xref: /linux/drivers/regulator/core.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56 
57 static struct dentry *debugfs_root;
58 
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65 	struct list_head list;
66 	const char *dev_name;   /* The dev_name() for the consumer */
67 	const char *supply;
68 	struct regulator_dev *regulator;
69 };
70 
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77 	struct device *dev;
78 	struct list_head list;
79 	unsigned int always_on:1;
80 	unsigned int bypass:1;
81 	int uA_load;
82 	int min_uV;
83 	int max_uV;
84 	char *supply_name;
85 	struct device_attribute dev_attr;
86 	struct regulator_dev *rdev;
87 	struct dentry *debugfs;
88 };
89 
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 				  unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 				     int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 					  struct device *dev,
101 					  const char *supply_name);
102 
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124 	struct device_node *regnode = NULL;
125 	char prop_name[32]; /* 32 is max size of property name */
126 
127 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128 
129 	snprintf(prop_name, 32, "%s-supply", supply);
130 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131 
132 	if (!regnode) {
133 		dev_dbg(dev, "Looking up %s property in node %s failed",
134 				prop_name, dev->of_node->full_name);
135 		return NULL;
136 	}
137 	return regnode;
138 }
139 
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142 	if (!rdev->constraints)
143 		return 0;
144 
145 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146 		return 1;
147 	else
148 		return 0;
149 }
150 
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153 				   int *min_uV, int *max_uV)
154 {
155 	BUG_ON(*min_uV > *max_uV);
156 
157 	if (!rdev->constraints) {
158 		rdev_err(rdev, "no constraints\n");
159 		return -ENODEV;
160 	}
161 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162 		rdev_err(rdev, "operation not allowed\n");
163 		return -EPERM;
164 	}
165 
166 	if (*max_uV > rdev->constraints->max_uV)
167 		*max_uV = rdev->constraints->max_uV;
168 	if (*min_uV < rdev->constraints->min_uV)
169 		*min_uV = rdev->constraints->min_uV;
170 
171 	if (*min_uV > *max_uV) {
172 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173 			 *min_uV, *max_uV);
174 		return -EINVAL;
175 	}
176 
177 	return 0;
178 }
179 
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184 				     int *min_uV, int *max_uV)
185 {
186 	struct regulator *regulator;
187 
188 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 		/*
190 		 * Assume consumers that didn't say anything are OK
191 		 * with anything in the constraint range.
192 		 */
193 		if (!regulator->min_uV && !regulator->max_uV)
194 			continue;
195 
196 		if (*max_uV > regulator->max_uV)
197 			*max_uV = regulator->max_uV;
198 		if (*min_uV < regulator->min_uV)
199 			*min_uV = regulator->min_uV;
200 	}
201 
202 	if (*min_uV > *max_uV)
203 		return -EINVAL;
204 
205 	return 0;
206 }
207 
208 /* current constraint check */
209 static int regulator_check_current_limit(struct regulator_dev *rdev,
210 					int *min_uA, int *max_uA)
211 {
212 	BUG_ON(*min_uA > *max_uA);
213 
214 	if (!rdev->constraints) {
215 		rdev_err(rdev, "no constraints\n");
216 		return -ENODEV;
217 	}
218 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219 		rdev_err(rdev, "operation not allowed\n");
220 		return -EPERM;
221 	}
222 
223 	if (*max_uA > rdev->constraints->max_uA)
224 		*max_uA = rdev->constraints->max_uA;
225 	if (*min_uA < rdev->constraints->min_uA)
226 		*min_uA = rdev->constraints->min_uA;
227 
228 	if (*min_uA > *max_uA) {
229 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230 			 *min_uA, *max_uA);
231 		return -EINVAL;
232 	}
233 
234 	return 0;
235 }
236 
237 /* operating mode constraint check */
238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 {
240 	switch (*mode) {
241 	case REGULATOR_MODE_FAST:
242 	case REGULATOR_MODE_NORMAL:
243 	case REGULATOR_MODE_IDLE:
244 	case REGULATOR_MODE_STANDBY:
245 		break;
246 	default:
247 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
248 		return -EINVAL;
249 	}
250 
251 	if (!rdev->constraints) {
252 		rdev_err(rdev, "no constraints\n");
253 		return -ENODEV;
254 	}
255 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256 		rdev_err(rdev, "operation not allowed\n");
257 		return -EPERM;
258 	}
259 
260 	/* The modes are bitmasks, the most power hungry modes having
261 	 * the lowest values. If the requested mode isn't supported
262 	 * try higher modes. */
263 	while (*mode) {
264 		if (rdev->constraints->valid_modes_mask & *mode)
265 			return 0;
266 		*mode /= 2;
267 	}
268 
269 	return -EINVAL;
270 }
271 
272 /* dynamic regulator mode switching constraint check */
273 static int regulator_check_drms(struct regulator_dev *rdev)
274 {
275 	if (!rdev->constraints) {
276 		rdev_err(rdev, "no constraints\n");
277 		return -ENODEV;
278 	}
279 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280 		rdev_err(rdev, "operation not allowed\n");
281 		return -EPERM;
282 	}
283 	return 0;
284 }
285 
286 static ssize_t regulator_uV_show(struct device *dev,
287 				struct device_attribute *attr, char *buf)
288 {
289 	struct regulator_dev *rdev = dev_get_drvdata(dev);
290 	ssize_t ret;
291 
292 	mutex_lock(&rdev->mutex);
293 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294 	mutex_unlock(&rdev->mutex);
295 
296 	return ret;
297 }
298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299 
300 static ssize_t regulator_uA_show(struct device *dev,
301 				struct device_attribute *attr, char *buf)
302 {
303 	struct regulator_dev *rdev = dev_get_drvdata(dev);
304 
305 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 }
307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308 
309 static ssize_t regulator_name_show(struct device *dev,
310 			     struct device_attribute *attr, char *buf)
311 {
312 	struct regulator_dev *rdev = dev_get_drvdata(dev);
313 
314 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 }
316 
317 static ssize_t regulator_print_opmode(char *buf, int mode)
318 {
319 	switch (mode) {
320 	case REGULATOR_MODE_FAST:
321 		return sprintf(buf, "fast\n");
322 	case REGULATOR_MODE_NORMAL:
323 		return sprintf(buf, "normal\n");
324 	case REGULATOR_MODE_IDLE:
325 		return sprintf(buf, "idle\n");
326 	case REGULATOR_MODE_STANDBY:
327 		return sprintf(buf, "standby\n");
328 	}
329 	return sprintf(buf, "unknown\n");
330 }
331 
332 static ssize_t regulator_opmode_show(struct device *dev,
333 				    struct device_attribute *attr, char *buf)
334 {
335 	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 
337 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 }
339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340 
341 static ssize_t regulator_print_state(char *buf, int state)
342 {
343 	if (state > 0)
344 		return sprintf(buf, "enabled\n");
345 	else if (state == 0)
346 		return sprintf(buf, "disabled\n");
347 	else
348 		return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_state_show(struct device *dev,
352 				   struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 	ssize_t ret;
356 
357 	mutex_lock(&rdev->mutex);
358 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359 	mutex_unlock(&rdev->mutex);
360 
361 	return ret;
362 }
363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364 
365 static ssize_t regulator_status_show(struct device *dev,
366 				   struct device_attribute *attr, char *buf)
367 {
368 	struct regulator_dev *rdev = dev_get_drvdata(dev);
369 	int status;
370 	char *label;
371 
372 	status = rdev->desc->ops->get_status(rdev);
373 	if (status < 0)
374 		return status;
375 
376 	switch (status) {
377 	case REGULATOR_STATUS_OFF:
378 		label = "off";
379 		break;
380 	case REGULATOR_STATUS_ON:
381 		label = "on";
382 		break;
383 	case REGULATOR_STATUS_ERROR:
384 		label = "error";
385 		break;
386 	case REGULATOR_STATUS_FAST:
387 		label = "fast";
388 		break;
389 	case REGULATOR_STATUS_NORMAL:
390 		label = "normal";
391 		break;
392 	case REGULATOR_STATUS_IDLE:
393 		label = "idle";
394 		break;
395 	case REGULATOR_STATUS_STANDBY:
396 		label = "standby";
397 		break;
398 	case REGULATOR_STATUS_BYPASS:
399 		label = "bypass";
400 		break;
401 	case REGULATOR_STATUS_UNDEFINED:
402 		label = "undefined";
403 		break;
404 	default:
405 		return -ERANGE;
406 	}
407 
408 	return sprintf(buf, "%s\n", label);
409 }
410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411 
412 static ssize_t regulator_min_uA_show(struct device *dev,
413 				    struct device_attribute *attr, char *buf)
414 {
415 	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 
417 	if (!rdev->constraints)
418 		return sprintf(buf, "constraint not defined\n");
419 
420 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421 }
422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423 
424 static ssize_t regulator_max_uA_show(struct device *dev,
425 				    struct device_attribute *attr, char *buf)
426 {
427 	struct regulator_dev *rdev = dev_get_drvdata(dev);
428 
429 	if (!rdev->constraints)
430 		return sprintf(buf, "constraint not defined\n");
431 
432 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433 }
434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435 
436 static ssize_t regulator_min_uV_show(struct device *dev,
437 				    struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 
441 	if (!rdev->constraints)
442 		return sprintf(buf, "constraint not defined\n");
443 
444 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445 }
446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447 
448 static ssize_t regulator_max_uV_show(struct device *dev,
449 				    struct device_attribute *attr, char *buf)
450 {
451 	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 
453 	if (!rdev->constraints)
454 		return sprintf(buf, "constraint not defined\n");
455 
456 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457 }
458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459 
460 static ssize_t regulator_total_uA_show(struct device *dev,
461 				      struct device_attribute *attr, char *buf)
462 {
463 	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 	struct regulator *regulator;
465 	int uA = 0;
466 
467 	mutex_lock(&rdev->mutex);
468 	list_for_each_entry(regulator, &rdev->consumer_list, list)
469 		uA += regulator->uA_load;
470 	mutex_unlock(&rdev->mutex);
471 	return sprintf(buf, "%d\n", uA);
472 }
473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474 
475 static ssize_t regulator_num_users_show(struct device *dev,
476 				      struct device_attribute *attr, char *buf)
477 {
478 	struct regulator_dev *rdev = dev_get_drvdata(dev);
479 	return sprintf(buf, "%d\n", rdev->use_count);
480 }
481 
482 static ssize_t regulator_type_show(struct device *dev,
483 				  struct device_attribute *attr, char *buf)
484 {
485 	struct regulator_dev *rdev = dev_get_drvdata(dev);
486 
487 	switch (rdev->desc->type) {
488 	case REGULATOR_VOLTAGE:
489 		return sprintf(buf, "voltage\n");
490 	case REGULATOR_CURRENT:
491 		return sprintf(buf, "current\n");
492 	}
493 	return sprintf(buf, "unknown\n");
494 }
495 
496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497 				struct device_attribute *attr, char *buf)
498 {
499 	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 
501 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502 }
503 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504 		regulator_suspend_mem_uV_show, NULL);
505 
506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507 				struct device_attribute *attr, char *buf)
508 {
509 	struct regulator_dev *rdev = dev_get_drvdata(dev);
510 
511 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512 }
513 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514 		regulator_suspend_disk_uV_show, NULL);
515 
516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522 }
523 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524 		regulator_suspend_standby_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return regulator_print_opmode(buf,
532 		rdev->constraints->state_mem.mode);
533 }
534 static DEVICE_ATTR(suspend_mem_mode, 0444,
535 		regulator_suspend_mem_mode_show, NULL);
536 
537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return regulator_print_opmode(buf,
543 		rdev->constraints->state_disk.mode);
544 }
545 static DEVICE_ATTR(suspend_disk_mode, 0444,
546 		regulator_suspend_disk_mode_show, NULL);
547 
548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549 				struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	return regulator_print_opmode(buf,
554 		rdev->constraints->state_standby.mode);
555 }
556 static DEVICE_ATTR(suspend_standby_mode, 0444,
557 		regulator_suspend_standby_mode_show, NULL);
558 
559 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560 				   struct device_attribute *attr, char *buf)
561 {
562 	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 
564 	return regulator_print_state(buf,
565 			rdev->constraints->state_mem.enabled);
566 }
567 static DEVICE_ATTR(suspend_mem_state, 0444,
568 		regulator_suspend_mem_state_show, NULL);
569 
570 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571 				   struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return regulator_print_state(buf,
576 			rdev->constraints->state_disk.enabled);
577 }
578 static DEVICE_ATTR(suspend_disk_state, 0444,
579 		regulator_suspend_disk_state_show, NULL);
580 
581 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582 				   struct device_attribute *attr, char *buf)
583 {
584 	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 
586 	return regulator_print_state(buf,
587 			rdev->constraints->state_standby.enabled);
588 }
589 static DEVICE_ATTR(suspend_standby_state, 0444,
590 		regulator_suspend_standby_state_show, NULL);
591 
592 static ssize_t regulator_bypass_show(struct device *dev,
593 				     struct device_attribute *attr, char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 	const char *report;
597 	bool bypass;
598 	int ret;
599 
600 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601 
602 	if (ret != 0)
603 		report = "unknown";
604 	else if (bypass)
605 		report = "enabled";
606 	else
607 		report = "disabled";
608 
609 	return sprintf(buf, "%s\n", report);
610 }
611 static DEVICE_ATTR(bypass, 0444,
612 		   regulator_bypass_show, NULL);
613 
614 /*
615  * These are the only attributes are present for all regulators.
616  * Other attributes are a function of regulator functionality.
617  */
618 static struct device_attribute regulator_dev_attrs[] = {
619 	__ATTR(name, 0444, regulator_name_show, NULL),
620 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
621 	__ATTR(type, 0444, regulator_type_show, NULL),
622 	__ATTR_NULL,
623 };
624 
625 static void regulator_dev_release(struct device *dev)
626 {
627 	struct regulator_dev *rdev = dev_get_drvdata(dev);
628 	kfree(rdev);
629 }
630 
631 static struct class regulator_class = {
632 	.name = "regulator",
633 	.dev_release = regulator_dev_release,
634 	.dev_attrs = regulator_dev_attrs,
635 };
636 
637 /* Calculate the new optimum regulator operating mode based on the new total
638  * consumer load. All locks held by caller */
639 static void drms_uA_update(struct regulator_dev *rdev)
640 {
641 	struct regulator *sibling;
642 	int current_uA = 0, output_uV, input_uV, err;
643 	unsigned int mode;
644 
645 	err = regulator_check_drms(rdev);
646 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647 	    (!rdev->desc->ops->get_voltage &&
648 	     !rdev->desc->ops->get_voltage_sel) ||
649 	    !rdev->desc->ops->set_mode)
650 		return;
651 
652 	/* get output voltage */
653 	output_uV = _regulator_get_voltage(rdev);
654 	if (output_uV <= 0)
655 		return;
656 
657 	/* get input voltage */
658 	input_uV = 0;
659 	if (rdev->supply)
660 		input_uV = regulator_get_voltage(rdev->supply);
661 	if (input_uV <= 0)
662 		input_uV = rdev->constraints->input_uV;
663 	if (input_uV <= 0)
664 		return;
665 
666 	/* calc total requested load */
667 	list_for_each_entry(sibling, &rdev->consumer_list, list)
668 		current_uA += sibling->uA_load;
669 
670 	/* now get the optimum mode for our new total regulator load */
671 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672 						  output_uV, current_uA);
673 
674 	/* check the new mode is allowed */
675 	err = regulator_mode_constrain(rdev, &mode);
676 	if (err == 0)
677 		rdev->desc->ops->set_mode(rdev, mode);
678 }
679 
680 static int suspend_set_state(struct regulator_dev *rdev,
681 	struct regulator_state *rstate)
682 {
683 	int ret = 0;
684 
685 	/* If we have no suspend mode configration don't set anything;
686 	 * only warn if the driver implements set_suspend_voltage or
687 	 * set_suspend_mode callback.
688 	 */
689 	if (!rstate->enabled && !rstate->disabled) {
690 		if (rdev->desc->ops->set_suspend_voltage ||
691 		    rdev->desc->ops->set_suspend_mode)
692 			rdev_warn(rdev, "No configuration\n");
693 		return 0;
694 	}
695 
696 	if (rstate->enabled && rstate->disabled) {
697 		rdev_err(rdev, "invalid configuration\n");
698 		return -EINVAL;
699 	}
700 
701 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702 		ret = rdev->desc->ops->set_suspend_enable(rdev);
703 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704 		ret = rdev->desc->ops->set_suspend_disable(rdev);
705 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706 		ret = 0;
707 
708 	if (ret < 0) {
709 		rdev_err(rdev, "failed to enabled/disable\n");
710 		return ret;
711 	}
712 
713 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715 		if (ret < 0) {
716 			rdev_err(rdev, "failed to set voltage\n");
717 			return ret;
718 		}
719 	}
720 
721 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723 		if (ret < 0) {
724 			rdev_err(rdev, "failed to set mode\n");
725 			return ret;
726 		}
727 	}
728 	return ret;
729 }
730 
731 /* locks held by caller */
732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733 {
734 	if (!rdev->constraints)
735 		return -EINVAL;
736 
737 	switch (state) {
738 	case PM_SUSPEND_STANDBY:
739 		return suspend_set_state(rdev,
740 			&rdev->constraints->state_standby);
741 	case PM_SUSPEND_MEM:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_mem);
744 	case PM_SUSPEND_MAX:
745 		return suspend_set_state(rdev,
746 			&rdev->constraints->state_disk);
747 	default:
748 		return -EINVAL;
749 	}
750 }
751 
752 static void print_constraints(struct regulator_dev *rdev)
753 {
754 	struct regulation_constraints *constraints = rdev->constraints;
755 	char buf[80] = "";
756 	int count = 0;
757 	int ret;
758 
759 	if (constraints->min_uV && constraints->max_uV) {
760 		if (constraints->min_uV == constraints->max_uV)
761 			count += sprintf(buf + count, "%d mV ",
762 					 constraints->min_uV / 1000);
763 		else
764 			count += sprintf(buf + count, "%d <--> %d mV ",
765 					 constraints->min_uV / 1000,
766 					 constraints->max_uV / 1000);
767 	}
768 
769 	if (!constraints->min_uV ||
770 	    constraints->min_uV != constraints->max_uV) {
771 		ret = _regulator_get_voltage(rdev);
772 		if (ret > 0)
773 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
774 	}
775 
776 	if (constraints->uV_offset)
777 		count += sprintf(buf, "%dmV offset ",
778 				 constraints->uV_offset / 1000);
779 
780 	if (constraints->min_uA && constraints->max_uA) {
781 		if (constraints->min_uA == constraints->max_uA)
782 			count += sprintf(buf + count, "%d mA ",
783 					 constraints->min_uA / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mA ",
786 					 constraints->min_uA / 1000,
787 					 constraints->max_uA / 1000);
788 	}
789 
790 	if (!constraints->min_uA ||
791 	    constraints->min_uA != constraints->max_uA) {
792 		ret = _regulator_get_current_limit(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
795 	}
796 
797 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798 		count += sprintf(buf + count, "fast ");
799 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800 		count += sprintf(buf + count, "normal ");
801 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802 		count += sprintf(buf + count, "idle ");
803 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804 		count += sprintf(buf + count, "standby");
805 
806 	if (!count)
807 		sprintf(buf, "no parameters");
808 
809 	rdev_info(rdev, "%s\n", buf);
810 
811 	if ((constraints->min_uV != constraints->max_uV) &&
812 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813 		rdev_warn(rdev,
814 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 }
816 
817 static int machine_constraints_voltage(struct regulator_dev *rdev,
818 	struct regulation_constraints *constraints)
819 {
820 	struct regulator_ops *ops = rdev->desc->ops;
821 	int ret;
822 
823 	/* do we need to apply the constraint voltage */
824 	if (rdev->constraints->apply_uV &&
825 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
826 		ret = _regulator_do_set_voltage(rdev,
827 						rdev->constraints->min_uV,
828 						rdev->constraints->max_uV);
829 		if (ret < 0) {
830 			rdev_err(rdev, "failed to apply %duV constraint\n",
831 				 rdev->constraints->min_uV);
832 			return ret;
833 		}
834 	}
835 
836 	/* constrain machine-level voltage specs to fit
837 	 * the actual range supported by this regulator.
838 	 */
839 	if (ops->list_voltage && rdev->desc->n_voltages) {
840 		int	count = rdev->desc->n_voltages;
841 		int	i;
842 		int	min_uV = INT_MAX;
843 		int	max_uV = INT_MIN;
844 		int	cmin = constraints->min_uV;
845 		int	cmax = constraints->max_uV;
846 
847 		/* it's safe to autoconfigure fixed-voltage supplies
848 		   and the constraints are used by list_voltage. */
849 		if (count == 1 && !cmin) {
850 			cmin = 1;
851 			cmax = INT_MAX;
852 			constraints->min_uV = cmin;
853 			constraints->max_uV = cmax;
854 		}
855 
856 		/* voltage constraints are optional */
857 		if ((cmin == 0) && (cmax == 0))
858 			return 0;
859 
860 		/* else require explicit machine-level constraints */
861 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862 			rdev_err(rdev, "invalid voltage constraints\n");
863 			return -EINVAL;
864 		}
865 
866 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867 		for (i = 0; i < count; i++) {
868 			int	value;
869 
870 			value = ops->list_voltage(rdev, i);
871 			if (value <= 0)
872 				continue;
873 
874 			/* maybe adjust [min_uV..max_uV] */
875 			if (value >= cmin && value < min_uV)
876 				min_uV = value;
877 			if (value <= cmax && value > max_uV)
878 				max_uV = value;
879 		}
880 
881 		/* final: [min_uV..max_uV] valid iff constraints valid */
882 		if (max_uV < min_uV) {
883 			rdev_err(rdev, "unsupportable voltage constraints\n");
884 			return -EINVAL;
885 		}
886 
887 		/* use regulator's subset of machine constraints */
888 		if (constraints->min_uV < min_uV) {
889 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890 				 constraints->min_uV, min_uV);
891 			constraints->min_uV = min_uV;
892 		}
893 		if (constraints->max_uV > max_uV) {
894 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895 				 constraints->max_uV, max_uV);
896 			constraints->max_uV = max_uV;
897 		}
898 	}
899 
900 	return 0;
901 }
902 
903 /**
904  * set_machine_constraints - sets regulator constraints
905  * @rdev: regulator source
906  * @constraints: constraints to apply
907  *
908  * Allows platform initialisation code to define and constrain
909  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
910  * Constraints *must* be set by platform code in order for some
911  * regulator operations to proceed i.e. set_voltage, set_current_limit,
912  * set_mode.
913  */
914 static int set_machine_constraints(struct regulator_dev *rdev,
915 	const struct regulation_constraints *constraints)
916 {
917 	int ret = 0;
918 	struct regulator_ops *ops = rdev->desc->ops;
919 
920 	if (constraints)
921 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922 					    GFP_KERNEL);
923 	else
924 		rdev->constraints = kzalloc(sizeof(*constraints),
925 					    GFP_KERNEL);
926 	if (!rdev->constraints)
927 		return -ENOMEM;
928 
929 	ret = machine_constraints_voltage(rdev, rdev->constraints);
930 	if (ret != 0)
931 		goto out;
932 
933 	/* do we need to setup our suspend state */
934 	if (rdev->constraints->initial_state) {
935 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936 		if (ret < 0) {
937 			rdev_err(rdev, "failed to set suspend state\n");
938 			goto out;
939 		}
940 	}
941 
942 	if (rdev->constraints->initial_mode) {
943 		if (!ops->set_mode) {
944 			rdev_err(rdev, "no set_mode operation\n");
945 			ret = -EINVAL;
946 			goto out;
947 		}
948 
949 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950 		if (ret < 0) {
951 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952 			goto out;
953 		}
954 	}
955 
956 	/* If the constraints say the regulator should be on at this point
957 	 * and we have control then make sure it is enabled.
958 	 */
959 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960 	    ops->enable) {
961 		ret = ops->enable(rdev);
962 		if (ret < 0) {
963 			rdev_err(rdev, "failed to enable\n");
964 			goto out;
965 		}
966 	}
967 
968 	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970 		if (ret < 0) {
971 			rdev_err(rdev, "failed to set ramp_delay\n");
972 			goto out;
973 		}
974 	}
975 
976 	print_constraints(rdev);
977 	return 0;
978 out:
979 	kfree(rdev->constraints);
980 	rdev->constraints = NULL;
981 	return ret;
982 }
983 
984 /**
985  * set_supply - set regulator supply regulator
986  * @rdev: regulator name
987  * @supply_rdev: supply regulator name
988  *
989  * Called by platform initialisation code to set the supply regulator for this
990  * regulator. This ensures that a regulators supply will also be enabled by the
991  * core if it's child is enabled.
992  */
993 static int set_supply(struct regulator_dev *rdev,
994 		      struct regulator_dev *supply_rdev)
995 {
996 	int err;
997 
998 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999 
1000 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001 	if (rdev->supply == NULL) {
1002 		err = -ENOMEM;
1003 		return err;
1004 	}
1005 	supply_rdev->open_count++;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012  * @rdev:         regulator source
1013  * @consumer_dev_name: dev_name() string for device supply applies to
1014  * @supply:       symbolic name for supply
1015  *
1016  * Allows platform initialisation code to map physical regulator
1017  * sources to symbolic names for supplies for use by devices.  Devices
1018  * should use these symbolic names to request regulators, avoiding the
1019  * need to provide board-specific regulator names as platform data.
1020  */
1021 static int set_consumer_device_supply(struct regulator_dev *rdev,
1022 				      const char *consumer_dev_name,
1023 				      const char *supply)
1024 {
1025 	struct regulator_map *node;
1026 	int has_dev;
1027 
1028 	if (supply == NULL)
1029 		return -EINVAL;
1030 
1031 	if (consumer_dev_name != NULL)
1032 		has_dev = 1;
1033 	else
1034 		has_dev = 0;
1035 
1036 	list_for_each_entry(node, &regulator_map_list, list) {
1037 		if (node->dev_name && consumer_dev_name) {
1038 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039 				continue;
1040 		} else if (node->dev_name || consumer_dev_name) {
1041 			continue;
1042 		}
1043 
1044 		if (strcmp(node->supply, supply) != 0)
1045 			continue;
1046 
1047 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048 			 consumer_dev_name,
1049 			 dev_name(&node->regulator->dev),
1050 			 node->regulator->desc->name,
1051 			 supply,
1052 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1053 		return -EBUSY;
1054 	}
1055 
1056 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057 	if (node == NULL)
1058 		return -ENOMEM;
1059 
1060 	node->regulator = rdev;
1061 	node->supply = supply;
1062 
1063 	if (has_dev) {
1064 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065 		if (node->dev_name == NULL) {
1066 			kfree(node);
1067 			return -ENOMEM;
1068 		}
1069 	}
1070 
1071 	list_add(&node->list, &regulator_map_list);
1072 	return 0;
1073 }
1074 
1075 static void unset_regulator_supplies(struct regulator_dev *rdev)
1076 {
1077 	struct regulator_map *node, *n;
1078 
1079 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080 		if (rdev == node->regulator) {
1081 			list_del(&node->list);
1082 			kfree(node->dev_name);
1083 			kfree(node);
1084 		}
1085 	}
1086 }
1087 
1088 #define REG_STR_SIZE	64
1089 
1090 static struct regulator *create_regulator(struct regulator_dev *rdev,
1091 					  struct device *dev,
1092 					  const char *supply_name)
1093 {
1094 	struct regulator *regulator;
1095 	char buf[REG_STR_SIZE];
1096 	int err, size;
1097 
1098 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099 	if (regulator == NULL)
1100 		return NULL;
1101 
1102 	mutex_lock(&rdev->mutex);
1103 	regulator->rdev = rdev;
1104 	list_add(&regulator->list, &rdev->consumer_list);
1105 
1106 	if (dev) {
1107 		regulator->dev = dev;
1108 
1109 		/* Add a link to the device sysfs entry */
1110 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111 				 dev->kobj.name, supply_name);
1112 		if (size >= REG_STR_SIZE)
1113 			goto overflow_err;
1114 
1115 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116 		if (regulator->supply_name == NULL)
1117 			goto overflow_err;
1118 
1119 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120 					buf);
1121 		if (err) {
1122 			rdev_warn(rdev, "could not add device link %s err %d\n",
1123 				  dev->kobj.name, err);
1124 			/* non-fatal */
1125 		}
1126 	} else {
1127 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128 		if (regulator->supply_name == NULL)
1129 			goto overflow_err;
1130 	}
1131 
1132 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133 						rdev->debugfs);
1134 	if (!regulator->debugfs) {
1135 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1136 	} else {
1137 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138 				   &regulator->uA_load);
1139 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140 				   &regulator->min_uV);
1141 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142 				   &regulator->max_uV);
1143 	}
1144 
1145 	/*
1146 	 * Check now if the regulator is an always on regulator - if
1147 	 * it is then we don't need to do nearly so much work for
1148 	 * enable/disable calls.
1149 	 */
1150 	if (!_regulator_can_change_status(rdev) &&
1151 	    _regulator_is_enabled(rdev))
1152 		regulator->always_on = true;
1153 
1154 	mutex_unlock(&rdev->mutex);
1155 	return regulator;
1156 overflow_err:
1157 	list_del(&regulator->list);
1158 	kfree(regulator);
1159 	mutex_unlock(&rdev->mutex);
1160 	return NULL;
1161 }
1162 
1163 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164 {
1165 	if (!rdev->desc->ops->enable_time)
1166 		return rdev->desc->enable_time;
1167 	return rdev->desc->ops->enable_time(rdev);
1168 }
1169 
1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171 						  const char *supply,
1172 						  int *ret)
1173 {
1174 	struct regulator_dev *r;
1175 	struct device_node *node;
1176 	struct regulator_map *map;
1177 	const char *devname = NULL;
1178 
1179 	/* first do a dt based lookup */
1180 	if (dev && dev->of_node) {
1181 		node = of_get_regulator(dev, supply);
1182 		if (node) {
1183 			list_for_each_entry(r, &regulator_list, list)
1184 				if (r->dev.parent &&
1185 					node == r->dev.of_node)
1186 					return r;
1187 		} else {
1188 			/*
1189 			 * If we couldn't even get the node then it's
1190 			 * not just that the device didn't register
1191 			 * yet, there's no node and we'll never
1192 			 * succeed.
1193 			 */
1194 			*ret = -ENODEV;
1195 		}
1196 	}
1197 
1198 	/* if not found, try doing it non-dt way */
1199 	if (dev)
1200 		devname = dev_name(dev);
1201 
1202 	list_for_each_entry(r, &regulator_list, list)
1203 		if (strcmp(rdev_get_name(r), supply) == 0)
1204 			return r;
1205 
1206 	list_for_each_entry(map, &regulator_map_list, list) {
1207 		/* If the mapping has a device set up it must match */
1208 		if (map->dev_name &&
1209 		    (!devname || strcmp(map->dev_name, devname)))
1210 			continue;
1211 
1212 		if (strcmp(map->supply, supply) == 0)
1213 			return map->regulator;
1214 	}
1215 
1216 
1217 	return NULL;
1218 }
1219 
1220 /* Internal regulator request function */
1221 static struct regulator *_regulator_get(struct device *dev, const char *id,
1222 					int exclusive)
1223 {
1224 	struct regulator_dev *rdev;
1225 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226 	const char *devname = NULL;
1227 	int ret;
1228 
1229 	if (id == NULL) {
1230 		pr_err("get() with no identifier\n");
1231 		return regulator;
1232 	}
1233 
1234 	if (dev)
1235 		devname = dev_name(dev);
1236 
1237 	mutex_lock(&regulator_list_mutex);
1238 
1239 	rdev = regulator_dev_lookup(dev, id, &ret);
1240 	if (rdev)
1241 		goto found;
1242 
1243 	if (board_wants_dummy_regulator) {
1244 		rdev = dummy_regulator_rdev;
1245 		goto found;
1246 	}
1247 
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249 	if (!devname)
1250 		devname = "deviceless";
1251 
1252 	/* If the board didn't flag that it was fully constrained then
1253 	 * substitute in a dummy regulator so consumers can continue.
1254 	 */
1255 	if (!has_full_constraints) {
1256 		pr_warn("%s supply %s not found, using dummy regulator\n",
1257 			devname, id);
1258 		rdev = dummy_regulator_rdev;
1259 		goto found;
1260 	}
1261 #endif
1262 
1263 	mutex_unlock(&regulator_list_mutex);
1264 	return regulator;
1265 
1266 found:
1267 	if (rdev->exclusive) {
1268 		regulator = ERR_PTR(-EPERM);
1269 		goto out;
1270 	}
1271 
1272 	if (exclusive && rdev->open_count) {
1273 		regulator = ERR_PTR(-EBUSY);
1274 		goto out;
1275 	}
1276 
1277 	if (!try_module_get(rdev->owner))
1278 		goto out;
1279 
1280 	regulator = create_regulator(rdev, dev, id);
1281 	if (regulator == NULL) {
1282 		regulator = ERR_PTR(-ENOMEM);
1283 		module_put(rdev->owner);
1284 		goto out;
1285 	}
1286 
1287 	rdev->open_count++;
1288 	if (exclusive) {
1289 		rdev->exclusive = 1;
1290 
1291 		ret = _regulator_is_enabled(rdev);
1292 		if (ret > 0)
1293 			rdev->use_count = 1;
1294 		else
1295 			rdev->use_count = 0;
1296 	}
1297 
1298 out:
1299 	mutex_unlock(&regulator_list_mutex);
1300 
1301 	return regulator;
1302 }
1303 
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319 	return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322 
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325 	regulator_put(*(struct regulator **)res);
1326 }
1327 
1328 /**
1329  * devm_regulator_get - Resource managed regulator_get()
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Managed regulator_get(). Regulators returned from this function are
1334  * automatically regulator_put() on driver detach. See regulator_get() for more
1335  * information.
1336  */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339 	struct regulator **ptr, *regulator;
1340 
1341 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342 	if (!ptr)
1343 		return ERR_PTR(-ENOMEM);
1344 
1345 	regulator = regulator_get(dev, id);
1346 	if (!IS_ERR(regulator)) {
1347 		*ptr = regulator;
1348 		devres_add(dev, ptr);
1349 	} else {
1350 		devres_free(ptr);
1351 	}
1352 
1353 	return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356 
1357 /**
1358  * regulator_get_exclusive - obtain exclusive access to a regulator.
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Returns a struct regulator corresponding to the regulator producer,
1363  * or IS_ERR() condition containing errno.  Other consumers will be
1364  * unable to obtain this reference is held and the use count for the
1365  * regulator will be initialised to reflect the current state of the
1366  * regulator.
1367  *
1368  * This is intended for use by consumers which cannot tolerate shared
1369  * use of the regulator such as those which need to force the
1370  * regulator off for correct operation of the hardware they are
1371  * controlling.
1372  *
1373  * Use of supply names configured via regulator_set_device_supply() is
1374  * strongly encouraged.  It is recommended that the supply name used
1375  * should match the name used for the supply and/or the relevant
1376  * device pins in the datasheet.
1377  */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380 	return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383 
1384 /**
1385  * regulator_put - "free" the regulator source
1386  * @regulator: regulator source
1387  *
1388  * Note: drivers must ensure that all regulator_enable calls made on this
1389  * regulator source are balanced by regulator_disable calls prior to calling
1390  * this function.
1391  */
1392 void regulator_put(struct regulator *regulator)
1393 {
1394 	struct regulator_dev *rdev;
1395 
1396 	if (regulator == NULL || IS_ERR(regulator))
1397 		return;
1398 
1399 	mutex_lock(&regulator_list_mutex);
1400 	rdev = regulator->rdev;
1401 
1402 	debugfs_remove_recursive(regulator->debugfs);
1403 
1404 	/* remove any sysfs entries */
1405 	if (regulator->dev)
1406 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1407 	kfree(regulator->supply_name);
1408 	list_del(&regulator->list);
1409 	kfree(regulator);
1410 
1411 	rdev->open_count--;
1412 	rdev->exclusive = 0;
1413 
1414 	module_put(rdev->owner);
1415 	mutex_unlock(&regulator_list_mutex);
1416 }
1417 EXPORT_SYMBOL_GPL(regulator_put);
1418 
1419 static int devm_regulator_match(struct device *dev, void *res, void *data)
1420 {
1421 	struct regulator **r = res;
1422 	if (!r || !*r) {
1423 		WARN_ON(!r || !*r);
1424 		return 0;
1425 	}
1426 	return *r == data;
1427 }
1428 
1429 /**
1430  * devm_regulator_put - Resource managed regulator_put()
1431  * @regulator: regulator to free
1432  *
1433  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1434  * this function will not need to be called and the resource management
1435  * code will ensure that the resource is freed.
1436  */
1437 void devm_regulator_put(struct regulator *regulator)
1438 {
1439 	int rc;
1440 
1441 	rc = devres_release(regulator->dev, devm_regulator_release,
1442 			    devm_regulator_match, regulator);
1443 	if (rc != 0)
1444 		WARN_ON(rc);
1445 }
1446 EXPORT_SYMBOL_GPL(devm_regulator_put);
1447 
1448 static int _regulator_do_enable(struct regulator_dev *rdev)
1449 {
1450 	int ret, delay;
1451 
1452 	/* Query before enabling in case configuration dependent.  */
1453 	ret = _regulator_get_enable_time(rdev);
1454 	if (ret >= 0) {
1455 		delay = ret;
1456 	} else {
1457 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1458 		delay = 0;
1459 	}
1460 
1461 	trace_regulator_enable(rdev_get_name(rdev));
1462 
1463 	if (rdev->ena_gpio) {
1464 		gpio_set_value_cansleep(rdev->ena_gpio,
1465 					!rdev->ena_gpio_invert);
1466 		rdev->ena_gpio_state = 1;
1467 	} else if (rdev->desc->ops->enable) {
1468 		ret = rdev->desc->ops->enable(rdev);
1469 		if (ret < 0)
1470 			return ret;
1471 	} else {
1472 		return -EINVAL;
1473 	}
1474 
1475 	/* Allow the regulator to ramp; it would be useful to extend
1476 	 * this for bulk operations so that the regulators can ramp
1477 	 * together.  */
1478 	trace_regulator_enable_delay(rdev_get_name(rdev));
1479 
1480 	if (delay >= 1000) {
1481 		mdelay(delay / 1000);
1482 		udelay(delay % 1000);
1483 	} else if (delay) {
1484 		udelay(delay);
1485 	}
1486 
1487 	trace_regulator_enable_complete(rdev_get_name(rdev));
1488 
1489 	return 0;
1490 }
1491 
1492 /* locks held by regulator_enable() */
1493 static int _regulator_enable(struct regulator_dev *rdev)
1494 {
1495 	int ret;
1496 
1497 	/* check voltage and requested load before enabling */
1498 	if (rdev->constraints &&
1499 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1500 		drms_uA_update(rdev);
1501 
1502 	if (rdev->use_count == 0) {
1503 		/* The regulator may on if it's not switchable or left on */
1504 		ret = _regulator_is_enabled(rdev);
1505 		if (ret == -EINVAL || ret == 0) {
1506 			if (!_regulator_can_change_status(rdev))
1507 				return -EPERM;
1508 
1509 			ret = _regulator_do_enable(rdev);
1510 			if (ret < 0)
1511 				return ret;
1512 
1513 		} else if (ret < 0) {
1514 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1515 			return ret;
1516 		}
1517 		/* Fallthrough on positive return values - already enabled */
1518 	}
1519 
1520 	rdev->use_count++;
1521 
1522 	return 0;
1523 }
1524 
1525 /**
1526  * regulator_enable - enable regulator output
1527  * @regulator: regulator source
1528  *
1529  * Request that the regulator be enabled with the regulator output at
1530  * the predefined voltage or current value.  Calls to regulator_enable()
1531  * must be balanced with calls to regulator_disable().
1532  *
1533  * NOTE: the output value can be set by other drivers, boot loader or may be
1534  * hardwired in the regulator.
1535  */
1536 int regulator_enable(struct regulator *regulator)
1537 {
1538 	struct regulator_dev *rdev = regulator->rdev;
1539 	int ret = 0;
1540 
1541 	if (regulator->always_on)
1542 		return 0;
1543 
1544 	if (rdev->supply) {
1545 		ret = regulator_enable(rdev->supply);
1546 		if (ret != 0)
1547 			return ret;
1548 	}
1549 
1550 	mutex_lock(&rdev->mutex);
1551 	ret = _regulator_enable(rdev);
1552 	mutex_unlock(&rdev->mutex);
1553 
1554 	if (ret != 0 && rdev->supply)
1555 		regulator_disable(rdev->supply);
1556 
1557 	return ret;
1558 }
1559 EXPORT_SYMBOL_GPL(regulator_enable);
1560 
1561 static int _regulator_do_disable(struct regulator_dev *rdev)
1562 {
1563 	int ret;
1564 
1565 	trace_regulator_disable(rdev_get_name(rdev));
1566 
1567 	if (rdev->ena_gpio) {
1568 		gpio_set_value_cansleep(rdev->ena_gpio,
1569 					rdev->ena_gpio_invert);
1570 		rdev->ena_gpio_state = 0;
1571 
1572 	} else if (rdev->desc->ops->disable) {
1573 		ret = rdev->desc->ops->disable(rdev);
1574 		if (ret != 0)
1575 			return ret;
1576 	}
1577 
1578 	trace_regulator_disable_complete(rdev_get_name(rdev));
1579 
1580 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1581 			     NULL);
1582 	return 0;
1583 }
1584 
1585 /* locks held by regulator_disable() */
1586 static int _regulator_disable(struct regulator_dev *rdev)
1587 {
1588 	int ret = 0;
1589 
1590 	if (WARN(rdev->use_count <= 0,
1591 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1592 		return -EIO;
1593 
1594 	/* are we the last user and permitted to disable ? */
1595 	if (rdev->use_count == 1 &&
1596 	    (rdev->constraints && !rdev->constraints->always_on)) {
1597 
1598 		/* we are last user */
1599 		if (_regulator_can_change_status(rdev)) {
1600 			ret = _regulator_do_disable(rdev);
1601 			if (ret < 0) {
1602 				rdev_err(rdev, "failed to disable\n");
1603 				return ret;
1604 			}
1605 		}
1606 
1607 		rdev->use_count = 0;
1608 	} else if (rdev->use_count > 1) {
1609 
1610 		if (rdev->constraints &&
1611 			(rdev->constraints->valid_ops_mask &
1612 			REGULATOR_CHANGE_DRMS))
1613 			drms_uA_update(rdev);
1614 
1615 		rdev->use_count--;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 /**
1622  * regulator_disable - disable regulator output
1623  * @regulator: regulator source
1624  *
1625  * Disable the regulator output voltage or current.  Calls to
1626  * regulator_enable() must be balanced with calls to
1627  * regulator_disable().
1628  *
1629  * NOTE: this will only disable the regulator output if no other consumer
1630  * devices have it enabled, the regulator device supports disabling and
1631  * machine constraints permit this operation.
1632  */
1633 int regulator_disable(struct regulator *regulator)
1634 {
1635 	struct regulator_dev *rdev = regulator->rdev;
1636 	int ret = 0;
1637 
1638 	if (regulator->always_on)
1639 		return 0;
1640 
1641 	mutex_lock(&rdev->mutex);
1642 	ret = _regulator_disable(rdev);
1643 	mutex_unlock(&rdev->mutex);
1644 
1645 	if (ret == 0 && rdev->supply)
1646 		regulator_disable(rdev->supply);
1647 
1648 	return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(regulator_disable);
1651 
1652 /* locks held by regulator_force_disable() */
1653 static int _regulator_force_disable(struct regulator_dev *rdev)
1654 {
1655 	int ret = 0;
1656 
1657 	/* force disable */
1658 	if (rdev->desc->ops->disable) {
1659 		/* ah well, who wants to live forever... */
1660 		ret = rdev->desc->ops->disable(rdev);
1661 		if (ret < 0) {
1662 			rdev_err(rdev, "failed to force disable\n");
1663 			return ret;
1664 		}
1665 		/* notify other consumers that power has been forced off */
1666 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1667 			REGULATOR_EVENT_DISABLE, NULL);
1668 	}
1669 
1670 	return ret;
1671 }
1672 
1673 /**
1674  * regulator_force_disable - force disable regulator output
1675  * @regulator: regulator source
1676  *
1677  * Forcibly disable the regulator output voltage or current.
1678  * NOTE: this *will* disable the regulator output even if other consumer
1679  * devices have it enabled. This should be used for situations when device
1680  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1681  */
1682 int regulator_force_disable(struct regulator *regulator)
1683 {
1684 	struct regulator_dev *rdev = regulator->rdev;
1685 	int ret;
1686 
1687 	mutex_lock(&rdev->mutex);
1688 	regulator->uA_load = 0;
1689 	ret = _regulator_force_disable(regulator->rdev);
1690 	mutex_unlock(&rdev->mutex);
1691 
1692 	if (rdev->supply)
1693 		while (rdev->open_count--)
1694 			regulator_disable(rdev->supply);
1695 
1696 	return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_force_disable);
1699 
1700 static void regulator_disable_work(struct work_struct *work)
1701 {
1702 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1703 						  disable_work.work);
1704 	int count, i, ret;
1705 
1706 	mutex_lock(&rdev->mutex);
1707 
1708 	BUG_ON(!rdev->deferred_disables);
1709 
1710 	count = rdev->deferred_disables;
1711 	rdev->deferred_disables = 0;
1712 
1713 	for (i = 0; i < count; i++) {
1714 		ret = _regulator_disable(rdev);
1715 		if (ret != 0)
1716 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1717 	}
1718 
1719 	mutex_unlock(&rdev->mutex);
1720 
1721 	if (rdev->supply) {
1722 		for (i = 0; i < count; i++) {
1723 			ret = regulator_disable(rdev->supply);
1724 			if (ret != 0) {
1725 				rdev_err(rdev,
1726 					 "Supply disable failed: %d\n", ret);
1727 			}
1728 		}
1729 	}
1730 }
1731 
1732 /**
1733  * regulator_disable_deferred - disable regulator output with delay
1734  * @regulator: regulator source
1735  * @ms: miliseconds until the regulator is disabled
1736  *
1737  * Execute regulator_disable() on the regulator after a delay.  This
1738  * is intended for use with devices that require some time to quiesce.
1739  *
1740  * NOTE: this will only disable the regulator output if no other consumer
1741  * devices have it enabled, the regulator device supports disabling and
1742  * machine constraints permit this operation.
1743  */
1744 int regulator_disable_deferred(struct regulator *regulator, int ms)
1745 {
1746 	struct regulator_dev *rdev = regulator->rdev;
1747 	int ret;
1748 
1749 	if (regulator->always_on)
1750 		return 0;
1751 
1752 	if (!ms)
1753 		return regulator_disable(regulator);
1754 
1755 	mutex_lock(&rdev->mutex);
1756 	rdev->deferred_disables++;
1757 	mutex_unlock(&rdev->mutex);
1758 
1759 	ret = schedule_delayed_work(&rdev->disable_work,
1760 				    msecs_to_jiffies(ms));
1761 	if (ret < 0)
1762 		return ret;
1763 	else
1764 		return 0;
1765 }
1766 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1767 
1768 /**
1769  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1770  *
1771  * @rdev: regulator to operate on
1772  *
1773  * Regulators that use regmap for their register I/O can set the
1774  * enable_reg and enable_mask fields in their descriptor and then use
1775  * this as their is_enabled operation, saving some code.
1776  */
1777 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1778 {
1779 	unsigned int val;
1780 	int ret;
1781 
1782 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1783 	if (ret != 0)
1784 		return ret;
1785 
1786 	return (val & rdev->desc->enable_mask) != 0;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1789 
1790 /**
1791  * regulator_enable_regmap - standard enable() for regmap users
1792  *
1793  * @rdev: regulator to operate on
1794  *
1795  * Regulators that use regmap for their register I/O can set the
1796  * enable_reg and enable_mask fields in their descriptor and then use
1797  * this as their enable() operation, saving some code.
1798  */
1799 int regulator_enable_regmap(struct regulator_dev *rdev)
1800 {
1801 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1802 				  rdev->desc->enable_mask,
1803 				  rdev->desc->enable_mask);
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1806 
1807 /**
1808  * regulator_disable_regmap - standard disable() for regmap users
1809  *
1810  * @rdev: regulator to operate on
1811  *
1812  * Regulators that use regmap for their register I/O can set the
1813  * enable_reg and enable_mask fields in their descriptor and then use
1814  * this as their disable() operation, saving some code.
1815  */
1816 int regulator_disable_regmap(struct regulator_dev *rdev)
1817 {
1818 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1819 				  rdev->desc->enable_mask, 0);
1820 }
1821 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1822 
1823 static int _regulator_is_enabled(struct regulator_dev *rdev)
1824 {
1825 	/* A GPIO control always takes precedence */
1826 	if (rdev->ena_gpio)
1827 		return rdev->ena_gpio_state;
1828 
1829 	/* If we don't know then assume that the regulator is always on */
1830 	if (!rdev->desc->ops->is_enabled)
1831 		return 1;
1832 
1833 	return rdev->desc->ops->is_enabled(rdev);
1834 }
1835 
1836 /**
1837  * regulator_is_enabled - is the regulator output enabled
1838  * @regulator: regulator source
1839  *
1840  * Returns positive if the regulator driver backing the source/client
1841  * has requested that the device be enabled, zero if it hasn't, else a
1842  * negative errno code.
1843  *
1844  * Note that the device backing this regulator handle can have multiple
1845  * users, so it might be enabled even if regulator_enable() was never
1846  * called for this particular source.
1847  */
1848 int regulator_is_enabled(struct regulator *regulator)
1849 {
1850 	int ret;
1851 
1852 	if (regulator->always_on)
1853 		return 1;
1854 
1855 	mutex_lock(&regulator->rdev->mutex);
1856 	ret = _regulator_is_enabled(regulator->rdev);
1857 	mutex_unlock(&regulator->rdev->mutex);
1858 
1859 	return ret;
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1862 
1863 /**
1864  * regulator_count_voltages - count regulator_list_voltage() selectors
1865  * @regulator: regulator source
1866  *
1867  * Returns number of selectors, or negative errno.  Selectors are
1868  * numbered starting at zero, and typically correspond to bitfields
1869  * in hardware registers.
1870  */
1871 int regulator_count_voltages(struct regulator *regulator)
1872 {
1873 	struct regulator_dev	*rdev = regulator->rdev;
1874 
1875 	return rdev->desc->n_voltages ? : -EINVAL;
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1878 
1879 /**
1880  * regulator_list_voltage_linear - List voltages with simple calculation
1881  *
1882  * @rdev: Regulator device
1883  * @selector: Selector to convert into a voltage
1884  *
1885  * Regulators with a simple linear mapping between voltages and
1886  * selectors can set min_uV and uV_step in the regulator descriptor
1887  * and then use this function as their list_voltage() operation,
1888  */
1889 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1890 				  unsigned int selector)
1891 {
1892 	if (selector >= rdev->desc->n_voltages)
1893 		return -EINVAL;
1894 
1895 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1896 }
1897 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1898 
1899 /**
1900  * regulator_list_voltage_table - List voltages with table based mapping
1901  *
1902  * @rdev: Regulator device
1903  * @selector: Selector to convert into a voltage
1904  *
1905  * Regulators with table based mapping between voltages and
1906  * selectors can set volt_table in the regulator descriptor
1907  * and then use this function as their list_voltage() operation.
1908  */
1909 int regulator_list_voltage_table(struct regulator_dev *rdev,
1910 				 unsigned int selector)
1911 {
1912 	if (!rdev->desc->volt_table) {
1913 		BUG_ON(!rdev->desc->volt_table);
1914 		return -EINVAL;
1915 	}
1916 
1917 	if (selector >= rdev->desc->n_voltages)
1918 		return -EINVAL;
1919 
1920 	return rdev->desc->volt_table[selector];
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1923 
1924 /**
1925  * regulator_list_voltage - enumerate supported voltages
1926  * @regulator: regulator source
1927  * @selector: identify voltage to list
1928  * Context: can sleep
1929  *
1930  * Returns a voltage that can be passed to @regulator_set_voltage(),
1931  * zero if this selector code can't be used on this system, or a
1932  * negative errno.
1933  */
1934 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1935 {
1936 	struct regulator_dev	*rdev = regulator->rdev;
1937 	struct regulator_ops	*ops = rdev->desc->ops;
1938 	int			ret;
1939 
1940 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1941 		return -EINVAL;
1942 
1943 	mutex_lock(&rdev->mutex);
1944 	ret = ops->list_voltage(rdev, selector);
1945 	mutex_unlock(&rdev->mutex);
1946 
1947 	if (ret > 0) {
1948 		if (ret < rdev->constraints->min_uV)
1949 			ret = 0;
1950 		else if (ret > rdev->constraints->max_uV)
1951 			ret = 0;
1952 	}
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1957 
1958 /**
1959  * regulator_is_supported_voltage - check if a voltage range can be supported
1960  *
1961  * @regulator: Regulator to check.
1962  * @min_uV: Minimum required voltage in uV.
1963  * @max_uV: Maximum required voltage in uV.
1964  *
1965  * Returns a boolean or a negative error code.
1966  */
1967 int regulator_is_supported_voltage(struct regulator *regulator,
1968 				   int min_uV, int max_uV)
1969 {
1970 	struct regulator_dev *rdev = regulator->rdev;
1971 	int i, voltages, ret;
1972 
1973 	/* If we can't change voltage check the current voltage */
1974 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1975 		ret = regulator_get_voltage(regulator);
1976 		if (ret >= 0)
1977 			return (min_uV >= ret && ret <= max_uV);
1978 		else
1979 			return ret;
1980 	}
1981 
1982 	ret = regulator_count_voltages(regulator);
1983 	if (ret < 0)
1984 		return ret;
1985 	voltages = ret;
1986 
1987 	for (i = 0; i < voltages; i++) {
1988 		ret = regulator_list_voltage(regulator, i);
1989 
1990 		if (ret >= min_uV && ret <= max_uV)
1991 			return 1;
1992 	}
1993 
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1997 
1998 /**
1999  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2000  *
2001  * @rdev: regulator to operate on
2002  *
2003  * Regulators that use regmap for their register I/O can set the
2004  * vsel_reg and vsel_mask fields in their descriptor and then use this
2005  * as their get_voltage_vsel operation, saving some code.
2006  */
2007 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2008 {
2009 	unsigned int val;
2010 	int ret;
2011 
2012 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2013 	if (ret != 0)
2014 		return ret;
2015 
2016 	val &= rdev->desc->vsel_mask;
2017 	val >>= ffs(rdev->desc->vsel_mask) - 1;
2018 
2019 	return val;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2022 
2023 /**
2024  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2025  *
2026  * @rdev: regulator to operate on
2027  * @sel: Selector to set
2028  *
2029  * Regulators that use regmap for their register I/O can set the
2030  * vsel_reg and vsel_mask fields in their descriptor and then use this
2031  * as their set_voltage_vsel operation, saving some code.
2032  */
2033 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2034 {
2035 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2036 
2037 	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2038 				  rdev->desc->vsel_mask, sel);
2039 }
2040 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2041 
2042 /**
2043  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2044  *
2045  * @rdev: Regulator to operate on
2046  * @min_uV: Lower bound for voltage
2047  * @max_uV: Upper bound for voltage
2048  *
2049  * Drivers implementing set_voltage_sel() and list_voltage() can use
2050  * this as their map_voltage() operation.  It will find a suitable
2051  * voltage by calling list_voltage() until it gets something in bounds
2052  * for the requested voltages.
2053  */
2054 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2055 				  int min_uV, int max_uV)
2056 {
2057 	int best_val = INT_MAX;
2058 	int selector = 0;
2059 	int i, ret;
2060 
2061 	/* Find the smallest voltage that falls within the specified
2062 	 * range.
2063 	 */
2064 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2065 		ret = rdev->desc->ops->list_voltage(rdev, i);
2066 		if (ret < 0)
2067 			continue;
2068 
2069 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2070 			best_val = ret;
2071 			selector = i;
2072 		}
2073 	}
2074 
2075 	if (best_val != INT_MAX)
2076 		return selector;
2077 	else
2078 		return -EINVAL;
2079 }
2080 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2081 
2082 /**
2083  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2084  *
2085  * @rdev: Regulator to operate on
2086  * @min_uV: Lower bound for voltage
2087  * @max_uV: Upper bound for voltage
2088  *
2089  * Drivers providing min_uV and uV_step in their regulator_desc can
2090  * use this as their map_voltage() operation.
2091  */
2092 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2093 				 int min_uV, int max_uV)
2094 {
2095 	int ret, voltage;
2096 
2097 	/* Allow uV_step to be 0 for fixed voltage */
2098 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2099 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2100 			return 0;
2101 		else
2102 			return -EINVAL;
2103 	}
2104 
2105 	if (!rdev->desc->uV_step) {
2106 		BUG_ON(!rdev->desc->uV_step);
2107 		return -EINVAL;
2108 	}
2109 
2110 	if (min_uV < rdev->desc->min_uV)
2111 		min_uV = rdev->desc->min_uV;
2112 
2113 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2114 	if (ret < 0)
2115 		return ret;
2116 
2117 	/* Map back into a voltage to verify we're still in bounds */
2118 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2119 	if (voltage < min_uV || voltage > max_uV)
2120 		return -EINVAL;
2121 
2122 	return ret;
2123 }
2124 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2125 
2126 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2127 				     int min_uV, int max_uV)
2128 {
2129 	int ret;
2130 	int delay = 0;
2131 	int best_val = 0;
2132 	unsigned int selector;
2133 	int old_selector = -1;
2134 
2135 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2136 
2137 	min_uV += rdev->constraints->uV_offset;
2138 	max_uV += rdev->constraints->uV_offset;
2139 
2140 	/*
2141 	 * If we can't obtain the old selector there is not enough
2142 	 * info to call set_voltage_time_sel().
2143 	 */
2144 	if (_regulator_is_enabled(rdev) &&
2145 	    rdev->desc->ops->set_voltage_time_sel &&
2146 	    rdev->desc->ops->get_voltage_sel) {
2147 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2148 		if (old_selector < 0)
2149 			return old_selector;
2150 	}
2151 
2152 	if (rdev->desc->ops->set_voltage) {
2153 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2154 						   &selector);
2155 
2156 		if (ret >= 0) {
2157 			if (rdev->desc->ops->list_voltage)
2158 				best_val = rdev->desc->ops->list_voltage(rdev,
2159 									 selector);
2160 			else
2161 				best_val = _regulator_get_voltage(rdev);
2162 		}
2163 
2164 	} else if (rdev->desc->ops->set_voltage_sel) {
2165 		if (rdev->desc->ops->map_voltage) {
2166 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2167 							   max_uV);
2168 		} else {
2169 			if (rdev->desc->ops->list_voltage ==
2170 			    regulator_list_voltage_linear)
2171 				ret = regulator_map_voltage_linear(rdev,
2172 								min_uV, max_uV);
2173 			else
2174 				ret = regulator_map_voltage_iterate(rdev,
2175 								min_uV, max_uV);
2176 		}
2177 
2178 		if (ret >= 0) {
2179 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2180 			if (min_uV <= best_val && max_uV >= best_val) {
2181 				selector = ret;
2182 				ret = rdev->desc->ops->set_voltage_sel(rdev,
2183 								       ret);
2184 			} else {
2185 				ret = -EINVAL;
2186 			}
2187 		}
2188 	} else {
2189 		ret = -EINVAL;
2190 	}
2191 
2192 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2193 	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2194 	    rdev->desc->ops->set_voltage_time_sel) {
2195 
2196 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2197 						old_selector, selector);
2198 		if (delay < 0) {
2199 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2200 				  delay);
2201 			delay = 0;
2202 		}
2203 
2204 		/* Insert any necessary delays */
2205 		if (delay >= 1000) {
2206 			mdelay(delay / 1000);
2207 			udelay(delay % 1000);
2208 		} else if (delay) {
2209 			udelay(delay);
2210 		}
2211 	}
2212 
2213 	if (ret == 0 && best_val >= 0) {
2214 		unsigned long data = best_val;
2215 
2216 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2217 				     (void *)data);
2218 	}
2219 
2220 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2221 
2222 	return ret;
2223 }
2224 
2225 /**
2226  * regulator_set_voltage - set regulator output voltage
2227  * @regulator: regulator source
2228  * @min_uV: Minimum required voltage in uV
2229  * @max_uV: Maximum acceptable voltage in uV
2230  *
2231  * Sets a voltage regulator to the desired output voltage. This can be set
2232  * during any regulator state. IOW, regulator can be disabled or enabled.
2233  *
2234  * If the regulator is enabled then the voltage will change to the new value
2235  * immediately otherwise if the regulator is disabled the regulator will
2236  * output at the new voltage when enabled.
2237  *
2238  * NOTE: If the regulator is shared between several devices then the lowest
2239  * request voltage that meets the system constraints will be used.
2240  * Regulator system constraints must be set for this regulator before
2241  * calling this function otherwise this call will fail.
2242  */
2243 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2244 {
2245 	struct regulator_dev *rdev = regulator->rdev;
2246 	int ret = 0;
2247 
2248 	mutex_lock(&rdev->mutex);
2249 
2250 	/* If we're setting the same range as last time the change
2251 	 * should be a noop (some cpufreq implementations use the same
2252 	 * voltage for multiple frequencies, for example).
2253 	 */
2254 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2255 		goto out;
2256 
2257 	/* sanity check */
2258 	if (!rdev->desc->ops->set_voltage &&
2259 	    !rdev->desc->ops->set_voltage_sel) {
2260 		ret = -EINVAL;
2261 		goto out;
2262 	}
2263 
2264 	/* constraints check */
2265 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2266 	if (ret < 0)
2267 		goto out;
2268 	regulator->min_uV = min_uV;
2269 	regulator->max_uV = max_uV;
2270 
2271 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2272 	if (ret < 0)
2273 		goto out;
2274 
2275 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2276 
2277 out:
2278 	mutex_unlock(&rdev->mutex);
2279 	return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2282 
2283 /**
2284  * regulator_set_voltage_time - get raise/fall time
2285  * @regulator: regulator source
2286  * @old_uV: starting voltage in microvolts
2287  * @new_uV: target voltage in microvolts
2288  *
2289  * Provided with the starting and ending voltage, this function attempts to
2290  * calculate the time in microseconds required to rise or fall to this new
2291  * voltage.
2292  */
2293 int regulator_set_voltage_time(struct regulator *regulator,
2294 			       int old_uV, int new_uV)
2295 {
2296 	struct regulator_dev	*rdev = regulator->rdev;
2297 	struct regulator_ops	*ops = rdev->desc->ops;
2298 	int old_sel = -1;
2299 	int new_sel = -1;
2300 	int voltage;
2301 	int i;
2302 
2303 	/* Currently requires operations to do this */
2304 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2305 	    || !rdev->desc->n_voltages)
2306 		return -EINVAL;
2307 
2308 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2309 		/* We only look for exact voltage matches here */
2310 		voltage = regulator_list_voltage(regulator, i);
2311 		if (voltage < 0)
2312 			return -EINVAL;
2313 		if (voltage == 0)
2314 			continue;
2315 		if (voltage == old_uV)
2316 			old_sel = i;
2317 		if (voltage == new_uV)
2318 			new_sel = i;
2319 	}
2320 
2321 	if (old_sel < 0 || new_sel < 0)
2322 		return -EINVAL;
2323 
2324 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2325 }
2326 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2327 
2328 /**
2329  * regulator_set_voltage_time_sel - get raise/fall time
2330  * @rdev: regulator source device
2331  * @old_selector: selector for starting voltage
2332  * @new_selector: selector for target voltage
2333  *
2334  * Provided with the starting and target voltage selectors, this function
2335  * returns time in microseconds required to rise or fall to this new voltage
2336  *
2337  * Drivers providing ramp_delay in regulation_constraints can use this as their
2338  * set_voltage_time_sel() operation.
2339  */
2340 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2341 				   unsigned int old_selector,
2342 				   unsigned int new_selector)
2343 {
2344 	unsigned int ramp_delay = 0;
2345 	int old_volt, new_volt;
2346 
2347 	if (rdev->constraints->ramp_delay)
2348 		ramp_delay = rdev->constraints->ramp_delay;
2349 	else if (rdev->desc->ramp_delay)
2350 		ramp_delay = rdev->desc->ramp_delay;
2351 
2352 	if (ramp_delay == 0) {
2353 		rdev_warn(rdev, "ramp_delay not set\n");
2354 		return 0;
2355 	}
2356 
2357 	/* sanity check */
2358 	if (!rdev->desc->ops->list_voltage)
2359 		return -EINVAL;
2360 
2361 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2362 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2363 
2364 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2365 }
2366 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2367 
2368 /**
2369  * regulator_sync_voltage - re-apply last regulator output voltage
2370  * @regulator: regulator source
2371  *
2372  * Re-apply the last configured voltage.  This is intended to be used
2373  * where some external control source the consumer is cooperating with
2374  * has caused the configured voltage to change.
2375  */
2376 int regulator_sync_voltage(struct regulator *regulator)
2377 {
2378 	struct regulator_dev *rdev = regulator->rdev;
2379 	int ret, min_uV, max_uV;
2380 
2381 	mutex_lock(&rdev->mutex);
2382 
2383 	if (!rdev->desc->ops->set_voltage &&
2384 	    !rdev->desc->ops->set_voltage_sel) {
2385 		ret = -EINVAL;
2386 		goto out;
2387 	}
2388 
2389 	/* This is only going to work if we've had a voltage configured. */
2390 	if (!regulator->min_uV && !regulator->max_uV) {
2391 		ret = -EINVAL;
2392 		goto out;
2393 	}
2394 
2395 	min_uV = regulator->min_uV;
2396 	max_uV = regulator->max_uV;
2397 
2398 	/* This should be a paranoia check... */
2399 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2400 	if (ret < 0)
2401 		goto out;
2402 
2403 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2404 	if (ret < 0)
2405 		goto out;
2406 
2407 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2408 
2409 out:
2410 	mutex_unlock(&rdev->mutex);
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2414 
2415 static int _regulator_get_voltage(struct regulator_dev *rdev)
2416 {
2417 	int sel, ret;
2418 
2419 	if (rdev->desc->ops->get_voltage_sel) {
2420 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2421 		if (sel < 0)
2422 			return sel;
2423 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2424 	} else if (rdev->desc->ops->get_voltage) {
2425 		ret = rdev->desc->ops->get_voltage(rdev);
2426 	} else if (rdev->desc->ops->list_voltage) {
2427 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2428 	} else {
2429 		return -EINVAL;
2430 	}
2431 
2432 	if (ret < 0)
2433 		return ret;
2434 	return ret - rdev->constraints->uV_offset;
2435 }
2436 
2437 /**
2438  * regulator_get_voltage - get regulator output voltage
2439  * @regulator: regulator source
2440  *
2441  * This returns the current regulator voltage in uV.
2442  *
2443  * NOTE: If the regulator is disabled it will return the voltage value. This
2444  * function should not be used to determine regulator state.
2445  */
2446 int regulator_get_voltage(struct regulator *regulator)
2447 {
2448 	int ret;
2449 
2450 	mutex_lock(&regulator->rdev->mutex);
2451 
2452 	ret = _regulator_get_voltage(regulator->rdev);
2453 
2454 	mutex_unlock(&regulator->rdev->mutex);
2455 
2456 	return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2459 
2460 /**
2461  * regulator_set_current_limit - set regulator output current limit
2462  * @regulator: regulator source
2463  * @min_uA: Minimuum supported current in uA
2464  * @max_uA: Maximum supported current in uA
2465  *
2466  * Sets current sink to the desired output current. This can be set during
2467  * any regulator state. IOW, regulator can be disabled or enabled.
2468  *
2469  * If the regulator is enabled then the current will change to the new value
2470  * immediately otherwise if the regulator is disabled the regulator will
2471  * output at the new current when enabled.
2472  *
2473  * NOTE: Regulator system constraints must be set for this regulator before
2474  * calling this function otherwise this call will fail.
2475  */
2476 int regulator_set_current_limit(struct regulator *regulator,
2477 			       int min_uA, int max_uA)
2478 {
2479 	struct regulator_dev *rdev = regulator->rdev;
2480 	int ret;
2481 
2482 	mutex_lock(&rdev->mutex);
2483 
2484 	/* sanity check */
2485 	if (!rdev->desc->ops->set_current_limit) {
2486 		ret = -EINVAL;
2487 		goto out;
2488 	}
2489 
2490 	/* constraints check */
2491 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2492 	if (ret < 0)
2493 		goto out;
2494 
2495 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2496 out:
2497 	mutex_unlock(&rdev->mutex);
2498 	return ret;
2499 }
2500 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2501 
2502 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2503 {
2504 	int ret;
2505 
2506 	mutex_lock(&rdev->mutex);
2507 
2508 	/* sanity check */
2509 	if (!rdev->desc->ops->get_current_limit) {
2510 		ret = -EINVAL;
2511 		goto out;
2512 	}
2513 
2514 	ret = rdev->desc->ops->get_current_limit(rdev);
2515 out:
2516 	mutex_unlock(&rdev->mutex);
2517 	return ret;
2518 }
2519 
2520 /**
2521  * regulator_get_current_limit - get regulator output current
2522  * @regulator: regulator source
2523  *
2524  * This returns the current supplied by the specified current sink in uA.
2525  *
2526  * NOTE: If the regulator is disabled it will return the current value. This
2527  * function should not be used to determine regulator state.
2528  */
2529 int regulator_get_current_limit(struct regulator *regulator)
2530 {
2531 	return _regulator_get_current_limit(regulator->rdev);
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2534 
2535 /**
2536  * regulator_set_mode - set regulator operating mode
2537  * @regulator: regulator source
2538  * @mode: operating mode - one of the REGULATOR_MODE constants
2539  *
2540  * Set regulator operating mode to increase regulator efficiency or improve
2541  * regulation performance.
2542  *
2543  * NOTE: Regulator system constraints must be set for this regulator before
2544  * calling this function otherwise this call will fail.
2545  */
2546 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2547 {
2548 	struct regulator_dev *rdev = regulator->rdev;
2549 	int ret;
2550 	int regulator_curr_mode;
2551 
2552 	mutex_lock(&rdev->mutex);
2553 
2554 	/* sanity check */
2555 	if (!rdev->desc->ops->set_mode) {
2556 		ret = -EINVAL;
2557 		goto out;
2558 	}
2559 
2560 	/* return if the same mode is requested */
2561 	if (rdev->desc->ops->get_mode) {
2562 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2563 		if (regulator_curr_mode == mode) {
2564 			ret = 0;
2565 			goto out;
2566 		}
2567 	}
2568 
2569 	/* constraints check */
2570 	ret = regulator_mode_constrain(rdev, &mode);
2571 	if (ret < 0)
2572 		goto out;
2573 
2574 	ret = rdev->desc->ops->set_mode(rdev, mode);
2575 out:
2576 	mutex_unlock(&rdev->mutex);
2577 	return ret;
2578 }
2579 EXPORT_SYMBOL_GPL(regulator_set_mode);
2580 
2581 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2582 {
2583 	int ret;
2584 
2585 	mutex_lock(&rdev->mutex);
2586 
2587 	/* sanity check */
2588 	if (!rdev->desc->ops->get_mode) {
2589 		ret = -EINVAL;
2590 		goto out;
2591 	}
2592 
2593 	ret = rdev->desc->ops->get_mode(rdev);
2594 out:
2595 	mutex_unlock(&rdev->mutex);
2596 	return ret;
2597 }
2598 
2599 /**
2600  * regulator_get_mode - get regulator operating mode
2601  * @regulator: regulator source
2602  *
2603  * Get the current regulator operating mode.
2604  */
2605 unsigned int regulator_get_mode(struct regulator *regulator)
2606 {
2607 	return _regulator_get_mode(regulator->rdev);
2608 }
2609 EXPORT_SYMBOL_GPL(regulator_get_mode);
2610 
2611 /**
2612  * regulator_set_optimum_mode - set regulator optimum operating mode
2613  * @regulator: regulator source
2614  * @uA_load: load current
2615  *
2616  * Notifies the regulator core of a new device load. This is then used by
2617  * DRMS (if enabled by constraints) to set the most efficient regulator
2618  * operating mode for the new regulator loading.
2619  *
2620  * Consumer devices notify their supply regulator of the maximum power
2621  * they will require (can be taken from device datasheet in the power
2622  * consumption tables) when they change operational status and hence power
2623  * state. Examples of operational state changes that can affect power
2624  * consumption are :-
2625  *
2626  *    o Device is opened / closed.
2627  *    o Device I/O is about to begin or has just finished.
2628  *    o Device is idling in between work.
2629  *
2630  * This information is also exported via sysfs to userspace.
2631  *
2632  * DRMS will sum the total requested load on the regulator and change
2633  * to the most efficient operating mode if platform constraints allow.
2634  *
2635  * Returns the new regulator mode or error.
2636  */
2637 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2638 {
2639 	struct regulator_dev *rdev = regulator->rdev;
2640 	struct regulator *consumer;
2641 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2642 	unsigned int mode;
2643 
2644 	if (rdev->supply)
2645 		input_uV = regulator_get_voltage(rdev->supply);
2646 
2647 	mutex_lock(&rdev->mutex);
2648 
2649 	/*
2650 	 * first check to see if we can set modes at all, otherwise just
2651 	 * tell the consumer everything is OK.
2652 	 */
2653 	regulator->uA_load = uA_load;
2654 	ret = regulator_check_drms(rdev);
2655 	if (ret < 0) {
2656 		ret = 0;
2657 		goto out;
2658 	}
2659 
2660 	if (!rdev->desc->ops->get_optimum_mode)
2661 		goto out;
2662 
2663 	/*
2664 	 * we can actually do this so any errors are indicators of
2665 	 * potential real failure.
2666 	 */
2667 	ret = -EINVAL;
2668 
2669 	if (!rdev->desc->ops->set_mode)
2670 		goto out;
2671 
2672 	/* get output voltage */
2673 	output_uV = _regulator_get_voltage(rdev);
2674 	if (output_uV <= 0) {
2675 		rdev_err(rdev, "invalid output voltage found\n");
2676 		goto out;
2677 	}
2678 
2679 	/* No supply? Use constraint voltage */
2680 	if (input_uV <= 0)
2681 		input_uV = rdev->constraints->input_uV;
2682 	if (input_uV <= 0) {
2683 		rdev_err(rdev, "invalid input voltage found\n");
2684 		goto out;
2685 	}
2686 
2687 	/* calc total requested load for this regulator */
2688 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2689 		total_uA_load += consumer->uA_load;
2690 
2691 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2692 						 input_uV, output_uV,
2693 						 total_uA_load);
2694 	ret = regulator_mode_constrain(rdev, &mode);
2695 	if (ret < 0) {
2696 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2697 			 total_uA_load, input_uV, output_uV);
2698 		goto out;
2699 	}
2700 
2701 	ret = rdev->desc->ops->set_mode(rdev, mode);
2702 	if (ret < 0) {
2703 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2704 		goto out;
2705 	}
2706 	ret = mode;
2707 out:
2708 	mutex_unlock(&rdev->mutex);
2709 	return ret;
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2712 
2713 /**
2714  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2715  *
2716  * @rdev: device to operate on.
2717  * @enable: state to set.
2718  */
2719 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2720 {
2721 	unsigned int val;
2722 
2723 	if (enable)
2724 		val = rdev->desc->bypass_mask;
2725 	else
2726 		val = 0;
2727 
2728 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2729 				  rdev->desc->bypass_mask, val);
2730 }
2731 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2732 
2733 /**
2734  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2735  *
2736  * @rdev: device to operate on.
2737  * @enable: current state.
2738  */
2739 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2740 {
2741 	unsigned int val;
2742 	int ret;
2743 
2744 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2745 	if (ret != 0)
2746 		return ret;
2747 
2748 	*enable = val & rdev->desc->bypass_mask;
2749 
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2753 
2754 /**
2755  * regulator_allow_bypass - allow the regulator to go into bypass mode
2756  *
2757  * @regulator: Regulator to configure
2758  * @allow: enable or disable bypass mode
2759  *
2760  * Allow the regulator to go into bypass mode if all other consumers
2761  * for the regulator also enable bypass mode and the machine
2762  * constraints allow this.  Bypass mode means that the regulator is
2763  * simply passing the input directly to the output with no regulation.
2764  */
2765 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2766 {
2767 	struct regulator_dev *rdev = regulator->rdev;
2768 	int ret = 0;
2769 
2770 	if (!rdev->desc->ops->set_bypass)
2771 		return 0;
2772 
2773 	if (rdev->constraints &&
2774 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2775 		return 0;
2776 
2777 	mutex_lock(&rdev->mutex);
2778 
2779 	if (enable && !regulator->bypass) {
2780 		rdev->bypass_count++;
2781 
2782 		if (rdev->bypass_count == rdev->open_count) {
2783 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2784 			if (ret != 0)
2785 				rdev->bypass_count--;
2786 		}
2787 
2788 	} else if (!enable && regulator->bypass) {
2789 		rdev->bypass_count--;
2790 
2791 		if (rdev->bypass_count != rdev->open_count) {
2792 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2793 			if (ret != 0)
2794 				rdev->bypass_count++;
2795 		}
2796 	}
2797 
2798 	if (ret == 0)
2799 		regulator->bypass = enable;
2800 
2801 	mutex_unlock(&rdev->mutex);
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2806 
2807 /**
2808  * regulator_register_notifier - register regulator event notifier
2809  * @regulator: regulator source
2810  * @nb: notifier block
2811  *
2812  * Register notifier block to receive regulator events.
2813  */
2814 int regulator_register_notifier(struct regulator *regulator,
2815 			      struct notifier_block *nb)
2816 {
2817 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2818 						nb);
2819 }
2820 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2821 
2822 /**
2823  * regulator_unregister_notifier - unregister regulator event notifier
2824  * @regulator: regulator source
2825  * @nb: notifier block
2826  *
2827  * Unregister regulator event notifier block.
2828  */
2829 int regulator_unregister_notifier(struct regulator *regulator,
2830 				struct notifier_block *nb)
2831 {
2832 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2833 						  nb);
2834 }
2835 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2836 
2837 /* notify regulator consumers and downstream regulator consumers.
2838  * Note mutex must be held by caller.
2839  */
2840 static void _notifier_call_chain(struct regulator_dev *rdev,
2841 				  unsigned long event, void *data)
2842 {
2843 	/* call rdev chain first */
2844 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2845 }
2846 
2847 /**
2848  * regulator_bulk_get - get multiple regulator consumers
2849  *
2850  * @dev:           Device to supply
2851  * @num_consumers: Number of consumers to register
2852  * @consumers:     Configuration of consumers; clients are stored here.
2853  *
2854  * @return 0 on success, an errno on failure.
2855  *
2856  * This helper function allows drivers to get several regulator
2857  * consumers in one operation.  If any of the regulators cannot be
2858  * acquired then any regulators that were allocated will be freed
2859  * before returning to the caller.
2860  */
2861 int regulator_bulk_get(struct device *dev, int num_consumers,
2862 		       struct regulator_bulk_data *consumers)
2863 {
2864 	int i;
2865 	int ret;
2866 
2867 	for (i = 0; i < num_consumers; i++)
2868 		consumers[i].consumer = NULL;
2869 
2870 	for (i = 0; i < num_consumers; i++) {
2871 		consumers[i].consumer = regulator_get(dev,
2872 						      consumers[i].supply);
2873 		if (IS_ERR(consumers[i].consumer)) {
2874 			ret = PTR_ERR(consumers[i].consumer);
2875 			dev_err(dev, "Failed to get supply '%s': %d\n",
2876 				consumers[i].supply, ret);
2877 			consumers[i].consumer = NULL;
2878 			goto err;
2879 		}
2880 	}
2881 
2882 	return 0;
2883 
2884 err:
2885 	while (--i >= 0)
2886 		regulator_put(consumers[i].consumer);
2887 
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2891 
2892 /**
2893  * devm_regulator_bulk_get - managed get multiple regulator consumers
2894  *
2895  * @dev:           Device to supply
2896  * @num_consumers: Number of consumers to register
2897  * @consumers:     Configuration of consumers; clients are stored here.
2898  *
2899  * @return 0 on success, an errno on failure.
2900  *
2901  * This helper function allows drivers to get several regulator
2902  * consumers in one operation with management, the regulators will
2903  * automatically be freed when the device is unbound.  If any of the
2904  * regulators cannot be acquired then any regulators that were
2905  * allocated will be freed before returning to the caller.
2906  */
2907 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2908 			    struct regulator_bulk_data *consumers)
2909 {
2910 	int i;
2911 	int ret;
2912 
2913 	for (i = 0; i < num_consumers; i++)
2914 		consumers[i].consumer = NULL;
2915 
2916 	for (i = 0; i < num_consumers; i++) {
2917 		consumers[i].consumer = devm_regulator_get(dev,
2918 							   consumers[i].supply);
2919 		if (IS_ERR(consumers[i].consumer)) {
2920 			ret = PTR_ERR(consumers[i].consumer);
2921 			dev_err(dev, "Failed to get supply '%s': %d\n",
2922 				consumers[i].supply, ret);
2923 			consumers[i].consumer = NULL;
2924 			goto err;
2925 		}
2926 	}
2927 
2928 	return 0;
2929 
2930 err:
2931 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2932 		devm_regulator_put(consumers[i].consumer);
2933 
2934 	return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2937 
2938 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2939 {
2940 	struct regulator_bulk_data *bulk = data;
2941 
2942 	bulk->ret = regulator_enable(bulk->consumer);
2943 }
2944 
2945 /**
2946  * regulator_bulk_enable - enable multiple regulator consumers
2947  *
2948  * @num_consumers: Number of consumers
2949  * @consumers:     Consumer data; clients are stored here.
2950  * @return         0 on success, an errno on failure
2951  *
2952  * This convenience API allows consumers to enable multiple regulator
2953  * clients in a single API call.  If any consumers cannot be enabled
2954  * then any others that were enabled will be disabled again prior to
2955  * return.
2956  */
2957 int regulator_bulk_enable(int num_consumers,
2958 			  struct regulator_bulk_data *consumers)
2959 {
2960 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2961 	int i;
2962 	int ret = 0;
2963 
2964 	for (i = 0; i < num_consumers; i++) {
2965 		if (consumers[i].consumer->always_on)
2966 			consumers[i].ret = 0;
2967 		else
2968 			async_schedule_domain(regulator_bulk_enable_async,
2969 					      &consumers[i], &async_domain);
2970 	}
2971 
2972 	async_synchronize_full_domain(&async_domain);
2973 
2974 	/* If any consumer failed we need to unwind any that succeeded */
2975 	for (i = 0; i < num_consumers; i++) {
2976 		if (consumers[i].ret != 0) {
2977 			ret = consumers[i].ret;
2978 			goto err;
2979 		}
2980 	}
2981 
2982 	return 0;
2983 
2984 err:
2985 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2986 	while (--i >= 0)
2987 		regulator_disable(consumers[i].consumer);
2988 
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2992 
2993 /**
2994  * regulator_bulk_disable - disable multiple regulator consumers
2995  *
2996  * @num_consumers: Number of consumers
2997  * @consumers:     Consumer data; clients are stored here.
2998  * @return         0 on success, an errno on failure
2999  *
3000  * This convenience API allows consumers to disable multiple regulator
3001  * clients in a single API call.  If any consumers cannot be disabled
3002  * then any others that were disabled will be enabled again prior to
3003  * return.
3004  */
3005 int regulator_bulk_disable(int num_consumers,
3006 			   struct regulator_bulk_data *consumers)
3007 {
3008 	int i;
3009 	int ret, r;
3010 
3011 	for (i = num_consumers - 1; i >= 0; --i) {
3012 		ret = regulator_disable(consumers[i].consumer);
3013 		if (ret != 0)
3014 			goto err;
3015 	}
3016 
3017 	return 0;
3018 
3019 err:
3020 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3021 	for (++i; i < num_consumers; ++i) {
3022 		r = regulator_enable(consumers[i].consumer);
3023 		if (r != 0)
3024 			pr_err("Failed to reename %s: %d\n",
3025 			       consumers[i].supply, r);
3026 	}
3027 
3028 	return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3031 
3032 /**
3033  * regulator_bulk_force_disable - force disable multiple regulator consumers
3034  *
3035  * @num_consumers: Number of consumers
3036  * @consumers:     Consumer data; clients are stored here.
3037  * @return         0 on success, an errno on failure
3038  *
3039  * This convenience API allows consumers to forcibly disable multiple regulator
3040  * clients in a single API call.
3041  * NOTE: This should be used for situations when device damage will
3042  * likely occur if the regulators are not disabled (e.g. over temp).
3043  * Although regulator_force_disable function call for some consumers can
3044  * return error numbers, the function is called for all consumers.
3045  */
3046 int regulator_bulk_force_disable(int num_consumers,
3047 			   struct regulator_bulk_data *consumers)
3048 {
3049 	int i;
3050 	int ret;
3051 
3052 	for (i = 0; i < num_consumers; i++)
3053 		consumers[i].ret =
3054 			    regulator_force_disable(consumers[i].consumer);
3055 
3056 	for (i = 0; i < num_consumers; i++) {
3057 		if (consumers[i].ret != 0) {
3058 			ret = consumers[i].ret;
3059 			goto out;
3060 		}
3061 	}
3062 
3063 	return 0;
3064 out:
3065 	return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3068 
3069 /**
3070  * regulator_bulk_free - free multiple regulator consumers
3071  *
3072  * @num_consumers: Number of consumers
3073  * @consumers:     Consumer data; clients are stored here.
3074  *
3075  * This convenience API allows consumers to free multiple regulator
3076  * clients in a single API call.
3077  */
3078 void regulator_bulk_free(int num_consumers,
3079 			 struct regulator_bulk_data *consumers)
3080 {
3081 	int i;
3082 
3083 	for (i = 0; i < num_consumers; i++) {
3084 		regulator_put(consumers[i].consumer);
3085 		consumers[i].consumer = NULL;
3086 	}
3087 }
3088 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3089 
3090 /**
3091  * regulator_notifier_call_chain - call regulator event notifier
3092  * @rdev: regulator source
3093  * @event: notifier block
3094  * @data: callback-specific data.
3095  *
3096  * Called by regulator drivers to notify clients a regulator event has
3097  * occurred. We also notify regulator clients downstream.
3098  * Note lock must be held by caller.
3099  */
3100 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3101 				  unsigned long event, void *data)
3102 {
3103 	_notifier_call_chain(rdev, event, data);
3104 	return NOTIFY_DONE;
3105 
3106 }
3107 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3108 
3109 /**
3110  * regulator_mode_to_status - convert a regulator mode into a status
3111  *
3112  * @mode: Mode to convert
3113  *
3114  * Convert a regulator mode into a status.
3115  */
3116 int regulator_mode_to_status(unsigned int mode)
3117 {
3118 	switch (mode) {
3119 	case REGULATOR_MODE_FAST:
3120 		return REGULATOR_STATUS_FAST;
3121 	case REGULATOR_MODE_NORMAL:
3122 		return REGULATOR_STATUS_NORMAL;
3123 	case REGULATOR_MODE_IDLE:
3124 		return REGULATOR_STATUS_IDLE;
3125 	case REGULATOR_MODE_STANDBY:
3126 		return REGULATOR_STATUS_STANDBY;
3127 	default:
3128 		return REGULATOR_STATUS_UNDEFINED;
3129 	}
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3132 
3133 /*
3134  * To avoid cluttering sysfs (and memory) with useless state, only
3135  * create attributes that can be meaningfully displayed.
3136  */
3137 static int add_regulator_attributes(struct regulator_dev *rdev)
3138 {
3139 	struct device		*dev = &rdev->dev;
3140 	struct regulator_ops	*ops = rdev->desc->ops;
3141 	int			status = 0;
3142 
3143 	/* some attributes need specific methods to be displayed */
3144 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3145 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3146 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3147 		status = device_create_file(dev, &dev_attr_microvolts);
3148 		if (status < 0)
3149 			return status;
3150 	}
3151 	if (ops->get_current_limit) {
3152 		status = device_create_file(dev, &dev_attr_microamps);
3153 		if (status < 0)
3154 			return status;
3155 	}
3156 	if (ops->get_mode) {
3157 		status = device_create_file(dev, &dev_attr_opmode);
3158 		if (status < 0)
3159 			return status;
3160 	}
3161 	if (ops->is_enabled) {
3162 		status = device_create_file(dev, &dev_attr_state);
3163 		if (status < 0)
3164 			return status;
3165 	}
3166 	if (ops->get_status) {
3167 		status = device_create_file(dev, &dev_attr_status);
3168 		if (status < 0)
3169 			return status;
3170 	}
3171 	if (ops->get_bypass) {
3172 		status = device_create_file(dev, &dev_attr_bypass);
3173 		if (status < 0)
3174 			return status;
3175 	}
3176 
3177 	/* some attributes are type-specific */
3178 	if (rdev->desc->type == REGULATOR_CURRENT) {
3179 		status = device_create_file(dev, &dev_attr_requested_microamps);
3180 		if (status < 0)
3181 			return status;
3182 	}
3183 
3184 	/* all the other attributes exist to support constraints;
3185 	 * don't show them if there are no constraints, or if the
3186 	 * relevant supporting methods are missing.
3187 	 */
3188 	if (!rdev->constraints)
3189 		return status;
3190 
3191 	/* constraints need specific supporting methods */
3192 	if (ops->set_voltage || ops->set_voltage_sel) {
3193 		status = device_create_file(dev, &dev_attr_min_microvolts);
3194 		if (status < 0)
3195 			return status;
3196 		status = device_create_file(dev, &dev_attr_max_microvolts);
3197 		if (status < 0)
3198 			return status;
3199 	}
3200 	if (ops->set_current_limit) {
3201 		status = device_create_file(dev, &dev_attr_min_microamps);
3202 		if (status < 0)
3203 			return status;
3204 		status = device_create_file(dev, &dev_attr_max_microamps);
3205 		if (status < 0)
3206 			return status;
3207 	}
3208 
3209 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3210 	if (status < 0)
3211 		return status;
3212 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3213 	if (status < 0)
3214 		return status;
3215 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3216 	if (status < 0)
3217 		return status;
3218 
3219 	if (ops->set_suspend_voltage) {
3220 		status = device_create_file(dev,
3221 				&dev_attr_suspend_standby_microvolts);
3222 		if (status < 0)
3223 			return status;
3224 		status = device_create_file(dev,
3225 				&dev_attr_suspend_mem_microvolts);
3226 		if (status < 0)
3227 			return status;
3228 		status = device_create_file(dev,
3229 				&dev_attr_suspend_disk_microvolts);
3230 		if (status < 0)
3231 			return status;
3232 	}
3233 
3234 	if (ops->set_suspend_mode) {
3235 		status = device_create_file(dev,
3236 				&dev_attr_suspend_standby_mode);
3237 		if (status < 0)
3238 			return status;
3239 		status = device_create_file(dev,
3240 				&dev_attr_suspend_mem_mode);
3241 		if (status < 0)
3242 			return status;
3243 		status = device_create_file(dev,
3244 				&dev_attr_suspend_disk_mode);
3245 		if (status < 0)
3246 			return status;
3247 	}
3248 
3249 	return status;
3250 }
3251 
3252 static void rdev_init_debugfs(struct regulator_dev *rdev)
3253 {
3254 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3255 	if (!rdev->debugfs) {
3256 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3257 		return;
3258 	}
3259 
3260 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3261 			   &rdev->use_count);
3262 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3263 			   &rdev->open_count);
3264 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3265 			   &rdev->bypass_count);
3266 }
3267 
3268 /**
3269  * regulator_register - register regulator
3270  * @regulator_desc: regulator to register
3271  * @config: runtime configuration for regulator
3272  *
3273  * Called by regulator drivers to register a regulator.
3274  * Returns 0 on success.
3275  */
3276 struct regulator_dev *
3277 regulator_register(const struct regulator_desc *regulator_desc,
3278 		   const struct regulator_config *config)
3279 {
3280 	const struct regulation_constraints *constraints = NULL;
3281 	const struct regulator_init_data *init_data;
3282 	static atomic_t regulator_no = ATOMIC_INIT(0);
3283 	struct regulator_dev *rdev;
3284 	struct device *dev;
3285 	int ret, i;
3286 	const char *supply = NULL;
3287 
3288 	if (regulator_desc == NULL || config == NULL)
3289 		return ERR_PTR(-EINVAL);
3290 
3291 	dev = config->dev;
3292 	WARN_ON(!dev);
3293 
3294 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3295 		return ERR_PTR(-EINVAL);
3296 
3297 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3298 	    regulator_desc->type != REGULATOR_CURRENT)
3299 		return ERR_PTR(-EINVAL);
3300 
3301 	/* Only one of each should be implemented */
3302 	WARN_ON(regulator_desc->ops->get_voltage &&
3303 		regulator_desc->ops->get_voltage_sel);
3304 	WARN_ON(regulator_desc->ops->set_voltage &&
3305 		regulator_desc->ops->set_voltage_sel);
3306 
3307 	/* If we're using selectors we must implement list_voltage. */
3308 	if (regulator_desc->ops->get_voltage_sel &&
3309 	    !regulator_desc->ops->list_voltage) {
3310 		return ERR_PTR(-EINVAL);
3311 	}
3312 	if (regulator_desc->ops->set_voltage_sel &&
3313 	    !regulator_desc->ops->list_voltage) {
3314 		return ERR_PTR(-EINVAL);
3315 	}
3316 
3317 	init_data = config->init_data;
3318 
3319 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3320 	if (rdev == NULL)
3321 		return ERR_PTR(-ENOMEM);
3322 
3323 	mutex_lock(&regulator_list_mutex);
3324 
3325 	mutex_init(&rdev->mutex);
3326 	rdev->reg_data = config->driver_data;
3327 	rdev->owner = regulator_desc->owner;
3328 	rdev->desc = regulator_desc;
3329 	if (config->regmap)
3330 		rdev->regmap = config->regmap;
3331 	else if (dev_get_regmap(dev, NULL))
3332 		rdev->regmap = dev_get_regmap(dev, NULL);
3333 	else if (dev->parent)
3334 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3335 	INIT_LIST_HEAD(&rdev->consumer_list);
3336 	INIT_LIST_HEAD(&rdev->list);
3337 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3338 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3339 
3340 	/* preform any regulator specific init */
3341 	if (init_data && init_data->regulator_init) {
3342 		ret = init_data->regulator_init(rdev->reg_data);
3343 		if (ret < 0)
3344 			goto clean;
3345 	}
3346 
3347 	/* register with sysfs */
3348 	rdev->dev.class = &regulator_class;
3349 	rdev->dev.of_node = config->of_node;
3350 	rdev->dev.parent = dev;
3351 	dev_set_name(&rdev->dev, "regulator.%d",
3352 		     atomic_inc_return(&regulator_no) - 1);
3353 	ret = device_register(&rdev->dev);
3354 	if (ret != 0) {
3355 		put_device(&rdev->dev);
3356 		goto clean;
3357 	}
3358 
3359 	dev_set_drvdata(&rdev->dev, rdev);
3360 
3361 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3362 		ret = gpio_request_one(config->ena_gpio,
3363 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3364 				       rdev_get_name(rdev));
3365 		if (ret != 0) {
3366 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3367 				 config->ena_gpio, ret);
3368 			goto clean;
3369 		}
3370 
3371 		rdev->ena_gpio = config->ena_gpio;
3372 		rdev->ena_gpio_invert = config->ena_gpio_invert;
3373 
3374 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3375 			rdev->ena_gpio_state = 1;
3376 
3377 		if (rdev->ena_gpio_invert)
3378 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3379 	}
3380 
3381 	/* set regulator constraints */
3382 	if (init_data)
3383 		constraints = &init_data->constraints;
3384 
3385 	ret = set_machine_constraints(rdev, constraints);
3386 	if (ret < 0)
3387 		goto scrub;
3388 
3389 	/* add attributes supported by this regulator */
3390 	ret = add_regulator_attributes(rdev);
3391 	if (ret < 0)
3392 		goto scrub;
3393 
3394 	if (init_data && init_data->supply_regulator)
3395 		supply = init_data->supply_regulator;
3396 	else if (regulator_desc->supply_name)
3397 		supply = regulator_desc->supply_name;
3398 
3399 	if (supply) {
3400 		struct regulator_dev *r;
3401 
3402 		r = regulator_dev_lookup(dev, supply, &ret);
3403 
3404 		if (!r) {
3405 			dev_err(dev, "Failed to find supply %s\n", supply);
3406 			ret = -EPROBE_DEFER;
3407 			goto scrub;
3408 		}
3409 
3410 		ret = set_supply(rdev, r);
3411 		if (ret < 0)
3412 			goto scrub;
3413 
3414 		/* Enable supply if rail is enabled */
3415 		if (_regulator_is_enabled(rdev)) {
3416 			ret = regulator_enable(rdev->supply);
3417 			if (ret < 0)
3418 				goto scrub;
3419 		}
3420 	}
3421 
3422 	/* add consumers devices */
3423 	if (init_data) {
3424 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3425 			ret = set_consumer_device_supply(rdev,
3426 				init_data->consumer_supplies[i].dev_name,
3427 				init_data->consumer_supplies[i].supply);
3428 			if (ret < 0) {
3429 				dev_err(dev, "Failed to set supply %s\n",
3430 					init_data->consumer_supplies[i].supply);
3431 				goto unset_supplies;
3432 			}
3433 		}
3434 	}
3435 
3436 	list_add(&rdev->list, &regulator_list);
3437 
3438 	rdev_init_debugfs(rdev);
3439 out:
3440 	mutex_unlock(&regulator_list_mutex);
3441 	return rdev;
3442 
3443 unset_supplies:
3444 	unset_regulator_supplies(rdev);
3445 
3446 scrub:
3447 	if (rdev->supply)
3448 		regulator_put(rdev->supply);
3449 	if (rdev->ena_gpio)
3450 		gpio_free(rdev->ena_gpio);
3451 	kfree(rdev->constraints);
3452 	device_unregister(&rdev->dev);
3453 	/* device core frees rdev */
3454 	rdev = ERR_PTR(ret);
3455 	goto out;
3456 
3457 clean:
3458 	kfree(rdev);
3459 	rdev = ERR_PTR(ret);
3460 	goto out;
3461 }
3462 EXPORT_SYMBOL_GPL(regulator_register);
3463 
3464 /**
3465  * regulator_unregister - unregister regulator
3466  * @rdev: regulator to unregister
3467  *
3468  * Called by regulator drivers to unregister a regulator.
3469  */
3470 void regulator_unregister(struct regulator_dev *rdev)
3471 {
3472 	if (rdev == NULL)
3473 		return;
3474 
3475 	if (rdev->supply)
3476 		regulator_put(rdev->supply);
3477 	mutex_lock(&regulator_list_mutex);
3478 	debugfs_remove_recursive(rdev->debugfs);
3479 	flush_work(&rdev->disable_work.work);
3480 	WARN_ON(rdev->open_count);
3481 	unset_regulator_supplies(rdev);
3482 	list_del(&rdev->list);
3483 	kfree(rdev->constraints);
3484 	if (rdev->ena_gpio)
3485 		gpio_free(rdev->ena_gpio);
3486 	device_unregister(&rdev->dev);
3487 	mutex_unlock(&regulator_list_mutex);
3488 }
3489 EXPORT_SYMBOL_GPL(regulator_unregister);
3490 
3491 /**
3492  * regulator_suspend_prepare - prepare regulators for system wide suspend
3493  * @state: system suspend state
3494  *
3495  * Configure each regulator with it's suspend operating parameters for state.
3496  * This will usually be called by machine suspend code prior to supending.
3497  */
3498 int regulator_suspend_prepare(suspend_state_t state)
3499 {
3500 	struct regulator_dev *rdev;
3501 	int ret = 0;
3502 
3503 	/* ON is handled by regulator active state */
3504 	if (state == PM_SUSPEND_ON)
3505 		return -EINVAL;
3506 
3507 	mutex_lock(&regulator_list_mutex);
3508 	list_for_each_entry(rdev, &regulator_list, list) {
3509 
3510 		mutex_lock(&rdev->mutex);
3511 		ret = suspend_prepare(rdev, state);
3512 		mutex_unlock(&rdev->mutex);
3513 
3514 		if (ret < 0) {
3515 			rdev_err(rdev, "failed to prepare\n");
3516 			goto out;
3517 		}
3518 	}
3519 out:
3520 	mutex_unlock(&regulator_list_mutex);
3521 	return ret;
3522 }
3523 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3524 
3525 /**
3526  * regulator_suspend_finish - resume regulators from system wide suspend
3527  *
3528  * Turn on regulators that might be turned off by regulator_suspend_prepare
3529  * and that should be turned on according to the regulators properties.
3530  */
3531 int regulator_suspend_finish(void)
3532 {
3533 	struct regulator_dev *rdev;
3534 	int ret = 0, error;
3535 
3536 	mutex_lock(&regulator_list_mutex);
3537 	list_for_each_entry(rdev, &regulator_list, list) {
3538 		struct regulator_ops *ops = rdev->desc->ops;
3539 
3540 		mutex_lock(&rdev->mutex);
3541 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3542 				ops->enable) {
3543 			error = ops->enable(rdev);
3544 			if (error)
3545 				ret = error;
3546 		} else {
3547 			if (!has_full_constraints)
3548 				goto unlock;
3549 			if (!ops->disable)
3550 				goto unlock;
3551 			if (!_regulator_is_enabled(rdev))
3552 				goto unlock;
3553 
3554 			error = ops->disable(rdev);
3555 			if (error)
3556 				ret = error;
3557 		}
3558 unlock:
3559 		mutex_unlock(&rdev->mutex);
3560 	}
3561 	mutex_unlock(&regulator_list_mutex);
3562 	return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3565 
3566 /**
3567  * regulator_has_full_constraints - the system has fully specified constraints
3568  *
3569  * Calling this function will cause the regulator API to disable all
3570  * regulators which have a zero use count and don't have an always_on
3571  * constraint in a late_initcall.
3572  *
3573  * The intention is that this will become the default behaviour in a
3574  * future kernel release so users are encouraged to use this facility
3575  * now.
3576  */
3577 void regulator_has_full_constraints(void)
3578 {
3579 	has_full_constraints = 1;
3580 }
3581 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3582 
3583 /**
3584  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3585  *
3586  * Calling this function will cause the regulator API to provide a
3587  * dummy regulator to consumers if no physical regulator is found,
3588  * allowing most consumers to proceed as though a regulator were
3589  * configured.  This allows systems such as those with software
3590  * controllable regulators for the CPU core only to be brought up more
3591  * readily.
3592  */
3593 void regulator_use_dummy_regulator(void)
3594 {
3595 	board_wants_dummy_regulator = true;
3596 }
3597 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3598 
3599 /**
3600  * rdev_get_drvdata - get rdev regulator driver data
3601  * @rdev: regulator
3602  *
3603  * Get rdev regulator driver private data. This call can be used in the
3604  * regulator driver context.
3605  */
3606 void *rdev_get_drvdata(struct regulator_dev *rdev)
3607 {
3608 	return rdev->reg_data;
3609 }
3610 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3611 
3612 /**
3613  * regulator_get_drvdata - get regulator driver data
3614  * @regulator: regulator
3615  *
3616  * Get regulator driver private data. This call can be used in the consumer
3617  * driver context when non API regulator specific functions need to be called.
3618  */
3619 void *regulator_get_drvdata(struct regulator *regulator)
3620 {
3621 	return regulator->rdev->reg_data;
3622 }
3623 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3624 
3625 /**
3626  * regulator_set_drvdata - set regulator driver data
3627  * @regulator: regulator
3628  * @data: data
3629  */
3630 void regulator_set_drvdata(struct regulator *regulator, void *data)
3631 {
3632 	regulator->rdev->reg_data = data;
3633 }
3634 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3635 
3636 /**
3637  * regulator_get_id - get regulator ID
3638  * @rdev: regulator
3639  */
3640 int rdev_get_id(struct regulator_dev *rdev)
3641 {
3642 	return rdev->desc->id;
3643 }
3644 EXPORT_SYMBOL_GPL(rdev_get_id);
3645 
3646 struct device *rdev_get_dev(struct regulator_dev *rdev)
3647 {
3648 	return &rdev->dev;
3649 }
3650 EXPORT_SYMBOL_GPL(rdev_get_dev);
3651 
3652 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3653 {
3654 	return reg_init_data->driver_data;
3655 }
3656 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3657 
3658 #ifdef CONFIG_DEBUG_FS
3659 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3660 				    size_t count, loff_t *ppos)
3661 {
3662 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3663 	ssize_t len, ret = 0;
3664 	struct regulator_map *map;
3665 
3666 	if (!buf)
3667 		return -ENOMEM;
3668 
3669 	list_for_each_entry(map, &regulator_map_list, list) {
3670 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3671 			       "%s -> %s.%s\n",
3672 			       rdev_get_name(map->regulator), map->dev_name,
3673 			       map->supply);
3674 		if (len >= 0)
3675 			ret += len;
3676 		if (ret > PAGE_SIZE) {
3677 			ret = PAGE_SIZE;
3678 			break;
3679 		}
3680 	}
3681 
3682 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3683 
3684 	kfree(buf);
3685 
3686 	return ret;
3687 }
3688 #endif
3689 
3690 static const struct file_operations supply_map_fops = {
3691 #ifdef CONFIG_DEBUG_FS
3692 	.read = supply_map_read_file,
3693 	.llseek = default_llseek,
3694 #endif
3695 };
3696 
3697 static int __init regulator_init(void)
3698 {
3699 	int ret;
3700 
3701 	ret = class_register(&regulator_class);
3702 
3703 	debugfs_root = debugfs_create_dir("regulator", NULL);
3704 	if (!debugfs_root)
3705 		pr_warn("regulator: Failed to create debugfs directory\n");
3706 
3707 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3708 			    &supply_map_fops);
3709 
3710 	regulator_dummy_init();
3711 
3712 	return ret;
3713 }
3714 
3715 /* init early to allow our consumers to complete system booting */
3716 core_initcall(regulator_init);
3717 
3718 static int __init regulator_init_complete(void)
3719 {
3720 	struct regulator_dev *rdev;
3721 	struct regulator_ops *ops;
3722 	struct regulation_constraints *c;
3723 	int enabled, ret;
3724 
3725 	/*
3726 	 * Since DT doesn't provide an idiomatic mechanism for
3727 	 * enabling full constraints and since it's much more natural
3728 	 * with DT to provide them just assume that a DT enabled
3729 	 * system has full constraints.
3730 	 */
3731 	if (of_have_populated_dt())
3732 		has_full_constraints = true;
3733 
3734 	mutex_lock(&regulator_list_mutex);
3735 
3736 	/* If we have a full configuration then disable any regulators
3737 	 * which are not in use or always_on.  This will become the
3738 	 * default behaviour in the future.
3739 	 */
3740 	list_for_each_entry(rdev, &regulator_list, list) {
3741 		ops = rdev->desc->ops;
3742 		c = rdev->constraints;
3743 
3744 		if (!ops->disable || (c && c->always_on))
3745 			continue;
3746 
3747 		mutex_lock(&rdev->mutex);
3748 
3749 		if (rdev->use_count)
3750 			goto unlock;
3751 
3752 		/* If we can't read the status assume it's on. */
3753 		if (ops->is_enabled)
3754 			enabled = ops->is_enabled(rdev);
3755 		else
3756 			enabled = 1;
3757 
3758 		if (!enabled)
3759 			goto unlock;
3760 
3761 		if (has_full_constraints) {
3762 			/* We log since this may kill the system if it
3763 			 * goes wrong. */
3764 			rdev_info(rdev, "disabling\n");
3765 			ret = ops->disable(rdev);
3766 			if (ret != 0) {
3767 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3768 			}
3769 		} else {
3770 			/* The intention is that in future we will
3771 			 * assume that full constraints are provided
3772 			 * so warn even if we aren't going to do
3773 			 * anything here.
3774 			 */
3775 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3776 		}
3777 
3778 unlock:
3779 		mutex_unlock(&rdev->mutex);
3780 	}
3781 
3782 	mutex_unlock(&regulator_list_mutex);
3783 
3784 	return 0;
3785 }
3786 late_initcall(regulator_init_complete);
3787