1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static bool has_full_constraints; 55 static bool board_wants_dummy_regulator; 56 57 static struct dentry *debugfs_root; 58 59 /* 60 * struct regulator_map 61 * 62 * Used to provide symbolic supply names to devices. 63 */ 64 struct regulator_map { 65 struct list_head list; 66 const char *dev_name; /* The dev_name() for the consumer */ 67 const char *supply; 68 struct regulator_dev *regulator; 69 }; 70 71 /* 72 * struct regulator 73 * 74 * One for each consumer device. 75 */ 76 struct regulator { 77 struct device *dev; 78 struct list_head list; 79 unsigned int always_on:1; 80 unsigned int bypass:1; 81 int uA_load; 82 int min_uV; 83 int max_uV; 84 char *supply_name; 85 struct device_attribute dev_attr; 86 struct regulator_dev *rdev; 87 struct dentry *debugfs; 88 }; 89 90 static int _regulator_is_enabled(struct regulator_dev *rdev); 91 static int _regulator_disable(struct regulator_dev *rdev); 92 static int _regulator_get_voltage(struct regulator_dev *rdev); 93 static int _regulator_get_current_limit(struct regulator_dev *rdev); 94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 95 static void _notifier_call_chain(struct regulator_dev *rdev, 96 unsigned long event, void *data); 97 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 98 int min_uV, int max_uV); 99 static struct regulator *create_regulator(struct regulator_dev *rdev, 100 struct device *dev, 101 const char *supply_name); 102 103 static const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 113 /** 114 * of_get_regulator - get a regulator device node based on supply name 115 * @dev: Device pointer for the consumer (of regulator) device 116 * @supply: regulator supply name 117 * 118 * Extract the regulator device node corresponding to the supply name. 119 * retruns the device node corresponding to the regulator if found, else 120 * returns NULL. 121 */ 122 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 123 { 124 struct device_node *regnode = NULL; 125 char prop_name[32]; /* 32 is max size of property name */ 126 127 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 128 129 snprintf(prop_name, 32, "%s-supply", supply); 130 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 131 132 if (!regnode) { 133 dev_dbg(dev, "Looking up %s property in node %s failed", 134 prop_name, dev->of_node->full_name); 135 return NULL; 136 } 137 return regnode; 138 } 139 140 static int _regulator_can_change_status(struct regulator_dev *rdev) 141 { 142 if (!rdev->constraints) 143 return 0; 144 145 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 146 return 1; 147 else 148 return 0; 149 } 150 151 /* Platform voltage constraint check */ 152 static int regulator_check_voltage(struct regulator_dev *rdev, 153 int *min_uV, int *max_uV) 154 { 155 BUG_ON(*min_uV > *max_uV); 156 157 if (!rdev->constraints) { 158 rdev_err(rdev, "no constraints\n"); 159 return -ENODEV; 160 } 161 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 162 rdev_err(rdev, "operation not allowed\n"); 163 return -EPERM; 164 } 165 166 if (*max_uV > rdev->constraints->max_uV) 167 *max_uV = rdev->constraints->max_uV; 168 if (*min_uV < rdev->constraints->min_uV) 169 *min_uV = rdev->constraints->min_uV; 170 171 if (*min_uV > *max_uV) { 172 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 173 *min_uV, *max_uV); 174 return -EINVAL; 175 } 176 177 return 0; 178 } 179 180 /* Make sure we select a voltage that suits the needs of all 181 * regulator consumers 182 */ 183 static int regulator_check_consumers(struct regulator_dev *rdev, 184 int *min_uV, int *max_uV) 185 { 186 struct regulator *regulator; 187 188 list_for_each_entry(regulator, &rdev->consumer_list, list) { 189 /* 190 * Assume consumers that didn't say anything are OK 191 * with anything in the constraint range. 192 */ 193 if (!regulator->min_uV && !regulator->max_uV) 194 continue; 195 196 if (*max_uV > regulator->max_uV) 197 *max_uV = regulator->max_uV; 198 if (*min_uV < regulator->min_uV) 199 *min_uV = regulator->min_uV; 200 } 201 202 if (*min_uV > *max_uV) 203 return -EINVAL; 204 205 return 0; 206 } 207 208 /* current constraint check */ 209 static int regulator_check_current_limit(struct regulator_dev *rdev, 210 int *min_uA, int *max_uA) 211 { 212 BUG_ON(*min_uA > *max_uA); 213 214 if (!rdev->constraints) { 215 rdev_err(rdev, "no constraints\n"); 216 return -ENODEV; 217 } 218 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 219 rdev_err(rdev, "operation not allowed\n"); 220 return -EPERM; 221 } 222 223 if (*max_uA > rdev->constraints->max_uA) 224 *max_uA = rdev->constraints->max_uA; 225 if (*min_uA < rdev->constraints->min_uA) 226 *min_uA = rdev->constraints->min_uA; 227 228 if (*min_uA > *max_uA) { 229 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 230 *min_uA, *max_uA); 231 return -EINVAL; 232 } 233 234 return 0; 235 } 236 237 /* operating mode constraint check */ 238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 239 { 240 switch (*mode) { 241 case REGULATOR_MODE_FAST: 242 case REGULATOR_MODE_NORMAL: 243 case REGULATOR_MODE_IDLE: 244 case REGULATOR_MODE_STANDBY: 245 break; 246 default: 247 rdev_err(rdev, "invalid mode %x specified\n", *mode); 248 return -EINVAL; 249 } 250 251 if (!rdev->constraints) { 252 rdev_err(rdev, "no constraints\n"); 253 return -ENODEV; 254 } 255 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 256 rdev_err(rdev, "operation not allowed\n"); 257 return -EPERM; 258 } 259 260 /* The modes are bitmasks, the most power hungry modes having 261 * the lowest values. If the requested mode isn't supported 262 * try higher modes. */ 263 while (*mode) { 264 if (rdev->constraints->valid_modes_mask & *mode) 265 return 0; 266 *mode /= 2; 267 } 268 269 return -EINVAL; 270 } 271 272 /* dynamic regulator mode switching constraint check */ 273 static int regulator_check_drms(struct regulator_dev *rdev) 274 { 275 if (!rdev->constraints) { 276 rdev_err(rdev, "no constraints\n"); 277 return -ENODEV; 278 } 279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 280 rdev_err(rdev, "operation not allowed\n"); 281 return -EPERM; 282 } 283 return 0; 284 } 285 286 static ssize_t regulator_uV_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct regulator_dev *rdev = dev_get_drvdata(dev); 290 ssize_t ret; 291 292 mutex_lock(&rdev->mutex); 293 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 294 mutex_unlock(&rdev->mutex); 295 296 return ret; 297 } 298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 299 300 static ssize_t regulator_uA_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct regulator_dev *rdev = dev_get_drvdata(dev); 304 305 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 306 } 307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 308 309 static ssize_t regulator_name_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct regulator_dev *rdev = dev_get_drvdata(dev); 313 314 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 315 } 316 317 static ssize_t regulator_print_opmode(char *buf, int mode) 318 { 319 switch (mode) { 320 case REGULATOR_MODE_FAST: 321 return sprintf(buf, "fast\n"); 322 case REGULATOR_MODE_NORMAL: 323 return sprintf(buf, "normal\n"); 324 case REGULATOR_MODE_IDLE: 325 return sprintf(buf, "idle\n"); 326 case REGULATOR_MODE_STANDBY: 327 return sprintf(buf, "standby\n"); 328 } 329 return sprintf(buf, "unknown\n"); 330 } 331 332 static ssize_t regulator_opmode_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct regulator_dev *rdev = dev_get_drvdata(dev); 336 337 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 338 } 339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 340 341 static ssize_t regulator_print_state(char *buf, int state) 342 { 343 if (state > 0) 344 return sprintf(buf, "enabled\n"); 345 else if (state == 0) 346 return sprintf(buf, "disabled\n"); 347 else 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_state_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 ssize_t ret; 356 357 mutex_lock(&rdev->mutex); 358 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 359 mutex_unlock(&rdev->mutex); 360 361 return ret; 362 } 363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 364 365 static ssize_t regulator_status_show(struct device *dev, 366 struct device_attribute *attr, char *buf) 367 { 368 struct regulator_dev *rdev = dev_get_drvdata(dev); 369 int status; 370 char *label; 371 372 status = rdev->desc->ops->get_status(rdev); 373 if (status < 0) 374 return status; 375 376 switch (status) { 377 case REGULATOR_STATUS_OFF: 378 label = "off"; 379 break; 380 case REGULATOR_STATUS_ON: 381 label = "on"; 382 break; 383 case REGULATOR_STATUS_ERROR: 384 label = "error"; 385 break; 386 case REGULATOR_STATUS_FAST: 387 label = "fast"; 388 break; 389 case REGULATOR_STATUS_NORMAL: 390 label = "normal"; 391 break; 392 case REGULATOR_STATUS_IDLE: 393 label = "idle"; 394 break; 395 case REGULATOR_STATUS_STANDBY: 396 label = "standby"; 397 break; 398 case REGULATOR_STATUS_BYPASS: 399 label = "bypass"; 400 break; 401 case REGULATOR_STATUS_UNDEFINED: 402 label = "undefined"; 403 break; 404 default: 405 return -ERANGE; 406 } 407 408 return sprintf(buf, "%s\n", label); 409 } 410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 411 412 static ssize_t regulator_min_uA_show(struct device *dev, 413 struct device_attribute *attr, char *buf) 414 { 415 struct regulator_dev *rdev = dev_get_drvdata(dev); 416 417 if (!rdev->constraints) 418 return sprintf(buf, "constraint not defined\n"); 419 420 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 421 } 422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 423 424 static ssize_t regulator_max_uA_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct regulator_dev *rdev = dev_get_drvdata(dev); 428 429 if (!rdev->constraints) 430 return sprintf(buf, "constraint not defined\n"); 431 432 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 433 } 434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 435 436 static ssize_t regulator_min_uV_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct regulator_dev *rdev = dev_get_drvdata(dev); 440 441 if (!rdev->constraints) 442 return sprintf(buf, "constraint not defined\n"); 443 444 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 445 } 446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 447 448 static ssize_t regulator_max_uV_show(struct device *dev, 449 struct device_attribute *attr, char *buf) 450 { 451 struct regulator_dev *rdev = dev_get_drvdata(dev); 452 453 if (!rdev->constraints) 454 return sprintf(buf, "constraint not defined\n"); 455 456 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 457 } 458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 459 460 static ssize_t regulator_total_uA_show(struct device *dev, 461 struct device_attribute *attr, char *buf) 462 { 463 struct regulator_dev *rdev = dev_get_drvdata(dev); 464 struct regulator *regulator; 465 int uA = 0; 466 467 mutex_lock(&rdev->mutex); 468 list_for_each_entry(regulator, &rdev->consumer_list, list) 469 uA += regulator->uA_load; 470 mutex_unlock(&rdev->mutex); 471 return sprintf(buf, "%d\n", uA); 472 } 473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 474 475 static ssize_t regulator_num_users_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct regulator_dev *rdev = dev_get_drvdata(dev); 479 return sprintf(buf, "%d\n", rdev->use_count); 480 } 481 482 static ssize_t regulator_type_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct regulator_dev *rdev = dev_get_drvdata(dev); 486 487 switch (rdev->desc->type) { 488 case REGULATOR_VOLTAGE: 489 return sprintf(buf, "voltage\n"); 490 case REGULATOR_CURRENT: 491 return sprintf(buf, "current\n"); 492 } 493 return sprintf(buf, "unknown\n"); 494 } 495 496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct regulator_dev *rdev = dev_get_drvdata(dev); 500 501 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 502 } 503 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 504 regulator_suspend_mem_uV_show, NULL); 505 506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 507 struct device_attribute *attr, char *buf) 508 { 509 struct regulator_dev *rdev = dev_get_drvdata(dev); 510 511 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 512 } 513 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 514 regulator_suspend_disk_uV_show, NULL); 515 516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 517 struct device_attribute *attr, char *buf) 518 { 519 struct regulator_dev *rdev = dev_get_drvdata(dev); 520 521 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 522 } 523 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 524 regulator_suspend_standby_uV_show, NULL); 525 526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct regulator_dev *rdev = dev_get_drvdata(dev); 530 531 return regulator_print_opmode(buf, 532 rdev->constraints->state_mem.mode); 533 } 534 static DEVICE_ATTR(suspend_mem_mode, 0444, 535 regulator_suspend_mem_mode_show, NULL); 536 537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 542 return regulator_print_opmode(buf, 543 rdev->constraints->state_disk.mode); 544 } 545 static DEVICE_ATTR(suspend_disk_mode, 0444, 546 regulator_suspend_disk_mode_show, NULL); 547 548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 549 struct device_attribute *attr, char *buf) 550 { 551 struct regulator_dev *rdev = dev_get_drvdata(dev); 552 553 return regulator_print_opmode(buf, 554 rdev->constraints->state_standby.mode); 555 } 556 static DEVICE_ATTR(suspend_standby_mode, 0444, 557 regulator_suspend_standby_mode_show, NULL); 558 559 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 560 struct device_attribute *attr, char *buf) 561 { 562 struct regulator_dev *rdev = dev_get_drvdata(dev); 563 564 return regulator_print_state(buf, 565 rdev->constraints->state_mem.enabled); 566 } 567 static DEVICE_ATTR(suspend_mem_state, 0444, 568 regulator_suspend_mem_state_show, NULL); 569 570 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return regulator_print_state(buf, 576 rdev->constraints->state_disk.enabled); 577 } 578 static DEVICE_ATTR(suspend_disk_state, 0444, 579 regulator_suspend_disk_state_show, NULL); 580 581 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct regulator_dev *rdev = dev_get_drvdata(dev); 585 586 return regulator_print_state(buf, 587 rdev->constraints->state_standby.enabled); 588 } 589 static DEVICE_ATTR(suspend_standby_state, 0444, 590 regulator_suspend_standby_state_show, NULL); 591 592 static ssize_t regulator_bypass_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 const char *report; 597 bool bypass; 598 int ret; 599 600 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 601 602 if (ret != 0) 603 report = "unknown"; 604 else if (bypass) 605 report = "enabled"; 606 else 607 report = "disabled"; 608 609 return sprintf(buf, "%s\n", report); 610 } 611 static DEVICE_ATTR(bypass, 0444, 612 regulator_bypass_show, NULL); 613 614 /* 615 * These are the only attributes are present for all regulators. 616 * Other attributes are a function of regulator functionality. 617 */ 618 static struct device_attribute regulator_dev_attrs[] = { 619 __ATTR(name, 0444, regulator_name_show, NULL), 620 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 621 __ATTR(type, 0444, regulator_type_show, NULL), 622 __ATTR_NULL, 623 }; 624 625 static void regulator_dev_release(struct device *dev) 626 { 627 struct regulator_dev *rdev = dev_get_drvdata(dev); 628 kfree(rdev); 629 } 630 631 static struct class regulator_class = { 632 .name = "regulator", 633 .dev_release = regulator_dev_release, 634 .dev_attrs = regulator_dev_attrs, 635 }; 636 637 /* Calculate the new optimum regulator operating mode based on the new total 638 * consumer load. All locks held by caller */ 639 static void drms_uA_update(struct regulator_dev *rdev) 640 { 641 struct regulator *sibling; 642 int current_uA = 0, output_uV, input_uV, err; 643 unsigned int mode; 644 645 err = regulator_check_drms(rdev); 646 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 647 (!rdev->desc->ops->get_voltage && 648 !rdev->desc->ops->get_voltage_sel) || 649 !rdev->desc->ops->set_mode) 650 return; 651 652 /* get output voltage */ 653 output_uV = _regulator_get_voltage(rdev); 654 if (output_uV <= 0) 655 return; 656 657 /* get input voltage */ 658 input_uV = 0; 659 if (rdev->supply) 660 input_uV = regulator_get_voltage(rdev->supply); 661 if (input_uV <= 0) 662 input_uV = rdev->constraints->input_uV; 663 if (input_uV <= 0) 664 return; 665 666 /* calc total requested load */ 667 list_for_each_entry(sibling, &rdev->consumer_list, list) 668 current_uA += sibling->uA_load; 669 670 /* now get the optimum mode for our new total regulator load */ 671 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 672 output_uV, current_uA); 673 674 /* check the new mode is allowed */ 675 err = regulator_mode_constrain(rdev, &mode); 676 if (err == 0) 677 rdev->desc->ops->set_mode(rdev, mode); 678 } 679 680 static int suspend_set_state(struct regulator_dev *rdev, 681 struct regulator_state *rstate) 682 { 683 int ret = 0; 684 685 /* If we have no suspend mode configration don't set anything; 686 * only warn if the driver implements set_suspend_voltage or 687 * set_suspend_mode callback. 688 */ 689 if (!rstate->enabled && !rstate->disabled) { 690 if (rdev->desc->ops->set_suspend_voltage || 691 rdev->desc->ops->set_suspend_mode) 692 rdev_warn(rdev, "No configuration\n"); 693 return 0; 694 } 695 696 if (rstate->enabled && rstate->disabled) { 697 rdev_err(rdev, "invalid configuration\n"); 698 return -EINVAL; 699 } 700 701 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 702 ret = rdev->desc->ops->set_suspend_enable(rdev); 703 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 704 ret = rdev->desc->ops->set_suspend_disable(rdev); 705 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 706 ret = 0; 707 708 if (ret < 0) { 709 rdev_err(rdev, "failed to enabled/disable\n"); 710 return ret; 711 } 712 713 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 714 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 715 if (ret < 0) { 716 rdev_err(rdev, "failed to set voltage\n"); 717 return ret; 718 } 719 } 720 721 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 722 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 723 if (ret < 0) { 724 rdev_err(rdev, "failed to set mode\n"); 725 return ret; 726 } 727 } 728 return ret; 729 } 730 731 /* locks held by caller */ 732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 733 { 734 if (!rdev->constraints) 735 return -EINVAL; 736 737 switch (state) { 738 case PM_SUSPEND_STANDBY: 739 return suspend_set_state(rdev, 740 &rdev->constraints->state_standby); 741 case PM_SUSPEND_MEM: 742 return suspend_set_state(rdev, 743 &rdev->constraints->state_mem); 744 case PM_SUSPEND_MAX: 745 return suspend_set_state(rdev, 746 &rdev->constraints->state_disk); 747 default: 748 return -EINVAL; 749 } 750 } 751 752 static void print_constraints(struct regulator_dev *rdev) 753 { 754 struct regulation_constraints *constraints = rdev->constraints; 755 char buf[80] = ""; 756 int count = 0; 757 int ret; 758 759 if (constraints->min_uV && constraints->max_uV) { 760 if (constraints->min_uV == constraints->max_uV) 761 count += sprintf(buf + count, "%d mV ", 762 constraints->min_uV / 1000); 763 else 764 count += sprintf(buf + count, "%d <--> %d mV ", 765 constraints->min_uV / 1000, 766 constraints->max_uV / 1000); 767 } 768 769 if (!constraints->min_uV || 770 constraints->min_uV != constraints->max_uV) { 771 ret = _regulator_get_voltage(rdev); 772 if (ret > 0) 773 count += sprintf(buf + count, "at %d mV ", ret / 1000); 774 } 775 776 if (constraints->uV_offset) 777 count += sprintf(buf, "%dmV offset ", 778 constraints->uV_offset / 1000); 779 780 if (constraints->min_uA && constraints->max_uA) { 781 if (constraints->min_uA == constraints->max_uA) 782 count += sprintf(buf + count, "%d mA ", 783 constraints->min_uA / 1000); 784 else 785 count += sprintf(buf + count, "%d <--> %d mA ", 786 constraints->min_uA / 1000, 787 constraints->max_uA / 1000); 788 } 789 790 if (!constraints->min_uA || 791 constraints->min_uA != constraints->max_uA) { 792 ret = _regulator_get_current_limit(rdev); 793 if (ret > 0) 794 count += sprintf(buf + count, "at %d mA ", ret / 1000); 795 } 796 797 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 798 count += sprintf(buf + count, "fast "); 799 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 800 count += sprintf(buf + count, "normal "); 801 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 802 count += sprintf(buf + count, "idle "); 803 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 804 count += sprintf(buf + count, "standby"); 805 806 if (!count) 807 sprintf(buf, "no parameters"); 808 809 rdev_info(rdev, "%s\n", buf); 810 811 if ((constraints->min_uV != constraints->max_uV) && 812 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 813 rdev_warn(rdev, 814 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 815 } 816 817 static int machine_constraints_voltage(struct regulator_dev *rdev, 818 struct regulation_constraints *constraints) 819 { 820 struct regulator_ops *ops = rdev->desc->ops; 821 int ret; 822 823 /* do we need to apply the constraint voltage */ 824 if (rdev->constraints->apply_uV && 825 rdev->constraints->min_uV == rdev->constraints->max_uV) { 826 ret = _regulator_do_set_voltage(rdev, 827 rdev->constraints->min_uV, 828 rdev->constraints->max_uV); 829 if (ret < 0) { 830 rdev_err(rdev, "failed to apply %duV constraint\n", 831 rdev->constraints->min_uV); 832 return ret; 833 } 834 } 835 836 /* constrain machine-level voltage specs to fit 837 * the actual range supported by this regulator. 838 */ 839 if (ops->list_voltage && rdev->desc->n_voltages) { 840 int count = rdev->desc->n_voltages; 841 int i; 842 int min_uV = INT_MAX; 843 int max_uV = INT_MIN; 844 int cmin = constraints->min_uV; 845 int cmax = constraints->max_uV; 846 847 /* it's safe to autoconfigure fixed-voltage supplies 848 and the constraints are used by list_voltage. */ 849 if (count == 1 && !cmin) { 850 cmin = 1; 851 cmax = INT_MAX; 852 constraints->min_uV = cmin; 853 constraints->max_uV = cmax; 854 } 855 856 /* voltage constraints are optional */ 857 if ((cmin == 0) && (cmax == 0)) 858 return 0; 859 860 /* else require explicit machine-level constraints */ 861 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 862 rdev_err(rdev, "invalid voltage constraints\n"); 863 return -EINVAL; 864 } 865 866 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 867 for (i = 0; i < count; i++) { 868 int value; 869 870 value = ops->list_voltage(rdev, i); 871 if (value <= 0) 872 continue; 873 874 /* maybe adjust [min_uV..max_uV] */ 875 if (value >= cmin && value < min_uV) 876 min_uV = value; 877 if (value <= cmax && value > max_uV) 878 max_uV = value; 879 } 880 881 /* final: [min_uV..max_uV] valid iff constraints valid */ 882 if (max_uV < min_uV) { 883 rdev_err(rdev, "unsupportable voltage constraints\n"); 884 return -EINVAL; 885 } 886 887 /* use regulator's subset of machine constraints */ 888 if (constraints->min_uV < min_uV) { 889 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 890 constraints->min_uV, min_uV); 891 constraints->min_uV = min_uV; 892 } 893 if (constraints->max_uV > max_uV) { 894 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 895 constraints->max_uV, max_uV); 896 constraints->max_uV = max_uV; 897 } 898 } 899 900 return 0; 901 } 902 903 /** 904 * set_machine_constraints - sets regulator constraints 905 * @rdev: regulator source 906 * @constraints: constraints to apply 907 * 908 * Allows platform initialisation code to define and constrain 909 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 910 * Constraints *must* be set by platform code in order for some 911 * regulator operations to proceed i.e. set_voltage, set_current_limit, 912 * set_mode. 913 */ 914 static int set_machine_constraints(struct regulator_dev *rdev, 915 const struct regulation_constraints *constraints) 916 { 917 int ret = 0; 918 struct regulator_ops *ops = rdev->desc->ops; 919 920 if (constraints) 921 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 922 GFP_KERNEL); 923 else 924 rdev->constraints = kzalloc(sizeof(*constraints), 925 GFP_KERNEL); 926 if (!rdev->constraints) 927 return -ENOMEM; 928 929 ret = machine_constraints_voltage(rdev, rdev->constraints); 930 if (ret != 0) 931 goto out; 932 933 /* do we need to setup our suspend state */ 934 if (rdev->constraints->initial_state) { 935 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 936 if (ret < 0) { 937 rdev_err(rdev, "failed to set suspend state\n"); 938 goto out; 939 } 940 } 941 942 if (rdev->constraints->initial_mode) { 943 if (!ops->set_mode) { 944 rdev_err(rdev, "no set_mode operation\n"); 945 ret = -EINVAL; 946 goto out; 947 } 948 949 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 950 if (ret < 0) { 951 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 952 goto out; 953 } 954 } 955 956 /* If the constraints say the regulator should be on at this point 957 * and we have control then make sure it is enabled. 958 */ 959 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 960 ops->enable) { 961 ret = ops->enable(rdev); 962 if (ret < 0) { 963 rdev_err(rdev, "failed to enable\n"); 964 goto out; 965 } 966 } 967 968 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 969 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 970 if (ret < 0) { 971 rdev_err(rdev, "failed to set ramp_delay\n"); 972 goto out; 973 } 974 } 975 976 print_constraints(rdev); 977 return 0; 978 out: 979 kfree(rdev->constraints); 980 rdev->constraints = NULL; 981 return ret; 982 } 983 984 /** 985 * set_supply - set regulator supply regulator 986 * @rdev: regulator name 987 * @supply_rdev: supply regulator name 988 * 989 * Called by platform initialisation code to set the supply regulator for this 990 * regulator. This ensures that a regulators supply will also be enabled by the 991 * core if it's child is enabled. 992 */ 993 static int set_supply(struct regulator_dev *rdev, 994 struct regulator_dev *supply_rdev) 995 { 996 int err; 997 998 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 999 1000 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1001 if (rdev->supply == NULL) { 1002 err = -ENOMEM; 1003 return err; 1004 } 1005 supply_rdev->open_count++; 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1012 * @rdev: regulator source 1013 * @consumer_dev_name: dev_name() string for device supply applies to 1014 * @supply: symbolic name for supply 1015 * 1016 * Allows platform initialisation code to map physical regulator 1017 * sources to symbolic names for supplies for use by devices. Devices 1018 * should use these symbolic names to request regulators, avoiding the 1019 * need to provide board-specific regulator names as platform data. 1020 */ 1021 static int set_consumer_device_supply(struct regulator_dev *rdev, 1022 const char *consumer_dev_name, 1023 const char *supply) 1024 { 1025 struct regulator_map *node; 1026 int has_dev; 1027 1028 if (supply == NULL) 1029 return -EINVAL; 1030 1031 if (consumer_dev_name != NULL) 1032 has_dev = 1; 1033 else 1034 has_dev = 0; 1035 1036 list_for_each_entry(node, ®ulator_map_list, list) { 1037 if (node->dev_name && consumer_dev_name) { 1038 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1039 continue; 1040 } else if (node->dev_name || consumer_dev_name) { 1041 continue; 1042 } 1043 1044 if (strcmp(node->supply, supply) != 0) 1045 continue; 1046 1047 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1048 consumer_dev_name, 1049 dev_name(&node->regulator->dev), 1050 node->regulator->desc->name, 1051 supply, 1052 dev_name(&rdev->dev), rdev_get_name(rdev)); 1053 return -EBUSY; 1054 } 1055 1056 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1057 if (node == NULL) 1058 return -ENOMEM; 1059 1060 node->regulator = rdev; 1061 node->supply = supply; 1062 1063 if (has_dev) { 1064 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1065 if (node->dev_name == NULL) { 1066 kfree(node); 1067 return -ENOMEM; 1068 } 1069 } 1070 1071 list_add(&node->list, ®ulator_map_list); 1072 return 0; 1073 } 1074 1075 static void unset_regulator_supplies(struct regulator_dev *rdev) 1076 { 1077 struct regulator_map *node, *n; 1078 1079 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1080 if (rdev == node->regulator) { 1081 list_del(&node->list); 1082 kfree(node->dev_name); 1083 kfree(node); 1084 } 1085 } 1086 } 1087 1088 #define REG_STR_SIZE 64 1089 1090 static struct regulator *create_regulator(struct regulator_dev *rdev, 1091 struct device *dev, 1092 const char *supply_name) 1093 { 1094 struct regulator *regulator; 1095 char buf[REG_STR_SIZE]; 1096 int err, size; 1097 1098 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1099 if (regulator == NULL) 1100 return NULL; 1101 1102 mutex_lock(&rdev->mutex); 1103 regulator->rdev = rdev; 1104 list_add(®ulator->list, &rdev->consumer_list); 1105 1106 if (dev) { 1107 regulator->dev = dev; 1108 1109 /* Add a link to the device sysfs entry */ 1110 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1111 dev->kobj.name, supply_name); 1112 if (size >= REG_STR_SIZE) 1113 goto overflow_err; 1114 1115 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1116 if (regulator->supply_name == NULL) 1117 goto overflow_err; 1118 1119 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1120 buf); 1121 if (err) { 1122 rdev_warn(rdev, "could not add device link %s err %d\n", 1123 dev->kobj.name, err); 1124 /* non-fatal */ 1125 } 1126 } else { 1127 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1128 if (regulator->supply_name == NULL) 1129 goto overflow_err; 1130 } 1131 1132 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1133 rdev->debugfs); 1134 if (!regulator->debugfs) { 1135 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1136 } else { 1137 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1138 ®ulator->uA_load); 1139 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1140 ®ulator->min_uV); 1141 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1142 ®ulator->max_uV); 1143 } 1144 1145 /* 1146 * Check now if the regulator is an always on regulator - if 1147 * it is then we don't need to do nearly so much work for 1148 * enable/disable calls. 1149 */ 1150 if (!_regulator_can_change_status(rdev) && 1151 _regulator_is_enabled(rdev)) 1152 regulator->always_on = true; 1153 1154 mutex_unlock(&rdev->mutex); 1155 return regulator; 1156 overflow_err: 1157 list_del(®ulator->list); 1158 kfree(regulator); 1159 mutex_unlock(&rdev->mutex); 1160 return NULL; 1161 } 1162 1163 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1164 { 1165 if (!rdev->desc->ops->enable_time) 1166 return rdev->desc->enable_time; 1167 return rdev->desc->ops->enable_time(rdev); 1168 } 1169 1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1171 const char *supply, 1172 int *ret) 1173 { 1174 struct regulator_dev *r; 1175 struct device_node *node; 1176 struct regulator_map *map; 1177 const char *devname = NULL; 1178 1179 /* first do a dt based lookup */ 1180 if (dev && dev->of_node) { 1181 node = of_get_regulator(dev, supply); 1182 if (node) { 1183 list_for_each_entry(r, ®ulator_list, list) 1184 if (r->dev.parent && 1185 node == r->dev.of_node) 1186 return r; 1187 } else { 1188 /* 1189 * If we couldn't even get the node then it's 1190 * not just that the device didn't register 1191 * yet, there's no node and we'll never 1192 * succeed. 1193 */ 1194 *ret = -ENODEV; 1195 } 1196 } 1197 1198 /* if not found, try doing it non-dt way */ 1199 if (dev) 1200 devname = dev_name(dev); 1201 1202 list_for_each_entry(r, ®ulator_list, list) 1203 if (strcmp(rdev_get_name(r), supply) == 0) 1204 return r; 1205 1206 list_for_each_entry(map, ®ulator_map_list, list) { 1207 /* If the mapping has a device set up it must match */ 1208 if (map->dev_name && 1209 (!devname || strcmp(map->dev_name, devname))) 1210 continue; 1211 1212 if (strcmp(map->supply, supply) == 0) 1213 return map->regulator; 1214 } 1215 1216 1217 return NULL; 1218 } 1219 1220 /* Internal regulator request function */ 1221 static struct regulator *_regulator_get(struct device *dev, const char *id, 1222 int exclusive) 1223 { 1224 struct regulator_dev *rdev; 1225 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1226 const char *devname = NULL; 1227 int ret; 1228 1229 if (id == NULL) { 1230 pr_err("get() with no identifier\n"); 1231 return regulator; 1232 } 1233 1234 if (dev) 1235 devname = dev_name(dev); 1236 1237 mutex_lock(®ulator_list_mutex); 1238 1239 rdev = regulator_dev_lookup(dev, id, &ret); 1240 if (rdev) 1241 goto found; 1242 1243 if (board_wants_dummy_regulator) { 1244 rdev = dummy_regulator_rdev; 1245 goto found; 1246 } 1247 1248 #ifdef CONFIG_REGULATOR_DUMMY 1249 if (!devname) 1250 devname = "deviceless"; 1251 1252 /* If the board didn't flag that it was fully constrained then 1253 * substitute in a dummy regulator so consumers can continue. 1254 */ 1255 if (!has_full_constraints) { 1256 pr_warn("%s supply %s not found, using dummy regulator\n", 1257 devname, id); 1258 rdev = dummy_regulator_rdev; 1259 goto found; 1260 } 1261 #endif 1262 1263 mutex_unlock(®ulator_list_mutex); 1264 return regulator; 1265 1266 found: 1267 if (rdev->exclusive) { 1268 regulator = ERR_PTR(-EPERM); 1269 goto out; 1270 } 1271 1272 if (exclusive && rdev->open_count) { 1273 regulator = ERR_PTR(-EBUSY); 1274 goto out; 1275 } 1276 1277 if (!try_module_get(rdev->owner)) 1278 goto out; 1279 1280 regulator = create_regulator(rdev, dev, id); 1281 if (regulator == NULL) { 1282 regulator = ERR_PTR(-ENOMEM); 1283 module_put(rdev->owner); 1284 goto out; 1285 } 1286 1287 rdev->open_count++; 1288 if (exclusive) { 1289 rdev->exclusive = 1; 1290 1291 ret = _regulator_is_enabled(rdev); 1292 if (ret > 0) 1293 rdev->use_count = 1; 1294 else 1295 rdev->use_count = 0; 1296 } 1297 1298 out: 1299 mutex_unlock(®ulator_list_mutex); 1300 1301 return regulator; 1302 } 1303 1304 /** 1305 * regulator_get - lookup and obtain a reference to a regulator. 1306 * @dev: device for regulator "consumer" 1307 * @id: Supply name or regulator ID. 1308 * 1309 * Returns a struct regulator corresponding to the regulator producer, 1310 * or IS_ERR() condition containing errno. 1311 * 1312 * Use of supply names configured via regulator_set_device_supply() is 1313 * strongly encouraged. It is recommended that the supply name used 1314 * should match the name used for the supply and/or the relevant 1315 * device pins in the datasheet. 1316 */ 1317 struct regulator *regulator_get(struct device *dev, const char *id) 1318 { 1319 return _regulator_get(dev, id, 0); 1320 } 1321 EXPORT_SYMBOL_GPL(regulator_get); 1322 1323 static void devm_regulator_release(struct device *dev, void *res) 1324 { 1325 regulator_put(*(struct regulator **)res); 1326 } 1327 1328 /** 1329 * devm_regulator_get - Resource managed regulator_get() 1330 * @dev: device for regulator "consumer" 1331 * @id: Supply name or regulator ID. 1332 * 1333 * Managed regulator_get(). Regulators returned from this function are 1334 * automatically regulator_put() on driver detach. See regulator_get() for more 1335 * information. 1336 */ 1337 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1338 { 1339 struct regulator **ptr, *regulator; 1340 1341 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1342 if (!ptr) 1343 return ERR_PTR(-ENOMEM); 1344 1345 regulator = regulator_get(dev, id); 1346 if (!IS_ERR(regulator)) { 1347 *ptr = regulator; 1348 devres_add(dev, ptr); 1349 } else { 1350 devres_free(ptr); 1351 } 1352 1353 return regulator; 1354 } 1355 EXPORT_SYMBOL_GPL(devm_regulator_get); 1356 1357 /** 1358 * regulator_get_exclusive - obtain exclusive access to a regulator. 1359 * @dev: device for regulator "consumer" 1360 * @id: Supply name or regulator ID. 1361 * 1362 * Returns a struct regulator corresponding to the regulator producer, 1363 * or IS_ERR() condition containing errno. Other consumers will be 1364 * unable to obtain this reference is held and the use count for the 1365 * regulator will be initialised to reflect the current state of the 1366 * regulator. 1367 * 1368 * This is intended for use by consumers which cannot tolerate shared 1369 * use of the regulator such as those which need to force the 1370 * regulator off for correct operation of the hardware they are 1371 * controlling. 1372 * 1373 * Use of supply names configured via regulator_set_device_supply() is 1374 * strongly encouraged. It is recommended that the supply name used 1375 * should match the name used for the supply and/or the relevant 1376 * device pins in the datasheet. 1377 */ 1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1379 { 1380 return _regulator_get(dev, id, 1); 1381 } 1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1383 1384 /** 1385 * regulator_put - "free" the regulator source 1386 * @regulator: regulator source 1387 * 1388 * Note: drivers must ensure that all regulator_enable calls made on this 1389 * regulator source are balanced by regulator_disable calls prior to calling 1390 * this function. 1391 */ 1392 void regulator_put(struct regulator *regulator) 1393 { 1394 struct regulator_dev *rdev; 1395 1396 if (regulator == NULL || IS_ERR(regulator)) 1397 return; 1398 1399 mutex_lock(®ulator_list_mutex); 1400 rdev = regulator->rdev; 1401 1402 debugfs_remove_recursive(regulator->debugfs); 1403 1404 /* remove any sysfs entries */ 1405 if (regulator->dev) 1406 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1407 kfree(regulator->supply_name); 1408 list_del(®ulator->list); 1409 kfree(regulator); 1410 1411 rdev->open_count--; 1412 rdev->exclusive = 0; 1413 1414 module_put(rdev->owner); 1415 mutex_unlock(®ulator_list_mutex); 1416 } 1417 EXPORT_SYMBOL_GPL(regulator_put); 1418 1419 static int devm_regulator_match(struct device *dev, void *res, void *data) 1420 { 1421 struct regulator **r = res; 1422 if (!r || !*r) { 1423 WARN_ON(!r || !*r); 1424 return 0; 1425 } 1426 return *r == data; 1427 } 1428 1429 /** 1430 * devm_regulator_put - Resource managed regulator_put() 1431 * @regulator: regulator to free 1432 * 1433 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1434 * this function will not need to be called and the resource management 1435 * code will ensure that the resource is freed. 1436 */ 1437 void devm_regulator_put(struct regulator *regulator) 1438 { 1439 int rc; 1440 1441 rc = devres_release(regulator->dev, devm_regulator_release, 1442 devm_regulator_match, regulator); 1443 if (rc != 0) 1444 WARN_ON(rc); 1445 } 1446 EXPORT_SYMBOL_GPL(devm_regulator_put); 1447 1448 static int _regulator_do_enable(struct regulator_dev *rdev) 1449 { 1450 int ret, delay; 1451 1452 /* Query before enabling in case configuration dependent. */ 1453 ret = _regulator_get_enable_time(rdev); 1454 if (ret >= 0) { 1455 delay = ret; 1456 } else { 1457 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1458 delay = 0; 1459 } 1460 1461 trace_regulator_enable(rdev_get_name(rdev)); 1462 1463 if (rdev->ena_gpio) { 1464 gpio_set_value_cansleep(rdev->ena_gpio, 1465 !rdev->ena_gpio_invert); 1466 rdev->ena_gpio_state = 1; 1467 } else if (rdev->desc->ops->enable) { 1468 ret = rdev->desc->ops->enable(rdev); 1469 if (ret < 0) 1470 return ret; 1471 } else { 1472 return -EINVAL; 1473 } 1474 1475 /* Allow the regulator to ramp; it would be useful to extend 1476 * this for bulk operations so that the regulators can ramp 1477 * together. */ 1478 trace_regulator_enable_delay(rdev_get_name(rdev)); 1479 1480 if (delay >= 1000) { 1481 mdelay(delay / 1000); 1482 udelay(delay % 1000); 1483 } else if (delay) { 1484 udelay(delay); 1485 } 1486 1487 trace_regulator_enable_complete(rdev_get_name(rdev)); 1488 1489 return 0; 1490 } 1491 1492 /* locks held by regulator_enable() */ 1493 static int _regulator_enable(struct regulator_dev *rdev) 1494 { 1495 int ret; 1496 1497 /* check voltage and requested load before enabling */ 1498 if (rdev->constraints && 1499 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1500 drms_uA_update(rdev); 1501 1502 if (rdev->use_count == 0) { 1503 /* The regulator may on if it's not switchable or left on */ 1504 ret = _regulator_is_enabled(rdev); 1505 if (ret == -EINVAL || ret == 0) { 1506 if (!_regulator_can_change_status(rdev)) 1507 return -EPERM; 1508 1509 ret = _regulator_do_enable(rdev); 1510 if (ret < 0) 1511 return ret; 1512 1513 } else if (ret < 0) { 1514 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1515 return ret; 1516 } 1517 /* Fallthrough on positive return values - already enabled */ 1518 } 1519 1520 rdev->use_count++; 1521 1522 return 0; 1523 } 1524 1525 /** 1526 * regulator_enable - enable regulator output 1527 * @regulator: regulator source 1528 * 1529 * Request that the regulator be enabled with the regulator output at 1530 * the predefined voltage or current value. Calls to regulator_enable() 1531 * must be balanced with calls to regulator_disable(). 1532 * 1533 * NOTE: the output value can be set by other drivers, boot loader or may be 1534 * hardwired in the regulator. 1535 */ 1536 int regulator_enable(struct regulator *regulator) 1537 { 1538 struct regulator_dev *rdev = regulator->rdev; 1539 int ret = 0; 1540 1541 if (regulator->always_on) 1542 return 0; 1543 1544 if (rdev->supply) { 1545 ret = regulator_enable(rdev->supply); 1546 if (ret != 0) 1547 return ret; 1548 } 1549 1550 mutex_lock(&rdev->mutex); 1551 ret = _regulator_enable(rdev); 1552 mutex_unlock(&rdev->mutex); 1553 1554 if (ret != 0 && rdev->supply) 1555 regulator_disable(rdev->supply); 1556 1557 return ret; 1558 } 1559 EXPORT_SYMBOL_GPL(regulator_enable); 1560 1561 static int _regulator_do_disable(struct regulator_dev *rdev) 1562 { 1563 int ret; 1564 1565 trace_regulator_disable(rdev_get_name(rdev)); 1566 1567 if (rdev->ena_gpio) { 1568 gpio_set_value_cansleep(rdev->ena_gpio, 1569 rdev->ena_gpio_invert); 1570 rdev->ena_gpio_state = 0; 1571 1572 } else if (rdev->desc->ops->disable) { 1573 ret = rdev->desc->ops->disable(rdev); 1574 if (ret != 0) 1575 return ret; 1576 } 1577 1578 trace_regulator_disable_complete(rdev_get_name(rdev)); 1579 1580 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1581 NULL); 1582 return 0; 1583 } 1584 1585 /* locks held by regulator_disable() */ 1586 static int _regulator_disable(struct regulator_dev *rdev) 1587 { 1588 int ret = 0; 1589 1590 if (WARN(rdev->use_count <= 0, 1591 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1592 return -EIO; 1593 1594 /* are we the last user and permitted to disable ? */ 1595 if (rdev->use_count == 1 && 1596 (rdev->constraints && !rdev->constraints->always_on)) { 1597 1598 /* we are last user */ 1599 if (_regulator_can_change_status(rdev)) { 1600 ret = _regulator_do_disable(rdev); 1601 if (ret < 0) { 1602 rdev_err(rdev, "failed to disable\n"); 1603 return ret; 1604 } 1605 } 1606 1607 rdev->use_count = 0; 1608 } else if (rdev->use_count > 1) { 1609 1610 if (rdev->constraints && 1611 (rdev->constraints->valid_ops_mask & 1612 REGULATOR_CHANGE_DRMS)) 1613 drms_uA_update(rdev); 1614 1615 rdev->use_count--; 1616 } 1617 1618 return ret; 1619 } 1620 1621 /** 1622 * regulator_disable - disable regulator output 1623 * @regulator: regulator source 1624 * 1625 * Disable the regulator output voltage or current. Calls to 1626 * regulator_enable() must be balanced with calls to 1627 * regulator_disable(). 1628 * 1629 * NOTE: this will only disable the regulator output if no other consumer 1630 * devices have it enabled, the regulator device supports disabling and 1631 * machine constraints permit this operation. 1632 */ 1633 int regulator_disable(struct regulator *regulator) 1634 { 1635 struct regulator_dev *rdev = regulator->rdev; 1636 int ret = 0; 1637 1638 if (regulator->always_on) 1639 return 0; 1640 1641 mutex_lock(&rdev->mutex); 1642 ret = _regulator_disable(rdev); 1643 mutex_unlock(&rdev->mutex); 1644 1645 if (ret == 0 && rdev->supply) 1646 regulator_disable(rdev->supply); 1647 1648 return ret; 1649 } 1650 EXPORT_SYMBOL_GPL(regulator_disable); 1651 1652 /* locks held by regulator_force_disable() */ 1653 static int _regulator_force_disable(struct regulator_dev *rdev) 1654 { 1655 int ret = 0; 1656 1657 /* force disable */ 1658 if (rdev->desc->ops->disable) { 1659 /* ah well, who wants to live forever... */ 1660 ret = rdev->desc->ops->disable(rdev); 1661 if (ret < 0) { 1662 rdev_err(rdev, "failed to force disable\n"); 1663 return ret; 1664 } 1665 /* notify other consumers that power has been forced off */ 1666 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1667 REGULATOR_EVENT_DISABLE, NULL); 1668 } 1669 1670 return ret; 1671 } 1672 1673 /** 1674 * regulator_force_disable - force disable regulator output 1675 * @regulator: regulator source 1676 * 1677 * Forcibly disable the regulator output voltage or current. 1678 * NOTE: this *will* disable the regulator output even if other consumer 1679 * devices have it enabled. This should be used for situations when device 1680 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1681 */ 1682 int regulator_force_disable(struct regulator *regulator) 1683 { 1684 struct regulator_dev *rdev = regulator->rdev; 1685 int ret; 1686 1687 mutex_lock(&rdev->mutex); 1688 regulator->uA_load = 0; 1689 ret = _regulator_force_disable(regulator->rdev); 1690 mutex_unlock(&rdev->mutex); 1691 1692 if (rdev->supply) 1693 while (rdev->open_count--) 1694 regulator_disable(rdev->supply); 1695 1696 return ret; 1697 } 1698 EXPORT_SYMBOL_GPL(regulator_force_disable); 1699 1700 static void regulator_disable_work(struct work_struct *work) 1701 { 1702 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1703 disable_work.work); 1704 int count, i, ret; 1705 1706 mutex_lock(&rdev->mutex); 1707 1708 BUG_ON(!rdev->deferred_disables); 1709 1710 count = rdev->deferred_disables; 1711 rdev->deferred_disables = 0; 1712 1713 for (i = 0; i < count; i++) { 1714 ret = _regulator_disable(rdev); 1715 if (ret != 0) 1716 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1717 } 1718 1719 mutex_unlock(&rdev->mutex); 1720 1721 if (rdev->supply) { 1722 for (i = 0; i < count; i++) { 1723 ret = regulator_disable(rdev->supply); 1724 if (ret != 0) { 1725 rdev_err(rdev, 1726 "Supply disable failed: %d\n", ret); 1727 } 1728 } 1729 } 1730 } 1731 1732 /** 1733 * regulator_disable_deferred - disable regulator output with delay 1734 * @regulator: regulator source 1735 * @ms: miliseconds until the regulator is disabled 1736 * 1737 * Execute regulator_disable() on the regulator after a delay. This 1738 * is intended for use with devices that require some time to quiesce. 1739 * 1740 * NOTE: this will only disable the regulator output if no other consumer 1741 * devices have it enabled, the regulator device supports disabling and 1742 * machine constraints permit this operation. 1743 */ 1744 int regulator_disable_deferred(struct regulator *regulator, int ms) 1745 { 1746 struct regulator_dev *rdev = regulator->rdev; 1747 int ret; 1748 1749 if (regulator->always_on) 1750 return 0; 1751 1752 if (!ms) 1753 return regulator_disable(regulator); 1754 1755 mutex_lock(&rdev->mutex); 1756 rdev->deferred_disables++; 1757 mutex_unlock(&rdev->mutex); 1758 1759 ret = schedule_delayed_work(&rdev->disable_work, 1760 msecs_to_jiffies(ms)); 1761 if (ret < 0) 1762 return ret; 1763 else 1764 return 0; 1765 } 1766 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1767 1768 /** 1769 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1770 * 1771 * @rdev: regulator to operate on 1772 * 1773 * Regulators that use regmap for their register I/O can set the 1774 * enable_reg and enable_mask fields in their descriptor and then use 1775 * this as their is_enabled operation, saving some code. 1776 */ 1777 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1778 { 1779 unsigned int val; 1780 int ret; 1781 1782 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1783 if (ret != 0) 1784 return ret; 1785 1786 return (val & rdev->desc->enable_mask) != 0; 1787 } 1788 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1789 1790 /** 1791 * regulator_enable_regmap - standard enable() for regmap users 1792 * 1793 * @rdev: regulator to operate on 1794 * 1795 * Regulators that use regmap for their register I/O can set the 1796 * enable_reg and enable_mask fields in their descriptor and then use 1797 * this as their enable() operation, saving some code. 1798 */ 1799 int regulator_enable_regmap(struct regulator_dev *rdev) 1800 { 1801 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1802 rdev->desc->enable_mask, 1803 rdev->desc->enable_mask); 1804 } 1805 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1806 1807 /** 1808 * regulator_disable_regmap - standard disable() for regmap users 1809 * 1810 * @rdev: regulator to operate on 1811 * 1812 * Regulators that use regmap for their register I/O can set the 1813 * enable_reg and enable_mask fields in their descriptor and then use 1814 * this as their disable() operation, saving some code. 1815 */ 1816 int regulator_disable_regmap(struct regulator_dev *rdev) 1817 { 1818 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1819 rdev->desc->enable_mask, 0); 1820 } 1821 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1822 1823 static int _regulator_is_enabled(struct regulator_dev *rdev) 1824 { 1825 /* A GPIO control always takes precedence */ 1826 if (rdev->ena_gpio) 1827 return rdev->ena_gpio_state; 1828 1829 /* If we don't know then assume that the regulator is always on */ 1830 if (!rdev->desc->ops->is_enabled) 1831 return 1; 1832 1833 return rdev->desc->ops->is_enabled(rdev); 1834 } 1835 1836 /** 1837 * regulator_is_enabled - is the regulator output enabled 1838 * @regulator: regulator source 1839 * 1840 * Returns positive if the regulator driver backing the source/client 1841 * has requested that the device be enabled, zero if it hasn't, else a 1842 * negative errno code. 1843 * 1844 * Note that the device backing this regulator handle can have multiple 1845 * users, so it might be enabled even if regulator_enable() was never 1846 * called for this particular source. 1847 */ 1848 int regulator_is_enabled(struct regulator *regulator) 1849 { 1850 int ret; 1851 1852 if (regulator->always_on) 1853 return 1; 1854 1855 mutex_lock(®ulator->rdev->mutex); 1856 ret = _regulator_is_enabled(regulator->rdev); 1857 mutex_unlock(®ulator->rdev->mutex); 1858 1859 return ret; 1860 } 1861 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1862 1863 /** 1864 * regulator_count_voltages - count regulator_list_voltage() selectors 1865 * @regulator: regulator source 1866 * 1867 * Returns number of selectors, or negative errno. Selectors are 1868 * numbered starting at zero, and typically correspond to bitfields 1869 * in hardware registers. 1870 */ 1871 int regulator_count_voltages(struct regulator *regulator) 1872 { 1873 struct regulator_dev *rdev = regulator->rdev; 1874 1875 return rdev->desc->n_voltages ? : -EINVAL; 1876 } 1877 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1878 1879 /** 1880 * regulator_list_voltage_linear - List voltages with simple calculation 1881 * 1882 * @rdev: Regulator device 1883 * @selector: Selector to convert into a voltage 1884 * 1885 * Regulators with a simple linear mapping between voltages and 1886 * selectors can set min_uV and uV_step in the regulator descriptor 1887 * and then use this function as their list_voltage() operation, 1888 */ 1889 int regulator_list_voltage_linear(struct regulator_dev *rdev, 1890 unsigned int selector) 1891 { 1892 if (selector >= rdev->desc->n_voltages) 1893 return -EINVAL; 1894 1895 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 1896 } 1897 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 1898 1899 /** 1900 * regulator_list_voltage_table - List voltages with table based mapping 1901 * 1902 * @rdev: Regulator device 1903 * @selector: Selector to convert into a voltage 1904 * 1905 * Regulators with table based mapping between voltages and 1906 * selectors can set volt_table in the regulator descriptor 1907 * and then use this function as their list_voltage() operation. 1908 */ 1909 int regulator_list_voltage_table(struct regulator_dev *rdev, 1910 unsigned int selector) 1911 { 1912 if (!rdev->desc->volt_table) { 1913 BUG_ON(!rdev->desc->volt_table); 1914 return -EINVAL; 1915 } 1916 1917 if (selector >= rdev->desc->n_voltages) 1918 return -EINVAL; 1919 1920 return rdev->desc->volt_table[selector]; 1921 } 1922 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 1923 1924 /** 1925 * regulator_list_voltage - enumerate supported voltages 1926 * @regulator: regulator source 1927 * @selector: identify voltage to list 1928 * Context: can sleep 1929 * 1930 * Returns a voltage that can be passed to @regulator_set_voltage(), 1931 * zero if this selector code can't be used on this system, or a 1932 * negative errno. 1933 */ 1934 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1935 { 1936 struct regulator_dev *rdev = regulator->rdev; 1937 struct regulator_ops *ops = rdev->desc->ops; 1938 int ret; 1939 1940 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1941 return -EINVAL; 1942 1943 mutex_lock(&rdev->mutex); 1944 ret = ops->list_voltage(rdev, selector); 1945 mutex_unlock(&rdev->mutex); 1946 1947 if (ret > 0) { 1948 if (ret < rdev->constraints->min_uV) 1949 ret = 0; 1950 else if (ret > rdev->constraints->max_uV) 1951 ret = 0; 1952 } 1953 1954 return ret; 1955 } 1956 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1957 1958 /** 1959 * regulator_is_supported_voltage - check if a voltage range can be supported 1960 * 1961 * @regulator: Regulator to check. 1962 * @min_uV: Minimum required voltage in uV. 1963 * @max_uV: Maximum required voltage in uV. 1964 * 1965 * Returns a boolean or a negative error code. 1966 */ 1967 int regulator_is_supported_voltage(struct regulator *regulator, 1968 int min_uV, int max_uV) 1969 { 1970 struct regulator_dev *rdev = regulator->rdev; 1971 int i, voltages, ret; 1972 1973 /* If we can't change voltage check the current voltage */ 1974 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 1975 ret = regulator_get_voltage(regulator); 1976 if (ret >= 0) 1977 return (min_uV >= ret && ret <= max_uV); 1978 else 1979 return ret; 1980 } 1981 1982 ret = regulator_count_voltages(regulator); 1983 if (ret < 0) 1984 return ret; 1985 voltages = ret; 1986 1987 for (i = 0; i < voltages; i++) { 1988 ret = regulator_list_voltage(regulator, i); 1989 1990 if (ret >= min_uV && ret <= max_uV) 1991 return 1; 1992 } 1993 1994 return 0; 1995 } 1996 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 1997 1998 /** 1999 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 2000 * 2001 * @rdev: regulator to operate on 2002 * 2003 * Regulators that use regmap for their register I/O can set the 2004 * vsel_reg and vsel_mask fields in their descriptor and then use this 2005 * as their get_voltage_vsel operation, saving some code. 2006 */ 2007 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 2008 { 2009 unsigned int val; 2010 int ret; 2011 2012 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 2013 if (ret != 0) 2014 return ret; 2015 2016 val &= rdev->desc->vsel_mask; 2017 val >>= ffs(rdev->desc->vsel_mask) - 1; 2018 2019 return val; 2020 } 2021 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 2022 2023 /** 2024 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 2025 * 2026 * @rdev: regulator to operate on 2027 * @sel: Selector to set 2028 * 2029 * Regulators that use regmap for their register I/O can set the 2030 * vsel_reg and vsel_mask fields in their descriptor and then use this 2031 * as their set_voltage_vsel operation, saving some code. 2032 */ 2033 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2034 { 2035 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2036 2037 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2038 rdev->desc->vsel_mask, sel); 2039 } 2040 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2041 2042 /** 2043 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2044 * 2045 * @rdev: Regulator to operate on 2046 * @min_uV: Lower bound for voltage 2047 * @max_uV: Upper bound for voltage 2048 * 2049 * Drivers implementing set_voltage_sel() and list_voltage() can use 2050 * this as their map_voltage() operation. It will find a suitable 2051 * voltage by calling list_voltage() until it gets something in bounds 2052 * for the requested voltages. 2053 */ 2054 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2055 int min_uV, int max_uV) 2056 { 2057 int best_val = INT_MAX; 2058 int selector = 0; 2059 int i, ret; 2060 2061 /* Find the smallest voltage that falls within the specified 2062 * range. 2063 */ 2064 for (i = 0; i < rdev->desc->n_voltages; i++) { 2065 ret = rdev->desc->ops->list_voltage(rdev, i); 2066 if (ret < 0) 2067 continue; 2068 2069 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2070 best_val = ret; 2071 selector = i; 2072 } 2073 } 2074 2075 if (best_val != INT_MAX) 2076 return selector; 2077 else 2078 return -EINVAL; 2079 } 2080 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2081 2082 /** 2083 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2084 * 2085 * @rdev: Regulator to operate on 2086 * @min_uV: Lower bound for voltage 2087 * @max_uV: Upper bound for voltage 2088 * 2089 * Drivers providing min_uV and uV_step in their regulator_desc can 2090 * use this as their map_voltage() operation. 2091 */ 2092 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2093 int min_uV, int max_uV) 2094 { 2095 int ret, voltage; 2096 2097 /* Allow uV_step to be 0 for fixed voltage */ 2098 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2099 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2100 return 0; 2101 else 2102 return -EINVAL; 2103 } 2104 2105 if (!rdev->desc->uV_step) { 2106 BUG_ON(!rdev->desc->uV_step); 2107 return -EINVAL; 2108 } 2109 2110 if (min_uV < rdev->desc->min_uV) 2111 min_uV = rdev->desc->min_uV; 2112 2113 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2114 if (ret < 0) 2115 return ret; 2116 2117 /* Map back into a voltage to verify we're still in bounds */ 2118 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2119 if (voltage < min_uV || voltage > max_uV) 2120 return -EINVAL; 2121 2122 return ret; 2123 } 2124 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2125 2126 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2127 int min_uV, int max_uV) 2128 { 2129 int ret; 2130 int delay = 0; 2131 int best_val = 0; 2132 unsigned int selector; 2133 int old_selector = -1; 2134 2135 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2136 2137 min_uV += rdev->constraints->uV_offset; 2138 max_uV += rdev->constraints->uV_offset; 2139 2140 /* 2141 * If we can't obtain the old selector there is not enough 2142 * info to call set_voltage_time_sel(). 2143 */ 2144 if (_regulator_is_enabled(rdev) && 2145 rdev->desc->ops->set_voltage_time_sel && 2146 rdev->desc->ops->get_voltage_sel) { 2147 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2148 if (old_selector < 0) 2149 return old_selector; 2150 } 2151 2152 if (rdev->desc->ops->set_voltage) { 2153 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2154 &selector); 2155 2156 if (ret >= 0) { 2157 if (rdev->desc->ops->list_voltage) 2158 best_val = rdev->desc->ops->list_voltage(rdev, 2159 selector); 2160 else 2161 best_val = _regulator_get_voltage(rdev); 2162 } 2163 2164 } else if (rdev->desc->ops->set_voltage_sel) { 2165 if (rdev->desc->ops->map_voltage) { 2166 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2167 max_uV); 2168 } else { 2169 if (rdev->desc->ops->list_voltage == 2170 regulator_list_voltage_linear) 2171 ret = regulator_map_voltage_linear(rdev, 2172 min_uV, max_uV); 2173 else 2174 ret = regulator_map_voltage_iterate(rdev, 2175 min_uV, max_uV); 2176 } 2177 2178 if (ret >= 0) { 2179 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2180 if (min_uV <= best_val && max_uV >= best_val) { 2181 selector = ret; 2182 ret = rdev->desc->ops->set_voltage_sel(rdev, 2183 ret); 2184 } else { 2185 ret = -EINVAL; 2186 } 2187 } 2188 } else { 2189 ret = -EINVAL; 2190 } 2191 2192 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2193 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2194 rdev->desc->ops->set_voltage_time_sel) { 2195 2196 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2197 old_selector, selector); 2198 if (delay < 0) { 2199 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2200 delay); 2201 delay = 0; 2202 } 2203 2204 /* Insert any necessary delays */ 2205 if (delay >= 1000) { 2206 mdelay(delay / 1000); 2207 udelay(delay % 1000); 2208 } else if (delay) { 2209 udelay(delay); 2210 } 2211 } 2212 2213 if (ret == 0 && best_val >= 0) { 2214 unsigned long data = best_val; 2215 2216 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2217 (void *)data); 2218 } 2219 2220 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2221 2222 return ret; 2223 } 2224 2225 /** 2226 * regulator_set_voltage - set regulator output voltage 2227 * @regulator: regulator source 2228 * @min_uV: Minimum required voltage in uV 2229 * @max_uV: Maximum acceptable voltage in uV 2230 * 2231 * Sets a voltage regulator to the desired output voltage. This can be set 2232 * during any regulator state. IOW, regulator can be disabled or enabled. 2233 * 2234 * If the regulator is enabled then the voltage will change to the new value 2235 * immediately otherwise if the regulator is disabled the regulator will 2236 * output at the new voltage when enabled. 2237 * 2238 * NOTE: If the regulator is shared between several devices then the lowest 2239 * request voltage that meets the system constraints will be used. 2240 * Regulator system constraints must be set for this regulator before 2241 * calling this function otherwise this call will fail. 2242 */ 2243 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2244 { 2245 struct regulator_dev *rdev = regulator->rdev; 2246 int ret = 0; 2247 2248 mutex_lock(&rdev->mutex); 2249 2250 /* If we're setting the same range as last time the change 2251 * should be a noop (some cpufreq implementations use the same 2252 * voltage for multiple frequencies, for example). 2253 */ 2254 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2255 goto out; 2256 2257 /* sanity check */ 2258 if (!rdev->desc->ops->set_voltage && 2259 !rdev->desc->ops->set_voltage_sel) { 2260 ret = -EINVAL; 2261 goto out; 2262 } 2263 2264 /* constraints check */ 2265 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2266 if (ret < 0) 2267 goto out; 2268 regulator->min_uV = min_uV; 2269 regulator->max_uV = max_uV; 2270 2271 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2272 if (ret < 0) 2273 goto out; 2274 2275 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2276 2277 out: 2278 mutex_unlock(&rdev->mutex); 2279 return ret; 2280 } 2281 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2282 2283 /** 2284 * regulator_set_voltage_time - get raise/fall time 2285 * @regulator: regulator source 2286 * @old_uV: starting voltage in microvolts 2287 * @new_uV: target voltage in microvolts 2288 * 2289 * Provided with the starting and ending voltage, this function attempts to 2290 * calculate the time in microseconds required to rise or fall to this new 2291 * voltage. 2292 */ 2293 int regulator_set_voltage_time(struct regulator *regulator, 2294 int old_uV, int new_uV) 2295 { 2296 struct regulator_dev *rdev = regulator->rdev; 2297 struct regulator_ops *ops = rdev->desc->ops; 2298 int old_sel = -1; 2299 int new_sel = -1; 2300 int voltage; 2301 int i; 2302 2303 /* Currently requires operations to do this */ 2304 if (!ops->list_voltage || !ops->set_voltage_time_sel 2305 || !rdev->desc->n_voltages) 2306 return -EINVAL; 2307 2308 for (i = 0; i < rdev->desc->n_voltages; i++) { 2309 /* We only look for exact voltage matches here */ 2310 voltage = regulator_list_voltage(regulator, i); 2311 if (voltage < 0) 2312 return -EINVAL; 2313 if (voltage == 0) 2314 continue; 2315 if (voltage == old_uV) 2316 old_sel = i; 2317 if (voltage == new_uV) 2318 new_sel = i; 2319 } 2320 2321 if (old_sel < 0 || new_sel < 0) 2322 return -EINVAL; 2323 2324 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2325 } 2326 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2327 2328 /** 2329 * regulator_set_voltage_time_sel - get raise/fall time 2330 * @rdev: regulator source device 2331 * @old_selector: selector for starting voltage 2332 * @new_selector: selector for target voltage 2333 * 2334 * Provided with the starting and target voltage selectors, this function 2335 * returns time in microseconds required to rise or fall to this new voltage 2336 * 2337 * Drivers providing ramp_delay in regulation_constraints can use this as their 2338 * set_voltage_time_sel() operation. 2339 */ 2340 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2341 unsigned int old_selector, 2342 unsigned int new_selector) 2343 { 2344 unsigned int ramp_delay = 0; 2345 int old_volt, new_volt; 2346 2347 if (rdev->constraints->ramp_delay) 2348 ramp_delay = rdev->constraints->ramp_delay; 2349 else if (rdev->desc->ramp_delay) 2350 ramp_delay = rdev->desc->ramp_delay; 2351 2352 if (ramp_delay == 0) { 2353 rdev_warn(rdev, "ramp_delay not set\n"); 2354 return 0; 2355 } 2356 2357 /* sanity check */ 2358 if (!rdev->desc->ops->list_voltage) 2359 return -EINVAL; 2360 2361 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2362 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2363 2364 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2365 } 2366 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2367 2368 /** 2369 * regulator_sync_voltage - re-apply last regulator output voltage 2370 * @regulator: regulator source 2371 * 2372 * Re-apply the last configured voltage. This is intended to be used 2373 * where some external control source the consumer is cooperating with 2374 * has caused the configured voltage to change. 2375 */ 2376 int regulator_sync_voltage(struct regulator *regulator) 2377 { 2378 struct regulator_dev *rdev = regulator->rdev; 2379 int ret, min_uV, max_uV; 2380 2381 mutex_lock(&rdev->mutex); 2382 2383 if (!rdev->desc->ops->set_voltage && 2384 !rdev->desc->ops->set_voltage_sel) { 2385 ret = -EINVAL; 2386 goto out; 2387 } 2388 2389 /* This is only going to work if we've had a voltage configured. */ 2390 if (!regulator->min_uV && !regulator->max_uV) { 2391 ret = -EINVAL; 2392 goto out; 2393 } 2394 2395 min_uV = regulator->min_uV; 2396 max_uV = regulator->max_uV; 2397 2398 /* This should be a paranoia check... */ 2399 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2400 if (ret < 0) 2401 goto out; 2402 2403 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2404 if (ret < 0) 2405 goto out; 2406 2407 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2408 2409 out: 2410 mutex_unlock(&rdev->mutex); 2411 return ret; 2412 } 2413 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2414 2415 static int _regulator_get_voltage(struct regulator_dev *rdev) 2416 { 2417 int sel, ret; 2418 2419 if (rdev->desc->ops->get_voltage_sel) { 2420 sel = rdev->desc->ops->get_voltage_sel(rdev); 2421 if (sel < 0) 2422 return sel; 2423 ret = rdev->desc->ops->list_voltage(rdev, sel); 2424 } else if (rdev->desc->ops->get_voltage) { 2425 ret = rdev->desc->ops->get_voltage(rdev); 2426 } else if (rdev->desc->ops->list_voltage) { 2427 ret = rdev->desc->ops->list_voltage(rdev, 0); 2428 } else { 2429 return -EINVAL; 2430 } 2431 2432 if (ret < 0) 2433 return ret; 2434 return ret - rdev->constraints->uV_offset; 2435 } 2436 2437 /** 2438 * regulator_get_voltage - get regulator output voltage 2439 * @regulator: regulator source 2440 * 2441 * This returns the current regulator voltage in uV. 2442 * 2443 * NOTE: If the regulator is disabled it will return the voltage value. This 2444 * function should not be used to determine regulator state. 2445 */ 2446 int regulator_get_voltage(struct regulator *regulator) 2447 { 2448 int ret; 2449 2450 mutex_lock(®ulator->rdev->mutex); 2451 2452 ret = _regulator_get_voltage(regulator->rdev); 2453 2454 mutex_unlock(®ulator->rdev->mutex); 2455 2456 return ret; 2457 } 2458 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2459 2460 /** 2461 * regulator_set_current_limit - set regulator output current limit 2462 * @regulator: regulator source 2463 * @min_uA: Minimuum supported current in uA 2464 * @max_uA: Maximum supported current in uA 2465 * 2466 * Sets current sink to the desired output current. This can be set during 2467 * any regulator state. IOW, regulator can be disabled or enabled. 2468 * 2469 * If the regulator is enabled then the current will change to the new value 2470 * immediately otherwise if the regulator is disabled the regulator will 2471 * output at the new current when enabled. 2472 * 2473 * NOTE: Regulator system constraints must be set for this regulator before 2474 * calling this function otherwise this call will fail. 2475 */ 2476 int regulator_set_current_limit(struct regulator *regulator, 2477 int min_uA, int max_uA) 2478 { 2479 struct regulator_dev *rdev = regulator->rdev; 2480 int ret; 2481 2482 mutex_lock(&rdev->mutex); 2483 2484 /* sanity check */ 2485 if (!rdev->desc->ops->set_current_limit) { 2486 ret = -EINVAL; 2487 goto out; 2488 } 2489 2490 /* constraints check */ 2491 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2492 if (ret < 0) 2493 goto out; 2494 2495 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2496 out: 2497 mutex_unlock(&rdev->mutex); 2498 return ret; 2499 } 2500 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2501 2502 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2503 { 2504 int ret; 2505 2506 mutex_lock(&rdev->mutex); 2507 2508 /* sanity check */ 2509 if (!rdev->desc->ops->get_current_limit) { 2510 ret = -EINVAL; 2511 goto out; 2512 } 2513 2514 ret = rdev->desc->ops->get_current_limit(rdev); 2515 out: 2516 mutex_unlock(&rdev->mutex); 2517 return ret; 2518 } 2519 2520 /** 2521 * regulator_get_current_limit - get regulator output current 2522 * @regulator: regulator source 2523 * 2524 * This returns the current supplied by the specified current sink in uA. 2525 * 2526 * NOTE: If the regulator is disabled it will return the current value. This 2527 * function should not be used to determine regulator state. 2528 */ 2529 int regulator_get_current_limit(struct regulator *regulator) 2530 { 2531 return _regulator_get_current_limit(regulator->rdev); 2532 } 2533 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2534 2535 /** 2536 * regulator_set_mode - set regulator operating mode 2537 * @regulator: regulator source 2538 * @mode: operating mode - one of the REGULATOR_MODE constants 2539 * 2540 * Set regulator operating mode to increase regulator efficiency or improve 2541 * regulation performance. 2542 * 2543 * NOTE: Regulator system constraints must be set for this regulator before 2544 * calling this function otherwise this call will fail. 2545 */ 2546 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2547 { 2548 struct regulator_dev *rdev = regulator->rdev; 2549 int ret; 2550 int regulator_curr_mode; 2551 2552 mutex_lock(&rdev->mutex); 2553 2554 /* sanity check */ 2555 if (!rdev->desc->ops->set_mode) { 2556 ret = -EINVAL; 2557 goto out; 2558 } 2559 2560 /* return if the same mode is requested */ 2561 if (rdev->desc->ops->get_mode) { 2562 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2563 if (regulator_curr_mode == mode) { 2564 ret = 0; 2565 goto out; 2566 } 2567 } 2568 2569 /* constraints check */ 2570 ret = regulator_mode_constrain(rdev, &mode); 2571 if (ret < 0) 2572 goto out; 2573 2574 ret = rdev->desc->ops->set_mode(rdev, mode); 2575 out: 2576 mutex_unlock(&rdev->mutex); 2577 return ret; 2578 } 2579 EXPORT_SYMBOL_GPL(regulator_set_mode); 2580 2581 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2582 { 2583 int ret; 2584 2585 mutex_lock(&rdev->mutex); 2586 2587 /* sanity check */ 2588 if (!rdev->desc->ops->get_mode) { 2589 ret = -EINVAL; 2590 goto out; 2591 } 2592 2593 ret = rdev->desc->ops->get_mode(rdev); 2594 out: 2595 mutex_unlock(&rdev->mutex); 2596 return ret; 2597 } 2598 2599 /** 2600 * regulator_get_mode - get regulator operating mode 2601 * @regulator: regulator source 2602 * 2603 * Get the current regulator operating mode. 2604 */ 2605 unsigned int regulator_get_mode(struct regulator *regulator) 2606 { 2607 return _regulator_get_mode(regulator->rdev); 2608 } 2609 EXPORT_SYMBOL_GPL(regulator_get_mode); 2610 2611 /** 2612 * regulator_set_optimum_mode - set regulator optimum operating mode 2613 * @regulator: regulator source 2614 * @uA_load: load current 2615 * 2616 * Notifies the regulator core of a new device load. This is then used by 2617 * DRMS (if enabled by constraints) to set the most efficient regulator 2618 * operating mode for the new regulator loading. 2619 * 2620 * Consumer devices notify their supply regulator of the maximum power 2621 * they will require (can be taken from device datasheet in the power 2622 * consumption tables) when they change operational status and hence power 2623 * state. Examples of operational state changes that can affect power 2624 * consumption are :- 2625 * 2626 * o Device is opened / closed. 2627 * o Device I/O is about to begin or has just finished. 2628 * o Device is idling in between work. 2629 * 2630 * This information is also exported via sysfs to userspace. 2631 * 2632 * DRMS will sum the total requested load on the regulator and change 2633 * to the most efficient operating mode if platform constraints allow. 2634 * 2635 * Returns the new regulator mode or error. 2636 */ 2637 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2638 { 2639 struct regulator_dev *rdev = regulator->rdev; 2640 struct regulator *consumer; 2641 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2642 unsigned int mode; 2643 2644 if (rdev->supply) 2645 input_uV = regulator_get_voltage(rdev->supply); 2646 2647 mutex_lock(&rdev->mutex); 2648 2649 /* 2650 * first check to see if we can set modes at all, otherwise just 2651 * tell the consumer everything is OK. 2652 */ 2653 regulator->uA_load = uA_load; 2654 ret = regulator_check_drms(rdev); 2655 if (ret < 0) { 2656 ret = 0; 2657 goto out; 2658 } 2659 2660 if (!rdev->desc->ops->get_optimum_mode) 2661 goto out; 2662 2663 /* 2664 * we can actually do this so any errors are indicators of 2665 * potential real failure. 2666 */ 2667 ret = -EINVAL; 2668 2669 if (!rdev->desc->ops->set_mode) 2670 goto out; 2671 2672 /* get output voltage */ 2673 output_uV = _regulator_get_voltage(rdev); 2674 if (output_uV <= 0) { 2675 rdev_err(rdev, "invalid output voltage found\n"); 2676 goto out; 2677 } 2678 2679 /* No supply? Use constraint voltage */ 2680 if (input_uV <= 0) 2681 input_uV = rdev->constraints->input_uV; 2682 if (input_uV <= 0) { 2683 rdev_err(rdev, "invalid input voltage found\n"); 2684 goto out; 2685 } 2686 2687 /* calc total requested load for this regulator */ 2688 list_for_each_entry(consumer, &rdev->consumer_list, list) 2689 total_uA_load += consumer->uA_load; 2690 2691 mode = rdev->desc->ops->get_optimum_mode(rdev, 2692 input_uV, output_uV, 2693 total_uA_load); 2694 ret = regulator_mode_constrain(rdev, &mode); 2695 if (ret < 0) { 2696 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2697 total_uA_load, input_uV, output_uV); 2698 goto out; 2699 } 2700 2701 ret = rdev->desc->ops->set_mode(rdev, mode); 2702 if (ret < 0) { 2703 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2704 goto out; 2705 } 2706 ret = mode; 2707 out: 2708 mutex_unlock(&rdev->mutex); 2709 return ret; 2710 } 2711 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2712 2713 /** 2714 * regulator_set_bypass_regmap - Default set_bypass() using regmap 2715 * 2716 * @rdev: device to operate on. 2717 * @enable: state to set. 2718 */ 2719 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) 2720 { 2721 unsigned int val; 2722 2723 if (enable) 2724 val = rdev->desc->bypass_mask; 2725 else 2726 val = 0; 2727 2728 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, 2729 rdev->desc->bypass_mask, val); 2730 } 2731 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); 2732 2733 /** 2734 * regulator_get_bypass_regmap - Default get_bypass() using regmap 2735 * 2736 * @rdev: device to operate on. 2737 * @enable: current state. 2738 */ 2739 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) 2740 { 2741 unsigned int val; 2742 int ret; 2743 2744 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); 2745 if (ret != 0) 2746 return ret; 2747 2748 *enable = val & rdev->desc->bypass_mask; 2749 2750 return 0; 2751 } 2752 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); 2753 2754 /** 2755 * regulator_allow_bypass - allow the regulator to go into bypass mode 2756 * 2757 * @regulator: Regulator to configure 2758 * @allow: enable or disable bypass mode 2759 * 2760 * Allow the regulator to go into bypass mode if all other consumers 2761 * for the regulator also enable bypass mode and the machine 2762 * constraints allow this. Bypass mode means that the regulator is 2763 * simply passing the input directly to the output with no regulation. 2764 */ 2765 int regulator_allow_bypass(struct regulator *regulator, bool enable) 2766 { 2767 struct regulator_dev *rdev = regulator->rdev; 2768 int ret = 0; 2769 2770 if (!rdev->desc->ops->set_bypass) 2771 return 0; 2772 2773 if (rdev->constraints && 2774 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 2775 return 0; 2776 2777 mutex_lock(&rdev->mutex); 2778 2779 if (enable && !regulator->bypass) { 2780 rdev->bypass_count++; 2781 2782 if (rdev->bypass_count == rdev->open_count) { 2783 ret = rdev->desc->ops->set_bypass(rdev, enable); 2784 if (ret != 0) 2785 rdev->bypass_count--; 2786 } 2787 2788 } else if (!enable && regulator->bypass) { 2789 rdev->bypass_count--; 2790 2791 if (rdev->bypass_count != rdev->open_count) { 2792 ret = rdev->desc->ops->set_bypass(rdev, enable); 2793 if (ret != 0) 2794 rdev->bypass_count++; 2795 } 2796 } 2797 2798 if (ret == 0) 2799 regulator->bypass = enable; 2800 2801 mutex_unlock(&rdev->mutex); 2802 2803 return ret; 2804 } 2805 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 2806 2807 /** 2808 * regulator_register_notifier - register regulator event notifier 2809 * @regulator: regulator source 2810 * @nb: notifier block 2811 * 2812 * Register notifier block to receive regulator events. 2813 */ 2814 int regulator_register_notifier(struct regulator *regulator, 2815 struct notifier_block *nb) 2816 { 2817 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2818 nb); 2819 } 2820 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2821 2822 /** 2823 * regulator_unregister_notifier - unregister regulator event notifier 2824 * @regulator: regulator source 2825 * @nb: notifier block 2826 * 2827 * Unregister regulator event notifier block. 2828 */ 2829 int regulator_unregister_notifier(struct regulator *regulator, 2830 struct notifier_block *nb) 2831 { 2832 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2833 nb); 2834 } 2835 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2836 2837 /* notify regulator consumers and downstream regulator consumers. 2838 * Note mutex must be held by caller. 2839 */ 2840 static void _notifier_call_chain(struct regulator_dev *rdev, 2841 unsigned long event, void *data) 2842 { 2843 /* call rdev chain first */ 2844 blocking_notifier_call_chain(&rdev->notifier, event, data); 2845 } 2846 2847 /** 2848 * regulator_bulk_get - get multiple regulator consumers 2849 * 2850 * @dev: Device to supply 2851 * @num_consumers: Number of consumers to register 2852 * @consumers: Configuration of consumers; clients are stored here. 2853 * 2854 * @return 0 on success, an errno on failure. 2855 * 2856 * This helper function allows drivers to get several regulator 2857 * consumers in one operation. If any of the regulators cannot be 2858 * acquired then any regulators that were allocated will be freed 2859 * before returning to the caller. 2860 */ 2861 int regulator_bulk_get(struct device *dev, int num_consumers, 2862 struct regulator_bulk_data *consumers) 2863 { 2864 int i; 2865 int ret; 2866 2867 for (i = 0; i < num_consumers; i++) 2868 consumers[i].consumer = NULL; 2869 2870 for (i = 0; i < num_consumers; i++) { 2871 consumers[i].consumer = regulator_get(dev, 2872 consumers[i].supply); 2873 if (IS_ERR(consumers[i].consumer)) { 2874 ret = PTR_ERR(consumers[i].consumer); 2875 dev_err(dev, "Failed to get supply '%s': %d\n", 2876 consumers[i].supply, ret); 2877 consumers[i].consumer = NULL; 2878 goto err; 2879 } 2880 } 2881 2882 return 0; 2883 2884 err: 2885 while (--i >= 0) 2886 regulator_put(consumers[i].consumer); 2887 2888 return ret; 2889 } 2890 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2891 2892 /** 2893 * devm_regulator_bulk_get - managed get multiple regulator consumers 2894 * 2895 * @dev: Device to supply 2896 * @num_consumers: Number of consumers to register 2897 * @consumers: Configuration of consumers; clients are stored here. 2898 * 2899 * @return 0 on success, an errno on failure. 2900 * 2901 * This helper function allows drivers to get several regulator 2902 * consumers in one operation with management, the regulators will 2903 * automatically be freed when the device is unbound. If any of the 2904 * regulators cannot be acquired then any regulators that were 2905 * allocated will be freed before returning to the caller. 2906 */ 2907 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2908 struct regulator_bulk_data *consumers) 2909 { 2910 int i; 2911 int ret; 2912 2913 for (i = 0; i < num_consumers; i++) 2914 consumers[i].consumer = NULL; 2915 2916 for (i = 0; i < num_consumers; i++) { 2917 consumers[i].consumer = devm_regulator_get(dev, 2918 consumers[i].supply); 2919 if (IS_ERR(consumers[i].consumer)) { 2920 ret = PTR_ERR(consumers[i].consumer); 2921 dev_err(dev, "Failed to get supply '%s': %d\n", 2922 consumers[i].supply, ret); 2923 consumers[i].consumer = NULL; 2924 goto err; 2925 } 2926 } 2927 2928 return 0; 2929 2930 err: 2931 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2932 devm_regulator_put(consumers[i].consumer); 2933 2934 return ret; 2935 } 2936 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2937 2938 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2939 { 2940 struct regulator_bulk_data *bulk = data; 2941 2942 bulk->ret = regulator_enable(bulk->consumer); 2943 } 2944 2945 /** 2946 * regulator_bulk_enable - enable multiple regulator consumers 2947 * 2948 * @num_consumers: Number of consumers 2949 * @consumers: Consumer data; clients are stored here. 2950 * @return 0 on success, an errno on failure 2951 * 2952 * This convenience API allows consumers to enable multiple regulator 2953 * clients in a single API call. If any consumers cannot be enabled 2954 * then any others that were enabled will be disabled again prior to 2955 * return. 2956 */ 2957 int regulator_bulk_enable(int num_consumers, 2958 struct regulator_bulk_data *consumers) 2959 { 2960 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 2961 int i; 2962 int ret = 0; 2963 2964 for (i = 0; i < num_consumers; i++) { 2965 if (consumers[i].consumer->always_on) 2966 consumers[i].ret = 0; 2967 else 2968 async_schedule_domain(regulator_bulk_enable_async, 2969 &consumers[i], &async_domain); 2970 } 2971 2972 async_synchronize_full_domain(&async_domain); 2973 2974 /* If any consumer failed we need to unwind any that succeeded */ 2975 for (i = 0; i < num_consumers; i++) { 2976 if (consumers[i].ret != 0) { 2977 ret = consumers[i].ret; 2978 goto err; 2979 } 2980 } 2981 2982 return 0; 2983 2984 err: 2985 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); 2986 while (--i >= 0) 2987 regulator_disable(consumers[i].consumer); 2988 2989 return ret; 2990 } 2991 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2992 2993 /** 2994 * regulator_bulk_disable - disable multiple regulator consumers 2995 * 2996 * @num_consumers: Number of consumers 2997 * @consumers: Consumer data; clients are stored here. 2998 * @return 0 on success, an errno on failure 2999 * 3000 * This convenience API allows consumers to disable multiple regulator 3001 * clients in a single API call. If any consumers cannot be disabled 3002 * then any others that were disabled will be enabled again prior to 3003 * return. 3004 */ 3005 int regulator_bulk_disable(int num_consumers, 3006 struct regulator_bulk_data *consumers) 3007 { 3008 int i; 3009 int ret, r; 3010 3011 for (i = num_consumers - 1; i >= 0; --i) { 3012 ret = regulator_disable(consumers[i].consumer); 3013 if (ret != 0) 3014 goto err; 3015 } 3016 3017 return 0; 3018 3019 err: 3020 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3021 for (++i; i < num_consumers; ++i) { 3022 r = regulator_enable(consumers[i].consumer); 3023 if (r != 0) 3024 pr_err("Failed to reename %s: %d\n", 3025 consumers[i].supply, r); 3026 } 3027 3028 return ret; 3029 } 3030 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3031 3032 /** 3033 * regulator_bulk_force_disable - force disable multiple regulator consumers 3034 * 3035 * @num_consumers: Number of consumers 3036 * @consumers: Consumer data; clients are stored here. 3037 * @return 0 on success, an errno on failure 3038 * 3039 * This convenience API allows consumers to forcibly disable multiple regulator 3040 * clients in a single API call. 3041 * NOTE: This should be used for situations when device damage will 3042 * likely occur if the regulators are not disabled (e.g. over temp). 3043 * Although regulator_force_disable function call for some consumers can 3044 * return error numbers, the function is called for all consumers. 3045 */ 3046 int regulator_bulk_force_disable(int num_consumers, 3047 struct regulator_bulk_data *consumers) 3048 { 3049 int i; 3050 int ret; 3051 3052 for (i = 0; i < num_consumers; i++) 3053 consumers[i].ret = 3054 regulator_force_disable(consumers[i].consumer); 3055 3056 for (i = 0; i < num_consumers; i++) { 3057 if (consumers[i].ret != 0) { 3058 ret = consumers[i].ret; 3059 goto out; 3060 } 3061 } 3062 3063 return 0; 3064 out: 3065 return ret; 3066 } 3067 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3068 3069 /** 3070 * regulator_bulk_free - free multiple regulator consumers 3071 * 3072 * @num_consumers: Number of consumers 3073 * @consumers: Consumer data; clients are stored here. 3074 * 3075 * This convenience API allows consumers to free multiple regulator 3076 * clients in a single API call. 3077 */ 3078 void regulator_bulk_free(int num_consumers, 3079 struct regulator_bulk_data *consumers) 3080 { 3081 int i; 3082 3083 for (i = 0; i < num_consumers; i++) { 3084 regulator_put(consumers[i].consumer); 3085 consumers[i].consumer = NULL; 3086 } 3087 } 3088 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3089 3090 /** 3091 * regulator_notifier_call_chain - call regulator event notifier 3092 * @rdev: regulator source 3093 * @event: notifier block 3094 * @data: callback-specific data. 3095 * 3096 * Called by regulator drivers to notify clients a regulator event has 3097 * occurred. We also notify regulator clients downstream. 3098 * Note lock must be held by caller. 3099 */ 3100 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3101 unsigned long event, void *data) 3102 { 3103 _notifier_call_chain(rdev, event, data); 3104 return NOTIFY_DONE; 3105 3106 } 3107 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3108 3109 /** 3110 * regulator_mode_to_status - convert a regulator mode into a status 3111 * 3112 * @mode: Mode to convert 3113 * 3114 * Convert a regulator mode into a status. 3115 */ 3116 int regulator_mode_to_status(unsigned int mode) 3117 { 3118 switch (mode) { 3119 case REGULATOR_MODE_FAST: 3120 return REGULATOR_STATUS_FAST; 3121 case REGULATOR_MODE_NORMAL: 3122 return REGULATOR_STATUS_NORMAL; 3123 case REGULATOR_MODE_IDLE: 3124 return REGULATOR_STATUS_IDLE; 3125 case REGULATOR_MODE_STANDBY: 3126 return REGULATOR_STATUS_STANDBY; 3127 default: 3128 return REGULATOR_STATUS_UNDEFINED; 3129 } 3130 } 3131 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3132 3133 /* 3134 * To avoid cluttering sysfs (and memory) with useless state, only 3135 * create attributes that can be meaningfully displayed. 3136 */ 3137 static int add_regulator_attributes(struct regulator_dev *rdev) 3138 { 3139 struct device *dev = &rdev->dev; 3140 struct regulator_ops *ops = rdev->desc->ops; 3141 int status = 0; 3142 3143 /* some attributes need specific methods to be displayed */ 3144 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3145 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3146 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3147 status = device_create_file(dev, &dev_attr_microvolts); 3148 if (status < 0) 3149 return status; 3150 } 3151 if (ops->get_current_limit) { 3152 status = device_create_file(dev, &dev_attr_microamps); 3153 if (status < 0) 3154 return status; 3155 } 3156 if (ops->get_mode) { 3157 status = device_create_file(dev, &dev_attr_opmode); 3158 if (status < 0) 3159 return status; 3160 } 3161 if (ops->is_enabled) { 3162 status = device_create_file(dev, &dev_attr_state); 3163 if (status < 0) 3164 return status; 3165 } 3166 if (ops->get_status) { 3167 status = device_create_file(dev, &dev_attr_status); 3168 if (status < 0) 3169 return status; 3170 } 3171 if (ops->get_bypass) { 3172 status = device_create_file(dev, &dev_attr_bypass); 3173 if (status < 0) 3174 return status; 3175 } 3176 3177 /* some attributes are type-specific */ 3178 if (rdev->desc->type == REGULATOR_CURRENT) { 3179 status = device_create_file(dev, &dev_attr_requested_microamps); 3180 if (status < 0) 3181 return status; 3182 } 3183 3184 /* all the other attributes exist to support constraints; 3185 * don't show them if there are no constraints, or if the 3186 * relevant supporting methods are missing. 3187 */ 3188 if (!rdev->constraints) 3189 return status; 3190 3191 /* constraints need specific supporting methods */ 3192 if (ops->set_voltage || ops->set_voltage_sel) { 3193 status = device_create_file(dev, &dev_attr_min_microvolts); 3194 if (status < 0) 3195 return status; 3196 status = device_create_file(dev, &dev_attr_max_microvolts); 3197 if (status < 0) 3198 return status; 3199 } 3200 if (ops->set_current_limit) { 3201 status = device_create_file(dev, &dev_attr_min_microamps); 3202 if (status < 0) 3203 return status; 3204 status = device_create_file(dev, &dev_attr_max_microamps); 3205 if (status < 0) 3206 return status; 3207 } 3208 3209 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3210 if (status < 0) 3211 return status; 3212 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3213 if (status < 0) 3214 return status; 3215 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3216 if (status < 0) 3217 return status; 3218 3219 if (ops->set_suspend_voltage) { 3220 status = device_create_file(dev, 3221 &dev_attr_suspend_standby_microvolts); 3222 if (status < 0) 3223 return status; 3224 status = device_create_file(dev, 3225 &dev_attr_suspend_mem_microvolts); 3226 if (status < 0) 3227 return status; 3228 status = device_create_file(dev, 3229 &dev_attr_suspend_disk_microvolts); 3230 if (status < 0) 3231 return status; 3232 } 3233 3234 if (ops->set_suspend_mode) { 3235 status = device_create_file(dev, 3236 &dev_attr_suspend_standby_mode); 3237 if (status < 0) 3238 return status; 3239 status = device_create_file(dev, 3240 &dev_attr_suspend_mem_mode); 3241 if (status < 0) 3242 return status; 3243 status = device_create_file(dev, 3244 &dev_attr_suspend_disk_mode); 3245 if (status < 0) 3246 return status; 3247 } 3248 3249 return status; 3250 } 3251 3252 static void rdev_init_debugfs(struct regulator_dev *rdev) 3253 { 3254 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3255 if (!rdev->debugfs) { 3256 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3257 return; 3258 } 3259 3260 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3261 &rdev->use_count); 3262 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3263 &rdev->open_count); 3264 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3265 &rdev->bypass_count); 3266 } 3267 3268 /** 3269 * regulator_register - register regulator 3270 * @regulator_desc: regulator to register 3271 * @config: runtime configuration for regulator 3272 * 3273 * Called by regulator drivers to register a regulator. 3274 * Returns 0 on success. 3275 */ 3276 struct regulator_dev * 3277 regulator_register(const struct regulator_desc *regulator_desc, 3278 const struct regulator_config *config) 3279 { 3280 const struct regulation_constraints *constraints = NULL; 3281 const struct regulator_init_data *init_data; 3282 static atomic_t regulator_no = ATOMIC_INIT(0); 3283 struct regulator_dev *rdev; 3284 struct device *dev; 3285 int ret, i; 3286 const char *supply = NULL; 3287 3288 if (regulator_desc == NULL || config == NULL) 3289 return ERR_PTR(-EINVAL); 3290 3291 dev = config->dev; 3292 WARN_ON(!dev); 3293 3294 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3295 return ERR_PTR(-EINVAL); 3296 3297 if (regulator_desc->type != REGULATOR_VOLTAGE && 3298 regulator_desc->type != REGULATOR_CURRENT) 3299 return ERR_PTR(-EINVAL); 3300 3301 /* Only one of each should be implemented */ 3302 WARN_ON(regulator_desc->ops->get_voltage && 3303 regulator_desc->ops->get_voltage_sel); 3304 WARN_ON(regulator_desc->ops->set_voltage && 3305 regulator_desc->ops->set_voltage_sel); 3306 3307 /* If we're using selectors we must implement list_voltage. */ 3308 if (regulator_desc->ops->get_voltage_sel && 3309 !regulator_desc->ops->list_voltage) { 3310 return ERR_PTR(-EINVAL); 3311 } 3312 if (regulator_desc->ops->set_voltage_sel && 3313 !regulator_desc->ops->list_voltage) { 3314 return ERR_PTR(-EINVAL); 3315 } 3316 3317 init_data = config->init_data; 3318 3319 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3320 if (rdev == NULL) 3321 return ERR_PTR(-ENOMEM); 3322 3323 mutex_lock(®ulator_list_mutex); 3324 3325 mutex_init(&rdev->mutex); 3326 rdev->reg_data = config->driver_data; 3327 rdev->owner = regulator_desc->owner; 3328 rdev->desc = regulator_desc; 3329 if (config->regmap) 3330 rdev->regmap = config->regmap; 3331 else if (dev_get_regmap(dev, NULL)) 3332 rdev->regmap = dev_get_regmap(dev, NULL); 3333 else if (dev->parent) 3334 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3335 INIT_LIST_HEAD(&rdev->consumer_list); 3336 INIT_LIST_HEAD(&rdev->list); 3337 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3338 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3339 3340 /* preform any regulator specific init */ 3341 if (init_data && init_data->regulator_init) { 3342 ret = init_data->regulator_init(rdev->reg_data); 3343 if (ret < 0) 3344 goto clean; 3345 } 3346 3347 /* register with sysfs */ 3348 rdev->dev.class = ®ulator_class; 3349 rdev->dev.of_node = config->of_node; 3350 rdev->dev.parent = dev; 3351 dev_set_name(&rdev->dev, "regulator.%d", 3352 atomic_inc_return(®ulator_no) - 1); 3353 ret = device_register(&rdev->dev); 3354 if (ret != 0) { 3355 put_device(&rdev->dev); 3356 goto clean; 3357 } 3358 3359 dev_set_drvdata(&rdev->dev, rdev); 3360 3361 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3362 ret = gpio_request_one(config->ena_gpio, 3363 GPIOF_DIR_OUT | config->ena_gpio_flags, 3364 rdev_get_name(rdev)); 3365 if (ret != 0) { 3366 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3367 config->ena_gpio, ret); 3368 goto clean; 3369 } 3370 3371 rdev->ena_gpio = config->ena_gpio; 3372 rdev->ena_gpio_invert = config->ena_gpio_invert; 3373 3374 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3375 rdev->ena_gpio_state = 1; 3376 3377 if (rdev->ena_gpio_invert) 3378 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3379 } 3380 3381 /* set regulator constraints */ 3382 if (init_data) 3383 constraints = &init_data->constraints; 3384 3385 ret = set_machine_constraints(rdev, constraints); 3386 if (ret < 0) 3387 goto scrub; 3388 3389 /* add attributes supported by this regulator */ 3390 ret = add_regulator_attributes(rdev); 3391 if (ret < 0) 3392 goto scrub; 3393 3394 if (init_data && init_data->supply_regulator) 3395 supply = init_data->supply_regulator; 3396 else if (regulator_desc->supply_name) 3397 supply = regulator_desc->supply_name; 3398 3399 if (supply) { 3400 struct regulator_dev *r; 3401 3402 r = regulator_dev_lookup(dev, supply, &ret); 3403 3404 if (!r) { 3405 dev_err(dev, "Failed to find supply %s\n", supply); 3406 ret = -EPROBE_DEFER; 3407 goto scrub; 3408 } 3409 3410 ret = set_supply(rdev, r); 3411 if (ret < 0) 3412 goto scrub; 3413 3414 /* Enable supply if rail is enabled */ 3415 if (_regulator_is_enabled(rdev)) { 3416 ret = regulator_enable(rdev->supply); 3417 if (ret < 0) 3418 goto scrub; 3419 } 3420 } 3421 3422 /* add consumers devices */ 3423 if (init_data) { 3424 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3425 ret = set_consumer_device_supply(rdev, 3426 init_data->consumer_supplies[i].dev_name, 3427 init_data->consumer_supplies[i].supply); 3428 if (ret < 0) { 3429 dev_err(dev, "Failed to set supply %s\n", 3430 init_data->consumer_supplies[i].supply); 3431 goto unset_supplies; 3432 } 3433 } 3434 } 3435 3436 list_add(&rdev->list, ®ulator_list); 3437 3438 rdev_init_debugfs(rdev); 3439 out: 3440 mutex_unlock(®ulator_list_mutex); 3441 return rdev; 3442 3443 unset_supplies: 3444 unset_regulator_supplies(rdev); 3445 3446 scrub: 3447 if (rdev->supply) 3448 regulator_put(rdev->supply); 3449 if (rdev->ena_gpio) 3450 gpio_free(rdev->ena_gpio); 3451 kfree(rdev->constraints); 3452 device_unregister(&rdev->dev); 3453 /* device core frees rdev */ 3454 rdev = ERR_PTR(ret); 3455 goto out; 3456 3457 clean: 3458 kfree(rdev); 3459 rdev = ERR_PTR(ret); 3460 goto out; 3461 } 3462 EXPORT_SYMBOL_GPL(regulator_register); 3463 3464 /** 3465 * regulator_unregister - unregister regulator 3466 * @rdev: regulator to unregister 3467 * 3468 * Called by regulator drivers to unregister a regulator. 3469 */ 3470 void regulator_unregister(struct regulator_dev *rdev) 3471 { 3472 if (rdev == NULL) 3473 return; 3474 3475 if (rdev->supply) 3476 regulator_put(rdev->supply); 3477 mutex_lock(®ulator_list_mutex); 3478 debugfs_remove_recursive(rdev->debugfs); 3479 flush_work(&rdev->disable_work.work); 3480 WARN_ON(rdev->open_count); 3481 unset_regulator_supplies(rdev); 3482 list_del(&rdev->list); 3483 kfree(rdev->constraints); 3484 if (rdev->ena_gpio) 3485 gpio_free(rdev->ena_gpio); 3486 device_unregister(&rdev->dev); 3487 mutex_unlock(®ulator_list_mutex); 3488 } 3489 EXPORT_SYMBOL_GPL(regulator_unregister); 3490 3491 /** 3492 * regulator_suspend_prepare - prepare regulators for system wide suspend 3493 * @state: system suspend state 3494 * 3495 * Configure each regulator with it's suspend operating parameters for state. 3496 * This will usually be called by machine suspend code prior to supending. 3497 */ 3498 int regulator_suspend_prepare(suspend_state_t state) 3499 { 3500 struct regulator_dev *rdev; 3501 int ret = 0; 3502 3503 /* ON is handled by regulator active state */ 3504 if (state == PM_SUSPEND_ON) 3505 return -EINVAL; 3506 3507 mutex_lock(®ulator_list_mutex); 3508 list_for_each_entry(rdev, ®ulator_list, list) { 3509 3510 mutex_lock(&rdev->mutex); 3511 ret = suspend_prepare(rdev, state); 3512 mutex_unlock(&rdev->mutex); 3513 3514 if (ret < 0) { 3515 rdev_err(rdev, "failed to prepare\n"); 3516 goto out; 3517 } 3518 } 3519 out: 3520 mutex_unlock(®ulator_list_mutex); 3521 return ret; 3522 } 3523 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3524 3525 /** 3526 * regulator_suspend_finish - resume regulators from system wide suspend 3527 * 3528 * Turn on regulators that might be turned off by regulator_suspend_prepare 3529 * and that should be turned on according to the regulators properties. 3530 */ 3531 int regulator_suspend_finish(void) 3532 { 3533 struct regulator_dev *rdev; 3534 int ret = 0, error; 3535 3536 mutex_lock(®ulator_list_mutex); 3537 list_for_each_entry(rdev, ®ulator_list, list) { 3538 struct regulator_ops *ops = rdev->desc->ops; 3539 3540 mutex_lock(&rdev->mutex); 3541 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3542 ops->enable) { 3543 error = ops->enable(rdev); 3544 if (error) 3545 ret = error; 3546 } else { 3547 if (!has_full_constraints) 3548 goto unlock; 3549 if (!ops->disable) 3550 goto unlock; 3551 if (!_regulator_is_enabled(rdev)) 3552 goto unlock; 3553 3554 error = ops->disable(rdev); 3555 if (error) 3556 ret = error; 3557 } 3558 unlock: 3559 mutex_unlock(&rdev->mutex); 3560 } 3561 mutex_unlock(®ulator_list_mutex); 3562 return ret; 3563 } 3564 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3565 3566 /** 3567 * regulator_has_full_constraints - the system has fully specified constraints 3568 * 3569 * Calling this function will cause the regulator API to disable all 3570 * regulators which have a zero use count and don't have an always_on 3571 * constraint in a late_initcall. 3572 * 3573 * The intention is that this will become the default behaviour in a 3574 * future kernel release so users are encouraged to use this facility 3575 * now. 3576 */ 3577 void regulator_has_full_constraints(void) 3578 { 3579 has_full_constraints = 1; 3580 } 3581 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3582 3583 /** 3584 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3585 * 3586 * Calling this function will cause the regulator API to provide a 3587 * dummy regulator to consumers if no physical regulator is found, 3588 * allowing most consumers to proceed as though a regulator were 3589 * configured. This allows systems such as those with software 3590 * controllable regulators for the CPU core only to be brought up more 3591 * readily. 3592 */ 3593 void regulator_use_dummy_regulator(void) 3594 { 3595 board_wants_dummy_regulator = true; 3596 } 3597 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3598 3599 /** 3600 * rdev_get_drvdata - get rdev regulator driver data 3601 * @rdev: regulator 3602 * 3603 * Get rdev regulator driver private data. This call can be used in the 3604 * regulator driver context. 3605 */ 3606 void *rdev_get_drvdata(struct regulator_dev *rdev) 3607 { 3608 return rdev->reg_data; 3609 } 3610 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3611 3612 /** 3613 * regulator_get_drvdata - get regulator driver data 3614 * @regulator: regulator 3615 * 3616 * Get regulator driver private data. This call can be used in the consumer 3617 * driver context when non API regulator specific functions need to be called. 3618 */ 3619 void *regulator_get_drvdata(struct regulator *regulator) 3620 { 3621 return regulator->rdev->reg_data; 3622 } 3623 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3624 3625 /** 3626 * regulator_set_drvdata - set regulator driver data 3627 * @regulator: regulator 3628 * @data: data 3629 */ 3630 void regulator_set_drvdata(struct regulator *regulator, void *data) 3631 { 3632 regulator->rdev->reg_data = data; 3633 } 3634 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3635 3636 /** 3637 * regulator_get_id - get regulator ID 3638 * @rdev: regulator 3639 */ 3640 int rdev_get_id(struct regulator_dev *rdev) 3641 { 3642 return rdev->desc->id; 3643 } 3644 EXPORT_SYMBOL_GPL(rdev_get_id); 3645 3646 struct device *rdev_get_dev(struct regulator_dev *rdev) 3647 { 3648 return &rdev->dev; 3649 } 3650 EXPORT_SYMBOL_GPL(rdev_get_dev); 3651 3652 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3653 { 3654 return reg_init_data->driver_data; 3655 } 3656 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3657 3658 #ifdef CONFIG_DEBUG_FS 3659 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3660 size_t count, loff_t *ppos) 3661 { 3662 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3663 ssize_t len, ret = 0; 3664 struct regulator_map *map; 3665 3666 if (!buf) 3667 return -ENOMEM; 3668 3669 list_for_each_entry(map, ®ulator_map_list, list) { 3670 len = snprintf(buf + ret, PAGE_SIZE - ret, 3671 "%s -> %s.%s\n", 3672 rdev_get_name(map->regulator), map->dev_name, 3673 map->supply); 3674 if (len >= 0) 3675 ret += len; 3676 if (ret > PAGE_SIZE) { 3677 ret = PAGE_SIZE; 3678 break; 3679 } 3680 } 3681 3682 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3683 3684 kfree(buf); 3685 3686 return ret; 3687 } 3688 #endif 3689 3690 static const struct file_operations supply_map_fops = { 3691 #ifdef CONFIG_DEBUG_FS 3692 .read = supply_map_read_file, 3693 .llseek = default_llseek, 3694 #endif 3695 }; 3696 3697 static int __init regulator_init(void) 3698 { 3699 int ret; 3700 3701 ret = class_register(®ulator_class); 3702 3703 debugfs_root = debugfs_create_dir("regulator", NULL); 3704 if (!debugfs_root) 3705 pr_warn("regulator: Failed to create debugfs directory\n"); 3706 3707 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3708 &supply_map_fops); 3709 3710 regulator_dummy_init(); 3711 3712 return ret; 3713 } 3714 3715 /* init early to allow our consumers to complete system booting */ 3716 core_initcall(regulator_init); 3717 3718 static int __init regulator_init_complete(void) 3719 { 3720 struct regulator_dev *rdev; 3721 struct regulator_ops *ops; 3722 struct regulation_constraints *c; 3723 int enabled, ret; 3724 3725 /* 3726 * Since DT doesn't provide an idiomatic mechanism for 3727 * enabling full constraints and since it's much more natural 3728 * with DT to provide them just assume that a DT enabled 3729 * system has full constraints. 3730 */ 3731 if (of_have_populated_dt()) 3732 has_full_constraints = true; 3733 3734 mutex_lock(®ulator_list_mutex); 3735 3736 /* If we have a full configuration then disable any regulators 3737 * which are not in use or always_on. This will become the 3738 * default behaviour in the future. 3739 */ 3740 list_for_each_entry(rdev, ®ulator_list, list) { 3741 ops = rdev->desc->ops; 3742 c = rdev->constraints; 3743 3744 if (!ops->disable || (c && c->always_on)) 3745 continue; 3746 3747 mutex_lock(&rdev->mutex); 3748 3749 if (rdev->use_count) 3750 goto unlock; 3751 3752 /* If we can't read the status assume it's on. */ 3753 if (ops->is_enabled) 3754 enabled = ops->is_enabled(rdev); 3755 else 3756 enabled = 1; 3757 3758 if (!enabled) 3759 goto unlock; 3760 3761 if (has_full_constraints) { 3762 /* We log since this may kill the system if it 3763 * goes wrong. */ 3764 rdev_info(rdev, "disabling\n"); 3765 ret = ops->disable(rdev); 3766 if (ret != 0) { 3767 rdev_err(rdev, "couldn't disable: %d\n", ret); 3768 } 3769 } else { 3770 /* The intention is that in future we will 3771 * assume that full constraints are provided 3772 * so warn even if we aren't going to do 3773 * anything here. 3774 */ 3775 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3776 } 3777 3778 unlock: 3779 mutex_unlock(&rdev->mutex); 3780 } 3781 3782 mutex_unlock(®ulator_list_mutex); 3783 3784 return 0; 3785 } 3786 late_initcall(regulator_init_complete); 3787