desc->vsel_mask, sel);
185 
186 	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
187 				  rdev->desc->vsel_mask, sel);
188 }
189 
190 /**
191  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
192  *
193  * @rdev: regulator to operate on
194  * @sel: Selector to set
195  *
196  * Regulators that use regmap for their register I/O and use pickable
197  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
198  * fields in their descriptor and then use this as their set_voltage_vsel
199  * operation, saving some code.
200  */
201 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
202 					      unsigned int sel)
203 {
204 	unsigned int range;
205 	int ret, i;
206 	unsigned int voltages_in_range = 0;
207 
208 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
209 		const struct linear_range *r;
210 
211 		r = &rdev->desc->linear_ranges[i];
212 		voltages_in_range = linear_range_values_in_range(r);
213 
214 		if (sel < voltages_in_range)
215 			break;
216 		sel -= voltages_in_range;
217 	}
218 
219 	if (i == rdev->desc->n_linear_ranges)
220 		return -EINVAL;
221 
222 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
223 	sel += rdev->desc->linear_ranges[i].min_sel;
224 
225 	range = rdev->desc->linear_range_selectors_bitfield[i];
226 	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
227 
228 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg)
229 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
230 					 rdev->desc->vsel_range_mask |
231 					 rdev->desc->vsel_mask, sel | range);
232 	else
233 		ret = write_separate_vsel_and_range(rdev, sel, range);
234 
235 	if (ret)
236 		return ret;
237 
238 	if (rdev->desc->apply_bit)
239 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
240 					 rdev->desc->apply_bit,
241 					 rdev->desc->apply_bit);
242 	return ret;
243 }
244 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
245 
246 /**
247  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
248  *
249  * @rdev: regulator to operate on
250  *
251  * Regulators that use regmap for their register I/O can set the
252  * vsel_reg and vsel_mask fields in their descriptor and then use this
253  * as their get_voltage_vsel operation, saving some code.
254  */
255 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
256 {
257 	unsigned int val;
258 	int ret;
259 
260 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
261 	if (ret != 0)
262 		return ret;
263 
264 	val &= rdev->desc->vsel_mask;
265 	val >>= ffs(rdev->desc->vsel_mask) - 1;
266 
267 	return val;
268 }
269 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
270 
271 /**
272  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
273  *
274  * @rdev: regulator to operate on
275  * @sel: Selector to set
276  *
277  * Regulators that use regmap for their register I/O can set the
278  * vsel_reg and vsel_mask fields in their descriptor and then use this
279  * as their set_voltage_vsel operation, saving some code.
280  */
281 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
282 {
283 	int ret;
284 
285 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
286 
287 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
288 				  rdev->desc->vsel_mask, sel);
289 	if (ret)
290 		return ret;
291 
292 	if (rdev->desc->apply_bit)
293 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
294 					 rdev->desc->apply_bit,
295 					 rdev->desc->apply_bit);
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
299 
300 /**
301  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
302  *
303  * @rdev: Regulator to operate on
304  * @min_uV: Lower bound for voltage
305  * @max_uV: Upper bound for voltage
306  *
307  * Drivers implementing set_voltage_sel() and list_voltage() can use
308  * this as their map_voltage() operation.  It will find a suitable
309  * voltage by calling list_voltage() until it gets something in bounds
310  * for the requested voltages.
311  */
312 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
313 				  int min_uV, int max_uV)
314 {
315 	int best_val = INT_MAX;
316 	int selector = 0;
317 	int i, ret;
318 
319 	/* Find the smallest voltage that falls within the specified
320 	 * range.
321 	 */
322 	for (i = 0; i < rdev->desc->n_voltages; i++) {
323 		ret = rdev->desc->ops->list_voltage(rdev, i);
324 		if (ret < 0)
325 			continue;
326 
327 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
328 			best_val = ret;
329 			selector = i;
330 		}
331 	}
332 
333 	if (best_val != INT_MAX)
334 		return selector;
335 	else
336 		return -EINVAL;
337 }
338 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
339 
340 /**
341  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
342  *
343  * @rdev: Regulator to operate on
344  * @min_uV: Lower bound for voltage
345  * @max_uV: Upper bound for voltage
346  *
347  * Drivers that have ascendant voltage list can use this as their
348  * map_voltage() operation.
349  */
350 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
351 				 int min_uV, int max_uV)
352 {
353 	int i, ret;
354 
355 	for (i = 0; i < rdev->desc->n_voltages; i++) {
356 		ret = rdev->desc->ops->list_voltage(rdev, i);
357 		if (ret < 0)
358 			continue;
359 
360 		if (ret > max_uV)
361 			break;
362 
363 		if (ret >= min_uV && ret <= max_uV)
364 			return i;
365 	}
366 
367 	return -EINVAL;
368 }
369 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
370 
371 /**
372  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
373  *
374  * @rdev: Regulator to operate on
375  * @min_uV: Lower bound for voltage
376  * @max_uV: Upper bound for voltage
377  *
378  * Drivers providing min_uV and uV_step in their regulator_desc can
379  * use this as their map_voltage() operation.
380  */
381 int regulator_map_voltage_linear(struct regulator_dev *rdev,
382 				 int min_uV, int max_uV)
383 {
384 	int ret, voltage;
385 
386 	/* Allow uV_step to be 0 for fixed voltage */
387 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
388 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
389 			return 0;
390 		else
391 			return -EINVAL;
392 	}
393 
394 	if (!rdev->desc->uV_step) {
395 		BUG_ON(!rdev->desc->uV_step);
396 		return -EINVAL;
397 	}
398 
399 	if (min_uV < rdev->desc->min_uV)
400 		min_uV = rdev->desc->min_uV;
401 
402 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
403 	if (ret < 0)
404 		return ret;
405 
406 	ret += rdev->desc->linear_min_sel;
407 
408 	/* Map back into a voltage to verify we're still in bounds */
409 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
410 	if (voltage < min_uV || voltage > max_uV)
411 		return -EINVAL;
412 
413 	return ret;
414 }
415 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
416 
417 /**
418  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
419  *
420  * @rdev: Regulator to operate on
421  * @min_uV: Lower bound for voltage
422  * @max_uV: Upper bound for voltage
423  *
424  * Drivers providing linear_ranges in their descriptor can use this as
425  * their map_voltage() callback.
426  */
427 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
428 				       int min_uV, int max_uV)
429 {
430 	const struct linear_range *range;
431 	int ret = -EINVAL;
432 	unsigned int sel;
433 	bool found;
434 	int voltage, i;
435 
436 	if (!rdev->desc->n_linear_ranges) {
437 		BUG_ON(!rdev->desc->n_linear_ranges);
438 		return -EINVAL;
439 	}
440 
441 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
442 		range = &rdev->desc->linear_ranges[i];
443 
444 		ret = linear_range_get_selector_high(range, min_uV, &sel,
445 						     &found);
446 		if (ret)
447 			continue;
448 		ret = sel;
449 
450 		/*
451 		 * Map back into a voltage to verify we're still in bounds.
452 		 * If we are not, then continue checking rest of the ranges.
453 		 */
454 		voltage = rdev->desc->ops->list_voltage(rdev, sel);
455 		if (voltage >= min_uV && voltage <= max_uV)
456 			break;
457 	}
458 
459 	if (i == rdev->desc->n_linear_ranges)
460 		return -EINVAL;
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
465 
466 /**
467  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
468  *
469  * @rdev: Regulator to operate on
470  * @min_uV: Lower bound for voltage
471  * @max_uV: Upper bound for voltage
472  *
473  * Drivers providing pickable linear_ranges in their descriptor can use
474  * this as their map_voltage() callback.
475  */
476 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
477 						int min_uV, int max_uV)
478 {
479 	const struct linear_range *range;
480 	int ret = -EINVAL;
481 	int voltage, i;
482 	unsigned int selector = 0;
483 
484 	if (!rdev->desc->n_linear_ranges) {
485 		BUG_ON(!rdev->desc->n_linear_ranges);
486 		return -EINVAL;
487 	}
488 
489 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
490 		int linear_max_uV;
491 		bool found;
492 		unsigned int sel;
493 
494 		range = &rdev->desc->linear_ranges[i];
495 		linear_max_uV = linear_range_get_max_value(range);
496 
497 		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
498 			selector += linear_range_values_in_range(range);
499 			continue;
500 		}
501 
502 		ret = linear_range_get_selector_high(range, min_uV, &sel,
503 						     &found);
504 		if (ret) {
505 			selector += linear_range_values_in_range(range);
506 			continue;
507 		}
508 
509 		ret = selector + sel - range->min_sel;
510 
511 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
512 
513 		/*
514 		 * Map back into a voltage to verify we're still in bounds.
515 		 * We may have overlapping voltage ranges. Hence we don't
516 		 * exit but retry until we have checked all ranges.
517 		 */
518 		if (voltage < min_uV || voltage > max_uV)
519 			selector += linear_range_values_in_range(range);
520 		else
521 			break;
522 	}
523 
524 	if (i == rdev->desc->n_linear_ranges)
525 		return -EINVAL;
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
530 
531 /**
532  * regulator_desc_list_voltage_linear - List voltages with simple calculation
533  *
534  * @desc: Regulator desc for regulator which volatges are to be listed
535  * @selector: Selector to convert into a voltage
536  *
537  * Regulators with a simple linear mapping between voltages and
538  * selectors can set min_uV and uV_step in the regulator descriptor
539  * and then use this function prior regulator registration to list
540  * the voltages. This is useful when voltages need to be listed during
541  * device-tree parsing.
542  */
543 int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
544 				       unsigned int selector)
545 {
546 	if (selector >= desc->n_voltages)
547 		return -EINVAL;
548 
549 	if (selector < desc->linear_min_sel)
550 		return 0;
551 
552 	selector -= desc->linear_min_sel;
553 
554 	return desc->min_uV + (desc->uV_step * selector);
555 }
556 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
557 
558 /**
559  * regulator_list_voltage_linear - List voltages with simple calculation
560  *
561  * @rdev: Regulator device
562  * @selector: Selector to convert into a voltage
563  *
564  * Regulators with a simple linear mapping between voltages and
565  * selectors can set min_uV and uV_step in the regulator descriptor
566  * and then use this function as their list_voltage() operation,
567  */
568 int regulator_list_voltage_linear(struct regulator_dev *rdev,
569 				  unsigned int selector)
570 {
571 	return regulator_desc_list_voltage_linear(rdev->desc, selector);
572 }
573 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
574 
575 /**
576  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
577  *
578  * @rdev: Regulator device
579  * @selector: Selector to convert into a voltage
580  *
581  * list_voltage() operation, intended to be used by drivers utilizing pickable
582  * ranges helpers.
583  */
584 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
585 						 unsigned int selector)
586 {
587 	const struct linear_range *range;
588 	int i;
589 	unsigned int all_sels = 0;
590 
591 	if (!rdev->desc->n_linear_ranges) {
592 		BUG_ON(!rdev->desc->n_linear_ranges);
593 		return -EINVAL;
594 	}
595 
596 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
597 		unsigned int sel_indexes;
598 
599 		range = &rdev->desc->linear_ranges[i];
600 
601 		sel_indexes = linear_range_values_in_range(range) - 1;
602 
603 		if (all_sels + sel_indexes >= selector) {
604 			selector -= all_sels;
605 			/*
606 			 * As we see here, pickable ranges work only as
607 			 * long as the first selector for each pickable
608 			 * range is 0, and the each subsequent range for
609 			 * this 'pick' follow immediately at next unused
610 			 * selector (Eg. there is no gaps between ranges).
611 			 * I think this is fine but it probably should be
612 			 * documented. OTOH, whole pickable range stuff
613 			 * might benefit from some documentation
614 			 */
615 			return range->min + (range->step * selector);
616 		}
617 
618 		all_sels += (sel_indexes + 1);
619 	}
620 
621 	return -EINVAL;
622 }
623 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
624 
625 /**
626  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
627  *
628  * @desc: Regulator desc for regulator which volatges are to be listed
629  * @selector: Selector to convert into a voltage
630  *
631  * Regulators with a series of simple linear mappings between voltages
632  * and selectors who have set linear_ranges in the regulator descriptor
633  * can use this function prior regulator registration to list voltages.
634  * This is useful when voltages need to be listed during device-tree
635  * parsing.
636  */
637 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
638 					     unsigned int selector)
639 {
640 	unsigned int val;
641 	int ret;
642 
643 	BUG_ON(!desc->n_linear_ranges);
644 
645 	ret = linear_range_get_value_array(desc->linear_ranges,
646 					   desc->n_linear_ranges, selector,
647 					   &val);
648 	if (ret)
649 		return ret;
650 
651 	return val;
652 }
653 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
654 
655 /**
656  * regulator_list_voltage_linear_range - List voltages for linear ranges
657  *
658  * @rdev: Regulator device
659  * @selector: Selector to convert into a voltage
660  *
661  * Regulators with a series of simple linear mappings between voltages
662  * and selectors can set linear_ranges in the regulator descriptor and
663  * then use this function as their list_voltage() operation,
664  */
665 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
666 					unsigned int selector)
667 {
668 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
669 }
670 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
671 
672 /**
673  * regulator_list_voltage_table - List voltages with table based mapping
674  *
675  * @rdev: Regulator device
676  * @selector: Selector to convert into a voltage
677  *
678  * Regulators with table based mapping between voltages and
679  * selectors can set volt_table in the regulator descriptor
680  * and then use this function as their list_voltage() operation.
681  */
682 int regulator_list_voltage_table(struct regulator_dev *rdev,
683 				 unsigned int selector)
684 {
685 	if (!rdev->desc->volt_table) {
686 		BUG_ON(!rdev->desc->volt_table);
687 		return -EINVAL;
688 	}
689 
690 	if (selector >= rdev->desc->n_voltages)
691 		return -EINVAL;
692 	if (selector < rdev->desc->linear_min_sel)
693 		return 0;
694 
695 	return rdev->desc->volt_table[selector];
696 }
697 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
698 
699 /**
700  * regulator_set_bypass_regmap - Default set_bypass() using regmap
701  *
702  * @rdev: device to operate on.
703  * @enable: state to set.
704  */
705 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
706 {
707 	unsigned int val;
708 
709 	if (enable) {
710 		val = rdev->desc->bypass_val_on;
711 		if (!val)
712 			val = rdev->desc->bypass_mask;
713 	} else {
714 		val = rdev->desc->bypass_val_off;
715 	}
716 
717 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
718 				  rdev->desc->bypass_mask, val);
719 }
720 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
721 
722 /**
723  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
724  *
725  * @rdev: device to operate on.
726  */
727 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
728 {
729 	unsigned int val;
730 
731 	val = rdev->desc->soft_start_val_on;
732 	if (!val)
733 		val = rdev->desc->soft_start_mask;
734 
735 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
736 				  rdev->desc->soft_start_mask, val);
737 }
738 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
739 
740 /**
741  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
742  *
743  * @rdev: device to operate on.
744  */
745 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
746 {
747 	unsigned int val;
748 
749 	val = rdev->desc->pull_down_val_on;
750 	if (!val)
751 		val = rdev->desc->pull_down_mask;
752 
753 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
754 				  rdev->desc->pull_down_mask, val);
755 }
756 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
757 
758 /**
759  * regulator_get_bypass_regmap - Default get_bypass() using regmap
760  *
761  * @rdev: device to operate on.
762  * @enable: current state.
763  */
764 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
765 {
766 	unsigned int val;
767 	unsigned int val_on = rdev->desc->bypass_val_on;
768 	int ret;
769 
770 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
771 	if (ret != 0)
772 		return ret;
773 
774 	if (!val_on)
775 		val_on = rdev->desc->bypass_mask;
776 
777 	*enable = (val & rdev->desc->bypass_mask) == val_on;
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
782 
783 /**
784  * regulator_set_active_discharge_regmap - Default set_active_discharge()
785  *					   using regmap
786  *
787  * @rdev: device to operate on.
788  * @enable: state to set, 0 to disable and 1 to enable.
789  */
790 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
791 					  bool enable)
792 {
793 	unsigned int val;
794 
795 	if (enable)
796 		val = rdev->desc->active_discharge_on;
797 	else
798 		val = rdev->desc->active_discharge_off;
799 
800 	return regmap_update_bits(rdev->regmap,
801 				  rdev->desc->active_discharge_reg,
802 				  rdev->desc->active_discharge_mask, val);
803 }
804 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
805 
806 /**
807  * regulator_set_current_limit_regmap - set_current_limit for regmap users
808  *
809  * @rdev: regulator to operate on
810  * @min_uA: Lower bound for current limit
811  * @max_uA: Upper bound for current limit
812  *
813  * Regulators that use regmap for their register I/O can set curr_table,
814  * csel_reg and csel_mask fields in their descriptor and then use this
815  * as their set_current_limit operation, saving some code.
816  */
817 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
818 				       int min_uA, int max_uA)
819 {
820 	unsigned int n_currents = rdev->desc->n_current_limits;
821 	int i, sel = -1;
822 
823 	if (n_currents == 0)
824 		return -EINVAL;
825 
826 	if (rdev->desc->curr_table) {
827 		const unsigned int *curr_table = rdev->desc->curr_table;
828 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
829 
830 		/* search for closest to maximum */
831 		if (ascend) {
832 			for (i = n_currents - 1; i >= 0; i--) {
833 				if (min_uA <= curr_table[i] &&
834 				    curr_table[i] <= max_uA) {
835 					sel = i;
836 					break;
837 				}
838 			}
839 		} else {
840 			for (i = 0; i < n_currents; i++) {
841 				if (min_uA <= curr_table[i] &&
842 				    curr_table[i] <= max_uA) {
843 					sel = i;
844 					break;
845 				}
846 			}
847 		}
848 	}
849 
850 	if (sel < 0)
851 		return -EINVAL;
852 
853 	sel <<= ffs(rdev->desc->csel_mask) - 1;
854 
855 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
856 				  rdev->desc->csel_mask, sel);
857 }
858 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
859 
860 /**
861  * regulator_get_current_limit_regmap - get_current_limit for regmap users
862  *
863  * @rdev: regulator to operate on
864  *
865  * Regulators that use regmap for their register I/O can set the
866  * csel_reg and csel_mask fields in their descriptor and then use this
867  * as their get_current_limit operation, saving some code.
868  */
869 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
870 {
871 	unsigned int val;
872 	int ret;
873 
874 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
875 	if (ret != 0)
876 		return ret;
877 
878 	val &= rdev->desc->csel_mask;
879 	val >>= ffs(rdev->desc->csel_mask) - 1;
880 
881 	if (rdev->desc->curr_table) {
882 		if (val >= rdev->desc->n_current_limits)
883 			return -EINVAL;
884 
885 		return rdev->desc->curr_table[val];
886 	}
887 
888 	return -EINVAL;
889 }
890 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
891 
892 /**
893  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
894  *                                   of regulator_bulk_data structs
895  *
896  * @consumers: array of regulator_bulk_data entries to initialize
897  * @supply_names: array of supply name strings
898  * @num_supplies: number of supply names to initialize
899  *
900  * Note: the 'consumers' array must be the size of 'num_supplies'.
901  */
902 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
903 				     const char *const *supply_names,
904 				     unsigned int num_supplies)
905 {
906 	unsigned int i;
907 
908 	for (i = 0; i < num_supplies; i++)
909 		consumers[i].supply = supply_names[i];
910 }
911 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
912 
913 /**
914  * regulator_is_equal - test whether two regulators are the same
915  *
916  * @reg1: first regulator to operate on
917  * @reg2: second regulator to operate on
918  */
919 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
920 {
921 	return reg1->rdev == reg2->rdev;
922 }
923 EXPORT_SYMBOL_GPL(regulator_is_equal);
924 
925 /**
926  * regulator_find_closest_bigger - helper to find offset in ramp delay table
927  *
928  * @target: targeted ramp_delay
929  * @table: table with supported ramp delays
930  * @num_sel: number of entries in the table
931  * @sel: Pointer to store table offset
932  *
933  * This is the internal helper used by regulator_set_ramp_delay_regmap to
934  * map ramp delay to register value. It should only be used directly if
935  * regulator_set_ramp_delay_regmap cannot handle a specific device setup
936  * (e.g. because the value is split over multiple registers).
937  */
938 int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
939 				  unsigned int num_sel, unsigned int *sel)
940 {
941 	unsigned int s, tmp, max, maxsel = 0;
942 	bool found = false;
943 
944 	max = table[0];
945 
946 	for (s = 0; s < num_sel; s++) {
947 		if (table[s] > max) {
948 			max = table[s];
949 			maxsel = s;
950 		}
951 		if (table[s] >= target) {
952 			if (!found || table[s] - target < tmp - target) {
953 				tmp = table[s];
954 				*sel = s;
955 				found = true;
956 				if (tmp == target)
957 					break;
958 			}
959 		}
960 	}
961 
962 	if (!found) {
963 		*sel = maxsel;
964 		return -EINVAL;
965 	}
966 
967 	return 0;
968 }
969 EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
970 
971 /**
972  * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
973  *
974  * @rdev: regulator to operate on
975  * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
976  *
977  * Regulators that use regmap for their register I/O can set the ramp_reg
978  * and ramp_mask fields in their descriptor and then use this as their
979  * set_ramp_delay operation, saving some code.
980  */
981 int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
982 {
983 	int ret;
984 	unsigned int sel;
985 
986 	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
987 		return -EINVAL;
988 
989 	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
990 					    rdev->desc->n_ramp_values, &sel);
991 
992 	if (ret) {
993 		dev_warn(rdev_get_dev(rdev),
994 			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
995 			 rdev->desc->ramp_delay_table[sel]);
996 	}
997 
998 	sel <<= ffs(rdev->desc->ramp_mask) - 1;
999 
1000 	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
1001 				  rdev->desc->ramp_mask, sel);
1002 }
1003 EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
1004