xref: /linux/drivers/regulator/core.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
35 
36 #include "dummy.h"
37 
38 #define rdev_crit(rdev, fmt, ...)					\
39 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...)					\
41 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...)					\
43 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...)					\
45 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...)					\
47 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_list);
51 static LIST_HEAD(regulator_map_list);
52 static bool has_full_constraints;
53 static bool board_wants_dummy_regulator;
54 
55 #ifdef CONFIG_DEBUG_FS
56 static struct dentry *debugfs_root;
57 #endif
58 
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65 	struct list_head list;
66 	const char *dev_name;   /* The dev_name() for the consumer */
67 	const char *supply;
68 	struct regulator_dev *regulator;
69 };
70 
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77 	struct device *dev;
78 	struct list_head list;
79 	int uA_load;
80 	int min_uV;
81 	int max_uV;
82 	char *supply_name;
83 	struct device_attribute dev_attr;
84 	struct regulator_dev *rdev;
85 #ifdef CONFIG_DEBUG_FS
86 	struct dentry *debugfs;
87 #endif
88 };
89 
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 				  unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 				     int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 					  struct device *dev,
101 					  const char *supply_name);
102 
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 
113 /* gets the regulator for a given consumer device */
114 static struct regulator *get_device_regulator(struct device *dev)
115 {
116 	struct regulator *regulator = NULL;
117 	struct regulator_dev *rdev;
118 
119 	mutex_lock(&regulator_list_mutex);
120 	list_for_each_entry(rdev, &regulator_list, list) {
121 		mutex_lock(&rdev->mutex);
122 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
123 			if (regulator->dev == dev) {
124 				mutex_unlock(&rdev->mutex);
125 				mutex_unlock(&regulator_list_mutex);
126 				return regulator;
127 			}
128 		}
129 		mutex_unlock(&rdev->mutex);
130 	}
131 	mutex_unlock(&regulator_list_mutex);
132 	return NULL;
133 }
134 
135 /* Platform voltage constraint check */
136 static int regulator_check_voltage(struct regulator_dev *rdev,
137 				   int *min_uV, int *max_uV)
138 {
139 	BUG_ON(*min_uV > *max_uV);
140 
141 	if (!rdev->constraints) {
142 		rdev_err(rdev, "no constraints\n");
143 		return -ENODEV;
144 	}
145 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
146 		rdev_err(rdev, "operation not allowed\n");
147 		return -EPERM;
148 	}
149 
150 	if (*max_uV > rdev->constraints->max_uV)
151 		*max_uV = rdev->constraints->max_uV;
152 	if (*min_uV < rdev->constraints->min_uV)
153 		*min_uV = rdev->constraints->min_uV;
154 
155 	if (*min_uV > *max_uV) {
156 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
157 			 *min_uV, *max_uV);
158 		return -EINVAL;
159 	}
160 
161 	return 0;
162 }
163 
164 /* Make sure we select a voltage that suits the needs of all
165  * regulator consumers
166  */
167 static int regulator_check_consumers(struct regulator_dev *rdev,
168 				     int *min_uV, int *max_uV)
169 {
170 	struct regulator *regulator;
171 
172 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
173 		/*
174 		 * Assume consumers that didn't say anything are OK
175 		 * with anything in the constraint range.
176 		 */
177 		if (!regulator->min_uV && !regulator->max_uV)
178 			continue;
179 
180 		if (*max_uV > regulator->max_uV)
181 			*max_uV = regulator->max_uV;
182 		if (*min_uV < regulator->min_uV)
183 			*min_uV = regulator->min_uV;
184 	}
185 
186 	if (*min_uV > *max_uV)
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* current constraint check */
193 static int regulator_check_current_limit(struct regulator_dev *rdev,
194 					int *min_uA, int *max_uA)
195 {
196 	BUG_ON(*min_uA > *max_uA);
197 
198 	if (!rdev->constraints) {
199 		rdev_err(rdev, "no constraints\n");
200 		return -ENODEV;
201 	}
202 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
203 		rdev_err(rdev, "operation not allowed\n");
204 		return -EPERM;
205 	}
206 
207 	if (*max_uA > rdev->constraints->max_uA)
208 		*max_uA = rdev->constraints->max_uA;
209 	if (*min_uA < rdev->constraints->min_uA)
210 		*min_uA = rdev->constraints->min_uA;
211 
212 	if (*min_uA > *max_uA) {
213 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
214 			 *min_uA, *max_uA);
215 		return -EINVAL;
216 	}
217 
218 	return 0;
219 }
220 
221 /* operating mode constraint check */
222 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
223 {
224 	switch (*mode) {
225 	case REGULATOR_MODE_FAST:
226 	case REGULATOR_MODE_NORMAL:
227 	case REGULATOR_MODE_IDLE:
228 	case REGULATOR_MODE_STANDBY:
229 		break;
230 	default:
231 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
232 		return -EINVAL;
233 	}
234 
235 	if (!rdev->constraints) {
236 		rdev_err(rdev, "no constraints\n");
237 		return -ENODEV;
238 	}
239 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
240 		rdev_err(rdev, "operation not allowed\n");
241 		return -EPERM;
242 	}
243 
244 	/* The modes are bitmasks, the most power hungry modes having
245 	 * the lowest values. If the requested mode isn't supported
246 	 * try higher modes. */
247 	while (*mode) {
248 		if (rdev->constraints->valid_modes_mask & *mode)
249 			return 0;
250 		*mode /= 2;
251 	}
252 
253 	return -EINVAL;
254 }
255 
256 /* dynamic regulator mode switching constraint check */
257 static int regulator_check_drms(struct regulator_dev *rdev)
258 {
259 	if (!rdev->constraints) {
260 		rdev_err(rdev, "no constraints\n");
261 		return -ENODEV;
262 	}
263 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
264 		rdev_err(rdev, "operation not allowed\n");
265 		return -EPERM;
266 	}
267 	return 0;
268 }
269 
270 static ssize_t device_requested_uA_show(struct device *dev,
271 			     struct device_attribute *attr, char *buf)
272 {
273 	struct regulator *regulator;
274 
275 	regulator = get_device_regulator(dev);
276 	if (regulator == NULL)
277 		return 0;
278 
279 	return sprintf(buf, "%d\n", regulator->uA_load);
280 }
281 
282 static ssize_t regulator_uV_show(struct device *dev,
283 				struct device_attribute *attr, char *buf)
284 {
285 	struct regulator_dev *rdev = dev_get_drvdata(dev);
286 	ssize_t ret;
287 
288 	mutex_lock(&rdev->mutex);
289 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
290 	mutex_unlock(&rdev->mutex);
291 
292 	return ret;
293 }
294 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
295 
296 static ssize_t regulator_uA_show(struct device *dev,
297 				struct device_attribute *attr, char *buf)
298 {
299 	struct regulator_dev *rdev = dev_get_drvdata(dev);
300 
301 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
302 }
303 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
304 
305 static ssize_t regulator_name_show(struct device *dev,
306 			     struct device_attribute *attr, char *buf)
307 {
308 	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 
310 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
311 }
312 
313 static ssize_t regulator_print_opmode(char *buf, int mode)
314 {
315 	switch (mode) {
316 	case REGULATOR_MODE_FAST:
317 		return sprintf(buf, "fast\n");
318 	case REGULATOR_MODE_NORMAL:
319 		return sprintf(buf, "normal\n");
320 	case REGULATOR_MODE_IDLE:
321 		return sprintf(buf, "idle\n");
322 	case REGULATOR_MODE_STANDBY:
323 		return sprintf(buf, "standby\n");
324 	}
325 	return sprintf(buf, "unknown\n");
326 }
327 
328 static ssize_t regulator_opmode_show(struct device *dev,
329 				    struct device_attribute *attr, char *buf)
330 {
331 	struct regulator_dev *rdev = dev_get_drvdata(dev);
332 
333 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
334 }
335 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
336 
337 static ssize_t regulator_print_state(char *buf, int state)
338 {
339 	if (state > 0)
340 		return sprintf(buf, "enabled\n");
341 	else if (state == 0)
342 		return sprintf(buf, "disabled\n");
343 	else
344 		return sprintf(buf, "unknown\n");
345 }
346 
347 static ssize_t regulator_state_show(struct device *dev,
348 				   struct device_attribute *attr, char *buf)
349 {
350 	struct regulator_dev *rdev = dev_get_drvdata(dev);
351 	ssize_t ret;
352 
353 	mutex_lock(&rdev->mutex);
354 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
355 	mutex_unlock(&rdev->mutex);
356 
357 	return ret;
358 }
359 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
360 
361 static ssize_t regulator_status_show(struct device *dev,
362 				   struct device_attribute *attr, char *buf)
363 {
364 	struct regulator_dev *rdev = dev_get_drvdata(dev);
365 	int status;
366 	char *label;
367 
368 	status = rdev->desc->ops->get_status(rdev);
369 	if (status < 0)
370 		return status;
371 
372 	switch (status) {
373 	case REGULATOR_STATUS_OFF:
374 		label = "off";
375 		break;
376 	case REGULATOR_STATUS_ON:
377 		label = "on";
378 		break;
379 	case REGULATOR_STATUS_ERROR:
380 		label = "error";
381 		break;
382 	case REGULATOR_STATUS_FAST:
383 		label = "fast";
384 		break;
385 	case REGULATOR_STATUS_NORMAL:
386 		label = "normal";
387 		break;
388 	case REGULATOR_STATUS_IDLE:
389 		label = "idle";
390 		break;
391 	case REGULATOR_STATUS_STANDBY:
392 		label = "standby";
393 		break;
394 	default:
395 		return -ERANGE;
396 	}
397 
398 	return sprintf(buf, "%s\n", label);
399 }
400 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
401 
402 static ssize_t regulator_min_uA_show(struct device *dev,
403 				    struct device_attribute *attr, char *buf)
404 {
405 	struct regulator_dev *rdev = dev_get_drvdata(dev);
406 
407 	if (!rdev->constraints)
408 		return sprintf(buf, "constraint not defined\n");
409 
410 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
411 }
412 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
413 
414 static ssize_t regulator_max_uA_show(struct device *dev,
415 				    struct device_attribute *attr, char *buf)
416 {
417 	struct regulator_dev *rdev = dev_get_drvdata(dev);
418 
419 	if (!rdev->constraints)
420 		return sprintf(buf, "constraint not defined\n");
421 
422 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
423 }
424 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
425 
426 static ssize_t regulator_min_uV_show(struct device *dev,
427 				    struct device_attribute *attr, char *buf)
428 {
429 	struct regulator_dev *rdev = dev_get_drvdata(dev);
430 
431 	if (!rdev->constraints)
432 		return sprintf(buf, "constraint not defined\n");
433 
434 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
435 }
436 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
437 
438 static ssize_t regulator_max_uV_show(struct device *dev,
439 				    struct device_attribute *attr, char *buf)
440 {
441 	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 
443 	if (!rdev->constraints)
444 		return sprintf(buf, "constraint not defined\n");
445 
446 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
447 }
448 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
449 
450 static ssize_t regulator_total_uA_show(struct device *dev,
451 				      struct device_attribute *attr, char *buf)
452 {
453 	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 	struct regulator *regulator;
455 	int uA = 0;
456 
457 	mutex_lock(&rdev->mutex);
458 	list_for_each_entry(regulator, &rdev->consumer_list, list)
459 		uA += regulator->uA_load;
460 	mutex_unlock(&rdev->mutex);
461 	return sprintf(buf, "%d\n", uA);
462 }
463 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
464 
465 static ssize_t regulator_num_users_show(struct device *dev,
466 				      struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 	return sprintf(buf, "%d\n", rdev->use_count);
470 }
471 
472 static ssize_t regulator_type_show(struct device *dev,
473 				  struct device_attribute *attr, char *buf)
474 {
475 	struct regulator_dev *rdev = dev_get_drvdata(dev);
476 
477 	switch (rdev->desc->type) {
478 	case REGULATOR_VOLTAGE:
479 		return sprintf(buf, "voltage\n");
480 	case REGULATOR_CURRENT:
481 		return sprintf(buf, "current\n");
482 	}
483 	return sprintf(buf, "unknown\n");
484 }
485 
486 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
487 				struct device_attribute *attr, char *buf)
488 {
489 	struct regulator_dev *rdev = dev_get_drvdata(dev);
490 
491 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
492 }
493 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
494 		regulator_suspend_mem_uV_show, NULL);
495 
496 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
497 				struct device_attribute *attr, char *buf)
498 {
499 	struct regulator_dev *rdev = dev_get_drvdata(dev);
500 
501 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
502 }
503 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
504 		regulator_suspend_disk_uV_show, NULL);
505 
506 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
507 				struct device_attribute *attr, char *buf)
508 {
509 	struct regulator_dev *rdev = dev_get_drvdata(dev);
510 
511 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
512 }
513 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
514 		regulator_suspend_standby_uV_show, NULL);
515 
516 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return regulator_print_opmode(buf,
522 		rdev->constraints->state_mem.mode);
523 }
524 static DEVICE_ATTR(suspend_mem_mode, 0444,
525 		regulator_suspend_mem_mode_show, NULL);
526 
527 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
528 				struct device_attribute *attr, char *buf)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 
532 	return regulator_print_opmode(buf,
533 		rdev->constraints->state_disk.mode);
534 }
535 static DEVICE_ATTR(suspend_disk_mode, 0444,
536 		regulator_suspend_disk_mode_show, NULL);
537 
538 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
539 				struct device_attribute *attr, char *buf)
540 {
541 	struct regulator_dev *rdev = dev_get_drvdata(dev);
542 
543 	return regulator_print_opmode(buf,
544 		rdev->constraints->state_standby.mode);
545 }
546 static DEVICE_ATTR(suspend_standby_mode, 0444,
547 		regulator_suspend_standby_mode_show, NULL);
548 
549 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
550 				   struct device_attribute *attr, char *buf)
551 {
552 	struct regulator_dev *rdev = dev_get_drvdata(dev);
553 
554 	return regulator_print_state(buf,
555 			rdev->constraints->state_mem.enabled);
556 }
557 static DEVICE_ATTR(suspend_mem_state, 0444,
558 		regulator_suspend_mem_state_show, NULL);
559 
560 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
561 				   struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	return regulator_print_state(buf,
566 			rdev->constraints->state_disk.enabled);
567 }
568 static DEVICE_ATTR(suspend_disk_state, 0444,
569 		regulator_suspend_disk_state_show, NULL);
570 
571 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
572 				   struct device_attribute *attr, char *buf)
573 {
574 	struct regulator_dev *rdev = dev_get_drvdata(dev);
575 
576 	return regulator_print_state(buf,
577 			rdev->constraints->state_standby.enabled);
578 }
579 static DEVICE_ATTR(suspend_standby_state, 0444,
580 		regulator_suspend_standby_state_show, NULL);
581 
582 
583 /*
584  * These are the only attributes are present for all regulators.
585  * Other attributes are a function of regulator functionality.
586  */
587 static struct device_attribute regulator_dev_attrs[] = {
588 	__ATTR(name, 0444, regulator_name_show, NULL),
589 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
590 	__ATTR(type, 0444, regulator_type_show, NULL),
591 	__ATTR_NULL,
592 };
593 
594 static void regulator_dev_release(struct device *dev)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 	kfree(rdev);
598 }
599 
600 static struct class regulator_class = {
601 	.name = "regulator",
602 	.dev_release = regulator_dev_release,
603 	.dev_attrs = regulator_dev_attrs,
604 };
605 
606 /* Calculate the new optimum regulator operating mode based on the new total
607  * consumer load. All locks held by caller */
608 static void drms_uA_update(struct regulator_dev *rdev)
609 {
610 	struct regulator *sibling;
611 	int current_uA = 0, output_uV, input_uV, err;
612 	unsigned int mode;
613 
614 	err = regulator_check_drms(rdev);
615 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
616 	    (!rdev->desc->ops->get_voltage &&
617 	     !rdev->desc->ops->get_voltage_sel) ||
618 	    !rdev->desc->ops->set_mode)
619 		return;
620 
621 	/* get output voltage */
622 	output_uV = _regulator_get_voltage(rdev);
623 	if (output_uV <= 0)
624 		return;
625 
626 	/* get input voltage */
627 	input_uV = 0;
628 	if (rdev->supply)
629 		input_uV = _regulator_get_voltage(rdev);
630 	if (input_uV <= 0)
631 		input_uV = rdev->constraints->input_uV;
632 	if (input_uV <= 0)
633 		return;
634 
635 	/* calc total requested load */
636 	list_for_each_entry(sibling, &rdev->consumer_list, list)
637 		current_uA += sibling->uA_load;
638 
639 	/* now get the optimum mode for our new total regulator load */
640 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
641 						  output_uV, current_uA);
642 
643 	/* check the new mode is allowed */
644 	err = regulator_mode_constrain(rdev, &mode);
645 	if (err == 0)
646 		rdev->desc->ops->set_mode(rdev, mode);
647 }
648 
649 static int suspend_set_state(struct regulator_dev *rdev,
650 	struct regulator_state *rstate)
651 {
652 	int ret = 0;
653 	bool can_set_state;
654 
655 	can_set_state = rdev->desc->ops->set_suspend_enable &&
656 		rdev->desc->ops->set_suspend_disable;
657 
658 	/* If we have no suspend mode configration don't set anything;
659 	 * only warn if the driver actually makes the suspend mode
660 	 * configurable.
661 	 */
662 	if (!rstate->enabled && !rstate->disabled) {
663 		if (can_set_state)
664 			rdev_warn(rdev, "No configuration\n");
665 		return 0;
666 	}
667 
668 	if (rstate->enabled && rstate->disabled) {
669 		rdev_err(rdev, "invalid configuration\n");
670 		return -EINVAL;
671 	}
672 
673 	if (!can_set_state) {
674 		rdev_err(rdev, "no way to set suspend state\n");
675 		return -EINVAL;
676 	}
677 
678 	if (rstate->enabled)
679 		ret = rdev->desc->ops->set_suspend_enable(rdev);
680 	else
681 		ret = rdev->desc->ops->set_suspend_disable(rdev);
682 	if (ret < 0) {
683 		rdev_err(rdev, "failed to enabled/disable\n");
684 		return ret;
685 	}
686 
687 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
688 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
689 		if (ret < 0) {
690 			rdev_err(rdev, "failed to set voltage\n");
691 			return ret;
692 		}
693 	}
694 
695 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
696 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
697 		if (ret < 0) {
698 			rdev_err(rdev, "failed to set mode\n");
699 			return ret;
700 		}
701 	}
702 	return ret;
703 }
704 
705 /* locks held by caller */
706 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
707 {
708 	if (!rdev->constraints)
709 		return -EINVAL;
710 
711 	switch (state) {
712 	case PM_SUSPEND_STANDBY:
713 		return suspend_set_state(rdev,
714 			&rdev->constraints->state_standby);
715 	case PM_SUSPEND_MEM:
716 		return suspend_set_state(rdev,
717 			&rdev->constraints->state_mem);
718 	case PM_SUSPEND_MAX:
719 		return suspend_set_state(rdev,
720 			&rdev->constraints->state_disk);
721 	default:
722 		return -EINVAL;
723 	}
724 }
725 
726 static void print_constraints(struct regulator_dev *rdev)
727 {
728 	struct regulation_constraints *constraints = rdev->constraints;
729 	char buf[80] = "";
730 	int count = 0;
731 	int ret;
732 
733 	if (constraints->min_uV && constraints->max_uV) {
734 		if (constraints->min_uV == constraints->max_uV)
735 			count += sprintf(buf + count, "%d mV ",
736 					 constraints->min_uV / 1000);
737 		else
738 			count += sprintf(buf + count, "%d <--> %d mV ",
739 					 constraints->min_uV / 1000,
740 					 constraints->max_uV / 1000);
741 	}
742 
743 	if (!constraints->min_uV ||
744 	    constraints->min_uV != constraints->max_uV) {
745 		ret = _regulator_get_voltage(rdev);
746 		if (ret > 0)
747 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
748 	}
749 
750 	if (constraints->uV_offset)
751 		count += sprintf(buf, "%dmV offset ",
752 				 constraints->uV_offset / 1000);
753 
754 	if (constraints->min_uA && constraints->max_uA) {
755 		if (constraints->min_uA == constraints->max_uA)
756 			count += sprintf(buf + count, "%d mA ",
757 					 constraints->min_uA / 1000);
758 		else
759 			count += sprintf(buf + count, "%d <--> %d mA ",
760 					 constraints->min_uA / 1000,
761 					 constraints->max_uA / 1000);
762 	}
763 
764 	if (!constraints->min_uA ||
765 	    constraints->min_uA != constraints->max_uA) {
766 		ret = _regulator_get_current_limit(rdev);
767 		if (ret > 0)
768 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
769 	}
770 
771 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
772 		count += sprintf(buf + count, "fast ");
773 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
774 		count += sprintf(buf + count, "normal ");
775 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
776 		count += sprintf(buf + count, "idle ");
777 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
778 		count += sprintf(buf + count, "standby");
779 
780 	rdev_info(rdev, "%s\n", buf);
781 }
782 
783 static int machine_constraints_voltage(struct regulator_dev *rdev,
784 	struct regulation_constraints *constraints)
785 {
786 	struct regulator_ops *ops = rdev->desc->ops;
787 	int ret;
788 
789 	/* do we need to apply the constraint voltage */
790 	if (rdev->constraints->apply_uV &&
791 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
792 		ret = _regulator_do_set_voltage(rdev,
793 						rdev->constraints->min_uV,
794 						rdev->constraints->max_uV);
795 		if (ret < 0) {
796 			rdev_err(rdev, "failed to apply %duV constraint\n",
797 				 rdev->constraints->min_uV);
798 			return ret;
799 		}
800 	}
801 
802 	/* constrain machine-level voltage specs to fit
803 	 * the actual range supported by this regulator.
804 	 */
805 	if (ops->list_voltage && rdev->desc->n_voltages) {
806 		int	count = rdev->desc->n_voltages;
807 		int	i;
808 		int	min_uV = INT_MAX;
809 		int	max_uV = INT_MIN;
810 		int	cmin = constraints->min_uV;
811 		int	cmax = constraints->max_uV;
812 
813 		/* it's safe to autoconfigure fixed-voltage supplies
814 		   and the constraints are used by list_voltage. */
815 		if (count == 1 && !cmin) {
816 			cmin = 1;
817 			cmax = INT_MAX;
818 			constraints->min_uV = cmin;
819 			constraints->max_uV = cmax;
820 		}
821 
822 		/* voltage constraints are optional */
823 		if ((cmin == 0) && (cmax == 0))
824 			return 0;
825 
826 		/* else require explicit machine-level constraints */
827 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
828 			rdev_err(rdev, "invalid voltage constraints\n");
829 			return -EINVAL;
830 		}
831 
832 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
833 		for (i = 0; i < count; i++) {
834 			int	value;
835 
836 			value = ops->list_voltage(rdev, i);
837 			if (value <= 0)
838 				continue;
839 
840 			/* maybe adjust [min_uV..max_uV] */
841 			if (value >= cmin && value < min_uV)
842 				min_uV = value;
843 			if (value <= cmax && value > max_uV)
844 				max_uV = value;
845 		}
846 
847 		/* final: [min_uV..max_uV] valid iff constraints valid */
848 		if (max_uV < min_uV) {
849 			rdev_err(rdev, "unsupportable voltage constraints\n");
850 			return -EINVAL;
851 		}
852 
853 		/* use regulator's subset of machine constraints */
854 		if (constraints->min_uV < min_uV) {
855 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
856 				 constraints->min_uV, min_uV);
857 			constraints->min_uV = min_uV;
858 		}
859 		if (constraints->max_uV > max_uV) {
860 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
861 				 constraints->max_uV, max_uV);
862 			constraints->max_uV = max_uV;
863 		}
864 	}
865 
866 	return 0;
867 }
868 
869 /**
870  * set_machine_constraints - sets regulator constraints
871  * @rdev: regulator source
872  * @constraints: constraints to apply
873  *
874  * Allows platform initialisation code to define and constrain
875  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
876  * Constraints *must* be set by platform code in order for some
877  * regulator operations to proceed i.e. set_voltage, set_current_limit,
878  * set_mode.
879  */
880 static int set_machine_constraints(struct regulator_dev *rdev,
881 	const struct regulation_constraints *constraints)
882 {
883 	int ret = 0;
884 	struct regulator_ops *ops = rdev->desc->ops;
885 
886 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
887 				    GFP_KERNEL);
888 	if (!rdev->constraints)
889 		return -ENOMEM;
890 
891 	ret = machine_constraints_voltage(rdev, rdev->constraints);
892 	if (ret != 0)
893 		goto out;
894 
895 	/* do we need to setup our suspend state */
896 	if (constraints->initial_state) {
897 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
898 		if (ret < 0) {
899 			rdev_err(rdev, "failed to set suspend state\n");
900 			goto out;
901 		}
902 	}
903 
904 	if (constraints->initial_mode) {
905 		if (!ops->set_mode) {
906 			rdev_err(rdev, "no set_mode operation\n");
907 			ret = -EINVAL;
908 			goto out;
909 		}
910 
911 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
912 		if (ret < 0) {
913 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
914 			goto out;
915 		}
916 	}
917 
918 	/* If the constraints say the regulator should be on at this point
919 	 * and we have control then make sure it is enabled.
920 	 */
921 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
922 	    ops->enable) {
923 		ret = ops->enable(rdev);
924 		if (ret < 0) {
925 			rdev_err(rdev, "failed to enable\n");
926 			goto out;
927 		}
928 	}
929 
930 	print_constraints(rdev);
931 	return 0;
932 out:
933 	kfree(rdev->constraints);
934 	rdev->constraints = NULL;
935 	return ret;
936 }
937 
938 /**
939  * set_supply - set regulator supply regulator
940  * @rdev: regulator name
941  * @supply_rdev: supply regulator name
942  *
943  * Called by platform initialisation code to set the supply regulator for this
944  * regulator. This ensures that a regulators supply will also be enabled by the
945  * core if it's child is enabled.
946  */
947 static int set_supply(struct regulator_dev *rdev,
948 		      struct regulator_dev *supply_rdev)
949 {
950 	int err;
951 
952 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
953 
954 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
955 	if (IS_ERR(rdev->supply)) {
956 		err = PTR_ERR(rdev->supply);
957 		rdev->supply = NULL;
958 		return err;
959 	}
960 
961 	return 0;
962 }
963 
964 /**
965  * set_consumer_device_supply - Bind a regulator to a symbolic supply
966  * @rdev:         regulator source
967  * @consumer_dev: device the supply applies to
968  * @consumer_dev_name: dev_name() string for device supply applies to
969  * @supply:       symbolic name for supply
970  *
971  * Allows platform initialisation code to map physical regulator
972  * sources to symbolic names for supplies for use by devices.  Devices
973  * should use these symbolic names to request regulators, avoiding the
974  * need to provide board-specific regulator names as platform data.
975  *
976  * Only one of consumer_dev and consumer_dev_name may be specified.
977  */
978 static int set_consumer_device_supply(struct regulator_dev *rdev,
979 	struct device *consumer_dev, const char *consumer_dev_name,
980 	const char *supply)
981 {
982 	struct regulator_map *node;
983 	int has_dev;
984 
985 	if (consumer_dev && consumer_dev_name)
986 		return -EINVAL;
987 
988 	if (!consumer_dev_name && consumer_dev)
989 		consumer_dev_name = dev_name(consumer_dev);
990 
991 	if (supply == NULL)
992 		return -EINVAL;
993 
994 	if (consumer_dev_name != NULL)
995 		has_dev = 1;
996 	else
997 		has_dev = 0;
998 
999 	list_for_each_entry(node, &regulator_map_list, list) {
1000 		if (node->dev_name && consumer_dev_name) {
1001 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1002 				continue;
1003 		} else if (node->dev_name || consumer_dev_name) {
1004 			continue;
1005 		}
1006 
1007 		if (strcmp(node->supply, supply) != 0)
1008 			continue;
1009 
1010 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1011 			dev_name(&node->regulator->dev),
1012 			node->regulator->desc->name,
1013 			supply,
1014 			dev_name(&rdev->dev), rdev_get_name(rdev));
1015 		return -EBUSY;
1016 	}
1017 
1018 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1019 	if (node == NULL)
1020 		return -ENOMEM;
1021 
1022 	node->regulator = rdev;
1023 	node->supply = supply;
1024 
1025 	if (has_dev) {
1026 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1027 		if (node->dev_name == NULL) {
1028 			kfree(node);
1029 			return -ENOMEM;
1030 		}
1031 	}
1032 
1033 	list_add(&node->list, &regulator_map_list);
1034 	return 0;
1035 }
1036 
1037 static void unset_regulator_supplies(struct regulator_dev *rdev)
1038 {
1039 	struct regulator_map *node, *n;
1040 
1041 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1042 		if (rdev == node->regulator) {
1043 			list_del(&node->list);
1044 			kfree(node->dev_name);
1045 			kfree(node);
1046 		}
1047 	}
1048 }
1049 
1050 #define REG_STR_SIZE	64
1051 
1052 static struct regulator *create_regulator(struct regulator_dev *rdev,
1053 					  struct device *dev,
1054 					  const char *supply_name)
1055 {
1056 	struct regulator *regulator;
1057 	char buf[REG_STR_SIZE];
1058 	int err, size;
1059 
1060 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1061 	if (regulator == NULL)
1062 		return NULL;
1063 
1064 	mutex_lock(&rdev->mutex);
1065 	regulator->rdev = rdev;
1066 	list_add(&regulator->list, &rdev->consumer_list);
1067 
1068 	if (dev) {
1069 		/* create a 'requested_microamps_name' sysfs entry */
1070 		size = scnprintf(buf, REG_STR_SIZE,
1071 				 "microamps_requested_%s-%s",
1072 				 dev_name(dev), supply_name);
1073 		if (size >= REG_STR_SIZE)
1074 			goto overflow_err;
1075 
1076 		regulator->dev = dev;
1077 		sysfs_attr_init(&regulator->dev_attr.attr);
1078 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1079 		if (regulator->dev_attr.attr.name == NULL)
1080 			goto attr_name_err;
1081 
1082 		regulator->dev_attr.attr.mode = 0444;
1083 		regulator->dev_attr.show = device_requested_uA_show;
1084 		err = device_create_file(dev, &regulator->dev_attr);
1085 		if (err < 0) {
1086 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1087 			goto attr_name_err;
1088 		}
1089 
1090 		/* also add a link to the device sysfs entry */
1091 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1092 				 dev->kobj.name, supply_name);
1093 		if (size >= REG_STR_SIZE)
1094 			goto attr_err;
1095 
1096 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1097 		if (regulator->supply_name == NULL)
1098 			goto attr_err;
1099 
1100 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1101 					buf);
1102 		if (err) {
1103 			rdev_warn(rdev, "could not add device link %s err %d\n",
1104 				  dev->kobj.name, err);
1105 			goto link_name_err;
1106 		}
1107 	} else {
1108 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1109 		if (regulator->supply_name == NULL)
1110 			goto attr_err;
1111 	}
1112 
1113 #ifdef CONFIG_DEBUG_FS
1114 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1115 						rdev->debugfs);
1116 	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1117 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1118 		regulator->debugfs = NULL;
1119 	} else {
1120 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1121 				   &regulator->uA_load);
1122 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1123 				   &regulator->min_uV);
1124 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1125 				   &regulator->max_uV);
1126 	}
1127 #endif
1128 
1129 	mutex_unlock(&rdev->mutex);
1130 	return regulator;
1131 link_name_err:
1132 	kfree(regulator->supply_name);
1133 attr_err:
1134 	device_remove_file(regulator->dev, &regulator->dev_attr);
1135 attr_name_err:
1136 	kfree(regulator->dev_attr.attr.name);
1137 overflow_err:
1138 	list_del(&regulator->list);
1139 	kfree(regulator);
1140 	mutex_unlock(&rdev->mutex);
1141 	return NULL;
1142 }
1143 
1144 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1145 {
1146 	if (!rdev->desc->ops->enable_time)
1147 		return 0;
1148 	return rdev->desc->ops->enable_time(rdev);
1149 }
1150 
1151 /* Internal regulator request function */
1152 static struct regulator *_regulator_get(struct device *dev, const char *id,
1153 					int exclusive)
1154 {
1155 	struct regulator_dev *rdev;
1156 	struct regulator_map *map;
1157 	struct regulator *regulator = ERR_PTR(-ENODEV);
1158 	const char *devname = NULL;
1159 	int ret;
1160 
1161 	if (id == NULL) {
1162 		pr_err("get() with no identifier\n");
1163 		return regulator;
1164 	}
1165 
1166 	if (dev)
1167 		devname = dev_name(dev);
1168 
1169 	mutex_lock(&regulator_list_mutex);
1170 
1171 	list_for_each_entry(map, &regulator_map_list, list) {
1172 		/* If the mapping has a device set up it must match */
1173 		if (map->dev_name &&
1174 		    (!devname || strcmp(map->dev_name, devname)))
1175 			continue;
1176 
1177 		if (strcmp(map->supply, id) == 0) {
1178 			rdev = map->regulator;
1179 			goto found;
1180 		}
1181 	}
1182 
1183 	if (board_wants_dummy_regulator) {
1184 		rdev = dummy_regulator_rdev;
1185 		goto found;
1186 	}
1187 
1188 #ifdef CONFIG_REGULATOR_DUMMY
1189 	if (!devname)
1190 		devname = "deviceless";
1191 
1192 	/* If the board didn't flag that it was fully constrained then
1193 	 * substitute in a dummy regulator so consumers can continue.
1194 	 */
1195 	if (!has_full_constraints) {
1196 		pr_warn("%s supply %s not found, using dummy regulator\n",
1197 			devname, id);
1198 		rdev = dummy_regulator_rdev;
1199 		goto found;
1200 	}
1201 #endif
1202 
1203 	mutex_unlock(&regulator_list_mutex);
1204 	return regulator;
1205 
1206 found:
1207 	if (rdev->exclusive) {
1208 		regulator = ERR_PTR(-EPERM);
1209 		goto out;
1210 	}
1211 
1212 	if (exclusive && rdev->open_count) {
1213 		regulator = ERR_PTR(-EBUSY);
1214 		goto out;
1215 	}
1216 
1217 	if (!try_module_get(rdev->owner))
1218 		goto out;
1219 
1220 	regulator = create_regulator(rdev, dev, id);
1221 	if (regulator == NULL) {
1222 		regulator = ERR_PTR(-ENOMEM);
1223 		module_put(rdev->owner);
1224 	}
1225 
1226 	rdev->open_count++;
1227 	if (exclusive) {
1228 		rdev->exclusive = 1;
1229 
1230 		ret = _regulator_is_enabled(rdev);
1231 		if (ret > 0)
1232 			rdev->use_count = 1;
1233 		else
1234 			rdev->use_count = 0;
1235 	}
1236 
1237 out:
1238 	mutex_unlock(&regulator_list_mutex);
1239 
1240 	return regulator;
1241 }
1242 
1243 /**
1244  * regulator_get - lookup and obtain a reference to a regulator.
1245  * @dev: device for regulator "consumer"
1246  * @id: Supply name or regulator ID.
1247  *
1248  * Returns a struct regulator corresponding to the regulator producer,
1249  * or IS_ERR() condition containing errno.
1250  *
1251  * Use of supply names configured via regulator_set_device_supply() is
1252  * strongly encouraged.  It is recommended that the supply name used
1253  * should match the name used for the supply and/or the relevant
1254  * device pins in the datasheet.
1255  */
1256 struct regulator *regulator_get(struct device *dev, const char *id)
1257 {
1258 	return _regulator_get(dev, id, 0);
1259 }
1260 EXPORT_SYMBOL_GPL(regulator_get);
1261 
1262 /**
1263  * regulator_get_exclusive - obtain exclusive access to a regulator.
1264  * @dev: device for regulator "consumer"
1265  * @id: Supply name or regulator ID.
1266  *
1267  * Returns a struct regulator corresponding to the regulator producer,
1268  * or IS_ERR() condition containing errno.  Other consumers will be
1269  * unable to obtain this reference is held and the use count for the
1270  * regulator will be initialised to reflect the current state of the
1271  * regulator.
1272  *
1273  * This is intended for use by consumers which cannot tolerate shared
1274  * use of the regulator such as those which need to force the
1275  * regulator off for correct operation of the hardware they are
1276  * controlling.
1277  *
1278  * Use of supply names configured via regulator_set_device_supply() is
1279  * strongly encouraged.  It is recommended that the supply name used
1280  * should match the name used for the supply and/or the relevant
1281  * device pins in the datasheet.
1282  */
1283 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1284 {
1285 	return _regulator_get(dev, id, 1);
1286 }
1287 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1288 
1289 /**
1290  * regulator_put - "free" the regulator source
1291  * @regulator: regulator source
1292  *
1293  * Note: drivers must ensure that all regulator_enable calls made on this
1294  * regulator source are balanced by regulator_disable calls prior to calling
1295  * this function.
1296  */
1297 void regulator_put(struct regulator *regulator)
1298 {
1299 	struct regulator_dev *rdev;
1300 
1301 	if (regulator == NULL || IS_ERR(regulator))
1302 		return;
1303 
1304 	mutex_lock(&regulator_list_mutex);
1305 	rdev = regulator->rdev;
1306 
1307 #ifdef CONFIG_DEBUG_FS
1308 	debugfs_remove_recursive(regulator->debugfs);
1309 #endif
1310 
1311 	/* remove any sysfs entries */
1312 	if (regulator->dev) {
1313 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1314 		device_remove_file(regulator->dev, &regulator->dev_attr);
1315 		kfree(regulator->dev_attr.attr.name);
1316 	}
1317 	kfree(regulator->supply_name);
1318 	list_del(&regulator->list);
1319 	kfree(regulator);
1320 
1321 	rdev->open_count--;
1322 	rdev->exclusive = 0;
1323 
1324 	module_put(rdev->owner);
1325 	mutex_unlock(&regulator_list_mutex);
1326 }
1327 EXPORT_SYMBOL_GPL(regulator_put);
1328 
1329 static int _regulator_can_change_status(struct regulator_dev *rdev)
1330 {
1331 	if (!rdev->constraints)
1332 		return 0;
1333 
1334 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1335 		return 1;
1336 	else
1337 		return 0;
1338 }
1339 
1340 /* locks held by regulator_enable() */
1341 static int _regulator_enable(struct regulator_dev *rdev)
1342 {
1343 	int ret, delay;
1344 
1345 	/* check voltage and requested load before enabling */
1346 	if (rdev->constraints &&
1347 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1348 		drms_uA_update(rdev);
1349 
1350 	if (rdev->use_count == 0) {
1351 		/* The regulator may on if it's not switchable or left on */
1352 		ret = _regulator_is_enabled(rdev);
1353 		if (ret == -EINVAL || ret == 0) {
1354 			if (!_regulator_can_change_status(rdev))
1355 				return -EPERM;
1356 
1357 			if (!rdev->desc->ops->enable)
1358 				return -EINVAL;
1359 
1360 			/* Query before enabling in case configuration
1361 			 * dependent.  */
1362 			ret = _regulator_get_enable_time(rdev);
1363 			if (ret >= 0) {
1364 				delay = ret;
1365 			} else {
1366 				rdev_warn(rdev, "enable_time() failed: %d\n",
1367 					   ret);
1368 				delay = 0;
1369 			}
1370 
1371 			trace_regulator_enable(rdev_get_name(rdev));
1372 
1373 			/* Allow the regulator to ramp; it would be useful
1374 			 * to extend this for bulk operations so that the
1375 			 * regulators can ramp together.  */
1376 			ret = rdev->desc->ops->enable(rdev);
1377 			if (ret < 0)
1378 				return ret;
1379 
1380 			trace_regulator_enable_delay(rdev_get_name(rdev));
1381 
1382 			if (delay >= 1000) {
1383 				mdelay(delay / 1000);
1384 				udelay(delay % 1000);
1385 			} else if (delay) {
1386 				udelay(delay);
1387 			}
1388 
1389 			trace_regulator_enable_complete(rdev_get_name(rdev));
1390 
1391 		} else if (ret < 0) {
1392 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1393 			return ret;
1394 		}
1395 		/* Fallthrough on positive return values - already enabled */
1396 	}
1397 
1398 	rdev->use_count++;
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * regulator_enable - enable regulator output
1405  * @regulator: regulator source
1406  *
1407  * Request that the regulator be enabled with the regulator output at
1408  * the predefined voltage or current value.  Calls to regulator_enable()
1409  * must be balanced with calls to regulator_disable().
1410  *
1411  * NOTE: the output value can be set by other drivers, boot loader or may be
1412  * hardwired in the regulator.
1413  */
1414 int regulator_enable(struct regulator *regulator)
1415 {
1416 	struct regulator_dev *rdev = regulator->rdev;
1417 	int ret = 0;
1418 
1419 	if (rdev->supply) {
1420 		ret = regulator_enable(rdev->supply);
1421 		if (ret != 0)
1422 			return ret;
1423 	}
1424 
1425 	mutex_lock(&rdev->mutex);
1426 	ret = _regulator_enable(rdev);
1427 	mutex_unlock(&rdev->mutex);
1428 
1429 	if (ret != 0 && rdev->supply)
1430 		regulator_disable(rdev->supply);
1431 
1432 	return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(regulator_enable);
1435 
1436 /* locks held by regulator_disable() */
1437 static int _regulator_disable(struct regulator_dev *rdev)
1438 {
1439 	int ret = 0;
1440 
1441 	if (WARN(rdev->use_count <= 0,
1442 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1443 		return -EIO;
1444 
1445 	/* are we the last user and permitted to disable ? */
1446 	if (rdev->use_count == 1 &&
1447 	    (rdev->constraints && !rdev->constraints->always_on)) {
1448 
1449 		/* we are last user */
1450 		if (_regulator_can_change_status(rdev) &&
1451 		    rdev->desc->ops->disable) {
1452 			trace_regulator_disable(rdev_get_name(rdev));
1453 
1454 			ret = rdev->desc->ops->disable(rdev);
1455 			if (ret < 0) {
1456 				rdev_err(rdev, "failed to disable\n");
1457 				return ret;
1458 			}
1459 
1460 			trace_regulator_disable_complete(rdev_get_name(rdev));
1461 
1462 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1463 					     NULL);
1464 		}
1465 
1466 		rdev->use_count = 0;
1467 	} else if (rdev->use_count > 1) {
1468 
1469 		if (rdev->constraints &&
1470 			(rdev->constraints->valid_ops_mask &
1471 			REGULATOR_CHANGE_DRMS))
1472 			drms_uA_update(rdev);
1473 
1474 		rdev->use_count--;
1475 	}
1476 
1477 	return ret;
1478 }
1479 
1480 /**
1481  * regulator_disable - disable regulator output
1482  * @regulator: regulator source
1483  *
1484  * Disable the regulator output voltage or current.  Calls to
1485  * regulator_enable() must be balanced with calls to
1486  * regulator_disable().
1487  *
1488  * NOTE: this will only disable the regulator output if no other consumer
1489  * devices have it enabled, the regulator device supports disabling and
1490  * machine constraints permit this operation.
1491  */
1492 int regulator_disable(struct regulator *regulator)
1493 {
1494 	struct regulator_dev *rdev = regulator->rdev;
1495 	int ret = 0;
1496 
1497 	mutex_lock(&rdev->mutex);
1498 	ret = _regulator_disable(rdev);
1499 	mutex_unlock(&rdev->mutex);
1500 
1501 	if (ret == 0 && rdev->supply)
1502 		regulator_disable(rdev->supply);
1503 
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL_GPL(regulator_disable);
1507 
1508 /* locks held by regulator_force_disable() */
1509 static int _regulator_force_disable(struct regulator_dev *rdev)
1510 {
1511 	int ret = 0;
1512 
1513 	/* force disable */
1514 	if (rdev->desc->ops->disable) {
1515 		/* ah well, who wants to live forever... */
1516 		ret = rdev->desc->ops->disable(rdev);
1517 		if (ret < 0) {
1518 			rdev_err(rdev, "failed to force disable\n");
1519 			return ret;
1520 		}
1521 		/* notify other consumers that power has been forced off */
1522 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1523 			REGULATOR_EVENT_DISABLE, NULL);
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 /**
1530  * regulator_force_disable - force disable regulator output
1531  * @regulator: regulator source
1532  *
1533  * Forcibly disable the regulator output voltage or current.
1534  * NOTE: this *will* disable the regulator output even if other consumer
1535  * devices have it enabled. This should be used for situations when device
1536  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1537  */
1538 int regulator_force_disable(struct regulator *regulator)
1539 {
1540 	struct regulator_dev *rdev = regulator->rdev;
1541 	int ret;
1542 
1543 	mutex_lock(&rdev->mutex);
1544 	regulator->uA_load = 0;
1545 	ret = _regulator_force_disable(regulator->rdev);
1546 	mutex_unlock(&rdev->mutex);
1547 
1548 	if (rdev->supply)
1549 		while (rdev->open_count--)
1550 			regulator_disable(rdev->supply);
1551 
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_force_disable);
1555 
1556 static void regulator_disable_work(struct work_struct *work)
1557 {
1558 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1559 						  disable_work.work);
1560 	int count, i, ret;
1561 
1562 	mutex_lock(&rdev->mutex);
1563 
1564 	BUG_ON(!rdev->deferred_disables);
1565 
1566 	count = rdev->deferred_disables;
1567 	rdev->deferred_disables = 0;
1568 
1569 	for (i = 0; i < count; i++) {
1570 		ret = _regulator_disable(rdev);
1571 		if (ret != 0)
1572 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1573 	}
1574 
1575 	mutex_unlock(&rdev->mutex);
1576 
1577 	if (rdev->supply) {
1578 		for (i = 0; i < count; i++) {
1579 			ret = regulator_disable(rdev->supply);
1580 			if (ret != 0) {
1581 				rdev_err(rdev,
1582 					 "Supply disable failed: %d\n", ret);
1583 			}
1584 		}
1585 	}
1586 }
1587 
1588 /**
1589  * regulator_disable_deferred - disable regulator output with delay
1590  * @regulator: regulator source
1591  * @ms: miliseconds until the regulator is disabled
1592  *
1593  * Execute regulator_disable() on the regulator after a delay.  This
1594  * is intended for use with devices that require some time to quiesce.
1595  *
1596  * NOTE: this will only disable the regulator output if no other consumer
1597  * devices have it enabled, the regulator device supports disabling and
1598  * machine constraints permit this operation.
1599  */
1600 int regulator_disable_deferred(struct regulator *regulator, int ms)
1601 {
1602 	struct regulator_dev *rdev = regulator->rdev;
1603 	int ret;
1604 
1605 	mutex_lock(&rdev->mutex);
1606 	rdev->deferred_disables++;
1607 	mutex_unlock(&rdev->mutex);
1608 
1609 	ret = schedule_delayed_work(&rdev->disable_work,
1610 				    msecs_to_jiffies(ms));
1611 	if (ret < 0)
1612 		return ret;
1613 	else
1614 		return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1617 
1618 static int _regulator_is_enabled(struct regulator_dev *rdev)
1619 {
1620 	/* If we don't know then assume that the regulator is always on */
1621 	if (!rdev->desc->ops->is_enabled)
1622 		return 1;
1623 
1624 	return rdev->desc->ops->is_enabled(rdev);
1625 }
1626 
1627 /**
1628  * regulator_is_enabled - is the regulator output enabled
1629  * @regulator: regulator source
1630  *
1631  * Returns positive if the regulator driver backing the source/client
1632  * has requested that the device be enabled, zero if it hasn't, else a
1633  * negative errno code.
1634  *
1635  * Note that the device backing this regulator handle can have multiple
1636  * users, so it might be enabled even if regulator_enable() was never
1637  * called for this particular source.
1638  */
1639 int regulator_is_enabled(struct regulator *regulator)
1640 {
1641 	int ret;
1642 
1643 	mutex_lock(&regulator->rdev->mutex);
1644 	ret = _regulator_is_enabled(regulator->rdev);
1645 	mutex_unlock(&regulator->rdev->mutex);
1646 
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1650 
1651 /**
1652  * regulator_count_voltages - count regulator_list_voltage() selectors
1653  * @regulator: regulator source
1654  *
1655  * Returns number of selectors, or negative errno.  Selectors are
1656  * numbered starting at zero, and typically correspond to bitfields
1657  * in hardware registers.
1658  */
1659 int regulator_count_voltages(struct regulator *regulator)
1660 {
1661 	struct regulator_dev	*rdev = regulator->rdev;
1662 
1663 	return rdev->desc->n_voltages ? : -EINVAL;
1664 }
1665 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1666 
1667 /**
1668  * regulator_list_voltage - enumerate supported voltages
1669  * @regulator: regulator source
1670  * @selector: identify voltage to list
1671  * Context: can sleep
1672  *
1673  * Returns a voltage that can be passed to @regulator_set_voltage(),
1674  * zero if this selector code can't be used on this system, or a
1675  * negative errno.
1676  */
1677 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1678 {
1679 	struct regulator_dev	*rdev = regulator->rdev;
1680 	struct regulator_ops	*ops = rdev->desc->ops;
1681 	int			ret;
1682 
1683 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1684 		return -EINVAL;
1685 
1686 	mutex_lock(&rdev->mutex);
1687 	ret = ops->list_voltage(rdev, selector);
1688 	mutex_unlock(&rdev->mutex);
1689 
1690 	if (ret > 0) {
1691 		if (ret < rdev->constraints->min_uV)
1692 			ret = 0;
1693 		else if (ret > rdev->constraints->max_uV)
1694 			ret = 0;
1695 	}
1696 
1697 	return ret;
1698 }
1699 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1700 
1701 /**
1702  * regulator_is_supported_voltage - check if a voltage range can be supported
1703  *
1704  * @regulator: Regulator to check.
1705  * @min_uV: Minimum required voltage in uV.
1706  * @max_uV: Maximum required voltage in uV.
1707  *
1708  * Returns a boolean or a negative error code.
1709  */
1710 int regulator_is_supported_voltage(struct regulator *regulator,
1711 				   int min_uV, int max_uV)
1712 {
1713 	int i, voltages, ret;
1714 
1715 	ret = regulator_count_voltages(regulator);
1716 	if (ret < 0)
1717 		return ret;
1718 	voltages = ret;
1719 
1720 	for (i = 0; i < voltages; i++) {
1721 		ret = regulator_list_voltage(regulator, i);
1722 
1723 		if (ret >= min_uV && ret <= max_uV)
1724 			return 1;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1731 				     int min_uV, int max_uV)
1732 {
1733 	int ret;
1734 	int delay = 0;
1735 	unsigned int selector;
1736 
1737 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1738 
1739 	min_uV += rdev->constraints->uV_offset;
1740 	max_uV += rdev->constraints->uV_offset;
1741 
1742 	if (rdev->desc->ops->set_voltage) {
1743 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1744 						   &selector);
1745 
1746 		if (rdev->desc->ops->list_voltage)
1747 			selector = rdev->desc->ops->list_voltage(rdev,
1748 								 selector);
1749 		else
1750 			selector = -1;
1751 	} else if (rdev->desc->ops->set_voltage_sel) {
1752 		int best_val = INT_MAX;
1753 		int i;
1754 
1755 		selector = 0;
1756 
1757 		/* Find the smallest voltage that falls within the specified
1758 		 * range.
1759 		 */
1760 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1761 			ret = rdev->desc->ops->list_voltage(rdev, i);
1762 			if (ret < 0)
1763 				continue;
1764 
1765 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1766 				best_val = ret;
1767 				selector = i;
1768 			}
1769 		}
1770 
1771 		/*
1772 		 * If we can't obtain the old selector there is not enough
1773 		 * info to call set_voltage_time_sel().
1774 		 */
1775 		if (rdev->desc->ops->set_voltage_time_sel &&
1776 		    rdev->desc->ops->get_voltage_sel) {
1777 			unsigned int old_selector = 0;
1778 
1779 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1780 			if (ret < 0)
1781 				return ret;
1782 			old_selector = ret;
1783 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1784 						old_selector, selector);
1785 		}
1786 
1787 		if (best_val != INT_MAX) {
1788 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1789 			selector = best_val;
1790 		} else {
1791 			ret = -EINVAL;
1792 		}
1793 	} else {
1794 		ret = -EINVAL;
1795 	}
1796 
1797 	/* Insert any necessary delays */
1798 	if (delay >= 1000) {
1799 		mdelay(delay / 1000);
1800 		udelay(delay % 1000);
1801 	} else if (delay) {
1802 		udelay(delay);
1803 	}
1804 
1805 	if (ret == 0)
1806 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1807 				     NULL);
1808 
1809 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1810 
1811 	return ret;
1812 }
1813 
1814 /**
1815  * regulator_set_voltage - set regulator output voltage
1816  * @regulator: regulator source
1817  * @min_uV: Minimum required voltage in uV
1818  * @max_uV: Maximum acceptable voltage in uV
1819  *
1820  * Sets a voltage regulator to the desired output voltage. This can be set
1821  * during any regulator state. IOW, regulator can be disabled or enabled.
1822  *
1823  * If the regulator is enabled then the voltage will change to the new value
1824  * immediately otherwise if the regulator is disabled the regulator will
1825  * output at the new voltage when enabled.
1826  *
1827  * NOTE: If the regulator is shared between several devices then the lowest
1828  * request voltage that meets the system constraints will be used.
1829  * Regulator system constraints must be set for this regulator before
1830  * calling this function otherwise this call will fail.
1831  */
1832 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1833 {
1834 	struct regulator_dev *rdev = regulator->rdev;
1835 	int ret = 0;
1836 
1837 	mutex_lock(&rdev->mutex);
1838 
1839 	/* If we're setting the same range as last time the change
1840 	 * should be a noop (some cpufreq implementations use the same
1841 	 * voltage for multiple frequencies, for example).
1842 	 */
1843 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1844 		goto out;
1845 
1846 	/* sanity check */
1847 	if (!rdev->desc->ops->set_voltage &&
1848 	    !rdev->desc->ops->set_voltage_sel) {
1849 		ret = -EINVAL;
1850 		goto out;
1851 	}
1852 
1853 	/* constraints check */
1854 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1855 	if (ret < 0)
1856 		goto out;
1857 	regulator->min_uV = min_uV;
1858 	regulator->max_uV = max_uV;
1859 
1860 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1861 	if (ret < 0)
1862 		goto out;
1863 
1864 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1865 
1866 out:
1867 	mutex_unlock(&rdev->mutex);
1868 	return ret;
1869 }
1870 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1871 
1872 /**
1873  * regulator_set_voltage_time - get raise/fall time
1874  * @regulator: regulator source
1875  * @old_uV: starting voltage in microvolts
1876  * @new_uV: target voltage in microvolts
1877  *
1878  * Provided with the starting and ending voltage, this function attempts to
1879  * calculate the time in microseconds required to rise or fall to this new
1880  * voltage.
1881  */
1882 int regulator_set_voltage_time(struct regulator *regulator,
1883 			       int old_uV, int new_uV)
1884 {
1885 	struct regulator_dev	*rdev = regulator->rdev;
1886 	struct regulator_ops	*ops = rdev->desc->ops;
1887 	int old_sel = -1;
1888 	int new_sel = -1;
1889 	int voltage;
1890 	int i;
1891 
1892 	/* Currently requires operations to do this */
1893 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1894 	    || !rdev->desc->n_voltages)
1895 		return -EINVAL;
1896 
1897 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1898 		/* We only look for exact voltage matches here */
1899 		voltage = regulator_list_voltage(regulator, i);
1900 		if (voltage < 0)
1901 			return -EINVAL;
1902 		if (voltage == 0)
1903 			continue;
1904 		if (voltage == old_uV)
1905 			old_sel = i;
1906 		if (voltage == new_uV)
1907 			new_sel = i;
1908 	}
1909 
1910 	if (old_sel < 0 || new_sel < 0)
1911 		return -EINVAL;
1912 
1913 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1914 }
1915 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1916 
1917 /**
1918  * regulator_sync_voltage - re-apply last regulator output voltage
1919  * @regulator: regulator source
1920  *
1921  * Re-apply the last configured voltage.  This is intended to be used
1922  * where some external control source the consumer is cooperating with
1923  * has caused the configured voltage to change.
1924  */
1925 int regulator_sync_voltage(struct regulator *regulator)
1926 {
1927 	struct regulator_dev *rdev = regulator->rdev;
1928 	int ret, min_uV, max_uV;
1929 
1930 	mutex_lock(&rdev->mutex);
1931 
1932 	if (!rdev->desc->ops->set_voltage &&
1933 	    !rdev->desc->ops->set_voltage_sel) {
1934 		ret = -EINVAL;
1935 		goto out;
1936 	}
1937 
1938 	/* This is only going to work if we've had a voltage configured. */
1939 	if (!regulator->min_uV && !regulator->max_uV) {
1940 		ret = -EINVAL;
1941 		goto out;
1942 	}
1943 
1944 	min_uV = regulator->min_uV;
1945 	max_uV = regulator->max_uV;
1946 
1947 	/* This should be a paranoia check... */
1948 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1949 	if (ret < 0)
1950 		goto out;
1951 
1952 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1953 	if (ret < 0)
1954 		goto out;
1955 
1956 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1957 
1958 out:
1959 	mutex_unlock(&rdev->mutex);
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1963 
1964 static int _regulator_get_voltage(struct regulator_dev *rdev)
1965 {
1966 	int sel, ret;
1967 
1968 	if (rdev->desc->ops->get_voltage_sel) {
1969 		sel = rdev->desc->ops->get_voltage_sel(rdev);
1970 		if (sel < 0)
1971 			return sel;
1972 		ret = rdev->desc->ops->list_voltage(rdev, sel);
1973 	} else if (rdev->desc->ops->get_voltage) {
1974 		ret = rdev->desc->ops->get_voltage(rdev);
1975 	} else {
1976 		return -EINVAL;
1977 	}
1978 
1979 	if (ret < 0)
1980 		return ret;
1981 	return ret - rdev->constraints->uV_offset;
1982 }
1983 
1984 /**
1985  * regulator_get_voltage - get regulator output voltage
1986  * @regulator: regulator source
1987  *
1988  * This returns the current regulator voltage in uV.
1989  *
1990  * NOTE: If the regulator is disabled it will return the voltage value. This
1991  * function should not be used to determine regulator state.
1992  */
1993 int regulator_get_voltage(struct regulator *regulator)
1994 {
1995 	int ret;
1996 
1997 	mutex_lock(&regulator->rdev->mutex);
1998 
1999 	ret = _regulator_get_voltage(regulator->rdev);
2000 
2001 	mutex_unlock(&regulator->rdev->mutex);
2002 
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2006 
2007 /**
2008  * regulator_set_current_limit - set regulator output current limit
2009  * @regulator: regulator source
2010  * @min_uA: Minimuum supported current in uA
2011  * @max_uA: Maximum supported current in uA
2012  *
2013  * Sets current sink to the desired output current. This can be set during
2014  * any regulator state. IOW, regulator can be disabled or enabled.
2015  *
2016  * If the regulator is enabled then the current will change to the new value
2017  * immediately otherwise if the regulator is disabled the regulator will
2018  * output at the new current when enabled.
2019  *
2020  * NOTE: Regulator system constraints must be set for this regulator before
2021  * calling this function otherwise this call will fail.
2022  */
2023 int regulator_set_current_limit(struct regulator *regulator,
2024 			       int min_uA, int max_uA)
2025 {
2026 	struct regulator_dev *rdev = regulator->rdev;
2027 	int ret;
2028 
2029 	mutex_lock(&rdev->mutex);
2030 
2031 	/* sanity check */
2032 	if (!rdev->desc->ops->set_current_limit) {
2033 		ret = -EINVAL;
2034 		goto out;
2035 	}
2036 
2037 	/* constraints check */
2038 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2039 	if (ret < 0)
2040 		goto out;
2041 
2042 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2043 out:
2044 	mutex_unlock(&rdev->mutex);
2045 	return ret;
2046 }
2047 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2048 
2049 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2050 {
2051 	int ret;
2052 
2053 	mutex_lock(&rdev->mutex);
2054 
2055 	/* sanity check */
2056 	if (!rdev->desc->ops->get_current_limit) {
2057 		ret = -EINVAL;
2058 		goto out;
2059 	}
2060 
2061 	ret = rdev->desc->ops->get_current_limit(rdev);
2062 out:
2063 	mutex_unlock(&rdev->mutex);
2064 	return ret;
2065 }
2066 
2067 /**
2068  * regulator_get_current_limit - get regulator output current
2069  * @regulator: regulator source
2070  *
2071  * This returns the current supplied by the specified current sink in uA.
2072  *
2073  * NOTE: If the regulator is disabled it will return the current value. This
2074  * function should not be used to determine regulator state.
2075  */
2076 int regulator_get_current_limit(struct regulator *regulator)
2077 {
2078 	return _regulator_get_current_limit(regulator->rdev);
2079 }
2080 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2081 
2082 /**
2083  * regulator_set_mode - set regulator operating mode
2084  * @regulator: regulator source
2085  * @mode: operating mode - one of the REGULATOR_MODE constants
2086  *
2087  * Set regulator operating mode to increase regulator efficiency or improve
2088  * regulation performance.
2089  *
2090  * NOTE: Regulator system constraints must be set for this regulator before
2091  * calling this function otherwise this call will fail.
2092  */
2093 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2094 {
2095 	struct regulator_dev *rdev = regulator->rdev;
2096 	int ret;
2097 	int regulator_curr_mode;
2098 
2099 	mutex_lock(&rdev->mutex);
2100 
2101 	/* sanity check */
2102 	if (!rdev->desc->ops->set_mode) {
2103 		ret = -EINVAL;
2104 		goto out;
2105 	}
2106 
2107 	/* return if the same mode is requested */
2108 	if (rdev->desc->ops->get_mode) {
2109 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2110 		if (regulator_curr_mode == mode) {
2111 			ret = 0;
2112 			goto out;
2113 		}
2114 	}
2115 
2116 	/* constraints check */
2117 	ret = regulator_mode_constrain(rdev, &mode);
2118 	if (ret < 0)
2119 		goto out;
2120 
2121 	ret = rdev->desc->ops->set_mode(rdev, mode);
2122 out:
2123 	mutex_unlock(&rdev->mutex);
2124 	return ret;
2125 }
2126 EXPORT_SYMBOL_GPL(regulator_set_mode);
2127 
2128 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2129 {
2130 	int ret;
2131 
2132 	mutex_lock(&rdev->mutex);
2133 
2134 	/* sanity check */
2135 	if (!rdev->desc->ops->get_mode) {
2136 		ret = -EINVAL;
2137 		goto out;
2138 	}
2139 
2140 	ret = rdev->desc->ops->get_mode(rdev);
2141 out:
2142 	mutex_unlock(&rdev->mutex);
2143 	return ret;
2144 }
2145 
2146 /**
2147  * regulator_get_mode - get regulator operating mode
2148  * @regulator: regulator source
2149  *
2150  * Get the current regulator operating mode.
2151  */
2152 unsigned int regulator_get_mode(struct regulator *regulator)
2153 {
2154 	return _regulator_get_mode(regulator->rdev);
2155 }
2156 EXPORT_SYMBOL_GPL(regulator_get_mode);
2157 
2158 /**
2159  * regulator_set_optimum_mode - set regulator optimum operating mode
2160  * @regulator: regulator source
2161  * @uA_load: load current
2162  *
2163  * Notifies the regulator core of a new device load. This is then used by
2164  * DRMS (if enabled by constraints) to set the most efficient regulator
2165  * operating mode for the new regulator loading.
2166  *
2167  * Consumer devices notify their supply regulator of the maximum power
2168  * they will require (can be taken from device datasheet in the power
2169  * consumption tables) when they change operational status and hence power
2170  * state. Examples of operational state changes that can affect power
2171  * consumption are :-
2172  *
2173  *    o Device is opened / closed.
2174  *    o Device I/O is about to begin or has just finished.
2175  *    o Device is idling in between work.
2176  *
2177  * This information is also exported via sysfs to userspace.
2178  *
2179  * DRMS will sum the total requested load on the regulator and change
2180  * to the most efficient operating mode if platform constraints allow.
2181  *
2182  * Returns the new regulator mode or error.
2183  */
2184 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2185 {
2186 	struct regulator_dev *rdev = regulator->rdev;
2187 	struct regulator *consumer;
2188 	int ret, output_uV, input_uV, total_uA_load = 0;
2189 	unsigned int mode;
2190 
2191 	mutex_lock(&rdev->mutex);
2192 
2193 	/*
2194 	 * first check to see if we can set modes at all, otherwise just
2195 	 * tell the consumer everything is OK.
2196 	 */
2197 	regulator->uA_load = uA_load;
2198 	ret = regulator_check_drms(rdev);
2199 	if (ret < 0) {
2200 		ret = 0;
2201 		goto out;
2202 	}
2203 
2204 	if (!rdev->desc->ops->get_optimum_mode)
2205 		goto out;
2206 
2207 	/*
2208 	 * we can actually do this so any errors are indicators of
2209 	 * potential real failure.
2210 	 */
2211 	ret = -EINVAL;
2212 
2213 	/* get output voltage */
2214 	output_uV = _regulator_get_voltage(rdev);
2215 	if (output_uV <= 0) {
2216 		rdev_err(rdev, "invalid output voltage found\n");
2217 		goto out;
2218 	}
2219 
2220 	/* get input voltage */
2221 	input_uV = 0;
2222 	if (rdev->supply)
2223 		input_uV = regulator_get_voltage(rdev->supply);
2224 	if (input_uV <= 0)
2225 		input_uV = rdev->constraints->input_uV;
2226 	if (input_uV <= 0) {
2227 		rdev_err(rdev, "invalid input voltage found\n");
2228 		goto out;
2229 	}
2230 
2231 	/* calc total requested load for this regulator */
2232 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2233 		total_uA_load += consumer->uA_load;
2234 
2235 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2236 						 input_uV, output_uV,
2237 						 total_uA_load);
2238 	ret = regulator_mode_constrain(rdev, &mode);
2239 	if (ret < 0) {
2240 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2241 			 total_uA_load, input_uV, output_uV);
2242 		goto out;
2243 	}
2244 
2245 	ret = rdev->desc->ops->set_mode(rdev, mode);
2246 	if (ret < 0) {
2247 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2248 		goto out;
2249 	}
2250 	ret = mode;
2251 out:
2252 	mutex_unlock(&rdev->mutex);
2253 	return ret;
2254 }
2255 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2256 
2257 /**
2258  * regulator_register_notifier - register regulator event notifier
2259  * @regulator: regulator source
2260  * @nb: notifier block
2261  *
2262  * Register notifier block to receive regulator events.
2263  */
2264 int regulator_register_notifier(struct regulator *regulator,
2265 			      struct notifier_block *nb)
2266 {
2267 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2268 						nb);
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2271 
2272 /**
2273  * regulator_unregister_notifier - unregister regulator event notifier
2274  * @regulator: regulator source
2275  * @nb: notifier block
2276  *
2277  * Unregister regulator event notifier block.
2278  */
2279 int regulator_unregister_notifier(struct regulator *regulator,
2280 				struct notifier_block *nb)
2281 {
2282 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2283 						  nb);
2284 }
2285 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2286 
2287 /* notify regulator consumers and downstream regulator consumers.
2288  * Note mutex must be held by caller.
2289  */
2290 static void _notifier_call_chain(struct regulator_dev *rdev,
2291 				  unsigned long event, void *data)
2292 {
2293 	/* call rdev chain first */
2294 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2295 }
2296 
2297 /**
2298  * regulator_bulk_get - get multiple regulator consumers
2299  *
2300  * @dev:           Device to supply
2301  * @num_consumers: Number of consumers to register
2302  * @consumers:     Configuration of consumers; clients are stored here.
2303  *
2304  * @return 0 on success, an errno on failure.
2305  *
2306  * This helper function allows drivers to get several regulator
2307  * consumers in one operation.  If any of the regulators cannot be
2308  * acquired then any regulators that were allocated will be freed
2309  * before returning to the caller.
2310  */
2311 int regulator_bulk_get(struct device *dev, int num_consumers,
2312 		       struct regulator_bulk_data *consumers)
2313 {
2314 	int i;
2315 	int ret;
2316 
2317 	for (i = 0; i < num_consumers; i++)
2318 		consumers[i].consumer = NULL;
2319 
2320 	for (i = 0; i < num_consumers; i++) {
2321 		consumers[i].consumer = regulator_get(dev,
2322 						      consumers[i].supply);
2323 		if (IS_ERR(consumers[i].consumer)) {
2324 			ret = PTR_ERR(consumers[i].consumer);
2325 			dev_err(dev, "Failed to get supply '%s': %d\n",
2326 				consumers[i].supply, ret);
2327 			consumers[i].consumer = NULL;
2328 			goto err;
2329 		}
2330 	}
2331 
2332 	return 0;
2333 
2334 err:
2335 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2336 		regulator_put(consumers[i].consumer);
2337 
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2341 
2342 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2343 {
2344 	struct regulator_bulk_data *bulk = data;
2345 
2346 	bulk->ret = regulator_enable(bulk->consumer);
2347 }
2348 
2349 /**
2350  * regulator_bulk_enable - enable multiple regulator consumers
2351  *
2352  * @num_consumers: Number of consumers
2353  * @consumers:     Consumer data; clients are stored here.
2354  * @return         0 on success, an errno on failure
2355  *
2356  * This convenience API allows consumers to enable multiple regulator
2357  * clients in a single API call.  If any consumers cannot be enabled
2358  * then any others that were enabled will be disabled again prior to
2359  * return.
2360  */
2361 int regulator_bulk_enable(int num_consumers,
2362 			  struct regulator_bulk_data *consumers)
2363 {
2364 	LIST_HEAD(async_domain);
2365 	int i;
2366 	int ret = 0;
2367 
2368 	for (i = 0; i < num_consumers; i++)
2369 		async_schedule_domain(regulator_bulk_enable_async,
2370 				      &consumers[i], &async_domain);
2371 
2372 	async_synchronize_full_domain(&async_domain);
2373 
2374 	/* If any consumer failed we need to unwind any that succeeded */
2375 	for (i = 0; i < num_consumers; i++) {
2376 		if (consumers[i].ret != 0) {
2377 			ret = consumers[i].ret;
2378 			goto err;
2379 		}
2380 	}
2381 
2382 	return 0;
2383 
2384 err:
2385 	for (i = 0; i < num_consumers; i++)
2386 		if (consumers[i].ret == 0)
2387 			regulator_disable(consumers[i].consumer);
2388 		else
2389 			pr_err("Failed to enable %s: %d\n",
2390 			       consumers[i].supply, consumers[i].ret);
2391 
2392 	return ret;
2393 }
2394 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2395 
2396 /**
2397  * regulator_bulk_disable - disable multiple regulator consumers
2398  *
2399  * @num_consumers: Number of consumers
2400  * @consumers:     Consumer data; clients are stored here.
2401  * @return         0 on success, an errno on failure
2402  *
2403  * This convenience API allows consumers to disable multiple regulator
2404  * clients in a single API call.  If any consumers cannot be enabled
2405  * then any others that were disabled will be disabled again prior to
2406  * return.
2407  */
2408 int regulator_bulk_disable(int num_consumers,
2409 			   struct regulator_bulk_data *consumers)
2410 {
2411 	int i;
2412 	int ret;
2413 
2414 	for (i = 0; i < num_consumers; i++) {
2415 		ret = regulator_disable(consumers[i].consumer);
2416 		if (ret != 0)
2417 			goto err;
2418 	}
2419 
2420 	return 0;
2421 
2422 err:
2423 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2424 	for (--i; i >= 0; --i)
2425 		regulator_enable(consumers[i].consumer);
2426 
2427 	return ret;
2428 }
2429 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2430 
2431 /**
2432  * regulator_bulk_free - free multiple regulator consumers
2433  *
2434  * @num_consumers: Number of consumers
2435  * @consumers:     Consumer data; clients are stored here.
2436  *
2437  * This convenience API allows consumers to free multiple regulator
2438  * clients in a single API call.
2439  */
2440 void regulator_bulk_free(int num_consumers,
2441 			 struct regulator_bulk_data *consumers)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < num_consumers; i++) {
2446 		regulator_put(consumers[i].consumer);
2447 		consumers[i].consumer = NULL;
2448 	}
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2451 
2452 /**
2453  * regulator_notifier_call_chain - call regulator event notifier
2454  * @rdev: regulator source
2455  * @event: notifier block
2456  * @data: callback-specific data.
2457  *
2458  * Called by regulator drivers to notify clients a regulator event has
2459  * occurred. We also notify regulator clients downstream.
2460  * Note lock must be held by caller.
2461  */
2462 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2463 				  unsigned long event, void *data)
2464 {
2465 	_notifier_call_chain(rdev, event, data);
2466 	return NOTIFY_DONE;
2467 
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2470 
2471 /**
2472  * regulator_mode_to_status - convert a regulator mode into a status
2473  *
2474  * @mode: Mode to convert
2475  *
2476  * Convert a regulator mode into a status.
2477  */
2478 int regulator_mode_to_status(unsigned int mode)
2479 {
2480 	switch (mode) {
2481 	case REGULATOR_MODE_FAST:
2482 		return REGULATOR_STATUS_FAST;
2483 	case REGULATOR_MODE_NORMAL:
2484 		return REGULATOR_STATUS_NORMAL;
2485 	case REGULATOR_MODE_IDLE:
2486 		return REGULATOR_STATUS_IDLE;
2487 	case REGULATOR_STATUS_STANDBY:
2488 		return REGULATOR_STATUS_STANDBY;
2489 	default:
2490 		return 0;
2491 	}
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2494 
2495 /*
2496  * To avoid cluttering sysfs (and memory) with useless state, only
2497  * create attributes that can be meaningfully displayed.
2498  */
2499 static int add_regulator_attributes(struct regulator_dev *rdev)
2500 {
2501 	struct device		*dev = &rdev->dev;
2502 	struct regulator_ops	*ops = rdev->desc->ops;
2503 	int			status = 0;
2504 
2505 	/* some attributes need specific methods to be displayed */
2506 	if (ops->get_voltage || ops->get_voltage_sel) {
2507 		status = device_create_file(dev, &dev_attr_microvolts);
2508 		if (status < 0)
2509 			return status;
2510 	}
2511 	if (ops->get_current_limit) {
2512 		status = device_create_file(dev, &dev_attr_microamps);
2513 		if (status < 0)
2514 			return status;
2515 	}
2516 	if (ops->get_mode) {
2517 		status = device_create_file(dev, &dev_attr_opmode);
2518 		if (status < 0)
2519 			return status;
2520 	}
2521 	if (ops->is_enabled) {
2522 		status = device_create_file(dev, &dev_attr_state);
2523 		if (status < 0)
2524 			return status;
2525 	}
2526 	if (ops->get_status) {
2527 		status = device_create_file(dev, &dev_attr_status);
2528 		if (status < 0)
2529 			return status;
2530 	}
2531 
2532 	/* some attributes are type-specific */
2533 	if (rdev->desc->type == REGULATOR_CURRENT) {
2534 		status = device_create_file(dev, &dev_attr_requested_microamps);
2535 		if (status < 0)
2536 			return status;
2537 	}
2538 
2539 	/* all the other attributes exist to support constraints;
2540 	 * don't show them if there are no constraints, or if the
2541 	 * relevant supporting methods are missing.
2542 	 */
2543 	if (!rdev->constraints)
2544 		return status;
2545 
2546 	/* constraints need specific supporting methods */
2547 	if (ops->set_voltage || ops->set_voltage_sel) {
2548 		status = device_create_file(dev, &dev_attr_min_microvolts);
2549 		if (status < 0)
2550 			return status;
2551 		status = device_create_file(dev, &dev_attr_max_microvolts);
2552 		if (status < 0)
2553 			return status;
2554 	}
2555 	if (ops->set_current_limit) {
2556 		status = device_create_file(dev, &dev_attr_min_microamps);
2557 		if (status < 0)
2558 			return status;
2559 		status = device_create_file(dev, &dev_attr_max_microamps);
2560 		if (status < 0)
2561 			return status;
2562 	}
2563 
2564 	/* suspend mode constraints need multiple supporting methods */
2565 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2566 		return status;
2567 
2568 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2569 	if (status < 0)
2570 		return status;
2571 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2572 	if (status < 0)
2573 		return status;
2574 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2575 	if (status < 0)
2576 		return status;
2577 
2578 	if (ops->set_suspend_voltage) {
2579 		status = device_create_file(dev,
2580 				&dev_attr_suspend_standby_microvolts);
2581 		if (status < 0)
2582 			return status;
2583 		status = device_create_file(dev,
2584 				&dev_attr_suspend_mem_microvolts);
2585 		if (status < 0)
2586 			return status;
2587 		status = device_create_file(dev,
2588 				&dev_attr_suspend_disk_microvolts);
2589 		if (status < 0)
2590 			return status;
2591 	}
2592 
2593 	if (ops->set_suspend_mode) {
2594 		status = device_create_file(dev,
2595 				&dev_attr_suspend_standby_mode);
2596 		if (status < 0)
2597 			return status;
2598 		status = device_create_file(dev,
2599 				&dev_attr_suspend_mem_mode);
2600 		if (status < 0)
2601 			return status;
2602 		status = device_create_file(dev,
2603 				&dev_attr_suspend_disk_mode);
2604 		if (status < 0)
2605 			return status;
2606 	}
2607 
2608 	return status;
2609 }
2610 
2611 static void rdev_init_debugfs(struct regulator_dev *rdev)
2612 {
2613 #ifdef CONFIG_DEBUG_FS
2614 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2615 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2616 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2617 		rdev->debugfs = NULL;
2618 		return;
2619 	}
2620 
2621 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2622 			   &rdev->use_count);
2623 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2624 			   &rdev->open_count);
2625 #endif
2626 }
2627 
2628 /**
2629  * regulator_register - register regulator
2630  * @regulator_desc: regulator to register
2631  * @dev: struct device for the regulator
2632  * @init_data: platform provided init data, passed through by driver
2633  * @driver_data: private regulator data
2634  *
2635  * Called by regulator drivers to register a regulator.
2636  * Returns 0 on success.
2637  */
2638 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2639 	struct device *dev, const struct regulator_init_data *init_data,
2640 	void *driver_data)
2641 {
2642 	static atomic_t regulator_no = ATOMIC_INIT(0);
2643 	struct regulator_dev *rdev;
2644 	int ret, i;
2645 
2646 	if (regulator_desc == NULL)
2647 		return ERR_PTR(-EINVAL);
2648 
2649 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2650 		return ERR_PTR(-EINVAL);
2651 
2652 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2653 	    regulator_desc->type != REGULATOR_CURRENT)
2654 		return ERR_PTR(-EINVAL);
2655 
2656 	if (!init_data)
2657 		return ERR_PTR(-EINVAL);
2658 
2659 	/* Only one of each should be implemented */
2660 	WARN_ON(regulator_desc->ops->get_voltage &&
2661 		regulator_desc->ops->get_voltage_sel);
2662 	WARN_ON(regulator_desc->ops->set_voltage &&
2663 		regulator_desc->ops->set_voltage_sel);
2664 
2665 	/* If we're using selectors we must implement list_voltage. */
2666 	if (regulator_desc->ops->get_voltage_sel &&
2667 	    !regulator_desc->ops->list_voltage) {
2668 		return ERR_PTR(-EINVAL);
2669 	}
2670 	if (regulator_desc->ops->set_voltage_sel &&
2671 	    !regulator_desc->ops->list_voltage) {
2672 		return ERR_PTR(-EINVAL);
2673 	}
2674 
2675 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2676 	if (rdev == NULL)
2677 		return ERR_PTR(-ENOMEM);
2678 
2679 	mutex_lock(&regulator_list_mutex);
2680 
2681 	mutex_init(&rdev->mutex);
2682 	rdev->reg_data = driver_data;
2683 	rdev->owner = regulator_desc->owner;
2684 	rdev->desc = regulator_desc;
2685 	INIT_LIST_HEAD(&rdev->consumer_list);
2686 	INIT_LIST_HEAD(&rdev->list);
2687 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2688 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2689 
2690 	/* preform any regulator specific init */
2691 	if (init_data->regulator_init) {
2692 		ret = init_data->regulator_init(rdev->reg_data);
2693 		if (ret < 0)
2694 			goto clean;
2695 	}
2696 
2697 	/* register with sysfs */
2698 	rdev->dev.class = &regulator_class;
2699 	rdev->dev.parent = dev;
2700 	dev_set_name(&rdev->dev, "regulator.%d",
2701 		     atomic_inc_return(&regulator_no) - 1);
2702 	ret = device_register(&rdev->dev);
2703 	if (ret != 0) {
2704 		put_device(&rdev->dev);
2705 		goto clean;
2706 	}
2707 
2708 	dev_set_drvdata(&rdev->dev, rdev);
2709 
2710 	/* set regulator constraints */
2711 	ret = set_machine_constraints(rdev, &init_data->constraints);
2712 	if (ret < 0)
2713 		goto scrub;
2714 
2715 	/* add attributes supported by this regulator */
2716 	ret = add_regulator_attributes(rdev);
2717 	if (ret < 0)
2718 		goto scrub;
2719 
2720 	if (init_data->supply_regulator) {
2721 		struct regulator_dev *r;
2722 		int found = 0;
2723 
2724 		list_for_each_entry(r, &regulator_list, list) {
2725 			if (strcmp(rdev_get_name(r),
2726 				   init_data->supply_regulator) == 0) {
2727 				found = 1;
2728 				break;
2729 			}
2730 		}
2731 
2732 		if (!found) {
2733 			dev_err(dev, "Failed to find supply %s\n",
2734 				init_data->supply_regulator);
2735 			ret = -ENODEV;
2736 			goto scrub;
2737 		}
2738 
2739 		ret = set_supply(rdev, r);
2740 		if (ret < 0)
2741 			goto scrub;
2742 	}
2743 
2744 	/* add consumers devices */
2745 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2746 		ret = set_consumer_device_supply(rdev,
2747 			init_data->consumer_supplies[i].dev,
2748 			init_data->consumer_supplies[i].dev_name,
2749 			init_data->consumer_supplies[i].supply);
2750 		if (ret < 0) {
2751 			dev_err(dev, "Failed to set supply %s\n",
2752 				init_data->consumer_supplies[i].supply);
2753 			goto unset_supplies;
2754 		}
2755 	}
2756 
2757 	list_add(&rdev->list, &regulator_list);
2758 
2759 	rdev_init_debugfs(rdev);
2760 out:
2761 	mutex_unlock(&regulator_list_mutex);
2762 	return rdev;
2763 
2764 unset_supplies:
2765 	unset_regulator_supplies(rdev);
2766 
2767 scrub:
2768 	kfree(rdev->constraints);
2769 	device_unregister(&rdev->dev);
2770 	/* device core frees rdev */
2771 	rdev = ERR_PTR(ret);
2772 	goto out;
2773 
2774 clean:
2775 	kfree(rdev);
2776 	rdev = ERR_PTR(ret);
2777 	goto out;
2778 }
2779 EXPORT_SYMBOL_GPL(regulator_register);
2780 
2781 /**
2782  * regulator_unregister - unregister regulator
2783  * @rdev: regulator to unregister
2784  *
2785  * Called by regulator drivers to unregister a regulator.
2786  */
2787 void regulator_unregister(struct regulator_dev *rdev)
2788 {
2789 	if (rdev == NULL)
2790 		return;
2791 
2792 	mutex_lock(&regulator_list_mutex);
2793 #ifdef CONFIG_DEBUG_FS
2794 	debugfs_remove_recursive(rdev->debugfs);
2795 #endif
2796 	flush_work_sync(&rdev->disable_work.work);
2797 	WARN_ON(rdev->open_count);
2798 	unset_regulator_supplies(rdev);
2799 	list_del(&rdev->list);
2800 	if (rdev->supply)
2801 		regulator_put(rdev->supply);
2802 	device_unregister(&rdev->dev);
2803 	kfree(rdev->constraints);
2804 	mutex_unlock(&regulator_list_mutex);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_unregister);
2807 
2808 /**
2809  * regulator_suspend_prepare - prepare regulators for system wide suspend
2810  * @state: system suspend state
2811  *
2812  * Configure each regulator with it's suspend operating parameters for state.
2813  * This will usually be called by machine suspend code prior to supending.
2814  */
2815 int regulator_suspend_prepare(suspend_state_t state)
2816 {
2817 	struct regulator_dev *rdev;
2818 	int ret = 0;
2819 
2820 	/* ON is handled by regulator active state */
2821 	if (state == PM_SUSPEND_ON)
2822 		return -EINVAL;
2823 
2824 	mutex_lock(&regulator_list_mutex);
2825 	list_for_each_entry(rdev, &regulator_list, list) {
2826 
2827 		mutex_lock(&rdev->mutex);
2828 		ret = suspend_prepare(rdev, state);
2829 		mutex_unlock(&rdev->mutex);
2830 
2831 		if (ret < 0) {
2832 			rdev_err(rdev, "failed to prepare\n");
2833 			goto out;
2834 		}
2835 	}
2836 out:
2837 	mutex_unlock(&regulator_list_mutex);
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2841 
2842 /**
2843  * regulator_suspend_finish - resume regulators from system wide suspend
2844  *
2845  * Turn on regulators that might be turned off by regulator_suspend_prepare
2846  * and that should be turned on according to the regulators properties.
2847  */
2848 int regulator_suspend_finish(void)
2849 {
2850 	struct regulator_dev *rdev;
2851 	int ret = 0, error;
2852 
2853 	mutex_lock(&regulator_list_mutex);
2854 	list_for_each_entry(rdev, &regulator_list, list) {
2855 		struct regulator_ops *ops = rdev->desc->ops;
2856 
2857 		mutex_lock(&rdev->mutex);
2858 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2859 				ops->enable) {
2860 			error = ops->enable(rdev);
2861 			if (error)
2862 				ret = error;
2863 		} else {
2864 			if (!has_full_constraints)
2865 				goto unlock;
2866 			if (!ops->disable)
2867 				goto unlock;
2868 			if (ops->is_enabled && !ops->is_enabled(rdev))
2869 				goto unlock;
2870 
2871 			error = ops->disable(rdev);
2872 			if (error)
2873 				ret = error;
2874 		}
2875 unlock:
2876 		mutex_unlock(&rdev->mutex);
2877 	}
2878 	mutex_unlock(&regulator_list_mutex);
2879 	return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2882 
2883 /**
2884  * regulator_has_full_constraints - the system has fully specified constraints
2885  *
2886  * Calling this function will cause the regulator API to disable all
2887  * regulators which have a zero use count and don't have an always_on
2888  * constraint in a late_initcall.
2889  *
2890  * The intention is that this will become the default behaviour in a
2891  * future kernel release so users are encouraged to use this facility
2892  * now.
2893  */
2894 void regulator_has_full_constraints(void)
2895 {
2896 	has_full_constraints = 1;
2897 }
2898 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2899 
2900 /**
2901  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2902  *
2903  * Calling this function will cause the regulator API to provide a
2904  * dummy regulator to consumers if no physical regulator is found,
2905  * allowing most consumers to proceed as though a regulator were
2906  * configured.  This allows systems such as those with software
2907  * controllable regulators for the CPU core only to be brought up more
2908  * readily.
2909  */
2910 void regulator_use_dummy_regulator(void)
2911 {
2912 	board_wants_dummy_regulator = true;
2913 }
2914 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2915 
2916 /**
2917  * rdev_get_drvdata - get rdev regulator driver data
2918  * @rdev: regulator
2919  *
2920  * Get rdev regulator driver private data. This call can be used in the
2921  * regulator driver context.
2922  */
2923 void *rdev_get_drvdata(struct regulator_dev *rdev)
2924 {
2925 	return rdev->reg_data;
2926 }
2927 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2928 
2929 /**
2930  * regulator_get_drvdata - get regulator driver data
2931  * @regulator: regulator
2932  *
2933  * Get regulator driver private data. This call can be used in the consumer
2934  * driver context when non API regulator specific functions need to be called.
2935  */
2936 void *regulator_get_drvdata(struct regulator *regulator)
2937 {
2938 	return regulator->rdev->reg_data;
2939 }
2940 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2941 
2942 /**
2943  * regulator_set_drvdata - set regulator driver data
2944  * @regulator: regulator
2945  * @data: data
2946  */
2947 void regulator_set_drvdata(struct regulator *regulator, void *data)
2948 {
2949 	regulator->rdev->reg_data = data;
2950 }
2951 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2952 
2953 /**
2954  * regulator_get_id - get regulator ID
2955  * @rdev: regulator
2956  */
2957 int rdev_get_id(struct regulator_dev *rdev)
2958 {
2959 	return rdev->desc->id;
2960 }
2961 EXPORT_SYMBOL_GPL(rdev_get_id);
2962 
2963 struct device *rdev_get_dev(struct regulator_dev *rdev)
2964 {
2965 	return &rdev->dev;
2966 }
2967 EXPORT_SYMBOL_GPL(rdev_get_dev);
2968 
2969 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2970 {
2971 	return reg_init_data->driver_data;
2972 }
2973 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2974 
2975 #ifdef CONFIG_DEBUG_FS
2976 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
2977 				    size_t count, loff_t *ppos)
2978 {
2979 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2980 	ssize_t len, ret = 0;
2981 	struct regulator_map *map;
2982 
2983 	if (!buf)
2984 		return -ENOMEM;
2985 
2986 	list_for_each_entry(map, &regulator_map_list, list) {
2987 		len = snprintf(buf + ret, PAGE_SIZE - ret,
2988 			       "%s -> %s.%s\n",
2989 			       rdev_get_name(map->regulator), map->dev_name,
2990 			       map->supply);
2991 		if (len >= 0)
2992 			ret += len;
2993 		if (ret > PAGE_SIZE) {
2994 			ret = PAGE_SIZE;
2995 			break;
2996 		}
2997 	}
2998 
2999 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3000 
3001 	kfree(buf);
3002 
3003 	return ret;
3004 }
3005 
3006 static const struct file_operations supply_map_fops = {
3007 	.read = supply_map_read_file,
3008 	.llseek = default_llseek,
3009 };
3010 #endif
3011 
3012 static int __init regulator_init(void)
3013 {
3014 	int ret;
3015 
3016 	ret = class_register(&regulator_class);
3017 
3018 #ifdef CONFIG_DEBUG_FS
3019 	debugfs_root = debugfs_create_dir("regulator", NULL);
3020 	if (IS_ERR(debugfs_root) || !debugfs_root) {
3021 		pr_warn("regulator: Failed to create debugfs directory\n");
3022 		debugfs_root = NULL;
3023 	}
3024 
3025 	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3026 				       NULL, &supply_map_fops)))
3027 		pr_warn("regulator: Failed to create supplies debugfs\n");
3028 #endif
3029 
3030 	regulator_dummy_init();
3031 
3032 	return ret;
3033 }
3034 
3035 /* init early to allow our consumers to complete system booting */
3036 core_initcall(regulator_init);
3037 
3038 static int __init regulator_init_complete(void)
3039 {
3040 	struct regulator_dev *rdev;
3041 	struct regulator_ops *ops;
3042 	struct regulation_constraints *c;
3043 	int enabled, ret;
3044 
3045 	mutex_lock(&regulator_list_mutex);
3046 
3047 	/* If we have a full configuration then disable any regulators
3048 	 * which are not in use or always_on.  This will become the
3049 	 * default behaviour in the future.
3050 	 */
3051 	list_for_each_entry(rdev, &regulator_list, list) {
3052 		ops = rdev->desc->ops;
3053 		c = rdev->constraints;
3054 
3055 		if (!ops->disable || (c && c->always_on))
3056 			continue;
3057 
3058 		mutex_lock(&rdev->mutex);
3059 
3060 		if (rdev->use_count)
3061 			goto unlock;
3062 
3063 		/* If we can't read the status assume it's on. */
3064 		if (ops->is_enabled)
3065 			enabled = ops->is_enabled(rdev);
3066 		else
3067 			enabled = 1;
3068 
3069 		if (!enabled)
3070 			goto unlock;
3071 
3072 		if (has_full_constraints) {
3073 			/* We log since this may kill the system if it
3074 			 * goes wrong. */
3075 			rdev_info(rdev, "disabling\n");
3076 			ret = ops->disable(rdev);
3077 			if (ret != 0) {
3078 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3079 			}
3080 		} else {
3081 			/* The intention is that in future we will
3082 			 * assume that full constraints are provided
3083 			 * so warn even if we aren't going to do
3084 			 * anything here.
3085 			 */
3086 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3087 		}
3088 
3089 unlock:
3090 		mutex_unlock(&rdev->mutex);
3091 	}
3092 
3093 	mutex_unlock(&regulator_list_mutex);
3094 
3095 	return 0;
3096 }
3097 late_initcall(regulator_init_complete);
3098