xref: /linux/drivers/regulator/core.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 				     suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102 
103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113 
114 static bool have_full_constraints(void)
115 {
116 	return has_full_constraints || of_have_populated_dt();
117 }
118 
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 	if (!rdev->constraints) {
122 		rdev_err(rdev, "no constraints\n");
123 		return false;
124 	}
125 
126 	if (rdev->constraints->valid_ops_mask & ops)
127 		return true;
128 
129 	return false;
130 }
131 
132 /**
133  * regulator_lock_nested - lock a single regulator
134  * @rdev:		regulator source
135  * @ww_ctx:		w/w mutex acquire context
136  *
137  * This function can be called many times by one task on
138  * a single regulator and its mutex will be locked only
139  * once. If a task, which is calling this function is other
140  * than the one, which initially locked the mutex, it will
141  * wait on mutex.
142  *
143  * Return: 0 on success or a negative error number on failure.
144  */
145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 					struct ww_acquire_ctx *ww_ctx)
147 {
148 	bool lock = false;
149 	int ret = 0;
150 
151 	mutex_lock(&regulator_nesting_mutex);
152 
153 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 		if (rdev->mutex_owner == current)
155 			rdev->ref_cnt++;
156 		else
157 			lock = true;
158 
159 		if (lock) {
160 			mutex_unlock(&regulator_nesting_mutex);
161 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 			mutex_lock(&regulator_nesting_mutex);
163 		}
164 	} else {
165 		lock = true;
166 	}
167 
168 	if (lock && ret != -EDEADLK) {
169 		rdev->ref_cnt++;
170 		rdev->mutex_owner = current;
171 	}
172 
173 	mutex_unlock(&regulator_nesting_mutex);
174 
175 	return ret;
176 }
177 
178 /**
179  * regulator_lock - lock a single regulator
180  * @rdev:		regulator source
181  *
182  * This function can be called many times by one task on
183  * a single regulator and its mutex will be locked only
184  * once. If a task, which is calling this function is other
185  * than the one, which initially locked the mutex, it will
186  * wait on mutex.
187  */
188 static void regulator_lock(struct regulator_dev *rdev)
189 {
190 	regulator_lock_nested(rdev, NULL);
191 }
192 
193 /**
194  * regulator_unlock - unlock a single regulator
195  * @rdev:		regulator_source
196  *
197  * This function unlocks the mutex when the
198  * reference counter reaches 0.
199  */
200 static void regulator_unlock(struct regulator_dev *rdev)
201 {
202 	mutex_lock(&regulator_nesting_mutex);
203 
204 	if (--rdev->ref_cnt == 0) {
205 		rdev->mutex_owner = NULL;
206 		ww_mutex_unlock(&rdev->mutex);
207 	}
208 
209 	WARN_ON_ONCE(rdev->ref_cnt < 0);
210 
211 	mutex_unlock(&regulator_nesting_mutex);
212 }
213 
214 /**
215  * regulator_lock_two - lock two regulators
216  * @rdev1:		first regulator
217  * @rdev2:		second regulator
218  * @ww_ctx:		w/w mutex acquire context
219  *
220  * Locks both rdevs using the regulator_ww_class.
221  */
222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 			       struct regulator_dev *rdev2,
224 			       struct ww_acquire_ctx *ww_ctx)
225 {
226 	struct regulator_dev *held, *contended;
227 	int ret;
228 
229 	ww_acquire_init(ww_ctx, &regulator_ww_class);
230 
231 	/* Try to just grab both of them */
232 	ret = regulator_lock_nested(rdev1, ww_ctx);
233 	WARN_ON(ret);
234 	ret = regulator_lock_nested(rdev2, ww_ctx);
235 	if (ret != -EDEADLOCK) {
236 		WARN_ON(ret);
237 		goto exit;
238 	}
239 
240 	held = rdev1;
241 	contended = rdev2;
242 	while (true) {
243 		regulator_unlock(held);
244 
245 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 		contended->ref_cnt++;
247 		contended->mutex_owner = current;
248 		swap(held, contended);
249 		ret = regulator_lock_nested(contended, ww_ctx);
250 
251 		if (ret != -EDEADLOCK) {
252 			WARN_ON(ret);
253 			break;
254 		}
255 	}
256 
257 exit:
258 	ww_acquire_done(ww_ctx);
259 }
260 
261 /**
262  * regulator_unlock_two - unlock two regulators
263  * @rdev1:		first regulator
264  * @rdev2:		second regulator
265  * @ww_ctx:		w/w mutex acquire context
266  *
267  * The inverse of regulator_lock_two().
268  */
269 
270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 				 struct regulator_dev *rdev2,
272 				 struct ww_acquire_ctx *ww_ctx)
273 {
274 	regulator_unlock(rdev2);
275 	regulator_unlock(rdev1);
276 	ww_acquire_fini(ww_ctx);
277 }
278 
279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280 {
281 	struct regulator_dev *c_rdev;
282 	int i;
283 
284 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286 
287 		if (rdev->supply->rdev == c_rdev)
288 			return true;
289 	}
290 
291 	return false;
292 }
293 
294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 				       unsigned int n_coupled)
296 {
297 	struct regulator_dev *c_rdev, *supply_rdev;
298 	int i, supply_n_coupled;
299 
300 	for (i = n_coupled; i > 0; i--) {
301 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302 
303 		if (!c_rdev)
304 			continue;
305 
306 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 			supply_rdev = c_rdev->supply->rdev;
308 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309 
310 			regulator_unlock_recursive(supply_rdev,
311 						   supply_n_coupled);
312 		}
313 
314 		regulator_unlock(c_rdev);
315 	}
316 }
317 
318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 				    struct regulator_dev **new_contended_rdev,
320 				    struct regulator_dev **old_contended_rdev,
321 				    struct ww_acquire_ctx *ww_ctx)
322 {
323 	struct regulator_dev *c_rdev;
324 	int i, err;
325 
326 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328 
329 		if (!c_rdev)
330 			continue;
331 
332 		if (c_rdev != *old_contended_rdev) {
333 			err = regulator_lock_nested(c_rdev, ww_ctx);
334 			if (err) {
335 				if (err == -EDEADLK) {
336 					*new_contended_rdev = c_rdev;
337 					goto err_unlock;
338 				}
339 
340 				/* shouldn't happen */
341 				WARN_ON_ONCE(err != -EALREADY);
342 			}
343 		} else {
344 			*old_contended_rdev = NULL;
345 		}
346 
347 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 			err = regulator_lock_recursive(c_rdev->supply->rdev,
349 						       new_contended_rdev,
350 						       old_contended_rdev,
351 						       ww_ctx);
352 			if (err) {
353 				regulator_unlock(c_rdev);
354 				goto err_unlock;
355 			}
356 		}
357 	}
358 
359 	return 0;
360 
361 err_unlock:
362 	regulator_unlock_recursive(rdev, i);
363 
364 	return err;
365 }
366 
367 /**
368  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369  *				regulators
370  * @rdev:			regulator source
371  * @ww_ctx:			w/w mutex acquire context
372  *
373  * Unlock all regulators related with rdev by coupling or supplying.
374  */
375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 				       struct ww_acquire_ctx *ww_ctx)
377 {
378 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 	ww_acquire_fini(ww_ctx);
380 }
381 
382 /**
383  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384  * @rdev:			regulator source
385  * @ww_ctx:			w/w mutex acquire context
386  *
387  * This function as a wrapper on regulator_lock_recursive(), which locks
388  * all regulators related with rdev by coupling or supplying.
389  */
390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 				     struct ww_acquire_ctx *ww_ctx)
392 {
393 	struct regulator_dev *new_contended_rdev = NULL;
394 	struct regulator_dev *old_contended_rdev = NULL;
395 	int err;
396 
397 	mutex_lock(&regulator_list_mutex);
398 
399 	ww_acquire_init(ww_ctx, &regulator_ww_class);
400 
401 	do {
402 		if (new_contended_rdev) {
403 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 			old_contended_rdev = new_contended_rdev;
405 			old_contended_rdev->ref_cnt++;
406 			old_contended_rdev->mutex_owner = current;
407 		}
408 
409 		err = regulator_lock_recursive(rdev,
410 					       &new_contended_rdev,
411 					       &old_contended_rdev,
412 					       ww_ctx);
413 
414 		if (old_contended_rdev)
415 			regulator_unlock(old_contended_rdev);
416 
417 	} while (err == -EDEADLK);
418 
419 	ww_acquire_done(ww_ctx);
420 
421 	mutex_unlock(&regulator_list_mutex);
422 }
423 
424 /* Platform voltage constraint check */
425 int regulator_check_voltage(struct regulator_dev *rdev,
426 			    int *min_uV, int *max_uV)
427 {
428 	BUG_ON(*min_uV > *max_uV);
429 
430 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 		rdev_err(rdev, "voltage operation not allowed\n");
432 		return -EPERM;
433 	}
434 
435 	if (*max_uV > rdev->constraints->max_uV)
436 		*max_uV = rdev->constraints->max_uV;
437 	if (*min_uV < rdev->constraints->min_uV)
438 		*min_uV = rdev->constraints->min_uV;
439 
440 	if (*min_uV > *max_uV) {
441 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 			 *min_uV, *max_uV);
443 		return -EINVAL;
444 	}
445 
446 	return 0;
447 }
448 
449 /* return 0 if the state is valid */
450 static int regulator_check_states(suspend_state_t state)
451 {
452 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453 }
454 
455 /* Make sure we select a voltage that suits the needs of all
456  * regulator consumers
457  */
458 int regulator_check_consumers(struct regulator_dev *rdev,
459 			      int *min_uV, int *max_uV,
460 			      suspend_state_t state)
461 {
462 	struct regulator *regulator;
463 	struct regulator_voltage *voltage;
464 
465 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 		voltage = &regulator->voltage[state];
467 		/*
468 		 * Assume consumers that didn't say anything are OK
469 		 * with anything in the constraint range.
470 		 */
471 		if (!voltage->min_uV && !voltage->max_uV)
472 			continue;
473 
474 		if (*max_uV > voltage->max_uV)
475 			*max_uV = voltage->max_uV;
476 		if (*min_uV < voltage->min_uV)
477 			*min_uV = voltage->min_uV;
478 	}
479 
480 	if (*min_uV > *max_uV) {
481 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 			*min_uV, *max_uV);
483 		return -EINVAL;
484 	}
485 
486 	return 0;
487 }
488 
489 /* current constraint check */
490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 					int *min_uA, int *max_uA)
492 {
493 	BUG_ON(*min_uA > *max_uA);
494 
495 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 		rdev_err(rdev, "current operation not allowed\n");
497 		return -EPERM;
498 	}
499 
500 	if (*max_uA > rdev->constraints->max_uA)
501 		*max_uA = rdev->constraints->max_uA;
502 	if (*min_uA < rdev->constraints->min_uA)
503 		*min_uA = rdev->constraints->min_uA;
504 
505 	if (*min_uA > *max_uA) {
506 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
507 			 *min_uA, *max_uA);
508 		return -EINVAL;
509 	}
510 
511 	return 0;
512 }
513 
514 /* operating mode constraint check */
515 static int regulator_mode_constrain(struct regulator_dev *rdev,
516 				    unsigned int *mode)
517 {
518 	switch (*mode) {
519 	case REGULATOR_MODE_FAST:
520 	case REGULATOR_MODE_NORMAL:
521 	case REGULATOR_MODE_IDLE:
522 	case REGULATOR_MODE_STANDBY:
523 		break;
524 	default:
525 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
526 		return -EINVAL;
527 	}
528 
529 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
530 		rdev_err(rdev, "mode operation not allowed\n");
531 		return -EPERM;
532 	}
533 
534 	/* The modes are bitmasks, the most power hungry modes having
535 	 * the lowest values. If the requested mode isn't supported
536 	 * try higher modes.
537 	 */
538 	while (*mode) {
539 		if (rdev->constraints->valid_modes_mask & *mode)
540 			return 0;
541 		*mode /= 2;
542 	}
543 
544 	return -EINVAL;
545 }
546 
547 static inline struct regulator_state *
548 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
549 {
550 	if (rdev->constraints == NULL)
551 		return NULL;
552 
553 	switch (state) {
554 	case PM_SUSPEND_STANDBY:
555 		return &rdev->constraints->state_standby;
556 	case PM_SUSPEND_MEM:
557 		return &rdev->constraints->state_mem;
558 	case PM_SUSPEND_MAX:
559 		return &rdev->constraints->state_disk;
560 	default:
561 		return NULL;
562 	}
563 }
564 
565 static const struct regulator_state *
566 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
567 {
568 	const struct regulator_state *rstate;
569 
570 	rstate = regulator_get_suspend_state(rdev, state);
571 	if (rstate == NULL)
572 		return NULL;
573 
574 	/* If we have no suspend mode configuration don't set anything;
575 	 * only warn if the driver implements set_suspend_voltage or
576 	 * set_suspend_mode callback.
577 	 */
578 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
579 	    rstate->enabled != DISABLE_IN_SUSPEND) {
580 		if (rdev->desc->ops->set_suspend_voltage ||
581 		    rdev->desc->ops->set_suspend_mode)
582 			rdev_warn(rdev, "No configuration\n");
583 		return NULL;
584 	}
585 
586 	return rstate;
587 }
588 
589 static ssize_t microvolts_show(struct device *dev,
590 			       struct device_attribute *attr, char *buf)
591 {
592 	struct regulator_dev *rdev = dev_get_drvdata(dev);
593 	int uV;
594 
595 	regulator_lock(rdev);
596 	uV = regulator_get_voltage_rdev(rdev);
597 	regulator_unlock(rdev);
598 
599 	if (uV < 0)
600 		return uV;
601 	return sprintf(buf, "%d\n", uV);
602 }
603 static DEVICE_ATTR_RO(microvolts);
604 
605 static ssize_t microamps_show(struct device *dev,
606 			      struct device_attribute *attr, char *buf)
607 {
608 	struct regulator_dev *rdev = dev_get_drvdata(dev);
609 
610 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
611 }
612 static DEVICE_ATTR_RO(microamps);
613 
614 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
615 			 char *buf)
616 {
617 	struct regulator_dev *rdev = dev_get_drvdata(dev);
618 
619 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
620 }
621 static DEVICE_ATTR_RO(name);
622 
623 static const char *regulator_opmode_to_str(int mode)
624 {
625 	switch (mode) {
626 	case REGULATOR_MODE_FAST:
627 		return "fast";
628 	case REGULATOR_MODE_NORMAL:
629 		return "normal";
630 	case REGULATOR_MODE_IDLE:
631 		return "idle";
632 	case REGULATOR_MODE_STANDBY:
633 		return "standby";
634 	}
635 	return "unknown";
636 }
637 
638 static ssize_t regulator_print_opmode(char *buf, int mode)
639 {
640 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
641 }
642 
643 static ssize_t opmode_show(struct device *dev,
644 			   struct device_attribute *attr, char *buf)
645 {
646 	struct regulator_dev *rdev = dev_get_drvdata(dev);
647 
648 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
649 }
650 static DEVICE_ATTR_RO(opmode);
651 
652 static ssize_t regulator_print_state(char *buf, int state)
653 {
654 	if (state > 0)
655 		return sprintf(buf, "enabled\n");
656 	else if (state == 0)
657 		return sprintf(buf, "disabled\n");
658 	else
659 		return sprintf(buf, "unknown\n");
660 }
661 
662 static ssize_t state_show(struct device *dev,
663 			  struct device_attribute *attr, char *buf)
664 {
665 	struct regulator_dev *rdev = dev_get_drvdata(dev);
666 	ssize_t ret;
667 
668 	regulator_lock(rdev);
669 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
670 	regulator_unlock(rdev);
671 
672 	return ret;
673 }
674 static DEVICE_ATTR_RO(state);
675 
676 static ssize_t status_show(struct device *dev,
677 			   struct device_attribute *attr, char *buf)
678 {
679 	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 	int status;
681 	char *label;
682 
683 	status = rdev->desc->ops->get_status(rdev);
684 	if (status < 0)
685 		return status;
686 
687 	switch (status) {
688 	case REGULATOR_STATUS_OFF:
689 		label = "off";
690 		break;
691 	case REGULATOR_STATUS_ON:
692 		label = "on";
693 		break;
694 	case REGULATOR_STATUS_ERROR:
695 		label = "error";
696 		break;
697 	case REGULATOR_STATUS_FAST:
698 		label = "fast";
699 		break;
700 	case REGULATOR_STATUS_NORMAL:
701 		label = "normal";
702 		break;
703 	case REGULATOR_STATUS_IDLE:
704 		label = "idle";
705 		break;
706 	case REGULATOR_STATUS_STANDBY:
707 		label = "standby";
708 		break;
709 	case REGULATOR_STATUS_BYPASS:
710 		label = "bypass";
711 		break;
712 	case REGULATOR_STATUS_UNDEFINED:
713 		label = "undefined";
714 		break;
715 	default:
716 		return -ERANGE;
717 	}
718 
719 	return sprintf(buf, "%s\n", label);
720 }
721 static DEVICE_ATTR_RO(status);
722 
723 static ssize_t min_microamps_show(struct device *dev,
724 				  struct device_attribute *attr, char *buf)
725 {
726 	struct regulator_dev *rdev = dev_get_drvdata(dev);
727 
728 	if (!rdev->constraints)
729 		return sprintf(buf, "constraint not defined\n");
730 
731 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
732 }
733 static DEVICE_ATTR_RO(min_microamps);
734 
735 static ssize_t max_microamps_show(struct device *dev,
736 				  struct device_attribute *attr, char *buf)
737 {
738 	struct regulator_dev *rdev = dev_get_drvdata(dev);
739 
740 	if (!rdev->constraints)
741 		return sprintf(buf, "constraint not defined\n");
742 
743 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
744 }
745 static DEVICE_ATTR_RO(max_microamps);
746 
747 static ssize_t min_microvolts_show(struct device *dev,
748 				   struct device_attribute *attr, char *buf)
749 {
750 	struct regulator_dev *rdev = dev_get_drvdata(dev);
751 
752 	if (!rdev->constraints)
753 		return sprintf(buf, "constraint not defined\n");
754 
755 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
756 }
757 static DEVICE_ATTR_RO(min_microvolts);
758 
759 static ssize_t max_microvolts_show(struct device *dev,
760 				   struct device_attribute *attr, char *buf)
761 {
762 	struct regulator_dev *rdev = dev_get_drvdata(dev);
763 
764 	if (!rdev->constraints)
765 		return sprintf(buf, "constraint not defined\n");
766 
767 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
768 }
769 static DEVICE_ATTR_RO(max_microvolts);
770 
771 static ssize_t requested_microamps_show(struct device *dev,
772 					struct device_attribute *attr, char *buf)
773 {
774 	struct regulator_dev *rdev = dev_get_drvdata(dev);
775 	struct regulator *regulator;
776 	int uA = 0;
777 
778 	regulator_lock(rdev);
779 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
780 		if (regulator->enable_count)
781 			uA += regulator->uA_load;
782 	}
783 	regulator_unlock(rdev);
784 	return sprintf(buf, "%d\n", uA);
785 }
786 static DEVICE_ATTR_RO(requested_microamps);
787 
788 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
789 			      char *buf)
790 {
791 	struct regulator_dev *rdev = dev_get_drvdata(dev);
792 	return sprintf(buf, "%d\n", rdev->use_count);
793 }
794 static DEVICE_ATTR_RO(num_users);
795 
796 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
797 			 char *buf)
798 {
799 	struct regulator_dev *rdev = dev_get_drvdata(dev);
800 
801 	switch (rdev->desc->type) {
802 	case REGULATOR_VOLTAGE:
803 		return sprintf(buf, "voltage\n");
804 	case REGULATOR_CURRENT:
805 		return sprintf(buf, "current\n");
806 	}
807 	return sprintf(buf, "unknown\n");
808 }
809 static DEVICE_ATTR_RO(type);
810 
811 static ssize_t suspend_mem_microvolts_show(struct device *dev,
812 					   struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
817 }
818 static DEVICE_ATTR_RO(suspend_mem_microvolts);
819 
820 static ssize_t suspend_disk_microvolts_show(struct device *dev,
821 					    struct device_attribute *attr, char *buf)
822 {
823 	struct regulator_dev *rdev = dev_get_drvdata(dev);
824 
825 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
826 }
827 static DEVICE_ATTR_RO(suspend_disk_microvolts);
828 
829 static ssize_t suspend_standby_microvolts_show(struct device *dev,
830 					       struct device_attribute *attr, char *buf)
831 {
832 	struct regulator_dev *rdev = dev_get_drvdata(dev);
833 
834 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
835 }
836 static DEVICE_ATTR_RO(suspend_standby_microvolts);
837 
838 static ssize_t suspend_mem_mode_show(struct device *dev,
839 				     struct device_attribute *attr, char *buf)
840 {
841 	struct regulator_dev *rdev = dev_get_drvdata(dev);
842 
843 	return regulator_print_opmode(buf,
844 		rdev->constraints->state_mem.mode);
845 }
846 static DEVICE_ATTR_RO(suspend_mem_mode);
847 
848 static ssize_t suspend_disk_mode_show(struct device *dev,
849 				      struct device_attribute *attr, char *buf)
850 {
851 	struct regulator_dev *rdev = dev_get_drvdata(dev);
852 
853 	return regulator_print_opmode(buf,
854 		rdev->constraints->state_disk.mode);
855 }
856 static DEVICE_ATTR_RO(suspend_disk_mode);
857 
858 static ssize_t suspend_standby_mode_show(struct device *dev,
859 					 struct device_attribute *attr, char *buf)
860 {
861 	struct regulator_dev *rdev = dev_get_drvdata(dev);
862 
863 	return regulator_print_opmode(buf,
864 		rdev->constraints->state_standby.mode);
865 }
866 static DEVICE_ATTR_RO(suspend_standby_mode);
867 
868 static ssize_t suspend_mem_state_show(struct device *dev,
869 				      struct device_attribute *attr, char *buf)
870 {
871 	struct regulator_dev *rdev = dev_get_drvdata(dev);
872 
873 	return regulator_print_state(buf,
874 			rdev->constraints->state_mem.enabled);
875 }
876 static DEVICE_ATTR_RO(suspend_mem_state);
877 
878 static ssize_t suspend_disk_state_show(struct device *dev,
879 				       struct device_attribute *attr, char *buf)
880 {
881 	struct regulator_dev *rdev = dev_get_drvdata(dev);
882 
883 	return regulator_print_state(buf,
884 			rdev->constraints->state_disk.enabled);
885 }
886 static DEVICE_ATTR_RO(suspend_disk_state);
887 
888 static ssize_t suspend_standby_state_show(struct device *dev,
889 					  struct device_attribute *attr, char *buf)
890 {
891 	struct regulator_dev *rdev = dev_get_drvdata(dev);
892 
893 	return regulator_print_state(buf,
894 			rdev->constraints->state_standby.enabled);
895 }
896 static DEVICE_ATTR_RO(suspend_standby_state);
897 
898 static ssize_t bypass_show(struct device *dev,
899 			   struct device_attribute *attr, char *buf)
900 {
901 	struct regulator_dev *rdev = dev_get_drvdata(dev);
902 	const char *report;
903 	bool bypass;
904 	int ret;
905 
906 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
907 
908 	if (ret != 0)
909 		report = "unknown";
910 	else if (bypass)
911 		report = "enabled";
912 	else
913 		report = "disabled";
914 
915 	return sprintf(buf, "%s\n", report);
916 }
917 static DEVICE_ATTR_RO(bypass);
918 
919 #define REGULATOR_ERROR_ATTR(name, bit)							\
920 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
921 				   char *buf)						\
922 	{										\
923 		int ret;								\
924 		unsigned int flags;							\
925 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
926 		ret = _regulator_get_error_flags(rdev, &flags);				\
927 		if (ret)								\
928 			return ret;							\
929 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
930 	}										\
931 	static DEVICE_ATTR_RO(name)
932 
933 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
934 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
935 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
936 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
937 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
938 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
939 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
940 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
941 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
942 
943 /* Calculate the new optimum regulator operating mode based on the new total
944  * consumer load. All locks held by caller
945  */
946 static int drms_uA_update(struct regulator_dev *rdev)
947 {
948 	struct regulator *sibling;
949 	int current_uA = 0, output_uV, input_uV, err;
950 	unsigned int mode;
951 
952 	/*
953 	 * first check to see if we can set modes at all, otherwise just
954 	 * tell the consumer everything is OK.
955 	 */
956 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
957 		rdev_dbg(rdev, "DRMS operation not allowed\n");
958 		return 0;
959 	}
960 
961 	if (!rdev->desc->ops->get_optimum_mode &&
962 	    !rdev->desc->ops->set_load)
963 		return 0;
964 
965 	if (!rdev->desc->ops->set_mode &&
966 	    !rdev->desc->ops->set_load)
967 		return -EINVAL;
968 
969 	/* calc total requested load */
970 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
971 		if (sibling->enable_count)
972 			current_uA += sibling->uA_load;
973 	}
974 
975 	current_uA += rdev->constraints->system_load;
976 
977 	if (rdev->desc->ops->set_load) {
978 		/* set the optimum mode for our new total regulator load */
979 		err = rdev->desc->ops->set_load(rdev, current_uA);
980 		if (err < 0)
981 			rdev_err(rdev, "failed to set load %d: %pe\n",
982 				 current_uA, ERR_PTR(err));
983 	} else {
984 		/*
985 		 * Unfortunately in some cases the constraints->valid_ops has
986 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
987 		 * That's not really legit but we won't consider it a fatal
988 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
989 		 * wasn't set.
990 		 */
991 		if (!rdev->constraints->valid_modes_mask) {
992 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
993 			return 0;
994 		}
995 
996 		/* get output voltage */
997 		output_uV = regulator_get_voltage_rdev(rdev);
998 
999 		/*
1000 		 * Don't return an error; if regulator driver cares about
1001 		 * output_uV then it's up to the driver to validate.
1002 		 */
1003 		if (output_uV <= 0)
1004 			rdev_dbg(rdev, "invalid output voltage found\n");
1005 
1006 		/* get input voltage */
1007 		input_uV = 0;
1008 		if (rdev->supply)
1009 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1010 		if (input_uV <= 0)
1011 			input_uV = rdev->constraints->input_uV;
1012 
1013 		/*
1014 		 * Don't return an error; if regulator driver cares about
1015 		 * input_uV then it's up to the driver to validate.
1016 		 */
1017 		if (input_uV <= 0)
1018 			rdev_dbg(rdev, "invalid input voltage found\n");
1019 
1020 		/* now get the optimum mode for our new total regulator load */
1021 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1022 							 output_uV, current_uA);
1023 
1024 		/* check the new mode is allowed */
1025 		err = regulator_mode_constrain(rdev, &mode);
1026 		if (err < 0) {
1027 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1028 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1029 			return err;
1030 		}
1031 
1032 		err = rdev->desc->ops->set_mode(rdev, mode);
1033 		if (err < 0)
1034 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1035 				 mode, ERR_PTR(err));
1036 	}
1037 
1038 	return err;
1039 }
1040 
1041 static int __suspend_set_state(struct regulator_dev *rdev,
1042 			       const struct regulator_state *rstate)
1043 {
1044 	int ret = 0;
1045 
1046 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1047 		rdev->desc->ops->set_suspend_enable)
1048 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1049 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1050 		rdev->desc->ops->set_suspend_disable)
1051 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1052 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1053 		ret = 0;
1054 
1055 	if (ret < 0) {
1056 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1057 		return ret;
1058 	}
1059 
1060 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1061 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1062 		if (ret < 0) {
1063 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1064 			return ret;
1065 		}
1066 	}
1067 
1068 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1069 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1070 		if (ret < 0) {
1071 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	return ret;
1077 }
1078 
1079 static int suspend_set_initial_state(struct regulator_dev *rdev)
1080 {
1081 	const struct regulator_state *rstate;
1082 
1083 	rstate = regulator_get_suspend_state_check(rdev,
1084 			rdev->constraints->initial_state);
1085 	if (!rstate)
1086 		return 0;
1087 
1088 	return __suspend_set_state(rdev, rstate);
1089 }
1090 
1091 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1092 static void print_constraints_debug(struct regulator_dev *rdev)
1093 {
1094 	struct regulation_constraints *constraints = rdev->constraints;
1095 	char buf[160] = "";
1096 	size_t len = sizeof(buf) - 1;
1097 	int count = 0;
1098 	int ret;
1099 
1100 	if (constraints->min_uV && constraints->max_uV) {
1101 		if (constraints->min_uV == constraints->max_uV)
1102 			count += scnprintf(buf + count, len - count, "%d mV ",
1103 					   constraints->min_uV / 1000);
1104 		else
1105 			count += scnprintf(buf + count, len - count,
1106 					   "%d <--> %d mV ",
1107 					   constraints->min_uV / 1000,
1108 					   constraints->max_uV / 1000);
1109 	}
1110 
1111 	if (!constraints->min_uV ||
1112 	    constraints->min_uV != constraints->max_uV) {
1113 		ret = regulator_get_voltage_rdev(rdev);
1114 		if (ret > 0)
1115 			count += scnprintf(buf + count, len - count,
1116 					   "at %d mV ", ret / 1000);
1117 	}
1118 
1119 	if (constraints->uV_offset)
1120 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1121 				   constraints->uV_offset / 1000);
1122 
1123 	if (constraints->min_uA && constraints->max_uA) {
1124 		if (constraints->min_uA == constraints->max_uA)
1125 			count += scnprintf(buf + count, len - count, "%d mA ",
1126 					   constraints->min_uA / 1000);
1127 		else
1128 			count += scnprintf(buf + count, len - count,
1129 					   "%d <--> %d mA ",
1130 					   constraints->min_uA / 1000,
1131 					   constraints->max_uA / 1000);
1132 	}
1133 
1134 	if (!constraints->min_uA ||
1135 	    constraints->min_uA != constraints->max_uA) {
1136 		ret = _regulator_get_current_limit(rdev);
1137 		if (ret > 0)
1138 			count += scnprintf(buf + count, len - count,
1139 					   "at %d mA ", ret / 1000);
1140 	}
1141 
1142 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1143 		count += scnprintf(buf + count, len - count, "fast ");
1144 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1145 		count += scnprintf(buf + count, len - count, "normal ");
1146 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1147 		count += scnprintf(buf + count, len - count, "idle ");
1148 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1149 		count += scnprintf(buf + count, len - count, "standby ");
1150 
1151 	if (!count)
1152 		count = scnprintf(buf, len, "no parameters");
1153 	else
1154 		--count;
1155 
1156 	count += scnprintf(buf + count, len - count, ", %s",
1157 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1158 
1159 	rdev_dbg(rdev, "%s\n", buf);
1160 }
1161 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1162 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1163 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1164 
1165 static void print_constraints(struct regulator_dev *rdev)
1166 {
1167 	struct regulation_constraints *constraints = rdev->constraints;
1168 
1169 	print_constraints_debug(rdev);
1170 
1171 	if ((constraints->min_uV != constraints->max_uV) &&
1172 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1173 		rdev_warn(rdev,
1174 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1175 }
1176 
1177 static int machine_constraints_voltage(struct regulator_dev *rdev,
1178 	struct regulation_constraints *constraints)
1179 {
1180 	const struct regulator_ops *ops = rdev->desc->ops;
1181 	int ret;
1182 
1183 	/* do we need to apply the constraint voltage */
1184 	if (rdev->constraints->apply_uV &&
1185 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1186 		int target_min, target_max;
1187 		int current_uV = regulator_get_voltage_rdev(rdev);
1188 
1189 		if (current_uV == -ENOTRECOVERABLE) {
1190 			/* This regulator can't be read and must be initialized */
1191 			rdev_info(rdev, "Setting %d-%duV\n",
1192 				  rdev->constraints->min_uV,
1193 				  rdev->constraints->max_uV);
1194 			_regulator_do_set_voltage(rdev,
1195 						  rdev->constraints->min_uV,
1196 						  rdev->constraints->max_uV);
1197 			current_uV = regulator_get_voltage_rdev(rdev);
1198 		}
1199 
1200 		if (current_uV < 0) {
1201 			if (current_uV != -EPROBE_DEFER)
1202 				rdev_err(rdev,
1203 					 "failed to get the current voltage: %pe\n",
1204 					 ERR_PTR(current_uV));
1205 			return current_uV;
1206 		}
1207 
1208 		/*
1209 		 * If we're below the minimum voltage move up to the
1210 		 * minimum voltage, if we're above the maximum voltage
1211 		 * then move down to the maximum.
1212 		 */
1213 		target_min = current_uV;
1214 		target_max = current_uV;
1215 
1216 		if (current_uV < rdev->constraints->min_uV) {
1217 			target_min = rdev->constraints->min_uV;
1218 			target_max = rdev->constraints->min_uV;
1219 		}
1220 
1221 		if (current_uV > rdev->constraints->max_uV) {
1222 			target_min = rdev->constraints->max_uV;
1223 			target_max = rdev->constraints->max_uV;
1224 		}
1225 
1226 		if (target_min != current_uV || target_max != current_uV) {
1227 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1228 				  current_uV, target_min, target_max);
1229 			ret = _regulator_do_set_voltage(
1230 				rdev, target_min, target_max);
1231 			if (ret < 0) {
1232 				rdev_err(rdev,
1233 					"failed to apply %d-%duV constraint: %pe\n",
1234 					target_min, target_max, ERR_PTR(ret));
1235 				return ret;
1236 			}
1237 		}
1238 	}
1239 
1240 	/* constrain machine-level voltage specs to fit
1241 	 * the actual range supported by this regulator.
1242 	 */
1243 	if (ops->list_voltage && rdev->desc->n_voltages) {
1244 		int	count = rdev->desc->n_voltages;
1245 		int	i;
1246 		int	min_uV = INT_MAX;
1247 		int	max_uV = INT_MIN;
1248 		int	cmin = constraints->min_uV;
1249 		int	cmax = constraints->max_uV;
1250 
1251 		/* it's safe to autoconfigure fixed-voltage supplies
1252 		 * and the constraints are used by list_voltage.
1253 		 */
1254 		if (count == 1 && !cmin) {
1255 			cmin = 1;
1256 			cmax = INT_MAX;
1257 			constraints->min_uV = cmin;
1258 			constraints->max_uV = cmax;
1259 		}
1260 
1261 		/* voltage constraints are optional */
1262 		if ((cmin == 0) && (cmax == 0))
1263 			return 0;
1264 
1265 		/* else require explicit machine-level constraints */
1266 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1267 			rdev_err(rdev, "invalid voltage constraints\n");
1268 			return -EINVAL;
1269 		}
1270 
1271 		/* no need to loop voltages if range is continuous */
1272 		if (rdev->desc->continuous_voltage_range)
1273 			return 0;
1274 
1275 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1276 		for (i = 0; i < count; i++) {
1277 			int	value;
1278 
1279 			value = ops->list_voltage(rdev, i);
1280 			if (value <= 0)
1281 				continue;
1282 
1283 			/* maybe adjust [min_uV..max_uV] */
1284 			if (value >= cmin && value < min_uV)
1285 				min_uV = value;
1286 			if (value <= cmax && value > max_uV)
1287 				max_uV = value;
1288 		}
1289 
1290 		/* final: [min_uV..max_uV] valid iff constraints valid */
1291 		if (max_uV < min_uV) {
1292 			rdev_err(rdev,
1293 				 "unsupportable voltage constraints %u-%uuV\n",
1294 				 min_uV, max_uV);
1295 			return -EINVAL;
1296 		}
1297 
1298 		/* use regulator's subset of machine constraints */
1299 		if (constraints->min_uV < min_uV) {
1300 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1301 				 constraints->min_uV, min_uV);
1302 			constraints->min_uV = min_uV;
1303 		}
1304 		if (constraints->max_uV > max_uV) {
1305 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1306 				 constraints->max_uV, max_uV);
1307 			constraints->max_uV = max_uV;
1308 		}
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static int machine_constraints_current(struct regulator_dev *rdev,
1315 	struct regulation_constraints *constraints)
1316 {
1317 	const struct regulator_ops *ops = rdev->desc->ops;
1318 	int ret;
1319 
1320 	if (!constraints->min_uA && !constraints->max_uA)
1321 		return 0;
1322 
1323 	if (constraints->min_uA > constraints->max_uA) {
1324 		rdev_err(rdev, "Invalid current constraints\n");
1325 		return -EINVAL;
1326 	}
1327 
1328 	if (!ops->set_current_limit || !ops->get_current_limit) {
1329 		rdev_warn(rdev, "Operation of current configuration missing\n");
1330 		return 0;
1331 	}
1332 
1333 	/* Set regulator current in constraints range */
1334 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1335 			constraints->max_uA);
1336 	if (ret < 0) {
1337 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1338 		return ret;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int _regulator_do_enable(struct regulator_dev *rdev);
1345 
1346 static int notif_set_limit(struct regulator_dev *rdev,
1347 			   int (*set)(struct regulator_dev *, int, int, bool),
1348 			   int limit, int severity)
1349 {
1350 	bool enable;
1351 
1352 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1353 		enable = false;
1354 		limit = 0;
1355 	} else {
1356 		enable = true;
1357 	}
1358 
1359 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1360 		limit = 0;
1361 
1362 	return set(rdev, limit, severity, enable);
1363 }
1364 
1365 static int handle_notify_limits(struct regulator_dev *rdev,
1366 			int (*set)(struct regulator_dev *, int, int, bool),
1367 			struct notification_limit *limits)
1368 {
1369 	int ret = 0;
1370 
1371 	if (!set)
1372 		return -EOPNOTSUPP;
1373 
1374 	if (limits->prot)
1375 		ret = notif_set_limit(rdev, set, limits->prot,
1376 				      REGULATOR_SEVERITY_PROT);
1377 	if (ret)
1378 		return ret;
1379 
1380 	if (limits->err)
1381 		ret = notif_set_limit(rdev, set, limits->err,
1382 				      REGULATOR_SEVERITY_ERR);
1383 	if (ret)
1384 		return ret;
1385 
1386 	if (limits->warn)
1387 		ret = notif_set_limit(rdev, set, limits->warn,
1388 				      REGULATOR_SEVERITY_WARN);
1389 
1390 	return ret;
1391 }
1392 /**
1393  * set_machine_constraints - sets regulator constraints
1394  * @rdev: regulator source
1395  *
1396  * Allows platform initialisation code to define and constrain
1397  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1398  * Constraints *must* be set by platform code in order for some
1399  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1400  * set_mode.
1401  *
1402  * Return: 0 on success or a negative error number on failure.
1403  */
1404 static int set_machine_constraints(struct regulator_dev *rdev)
1405 {
1406 	int ret = 0;
1407 	const struct regulator_ops *ops = rdev->desc->ops;
1408 
1409 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1410 	if (ret != 0)
1411 		return ret;
1412 
1413 	ret = machine_constraints_current(rdev, rdev->constraints);
1414 	if (ret != 0)
1415 		return ret;
1416 
1417 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1418 		ret = ops->set_input_current_limit(rdev,
1419 						   rdev->constraints->ilim_uA);
1420 		if (ret < 0) {
1421 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1422 			return ret;
1423 		}
1424 	}
1425 
1426 	/* do we need to setup our suspend state */
1427 	if (rdev->constraints->initial_state) {
1428 		ret = suspend_set_initial_state(rdev);
1429 		if (ret < 0) {
1430 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1431 			return ret;
1432 		}
1433 	}
1434 
1435 	if (rdev->constraints->initial_mode) {
1436 		if (!ops->set_mode) {
1437 			rdev_err(rdev, "no set_mode operation\n");
1438 			return -EINVAL;
1439 		}
1440 
1441 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1442 		if (ret < 0) {
1443 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1444 			return ret;
1445 		}
1446 	} else if (rdev->constraints->system_load) {
1447 		/*
1448 		 * We'll only apply the initial system load if an
1449 		 * initial mode wasn't specified.
1450 		 */
1451 		drms_uA_update(rdev);
1452 	}
1453 
1454 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1455 		&& ops->set_ramp_delay) {
1456 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1457 		if (ret < 0) {
1458 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1459 			return ret;
1460 		}
1461 	}
1462 
1463 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1464 		ret = ops->set_pull_down(rdev);
1465 		if (ret < 0) {
1466 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1467 			return ret;
1468 		}
1469 	}
1470 
1471 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1472 		ret = ops->set_soft_start(rdev);
1473 		if (ret < 0) {
1474 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1475 			return ret;
1476 		}
1477 	}
1478 
1479 	/*
1480 	 * Existing logic does not warn if over_current_protection is given as
1481 	 * a constraint but driver does not support that. I think we should
1482 	 * warn about this type of issues as it is possible someone changes
1483 	 * PMIC on board to another type - and the another PMIC's driver does
1484 	 * not support setting protection. Board composer may happily believe
1485 	 * the DT limits are respected - especially if the new PMIC HW also
1486 	 * supports protection but the driver does not. I won't change the logic
1487 	 * without hearing more experienced opinion on this though.
1488 	 *
1489 	 * If warning is seen as a good idea then we can merge handling the
1490 	 * over-curret protection and detection and get rid of this special
1491 	 * handling.
1492 	 */
1493 	if (rdev->constraints->over_current_protection
1494 		&& ops->set_over_current_protection) {
1495 		int lim = rdev->constraints->over_curr_limits.prot;
1496 
1497 		ret = ops->set_over_current_protection(rdev, lim,
1498 						       REGULATOR_SEVERITY_PROT,
1499 						       true);
1500 		if (ret < 0) {
1501 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1502 				 ERR_PTR(ret));
1503 			return ret;
1504 		}
1505 	}
1506 
1507 	if (rdev->constraints->over_current_detection)
1508 		ret = handle_notify_limits(rdev,
1509 					   ops->set_over_current_protection,
1510 					   &rdev->constraints->over_curr_limits);
1511 	if (ret) {
1512 		if (ret != -EOPNOTSUPP) {
1513 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1514 				 ERR_PTR(ret));
1515 			return ret;
1516 		}
1517 		rdev_warn(rdev,
1518 			  "IC does not support requested over-current limits\n");
1519 	}
1520 
1521 	if (rdev->constraints->over_voltage_detection)
1522 		ret = handle_notify_limits(rdev,
1523 					   ops->set_over_voltage_protection,
1524 					   &rdev->constraints->over_voltage_limits);
1525 	if (ret) {
1526 		if (ret != -EOPNOTSUPP) {
1527 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1528 				 ERR_PTR(ret));
1529 			return ret;
1530 		}
1531 		rdev_warn(rdev,
1532 			  "IC does not support requested over voltage limits\n");
1533 	}
1534 
1535 	if (rdev->constraints->under_voltage_detection)
1536 		ret = handle_notify_limits(rdev,
1537 					   ops->set_under_voltage_protection,
1538 					   &rdev->constraints->under_voltage_limits);
1539 	if (ret) {
1540 		if (ret != -EOPNOTSUPP) {
1541 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1542 				 ERR_PTR(ret));
1543 			return ret;
1544 		}
1545 		rdev_warn(rdev,
1546 			  "IC does not support requested under voltage limits\n");
1547 	}
1548 
1549 	if (rdev->constraints->over_temp_detection)
1550 		ret = handle_notify_limits(rdev,
1551 					   ops->set_thermal_protection,
1552 					   &rdev->constraints->temp_limits);
1553 	if (ret) {
1554 		if (ret != -EOPNOTSUPP) {
1555 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1556 				 ERR_PTR(ret));
1557 			return ret;
1558 		}
1559 		rdev_warn(rdev,
1560 			  "IC does not support requested temperature limits\n");
1561 	}
1562 
1563 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1564 		bool ad_state = (rdev->constraints->active_discharge ==
1565 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1566 
1567 		ret = ops->set_active_discharge(rdev, ad_state);
1568 		if (ret < 0) {
1569 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1570 			return ret;
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * If there is no mechanism for controlling the regulator then
1576 	 * flag it as always_on so we don't end up duplicating checks
1577 	 * for this so much.  Note that we could control the state of
1578 	 * a supply to control the output on a regulator that has no
1579 	 * direct control.
1580 	 */
1581 	if (!rdev->ena_pin && !ops->enable) {
1582 		if (rdev->supply_name && !rdev->supply)
1583 			return -EPROBE_DEFER;
1584 
1585 		if (rdev->supply)
1586 			rdev->constraints->always_on =
1587 				rdev->supply->rdev->constraints->always_on;
1588 		else
1589 			rdev->constraints->always_on = true;
1590 	}
1591 
1592 	/* If the constraints say the regulator should be on at this point
1593 	 * and we have control then make sure it is enabled.
1594 	 */
1595 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1596 		/* If we want to enable this regulator, make sure that we know
1597 		 * the supplying regulator.
1598 		 */
1599 		if (rdev->supply_name && !rdev->supply)
1600 			return -EPROBE_DEFER;
1601 
1602 		/* If supplying regulator has already been enabled,
1603 		 * it's not intended to have use_count increment
1604 		 * when rdev is only boot-on.
1605 		 */
1606 		if (rdev->supply &&
1607 		    (rdev->constraints->always_on ||
1608 		     !regulator_is_enabled(rdev->supply))) {
1609 			ret = regulator_enable(rdev->supply);
1610 			if (ret < 0) {
1611 				_regulator_put(rdev->supply);
1612 				rdev->supply = NULL;
1613 				return ret;
1614 			}
1615 		}
1616 
1617 		ret = _regulator_do_enable(rdev);
1618 		if (ret < 0 && ret != -EINVAL) {
1619 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1620 			return ret;
1621 		}
1622 
1623 		if (rdev->constraints->always_on)
1624 			rdev->use_count++;
1625 	} else if (rdev->desc->off_on_delay) {
1626 		rdev->last_off = ktime_get();
1627 	}
1628 
1629 	print_constraints(rdev);
1630 	return 0;
1631 }
1632 
1633 /**
1634  * set_supply - set regulator supply regulator
1635  * @rdev: regulator (locked)
1636  * @supply_rdev: supply regulator (locked))
1637  *
1638  * Called by platform initialisation code to set the supply regulator for this
1639  * regulator. This ensures that a regulators supply will also be enabled by the
1640  * core if it's child is enabled.
1641  *
1642  * Return: 0 on success or a negative error number on failure.
1643  */
1644 static int set_supply(struct regulator_dev *rdev,
1645 		      struct regulator_dev *supply_rdev)
1646 {
1647 	int err;
1648 
1649 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1650 
1651 	if (!try_module_get(supply_rdev->owner))
1652 		return -ENODEV;
1653 
1654 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1655 	if (rdev->supply == NULL) {
1656 		module_put(supply_rdev->owner);
1657 		err = -ENOMEM;
1658 		return err;
1659 	}
1660 	supply_rdev->open_count++;
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1667  * @rdev:         regulator source
1668  * @consumer_dev_name: dev_name() string for device supply applies to
1669  * @supply:       symbolic name for supply
1670  *
1671  * Allows platform initialisation code to map physical regulator
1672  * sources to symbolic names for supplies for use by devices.  Devices
1673  * should use these symbolic names to request regulators, avoiding the
1674  * need to provide board-specific regulator names as platform data.
1675  *
1676  * Return: 0 on success or a negative error number on failure.
1677  */
1678 static int set_consumer_device_supply(struct regulator_dev *rdev,
1679 				      const char *consumer_dev_name,
1680 				      const char *supply)
1681 {
1682 	struct regulator_map *node, *new_node;
1683 	int has_dev;
1684 
1685 	if (supply == NULL)
1686 		return -EINVAL;
1687 
1688 	if (consumer_dev_name != NULL)
1689 		has_dev = 1;
1690 	else
1691 		has_dev = 0;
1692 
1693 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1694 	if (new_node == NULL)
1695 		return -ENOMEM;
1696 
1697 	new_node->regulator = rdev;
1698 	new_node->supply = supply;
1699 
1700 	if (has_dev) {
1701 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1702 		if (new_node->dev_name == NULL) {
1703 			kfree(new_node);
1704 			return -ENOMEM;
1705 		}
1706 	}
1707 
1708 	mutex_lock(&regulator_list_mutex);
1709 	list_for_each_entry(node, &regulator_map_list, list) {
1710 		if (node->dev_name && consumer_dev_name) {
1711 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1712 				continue;
1713 		} else if (node->dev_name || consumer_dev_name) {
1714 			continue;
1715 		}
1716 
1717 		if (strcmp(node->supply, supply) != 0)
1718 			continue;
1719 
1720 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1721 			 consumer_dev_name,
1722 			 dev_name(&node->regulator->dev),
1723 			 node->regulator->desc->name,
1724 			 supply,
1725 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1726 		goto fail;
1727 	}
1728 
1729 	list_add(&new_node->list, &regulator_map_list);
1730 	mutex_unlock(&regulator_list_mutex);
1731 
1732 	return 0;
1733 
1734 fail:
1735 	mutex_unlock(&regulator_list_mutex);
1736 	kfree(new_node->dev_name);
1737 	kfree(new_node);
1738 	return -EBUSY;
1739 }
1740 
1741 static void unset_regulator_supplies(struct regulator_dev *rdev)
1742 {
1743 	struct regulator_map *node, *n;
1744 
1745 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1746 		if (rdev == node->regulator) {
1747 			list_del(&node->list);
1748 			kfree(node->dev_name);
1749 			kfree(node);
1750 		}
1751 	}
1752 }
1753 
1754 #ifdef CONFIG_DEBUG_FS
1755 static ssize_t constraint_flags_read_file(struct file *file,
1756 					  char __user *user_buf,
1757 					  size_t count, loff_t *ppos)
1758 {
1759 	const struct regulator *regulator = file->private_data;
1760 	const struct regulation_constraints *c = regulator->rdev->constraints;
1761 	char *buf;
1762 	ssize_t ret;
1763 
1764 	if (!c)
1765 		return 0;
1766 
1767 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1768 	if (!buf)
1769 		return -ENOMEM;
1770 
1771 	ret = snprintf(buf, PAGE_SIZE,
1772 			"always_on: %u\n"
1773 			"boot_on: %u\n"
1774 			"apply_uV: %u\n"
1775 			"ramp_disable: %u\n"
1776 			"soft_start: %u\n"
1777 			"pull_down: %u\n"
1778 			"over_current_protection: %u\n",
1779 			c->always_on,
1780 			c->boot_on,
1781 			c->apply_uV,
1782 			c->ramp_disable,
1783 			c->soft_start,
1784 			c->pull_down,
1785 			c->over_current_protection);
1786 
1787 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1788 	kfree(buf);
1789 
1790 	return ret;
1791 }
1792 
1793 #endif
1794 
1795 static const struct file_operations constraint_flags_fops = {
1796 #ifdef CONFIG_DEBUG_FS
1797 	.open = simple_open,
1798 	.read = constraint_flags_read_file,
1799 	.llseek = default_llseek,
1800 #endif
1801 };
1802 
1803 #define REG_STR_SIZE	64
1804 
1805 static struct regulator *create_regulator(struct regulator_dev *rdev,
1806 					  struct device *dev,
1807 					  const char *supply_name)
1808 {
1809 	struct regulator *regulator;
1810 	int err = 0;
1811 
1812 	lockdep_assert_held_once(&rdev->mutex.base);
1813 
1814 	if (dev) {
1815 		char buf[REG_STR_SIZE];
1816 		int size;
1817 
1818 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1819 				dev->kobj.name, supply_name);
1820 		if (size >= REG_STR_SIZE)
1821 			return NULL;
1822 
1823 		supply_name = kstrdup(buf, GFP_KERNEL);
1824 		if (supply_name == NULL)
1825 			return NULL;
1826 	} else {
1827 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1828 		if (supply_name == NULL)
1829 			return NULL;
1830 	}
1831 
1832 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1833 	if (regulator == NULL) {
1834 		kfree_const(supply_name);
1835 		return NULL;
1836 	}
1837 
1838 	regulator->rdev = rdev;
1839 	regulator->supply_name = supply_name;
1840 
1841 	list_add(&regulator->list, &rdev->consumer_list);
1842 
1843 	if (dev) {
1844 		regulator->dev = dev;
1845 
1846 		/* Add a link to the device sysfs entry */
1847 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1848 					       supply_name);
1849 		if (err) {
1850 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1851 				  dev->kobj.name, ERR_PTR(err));
1852 			/* non-fatal */
1853 		}
1854 	}
1855 
1856 	if (err != -EEXIST) {
1857 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1858 		if (IS_ERR(regulator->debugfs)) {
1859 			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1860 			regulator->debugfs = NULL;
1861 		}
1862 	}
1863 
1864 	if (regulator->debugfs) {
1865 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1866 				   &regulator->uA_load);
1867 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1868 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1869 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1870 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1871 		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1872 				    regulator, &constraint_flags_fops);
1873 	}
1874 
1875 	/*
1876 	 * Check now if the regulator is an always on regulator - if
1877 	 * it is then we don't need to do nearly so much work for
1878 	 * enable/disable calls.
1879 	 */
1880 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1881 	    _regulator_is_enabled(rdev))
1882 		regulator->always_on = true;
1883 
1884 	return regulator;
1885 }
1886 
1887 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1888 {
1889 	if (rdev->constraints && rdev->constraints->enable_time)
1890 		return rdev->constraints->enable_time;
1891 	if (rdev->desc->ops->enable_time)
1892 		return rdev->desc->ops->enable_time(rdev);
1893 	return rdev->desc->enable_time;
1894 }
1895 
1896 static struct regulator_supply_alias *regulator_find_supply_alias(
1897 		struct device *dev, const char *supply)
1898 {
1899 	struct regulator_supply_alias *map;
1900 
1901 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1902 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1903 			return map;
1904 
1905 	return NULL;
1906 }
1907 
1908 static void regulator_supply_alias(struct device **dev, const char **supply)
1909 {
1910 	struct regulator_supply_alias *map;
1911 
1912 	map = regulator_find_supply_alias(*dev, *supply);
1913 	if (map) {
1914 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1915 				*supply, map->alias_supply,
1916 				dev_name(map->alias_dev));
1917 		*dev = map->alias_dev;
1918 		*supply = map->alias_supply;
1919 	}
1920 }
1921 
1922 static int regulator_match(struct device *dev, const void *data)
1923 {
1924 	struct regulator_dev *r = dev_to_rdev(dev);
1925 
1926 	return strcmp(rdev_get_name(r), data) == 0;
1927 }
1928 
1929 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1930 {
1931 	struct device *dev;
1932 
1933 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1934 
1935 	return dev ? dev_to_rdev(dev) : NULL;
1936 }
1937 
1938 /**
1939  * regulator_dev_lookup - lookup a regulator device.
1940  * @dev: device for regulator "consumer".
1941  * @supply: Supply name or regulator ID.
1942  *
1943  * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1944  *
1945  * If successful, returns a struct regulator_dev that corresponds to the name
1946  * @supply and with the embedded struct device refcount incremented by one.
1947  * The refcount must be dropped by calling put_device().
1948  * On failure one of the following ERR_PTR() encoded values is returned:
1949  * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1950  * in the future.
1951  */
1952 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1953 						  const char *supply)
1954 {
1955 	struct regulator_dev *r = NULL;
1956 	struct regulator_map *map;
1957 	const char *devname = NULL;
1958 
1959 	regulator_supply_alias(&dev, &supply);
1960 
1961 	/* first do a dt based lookup */
1962 	if (dev_of_node(dev)) {
1963 		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1964 		if (!IS_ERR(r))
1965 			return r;
1966 		if (PTR_ERR(r) == -EPROBE_DEFER)
1967 			return r;
1968 
1969 		if (PTR_ERR(r) == -ENODEV)
1970 			r = NULL;
1971 	}
1972 
1973 	/* if not found, try doing it non-dt way */
1974 	if (dev)
1975 		devname = dev_name(dev);
1976 
1977 	mutex_lock(&regulator_list_mutex);
1978 	list_for_each_entry(map, &regulator_map_list, list) {
1979 		/* If the mapping has a device set up it must match */
1980 		if (map->dev_name &&
1981 		    (!devname || strcmp(map->dev_name, devname)))
1982 			continue;
1983 
1984 		if (strcmp(map->supply, supply) == 0 &&
1985 		    get_device(&map->regulator->dev)) {
1986 			r = map->regulator;
1987 			break;
1988 		}
1989 	}
1990 	mutex_unlock(&regulator_list_mutex);
1991 
1992 	if (r)
1993 		return r;
1994 
1995 	r = regulator_lookup_by_name(supply);
1996 	if (r)
1997 		return r;
1998 
1999 	return ERR_PTR(-ENODEV);
2000 }
2001 
2002 static int regulator_resolve_supply(struct regulator_dev *rdev)
2003 {
2004 	struct regulator_dev *r;
2005 	struct device *dev = rdev->dev.parent;
2006 	struct ww_acquire_ctx ww_ctx;
2007 	int ret = 0;
2008 
2009 	/* No supply to resolve? */
2010 	if (!rdev->supply_name)
2011 		return 0;
2012 
2013 	/* Supply already resolved? (fast-path without locking contention) */
2014 	if (rdev->supply)
2015 		return 0;
2016 
2017 	r = regulator_dev_lookup(dev, rdev->supply_name);
2018 	if (IS_ERR(r)) {
2019 		ret = PTR_ERR(r);
2020 
2021 		/* Did the lookup explicitly defer for us? */
2022 		if (ret == -EPROBE_DEFER)
2023 			goto out;
2024 
2025 		if (have_full_constraints()) {
2026 			r = dummy_regulator_rdev;
2027 			get_device(&r->dev);
2028 		} else {
2029 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2030 				rdev->supply_name, rdev->desc->name);
2031 			ret = -EPROBE_DEFER;
2032 			goto out;
2033 		}
2034 	}
2035 
2036 	if (r == rdev) {
2037 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2038 			rdev->desc->name, rdev->supply_name);
2039 		if (!have_full_constraints()) {
2040 			ret = -EINVAL;
2041 			goto out;
2042 		}
2043 		r = dummy_regulator_rdev;
2044 		get_device(&r->dev);
2045 	}
2046 
2047 	/*
2048 	 * If the supply's parent device is not the same as the
2049 	 * regulator's parent device, then ensure the parent device
2050 	 * is bound before we resolve the supply, in case the parent
2051 	 * device get probe deferred and unregisters the supply.
2052 	 */
2053 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2054 		if (!device_is_bound(r->dev.parent)) {
2055 			put_device(&r->dev);
2056 			ret = -EPROBE_DEFER;
2057 			goto out;
2058 		}
2059 	}
2060 
2061 	/* Recursively resolve the supply of the supply */
2062 	ret = regulator_resolve_supply(r);
2063 	if (ret < 0) {
2064 		put_device(&r->dev);
2065 		goto out;
2066 	}
2067 
2068 	/*
2069 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2070 	 * between rdev->supply null check and setting rdev->supply in
2071 	 * set_supply() from concurrent tasks.
2072 	 */
2073 	regulator_lock_two(rdev, r, &ww_ctx);
2074 
2075 	/* Supply just resolved by a concurrent task? */
2076 	if (rdev->supply) {
2077 		regulator_unlock_two(rdev, r, &ww_ctx);
2078 		put_device(&r->dev);
2079 		goto out;
2080 	}
2081 
2082 	ret = set_supply(rdev, r);
2083 	if (ret < 0) {
2084 		regulator_unlock_two(rdev, r, &ww_ctx);
2085 		put_device(&r->dev);
2086 		goto out;
2087 	}
2088 
2089 	regulator_unlock_two(rdev, r, &ww_ctx);
2090 
2091 	/*
2092 	 * In set_machine_constraints() we may have turned this regulator on
2093 	 * but we couldn't propagate to the supply if it hadn't been resolved
2094 	 * yet.  Do it now.
2095 	 */
2096 	if (rdev->use_count) {
2097 		ret = regulator_enable(rdev->supply);
2098 		if (ret < 0) {
2099 			_regulator_put(rdev->supply);
2100 			rdev->supply = NULL;
2101 			goto out;
2102 		}
2103 	}
2104 
2105 out:
2106 	return ret;
2107 }
2108 
2109 /* common pre-checks for regulator requests */
2110 int _regulator_get_common_check(struct device *dev, const char *id,
2111 				enum regulator_get_type get_type)
2112 {
2113 	if (get_type >= MAX_GET_TYPE) {
2114 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (id == NULL) {
2119 		dev_err(dev, "regulator request with no identifier\n");
2120 		return -EINVAL;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * _regulator_get_common - Common code for regulator requests
2128  * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2129  *       Its reference count is expected to have been incremented.
2130  * @dev: device used for dev_printk messages
2131  * @id: Supply name or regulator ID
2132  * @get_type: enum regulator_get_type value corresponding to type of request
2133  *
2134  * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2135  *	    encoded error.
2136  *
2137  * This function should be chained with *regulator_dev_lookup() functions.
2138  */
2139 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2140 					const char *id, enum regulator_get_type get_type)
2141 {
2142 	struct regulator *regulator;
2143 	struct device_link *link;
2144 	int ret;
2145 
2146 	if (IS_ERR(rdev)) {
2147 		ret = PTR_ERR(rdev);
2148 
2149 		/*
2150 		 * If regulator_dev_lookup() fails with error other
2151 		 * than -ENODEV our job here is done, we simply return it.
2152 		 */
2153 		if (ret != -ENODEV)
2154 			return ERR_PTR(ret);
2155 
2156 		if (!have_full_constraints()) {
2157 			dev_warn(dev,
2158 				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2159 			return ERR_PTR(-ENODEV);
2160 		}
2161 
2162 		switch (get_type) {
2163 		case NORMAL_GET:
2164 			/*
2165 			 * Assume that a regulator is physically present and
2166 			 * enabled, even if it isn't hooked up, and just
2167 			 * provide a dummy.
2168 			 */
2169 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2170 			rdev = dummy_regulator_rdev;
2171 			get_device(&rdev->dev);
2172 			break;
2173 
2174 		case EXCLUSIVE_GET:
2175 			dev_warn(dev,
2176 				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2177 			fallthrough;
2178 
2179 		default:
2180 			return ERR_PTR(-ENODEV);
2181 		}
2182 	}
2183 
2184 	if (rdev->exclusive) {
2185 		regulator = ERR_PTR(-EPERM);
2186 		put_device(&rdev->dev);
2187 		return regulator;
2188 	}
2189 
2190 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2191 		regulator = ERR_PTR(-EBUSY);
2192 		put_device(&rdev->dev);
2193 		return regulator;
2194 	}
2195 
2196 	mutex_lock(&regulator_list_mutex);
2197 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2198 	mutex_unlock(&regulator_list_mutex);
2199 
2200 	if (ret != 0) {
2201 		regulator = ERR_PTR(-EPROBE_DEFER);
2202 		put_device(&rdev->dev);
2203 		return regulator;
2204 	}
2205 
2206 	ret = regulator_resolve_supply(rdev);
2207 	if (ret < 0) {
2208 		regulator = ERR_PTR(ret);
2209 		put_device(&rdev->dev);
2210 		return regulator;
2211 	}
2212 
2213 	if (!try_module_get(rdev->owner)) {
2214 		regulator = ERR_PTR(-EPROBE_DEFER);
2215 		put_device(&rdev->dev);
2216 		return regulator;
2217 	}
2218 
2219 	regulator_lock(rdev);
2220 	regulator = create_regulator(rdev, dev, id);
2221 	regulator_unlock(rdev);
2222 	if (regulator == NULL) {
2223 		regulator = ERR_PTR(-ENOMEM);
2224 		module_put(rdev->owner);
2225 		put_device(&rdev->dev);
2226 		return regulator;
2227 	}
2228 
2229 	rdev->open_count++;
2230 	if (get_type == EXCLUSIVE_GET) {
2231 		rdev->exclusive = 1;
2232 
2233 		ret = _regulator_is_enabled(rdev);
2234 		if (ret > 0) {
2235 			rdev->use_count = 1;
2236 			regulator->enable_count = 1;
2237 
2238 			/* Propagate the regulator state to its supply */
2239 			if (rdev->supply) {
2240 				ret = regulator_enable(rdev->supply);
2241 				if (ret < 0) {
2242 					destroy_regulator(regulator);
2243 					module_put(rdev->owner);
2244 					put_device(&rdev->dev);
2245 					return ERR_PTR(ret);
2246 				}
2247 			}
2248 		} else {
2249 			rdev->use_count = 0;
2250 			regulator->enable_count = 0;
2251 		}
2252 	}
2253 
2254 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2255 	if (!IS_ERR_OR_NULL(link))
2256 		regulator->device_link = true;
2257 
2258 	return regulator;
2259 }
2260 
2261 /* Internal regulator request function */
2262 struct regulator *_regulator_get(struct device *dev, const char *id,
2263 				 enum regulator_get_type get_type)
2264 {
2265 	struct regulator_dev *rdev;
2266 	int ret;
2267 
2268 	ret = _regulator_get_common_check(dev, id, get_type);
2269 	if (ret)
2270 		return ERR_PTR(ret);
2271 
2272 	rdev = regulator_dev_lookup(dev, id);
2273 	return _regulator_get_common(rdev, dev, id, get_type);
2274 }
2275 
2276 /**
2277  * regulator_get - lookup and obtain a reference to a regulator.
2278  * @dev: device for regulator "consumer"
2279  * @id: Supply name or regulator ID.
2280  *
2281  * Use of supply names configured via set_consumer_device_supply() is
2282  * strongly encouraged.  It is recommended that the supply name used
2283  * should match the name used for the supply and/or the relevant
2284  * device pins in the datasheet.
2285  *
2286  * Return: Pointer to a &struct regulator corresponding to the regulator
2287  *	   producer, or an ERR_PTR() encoded negative error number.
2288  */
2289 struct regulator *regulator_get(struct device *dev, const char *id)
2290 {
2291 	return _regulator_get(dev, id, NORMAL_GET);
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_get);
2294 
2295 /**
2296  * regulator_get_exclusive - obtain exclusive access to a regulator.
2297  * @dev: device for regulator "consumer"
2298  * @id: Supply name or regulator ID.
2299  *
2300  * Other consumers will be unable to obtain this regulator while this
2301  * reference is held and the use count for the regulator will be
2302  * initialised to reflect the current state of the regulator.
2303  *
2304  * This is intended for use by consumers which cannot tolerate shared
2305  * use of the regulator such as those which need to force the
2306  * regulator off for correct operation of the hardware they are
2307  * controlling.
2308  *
2309  * Use of supply names configured via set_consumer_device_supply() is
2310  * strongly encouraged.  It is recommended that the supply name used
2311  * should match the name used for the supply and/or the relevant
2312  * device pins in the datasheet.
2313  *
2314  * Return: Pointer to a &struct regulator corresponding to the regulator
2315  *	   producer, or an ERR_PTR() encoded negative error number.
2316  */
2317 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2318 {
2319 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2322 
2323 /**
2324  * regulator_get_optional - obtain optional access to a regulator.
2325  * @dev: device for regulator "consumer"
2326  * @id: Supply name or regulator ID.
2327  *
2328  * This is intended for use by consumers for devices which can have
2329  * some supplies unconnected in normal use, such as some MMC devices.
2330  * It can allow the regulator core to provide stub supplies for other
2331  * supplies requested using normal regulator_get() calls without
2332  * disrupting the operation of drivers that can handle absent
2333  * supplies.
2334  *
2335  * Use of supply names configured via set_consumer_device_supply() is
2336  * strongly encouraged.  It is recommended that the supply name used
2337  * should match the name used for the supply and/or the relevant
2338  * device pins in the datasheet.
2339  *
2340  * Return: Pointer to a &struct regulator corresponding to the regulator
2341  *	   producer, or an ERR_PTR() encoded negative error number.
2342  */
2343 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2344 {
2345 	return _regulator_get(dev, id, OPTIONAL_GET);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_get_optional);
2348 
2349 static void destroy_regulator(struct regulator *regulator)
2350 {
2351 	struct regulator_dev *rdev = regulator->rdev;
2352 
2353 	debugfs_remove_recursive(regulator->debugfs);
2354 
2355 	if (regulator->dev) {
2356 		if (regulator->device_link)
2357 			device_link_remove(regulator->dev, &rdev->dev);
2358 
2359 		/* remove any sysfs entries */
2360 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2361 	}
2362 
2363 	regulator_lock(rdev);
2364 	list_del(&regulator->list);
2365 
2366 	rdev->open_count--;
2367 	rdev->exclusive = 0;
2368 	regulator_unlock(rdev);
2369 
2370 	kfree_const(regulator->supply_name);
2371 	kfree(regulator);
2372 }
2373 
2374 /* regulator_list_mutex lock held by regulator_put() */
2375 static void _regulator_put(struct regulator *regulator)
2376 {
2377 	struct regulator_dev *rdev;
2378 
2379 	if (IS_ERR_OR_NULL(regulator))
2380 		return;
2381 
2382 	lockdep_assert_held_once(&regulator_list_mutex);
2383 
2384 	/* Docs say you must disable before calling regulator_put() */
2385 	WARN_ON(regulator->enable_count);
2386 
2387 	rdev = regulator->rdev;
2388 
2389 	destroy_regulator(regulator);
2390 
2391 	module_put(rdev->owner);
2392 	put_device(&rdev->dev);
2393 }
2394 
2395 /**
2396  * regulator_put - "free" the regulator source
2397  * @regulator: regulator source
2398  *
2399  * Note: drivers must ensure that all regulator_enable calls made on this
2400  * regulator source are balanced by regulator_disable calls prior to calling
2401  * this function.
2402  */
2403 void regulator_put(struct regulator *regulator)
2404 {
2405 	mutex_lock(&regulator_list_mutex);
2406 	_regulator_put(regulator);
2407 	mutex_unlock(&regulator_list_mutex);
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_put);
2410 
2411 /**
2412  * regulator_register_supply_alias - Provide device alias for supply lookup
2413  *
2414  * @dev: device that will be given as the regulator "consumer"
2415  * @id: Supply name or regulator ID
2416  * @alias_dev: device that should be used to lookup the supply
2417  * @alias_id: Supply name or regulator ID that should be used to lookup the
2418  * supply
2419  *
2420  * All lookups for id on dev will instead be conducted for alias_id on
2421  * alias_dev.
2422  *
2423  * Return: 0 on success or a negative error number on failure.
2424  */
2425 int regulator_register_supply_alias(struct device *dev, const char *id,
2426 				    struct device *alias_dev,
2427 				    const char *alias_id)
2428 {
2429 	struct regulator_supply_alias *map;
2430 
2431 	map = regulator_find_supply_alias(dev, id);
2432 	if (map)
2433 		return -EEXIST;
2434 
2435 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2436 	if (!map)
2437 		return -ENOMEM;
2438 
2439 	map->src_dev = dev;
2440 	map->src_supply = id;
2441 	map->alias_dev = alias_dev;
2442 	map->alias_supply = alias_id;
2443 
2444 	list_add(&map->list, &regulator_supply_alias_list);
2445 
2446 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2447 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2448 
2449 	return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2452 
2453 /**
2454  * regulator_unregister_supply_alias - Remove device alias
2455  *
2456  * @dev: device that will be given as the regulator "consumer"
2457  * @id: Supply name or regulator ID
2458  *
2459  * Remove a lookup alias if one exists for id on dev.
2460  */
2461 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2462 {
2463 	struct regulator_supply_alias *map;
2464 
2465 	map = regulator_find_supply_alias(dev, id);
2466 	if (map) {
2467 		list_del(&map->list);
2468 		kfree(map);
2469 	}
2470 }
2471 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2472 
2473 /**
2474  * regulator_bulk_register_supply_alias - register multiple aliases
2475  *
2476  * @dev: device that will be given as the regulator "consumer"
2477  * @id: List of supply names or regulator IDs
2478  * @alias_dev: device that should be used to lookup the supply
2479  * @alias_id: List of supply names or regulator IDs that should be used to
2480  * lookup the supply
2481  * @num_id: Number of aliases to register
2482  *
2483  * This helper function allows drivers to register several supply
2484  * aliases in one operation.  If any of the aliases cannot be
2485  * registered any aliases that were registered will be removed
2486  * before returning to the caller.
2487  *
2488  * Return: 0 on success or a negative error number on failure.
2489  */
2490 int regulator_bulk_register_supply_alias(struct device *dev,
2491 					 const char *const *id,
2492 					 struct device *alias_dev,
2493 					 const char *const *alias_id,
2494 					 int num_id)
2495 {
2496 	int i;
2497 	int ret;
2498 
2499 	for (i = 0; i < num_id; ++i) {
2500 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2501 						      alias_id[i]);
2502 		if (ret < 0)
2503 			goto err;
2504 	}
2505 
2506 	return 0;
2507 
2508 err:
2509 	dev_err(dev,
2510 		"Failed to create supply alias %s,%s -> %s,%s\n",
2511 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2512 
2513 	while (--i >= 0)
2514 		regulator_unregister_supply_alias(dev, id[i]);
2515 
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2519 
2520 /**
2521  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2522  *
2523  * @dev: device that will be given as the regulator "consumer"
2524  * @id: List of supply names or regulator IDs
2525  * @num_id: Number of aliases to unregister
2526  *
2527  * This helper function allows drivers to unregister several supply
2528  * aliases in one operation.
2529  */
2530 void regulator_bulk_unregister_supply_alias(struct device *dev,
2531 					    const char *const *id,
2532 					    int num_id)
2533 {
2534 	int i;
2535 
2536 	for (i = 0; i < num_id; ++i)
2537 		regulator_unregister_supply_alias(dev, id[i]);
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2540 
2541 
2542 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2543 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2544 				const struct regulator_config *config)
2545 {
2546 	struct regulator_enable_gpio *pin, *new_pin;
2547 	struct gpio_desc *gpiod;
2548 
2549 	gpiod = config->ena_gpiod;
2550 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2551 
2552 	mutex_lock(&regulator_list_mutex);
2553 
2554 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2555 		if (pin->gpiod == gpiod) {
2556 			rdev_dbg(rdev, "GPIO is already used\n");
2557 			goto update_ena_gpio_to_rdev;
2558 		}
2559 	}
2560 
2561 	if (new_pin == NULL) {
2562 		mutex_unlock(&regulator_list_mutex);
2563 		return -ENOMEM;
2564 	}
2565 
2566 	pin = new_pin;
2567 	new_pin = NULL;
2568 
2569 	pin->gpiod = gpiod;
2570 	list_add(&pin->list, &regulator_ena_gpio_list);
2571 
2572 update_ena_gpio_to_rdev:
2573 	pin->request_count++;
2574 	rdev->ena_pin = pin;
2575 
2576 	mutex_unlock(&regulator_list_mutex);
2577 	kfree(new_pin);
2578 
2579 	return 0;
2580 }
2581 
2582 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2583 {
2584 	struct regulator_enable_gpio *pin, *n;
2585 
2586 	if (!rdev->ena_pin)
2587 		return;
2588 
2589 	/* Free the GPIO only in case of no use */
2590 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2591 		if (pin != rdev->ena_pin)
2592 			continue;
2593 
2594 		if (--pin->request_count)
2595 			break;
2596 
2597 		gpiod_put(pin->gpiod);
2598 		list_del(&pin->list);
2599 		kfree(pin);
2600 		break;
2601 	}
2602 
2603 	rdev->ena_pin = NULL;
2604 }
2605 
2606 /**
2607  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2608  * @rdev: regulator_dev structure
2609  * @enable: enable GPIO at initial use?
2610  *
2611  * GPIO is enabled in case of initial use. (enable_count is 0)
2612  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2613  *
2614  * Return: 0 on success or a negative error number on failure.
2615  */
2616 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2617 {
2618 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2619 
2620 	if (!pin)
2621 		return -EINVAL;
2622 
2623 	if (enable) {
2624 		/* Enable GPIO at initial use */
2625 		if (pin->enable_count == 0)
2626 			gpiod_set_value_cansleep(pin->gpiod, 1);
2627 
2628 		pin->enable_count++;
2629 	} else {
2630 		if (pin->enable_count > 1) {
2631 			pin->enable_count--;
2632 			return 0;
2633 		}
2634 
2635 		/* Disable GPIO if not used */
2636 		if (pin->enable_count <= 1) {
2637 			gpiod_set_value_cansleep(pin->gpiod, 0);
2638 			pin->enable_count = 0;
2639 		}
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * _regulator_check_status_enabled - check if regulator status can be
2647  *				     interpreted as "regulator is enabled"
2648  * @rdev: the regulator device to check
2649  *
2650  * Return:
2651  * * 1			- if status shows regulator is in enabled state
2652  * * 0			- if not enabled state
2653  * * Error Value	- as received from ops->get_status()
2654  */
2655 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2656 {
2657 	int ret = rdev->desc->ops->get_status(rdev);
2658 
2659 	if (ret < 0) {
2660 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2661 		return ret;
2662 	}
2663 
2664 	switch (ret) {
2665 	case REGULATOR_STATUS_OFF:
2666 	case REGULATOR_STATUS_ERROR:
2667 	case REGULATOR_STATUS_UNDEFINED:
2668 		return 0;
2669 	default:
2670 		return 1;
2671 	}
2672 }
2673 
2674 static int _regulator_do_enable(struct regulator_dev *rdev)
2675 {
2676 	int ret, delay;
2677 
2678 	/* Query before enabling in case configuration dependent.  */
2679 	ret = _regulator_get_enable_time(rdev);
2680 	if (ret >= 0) {
2681 		delay = ret;
2682 	} else {
2683 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2684 		delay = 0;
2685 	}
2686 
2687 	trace_regulator_enable(rdev_get_name(rdev));
2688 
2689 	if (rdev->desc->off_on_delay) {
2690 		/* if needed, keep a distance of off_on_delay from last time
2691 		 * this regulator was disabled.
2692 		 */
2693 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2694 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2695 
2696 		if (remaining > 0)
2697 			fsleep(remaining);
2698 	}
2699 
2700 	if (rdev->ena_pin) {
2701 		if (!rdev->ena_gpio_state) {
2702 			ret = regulator_ena_gpio_ctrl(rdev, true);
2703 			if (ret < 0)
2704 				return ret;
2705 			rdev->ena_gpio_state = 1;
2706 		}
2707 	} else if (rdev->desc->ops->enable) {
2708 		ret = rdev->desc->ops->enable(rdev);
2709 		if (ret < 0)
2710 			return ret;
2711 	} else {
2712 		return -EINVAL;
2713 	}
2714 
2715 	/* Allow the regulator to ramp; it would be useful to extend
2716 	 * this for bulk operations so that the regulators can ramp
2717 	 * together.
2718 	 */
2719 	trace_regulator_enable_delay(rdev_get_name(rdev));
2720 
2721 	/* If poll_enabled_time is set, poll upto the delay calculated
2722 	 * above, delaying poll_enabled_time uS to check if the regulator
2723 	 * actually got enabled.
2724 	 * If the regulator isn't enabled after our delay helper has expired,
2725 	 * return -ETIMEDOUT.
2726 	 */
2727 	if (rdev->desc->poll_enabled_time) {
2728 		int time_remaining = delay;
2729 
2730 		while (time_remaining > 0) {
2731 			fsleep(rdev->desc->poll_enabled_time);
2732 
2733 			if (rdev->desc->ops->get_status) {
2734 				ret = _regulator_check_status_enabled(rdev);
2735 				if (ret < 0)
2736 					return ret;
2737 				else if (ret)
2738 					break;
2739 			} else if (rdev->desc->ops->is_enabled(rdev))
2740 				break;
2741 
2742 			time_remaining -= rdev->desc->poll_enabled_time;
2743 		}
2744 
2745 		if (time_remaining <= 0) {
2746 			rdev_err(rdev, "Enabled check timed out\n");
2747 			return -ETIMEDOUT;
2748 		}
2749 	} else {
2750 		fsleep(delay);
2751 	}
2752 
2753 	trace_regulator_enable_complete(rdev_get_name(rdev));
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  * _regulator_handle_consumer_enable - handle that a consumer enabled
2760  * @regulator: regulator source
2761  *
2762  * Some things on a regulator consumer (like the contribution towards total
2763  * load on the regulator) only have an effect when the consumer wants the
2764  * regulator enabled.  Explained in example with two consumers of the same
2765  * regulator:
2766  *   consumer A: set_load(100);       => total load = 0
2767  *   consumer A: regulator_enable();  => total load = 100
2768  *   consumer B: set_load(1000);      => total load = 100
2769  *   consumer B: regulator_enable();  => total load = 1100
2770  *   consumer A: regulator_disable(); => total_load = 1000
2771  *
2772  * This function (together with _regulator_handle_consumer_disable) is
2773  * responsible for keeping track of the refcount for a given regulator consumer
2774  * and applying / unapplying these things.
2775  *
2776  * Return: 0 on success or negative error number on failure.
2777  */
2778 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2779 {
2780 	int ret;
2781 	struct regulator_dev *rdev = regulator->rdev;
2782 
2783 	lockdep_assert_held_once(&rdev->mutex.base);
2784 
2785 	regulator->enable_count++;
2786 	if (regulator->uA_load && regulator->enable_count == 1) {
2787 		ret = drms_uA_update(rdev);
2788 		if (ret)
2789 			regulator->enable_count--;
2790 		return ret;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 /**
2797  * _regulator_handle_consumer_disable - handle that a consumer disabled
2798  * @regulator: regulator source
2799  *
2800  * The opposite of _regulator_handle_consumer_enable().
2801  *
2802  * Return: 0 on success or a negative error number on failure.
2803  */
2804 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2805 {
2806 	struct regulator_dev *rdev = regulator->rdev;
2807 
2808 	lockdep_assert_held_once(&rdev->mutex.base);
2809 
2810 	if (!regulator->enable_count) {
2811 		rdev_err(rdev, "Underflow of regulator enable count\n");
2812 		return -EINVAL;
2813 	}
2814 
2815 	regulator->enable_count--;
2816 	if (regulator->uA_load && regulator->enable_count == 0)
2817 		return drms_uA_update(rdev);
2818 
2819 	return 0;
2820 }
2821 
2822 /* locks held by regulator_enable() */
2823 static int _regulator_enable(struct regulator *regulator)
2824 {
2825 	struct regulator_dev *rdev = regulator->rdev;
2826 	int ret;
2827 
2828 	lockdep_assert_held_once(&rdev->mutex.base);
2829 
2830 	if (rdev->use_count == 0 && rdev->supply) {
2831 		ret = _regulator_enable(rdev->supply);
2832 		if (ret < 0)
2833 			return ret;
2834 	}
2835 
2836 	/* balance only if there are regulators coupled */
2837 	if (rdev->coupling_desc.n_coupled > 1) {
2838 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2839 		if (ret < 0)
2840 			goto err_disable_supply;
2841 	}
2842 
2843 	ret = _regulator_handle_consumer_enable(regulator);
2844 	if (ret < 0)
2845 		goto err_disable_supply;
2846 
2847 	if (rdev->use_count == 0) {
2848 		/*
2849 		 * The regulator may already be enabled if it's not switchable
2850 		 * or was left on
2851 		 */
2852 		ret = _regulator_is_enabled(rdev);
2853 		if (ret == -EINVAL || ret == 0) {
2854 			if (!regulator_ops_is_valid(rdev,
2855 					REGULATOR_CHANGE_STATUS)) {
2856 				ret = -EPERM;
2857 				goto err_consumer_disable;
2858 			}
2859 
2860 			ret = _regulator_do_enable(rdev);
2861 			if (ret < 0)
2862 				goto err_consumer_disable;
2863 
2864 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2865 					     NULL);
2866 		} else if (ret < 0) {
2867 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2868 			goto err_consumer_disable;
2869 		}
2870 		/* Fallthrough on positive return values - already enabled */
2871 	}
2872 
2873 	if (regulator->enable_count == 1)
2874 		rdev->use_count++;
2875 
2876 	return 0;
2877 
2878 err_consumer_disable:
2879 	_regulator_handle_consumer_disable(regulator);
2880 
2881 err_disable_supply:
2882 	if (rdev->use_count == 0 && rdev->supply)
2883 		_regulator_disable(rdev->supply);
2884 
2885 	return ret;
2886 }
2887 
2888 /**
2889  * regulator_enable - enable regulator output
2890  * @regulator: regulator source
2891  *
2892  * Request that the regulator be enabled with the regulator output at
2893  * the predefined voltage or current value.  Calls to regulator_enable()
2894  * must be balanced with calls to regulator_disable().
2895  *
2896  * NOTE: the output value can be set by other drivers, boot loader or may be
2897  * hardwired in the regulator.
2898  *
2899  * Return: 0 on success or a negative error number on failure.
2900  */
2901 int regulator_enable(struct regulator *regulator)
2902 {
2903 	struct regulator_dev *rdev = regulator->rdev;
2904 	struct ww_acquire_ctx ww_ctx;
2905 	int ret;
2906 
2907 	regulator_lock_dependent(rdev, &ww_ctx);
2908 	ret = _regulator_enable(regulator);
2909 	regulator_unlock_dependent(rdev, &ww_ctx);
2910 
2911 	return ret;
2912 }
2913 EXPORT_SYMBOL_GPL(regulator_enable);
2914 
2915 static int _regulator_do_disable(struct regulator_dev *rdev)
2916 {
2917 	int ret;
2918 
2919 	trace_regulator_disable(rdev_get_name(rdev));
2920 
2921 	if (rdev->ena_pin) {
2922 		if (rdev->ena_gpio_state) {
2923 			ret = regulator_ena_gpio_ctrl(rdev, false);
2924 			if (ret < 0)
2925 				return ret;
2926 			rdev->ena_gpio_state = 0;
2927 		}
2928 
2929 	} else if (rdev->desc->ops->disable) {
2930 		ret = rdev->desc->ops->disable(rdev);
2931 		if (ret != 0)
2932 			return ret;
2933 	}
2934 
2935 	if (rdev->desc->off_on_delay)
2936 		rdev->last_off = ktime_get_boottime();
2937 
2938 	trace_regulator_disable_complete(rdev_get_name(rdev));
2939 
2940 	return 0;
2941 }
2942 
2943 /* locks held by regulator_disable() */
2944 static int _regulator_disable(struct regulator *regulator)
2945 {
2946 	struct regulator_dev *rdev = regulator->rdev;
2947 	int ret = 0;
2948 
2949 	lockdep_assert_held_once(&rdev->mutex.base);
2950 
2951 	if (WARN(regulator->enable_count == 0,
2952 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2953 		return -EIO;
2954 
2955 	if (regulator->enable_count == 1) {
2956 	/* disabling last enable_count from this regulator */
2957 		/* are we the last user and permitted to disable ? */
2958 		if (rdev->use_count == 1 &&
2959 		    (rdev->constraints && !rdev->constraints->always_on)) {
2960 
2961 			/* we are last user */
2962 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2963 				ret = _notifier_call_chain(rdev,
2964 							   REGULATOR_EVENT_PRE_DISABLE,
2965 							   NULL);
2966 				if (ret & NOTIFY_STOP_MASK)
2967 					return -EINVAL;
2968 
2969 				ret = _regulator_do_disable(rdev);
2970 				if (ret < 0) {
2971 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2972 					_notifier_call_chain(rdev,
2973 							REGULATOR_EVENT_ABORT_DISABLE,
2974 							NULL);
2975 					return ret;
2976 				}
2977 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2978 						NULL);
2979 			}
2980 
2981 			rdev->use_count = 0;
2982 		} else if (rdev->use_count > 1) {
2983 			rdev->use_count--;
2984 		}
2985 	}
2986 
2987 	if (ret == 0)
2988 		ret = _regulator_handle_consumer_disable(regulator);
2989 
2990 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2991 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2992 
2993 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2994 		ret = _regulator_disable(rdev->supply);
2995 
2996 	return ret;
2997 }
2998 
2999 /**
3000  * regulator_disable - disable regulator output
3001  * @regulator: regulator source
3002  *
3003  * Disable the regulator output voltage or current.  Calls to
3004  * regulator_enable() must be balanced with calls to
3005  * regulator_disable().
3006  *
3007  * NOTE: this will only disable the regulator output if no other consumer
3008  * devices have it enabled, the regulator device supports disabling and
3009  * machine constraints permit this operation.
3010  *
3011  * Return: 0 on success or a negative error number on failure.
3012  */
3013 int regulator_disable(struct regulator *regulator)
3014 {
3015 	struct regulator_dev *rdev = regulator->rdev;
3016 	struct ww_acquire_ctx ww_ctx;
3017 	int ret;
3018 
3019 	regulator_lock_dependent(rdev, &ww_ctx);
3020 	ret = _regulator_disable(regulator);
3021 	regulator_unlock_dependent(rdev, &ww_ctx);
3022 
3023 	return ret;
3024 }
3025 EXPORT_SYMBOL_GPL(regulator_disable);
3026 
3027 /* locks held by regulator_force_disable() */
3028 static int _regulator_force_disable(struct regulator_dev *rdev)
3029 {
3030 	int ret = 0;
3031 
3032 	lockdep_assert_held_once(&rdev->mutex.base);
3033 
3034 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3035 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3036 	if (ret & NOTIFY_STOP_MASK)
3037 		return -EINVAL;
3038 
3039 	ret = _regulator_do_disable(rdev);
3040 	if (ret < 0) {
3041 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3042 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3043 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3044 		return ret;
3045 	}
3046 
3047 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3048 			REGULATOR_EVENT_DISABLE, NULL);
3049 
3050 	return 0;
3051 }
3052 
3053 /**
3054  * regulator_force_disable - force disable regulator output
3055  * @regulator: regulator source
3056  *
3057  * Forcibly disable the regulator output voltage or current.
3058  * NOTE: this *will* disable the regulator output even if other consumer
3059  * devices have it enabled. This should be used for situations when device
3060  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3061  *
3062  * Return: 0 on success or a negative error number on failure.
3063  */
3064 int regulator_force_disable(struct regulator *regulator)
3065 {
3066 	struct regulator_dev *rdev = regulator->rdev;
3067 	struct ww_acquire_ctx ww_ctx;
3068 	int ret;
3069 
3070 	regulator_lock_dependent(rdev, &ww_ctx);
3071 
3072 	ret = _regulator_force_disable(regulator->rdev);
3073 
3074 	if (rdev->coupling_desc.n_coupled > 1)
3075 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3076 
3077 	if (regulator->uA_load) {
3078 		regulator->uA_load = 0;
3079 		ret = drms_uA_update(rdev);
3080 	}
3081 
3082 	if (rdev->use_count != 0 && rdev->supply)
3083 		_regulator_disable(rdev->supply);
3084 
3085 	regulator_unlock_dependent(rdev, &ww_ctx);
3086 
3087 	return ret;
3088 }
3089 EXPORT_SYMBOL_GPL(regulator_force_disable);
3090 
3091 static void regulator_disable_work(struct work_struct *work)
3092 {
3093 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3094 						  disable_work.work);
3095 	struct ww_acquire_ctx ww_ctx;
3096 	int count, i, ret;
3097 	struct regulator *regulator;
3098 	int total_count = 0;
3099 
3100 	regulator_lock_dependent(rdev, &ww_ctx);
3101 
3102 	/*
3103 	 * Workqueue functions queue the new work instance while the previous
3104 	 * work instance is being processed. Cancel the queued work instance
3105 	 * as the work instance under processing does the job of the queued
3106 	 * work instance.
3107 	 */
3108 	cancel_delayed_work(&rdev->disable_work);
3109 
3110 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3111 		count = regulator->deferred_disables;
3112 
3113 		if (!count)
3114 			continue;
3115 
3116 		total_count += count;
3117 		regulator->deferred_disables = 0;
3118 
3119 		for (i = 0; i < count; i++) {
3120 			ret = _regulator_disable(regulator);
3121 			if (ret != 0)
3122 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3123 					 ERR_PTR(ret));
3124 		}
3125 	}
3126 	WARN_ON(!total_count);
3127 
3128 	if (rdev->coupling_desc.n_coupled > 1)
3129 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3130 
3131 	regulator_unlock_dependent(rdev, &ww_ctx);
3132 }
3133 
3134 /**
3135  * regulator_disable_deferred - disable regulator output with delay
3136  * @regulator: regulator source
3137  * @ms: milliseconds until the regulator is disabled
3138  *
3139  * Execute regulator_disable() on the regulator after a delay.  This
3140  * is intended for use with devices that require some time to quiesce.
3141  *
3142  * NOTE: this will only disable the regulator output if no other consumer
3143  * devices have it enabled, the regulator device supports disabling and
3144  * machine constraints permit this operation.
3145  *
3146  * Return: 0 on success or a negative error number on failure.
3147  */
3148 int regulator_disable_deferred(struct regulator *regulator, int ms)
3149 {
3150 	struct regulator_dev *rdev = regulator->rdev;
3151 
3152 	if (!ms)
3153 		return regulator_disable(regulator);
3154 
3155 	regulator_lock(rdev);
3156 	regulator->deferred_disables++;
3157 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3158 			 msecs_to_jiffies(ms));
3159 	regulator_unlock(rdev);
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3164 
3165 static int _regulator_is_enabled(struct regulator_dev *rdev)
3166 {
3167 	/* A GPIO control always takes precedence */
3168 	if (rdev->ena_pin)
3169 		return rdev->ena_gpio_state;
3170 
3171 	/* If we don't know then assume that the regulator is always on */
3172 	if (!rdev->desc->ops->is_enabled)
3173 		return 1;
3174 
3175 	return rdev->desc->ops->is_enabled(rdev);
3176 }
3177 
3178 static int _regulator_list_voltage(struct regulator_dev *rdev,
3179 				   unsigned selector, int lock)
3180 {
3181 	const struct regulator_ops *ops = rdev->desc->ops;
3182 	int ret;
3183 
3184 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3185 		return rdev->desc->fixed_uV;
3186 
3187 	if (ops->list_voltage) {
3188 		if (selector >= rdev->desc->n_voltages)
3189 			return -EINVAL;
3190 		if (selector < rdev->desc->linear_min_sel)
3191 			return 0;
3192 		if (lock)
3193 			regulator_lock(rdev);
3194 		ret = ops->list_voltage(rdev, selector);
3195 		if (lock)
3196 			regulator_unlock(rdev);
3197 	} else if (rdev->is_switch && rdev->supply) {
3198 		ret = _regulator_list_voltage(rdev->supply->rdev,
3199 					      selector, lock);
3200 	} else {
3201 		return -EINVAL;
3202 	}
3203 
3204 	if (ret > 0) {
3205 		if (ret < rdev->constraints->min_uV)
3206 			ret = 0;
3207 		else if (ret > rdev->constraints->max_uV)
3208 			ret = 0;
3209 	}
3210 
3211 	return ret;
3212 }
3213 
3214 /**
3215  * regulator_is_enabled - is the regulator output enabled
3216  * @regulator: regulator source
3217  *
3218  * Note that the device backing this regulator handle can have multiple
3219  * users, so it might be enabled even if regulator_enable() was never
3220  * called for this particular source.
3221  *
3222  * Return: Positive if the regulator driver backing the source/client
3223  *	   has requested that the device be enabled, zero if it hasn't,
3224  *	   else a negative error number.
3225  */
3226 int regulator_is_enabled(struct regulator *regulator)
3227 {
3228 	int ret;
3229 
3230 	if (regulator->always_on)
3231 		return 1;
3232 
3233 	regulator_lock(regulator->rdev);
3234 	ret = _regulator_is_enabled(regulator->rdev);
3235 	regulator_unlock(regulator->rdev);
3236 
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3240 
3241 /**
3242  * regulator_count_voltages - count regulator_list_voltage() selectors
3243  * @regulator: regulator source
3244  *
3245  * Return: Number of selectors for @regulator, or negative error number.
3246  *
3247  * Selectors are numbered starting at zero, and typically correspond to
3248  * bitfields in hardware registers.
3249  */
3250 int regulator_count_voltages(struct regulator *regulator)
3251 {
3252 	struct regulator_dev	*rdev = regulator->rdev;
3253 
3254 	if (rdev->desc->n_voltages)
3255 		return rdev->desc->n_voltages;
3256 
3257 	if (!rdev->is_switch || !rdev->supply)
3258 		return -EINVAL;
3259 
3260 	return regulator_count_voltages(rdev->supply);
3261 }
3262 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3263 
3264 /**
3265  * regulator_list_voltage - enumerate supported voltages
3266  * @regulator: regulator source
3267  * @selector: identify voltage to list
3268  * Context: can sleep
3269  *
3270  * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3271  *	   0 if @selector can't be used on this system, or a negative error
3272  *	   number on failure.
3273  */
3274 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3275 {
3276 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3277 }
3278 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3279 
3280 /**
3281  * regulator_get_regmap - get the regulator's register map
3282  * @regulator: regulator source
3283  *
3284  * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3285  *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3286  */
3287 struct regmap *regulator_get_regmap(struct regulator *regulator)
3288 {
3289 	struct regmap *map = regulator->rdev->regmap;
3290 
3291 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3292 }
3293 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3294 
3295 /**
3296  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3297  * @regulator: regulator source
3298  * @vsel_reg: voltage selector register, output parameter
3299  * @vsel_mask: mask for voltage selector bitfield, output parameter
3300  *
3301  * Returns the hardware register offset and bitmask used for setting the
3302  * regulator voltage. This might be useful when configuring voltage-scaling
3303  * hardware or firmware that can make I2C requests behind the kernel's back,
3304  * for example.
3305  *
3306  * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3307  *         voltage selectors.
3308  *
3309  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3310  * and 0 is returned, otherwise a negative error number is returned.
3311  */
3312 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3313 					 unsigned *vsel_reg,
3314 					 unsigned *vsel_mask)
3315 {
3316 	struct regulator_dev *rdev = regulator->rdev;
3317 	const struct regulator_ops *ops = rdev->desc->ops;
3318 
3319 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3320 		return -EOPNOTSUPP;
3321 
3322 	*vsel_reg = rdev->desc->vsel_reg;
3323 	*vsel_mask = rdev->desc->vsel_mask;
3324 
3325 	return 0;
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3328 
3329 /**
3330  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3331  * @regulator: regulator source
3332  * @selector: identify voltage to list
3333  *
3334  * Converts the selector to a hardware-specific voltage selector that can be
3335  * directly written to the regulator registers. The address of the voltage
3336  * register can be determined by calling @regulator_get_hardware_vsel_register.
3337  *
3338  * Return: 0 on success, -%EINVAL if the selector is outside the supported
3339  *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3340  *	   selectors.
3341  */
3342 int regulator_list_hardware_vsel(struct regulator *regulator,
3343 				 unsigned selector)
3344 {
3345 	struct regulator_dev *rdev = regulator->rdev;
3346 	const struct regulator_ops *ops = rdev->desc->ops;
3347 
3348 	if (selector >= rdev->desc->n_voltages)
3349 		return -EINVAL;
3350 	if (selector < rdev->desc->linear_min_sel)
3351 		return 0;
3352 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3353 		return -EOPNOTSUPP;
3354 
3355 	return selector;
3356 }
3357 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3358 
3359 /**
3360  * regulator_hardware_enable - access the HW for enable/disable regulator
3361  * @regulator: regulator source
3362  * @enable: true for enable, false for disable
3363  *
3364  * Request that the regulator be enabled/disabled with the regulator output at
3365  * the predefined voltage or current value.
3366  *
3367  * Return: 0 on success or a negative error number on failure.
3368  */
3369 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3370 {
3371 	struct regulator_dev *rdev = regulator->rdev;
3372 	const struct regulator_ops *ops = rdev->desc->ops;
3373 	int ret = -EOPNOTSUPP;
3374 
3375 	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3376 		return ret;
3377 
3378 	if (enable)
3379 		ret = ops->enable(rdev);
3380 	else
3381 		ret = ops->disable(rdev);
3382 
3383 	return ret;
3384 }
3385 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3386 
3387 /**
3388  * regulator_get_linear_step - return the voltage step size between VSEL values
3389  * @regulator: regulator source
3390  *
3391  * Return: The voltage step size between VSEL values for linear regulators,
3392  *	   or 0 if the regulator isn't a linear regulator.
3393  */
3394 unsigned int regulator_get_linear_step(struct regulator *regulator)
3395 {
3396 	struct regulator_dev *rdev = regulator->rdev;
3397 
3398 	return rdev->desc->uV_step;
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3401 
3402 /**
3403  * regulator_is_supported_voltage - check if a voltage range can be supported
3404  *
3405  * @regulator: Regulator to check.
3406  * @min_uV: Minimum required voltage in uV.
3407  * @max_uV: Maximum required voltage in uV.
3408  *
3409  * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3410  *	   number if @regulator's voltage can't be changed and voltage readback
3411  *	   failed.
3412  */
3413 int regulator_is_supported_voltage(struct regulator *regulator,
3414 				   int min_uV, int max_uV)
3415 {
3416 	struct regulator_dev *rdev = regulator->rdev;
3417 	int i, voltages, ret;
3418 
3419 	/* If we can't change voltage check the current voltage */
3420 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3421 		ret = regulator_get_voltage(regulator);
3422 		if (ret >= 0)
3423 			return min_uV <= ret && ret <= max_uV;
3424 		else
3425 			return ret;
3426 	}
3427 
3428 	/* Any voltage within constrains range is fine? */
3429 	if (rdev->desc->continuous_voltage_range)
3430 		return min_uV >= rdev->constraints->min_uV &&
3431 				max_uV <= rdev->constraints->max_uV;
3432 
3433 	ret = regulator_count_voltages(regulator);
3434 	if (ret < 0)
3435 		return 0;
3436 	voltages = ret;
3437 
3438 	for (i = 0; i < voltages; i++) {
3439 		ret = regulator_list_voltage(regulator, i);
3440 
3441 		if (ret >= min_uV && ret <= max_uV)
3442 			return 1;
3443 	}
3444 
3445 	return 0;
3446 }
3447 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3448 
3449 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3450 				 int max_uV)
3451 {
3452 	const struct regulator_desc *desc = rdev->desc;
3453 
3454 	if (desc->ops->map_voltage)
3455 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3456 
3457 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3458 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3459 
3460 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3461 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3462 
3463 	if (desc->ops->list_voltage ==
3464 		regulator_list_voltage_pickable_linear_range)
3465 		return regulator_map_voltage_pickable_linear_range(rdev,
3466 							min_uV, max_uV);
3467 
3468 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3469 }
3470 
3471 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3472 				       int min_uV, int max_uV,
3473 				       unsigned *selector)
3474 {
3475 	struct pre_voltage_change_data data;
3476 	int ret;
3477 
3478 	data.old_uV = regulator_get_voltage_rdev(rdev);
3479 	data.min_uV = min_uV;
3480 	data.max_uV = max_uV;
3481 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3482 				   &data);
3483 	if (ret & NOTIFY_STOP_MASK)
3484 		return -EINVAL;
3485 
3486 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3487 	if (ret >= 0)
3488 		return ret;
3489 
3490 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3491 			     (void *)data.old_uV);
3492 
3493 	return ret;
3494 }
3495 
3496 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3497 					   int uV, unsigned selector)
3498 {
3499 	struct pre_voltage_change_data data;
3500 	int ret;
3501 
3502 	data.old_uV = regulator_get_voltage_rdev(rdev);
3503 	data.min_uV = uV;
3504 	data.max_uV = uV;
3505 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3506 				   &data);
3507 	if (ret & NOTIFY_STOP_MASK)
3508 		return -EINVAL;
3509 
3510 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3511 	if (ret >= 0)
3512 		return ret;
3513 
3514 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3515 			     (void *)data.old_uV);
3516 
3517 	return ret;
3518 }
3519 
3520 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3521 					   int uV, int new_selector)
3522 {
3523 	const struct regulator_ops *ops = rdev->desc->ops;
3524 	int diff, old_sel, curr_sel, ret;
3525 
3526 	/* Stepping is only needed if the regulator is enabled. */
3527 	if (!_regulator_is_enabled(rdev))
3528 		goto final_set;
3529 
3530 	if (!ops->get_voltage_sel)
3531 		return -EINVAL;
3532 
3533 	old_sel = ops->get_voltage_sel(rdev);
3534 	if (old_sel < 0)
3535 		return old_sel;
3536 
3537 	diff = new_selector - old_sel;
3538 	if (diff == 0)
3539 		return 0; /* No change needed. */
3540 
3541 	if (diff > 0) {
3542 		/* Stepping up. */
3543 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3544 		     curr_sel < new_selector;
3545 		     curr_sel += rdev->desc->vsel_step) {
3546 			/*
3547 			 * Call the callback directly instead of using
3548 			 * _regulator_call_set_voltage_sel() as we don't
3549 			 * want to notify anyone yet. Same in the branch
3550 			 * below.
3551 			 */
3552 			ret = ops->set_voltage_sel(rdev, curr_sel);
3553 			if (ret)
3554 				goto try_revert;
3555 		}
3556 	} else {
3557 		/* Stepping down. */
3558 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3559 		     curr_sel > new_selector;
3560 		     curr_sel -= rdev->desc->vsel_step) {
3561 			ret = ops->set_voltage_sel(rdev, curr_sel);
3562 			if (ret)
3563 				goto try_revert;
3564 		}
3565 	}
3566 
3567 final_set:
3568 	/* The final selector will trigger the notifiers. */
3569 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3570 
3571 try_revert:
3572 	/*
3573 	 * At least try to return to the previous voltage if setting a new
3574 	 * one failed.
3575 	 */
3576 	(void)ops->set_voltage_sel(rdev, old_sel);
3577 	return ret;
3578 }
3579 
3580 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3581 				       int old_uV, int new_uV)
3582 {
3583 	unsigned int ramp_delay = 0;
3584 
3585 	if (rdev->constraints->ramp_delay)
3586 		ramp_delay = rdev->constraints->ramp_delay;
3587 	else if (rdev->desc->ramp_delay)
3588 		ramp_delay = rdev->desc->ramp_delay;
3589 	else if (rdev->constraints->settling_time)
3590 		return rdev->constraints->settling_time;
3591 	else if (rdev->constraints->settling_time_up &&
3592 		 (new_uV > old_uV))
3593 		return rdev->constraints->settling_time_up;
3594 	else if (rdev->constraints->settling_time_down &&
3595 		 (new_uV < old_uV))
3596 		return rdev->constraints->settling_time_down;
3597 
3598 	if (ramp_delay == 0)
3599 		return 0;
3600 
3601 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3602 }
3603 
3604 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3605 				     int min_uV, int max_uV)
3606 {
3607 	int ret;
3608 	int delay = 0;
3609 	int best_val = 0;
3610 	unsigned int selector;
3611 	int old_selector = -1;
3612 	const struct regulator_ops *ops = rdev->desc->ops;
3613 	int old_uV = regulator_get_voltage_rdev(rdev);
3614 
3615 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3616 
3617 	min_uV += rdev->constraints->uV_offset;
3618 	max_uV += rdev->constraints->uV_offset;
3619 
3620 	/*
3621 	 * If we can't obtain the old selector there is not enough
3622 	 * info to call set_voltage_time_sel().
3623 	 */
3624 	if (_regulator_is_enabled(rdev) &&
3625 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3626 		old_selector = ops->get_voltage_sel(rdev);
3627 		if (old_selector < 0)
3628 			return old_selector;
3629 	}
3630 
3631 	if (ops->set_voltage) {
3632 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3633 						  &selector);
3634 
3635 		if (ret >= 0) {
3636 			if (ops->list_voltage)
3637 				best_val = ops->list_voltage(rdev,
3638 							     selector);
3639 			else
3640 				best_val = regulator_get_voltage_rdev(rdev);
3641 		}
3642 
3643 	} else if (ops->set_voltage_sel) {
3644 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3645 		if (ret >= 0) {
3646 			best_val = ops->list_voltage(rdev, ret);
3647 			if (min_uV <= best_val && max_uV >= best_val) {
3648 				selector = ret;
3649 				if (old_selector == selector)
3650 					ret = 0;
3651 				else if (rdev->desc->vsel_step)
3652 					ret = _regulator_set_voltage_sel_step(
3653 						rdev, best_val, selector);
3654 				else
3655 					ret = _regulator_call_set_voltage_sel(
3656 						rdev, best_val, selector);
3657 			} else {
3658 				ret = -EINVAL;
3659 			}
3660 		}
3661 	} else {
3662 		ret = -EINVAL;
3663 	}
3664 
3665 	if (ret)
3666 		goto out;
3667 
3668 	if (ops->set_voltage_time_sel) {
3669 		/*
3670 		 * Call set_voltage_time_sel if successfully obtained
3671 		 * old_selector
3672 		 */
3673 		if (old_selector >= 0 && old_selector != selector)
3674 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3675 							  selector);
3676 	} else {
3677 		if (old_uV != best_val) {
3678 			if (ops->set_voltage_time)
3679 				delay = ops->set_voltage_time(rdev, old_uV,
3680 							      best_val);
3681 			else
3682 				delay = _regulator_set_voltage_time(rdev,
3683 								    old_uV,
3684 								    best_val);
3685 		}
3686 	}
3687 
3688 	if (delay < 0) {
3689 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3690 		delay = 0;
3691 	}
3692 
3693 	/* Insert any necessary delays */
3694 	fsleep(delay);
3695 
3696 	if (best_val >= 0) {
3697 		unsigned long data = best_val;
3698 
3699 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3700 				     (void *)data);
3701 	}
3702 
3703 out:
3704 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3705 
3706 	return ret;
3707 }
3708 
3709 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3710 				  int min_uV, int max_uV, suspend_state_t state)
3711 {
3712 	struct regulator_state *rstate;
3713 	int uV, sel;
3714 
3715 	rstate = regulator_get_suspend_state(rdev, state);
3716 	if (rstate == NULL)
3717 		return -EINVAL;
3718 
3719 	if (min_uV < rstate->min_uV)
3720 		min_uV = rstate->min_uV;
3721 	if (max_uV > rstate->max_uV)
3722 		max_uV = rstate->max_uV;
3723 
3724 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3725 	if (sel < 0)
3726 		return sel;
3727 
3728 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3729 	if (uV >= min_uV && uV <= max_uV)
3730 		rstate->uV = uV;
3731 
3732 	return 0;
3733 }
3734 
3735 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3736 					  int min_uV, int max_uV,
3737 					  suspend_state_t state)
3738 {
3739 	struct regulator_dev *rdev = regulator->rdev;
3740 	struct regulator_voltage *voltage = &regulator->voltage[state];
3741 	int ret = 0;
3742 	int old_min_uV, old_max_uV;
3743 	int current_uV;
3744 
3745 	/* If we're setting the same range as last time the change
3746 	 * should be a noop (some cpufreq implementations use the same
3747 	 * voltage for multiple frequencies, for example).
3748 	 */
3749 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3750 		goto out;
3751 
3752 	/* If we're trying to set a range that overlaps the current voltage,
3753 	 * return successfully even though the regulator does not support
3754 	 * changing the voltage.
3755 	 */
3756 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3757 		current_uV = regulator_get_voltage_rdev(rdev);
3758 		if (min_uV <= current_uV && current_uV <= max_uV) {
3759 			voltage->min_uV = min_uV;
3760 			voltage->max_uV = max_uV;
3761 			goto out;
3762 		}
3763 	}
3764 
3765 	/* sanity check */
3766 	if (!rdev->desc->ops->set_voltage &&
3767 	    !rdev->desc->ops->set_voltage_sel) {
3768 		ret = -EINVAL;
3769 		goto out;
3770 	}
3771 
3772 	/* constraints check */
3773 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3774 	if (ret < 0)
3775 		goto out;
3776 
3777 	/* restore original values in case of error */
3778 	old_min_uV = voltage->min_uV;
3779 	old_max_uV = voltage->max_uV;
3780 	voltage->min_uV = min_uV;
3781 	voltage->max_uV = max_uV;
3782 
3783 	/* for not coupled regulators this will just set the voltage */
3784 	ret = regulator_balance_voltage(rdev, state);
3785 	if (ret < 0) {
3786 		voltage->min_uV = old_min_uV;
3787 		voltage->max_uV = old_max_uV;
3788 	}
3789 
3790 out:
3791 	return ret;
3792 }
3793 
3794 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3795 			       int max_uV, suspend_state_t state)
3796 {
3797 	int best_supply_uV = 0;
3798 	int supply_change_uV = 0;
3799 	int ret;
3800 
3801 	if (rdev->supply &&
3802 	    regulator_ops_is_valid(rdev->supply->rdev,
3803 				   REGULATOR_CHANGE_VOLTAGE) &&
3804 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3805 					   rdev->desc->ops->get_voltage_sel))) {
3806 		int current_supply_uV;
3807 		int selector;
3808 
3809 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3810 		if (selector < 0) {
3811 			ret = selector;
3812 			goto out;
3813 		}
3814 
3815 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3816 		if (best_supply_uV < 0) {
3817 			ret = best_supply_uV;
3818 			goto out;
3819 		}
3820 
3821 		best_supply_uV += rdev->desc->min_dropout_uV;
3822 
3823 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3824 		if (current_supply_uV < 0) {
3825 			ret = current_supply_uV;
3826 			goto out;
3827 		}
3828 
3829 		supply_change_uV = best_supply_uV - current_supply_uV;
3830 	}
3831 
3832 	if (supply_change_uV > 0) {
3833 		ret = regulator_set_voltage_unlocked(rdev->supply,
3834 				best_supply_uV, INT_MAX, state);
3835 		if (ret) {
3836 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3837 				ERR_PTR(ret));
3838 			goto out;
3839 		}
3840 	}
3841 
3842 	if (state == PM_SUSPEND_ON)
3843 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3844 	else
3845 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3846 							max_uV, state);
3847 	if (ret < 0)
3848 		goto out;
3849 
3850 	if (supply_change_uV < 0) {
3851 		ret = regulator_set_voltage_unlocked(rdev->supply,
3852 				best_supply_uV, INT_MAX, state);
3853 		if (ret)
3854 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3855 				 ERR_PTR(ret));
3856 		/* No need to fail here */
3857 		ret = 0;
3858 	}
3859 
3860 out:
3861 	return ret;
3862 }
3863 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3864 
3865 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3866 					int *current_uV, int *min_uV)
3867 {
3868 	struct regulation_constraints *constraints = rdev->constraints;
3869 
3870 	/* Limit voltage change only if necessary */
3871 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3872 		return 1;
3873 
3874 	if (*current_uV < 0) {
3875 		*current_uV = regulator_get_voltage_rdev(rdev);
3876 
3877 		if (*current_uV < 0)
3878 			return *current_uV;
3879 	}
3880 
3881 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3882 		return 1;
3883 
3884 	/* Clamp target voltage within the given step */
3885 	if (*current_uV < *min_uV)
3886 		*min_uV = min(*current_uV + constraints->max_uV_step,
3887 			      *min_uV);
3888 	else
3889 		*min_uV = max(*current_uV - constraints->max_uV_step,
3890 			      *min_uV);
3891 
3892 	return 0;
3893 }
3894 
3895 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3896 					 int *current_uV,
3897 					 int *min_uV, int *max_uV,
3898 					 suspend_state_t state,
3899 					 int n_coupled)
3900 {
3901 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3902 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3903 	struct regulation_constraints *constraints = rdev->constraints;
3904 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3905 	int max_current_uV = 0, min_current_uV = INT_MAX;
3906 	int highest_min_uV = 0, target_uV, possible_uV;
3907 	int i, ret, max_spread;
3908 	bool done;
3909 
3910 	*current_uV = -1;
3911 
3912 	/*
3913 	 * If there are no coupled regulators, simply set the voltage
3914 	 * demanded by consumers.
3915 	 */
3916 	if (n_coupled == 1) {
3917 		/*
3918 		 * If consumers don't provide any demands, set voltage
3919 		 * to min_uV
3920 		 */
3921 		desired_min_uV = constraints->min_uV;
3922 		desired_max_uV = constraints->max_uV;
3923 
3924 		ret = regulator_check_consumers(rdev,
3925 						&desired_min_uV,
3926 						&desired_max_uV, state);
3927 		if (ret < 0)
3928 			return ret;
3929 
3930 		done = true;
3931 
3932 		goto finish;
3933 	}
3934 
3935 	/* Find highest min desired voltage */
3936 	for (i = 0; i < n_coupled; i++) {
3937 		int tmp_min = 0;
3938 		int tmp_max = INT_MAX;
3939 
3940 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3941 
3942 		ret = regulator_check_consumers(c_rdevs[i],
3943 						&tmp_min,
3944 						&tmp_max, state);
3945 		if (ret < 0)
3946 			return ret;
3947 
3948 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3949 		if (ret < 0)
3950 			return ret;
3951 
3952 		highest_min_uV = max(highest_min_uV, tmp_min);
3953 
3954 		if (i == 0) {
3955 			desired_min_uV = tmp_min;
3956 			desired_max_uV = tmp_max;
3957 		}
3958 	}
3959 
3960 	max_spread = constraints->max_spread[0];
3961 
3962 	/*
3963 	 * Let target_uV be equal to the desired one if possible.
3964 	 * If not, set it to minimum voltage, allowed by other coupled
3965 	 * regulators.
3966 	 */
3967 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3968 
3969 	/*
3970 	 * Find min and max voltages, which currently aren't violating
3971 	 * max_spread.
3972 	 */
3973 	for (i = 1; i < n_coupled; i++) {
3974 		int tmp_act;
3975 
3976 		if (!_regulator_is_enabled(c_rdevs[i]))
3977 			continue;
3978 
3979 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3980 		if (tmp_act < 0)
3981 			return tmp_act;
3982 
3983 		min_current_uV = min(tmp_act, min_current_uV);
3984 		max_current_uV = max(tmp_act, max_current_uV);
3985 	}
3986 
3987 	/* There aren't any other regulators enabled */
3988 	if (max_current_uV == 0) {
3989 		possible_uV = target_uV;
3990 	} else {
3991 		/*
3992 		 * Correct target voltage, so as it currently isn't
3993 		 * violating max_spread
3994 		 */
3995 		possible_uV = max(target_uV, max_current_uV - max_spread);
3996 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3997 	}
3998 
3999 	if (possible_uV > desired_max_uV)
4000 		return -EINVAL;
4001 
4002 	done = (possible_uV == target_uV);
4003 	desired_min_uV = possible_uV;
4004 
4005 finish:
4006 	/* Apply max_uV_step constraint if necessary */
4007 	if (state == PM_SUSPEND_ON) {
4008 		ret = regulator_limit_voltage_step(rdev, current_uV,
4009 						   &desired_min_uV);
4010 		if (ret < 0)
4011 			return ret;
4012 
4013 		if (ret == 0)
4014 			done = false;
4015 	}
4016 
4017 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4018 	if (n_coupled > 1 && *current_uV == -1) {
4019 
4020 		if (_regulator_is_enabled(rdev)) {
4021 			ret = regulator_get_voltage_rdev(rdev);
4022 			if (ret < 0)
4023 				return ret;
4024 
4025 			*current_uV = ret;
4026 		} else {
4027 			*current_uV = desired_min_uV;
4028 		}
4029 	}
4030 
4031 	*min_uV = desired_min_uV;
4032 	*max_uV = desired_max_uV;
4033 
4034 	return done;
4035 }
4036 
4037 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4038 				 suspend_state_t state, bool skip_coupled)
4039 {
4040 	struct regulator_dev **c_rdevs;
4041 	struct regulator_dev *best_rdev;
4042 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4043 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4044 	unsigned int delta, best_delta;
4045 	unsigned long c_rdev_done = 0;
4046 	bool best_c_rdev_done;
4047 
4048 	c_rdevs = c_desc->coupled_rdevs;
4049 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4050 
4051 	/*
4052 	 * Find the best possible voltage change on each loop. Leave the loop
4053 	 * if there isn't any possible change.
4054 	 */
4055 	do {
4056 		best_c_rdev_done = false;
4057 		best_delta = 0;
4058 		best_min_uV = 0;
4059 		best_max_uV = 0;
4060 		best_c_rdev = 0;
4061 		best_rdev = NULL;
4062 
4063 		/*
4064 		 * Find highest difference between optimal voltage
4065 		 * and current voltage.
4066 		 */
4067 		for (i = 0; i < n_coupled; i++) {
4068 			/*
4069 			 * optimal_uV is the best voltage that can be set for
4070 			 * i-th regulator at the moment without violating
4071 			 * max_spread constraint in order to balance
4072 			 * the coupled voltages.
4073 			 */
4074 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4075 
4076 			if (test_bit(i, &c_rdev_done))
4077 				continue;
4078 
4079 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4080 							    &current_uV,
4081 							    &optimal_uV,
4082 							    &optimal_max_uV,
4083 							    state, n_coupled);
4084 			if (ret < 0)
4085 				goto out;
4086 
4087 			delta = abs(optimal_uV - current_uV);
4088 
4089 			if (delta && best_delta <= delta) {
4090 				best_c_rdev_done = ret;
4091 				best_delta = delta;
4092 				best_rdev = c_rdevs[i];
4093 				best_min_uV = optimal_uV;
4094 				best_max_uV = optimal_max_uV;
4095 				best_c_rdev = i;
4096 			}
4097 		}
4098 
4099 		/* Nothing to change, return successfully */
4100 		if (!best_rdev) {
4101 			ret = 0;
4102 			goto out;
4103 		}
4104 
4105 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4106 						 best_max_uV, state);
4107 
4108 		if (ret < 0)
4109 			goto out;
4110 
4111 		if (best_c_rdev_done)
4112 			set_bit(best_c_rdev, &c_rdev_done);
4113 
4114 	} while (n_coupled > 1);
4115 
4116 out:
4117 	return ret;
4118 }
4119 
4120 static int regulator_balance_voltage(struct regulator_dev *rdev,
4121 				     suspend_state_t state)
4122 {
4123 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4124 	struct regulator_coupler *coupler = c_desc->coupler;
4125 	bool skip_coupled = false;
4126 
4127 	/*
4128 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4129 	 * other coupled regulators.
4130 	 */
4131 	if (state != PM_SUSPEND_ON)
4132 		skip_coupled = true;
4133 
4134 	if (c_desc->n_resolved < c_desc->n_coupled) {
4135 		rdev_err(rdev, "Not all coupled regulators registered\n");
4136 		return -EPERM;
4137 	}
4138 
4139 	/* Invoke custom balancer for customized couplers */
4140 	if (coupler && coupler->balance_voltage)
4141 		return coupler->balance_voltage(coupler, rdev, state);
4142 
4143 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4144 }
4145 
4146 /**
4147  * regulator_set_voltage - set regulator output voltage
4148  * @regulator: regulator source
4149  * @min_uV: Minimum required voltage in uV
4150  * @max_uV: Maximum acceptable voltage in uV
4151  *
4152  * Sets a voltage regulator to the desired output voltage. This can be set
4153  * during any regulator state. IOW, regulator can be disabled or enabled.
4154  *
4155  * If the regulator is enabled then the voltage will change to the new value
4156  * immediately otherwise if the regulator is disabled the regulator will
4157  * output at the new voltage when enabled.
4158  *
4159  * NOTE: If the regulator is shared between several devices then the lowest
4160  * request voltage that meets the system constraints will be used.
4161  * Regulator system constraints must be set for this regulator before
4162  * calling this function otherwise this call will fail.
4163  *
4164  * Return: 0 on success or a negative error number on failure.
4165  */
4166 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4167 {
4168 	struct ww_acquire_ctx ww_ctx;
4169 	int ret;
4170 
4171 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4172 
4173 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4174 					     PM_SUSPEND_ON);
4175 
4176 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4177 
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4181 
4182 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4183 					   suspend_state_t state, bool en)
4184 {
4185 	struct regulator_state *rstate;
4186 
4187 	rstate = regulator_get_suspend_state(rdev, state);
4188 	if (rstate == NULL)
4189 		return -EINVAL;
4190 
4191 	if (!rstate->changeable)
4192 		return -EPERM;
4193 
4194 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4195 
4196 	return 0;
4197 }
4198 
4199 int regulator_suspend_enable(struct regulator_dev *rdev,
4200 				    suspend_state_t state)
4201 {
4202 	return regulator_suspend_toggle(rdev, state, true);
4203 }
4204 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4205 
4206 int regulator_suspend_disable(struct regulator_dev *rdev,
4207 				     suspend_state_t state)
4208 {
4209 	struct regulator *regulator;
4210 	struct regulator_voltage *voltage;
4211 
4212 	/*
4213 	 * if any consumer wants this regulator device keeping on in
4214 	 * suspend states, don't set it as disabled.
4215 	 */
4216 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4217 		voltage = &regulator->voltage[state];
4218 		if (voltage->min_uV || voltage->max_uV)
4219 			return 0;
4220 	}
4221 
4222 	return regulator_suspend_toggle(rdev, state, false);
4223 }
4224 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4225 
4226 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4227 					  int min_uV, int max_uV,
4228 					  suspend_state_t state)
4229 {
4230 	struct regulator_dev *rdev = regulator->rdev;
4231 	struct regulator_state *rstate;
4232 
4233 	rstate = regulator_get_suspend_state(rdev, state);
4234 	if (rstate == NULL)
4235 		return -EINVAL;
4236 
4237 	if (rstate->min_uV == rstate->max_uV) {
4238 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4239 		return -EPERM;
4240 	}
4241 
4242 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4243 }
4244 
4245 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4246 				  int max_uV, suspend_state_t state)
4247 {
4248 	struct ww_acquire_ctx ww_ctx;
4249 	int ret;
4250 
4251 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4252 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4253 		return -EINVAL;
4254 
4255 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4256 
4257 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4258 					     max_uV, state);
4259 
4260 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4265 
4266 /**
4267  * regulator_set_voltage_time - get raise/fall time
4268  * @regulator: regulator source
4269  * @old_uV: starting voltage in microvolts
4270  * @new_uV: target voltage in microvolts
4271  *
4272  * Provided with the starting and ending voltage, this function attempts to
4273  * calculate the time in microseconds required to rise or fall to this new
4274  * voltage.
4275  *
4276  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4277  */
4278 int regulator_set_voltage_time(struct regulator *regulator,
4279 			       int old_uV, int new_uV)
4280 {
4281 	struct regulator_dev *rdev = regulator->rdev;
4282 	const struct regulator_ops *ops = rdev->desc->ops;
4283 	int old_sel = -1;
4284 	int new_sel = -1;
4285 	int voltage;
4286 	int i;
4287 
4288 	if (ops->set_voltage_time)
4289 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4290 	else if (!ops->set_voltage_time_sel)
4291 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4292 
4293 	/* Currently requires operations to do this */
4294 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4295 		return -EINVAL;
4296 
4297 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4298 		/* We only look for exact voltage matches here */
4299 		if (i < rdev->desc->linear_min_sel)
4300 			continue;
4301 
4302 		if (old_sel >= 0 && new_sel >= 0)
4303 			break;
4304 
4305 		voltage = regulator_list_voltage(regulator, i);
4306 		if (voltage < 0)
4307 			return -EINVAL;
4308 		if (voltage == 0)
4309 			continue;
4310 		if (voltage == old_uV)
4311 			old_sel = i;
4312 		if (voltage == new_uV)
4313 			new_sel = i;
4314 	}
4315 
4316 	if (old_sel < 0 || new_sel < 0)
4317 		return -EINVAL;
4318 
4319 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4322 
4323 /**
4324  * regulator_set_voltage_time_sel - get raise/fall time
4325  * @rdev: regulator source device
4326  * @old_selector: selector for starting voltage
4327  * @new_selector: selector for target voltage
4328  *
4329  * Provided with the starting and target voltage selectors, this function
4330  * returns time in microseconds required to rise or fall to this new voltage
4331  *
4332  * Drivers providing ramp_delay in regulation_constraints can use this as their
4333  * set_voltage_time_sel() operation.
4334  *
4335  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4336  */
4337 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338 				   unsigned int old_selector,
4339 				   unsigned int new_selector)
4340 {
4341 	int old_volt, new_volt;
4342 
4343 	/* sanity check */
4344 	if (!rdev->desc->ops->list_voltage)
4345 		return -EINVAL;
4346 
4347 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349 
4350 	if (rdev->desc->ops->set_voltage_time)
4351 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352 							 new_volt);
4353 	else
4354 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355 }
4356 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357 
4358 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359 {
4360 	int ret;
4361 
4362 	regulator_lock(rdev);
4363 
4364 	if (!rdev->desc->ops->set_voltage &&
4365 	    !rdev->desc->ops->set_voltage_sel) {
4366 		ret = -EINVAL;
4367 		goto out;
4368 	}
4369 
4370 	/* balance only, if regulator is coupled */
4371 	if (rdev->coupling_desc.n_coupled > 1)
4372 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373 	else
4374 		ret = -EOPNOTSUPP;
4375 
4376 out:
4377 	regulator_unlock(rdev);
4378 	return ret;
4379 }
4380 
4381 /**
4382  * regulator_sync_voltage - re-apply last regulator output voltage
4383  * @regulator: regulator source
4384  *
4385  * Re-apply the last configured voltage.  This is intended to be used
4386  * where some external control source the consumer is cooperating with
4387  * has caused the configured voltage to change.
4388  *
4389  * Return: 0 on success or a negative error number on failure.
4390  */
4391 int regulator_sync_voltage(struct regulator *regulator)
4392 {
4393 	struct regulator_dev *rdev = regulator->rdev;
4394 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4395 	int ret, min_uV, max_uV;
4396 
4397 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4398 		return 0;
4399 
4400 	regulator_lock(rdev);
4401 
4402 	if (!rdev->desc->ops->set_voltage &&
4403 	    !rdev->desc->ops->set_voltage_sel) {
4404 		ret = -EINVAL;
4405 		goto out;
4406 	}
4407 
4408 	/* This is only going to work if we've had a voltage configured. */
4409 	if (!voltage->min_uV && !voltage->max_uV) {
4410 		ret = -EINVAL;
4411 		goto out;
4412 	}
4413 
4414 	min_uV = voltage->min_uV;
4415 	max_uV = voltage->max_uV;
4416 
4417 	/* This should be a paranoia check... */
4418 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4419 	if (ret < 0)
4420 		goto out;
4421 
4422 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4423 	if (ret < 0)
4424 		goto out;
4425 
4426 	/* balance only, if regulator is coupled */
4427 	if (rdev->coupling_desc.n_coupled > 1)
4428 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4429 	else
4430 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4431 
4432 out:
4433 	regulator_unlock(rdev);
4434 	return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4437 
4438 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4439 {
4440 	int sel, ret;
4441 	bool bypassed;
4442 
4443 	if (rdev->desc->ops->get_bypass) {
4444 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4445 		if (ret < 0)
4446 			return ret;
4447 		if (bypassed) {
4448 			/* if bypassed the regulator must have a supply */
4449 			if (!rdev->supply) {
4450 				rdev_err(rdev,
4451 					 "bypassed regulator has no supply!\n");
4452 				return -EPROBE_DEFER;
4453 			}
4454 
4455 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4456 		}
4457 	}
4458 
4459 	if (rdev->desc->ops->get_voltage_sel) {
4460 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4461 		if (sel < 0)
4462 			return sel;
4463 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4464 	} else if (rdev->desc->ops->get_voltage) {
4465 		ret = rdev->desc->ops->get_voltage(rdev);
4466 	} else if (rdev->desc->ops->list_voltage) {
4467 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4468 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4469 		ret = rdev->desc->fixed_uV;
4470 	} else if (rdev->supply) {
4471 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4472 	} else if (rdev->supply_name) {
4473 		return -EPROBE_DEFER;
4474 	} else {
4475 		return -EINVAL;
4476 	}
4477 
4478 	if (ret < 0)
4479 		return ret;
4480 	return ret - rdev->constraints->uV_offset;
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4483 
4484 /**
4485  * regulator_get_voltage - get regulator output voltage
4486  * @regulator: regulator source
4487  *
4488  * Return: Current regulator voltage in uV, or a negative error number on failure.
4489  *
4490  * NOTE: If the regulator is disabled it will return the voltage value. This
4491  * function should not be used to determine regulator state.
4492  */
4493 int regulator_get_voltage(struct regulator *regulator)
4494 {
4495 	struct ww_acquire_ctx ww_ctx;
4496 	int ret;
4497 
4498 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4499 	ret = regulator_get_voltage_rdev(regulator->rdev);
4500 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4501 
4502 	return ret;
4503 }
4504 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4505 
4506 /**
4507  * regulator_set_current_limit - set regulator output current limit
4508  * @regulator: regulator source
4509  * @min_uA: Minimum supported current in uA
4510  * @max_uA: Maximum supported current in uA
4511  *
4512  * Sets current sink to the desired output current. This can be set during
4513  * any regulator state. IOW, regulator can be disabled or enabled.
4514  *
4515  * If the regulator is enabled then the current will change to the new value
4516  * immediately otherwise if the regulator is disabled the regulator will
4517  * output at the new current when enabled.
4518  *
4519  * NOTE: Regulator system constraints must be set for this regulator before
4520  * calling this function otherwise this call will fail.
4521  *
4522  * Return: 0 on success or a negative error number on failure.
4523  */
4524 int regulator_set_current_limit(struct regulator *regulator,
4525 			       int min_uA, int max_uA)
4526 {
4527 	struct regulator_dev *rdev = regulator->rdev;
4528 	int ret;
4529 
4530 	regulator_lock(rdev);
4531 
4532 	/* sanity check */
4533 	if (!rdev->desc->ops->set_current_limit) {
4534 		ret = -EINVAL;
4535 		goto out;
4536 	}
4537 
4538 	/* constraints check */
4539 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4540 	if (ret < 0)
4541 		goto out;
4542 
4543 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4544 out:
4545 	regulator_unlock(rdev);
4546 	return ret;
4547 }
4548 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4549 
4550 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4551 {
4552 	/* sanity check */
4553 	if (!rdev->desc->ops->get_current_limit)
4554 		return -EINVAL;
4555 
4556 	return rdev->desc->ops->get_current_limit(rdev);
4557 }
4558 
4559 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4560 {
4561 	int ret;
4562 
4563 	regulator_lock(rdev);
4564 	ret = _regulator_get_current_limit_unlocked(rdev);
4565 	regulator_unlock(rdev);
4566 
4567 	return ret;
4568 }
4569 
4570 /**
4571  * regulator_get_current_limit - get regulator output current
4572  * @regulator: regulator source
4573  *
4574  * Return: Current supplied by the specified current sink in uA,
4575  *	   or a negative error number on failure.
4576  *
4577  * NOTE: If the regulator is disabled it will return the current value. This
4578  * function should not be used to determine regulator state.
4579  */
4580 int regulator_get_current_limit(struct regulator *regulator)
4581 {
4582 	return _regulator_get_current_limit(regulator->rdev);
4583 }
4584 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4585 
4586 /**
4587  * regulator_set_mode - set regulator operating mode
4588  * @regulator: regulator source
4589  * @mode: operating mode - one of the REGULATOR_MODE constants
4590  *
4591  * Set regulator operating mode to increase regulator efficiency or improve
4592  * regulation performance.
4593  *
4594  * NOTE: Regulator system constraints must be set for this regulator before
4595  * calling this function otherwise this call will fail.
4596  *
4597  * Return: 0 on success or a negative error number on failure.
4598  */
4599 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4600 {
4601 	struct regulator_dev *rdev = regulator->rdev;
4602 	int ret;
4603 	int regulator_curr_mode;
4604 
4605 	regulator_lock(rdev);
4606 
4607 	/* sanity check */
4608 	if (!rdev->desc->ops->set_mode) {
4609 		ret = -EINVAL;
4610 		goto out;
4611 	}
4612 
4613 	/* return if the same mode is requested */
4614 	if (rdev->desc->ops->get_mode) {
4615 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4616 		if (regulator_curr_mode == mode) {
4617 			ret = 0;
4618 			goto out;
4619 		}
4620 	}
4621 
4622 	/* constraints check */
4623 	ret = regulator_mode_constrain(rdev, &mode);
4624 	if (ret < 0)
4625 		goto out;
4626 
4627 	ret = rdev->desc->ops->set_mode(rdev, mode);
4628 out:
4629 	regulator_unlock(rdev);
4630 	return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(regulator_set_mode);
4633 
4634 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4635 {
4636 	/* sanity check */
4637 	if (!rdev->desc->ops->get_mode)
4638 		return -EINVAL;
4639 
4640 	return rdev->desc->ops->get_mode(rdev);
4641 }
4642 
4643 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4644 {
4645 	int ret;
4646 
4647 	regulator_lock(rdev);
4648 	ret = _regulator_get_mode_unlocked(rdev);
4649 	regulator_unlock(rdev);
4650 
4651 	return ret;
4652 }
4653 
4654 /**
4655  * regulator_get_mode - get regulator operating mode
4656  * @regulator: regulator source
4657  *
4658  * Get the current regulator operating mode.
4659  *
4660  * Return: Current operating mode as %REGULATOR_MODE_* values,
4661  *	   or a negative error number on failure.
4662  */
4663 unsigned int regulator_get_mode(struct regulator *regulator)
4664 {
4665 	return _regulator_get_mode(regulator->rdev);
4666 }
4667 EXPORT_SYMBOL_GPL(regulator_get_mode);
4668 
4669 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4670 {
4671 	int ret = 0;
4672 
4673 	if (rdev->use_cached_err) {
4674 		spin_lock(&rdev->err_lock);
4675 		ret = rdev->cached_err;
4676 		spin_unlock(&rdev->err_lock);
4677 	}
4678 	return ret;
4679 }
4680 
4681 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4682 					unsigned int *flags)
4683 {
4684 	int cached_flags, ret = 0;
4685 
4686 	regulator_lock(rdev);
4687 
4688 	cached_flags = rdev_get_cached_err_flags(rdev);
4689 
4690 	if (rdev->desc->ops->get_error_flags)
4691 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4692 	else if (!rdev->use_cached_err)
4693 		ret = -EINVAL;
4694 
4695 	*flags |= cached_flags;
4696 
4697 	regulator_unlock(rdev);
4698 
4699 	return ret;
4700 }
4701 
4702 /**
4703  * regulator_get_error_flags - get regulator error information
4704  * @regulator: regulator source
4705  * @flags: pointer to store error flags
4706  *
4707  * Get the current regulator error information.
4708  *
4709  * Return: 0 on success or a negative error number on failure.
4710  */
4711 int regulator_get_error_flags(struct regulator *regulator,
4712 				unsigned int *flags)
4713 {
4714 	return _regulator_get_error_flags(regulator->rdev, flags);
4715 }
4716 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4717 
4718 /**
4719  * regulator_set_load - set regulator load
4720  * @regulator: regulator source
4721  * @uA_load: load current
4722  *
4723  * Notifies the regulator core of a new device load. This is then used by
4724  * DRMS (if enabled by constraints) to set the most efficient regulator
4725  * operating mode for the new regulator loading.
4726  *
4727  * Consumer devices notify their supply regulator of the maximum power
4728  * they will require (can be taken from device datasheet in the power
4729  * consumption tables) when they change operational status and hence power
4730  * state. Examples of operational state changes that can affect power
4731  * consumption are :-
4732  *
4733  *    o Device is opened / closed.
4734  *    o Device I/O is about to begin or has just finished.
4735  *    o Device is idling in between work.
4736  *
4737  * This information is also exported via sysfs to userspace.
4738  *
4739  * DRMS will sum the total requested load on the regulator and change
4740  * to the most efficient operating mode if platform constraints allow.
4741  *
4742  * NOTE: when a regulator consumer requests to have a regulator
4743  * disabled then any load that consumer requested no longer counts
4744  * toward the total requested load.  If the regulator is re-enabled
4745  * then the previously requested load will start counting again.
4746  *
4747  * If a regulator is an always-on regulator then an individual consumer's
4748  * load will still be removed if that consumer is fully disabled.
4749  *
4750  * Return: 0 on success or a negative error number on failure.
4751  */
4752 int regulator_set_load(struct regulator *regulator, int uA_load)
4753 {
4754 	struct regulator_dev *rdev = regulator->rdev;
4755 	int old_uA_load;
4756 	int ret = 0;
4757 
4758 	regulator_lock(rdev);
4759 	old_uA_load = regulator->uA_load;
4760 	regulator->uA_load = uA_load;
4761 	if (regulator->enable_count && old_uA_load != uA_load) {
4762 		ret = drms_uA_update(rdev);
4763 		if (ret < 0)
4764 			regulator->uA_load = old_uA_load;
4765 	}
4766 	regulator_unlock(rdev);
4767 
4768 	return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(regulator_set_load);
4771 
4772 /**
4773  * regulator_allow_bypass - allow the regulator to go into bypass mode
4774  *
4775  * @regulator: Regulator to configure
4776  * @enable: enable or disable bypass mode
4777  *
4778  * Allow the regulator to go into bypass mode if all other consumers
4779  * for the regulator also enable bypass mode and the machine
4780  * constraints allow this.  Bypass mode means that the regulator is
4781  * simply passing the input directly to the output with no regulation.
4782  *
4783  * Return: 0 on success or if changing bypass is not possible, or
4784  *	   a negative error number on failure.
4785  */
4786 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787 {
4788 	struct regulator_dev *rdev = regulator->rdev;
4789 	const char *name = rdev_get_name(rdev);
4790 	int ret = 0;
4791 
4792 	if (!rdev->desc->ops->set_bypass)
4793 		return 0;
4794 
4795 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796 		return 0;
4797 
4798 	regulator_lock(rdev);
4799 
4800 	if (enable && !regulator->bypass) {
4801 		rdev->bypass_count++;
4802 
4803 		if (rdev->bypass_count == rdev->open_count) {
4804 			trace_regulator_bypass_enable(name);
4805 
4806 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4807 			if (ret != 0)
4808 				rdev->bypass_count--;
4809 			else
4810 				trace_regulator_bypass_enable_complete(name);
4811 		}
4812 
4813 	} else if (!enable && regulator->bypass) {
4814 		rdev->bypass_count--;
4815 
4816 		if (rdev->bypass_count != rdev->open_count) {
4817 			trace_regulator_bypass_disable(name);
4818 
4819 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4820 			if (ret != 0)
4821 				rdev->bypass_count++;
4822 			else
4823 				trace_regulator_bypass_disable_complete(name);
4824 		}
4825 	}
4826 
4827 	if (ret == 0)
4828 		regulator->bypass = enable;
4829 
4830 	regulator_unlock(rdev);
4831 
4832 	return ret;
4833 }
4834 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835 
4836 /**
4837  * regulator_register_notifier - register regulator event notifier
4838  * @regulator: regulator source
4839  * @nb: notifier block
4840  *
4841  * Register notifier block to receive regulator events.
4842  *
4843  * Return: 0 on success or a negative error number on failure.
4844  */
4845 int regulator_register_notifier(struct regulator *regulator,
4846 			      struct notifier_block *nb)
4847 {
4848 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4849 						nb);
4850 }
4851 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4852 
4853 /**
4854  * regulator_unregister_notifier - unregister regulator event notifier
4855  * @regulator: regulator source
4856  * @nb: notifier block
4857  *
4858  * Unregister regulator event notifier block.
4859  *
4860  * Return: 0 on success or a negative error number on failure.
4861  */
4862 int regulator_unregister_notifier(struct regulator *regulator,
4863 				struct notifier_block *nb)
4864 {
4865 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4866 						  nb);
4867 }
4868 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4869 
4870 /* notify regulator consumers and downstream regulator consumers.
4871  * Note mutex must be held by caller.
4872  */
4873 static int _notifier_call_chain(struct regulator_dev *rdev,
4874 				  unsigned long event, void *data)
4875 {
4876 	/* call rdev chain first */
4877 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4878 
4879 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4880 		struct device *parent = rdev->dev.parent;
4881 		const char *rname = rdev_get_name(rdev);
4882 		char name[32];
4883 
4884 		/* Avoid duplicate debugfs directory names */
4885 		if (parent && rname == rdev->desc->name) {
4886 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4887 				 rname);
4888 			rname = name;
4889 		}
4890 		reg_generate_netlink_event(rname, event);
4891 	}
4892 
4893 	return ret;
4894 }
4895 
4896 int _regulator_bulk_get(struct device *dev, int num_consumers,
4897 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4898 {
4899 	int i;
4900 	int ret;
4901 
4902 	for (i = 0; i < num_consumers; i++)
4903 		consumers[i].consumer = NULL;
4904 
4905 	for (i = 0; i < num_consumers; i++) {
4906 		consumers[i].consumer = _regulator_get(dev,
4907 						       consumers[i].supply, get_type);
4908 		if (IS_ERR(consumers[i].consumer)) {
4909 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4910 					    "Failed to get supply '%s'",
4911 					    consumers[i].supply);
4912 			consumers[i].consumer = NULL;
4913 			goto err;
4914 		}
4915 
4916 		if (consumers[i].init_load_uA > 0) {
4917 			ret = regulator_set_load(consumers[i].consumer,
4918 						 consumers[i].init_load_uA);
4919 			if (ret) {
4920 				i++;
4921 				goto err;
4922 			}
4923 		}
4924 	}
4925 
4926 	return 0;
4927 
4928 err:
4929 	while (--i >= 0)
4930 		regulator_put(consumers[i].consumer);
4931 
4932 	return ret;
4933 }
4934 
4935 /**
4936  * regulator_bulk_get - get multiple regulator consumers
4937  *
4938  * @dev:           Device to supply
4939  * @num_consumers: Number of consumers to register
4940  * @consumers:     Configuration of consumers; clients are stored here.
4941  *
4942  * This helper function allows drivers to get several regulator
4943  * consumers in one operation.  If any of the regulators cannot be
4944  * acquired then any regulators that were allocated will be freed
4945  * before returning to the caller.
4946  *
4947  * Return: 0 on success or a negative error number on failure.
4948  */
4949 int regulator_bulk_get(struct device *dev, int num_consumers,
4950 		       struct regulator_bulk_data *consumers)
4951 {
4952 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4953 }
4954 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4955 
4956 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4957 {
4958 	struct regulator_bulk_data *bulk = data;
4959 
4960 	bulk->ret = regulator_enable(bulk->consumer);
4961 }
4962 
4963 /**
4964  * regulator_bulk_enable - enable multiple regulator consumers
4965  *
4966  * @num_consumers: Number of consumers
4967  * @consumers:     Consumer data; clients are stored here.
4968  *
4969  * This convenience API allows consumers to enable multiple regulator
4970  * clients in a single API call.  If any consumers cannot be enabled
4971  * then any others that were enabled will be disabled again prior to
4972  * return.
4973  *
4974  * Return: 0 on success or a negative error number on failure.
4975  */
4976 int regulator_bulk_enable(int num_consumers,
4977 			  struct regulator_bulk_data *consumers)
4978 {
4979 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4980 	int i;
4981 	int ret = 0;
4982 
4983 	for (i = 0; i < num_consumers; i++) {
4984 		async_schedule_domain(regulator_bulk_enable_async,
4985 				      &consumers[i], &async_domain);
4986 	}
4987 
4988 	async_synchronize_full_domain(&async_domain);
4989 
4990 	/* If any consumer failed we need to unwind any that succeeded */
4991 	for (i = 0; i < num_consumers; i++) {
4992 		if (consumers[i].ret != 0) {
4993 			ret = consumers[i].ret;
4994 			goto err;
4995 		}
4996 	}
4997 
4998 	return 0;
4999 
5000 err:
5001 	for (i = 0; i < num_consumers; i++) {
5002 		if (consumers[i].ret < 0)
5003 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5004 			       ERR_PTR(consumers[i].ret));
5005 		else
5006 			regulator_disable(consumers[i].consumer);
5007 	}
5008 
5009 	return ret;
5010 }
5011 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5012 
5013 /**
5014  * regulator_bulk_disable - disable multiple regulator consumers
5015  *
5016  * @num_consumers: Number of consumers
5017  * @consumers:     Consumer data; clients are stored here.
5018  *
5019  * This convenience API allows consumers to disable multiple regulator
5020  * clients in a single API call.  If any consumers cannot be disabled
5021  * then any others that were disabled will be enabled again prior to
5022  * return.
5023  *
5024  * Return: 0 on success or a negative error number on failure.
5025  */
5026 int regulator_bulk_disable(int num_consumers,
5027 			   struct regulator_bulk_data *consumers)
5028 {
5029 	int i;
5030 	int ret, r;
5031 
5032 	for (i = num_consumers - 1; i >= 0; --i) {
5033 		ret = regulator_disable(consumers[i].consumer);
5034 		if (ret != 0)
5035 			goto err;
5036 	}
5037 
5038 	return 0;
5039 
5040 err:
5041 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5042 	for (++i; i < num_consumers; ++i) {
5043 		r = regulator_enable(consumers[i].consumer);
5044 		if (r != 0)
5045 			pr_err("Failed to re-enable %s: %pe\n",
5046 			       consumers[i].supply, ERR_PTR(r));
5047 	}
5048 
5049 	return ret;
5050 }
5051 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5052 
5053 /**
5054  * regulator_bulk_force_disable - force disable multiple regulator consumers
5055  *
5056  * @num_consumers: Number of consumers
5057  * @consumers:     Consumer data; clients are stored here.
5058  *
5059  * This convenience API allows consumers to forcibly disable multiple regulator
5060  * clients in a single API call.
5061  * NOTE: This should be used for situations when device damage will
5062  * likely occur if the regulators are not disabled (e.g. over temp).
5063  * Although regulator_force_disable function call for some consumers can
5064  * return error numbers, the function is called for all consumers.
5065  *
5066  * Return: 0 on success or a negative error number on failure.
5067  */
5068 int regulator_bulk_force_disable(int num_consumers,
5069 			   struct regulator_bulk_data *consumers)
5070 {
5071 	int i;
5072 	int ret = 0;
5073 
5074 	for (i = 0; i < num_consumers; i++) {
5075 		consumers[i].ret =
5076 			    regulator_force_disable(consumers[i].consumer);
5077 
5078 		/* Store first error for reporting */
5079 		if (consumers[i].ret && !ret)
5080 			ret = consumers[i].ret;
5081 	}
5082 
5083 	return ret;
5084 }
5085 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5086 
5087 /**
5088  * regulator_bulk_free - free multiple regulator consumers
5089  *
5090  * @num_consumers: Number of consumers
5091  * @consumers:     Consumer data; clients are stored here.
5092  *
5093  * This convenience API allows consumers to free multiple regulator
5094  * clients in a single API call.
5095  */
5096 void regulator_bulk_free(int num_consumers,
5097 			 struct regulator_bulk_data *consumers)
5098 {
5099 	int i;
5100 
5101 	for (i = 0; i < num_consumers; i++) {
5102 		regulator_put(consumers[i].consumer);
5103 		consumers[i].consumer = NULL;
5104 	}
5105 }
5106 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5107 
5108 /**
5109  * regulator_handle_critical - Handle events for system-critical regulators.
5110  * @rdev: The regulator device.
5111  * @event: The event being handled.
5112  *
5113  * This function handles critical events such as under-voltage, over-current,
5114  * and unknown errors for regulators deemed system-critical. On detecting such
5115  * events, it triggers a hardware protection shutdown with a defined timeout.
5116  */
5117 static void regulator_handle_critical(struct regulator_dev *rdev,
5118 				      unsigned long event)
5119 {
5120 	const char *reason = NULL;
5121 
5122 	if (!rdev->constraints->system_critical)
5123 		return;
5124 
5125 	switch (event) {
5126 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5127 		reason = "System critical regulator: voltage drop detected";
5128 		break;
5129 	case REGULATOR_EVENT_OVER_CURRENT:
5130 		reason = "System critical regulator: over-current detected";
5131 		break;
5132 	case REGULATOR_EVENT_FAIL:
5133 		reason = "System critical regulator: unknown error";
5134 	}
5135 
5136 	if (!reason)
5137 		return;
5138 
5139 	hw_protection_shutdown(reason,
5140 			       rdev->constraints->uv_less_critical_window_ms);
5141 }
5142 
5143 /**
5144  * regulator_notifier_call_chain - call regulator event notifier
5145  * @rdev: regulator source
5146  * @event: notifier block
5147  * @data: callback-specific data.
5148  *
5149  * Called by regulator drivers to notify clients a regulator event has
5150  * occurred.
5151  *
5152  * Return: %NOTIFY_DONE.
5153  */
5154 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5155 				  unsigned long event, void *data)
5156 {
5157 	regulator_handle_critical(rdev, event);
5158 
5159 	_notifier_call_chain(rdev, event, data);
5160 	return NOTIFY_DONE;
5161 
5162 }
5163 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5164 
5165 /**
5166  * regulator_mode_to_status - convert a regulator mode into a status
5167  *
5168  * @mode: Mode to convert
5169  *
5170  * Convert a regulator mode into a status.
5171  *
5172  * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5173  */
5174 int regulator_mode_to_status(unsigned int mode)
5175 {
5176 	switch (mode) {
5177 	case REGULATOR_MODE_FAST:
5178 		return REGULATOR_STATUS_FAST;
5179 	case REGULATOR_MODE_NORMAL:
5180 		return REGULATOR_STATUS_NORMAL;
5181 	case REGULATOR_MODE_IDLE:
5182 		return REGULATOR_STATUS_IDLE;
5183 	case REGULATOR_MODE_STANDBY:
5184 		return REGULATOR_STATUS_STANDBY;
5185 	default:
5186 		return REGULATOR_STATUS_UNDEFINED;
5187 	}
5188 }
5189 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5190 
5191 static struct attribute *regulator_dev_attrs[] = {
5192 	&dev_attr_name.attr,
5193 	&dev_attr_num_users.attr,
5194 	&dev_attr_type.attr,
5195 	&dev_attr_microvolts.attr,
5196 	&dev_attr_microamps.attr,
5197 	&dev_attr_opmode.attr,
5198 	&dev_attr_state.attr,
5199 	&dev_attr_status.attr,
5200 	&dev_attr_bypass.attr,
5201 	&dev_attr_requested_microamps.attr,
5202 	&dev_attr_min_microvolts.attr,
5203 	&dev_attr_max_microvolts.attr,
5204 	&dev_attr_min_microamps.attr,
5205 	&dev_attr_max_microamps.attr,
5206 	&dev_attr_under_voltage.attr,
5207 	&dev_attr_over_current.attr,
5208 	&dev_attr_regulation_out.attr,
5209 	&dev_attr_fail.attr,
5210 	&dev_attr_over_temp.attr,
5211 	&dev_attr_under_voltage_warn.attr,
5212 	&dev_attr_over_current_warn.attr,
5213 	&dev_attr_over_voltage_warn.attr,
5214 	&dev_attr_over_temp_warn.attr,
5215 	&dev_attr_suspend_standby_state.attr,
5216 	&dev_attr_suspend_mem_state.attr,
5217 	&dev_attr_suspend_disk_state.attr,
5218 	&dev_attr_suspend_standby_microvolts.attr,
5219 	&dev_attr_suspend_mem_microvolts.attr,
5220 	&dev_attr_suspend_disk_microvolts.attr,
5221 	&dev_attr_suspend_standby_mode.attr,
5222 	&dev_attr_suspend_mem_mode.attr,
5223 	&dev_attr_suspend_disk_mode.attr,
5224 	NULL
5225 };
5226 
5227 /*
5228  * To avoid cluttering sysfs (and memory) with useless state, only
5229  * create attributes that can be meaningfully displayed.
5230  */
5231 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5232 					 struct attribute *attr, int idx)
5233 {
5234 	struct device *dev = kobj_to_dev(kobj);
5235 	struct regulator_dev *rdev = dev_to_rdev(dev);
5236 	const struct regulator_ops *ops = rdev->desc->ops;
5237 	umode_t mode = attr->mode;
5238 
5239 	/* these three are always present */
5240 	if (attr == &dev_attr_name.attr ||
5241 	    attr == &dev_attr_num_users.attr ||
5242 	    attr == &dev_attr_type.attr)
5243 		return mode;
5244 
5245 	/* some attributes need specific methods to be displayed */
5246 	if (attr == &dev_attr_microvolts.attr) {
5247 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5248 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5249 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5250 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5251 			return mode;
5252 		return 0;
5253 	}
5254 
5255 	if (attr == &dev_attr_microamps.attr)
5256 		return ops->get_current_limit ? mode : 0;
5257 
5258 	if (attr == &dev_attr_opmode.attr)
5259 		return ops->get_mode ? mode : 0;
5260 
5261 	if (attr == &dev_attr_state.attr)
5262 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5263 
5264 	if (attr == &dev_attr_status.attr)
5265 		return ops->get_status ? mode : 0;
5266 
5267 	if (attr == &dev_attr_bypass.attr)
5268 		return ops->get_bypass ? mode : 0;
5269 
5270 	if (attr == &dev_attr_under_voltage.attr ||
5271 	    attr == &dev_attr_over_current.attr ||
5272 	    attr == &dev_attr_regulation_out.attr ||
5273 	    attr == &dev_attr_fail.attr ||
5274 	    attr == &dev_attr_over_temp.attr ||
5275 	    attr == &dev_attr_under_voltage_warn.attr ||
5276 	    attr == &dev_attr_over_current_warn.attr ||
5277 	    attr == &dev_attr_over_voltage_warn.attr ||
5278 	    attr == &dev_attr_over_temp_warn.attr)
5279 		return ops->get_error_flags ? mode : 0;
5280 
5281 	/* constraints need specific supporting methods */
5282 	if (attr == &dev_attr_min_microvolts.attr ||
5283 	    attr == &dev_attr_max_microvolts.attr)
5284 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5285 
5286 	if (attr == &dev_attr_min_microamps.attr ||
5287 	    attr == &dev_attr_max_microamps.attr)
5288 		return ops->set_current_limit ? mode : 0;
5289 
5290 	if (attr == &dev_attr_suspend_standby_state.attr ||
5291 	    attr == &dev_attr_suspend_mem_state.attr ||
5292 	    attr == &dev_attr_suspend_disk_state.attr)
5293 		return mode;
5294 
5295 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5296 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5297 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5298 		return ops->set_suspend_voltage ? mode : 0;
5299 
5300 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5301 	    attr == &dev_attr_suspend_mem_mode.attr ||
5302 	    attr == &dev_attr_suspend_disk_mode.attr)
5303 		return ops->set_suspend_mode ? mode : 0;
5304 
5305 	return mode;
5306 }
5307 
5308 static const struct attribute_group regulator_dev_group = {
5309 	.attrs = regulator_dev_attrs,
5310 	.is_visible = regulator_attr_is_visible,
5311 };
5312 
5313 static const struct attribute_group *regulator_dev_groups[] = {
5314 	&regulator_dev_group,
5315 	NULL
5316 };
5317 
5318 static void regulator_dev_release(struct device *dev)
5319 {
5320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5321 
5322 	debugfs_remove_recursive(rdev->debugfs);
5323 	kfree(rdev->constraints);
5324 	of_node_put(rdev->dev.of_node);
5325 	kfree(rdev);
5326 }
5327 
5328 static void rdev_init_debugfs(struct regulator_dev *rdev)
5329 {
5330 	struct device *parent = rdev->dev.parent;
5331 	const char *rname = rdev_get_name(rdev);
5332 	char name[NAME_MAX];
5333 
5334 	/* Avoid duplicate debugfs directory names */
5335 	if (parent && rname == rdev->desc->name) {
5336 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5337 			 rname);
5338 		rname = name;
5339 	}
5340 
5341 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5342 	if (IS_ERR(rdev->debugfs))
5343 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5344 
5345 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5346 			   &rdev->use_count);
5347 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5348 			   &rdev->open_count);
5349 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5350 			   &rdev->bypass_count);
5351 }
5352 
5353 static int regulator_register_resolve_supply(struct device *dev, void *data)
5354 {
5355 	struct regulator_dev *rdev = dev_to_rdev(dev);
5356 
5357 	if (regulator_resolve_supply(rdev))
5358 		rdev_dbg(rdev, "unable to resolve supply\n");
5359 
5360 	return 0;
5361 }
5362 
5363 int regulator_coupler_register(struct regulator_coupler *coupler)
5364 {
5365 	mutex_lock(&regulator_list_mutex);
5366 	list_add_tail(&coupler->list, &regulator_coupler_list);
5367 	mutex_unlock(&regulator_list_mutex);
5368 
5369 	return 0;
5370 }
5371 
5372 static struct regulator_coupler *
5373 regulator_find_coupler(struct regulator_dev *rdev)
5374 {
5375 	struct regulator_coupler *coupler;
5376 	int err;
5377 
5378 	/*
5379 	 * Note that regulators are appended to the list and the generic
5380 	 * coupler is registered first, hence it will be attached at last
5381 	 * if nobody cared.
5382 	 */
5383 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5384 		err = coupler->attach_regulator(coupler, rdev);
5385 		if (!err) {
5386 			if (!coupler->balance_voltage &&
5387 			    rdev->coupling_desc.n_coupled > 2)
5388 				goto err_unsupported;
5389 
5390 			return coupler;
5391 		}
5392 
5393 		if (err < 0)
5394 			return ERR_PTR(err);
5395 
5396 		if (err == 1)
5397 			continue;
5398 
5399 		break;
5400 	}
5401 
5402 	return ERR_PTR(-EINVAL);
5403 
5404 err_unsupported:
5405 	if (coupler->detach_regulator)
5406 		coupler->detach_regulator(coupler, rdev);
5407 
5408 	rdev_err(rdev,
5409 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5410 
5411 	return ERR_PTR(-EPERM);
5412 }
5413 
5414 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5415 {
5416 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5417 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5418 	int n_coupled = c_desc->n_coupled;
5419 	struct regulator_dev *c_rdev;
5420 	int i;
5421 
5422 	for (i = 1; i < n_coupled; i++) {
5423 		/* already resolved */
5424 		if (c_desc->coupled_rdevs[i])
5425 			continue;
5426 
5427 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5428 
5429 		if (!c_rdev)
5430 			continue;
5431 
5432 		if (c_rdev->coupling_desc.coupler != coupler) {
5433 			rdev_err(rdev, "coupler mismatch with %s\n",
5434 				 rdev_get_name(c_rdev));
5435 			return;
5436 		}
5437 
5438 		c_desc->coupled_rdevs[i] = c_rdev;
5439 		c_desc->n_resolved++;
5440 
5441 		regulator_resolve_coupling(c_rdev);
5442 	}
5443 }
5444 
5445 static void regulator_remove_coupling(struct regulator_dev *rdev)
5446 {
5447 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5448 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5449 	struct regulator_dev *__c_rdev, *c_rdev;
5450 	unsigned int __n_coupled, n_coupled;
5451 	int i, k;
5452 	int err;
5453 
5454 	n_coupled = c_desc->n_coupled;
5455 
5456 	for (i = 1; i < n_coupled; i++) {
5457 		c_rdev = c_desc->coupled_rdevs[i];
5458 
5459 		if (!c_rdev)
5460 			continue;
5461 
5462 		regulator_lock(c_rdev);
5463 
5464 		__c_desc = &c_rdev->coupling_desc;
5465 		__n_coupled = __c_desc->n_coupled;
5466 
5467 		for (k = 1; k < __n_coupled; k++) {
5468 			__c_rdev = __c_desc->coupled_rdevs[k];
5469 
5470 			if (__c_rdev == rdev) {
5471 				__c_desc->coupled_rdevs[k] = NULL;
5472 				__c_desc->n_resolved--;
5473 				break;
5474 			}
5475 		}
5476 
5477 		regulator_unlock(c_rdev);
5478 
5479 		c_desc->coupled_rdevs[i] = NULL;
5480 		c_desc->n_resolved--;
5481 	}
5482 
5483 	if (coupler && coupler->detach_regulator) {
5484 		err = coupler->detach_regulator(coupler, rdev);
5485 		if (err)
5486 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5487 				 ERR_PTR(err));
5488 	}
5489 
5490 	kfree(rdev->coupling_desc.coupled_rdevs);
5491 	rdev->coupling_desc.coupled_rdevs = NULL;
5492 }
5493 
5494 static int regulator_init_coupling(struct regulator_dev *rdev)
5495 {
5496 	struct regulator_dev **coupled;
5497 	int err, n_phandles;
5498 
5499 	if (!IS_ENABLED(CONFIG_OF))
5500 		n_phandles = 0;
5501 	else
5502 		n_phandles = of_get_n_coupled(rdev);
5503 
5504 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5505 	if (!coupled)
5506 		return -ENOMEM;
5507 
5508 	rdev->coupling_desc.coupled_rdevs = coupled;
5509 
5510 	/*
5511 	 * Every regulator should always have coupling descriptor filled with
5512 	 * at least pointer to itself.
5513 	 */
5514 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5515 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5516 	rdev->coupling_desc.n_resolved++;
5517 
5518 	/* regulator isn't coupled */
5519 	if (n_phandles == 0)
5520 		return 0;
5521 
5522 	if (!of_check_coupling_data(rdev))
5523 		return -EPERM;
5524 
5525 	mutex_lock(&regulator_list_mutex);
5526 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5527 	mutex_unlock(&regulator_list_mutex);
5528 
5529 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5530 		err = PTR_ERR(rdev->coupling_desc.coupler);
5531 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5532 		return err;
5533 	}
5534 
5535 	return 0;
5536 }
5537 
5538 static int generic_coupler_attach(struct regulator_coupler *coupler,
5539 				  struct regulator_dev *rdev)
5540 {
5541 	if (rdev->coupling_desc.n_coupled > 2) {
5542 		rdev_err(rdev,
5543 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5544 		return -EPERM;
5545 	}
5546 
5547 	if (!rdev->constraints->always_on) {
5548 		rdev_err(rdev,
5549 			 "Coupling of a non always-on regulator is unimplemented\n");
5550 		return -ENOTSUPP;
5551 	}
5552 
5553 	return 0;
5554 }
5555 
5556 static struct regulator_coupler generic_regulator_coupler = {
5557 	.attach_regulator = generic_coupler_attach,
5558 };
5559 
5560 /**
5561  * regulator_register - register regulator
5562  * @dev: the device that drive the regulator
5563  * @regulator_desc: regulator to register
5564  * @cfg: runtime configuration for regulator
5565  *
5566  * Called by regulator drivers to register a regulator.
5567  *
5568  * Return: Pointer to a valid &struct regulator_dev on success or
5569  *	   an ERR_PTR() encoded negative error number on failure.
5570  */
5571 struct regulator_dev *
5572 regulator_register(struct device *dev,
5573 		   const struct regulator_desc *regulator_desc,
5574 		   const struct regulator_config *cfg)
5575 {
5576 	const struct regulator_init_data *init_data;
5577 	struct regulator_config *config = NULL;
5578 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5579 	struct regulator_dev *rdev;
5580 	bool dangling_cfg_gpiod = false;
5581 	bool dangling_of_gpiod = false;
5582 	int ret, i;
5583 	bool resolved_early = false;
5584 
5585 	if (cfg == NULL)
5586 		return ERR_PTR(-EINVAL);
5587 	if (cfg->ena_gpiod)
5588 		dangling_cfg_gpiod = true;
5589 	if (regulator_desc == NULL) {
5590 		ret = -EINVAL;
5591 		goto rinse;
5592 	}
5593 
5594 	WARN_ON(!dev || !cfg->dev);
5595 
5596 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5597 		ret = -EINVAL;
5598 		goto rinse;
5599 	}
5600 
5601 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5602 	    regulator_desc->type != REGULATOR_CURRENT) {
5603 		ret = -EINVAL;
5604 		goto rinse;
5605 	}
5606 
5607 	/* Only one of each should be implemented */
5608 	WARN_ON(regulator_desc->ops->get_voltage &&
5609 		regulator_desc->ops->get_voltage_sel);
5610 	WARN_ON(regulator_desc->ops->set_voltage &&
5611 		regulator_desc->ops->set_voltage_sel);
5612 
5613 	/* If we're using selectors we must implement list_voltage. */
5614 	if (regulator_desc->ops->get_voltage_sel &&
5615 	    !regulator_desc->ops->list_voltage) {
5616 		ret = -EINVAL;
5617 		goto rinse;
5618 	}
5619 	if (regulator_desc->ops->set_voltage_sel &&
5620 	    !regulator_desc->ops->list_voltage) {
5621 		ret = -EINVAL;
5622 		goto rinse;
5623 	}
5624 
5625 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5626 	if (rdev == NULL) {
5627 		ret = -ENOMEM;
5628 		goto rinse;
5629 	}
5630 	device_initialize(&rdev->dev);
5631 	dev_set_drvdata(&rdev->dev, rdev);
5632 	rdev->dev.class = &regulator_class;
5633 	spin_lock_init(&rdev->err_lock);
5634 
5635 	/*
5636 	 * Duplicate the config so the driver could override it after
5637 	 * parsing init data.
5638 	 */
5639 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5640 	if (config == NULL) {
5641 		ret = -ENOMEM;
5642 		goto clean;
5643 	}
5644 
5645 	if (config->init_data) {
5646 		/*
5647 		 * Providing of_match means the framework is expected to parse
5648 		 * DT to get the init_data. This would conflict with provided
5649 		 * init_data, if set. Warn if it happens.
5650 		 */
5651 		if (regulator_desc->of_match)
5652 			dev_warn(dev, "Using provided init data - OF match ignored\n");
5653 
5654 		init_data = config->init_data;
5655 		rdev->dev.of_node = of_node_get(config->of_node);
5656 
5657 	} else {
5658 		init_data = regulator_of_get_init_data(dev, regulator_desc,
5659 						       config,
5660 						       &rdev->dev.of_node);
5661 
5662 		/*
5663 		 * Sometimes not all resources are probed already so we need to
5664 		 * take that into account. This happens most the time if the
5665 		 * ena_gpiod comes from a gpio extender or something else.
5666 		 */
5667 		if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5668 			ret = -EPROBE_DEFER;
5669 			goto clean;
5670 		}
5671 
5672 		/*
5673 		 * We need to keep track of any GPIO descriptor coming from the
5674 		 * device tree until we have handled it over to the core. If the
5675 		 * config that was passed in to this function DOES NOT contain a
5676 		 * descriptor, and the config after this call DOES contain a
5677 		 * descriptor, we definitely got one from parsing the device
5678 		 * tree.
5679 		 */
5680 		if (!cfg->ena_gpiod && config->ena_gpiod)
5681 			dangling_of_gpiod = true;
5682 	}
5683 
5684 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5685 	rdev->reg_data = config->driver_data;
5686 	rdev->owner = regulator_desc->owner;
5687 	rdev->desc = regulator_desc;
5688 	if (config->regmap)
5689 		rdev->regmap = config->regmap;
5690 	else if (dev_get_regmap(dev, NULL))
5691 		rdev->regmap = dev_get_regmap(dev, NULL);
5692 	else if (dev->parent)
5693 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5694 	INIT_LIST_HEAD(&rdev->consumer_list);
5695 	INIT_LIST_HEAD(&rdev->list);
5696 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5697 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5698 
5699 	if (init_data && init_data->supply_regulator)
5700 		rdev->supply_name = init_data->supply_regulator;
5701 	else if (regulator_desc->supply_name)
5702 		rdev->supply_name = regulator_desc->supply_name;
5703 
5704 	/* register with sysfs */
5705 	rdev->dev.parent = config->dev;
5706 	dev_set_name(&rdev->dev, "regulator.%lu",
5707 		    (unsigned long) atomic_inc_return(&regulator_no));
5708 
5709 	/* set regulator constraints */
5710 	if (init_data)
5711 		rdev->constraints = kmemdup(&init_data->constraints,
5712 					    sizeof(*rdev->constraints),
5713 					    GFP_KERNEL);
5714 	else
5715 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5716 					    GFP_KERNEL);
5717 	if (!rdev->constraints) {
5718 		ret = -ENOMEM;
5719 		goto wash;
5720 	}
5721 
5722 	if (regulator_desc->init_cb) {
5723 		ret = regulator_desc->init_cb(rdev, config);
5724 		if (ret < 0)
5725 			goto wash;
5726 	}
5727 
5728 	if ((rdev->supply_name && !rdev->supply) &&
5729 		(rdev->constraints->always_on ||
5730 		 rdev->constraints->boot_on)) {
5731 		ret = regulator_resolve_supply(rdev);
5732 		if (ret)
5733 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5734 					 ERR_PTR(ret));
5735 
5736 		resolved_early = true;
5737 	}
5738 
5739 	if (config->ena_gpiod) {
5740 		ret = regulator_ena_gpio_request(rdev, config);
5741 		if (ret != 0) {
5742 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5743 				 ERR_PTR(ret));
5744 			goto wash;
5745 		}
5746 		/* The regulator core took over the GPIO descriptor */
5747 		dangling_cfg_gpiod = false;
5748 		dangling_of_gpiod = false;
5749 	}
5750 
5751 	ret = set_machine_constraints(rdev);
5752 	if (ret == -EPROBE_DEFER && !resolved_early) {
5753 		/* Regulator might be in bypass mode and so needs its supply
5754 		 * to set the constraints
5755 		 */
5756 		/* FIXME: this currently triggers a chicken-and-egg problem
5757 		 * when creating -SUPPLY symlink in sysfs to a regulator
5758 		 * that is just being created
5759 		 */
5760 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5761 			 rdev->supply_name);
5762 		ret = regulator_resolve_supply(rdev);
5763 		if (!ret)
5764 			ret = set_machine_constraints(rdev);
5765 		else
5766 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5767 				 ERR_PTR(ret));
5768 	}
5769 	if (ret < 0)
5770 		goto wash;
5771 
5772 	ret = regulator_init_coupling(rdev);
5773 	if (ret < 0)
5774 		goto wash;
5775 
5776 	/* add consumers devices */
5777 	if (init_data) {
5778 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5779 			ret = set_consumer_device_supply(rdev,
5780 				init_data->consumer_supplies[i].dev_name,
5781 				init_data->consumer_supplies[i].supply);
5782 			if (ret < 0) {
5783 				dev_err(dev, "Failed to set supply %s\n",
5784 					init_data->consumer_supplies[i].supply);
5785 				goto unset_supplies;
5786 			}
5787 		}
5788 	}
5789 
5790 	if (!rdev->desc->ops->get_voltage &&
5791 	    !rdev->desc->ops->list_voltage &&
5792 	    !rdev->desc->fixed_uV)
5793 		rdev->is_switch = true;
5794 
5795 	ret = device_add(&rdev->dev);
5796 	if (ret != 0)
5797 		goto unset_supplies;
5798 
5799 	rdev_init_debugfs(rdev);
5800 
5801 	/* try to resolve regulators coupling since a new one was registered */
5802 	mutex_lock(&regulator_list_mutex);
5803 	regulator_resolve_coupling(rdev);
5804 	mutex_unlock(&regulator_list_mutex);
5805 
5806 	/* try to resolve regulators supply since a new one was registered */
5807 	class_for_each_device(&regulator_class, NULL, NULL,
5808 			      regulator_register_resolve_supply);
5809 	kfree(config);
5810 	return rdev;
5811 
5812 unset_supplies:
5813 	mutex_lock(&regulator_list_mutex);
5814 	unset_regulator_supplies(rdev);
5815 	regulator_remove_coupling(rdev);
5816 	mutex_unlock(&regulator_list_mutex);
5817 wash:
5818 	regulator_put(rdev->supply);
5819 	kfree(rdev->coupling_desc.coupled_rdevs);
5820 	mutex_lock(&regulator_list_mutex);
5821 	regulator_ena_gpio_free(rdev);
5822 	mutex_unlock(&regulator_list_mutex);
5823 clean:
5824 	if (dangling_of_gpiod)
5825 		gpiod_put(config->ena_gpiod);
5826 	kfree(config);
5827 	put_device(&rdev->dev);
5828 rinse:
5829 	if (dangling_cfg_gpiod)
5830 		gpiod_put(cfg->ena_gpiod);
5831 	return ERR_PTR(ret);
5832 }
5833 EXPORT_SYMBOL_GPL(regulator_register);
5834 
5835 /**
5836  * regulator_unregister - unregister regulator
5837  * @rdev: regulator to unregister
5838  *
5839  * Called by regulator drivers to unregister a regulator.
5840  */
5841 void regulator_unregister(struct regulator_dev *rdev)
5842 {
5843 	if (rdev == NULL)
5844 		return;
5845 
5846 	if (rdev->supply) {
5847 		while (rdev->use_count--)
5848 			regulator_disable(rdev->supply);
5849 		regulator_put(rdev->supply);
5850 	}
5851 
5852 	flush_work(&rdev->disable_work.work);
5853 
5854 	mutex_lock(&regulator_list_mutex);
5855 
5856 	WARN_ON(rdev->open_count);
5857 	regulator_remove_coupling(rdev);
5858 	unset_regulator_supplies(rdev);
5859 	list_del(&rdev->list);
5860 	regulator_ena_gpio_free(rdev);
5861 	device_unregister(&rdev->dev);
5862 
5863 	mutex_unlock(&regulator_list_mutex);
5864 }
5865 EXPORT_SYMBOL_GPL(regulator_unregister);
5866 
5867 #ifdef CONFIG_SUSPEND
5868 /**
5869  * regulator_suspend - prepare regulators for system wide suspend
5870  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5871  *
5872  * Configure each regulator with it's suspend operating parameters for state.
5873  *
5874  * Return: 0 on success or a negative error number on failure.
5875  */
5876 static int regulator_suspend(struct device *dev)
5877 {
5878 	struct regulator_dev *rdev = dev_to_rdev(dev);
5879 	suspend_state_t state = pm_suspend_target_state;
5880 	int ret;
5881 	const struct regulator_state *rstate;
5882 
5883 	rstate = regulator_get_suspend_state_check(rdev, state);
5884 	if (!rstate)
5885 		return 0;
5886 
5887 	regulator_lock(rdev);
5888 	ret = __suspend_set_state(rdev, rstate);
5889 	regulator_unlock(rdev);
5890 
5891 	return ret;
5892 }
5893 
5894 static int regulator_resume(struct device *dev)
5895 {
5896 	suspend_state_t state = pm_suspend_target_state;
5897 	struct regulator_dev *rdev = dev_to_rdev(dev);
5898 	struct regulator_state *rstate;
5899 	int ret = 0;
5900 
5901 	rstate = regulator_get_suspend_state(rdev, state);
5902 	if (rstate == NULL)
5903 		return 0;
5904 
5905 	/* Avoid grabbing the lock if we don't need to */
5906 	if (!rdev->desc->ops->resume)
5907 		return 0;
5908 
5909 	regulator_lock(rdev);
5910 
5911 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5912 	    rstate->enabled == DISABLE_IN_SUSPEND)
5913 		ret = rdev->desc->ops->resume(rdev);
5914 
5915 	regulator_unlock(rdev);
5916 
5917 	return ret;
5918 }
5919 #else /* !CONFIG_SUSPEND */
5920 
5921 #define regulator_suspend	NULL
5922 #define regulator_resume	NULL
5923 
5924 #endif /* !CONFIG_SUSPEND */
5925 
5926 #ifdef CONFIG_PM
5927 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5928 	.suspend	= regulator_suspend,
5929 	.resume		= regulator_resume,
5930 };
5931 #endif
5932 
5933 const struct class regulator_class = {
5934 	.name = "regulator",
5935 	.dev_release = regulator_dev_release,
5936 	.dev_groups = regulator_dev_groups,
5937 #ifdef CONFIG_PM
5938 	.pm = &regulator_pm_ops,
5939 #endif
5940 };
5941 /**
5942  * regulator_has_full_constraints - the system has fully specified constraints
5943  *
5944  * Calling this function will cause the regulator API to disable all
5945  * regulators which have a zero use count and don't have an always_on
5946  * constraint in a late_initcall.
5947  *
5948  * The intention is that this will become the default behaviour in a
5949  * future kernel release so users are encouraged to use this facility
5950  * now.
5951  */
5952 void regulator_has_full_constraints(void)
5953 {
5954 	has_full_constraints = 1;
5955 }
5956 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5957 
5958 /**
5959  * rdev_get_drvdata - get rdev regulator driver data
5960  * @rdev: regulator
5961  *
5962  * Get rdev regulator driver private data. This call can be used in the
5963  * regulator driver context.
5964  *
5965  * Return: Pointer to regulator driver private data.
5966  */
5967 void *rdev_get_drvdata(struct regulator_dev *rdev)
5968 {
5969 	return rdev->reg_data;
5970 }
5971 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5972 
5973 /**
5974  * regulator_get_drvdata - get regulator driver data
5975  * @regulator: regulator
5976  *
5977  * Get regulator driver private data. This call can be used in the consumer
5978  * driver context when non API regulator specific functions need to be called.
5979  *
5980  * Return: Pointer to regulator driver private data.
5981  */
5982 void *regulator_get_drvdata(struct regulator *regulator)
5983 {
5984 	return regulator->rdev->reg_data;
5985 }
5986 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5987 
5988 /**
5989  * regulator_set_drvdata - set regulator driver data
5990  * @regulator: regulator
5991  * @data: data
5992  */
5993 void regulator_set_drvdata(struct regulator *regulator, void *data)
5994 {
5995 	regulator->rdev->reg_data = data;
5996 }
5997 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5998 
5999 /**
6000  * rdev_get_id - get regulator ID
6001  * @rdev: regulator
6002  *
6003  * Return: Regulator ID for @rdev.
6004  */
6005 int rdev_get_id(struct regulator_dev *rdev)
6006 {
6007 	return rdev->desc->id;
6008 }
6009 EXPORT_SYMBOL_GPL(rdev_get_id);
6010 
6011 struct device *rdev_get_dev(struct regulator_dev *rdev)
6012 {
6013 	return &rdev->dev;
6014 }
6015 EXPORT_SYMBOL_GPL(rdev_get_dev);
6016 
6017 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6018 {
6019 	return rdev->regmap;
6020 }
6021 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6022 
6023 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6024 {
6025 	return reg_init_data->driver_data;
6026 }
6027 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6028 
6029 #ifdef CONFIG_DEBUG_FS
6030 static int supply_map_show(struct seq_file *sf, void *data)
6031 {
6032 	struct regulator_map *map;
6033 
6034 	list_for_each_entry(map, &regulator_map_list, list) {
6035 		seq_printf(sf, "%s -> %s.%s\n",
6036 				rdev_get_name(map->regulator), map->dev_name,
6037 				map->supply);
6038 	}
6039 
6040 	return 0;
6041 }
6042 DEFINE_SHOW_ATTRIBUTE(supply_map);
6043 
6044 struct summary_data {
6045 	struct seq_file *s;
6046 	struct regulator_dev *parent;
6047 	int level;
6048 };
6049 
6050 static void regulator_summary_show_subtree(struct seq_file *s,
6051 					   struct regulator_dev *rdev,
6052 					   int level);
6053 
6054 static int regulator_summary_show_children(struct device *dev, void *data)
6055 {
6056 	struct regulator_dev *rdev = dev_to_rdev(dev);
6057 	struct summary_data *summary_data = data;
6058 
6059 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6060 		regulator_summary_show_subtree(summary_data->s, rdev,
6061 					       summary_data->level + 1);
6062 
6063 	return 0;
6064 }
6065 
6066 static void regulator_summary_show_subtree(struct seq_file *s,
6067 					   struct regulator_dev *rdev,
6068 					   int level)
6069 {
6070 	struct regulation_constraints *c;
6071 	struct regulator *consumer;
6072 	struct summary_data summary_data;
6073 	unsigned int opmode;
6074 
6075 	if (!rdev)
6076 		return;
6077 
6078 	opmode = _regulator_get_mode_unlocked(rdev);
6079 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6080 		   level * 3 + 1, "",
6081 		   30 - level * 3, rdev_get_name(rdev),
6082 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6083 		   regulator_opmode_to_str(opmode));
6084 
6085 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6086 	seq_printf(s, "%5dmA ",
6087 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6088 
6089 	c = rdev->constraints;
6090 	if (c) {
6091 		switch (rdev->desc->type) {
6092 		case REGULATOR_VOLTAGE:
6093 			seq_printf(s, "%5dmV %5dmV ",
6094 				   c->min_uV / 1000, c->max_uV / 1000);
6095 			break;
6096 		case REGULATOR_CURRENT:
6097 			seq_printf(s, "%5dmA %5dmA ",
6098 				   c->min_uA / 1000, c->max_uA / 1000);
6099 			break;
6100 		}
6101 	}
6102 
6103 	seq_puts(s, "\n");
6104 
6105 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6106 		if (consumer->dev && consumer->dev->class == &regulator_class)
6107 			continue;
6108 
6109 		seq_printf(s, "%*s%-*s ",
6110 			   (level + 1) * 3 + 1, "",
6111 			   30 - (level + 1) * 3,
6112 			   consumer->supply_name ? consumer->supply_name :
6113 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6114 
6115 		switch (rdev->desc->type) {
6116 		case REGULATOR_VOLTAGE:
6117 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6118 				   consumer->enable_count,
6119 				   consumer->uA_load / 1000,
6120 				   consumer->uA_load && !consumer->enable_count ?
6121 				   '*' : ' ',
6122 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6123 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6124 			break;
6125 		case REGULATOR_CURRENT:
6126 			break;
6127 		}
6128 
6129 		seq_puts(s, "\n");
6130 	}
6131 
6132 	summary_data.s = s;
6133 	summary_data.level = level;
6134 	summary_data.parent = rdev;
6135 
6136 	class_for_each_device(&regulator_class, NULL, &summary_data,
6137 			      regulator_summary_show_children);
6138 }
6139 
6140 struct summary_lock_data {
6141 	struct ww_acquire_ctx *ww_ctx;
6142 	struct regulator_dev **new_contended_rdev;
6143 	struct regulator_dev **old_contended_rdev;
6144 };
6145 
6146 static int regulator_summary_lock_one(struct device *dev, void *data)
6147 {
6148 	struct regulator_dev *rdev = dev_to_rdev(dev);
6149 	struct summary_lock_data *lock_data = data;
6150 	int ret = 0;
6151 
6152 	if (rdev != *lock_data->old_contended_rdev) {
6153 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6154 
6155 		if (ret == -EDEADLK)
6156 			*lock_data->new_contended_rdev = rdev;
6157 		else
6158 			WARN_ON_ONCE(ret);
6159 	} else {
6160 		*lock_data->old_contended_rdev = NULL;
6161 	}
6162 
6163 	return ret;
6164 }
6165 
6166 static int regulator_summary_unlock_one(struct device *dev, void *data)
6167 {
6168 	struct regulator_dev *rdev = dev_to_rdev(dev);
6169 	struct summary_lock_data *lock_data = data;
6170 
6171 	if (lock_data) {
6172 		if (rdev == *lock_data->new_contended_rdev)
6173 			return -EDEADLK;
6174 	}
6175 
6176 	regulator_unlock(rdev);
6177 
6178 	return 0;
6179 }
6180 
6181 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6182 				      struct regulator_dev **new_contended_rdev,
6183 				      struct regulator_dev **old_contended_rdev)
6184 {
6185 	struct summary_lock_data lock_data;
6186 	int ret;
6187 
6188 	lock_data.ww_ctx = ww_ctx;
6189 	lock_data.new_contended_rdev = new_contended_rdev;
6190 	lock_data.old_contended_rdev = old_contended_rdev;
6191 
6192 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6193 				    regulator_summary_lock_one);
6194 	if (ret)
6195 		class_for_each_device(&regulator_class, NULL, &lock_data,
6196 				      regulator_summary_unlock_one);
6197 
6198 	return ret;
6199 }
6200 
6201 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6202 {
6203 	struct regulator_dev *new_contended_rdev = NULL;
6204 	struct regulator_dev *old_contended_rdev = NULL;
6205 	int err;
6206 
6207 	mutex_lock(&regulator_list_mutex);
6208 
6209 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6210 
6211 	do {
6212 		if (new_contended_rdev) {
6213 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6214 			old_contended_rdev = new_contended_rdev;
6215 			old_contended_rdev->ref_cnt++;
6216 			old_contended_rdev->mutex_owner = current;
6217 		}
6218 
6219 		err = regulator_summary_lock_all(ww_ctx,
6220 						 &new_contended_rdev,
6221 						 &old_contended_rdev);
6222 
6223 		if (old_contended_rdev)
6224 			regulator_unlock(old_contended_rdev);
6225 
6226 	} while (err == -EDEADLK);
6227 
6228 	ww_acquire_done(ww_ctx);
6229 }
6230 
6231 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6232 {
6233 	class_for_each_device(&regulator_class, NULL, NULL,
6234 			      regulator_summary_unlock_one);
6235 	ww_acquire_fini(ww_ctx);
6236 
6237 	mutex_unlock(&regulator_list_mutex);
6238 }
6239 
6240 static int regulator_summary_show_roots(struct device *dev, void *data)
6241 {
6242 	struct regulator_dev *rdev = dev_to_rdev(dev);
6243 	struct seq_file *s = data;
6244 
6245 	if (!rdev->supply)
6246 		regulator_summary_show_subtree(s, rdev, 0);
6247 
6248 	return 0;
6249 }
6250 
6251 static int regulator_summary_show(struct seq_file *s, void *data)
6252 {
6253 	struct ww_acquire_ctx ww_ctx;
6254 
6255 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6256 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6257 
6258 	regulator_summary_lock(&ww_ctx);
6259 
6260 	class_for_each_device(&regulator_class, NULL, s,
6261 			      regulator_summary_show_roots);
6262 
6263 	regulator_summary_unlock(&ww_ctx);
6264 
6265 	return 0;
6266 }
6267 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6268 #endif /* CONFIG_DEBUG_FS */
6269 
6270 static int __init regulator_init(void)
6271 {
6272 	int ret;
6273 
6274 	ret = class_register(&regulator_class);
6275 
6276 	debugfs_root = debugfs_create_dir("regulator", NULL);
6277 	if (IS_ERR(debugfs_root))
6278 		pr_debug("regulator: Failed to create debugfs directory\n");
6279 
6280 #ifdef CONFIG_DEBUG_FS
6281 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6282 			    &supply_map_fops);
6283 
6284 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6285 			    NULL, &regulator_summary_fops);
6286 #endif
6287 	regulator_dummy_init();
6288 
6289 	regulator_coupler_register(&generic_regulator_coupler);
6290 
6291 	return ret;
6292 }
6293 
6294 /* init early to allow our consumers to complete system booting */
6295 core_initcall(regulator_init);
6296 
6297 static int regulator_late_cleanup(struct device *dev, void *data)
6298 {
6299 	struct regulator_dev *rdev = dev_to_rdev(dev);
6300 	struct regulation_constraints *c = rdev->constraints;
6301 	int ret;
6302 
6303 	if (c && c->always_on)
6304 		return 0;
6305 
6306 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6307 		return 0;
6308 
6309 	regulator_lock(rdev);
6310 
6311 	if (rdev->use_count)
6312 		goto unlock;
6313 
6314 	/* If reading the status failed, assume that it's off. */
6315 	if (_regulator_is_enabled(rdev) <= 0)
6316 		goto unlock;
6317 
6318 	if (have_full_constraints()) {
6319 		/* We log since this may kill the system if it goes
6320 		 * wrong.
6321 		 */
6322 		rdev_info(rdev, "disabling\n");
6323 		ret = _regulator_do_disable(rdev);
6324 		if (ret != 0)
6325 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6326 	} else {
6327 		/* The intention is that in future we will
6328 		 * assume that full constraints are provided
6329 		 * so warn even if we aren't going to do
6330 		 * anything here.
6331 		 */
6332 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6333 	}
6334 
6335 unlock:
6336 	regulator_unlock(rdev);
6337 
6338 	return 0;
6339 }
6340 
6341 static bool regulator_ignore_unused;
6342 static int __init regulator_ignore_unused_setup(char *__unused)
6343 {
6344 	regulator_ignore_unused = true;
6345 	return 1;
6346 }
6347 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6348 
6349 static void regulator_init_complete_work_function(struct work_struct *work)
6350 {
6351 	/*
6352 	 * Regulators may had failed to resolve their input supplies
6353 	 * when were registered, either because the input supply was
6354 	 * not registered yet or because its parent device was not
6355 	 * bound yet. So attempt to resolve the input supplies for
6356 	 * pending regulators before trying to disable unused ones.
6357 	 */
6358 	class_for_each_device(&regulator_class, NULL, NULL,
6359 			      regulator_register_resolve_supply);
6360 
6361 	/*
6362 	 * For debugging purposes, it may be useful to prevent unused
6363 	 * regulators from being disabled.
6364 	 */
6365 	if (regulator_ignore_unused) {
6366 		pr_warn("regulator: Not disabling unused regulators\n");
6367 		return;
6368 	}
6369 
6370 	/* If we have a full configuration then disable any regulators
6371 	 * we have permission to change the status for and which are
6372 	 * not in use or always_on.  This is effectively the default
6373 	 * for DT and ACPI as they have full constraints.
6374 	 */
6375 	class_for_each_device(&regulator_class, NULL, NULL,
6376 			      regulator_late_cleanup);
6377 }
6378 
6379 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6380 			    regulator_init_complete_work_function);
6381 
6382 static int __init regulator_init_complete(void)
6383 {
6384 	/*
6385 	 * Since DT doesn't provide an idiomatic mechanism for
6386 	 * enabling full constraints and since it's much more natural
6387 	 * with DT to provide them just assume that a DT enabled
6388 	 * system has full constraints.
6389 	 */
6390 	if (of_have_populated_dt())
6391 		has_full_constraints = true;
6392 
6393 	/*
6394 	 * We punt completion for an arbitrary amount of time since
6395 	 * systems like distros will load many drivers from userspace
6396 	 * so consumers might not always be ready yet, this is
6397 	 * particularly an issue with laptops where this might bounce
6398 	 * the display off then on.  Ideally we'd get a notification
6399 	 * from userspace when this happens but we don't so just wait
6400 	 * a bit and hope we waited long enough.  It'd be better if
6401 	 * we'd only do this on systems that need it, and a kernel
6402 	 * command line option might be useful.
6403 	 */
6404 	schedule_delayed_work(&regulator_init_complete_work,
6405 			      msecs_to_jiffies(30000));
6406 
6407 	return 0;
6408 }
6409 late_initcall_sync(regulator_init_complete);
6410