1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 */ 143 static inline int regulator_lock_nested(struct regulator_dev *rdev, 144 struct ww_acquire_ctx *ww_ctx) 145 { 146 bool lock = false; 147 int ret = 0; 148 149 mutex_lock(®ulator_nesting_mutex); 150 151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 152 if (rdev->mutex_owner == current) 153 rdev->ref_cnt++; 154 else 155 lock = true; 156 157 if (lock) { 158 mutex_unlock(®ulator_nesting_mutex); 159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 160 mutex_lock(®ulator_nesting_mutex); 161 } 162 } else { 163 lock = true; 164 } 165 166 if (lock && ret != -EDEADLK) { 167 rdev->ref_cnt++; 168 rdev->mutex_owner = current; 169 } 170 171 mutex_unlock(®ulator_nesting_mutex); 172 173 return ret; 174 } 175 176 /** 177 * regulator_lock - lock a single regulator 178 * @rdev: regulator source 179 * 180 * This function can be called many times by one task on 181 * a single regulator and its mutex will be locked only 182 * once. If a task, which is calling this function is other 183 * than the one, which initially locked the mutex, it will 184 * wait on mutex. 185 */ 186 static void regulator_lock(struct regulator_dev *rdev) 187 { 188 regulator_lock_nested(rdev, NULL); 189 } 190 191 /** 192 * regulator_unlock - unlock a single regulator 193 * @rdev: regulator_source 194 * 195 * This function unlocks the mutex when the 196 * reference counter reaches 0. 197 */ 198 static void regulator_unlock(struct regulator_dev *rdev) 199 { 200 mutex_lock(®ulator_nesting_mutex); 201 202 if (--rdev->ref_cnt == 0) { 203 rdev->mutex_owner = NULL; 204 ww_mutex_unlock(&rdev->mutex); 205 } 206 207 WARN_ON_ONCE(rdev->ref_cnt < 0); 208 209 mutex_unlock(®ulator_nesting_mutex); 210 } 211 212 /** 213 * regulator_lock_two - lock two regulators 214 * @rdev1: first regulator 215 * @rdev2: second regulator 216 * @ww_ctx: w/w mutex acquire context 217 * 218 * Locks both rdevs using the regulator_ww_class. 219 */ 220 static void regulator_lock_two(struct regulator_dev *rdev1, 221 struct regulator_dev *rdev2, 222 struct ww_acquire_ctx *ww_ctx) 223 { 224 struct regulator_dev *held, *contended; 225 int ret; 226 227 ww_acquire_init(ww_ctx, ®ulator_ww_class); 228 229 /* Try to just grab both of them */ 230 ret = regulator_lock_nested(rdev1, ww_ctx); 231 WARN_ON(ret); 232 ret = regulator_lock_nested(rdev2, ww_ctx); 233 if (ret != -EDEADLOCK) { 234 WARN_ON(ret); 235 goto exit; 236 } 237 238 held = rdev1; 239 contended = rdev2; 240 while (true) { 241 regulator_unlock(held); 242 243 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 244 contended->ref_cnt++; 245 contended->mutex_owner = current; 246 swap(held, contended); 247 ret = regulator_lock_nested(contended, ww_ctx); 248 249 if (ret != -EDEADLOCK) { 250 WARN_ON(ret); 251 break; 252 } 253 } 254 255 exit: 256 ww_acquire_done(ww_ctx); 257 } 258 259 /** 260 * regulator_unlock_two - unlock two regulators 261 * @rdev1: first regulator 262 * @rdev2: second regulator 263 * @ww_ctx: w/w mutex acquire context 264 * 265 * The inverse of regulator_lock_two(). 266 */ 267 268 static void regulator_unlock_two(struct regulator_dev *rdev1, 269 struct regulator_dev *rdev2, 270 struct ww_acquire_ctx *ww_ctx) 271 { 272 regulator_unlock(rdev2); 273 regulator_unlock(rdev1); 274 ww_acquire_fini(ww_ctx); 275 } 276 277 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 278 { 279 struct regulator_dev *c_rdev; 280 int i; 281 282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 283 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 284 285 if (rdev->supply->rdev == c_rdev) 286 return true; 287 } 288 289 return false; 290 } 291 292 static void regulator_unlock_recursive(struct regulator_dev *rdev, 293 unsigned int n_coupled) 294 { 295 struct regulator_dev *c_rdev, *supply_rdev; 296 int i, supply_n_coupled; 297 298 for (i = n_coupled; i > 0; i--) { 299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 300 301 if (!c_rdev) 302 continue; 303 304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 305 supply_rdev = c_rdev->supply->rdev; 306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 307 308 regulator_unlock_recursive(supply_rdev, 309 supply_n_coupled); 310 } 311 312 regulator_unlock(c_rdev); 313 } 314 } 315 316 static int regulator_lock_recursive(struct regulator_dev *rdev, 317 struct regulator_dev **new_contended_rdev, 318 struct regulator_dev **old_contended_rdev, 319 struct ww_acquire_ctx *ww_ctx) 320 { 321 struct regulator_dev *c_rdev; 322 int i, err; 323 324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 325 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 326 327 if (!c_rdev) 328 continue; 329 330 if (c_rdev != *old_contended_rdev) { 331 err = regulator_lock_nested(c_rdev, ww_ctx); 332 if (err) { 333 if (err == -EDEADLK) { 334 *new_contended_rdev = c_rdev; 335 goto err_unlock; 336 } 337 338 /* shouldn't happen */ 339 WARN_ON_ONCE(err != -EALREADY); 340 } 341 } else { 342 *old_contended_rdev = NULL; 343 } 344 345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 346 err = regulator_lock_recursive(c_rdev->supply->rdev, 347 new_contended_rdev, 348 old_contended_rdev, 349 ww_ctx); 350 if (err) { 351 regulator_unlock(c_rdev); 352 goto err_unlock; 353 } 354 } 355 } 356 357 return 0; 358 359 err_unlock: 360 regulator_unlock_recursive(rdev, i); 361 362 return err; 363 } 364 365 /** 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 367 * regulators 368 * @rdev: regulator source 369 * @ww_ctx: w/w mutex acquire context 370 * 371 * Unlock all regulators related with rdev by coupling or supplying. 372 */ 373 static void regulator_unlock_dependent(struct regulator_dev *rdev, 374 struct ww_acquire_ctx *ww_ctx) 375 { 376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 377 ww_acquire_fini(ww_ctx); 378 } 379 380 /** 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 382 * @rdev: regulator source 383 * @ww_ctx: w/w mutex acquire context 384 * 385 * This function as a wrapper on regulator_lock_recursive(), which locks 386 * all regulators related with rdev by coupling or supplying. 387 */ 388 static void regulator_lock_dependent(struct regulator_dev *rdev, 389 struct ww_acquire_ctx *ww_ctx) 390 { 391 struct regulator_dev *new_contended_rdev = NULL; 392 struct regulator_dev *old_contended_rdev = NULL; 393 int err; 394 395 mutex_lock(®ulator_list_mutex); 396 397 ww_acquire_init(ww_ctx, ®ulator_ww_class); 398 399 do { 400 if (new_contended_rdev) { 401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 402 old_contended_rdev = new_contended_rdev; 403 old_contended_rdev->ref_cnt++; 404 old_contended_rdev->mutex_owner = current; 405 } 406 407 err = regulator_lock_recursive(rdev, 408 &new_contended_rdev, 409 &old_contended_rdev, 410 ww_ctx); 411 412 if (old_contended_rdev) 413 regulator_unlock(old_contended_rdev); 414 415 } while (err == -EDEADLK); 416 417 ww_acquire_done(ww_ctx); 418 419 mutex_unlock(®ulator_list_mutex); 420 } 421 422 /** 423 * of_get_child_regulator - get a child regulator device node 424 * based on supply name 425 * @parent: Parent device node 426 * @prop_name: Combination regulator supply name and "-supply" 427 * 428 * Traverse all child nodes. 429 * Extract the child regulator device node corresponding to the supply name. 430 * returns the device node corresponding to the regulator if found, else 431 * returns NULL. 432 */ 433 static struct device_node *of_get_child_regulator(struct device_node *parent, 434 const char *prop_name) 435 { 436 struct device_node *regnode = NULL; 437 struct device_node *child = NULL; 438 439 for_each_child_of_node(parent, child) { 440 regnode = of_parse_phandle(child, prop_name, 0); 441 442 if (!regnode) { 443 regnode = of_get_child_regulator(child, prop_name); 444 if (regnode) 445 goto err_node_put; 446 } else { 447 goto err_node_put; 448 } 449 } 450 return NULL; 451 452 err_node_put: 453 of_node_put(child); 454 return regnode; 455 } 456 457 /** 458 * of_get_regulator - get a regulator device node based on supply name 459 * @dev: Device pointer for the consumer (of regulator) device 460 * @supply: regulator supply name 461 * 462 * Extract the regulator device node corresponding to the supply name. 463 * returns the device node corresponding to the regulator if found, else 464 * returns NULL. 465 */ 466 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 467 { 468 struct device_node *regnode = NULL; 469 char prop_name[64]; /* 64 is max size of property name */ 470 471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 472 473 snprintf(prop_name, 64, "%s-supply", supply); 474 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 475 476 if (!regnode) { 477 regnode = of_get_child_regulator(dev->of_node, prop_name); 478 if (regnode) 479 return regnode; 480 481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 482 prop_name, dev->of_node); 483 return NULL; 484 } 485 return regnode; 486 } 487 488 /* Platform voltage constraint check */ 489 int regulator_check_voltage(struct regulator_dev *rdev, 490 int *min_uV, int *max_uV) 491 { 492 BUG_ON(*min_uV > *max_uV); 493 494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 495 rdev_err(rdev, "voltage operation not allowed\n"); 496 return -EPERM; 497 } 498 499 if (*max_uV > rdev->constraints->max_uV) 500 *max_uV = rdev->constraints->max_uV; 501 if (*min_uV < rdev->constraints->min_uV) 502 *min_uV = rdev->constraints->min_uV; 503 504 if (*min_uV > *max_uV) { 505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 506 *min_uV, *max_uV); 507 return -EINVAL; 508 } 509 510 return 0; 511 } 512 513 /* return 0 if the state is valid */ 514 static int regulator_check_states(suspend_state_t state) 515 { 516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 517 } 518 519 /* Make sure we select a voltage that suits the needs of all 520 * regulator consumers 521 */ 522 int regulator_check_consumers(struct regulator_dev *rdev, 523 int *min_uV, int *max_uV, 524 suspend_state_t state) 525 { 526 struct regulator *regulator; 527 struct regulator_voltage *voltage; 528 529 list_for_each_entry(regulator, &rdev->consumer_list, list) { 530 voltage = ®ulator->voltage[state]; 531 /* 532 * Assume consumers that didn't say anything are OK 533 * with anything in the constraint range. 534 */ 535 if (!voltage->min_uV && !voltage->max_uV) 536 continue; 537 538 if (*max_uV > voltage->max_uV) 539 *max_uV = voltage->max_uV; 540 if (*min_uV < voltage->min_uV) 541 *min_uV = voltage->min_uV; 542 } 543 544 if (*min_uV > *max_uV) { 545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 546 *min_uV, *max_uV); 547 return -EINVAL; 548 } 549 550 return 0; 551 } 552 553 /* current constraint check */ 554 static int regulator_check_current_limit(struct regulator_dev *rdev, 555 int *min_uA, int *max_uA) 556 { 557 BUG_ON(*min_uA > *max_uA); 558 559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 560 rdev_err(rdev, "current operation not allowed\n"); 561 return -EPERM; 562 } 563 564 if (*max_uA > rdev->constraints->max_uA) 565 *max_uA = rdev->constraints->max_uA; 566 if (*min_uA < rdev->constraints->min_uA) 567 *min_uA = rdev->constraints->min_uA; 568 569 if (*min_uA > *max_uA) { 570 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 571 *min_uA, *max_uA); 572 return -EINVAL; 573 } 574 575 return 0; 576 } 577 578 /* operating mode constraint check */ 579 static int regulator_mode_constrain(struct regulator_dev *rdev, 580 unsigned int *mode) 581 { 582 switch (*mode) { 583 case REGULATOR_MODE_FAST: 584 case REGULATOR_MODE_NORMAL: 585 case REGULATOR_MODE_IDLE: 586 case REGULATOR_MODE_STANDBY: 587 break; 588 default: 589 rdev_err(rdev, "invalid mode %x specified\n", *mode); 590 return -EINVAL; 591 } 592 593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 594 rdev_err(rdev, "mode operation not allowed\n"); 595 return -EPERM; 596 } 597 598 /* The modes are bitmasks, the most power hungry modes having 599 * the lowest values. If the requested mode isn't supported 600 * try higher modes. 601 */ 602 while (*mode) { 603 if (rdev->constraints->valid_modes_mask & *mode) 604 return 0; 605 *mode /= 2; 606 } 607 608 return -EINVAL; 609 } 610 611 static inline struct regulator_state * 612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 613 { 614 if (rdev->constraints == NULL) 615 return NULL; 616 617 switch (state) { 618 case PM_SUSPEND_STANDBY: 619 return &rdev->constraints->state_standby; 620 case PM_SUSPEND_MEM: 621 return &rdev->constraints->state_mem; 622 case PM_SUSPEND_MAX: 623 return &rdev->constraints->state_disk; 624 default: 625 return NULL; 626 } 627 } 628 629 static const struct regulator_state * 630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 631 { 632 const struct regulator_state *rstate; 633 634 rstate = regulator_get_suspend_state(rdev, state); 635 if (rstate == NULL) 636 return NULL; 637 638 /* If we have no suspend mode configuration don't set anything; 639 * only warn if the driver implements set_suspend_voltage or 640 * set_suspend_mode callback. 641 */ 642 if (rstate->enabled != ENABLE_IN_SUSPEND && 643 rstate->enabled != DISABLE_IN_SUSPEND) { 644 if (rdev->desc->ops->set_suspend_voltage || 645 rdev->desc->ops->set_suspend_mode) 646 rdev_warn(rdev, "No configuration\n"); 647 return NULL; 648 } 649 650 return rstate; 651 } 652 653 static ssize_t microvolts_show(struct device *dev, 654 struct device_attribute *attr, char *buf) 655 { 656 struct regulator_dev *rdev = dev_get_drvdata(dev); 657 int uV; 658 659 regulator_lock(rdev); 660 uV = regulator_get_voltage_rdev(rdev); 661 regulator_unlock(rdev); 662 663 if (uV < 0) 664 return uV; 665 return sprintf(buf, "%d\n", uV); 666 } 667 static DEVICE_ATTR_RO(microvolts); 668 669 static ssize_t microamps_show(struct device *dev, 670 struct device_attribute *attr, char *buf) 671 { 672 struct regulator_dev *rdev = dev_get_drvdata(dev); 673 674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 675 } 676 static DEVICE_ATTR_RO(microamps); 677 678 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 679 char *buf) 680 { 681 struct regulator_dev *rdev = dev_get_drvdata(dev); 682 683 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 684 } 685 static DEVICE_ATTR_RO(name); 686 687 static const char *regulator_opmode_to_str(int mode) 688 { 689 switch (mode) { 690 case REGULATOR_MODE_FAST: 691 return "fast"; 692 case REGULATOR_MODE_NORMAL: 693 return "normal"; 694 case REGULATOR_MODE_IDLE: 695 return "idle"; 696 case REGULATOR_MODE_STANDBY: 697 return "standby"; 698 } 699 return "unknown"; 700 } 701 702 static ssize_t regulator_print_opmode(char *buf, int mode) 703 { 704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 705 } 706 707 static ssize_t opmode_show(struct device *dev, 708 struct device_attribute *attr, char *buf) 709 { 710 struct regulator_dev *rdev = dev_get_drvdata(dev); 711 712 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 713 } 714 static DEVICE_ATTR_RO(opmode); 715 716 static ssize_t regulator_print_state(char *buf, int state) 717 { 718 if (state > 0) 719 return sprintf(buf, "enabled\n"); 720 else if (state == 0) 721 return sprintf(buf, "disabled\n"); 722 else 723 return sprintf(buf, "unknown\n"); 724 } 725 726 static ssize_t state_show(struct device *dev, 727 struct device_attribute *attr, char *buf) 728 { 729 struct regulator_dev *rdev = dev_get_drvdata(dev); 730 ssize_t ret; 731 732 regulator_lock(rdev); 733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 734 regulator_unlock(rdev); 735 736 return ret; 737 } 738 static DEVICE_ATTR_RO(state); 739 740 static ssize_t status_show(struct device *dev, 741 struct device_attribute *attr, char *buf) 742 { 743 struct regulator_dev *rdev = dev_get_drvdata(dev); 744 int status; 745 char *label; 746 747 status = rdev->desc->ops->get_status(rdev); 748 if (status < 0) 749 return status; 750 751 switch (status) { 752 case REGULATOR_STATUS_OFF: 753 label = "off"; 754 break; 755 case REGULATOR_STATUS_ON: 756 label = "on"; 757 break; 758 case REGULATOR_STATUS_ERROR: 759 label = "error"; 760 break; 761 case REGULATOR_STATUS_FAST: 762 label = "fast"; 763 break; 764 case REGULATOR_STATUS_NORMAL: 765 label = "normal"; 766 break; 767 case REGULATOR_STATUS_IDLE: 768 label = "idle"; 769 break; 770 case REGULATOR_STATUS_STANDBY: 771 label = "standby"; 772 break; 773 case REGULATOR_STATUS_BYPASS: 774 label = "bypass"; 775 break; 776 case REGULATOR_STATUS_UNDEFINED: 777 label = "undefined"; 778 break; 779 default: 780 return -ERANGE; 781 } 782 783 return sprintf(buf, "%s\n", label); 784 } 785 static DEVICE_ATTR_RO(status); 786 787 static ssize_t min_microamps_show(struct device *dev, 788 struct device_attribute *attr, char *buf) 789 { 790 struct regulator_dev *rdev = dev_get_drvdata(dev); 791 792 if (!rdev->constraints) 793 return sprintf(buf, "constraint not defined\n"); 794 795 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 796 } 797 static DEVICE_ATTR_RO(min_microamps); 798 799 static ssize_t max_microamps_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 if (!rdev->constraints) 805 return sprintf(buf, "constraint not defined\n"); 806 807 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 808 } 809 static DEVICE_ATTR_RO(max_microamps); 810 811 static ssize_t min_microvolts_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 if (!rdev->constraints) 817 return sprintf(buf, "constraint not defined\n"); 818 819 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 820 } 821 static DEVICE_ATTR_RO(min_microvolts); 822 823 static ssize_t max_microvolts_show(struct device *dev, 824 struct device_attribute *attr, char *buf) 825 { 826 struct regulator_dev *rdev = dev_get_drvdata(dev); 827 828 if (!rdev->constraints) 829 return sprintf(buf, "constraint not defined\n"); 830 831 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 832 } 833 static DEVICE_ATTR_RO(max_microvolts); 834 835 static ssize_t requested_microamps_show(struct device *dev, 836 struct device_attribute *attr, char *buf) 837 { 838 struct regulator_dev *rdev = dev_get_drvdata(dev); 839 struct regulator *regulator; 840 int uA = 0; 841 842 regulator_lock(rdev); 843 list_for_each_entry(regulator, &rdev->consumer_list, list) { 844 if (regulator->enable_count) 845 uA += regulator->uA_load; 846 } 847 regulator_unlock(rdev); 848 return sprintf(buf, "%d\n", uA); 849 } 850 static DEVICE_ATTR_RO(requested_microamps); 851 852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 853 char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 return sprintf(buf, "%d\n", rdev->use_count); 857 } 858 static DEVICE_ATTR_RO(num_users); 859 860 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 861 char *buf) 862 { 863 struct regulator_dev *rdev = dev_get_drvdata(dev); 864 865 switch (rdev->desc->type) { 866 case REGULATOR_VOLTAGE: 867 return sprintf(buf, "voltage\n"); 868 case REGULATOR_CURRENT: 869 return sprintf(buf, "current\n"); 870 } 871 return sprintf(buf, "unknown\n"); 872 } 873 static DEVICE_ATTR_RO(type); 874 875 static ssize_t suspend_mem_microvolts_show(struct device *dev, 876 struct device_attribute *attr, char *buf) 877 { 878 struct regulator_dev *rdev = dev_get_drvdata(dev); 879 880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 881 } 882 static DEVICE_ATTR_RO(suspend_mem_microvolts); 883 884 static ssize_t suspend_disk_microvolts_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct regulator_dev *rdev = dev_get_drvdata(dev); 888 889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 890 } 891 static DEVICE_ATTR_RO(suspend_disk_microvolts); 892 893 static ssize_t suspend_standby_microvolts_show(struct device *dev, 894 struct device_attribute *attr, char *buf) 895 { 896 struct regulator_dev *rdev = dev_get_drvdata(dev); 897 898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 899 } 900 static DEVICE_ATTR_RO(suspend_standby_microvolts); 901 902 static ssize_t suspend_mem_mode_show(struct device *dev, 903 struct device_attribute *attr, char *buf) 904 { 905 struct regulator_dev *rdev = dev_get_drvdata(dev); 906 907 return regulator_print_opmode(buf, 908 rdev->constraints->state_mem.mode); 909 } 910 static DEVICE_ATTR_RO(suspend_mem_mode); 911 912 static ssize_t suspend_disk_mode_show(struct device *dev, 913 struct device_attribute *attr, char *buf) 914 { 915 struct regulator_dev *rdev = dev_get_drvdata(dev); 916 917 return regulator_print_opmode(buf, 918 rdev->constraints->state_disk.mode); 919 } 920 static DEVICE_ATTR_RO(suspend_disk_mode); 921 922 static ssize_t suspend_standby_mode_show(struct device *dev, 923 struct device_attribute *attr, char *buf) 924 { 925 struct regulator_dev *rdev = dev_get_drvdata(dev); 926 927 return regulator_print_opmode(buf, 928 rdev->constraints->state_standby.mode); 929 } 930 static DEVICE_ATTR_RO(suspend_standby_mode); 931 932 static ssize_t suspend_mem_state_show(struct device *dev, 933 struct device_attribute *attr, char *buf) 934 { 935 struct regulator_dev *rdev = dev_get_drvdata(dev); 936 937 return regulator_print_state(buf, 938 rdev->constraints->state_mem.enabled); 939 } 940 static DEVICE_ATTR_RO(suspend_mem_state); 941 942 static ssize_t suspend_disk_state_show(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct regulator_dev *rdev = dev_get_drvdata(dev); 946 947 return regulator_print_state(buf, 948 rdev->constraints->state_disk.enabled); 949 } 950 static DEVICE_ATTR_RO(suspend_disk_state); 951 952 static ssize_t suspend_standby_state_show(struct device *dev, 953 struct device_attribute *attr, char *buf) 954 { 955 struct regulator_dev *rdev = dev_get_drvdata(dev); 956 957 return regulator_print_state(buf, 958 rdev->constraints->state_standby.enabled); 959 } 960 static DEVICE_ATTR_RO(suspend_standby_state); 961 962 static ssize_t bypass_show(struct device *dev, 963 struct device_attribute *attr, char *buf) 964 { 965 struct regulator_dev *rdev = dev_get_drvdata(dev); 966 const char *report; 967 bool bypass; 968 int ret; 969 970 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 971 972 if (ret != 0) 973 report = "unknown"; 974 else if (bypass) 975 report = "enabled"; 976 else 977 report = "disabled"; 978 979 return sprintf(buf, "%s\n", report); 980 } 981 static DEVICE_ATTR_RO(bypass); 982 983 #define REGULATOR_ERROR_ATTR(name, bit) \ 984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 985 char *buf) \ 986 { \ 987 int ret; \ 988 unsigned int flags; \ 989 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 990 ret = _regulator_get_error_flags(rdev, &flags); \ 991 if (ret) \ 992 return ret; \ 993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 994 } \ 995 static DEVICE_ATTR_RO(name) 996 997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1006 1007 /* Calculate the new optimum regulator operating mode based on the new total 1008 * consumer load. All locks held by caller 1009 */ 1010 static int drms_uA_update(struct regulator_dev *rdev) 1011 { 1012 struct regulator *sibling; 1013 int current_uA = 0, output_uV, input_uV, err; 1014 unsigned int mode; 1015 1016 /* 1017 * first check to see if we can set modes at all, otherwise just 1018 * tell the consumer everything is OK. 1019 */ 1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1021 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1022 return 0; 1023 } 1024 1025 if (!rdev->desc->ops->get_optimum_mode && 1026 !rdev->desc->ops->set_load) 1027 return 0; 1028 1029 if (!rdev->desc->ops->set_mode && 1030 !rdev->desc->ops->set_load) 1031 return -EINVAL; 1032 1033 /* calc total requested load */ 1034 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1035 if (sibling->enable_count) 1036 current_uA += sibling->uA_load; 1037 } 1038 1039 current_uA += rdev->constraints->system_load; 1040 1041 if (rdev->desc->ops->set_load) { 1042 /* set the optimum mode for our new total regulator load */ 1043 err = rdev->desc->ops->set_load(rdev, current_uA); 1044 if (err < 0) 1045 rdev_err(rdev, "failed to set load %d: %pe\n", 1046 current_uA, ERR_PTR(err)); 1047 } else { 1048 /* 1049 * Unfortunately in some cases the constraints->valid_ops has 1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1051 * That's not really legit but we won't consider it a fatal 1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1053 * wasn't set. 1054 */ 1055 if (!rdev->constraints->valid_modes_mask) { 1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1057 return 0; 1058 } 1059 1060 /* get output voltage */ 1061 output_uV = regulator_get_voltage_rdev(rdev); 1062 1063 /* 1064 * Don't return an error; if regulator driver cares about 1065 * output_uV then it's up to the driver to validate. 1066 */ 1067 if (output_uV <= 0) 1068 rdev_dbg(rdev, "invalid output voltage found\n"); 1069 1070 /* get input voltage */ 1071 input_uV = 0; 1072 if (rdev->supply) 1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1074 if (input_uV <= 0) 1075 input_uV = rdev->constraints->input_uV; 1076 1077 /* 1078 * Don't return an error; if regulator driver cares about 1079 * input_uV then it's up to the driver to validate. 1080 */ 1081 if (input_uV <= 0) 1082 rdev_dbg(rdev, "invalid input voltage found\n"); 1083 1084 /* now get the optimum mode for our new total regulator load */ 1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1086 output_uV, current_uA); 1087 1088 /* check the new mode is allowed */ 1089 err = regulator_mode_constrain(rdev, &mode); 1090 if (err < 0) { 1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1092 current_uA, input_uV, output_uV, ERR_PTR(err)); 1093 return err; 1094 } 1095 1096 err = rdev->desc->ops->set_mode(rdev, mode); 1097 if (err < 0) 1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1099 mode, ERR_PTR(err)); 1100 } 1101 1102 return err; 1103 } 1104 1105 static int __suspend_set_state(struct regulator_dev *rdev, 1106 const struct regulator_state *rstate) 1107 { 1108 int ret = 0; 1109 1110 if (rstate->enabled == ENABLE_IN_SUSPEND && 1111 rdev->desc->ops->set_suspend_enable) 1112 ret = rdev->desc->ops->set_suspend_enable(rdev); 1113 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1114 rdev->desc->ops->set_suspend_disable) 1115 ret = rdev->desc->ops->set_suspend_disable(rdev); 1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1117 ret = 0; 1118 1119 if (ret < 0) { 1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1121 return ret; 1122 } 1123 1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1126 if (ret < 0) { 1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1128 return ret; 1129 } 1130 } 1131 1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1134 if (ret < 0) { 1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1136 return ret; 1137 } 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int suspend_set_initial_state(struct regulator_dev *rdev) 1144 { 1145 const struct regulator_state *rstate; 1146 1147 rstate = regulator_get_suspend_state_check(rdev, 1148 rdev->constraints->initial_state); 1149 if (!rstate) 1150 return 0; 1151 1152 return __suspend_set_state(rdev, rstate); 1153 } 1154 1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1156 static void print_constraints_debug(struct regulator_dev *rdev) 1157 { 1158 struct regulation_constraints *constraints = rdev->constraints; 1159 char buf[160] = ""; 1160 size_t len = sizeof(buf) - 1; 1161 int count = 0; 1162 int ret; 1163 1164 if (constraints->min_uV && constraints->max_uV) { 1165 if (constraints->min_uV == constraints->max_uV) 1166 count += scnprintf(buf + count, len - count, "%d mV ", 1167 constraints->min_uV / 1000); 1168 else 1169 count += scnprintf(buf + count, len - count, 1170 "%d <--> %d mV ", 1171 constraints->min_uV / 1000, 1172 constraints->max_uV / 1000); 1173 } 1174 1175 if (!constraints->min_uV || 1176 constraints->min_uV != constraints->max_uV) { 1177 ret = regulator_get_voltage_rdev(rdev); 1178 if (ret > 0) 1179 count += scnprintf(buf + count, len - count, 1180 "at %d mV ", ret / 1000); 1181 } 1182 1183 if (constraints->uV_offset) 1184 count += scnprintf(buf + count, len - count, "%dmV offset ", 1185 constraints->uV_offset / 1000); 1186 1187 if (constraints->min_uA && constraints->max_uA) { 1188 if (constraints->min_uA == constraints->max_uA) 1189 count += scnprintf(buf + count, len - count, "%d mA ", 1190 constraints->min_uA / 1000); 1191 else 1192 count += scnprintf(buf + count, len - count, 1193 "%d <--> %d mA ", 1194 constraints->min_uA / 1000, 1195 constraints->max_uA / 1000); 1196 } 1197 1198 if (!constraints->min_uA || 1199 constraints->min_uA != constraints->max_uA) { 1200 ret = _regulator_get_current_limit(rdev); 1201 if (ret > 0) 1202 count += scnprintf(buf + count, len - count, 1203 "at %d mA ", ret / 1000); 1204 } 1205 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1207 count += scnprintf(buf + count, len - count, "fast "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1209 count += scnprintf(buf + count, len - count, "normal "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1211 count += scnprintf(buf + count, len - count, "idle "); 1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1213 count += scnprintf(buf + count, len - count, "standby "); 1214 1215 if (!count) 1216 count = scnprintf(buf, len, "no parameters"); 1217 else 1218 --count; 1219 1220 count += scnprintf(buf + count, len - count, ", %s", 1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1222 1223 rdev_dbg(rdev, "%s\n", buf); 1224 } 1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1228 1229 static void print_constraints(struct regulator_dev *rdev) 1230 { 1231 struct regulation_constraints *constraints = rdev->constraints; 1232 1233 print_constraints_debug(rdev); 1234 1235 if ((constraints->min_uV != constraints->max_uV) && 1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1237 rdev_warn(rdev, 1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1239 } 1240 1241 static int machine_constraints_voltage(struct regulator_dev *rdev, 1242 struct regulation_constraints *constraints) 1243 { 1244 const struct regulator_ops *ops = rdev->desc->ops; 1245 int ret; 1246 1247 /* do we need to apply the constraint voltage */ 1248 if (rdev->constraints->apply_uV && 1249 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1250 int target_min, target_max; 1251 int current_uV = regulator_get_voltage_rdev(rdev); 1252 1253 if (current_uV == -ENOTRECOVERABLE) { 1254 /* This regulator can't be read and must be initialized */ 1255 rdev_info(rdev, "Setting %d-%duV\n", 1256 rdev->constraints->min_uV, 1257 rdev->constraints->max_uV); 1258 _regulator_do_set_voltage(rdev, 1259 rdev->constraints->min_uV, 1260 rdev->constraints->max_uV); 1261 current_uV = regulator_get_voltage_rdev(rdev); 1262 } 1263 1264 if (current_uV < 0) { 1265 if (current_uV != -EPROBE_DEFER) 1266 rdev_err(rdev, 1267 "failed to get the current voltage: %pe\n", 1268 ERR_PTR(current_uV)); 1269 return current_uV; 1270 } 1271 1272 /* 1273 * If we're below the minimum voltage move up to the 1274 * minimum voltage, if we're above the maximum voltage 1275 * then move down to the maximum. 1276 */ 1277 target_min = current_uV; 1278 target_max = current_uV; 1279 1280 if (current_uV < rdev->constraints->min_uV) { 1281 target_min = rdev->constraints->min_uV; 1282 target_max = rdev->constraints->min_uV; 1283 } 1284 1285 if (current_uV > rdev->constraints->max_uV) { 1286 target_min = rdev->constraints->max_uV; 1287 target_max = rdev->constraints->max_uV; 1288 } 1289 1290 if (target_min != current_uV || target_max != current_uV) { 1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1292 current_uV, target_min, target_max); 1293 ret = _regulator_do_set_voltage( 1294 rdev, target_min, target_max); 1295 if (ret < 0) { 1296 rdev_err(rdev, 1297 "failed to apply %d-%duV constraint: %pe\n", 1298 target_min, target_max, ERR_PTR(ret)); 1299 return ret; 1300 } 1301 } 1302 } 1303 1304 /* constrain machine-level voltage specs to fit 1305 * the actual range supported by this regulator. 1306 */ 1307 if (ops->list_voltage && rdev->desc->n_voltages) { 1308 int count = rdev->desc->n_voltages; 1309 int i; 1310 int min_uV = INT_MAX; 1311 int max_uV = INT_MIN; 1312 int cmin = constraints->min_uV; 1313 int cmax = constraints->max_uV; 1314 1315 /* it's safe to autoconfigure fixed-voltage supplies 1316 * and the constraints are used by list_voltage. 1317 */ 1318 if (count == 1 && !cmin) { 1319 cmin = 1; 1320 cmax = INT_MAX; 1321 constraints->min_uV = cmin; 1322 constraints->max_uV = cmax; 1323 } 1324 1325 /* voltage constraints are optional */ 1326 if ((cmin == 0) && (cmax == 0)) 1327 return 0; 1328 1329 /* else require explicit machine-level constraints */ 1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1331 rdev_err(rdev, "invalid voltage constraints\n"); 1332 return -EINVAL; 1333 } 1334 1335 /* no need to loop voltages if range is continuous */ 1336 if (rdev->desc->continuous_voltage_range) 1337 return 0; 1338 1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1340 for (i = 0; i < count; i++) { 1341 int value; 1342 1343 value = ops->list_voltage(rdev, i); 1344 if (value <= 0) 1345 continue; 1346 1347 /* maybe adjust [min_uV..max_uV] */ 1348 if (value >= cmin && value < min_uV) 1349 min_uV = value; 1350 if (value <= cmax && value > max_uV) 1351 max_uV = value; 1352 } 1353 1354 /* final: [min_uV..max_uV] valid iff constraints valid */ 1355 if (max_uV < min_uV) { 1356 rdev_err(rdev, 1357 "unsupportable voltage constraints %u-%uuV\n", 1358 min_uV, max_uV); 1359 return -EINVAL; 1360 } 1361 1362 /* use regulator's subset of machine constraints */ 1363 if (constraints->min_uV < min_uV) { 1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1365 constraints->min_uV, min_uV); 1366 constraints->min_uV = min_uV; 1367 } 1368 if (constraints->max_uV > max_uV) { 1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1370 constraints->max_uV, max_uV); 1371 constraints->max_uV = max_uV; 1372 } 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int machine_constraints_current(struct regulator_dev *rdev, 1379 struct regulation_constraints *constraints) 1380 { 1381 const struct regulator_ops *ops = rdev->desc->ops; 1382 int ret; 1383 1384 if (!constraints->min_uA && !constraints->max_uA) 1385 return 0; 1386 1387 if (constraints->min_uA > constraints->max_uA) { 1388 rdev_err(rdev, "Invalid current constraints\n"); 1389 return -EINVAL; 1390 } 1391 1392 if (!ops->set_current_limit || !ops->get_current_limit) { 1393 rdev_warn(rdev, "Operation of current configuration missing\n"); 1394 return 0; 1395 } 1396 1397 /* Set regulator current in constraints range */ 1398 ret = ops->set_current_limit(rdev, constraints->min_uA, 1399 constraints->max_uA); 1400 if (ret < 0) { 1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1402 return ret; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int _regulator_do_enable(struct regulator_dev *rdev); 1409 1410 static int notif_set_limit(struct regulator_dev *rdev, 1411 int (*set)(struct regulator_dev *, int, int, bool), 1412 int limit, int severity) 1413 { 1414 bool enable; 1415 1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1417 enable = false; 1418 limit = 0; 1419 } else { 1420 enable = true; 1421 } 1422 1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1424 limit = 0; 1425 1426 return set(rdev, limit, severity, enable); 1427 } 1428 1429 static int handle_notify_limits(struct regulator_dev *rdev, 1430 int (*set)(struct regulator_dev *, int, int, bool), 1431 struct notification_limit *limits) 1432 { 1433 int ret = 0; 1434 1435 if (!set) 1436 return -EOPNOTSUPP; 1437 1438 if (limits->prot) 1439 ret = notif_set_limit(rdev, set, limits->prot, 1440 REGULATOR_SEVERITY_PROT); 1441 if (ret) 1442 return ret; 1443 1444 if (limits->err) 1445 ret = notif_set_limit(rdev, set, limits->err, 1446 REGULATOR_SEVERITY_ERR); 1447 if (ret) 1448 return ret; 1449 1450 if (limits->warn) 1451 ret = notif_set_limit(rdev, set, limits->warn, 1452 REGULATOR_SEVERITY_WARN); 1453 1454 return ret; 1455 } 1456 /** 1457 * set_machine_constraints - sets regulator constraints 1458 * @rdev: regulator source 1459 * 1460 * Allows platform initialisation code to define and constrain 1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1462 * Constraints *must* be set by platform code in order for some 1463 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1464 * set_mode. 1465 */ 1466 static int set_machine_constraints(struct regulator_dev *rdev) 1467 { 1468 int ret = 0; 1469 const struct regulator_ops *ops = rdev->desc->ops; 1470 1471 ret = machine_constraints_voltage(rdev, rdev->constraints); 1472 if (ret != 0) 1473 return ret; 1474 1475 ret = machine_constraints_current(rdev, rdev->constraints); 1476 if (ret != 0) 1477 return ret; 1478 1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1480 ret = ops->set_input_current_limit(rdev, 1481 rdev->constraints->ilim_uA); 1482 if (ret < 0) { 1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1484 return ret; 1485 } 1486 } 1487 1488 /* do we need to setup our suspend state */ 1489 if (rdev->constraints->initial_state) { 1490 ret = suspend_set_initial_state(rdev); 1491 if (ret < 0) { 1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1493 return ret; 1494 } 1495 } 1496 1497 if (rdev->constraints->initial_mode) { 1498 if (!ops->set_mode) { 1499 rdev_err(rdev, "no set_mode operation\n"); 1500 return -EINVAL; 1501 } 1502 1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1504 if (ret < 0) { 1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1506 return ret; 1507 } 1508 } else if (rdev->constraints->system_load) { 1509 /* 1510 * We'll only apply the initial system load if an 1511 * initial mode wasn't specified. 1512 */ 1513 drms_uA_update(rdev); 1514 } 1515 1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1517 && ops->set_ramp_delay) { 1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1519 if (ret < 0) { 1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1521 return ret; 1522 } 1523 } 1524 1525 if (rdev->constraints->pull_down && ops->set_pull_down) { 1526 ret = ops->set_pull_down(rdev); 1527 if (ret < 0) { 1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1529 return ret; 1530 } 1531 } 1532 1533 if (rdev->constraints->soft_start && ops->set_soft_start) { 1534 ret = ops->set_soft_start(rdev); 1535 if (ret < 0) { 1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1537 return ret; 1538 } 1539 } 1540 1541 /* 1542 * Existing logic does not warn if over_current_protection is given as 1543 * a constraint but driver does not support that. I think we should 1544 * warn about this type of issues as it is possible someone changes 1545 * PMIC on board to another type - and the another PMIC's driver does 1546 * not support setting protection. Board composer may happily believe 1547 * the DT limits are respected - especially if the new PMIC HW also 1548 * supports protection but the driver does not. I won't change the logic 1549 * without hearing more experienced opinion on this though. 1550 * 1551 * If warning is seen as a good idea then we can merge handling the 1552 * over-curret protection and detection and get rid of this special 1553 * handling. 1554 */ 1555 if (rdev->constraints->over_current_protection 1556 && ops->set_over_current_protection) { 1557 int lim = rdev->constraints->over_curr_limits.prot; 1558 1559 ret = ops->set_over_current_protection(rdev, lim, 1560 REGULATOR_SEVERITY_PROT, 1561 true); 1562 if (ret < 0) { 1563 rdev_err(rdev, "failed to set over current protection: %pe\n", 1564 ERR_PTR(ret)); 1565 return ret; 1566 } 1567 } 1568 1569 if (rdev->constraints->over_current_detection) 1570 ret = handle_notify_limits(rdev, 1571 ops->set_over_current_protection, 1572 &rdev->constraints->over_curr_limits); 1573 if (ret) { 1574 if (ret != -EOPNOTSUPP) { 1575 rdev_err(rdev, "failed to set over current limits: %pe\n", 1576 ERR_PTR(ret)); 1577 return ret; 1578 } 1579 rdev_warn(rdev, 1580 "IC does not support requested over-current limits\n"); 1581 } 1582 1583 if (rdev->constraints->over_voltage_detection) 1584 ret = handle_notify_limits(rdev, 1585 ops->set_over_voltage_protection, 1586 &rdev->constraints->over_voltage_limits); 1587 if (ret) { 1588 if (ret != -EOPNOTSUPP) { 1589 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1590 ERR_PTR(ret)); 1591 return ret; 1592 } 1593 rdev_warn(rdev, 1594 "IC does not support requested over voltage limits\n"); 1595 } 1596 1597 if (rdev->constraints->under_voltage_detection) 1598 ret = handle_notify_limits(rdev, 1599 ops->set_under_voltage_protection, 1600 &rdev->constraints->under_voltage_limits); 1601 if (ret) { 1602 if (ret != -EOPNOTSUPP) { 1603 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1604 ERR_PTR(ret)); 1605 return ret; 1606 } 1607 rdev_warn(rdev, 1608 "IC does not support requested under voltage limits\n"); 1609 } 1610 1611 if (rdev->constraints->over_temp_detection) 1612 ret = handle_notify_limits(rdev, 1613 ops->set_thermal_protection, 1614 &rdev->constraints->temp_limits); 1615 if (ret) { 1616 if (ret != -EOPNOTSUPP) { 1617 rdev_err(rdev, "failed to set temperature limits %pe\n", 1618 ERR_PTR(ret)); 1619 return ret; 1620 } 1621 rdev_warn(rdev, 1622 "IC does not support requested temperature limits\n"); 1623 } 1624 1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1626 bool ad_state = (rdev->constraints->active_discharge == 1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1628 1629 ret = ops->set_active_discharge(rdev, ad_state); 1630 if (ret < 0) { 1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1632 return ret; 1633 } 1634 } 1635 1636 /* 1637 * If there is no mechanism for controlling the regulator then 1638 * flag it as always_on so we don't end up duplicating checks 1639 * for this so much. Note that we could control the state of 1640 * a supply to control the output on a regulator that has no 1641 * direct control. 1642 */ 1643 if (!rdev->ena_pin && !ops->enable) { 1644 if (rdev->supply_name && !rdev->supply) 1645 return -EPROBE_DEFER; 1646 1647 if (rdev->supply) 1648 rdev->constraints->always_on = 1649 rdev->supply->rdev->constraints->always_on; 1650 else 1651 rdev->constraints->always_on = true; 1652 } 1653 1654 /* If the constraints say the regulator should be on at this point 1655 * and we have control then make sure it is enabled. 1656 */ 1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1658 /* If we want to enable this regulator, make sure that we know 1659 * the supplying regulator. 1660 */ 1661 if (rdev->supply_name && !rdev->supply) 1662 return -EPROBE_DEFER; 1663 1664 /* If supplying regulator has already been enabled, 1665 * it's not intended to have use_count increment 1666 * when rdev is only boot-on. 1667 */ 1668 if (rdev->supply && 1669 (rdev->constraints->always_on || 1670 !regulator_is_enabled(rdev->supply))) { 1671 ret = regulator_enable(rdev->supply); 1672 if (ret < 0) { 1673 _regulator_put(rdev->supply); 1674 rdev->supply = NULL; 1675 return ret; 1676 } 1677 } 1678 1679 ret = _regulator_do_enable(rdev); 1680 if (ret < 0 && ret != -EINVAL) { 1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1682 return ret; 1683 } 1684 1685 if (rdev->constraints->always_on) 1686 rdev->use_count++; 1687 } else if (rdev->desc->off_on_delay) { 1688 rdev->last_off = ktime_get(); 1689 } 1690 1691 print_constraints(rdev); 1692 return 0; 1693 } 1694 1695 /** 1696 * set_supply - set regulator supply regulator 1697 * @rdev: regulator (locked) 1698 * @supply_rdev: supply regulator (locked)) 1699 * 1700 * Called by platform initialisation code to set the supply regulator for this 1701 * regulator. This ensures that a regulators supply will also be enabled by the 1702 * core if it's child is enabled. 1703 */ 1704 static int set_supply(struct regulator_dev *rdev, 1705 struct regulator_dev *supply_rdev) 1706 { 1707 int err; 1708 1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1710 1711 if (!try_module_get(supply_rdev->owner)) 1712 return -ENODEV; 1713 1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1715 if (rdev->supply == NULL) { 1716 module_put(supply_rdev->owner); 1717 err = -ENOMEM; 1718 return err; 1719 } 1720 supply_rdev->open_count++; 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1727 * @rdev: regulator source 1728 * @consumer_dev_name: dev_name() string for device supply applies to 1729 * @supply: symbolic name for supply 1730 * 1731 * Allows platform initialisation code to map physical regulator 1732 * sources to symbolic names for supplies for use by devices. Devices 1733 * should use these symbolic names to request regulators, avoiding the 1734 * need to provide board-specific regulator names as platform data. 1735 */ 1736 static int set_consumer_device_supply(struct regulator_dev *rdev, 1737 const char *consumer_dev_name, 1738 const char *supply) 1739 { 1740 struct regulator_map *node, *new_node; 1741 int has_dev; 1742 1743 if (supply == NULL) 1744 return -EINVAL; 1745 1746 if (consumer_dev_name != NULL) 1747 has_dev = 1; 1748 else 1749 has_dev = 0; 1750 1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1752 if (new_node == NULL) 1753 return -ENOMEM; 1754 1755 new_node->regulator = rdev; 1756 new_node->supply = supply; 1757 1758 if (has_dev) { 1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1760 if (new_node->dev_name == NULL) { 1761 kfree(new_node); 1762 return -ENOMEM; 1763 } 1764 } 1765 1766 mutex_lock(®ulator_list_mutex); 1767 list_for_each_entry(node, ®ulator_map_list, list) { 1768 if (node->dev_name && consumer_dev_name) { 1769 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1770 continue; 1771 } else if (node->dev_name || consumer_dev_name) { 1772 continue; 1773 } 1774 1775 if (strcmp(node->supply, supply) != 0) 1776 continue; 1777 1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1779 consumer_dev_name, 1780 dev_name(&node->regulator->dev), 1781 node->regulator->desc->name, 1782 supply, 1783 dev_name(&rdev->dev), rdev_get_name(rdev)); 1784 goto fail; 1785 } 1786 1787 list_add(&new_node->list, ®ulator_map_list); 1788 mutex_unlock(®ulator_list_mutex); 1789 1790 return 0; 1791 1792 fail: 1793 mutex_unlock(®ulator_list_mutex); 1794 kfree(new_node->dev_name); 1795 kfree(new_node); 1796 return -EBUSY; 1797 } 1798 1799 static void unset_regulator_supplies(struct regulator_dev *rdev) 1800 { 1801 struct regulator_map *node, *n; 1802 1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1804 if (rdev == node->regulator) { 1805 list_del(&node->list); 1806 kfree(node->dev_name); 1807 kfree(node); 1808 } 1809 } 1810 } 1811 1812 #ifdef CONFIG_DEBUG_FS 1813 static ssize_t constraint_flags_read_file(struct file *file, 1814 char __user *user_buf, 1815 size_t count, loff_t *ppos) 1816 { 1817 const struct regulator *regulator = file->private_data; 1818 const struct regulation_constraints *c = regulator->rdev->constraints; 1819 char *buf; 1820 ssize_t ret; 1821 1822 if (!c) 1823 return 0; 1824 1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1826 if (!buf) 1827 return -ENOMEM; 1828 1829 ret = snprintf(buf, PAGE_SIZE, 1830 "always_on: %u\n" 1831 "boot_on: %u\n" 1832 "apply_uV: %u\n" 1833 "ramp_disable: %u\n" 1834 "soft_start: %u\n" 1835 "pull_down: %u\n" 1836 "over_current_protection: %u\n", 1837 c->always_on, 1838 c->boot_on, 1839 c->apply_uV, 1840 c->ramp_disable, 1841 c->soft_start, 1842 c->pull_down, 1843 c->over_current_protection); 1844 1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1846 kfree(buf); 1847 1848 return ret; 1849 } 1850 1851 #endif 1852 1853 static const struct file_operations constraint_flags_fops = { 1854 #ifdef CONFIG_DEBUG_FS 1855 .open = simple_open, 1856 .read = constraint_flags_read_file, 1857 .llseek = default_llseek, 1858 #endif 1859 }; 1860 1861 #define REG_STR_SIZE 64 1862 1863 static struct regulator *create_regulator(struct regulator_dev *rdev, 1864 struct device *dev, 1865 const char *supply_name) 1866 { 1867 struct regulator *regulator; 1868 int err = 0; 1869 1870 lockdep_assert_held_once(&rdev->mutex.base); 1871 1872 if (dev) { 1873 char buf[REG_STR_SIZE]; 1874 int size; 1875 1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1877 dev->kobj.name, supply_name); 1878 if (size >= REG_STR_SIZE) 1879 return NULL; 1880 1881 supply_name = kstrdup(buf, GFP_KERNEL); 1882 if (supply_name == NULL) 1883 return NULL; 1884 } else { 1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1886 if (supply_name == NULL) 1887 return NULL; 1888 } 1889 1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1891 if (regulator == NULL) { 1892 kfree_const(supply_name); 1893 return NULL; 1894 } 1895 1896 regulator->rdev = rdev; 1897 regulator->supply_name = supply_name; 1898 1899 list_add(®ulator->list, &rdev->consumer_list); 1900 1901 if (dev) { 1902 regulator->dev = dev; 1903 1904 /* Add a link to the device sysfs entry */ 1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1906 supply_name); 1907 if (err) { 1908 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1909 dev->kobj.name, ERR_PTR(err)); 1910 /* non-fatal */ 1911 } 1912 } 1913 1914 if (err != -EEXIST) { 1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1916 if (IS_ERR(regulator->debugfs)) { 1917 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1918 regulator->debugfs = NULL; 1919 } 1920 } 1921 1922 if (regulator->debugfs) { 1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1924 ®ulator->uA_load); 1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1926 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1928 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1930 regulator, &constraint_flags_fops); 1931 } 1932 1933 /* 1934 * Check now if the regulator is an always on regulator - if 1935 * it is then we don't need to do nearly so much work for 1936 * enable/disable calls. 1937 */ 1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1939 _regulator_is_enabled(rdev)) 1940 regulator->always_on = true; 1941 1942 return regulator; 1943 } 1944 1945 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1946 { 1947 if (rdev->constraints && rdev->constraints->enable_time) 1948 return rdev->constraints->enable_time; 1949 if (rdev->desc->ops->enable_time) 1950 return rdev->desc->ops->enable_time(rdev); 1951 return rdev->desc->enable_time; 1952 } 1953 1954 static struct regulator_supply_alias *regulator_find_supply_alias( 1955 struct device *dev, const char *supply) 1956 { 1957 struct regulator_supply_alias *map; 1958 1959 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1961 return map; 1962 1963 return NULL; 1964 } 1965 1966 static void regulator_supply_alias(struct device **dev, const char **supply) 1967 { 1968 struct regulator_supply_alias *map; 1969 1970 map = regulator_find_supply_alias(*dev, *supply); 1971 if (map) { 1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1973 *supply, map->alias_supply, 1974 dev_name(map->alias_dev)); 1975 *dev = map->alias_dev; 1976 *supply = map->alias_supply; 1977 } 1978 } 1979 1980 static int regulator_match(struct device *dev, const void *data) 1981 { 1982 struct regulator_dev *r = dev_to_rdev(dev); 1983 1984 return strcmp(rdev_get_name(r), data) == 0; 1985 } 1986 1987 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1988 { 1989 struct device *dev; 1990 1991 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1992 1993 return dev ? dev_to_rdev(dev) : NULL; 1994 } 1995 1996 /** 1997 * regulator_dev_lookup - lookup a regulator device. 1998 * @dev: device for regulator "consumer". 1999 * @supply: Supply name or regulator ID. 2000 * 2001 * If successful, returns a struct regulator_dev that corresponds to the name 2002 * @supply and with the embedded struct device refcount incremented by one. 2003 * The refcount must be dropped by calling put_device(). 2004 * On failure one of the following ERR-PTR-encoded values is returned: 2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 2006 * in the future. 2007 */ 2008 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2009 const char *supply) 2010 { 2011 struct regulator_dev *r = NULL; 2012 struct device_node *node; 2013 struct regulator_map *map; 2014 const char *devname = NULL; 2015 2016 regulator_supply_alias(&dev, &supply); 2017 2018 /* first do a dt based lookup */ 2019 if (dev && dev->of_node) { 2020 node = of_get_regulator(dev, supply); 2021 if (node) { 2022 r = of_find_regulator_by_node(node); 2023 of_node_put(node); 2024 if (r) 2025 return r; 2026 2027 /* 2028 * We have a node, but there is no device. 2029 * assume it has not registered yet. 2030 */ 2031 return ERR_PTR(-EPROBE_DEFER); 2032 } 2033 } 2034 2035 /* if not found, try doing it non-dt way */ 2036 if (dev) 2037 devname = dev_name(dev); 2038 2039 mutex_lock(®ulator_list_mutex); 2040 list_for_each_entry(map, ®ulator_map_list, list) { 2041 /* If the mapping has a device set up it must match */ 2042 if (map->dev_name && 2043 (!devname || strcmp(map->dev_name, devname))) 2044 continue; 2045 2046 if (strcmp(map->supply, supply) == 0 && 2047 get_device(&map->regulator->dev)) { 2048 r = map->regulator; 2049 break; 2050 } 2051 } 2052 mutex_unlock(®ulator_list_mutex); 2053 2054 if (r) 2055 return r; 2056 2057 r = regulator_lookup_by_name(supply); 2058 if (r) 2059 return r; 2060 2061 return ERR_PTR(-ENODEV); 2062 } 2063 2064 static int regulator_resolve_supply(struct regulator_dev *rdev) 2065 { 2066 struct regulator_dev *r; 2067 struct device *dev = rdev->dev.parent; 2068 struct ww_acquire_ctx ww_ctx; 2069 int ret = 0; 2070 2071 /* No supply to resolve? */ 2072 if (!rdev->supply_name) 2073 return 0; 2074 2075 /* Supply already resolved? (fast-path without locking contention) */ 2076 if (rdev->supply) 2077 return 0; 2078 2079 r = regulator_dev_lookup(dev, rdev->supply_name); 2080 if (IS_ERR(r)) { 2081 ret = PTR_ERR(r); 2082 2083 /* Did the lookup explicitly defer for us? */ 2084 if (ret == -EPROBE_DEFER) 2085 goto out; 2086 2087 if (have_full_constraints()) { 2088 r = dummy_regulator_rdev; 2089 get_device(&r->dev); 2090 } else { 2091 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2092 rdev->supply_name, rdev->desc->name); 2093 ret = -EPROBE_DEFER; 2094 goto out; 2095 } 2096 } 2097 2098 if (r == rdev) { 2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2100 rdev->desc->name, rdev->supply_name); 2101 if (!have_full_constraints()) { 2102 ret = -EINVAL; 2103 goto out; 2104 } 2105 r = dummy_regulator_rdev; 2106 get_device(&r->dev); 2107 } 2108 2109 /* 2110 * If the supply's parent device is not the same as the 2111 * regulator's parent device, then ensure the parent device 2112 * is bound before we resolve the supply, in case the parent 2113 * device get probe deferred and unregisters the supply. 2114 */ 2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2116 if (!device_is_bound(r->dev.parent)) { 2117 put_device(&r->dev); 2118 ret = -EPROBE_DEFER; 2119 goto out; 2120 } 2121 } 2122 2123 /* Recursively resolve the supply of the supply */ 2124 ret = regulator_resolve_supply(r); 2125 if (ret < 0) { 2126 put_device(&r->dev); 2127 goto out; 2128 } 2129 2130 /* 2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2132 * between rdev->supply null check and setting rdev->supply in 2133 * set_supply() from concurrent tasks. 2134 */ 2135 regulator_lock_two(rdev, r, &ww_ctx); 2136 2137 /* Supply just resolved by a concurrent task? */ 2138 if (rdev->supply) { 2139 regulator_unlock_two(rdev, r, &ww_ctx); 2140 put_device(&r->dev); 2141 goto out; 2142 } 2143 2144 ret = set_supply(rdev, r); 2145 if (ret < 0) { 2146 regulator_unlock_two(rdev, r, &ww_ctx); 2147 put_device(&r->dev); 2148 goto out; 2149 } 2150 2151 regulator_unlock_two(rdev, r, &ww_ctx); 2152 2153 /* 2154 * In set_machine_constraints() we may have turned this regulator on 2155 * but we couldn't propagate to the supply if it hadn't been resolved 2156 * yet. Do it now. 2157 */ 2158 if (rdev->use_count) { 2159 ret = regulator_enable(rdev->supply); 2160 if (ret < 0) { 2161 _regulator_put(rdev->supply); 2162 rdev->supply = NULL; 2163 goto out; 2164 } 2165 } 2166 2167 out: 2168 return ret; 2169 } 2170 2171 /* Internal regulator request function */ 2172 struct regulator *_regulator_get(struct device *dev, const char *id, 2173 enum regulator_get_type get_type) 2174 { 2175 struct regulator_dev *rdev; 2176 struct regulator *regulator; 2177 struct device_link *link; 2178 int ret; 2179 2180 if (get_type >= MAX_GET_TYPE) { 2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 if (id == NULL) { 2186 pr_err("get() with no identifier\n"); 2187 return ERR_PTR(-EINVAL); 2188 } 2189 2190 rdev = regulator_dev_lookup(dev, id); 2191 if (IS_ERR(rdev)) { 2192 ret = PTR_ERR(rdev); 2193 2194 /* 2195 * If regulator_dev_lookup() fails with error other 2196 * than -ENODEV our job here is done, we simply return it. 2197 */ 2198 if (ret != -ENODEV) 2199 return ERR_PTR(ret); 2200 2201 if (!have_full_constraints()) { 2202 dev_warn(dev, 2203 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); 2204 return ERR_PTR(-ENODEV); 2205 } 2206 2207 switch (get_type) { 2208 case NORMAL_GET: 2209 /* 2210 * Assume that a regulator is physically present and 2211 * enabled, even if it isn't hooked up, and just 2212 * provide a dummy. 2213 */ 2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2215 rdev = dummy_regulator_rdev; 2216 get_device(&rdev->dev); 2217 break; 2218 2219 case EXCLUSIVE_GET: 2220 dev_warn(dev, 2221 "dummy supplies not allowed for exclusive requests (id=%s)\n", id); 2222 fallthrough; 2223 2224 default: 2225 return ERR_PTR(-ENODEV); 2226 } 2227 } 2228 2229 if (rdev->exclusive) { 2230 regulator = ERR_PTR(-EPERM); 2231 put_device(&rdev->dev); 2232 return regulator; 2233 } 2234 2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2236 regulator = ERR_PTR(-EBUSY); 2237 put_device(&rdev->dev); 2238 return regulator; 2239 } 2240 2241 mutex_lock(®ulator_list_mutex); 2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2243 mutex_unlock(®ulator_list_mutex); 2244 2245 if (ret != 0) { 2246 regulator = ERR_PTR(-EPROBE_DEFER); 2247 put_device(&rdev->dev); 2248 return regulator; 2249 } 2250 2251 ret = regulator_resolve_supply(rdev); 2252 if (ret < 0) { 2253 regulator = ERR_PTR(ret); 2254 put_device(&rdev->dev); 2255 return regulator; 2256 } 2257 2258 if (!try_module_get(rdev->owner)) { 2259 regulator = ERR_PTR(-EPROBE_DEFER); 2260 put_device(&rdev->dev); 2261 return regulator; 2262 } 2263 2264 regulator_lock(rdev); 2265 regulator = create_regulator(rdev, dev, id); 2266 regulator_unlock(rdev); 2267 if (regulator == NULL) { 2268 regulator = ERR_PTR(-ENOMEM); 2269 module_put(rdev->owner); 2270 put_device(&rdev->dev); 2271 return regulator; 2272 } 2273 2274 rdev->open_count++; 2275 if (get_type == EXCLUSIVE_GET) { 2276 rdev->exclusive = 1; 2277 2278 ret = _regulator_is_enabled(rdev); 2279 if (ret > 0) { 2280 rdev->use_count = 1; 2281 regulator->enable_count = 1; 2282 2283 /* Propagate the regulator state to its supply */ 2284 if (rdev->supply) { 2285 ret = regulator_enable(rdev->supply); 2286 if (ret < 0) { 2287 destroy_regulator(regulator); 2288 module_put(rdev->owner); 2289 put_device(&rdev->dev); 2290 return ERR_PTR(ret); 2291 } 2292 } 2293 } else { 2294 rdev->use_count = 0; 2295 regulator->enable_count = 0; 2296 } 2297 } 2298 2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2300 if (!IS_ERR_OR_NULL(link)) 2301 regulator->device_link = true; 2302 2303 return regulator; 2304 } 2305 2306 /** 2307 * regulator_get - lookup and obtain a reference to a regulator. 2308 * @dev: device for regulator "consumer" 2309 * @id: Supply name or regulator ID. 2310 * 2311 * Returns a struct regulator corresponding to the regulator producer, 2312 * or IS_ERR() condition containing errno. 2313 * 2314 * Use of supply names configured via set_consumer_device_supply() is 2315 * strongly encouraged. It is recommended that the supply name used 2316 * should match the name used for the supply and/or the relevant 2317 * device pins in the datasheet. 2318 */ 2319 struct regulator *regulator_get(struct device *dev, const char *id) 2320 { 2321 return _regulator_get(dev, id, NORMAL_GET); 2322 } 2323 EXPORT_SYMBOL_GPL(regulator_get); 2324 2325 /** 2326 * regulator_get_exclusive - obtain exclusive access to a regulator. 2327 * @dev: device for regulator "consumer" 2328 * @id: Supply name or regulator ID. 2329 * 2330 * Returns a struct regulator corresponding to the regulator producer, 2331 * or IS_ERR() condition containing errno. Other consumers will be 2332 * unable to obtain this regulator while this reference is held and the 2333 * use count for the regulator will be initialised to reflect the current 2334 * state of the regulator. 2335 * 2336 * This is intended for use by consumers which cannot tolerate shared 2337 * use of the regulator such as those which need to force the 2338 * regulator off for correct operation of the hardware they are 2339 * controlling. 2340 * 2341 * Use of supply names configured via set_consumer_device_supply() is 2342 * strongly encouraged. It is recommended that the supply name used 2343 * should match the name used for the supply and/or the relevant 2344 * device pins in the datasheet. 2345 */ 2346 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2347 { 2348 return _regulator_get(dev, id, EXCLUSIVE_GET); 2349 } 2350 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2351 2352 /** 2353 * regulator_get_optional - obtain optional access to a regulator. 2354 * @dev: device for regulator "consumer" 2355 * @id: Supply name or regulator ID. 2356 * 2357 * Returns a struct regulator corresponding to the regulator producer, 2358 * or IS_ERR() condition containing errno. 2359 * 2360 * This is intended for use by consumers for devices which can have 2361 * some supplies unconnected in normal use, such as some MMC devices. 2362 * It can allow the regulator core to provide stub supplies for other 2363 * supplies requested using normal regulator_get() calls without 2364 * disrupting the operation of drivers that can handle absent 2365 * supplies. 2366 * 2367 * Use of supply names configured via set_consumer_device_supply() is 2368 * strongly encouraged. It is recommended that the supply name used 2369 * should match the name used for the supply and/or the relevant 2370 * device pins in the datasheet. 2371 */ 2372 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2373 { 2374 return _regulator_get(dev, id, OPTIONAL_GET); 2375 } 2376 EXPORT_SYMBOL_GPL(regulator_get_optional); 2377 2378 static void destroy_regulator(struct regulator *regulator) 2379 { 2380 struct regulator_dev *rdev = regulator->rdev; 2381 2382 debugfs_remove_recursive(regulator->debugfs); 2383 2384 if (regulator->dev) { 2385 if (regulator->device_link) 2386 device_link_remove(regulator->dev, &rdev->dev); 2387 2388 /* remove any sysfs entries */ 2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2390 } 2391 2392 regulator_lock(rdev); 2393 list_del(®ulator->list); 2394 2395 rdev->open_count--; 2396 rdev->exclusive = 0; 2397 regulator_unlock(rdev); 2398 2399 kfree_const(regulator->supply_name); 2400 kfree(regulator); 2401 } 2402 2403 /* regulator_list_mutex lock held by regulator_put() */ 2404 static void _regulator_put(struct regulator *regulator) 2405 { 2406 struct regulator_dev *rdev; 2407 2408 if (IS_ERR_OR_NULL(regulator)) 2409 return; 2410 2411 lockdep_assert_held_once(®ulator_list_mutex); 2412 2413 /* Docs say you must disable before calling regulator_put() */ 2414 WARN_ON(regulator->enable_count); 2415 2416 rdev = regulator->rdev; 2417 2418 destroy_regulator(regulator); 2419 2420 module_put(rdev->owner); 2421 put_device(&rdev->dev); 2422 } 2423 2424 /** 2425 * regulator_put - "free" the regulator source 2426 * @regulator: regulator source 2427 * 2428 * Note: drivers must ensure that all regulator_enable calls made on this 2429 * regulator source are balanced by regulator_disable calls prior to calling 2430 * this function. 2431 */ 2432 void regulator_put(struct regulator *regulator) 2433 { 2434 mutex_lock(®ulator_list_mutex); 2435 _regulator_put(regulator); 2436 mutex_unlock(®ulator_list_mutex); 2437 } 2438 EXPORT_SYMBOL_GPL(regulator_put); 2439 2440 /** 2441 * regulator_register_supply_alias - Provide device alias for supply lookup 2442 * 2443 * @dev: device that will be given as the regulator "consumer" 2444 * @id: Supply name or regulator ID 2445 * @alias_dev: device that should be used to lookup the supply 2446 * @alias_id: Supply name or regulator ID that should be used to lookup the 2447 * supply 2448 * 2449 * All lookups for id on dev will instead be conducted for alias_id on 2450 * alias_dev. 2451 */ 2452 int regulator_register_supply_alias(struct device *dev, const char *id, 2453 struct device *alias_dev, 2454 const char *alias_id) 2455 { 2456 struct regulator_supply_alias *map; 2457 2458 map = regulator_find_supply_alias(dev, id); 2459 if (map) 2460 return -EEXIST; 2461 2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2463 if (!map) 2464 return -ENOMEM; 2465 2466 map->src_dev = dev; 2467 map->src_supply = id; 2468 map->alias_dev = alias_dev; 2469 map->alias_supply = alias_id; 2470 2471 list_add(&map->list, ®ulator_supply_alias_list); 2472 2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2474 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2475 2476 return 0; 2477 } 2478 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2479 2480 /** 2481 * regulator_unregister_supply_alias - Remove device alias 2482 * 2483 * @dev: device that will be given as the regulator "consumer" 2484 * @id: Supply name or regulator ID 2485 * 2486 * Remove a lookup alias if one exists for id on dev. 2487 */ 2488 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2489 { 2490 struct regulator_supply_alias *map; 2491 2492 map = regulator_find_supply_alias(dev, id); 2493 if (map) { 2494 list_del(&map->list); 2495 kfree(map); 2496 } 2497 } 2498 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2499 2500 /** 2501 * regulator_bulk_register_supply_alias - register multiple aliases 2502 * 2503 * @dev: device that will be given as the regulator "consumer" 2504 * @id: List of supply names or regulator IDs 2505 * @alias_dev: device that should be used to lookup the supply 2506 * @alias_id: List of supply names or regulator IDs that should be used to 2507 * lookup the supply 2508 * @num_id: Number of aliases to register 2509 * 2510 * @return 0 on success, an errno on failure. 2511 * 2512 * This helper function allows drivers to register several supply 2513 * aliases in one operation. If any of the aliases cannot be 2514 * registered any aliases that were registered will be removed 2515 * before returning to the caller. 2516 */ 2517 int regulator_bulk_register_supply_alias(struct device *dev, 2518 const char *const *id, 2519 struct device *alias_dev, 2520 const char *const *alias_id, 2521 int num_id) 2522 { 2523 int i; 2524 int ret; 2525 2526 for (i = 0; i < num_id; ++i) { 2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2528 alias_id[i]); 2529 if (ret < 0) 2530 goto err; 2531 } 2532 2533 return 0; 2534 2535 err: 2536 dev_err(dev, 2537 "Failed to create supply alias %s,%s -> %s,%s\n", 2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2539 2540 while (--i >= 0) 2541 regulator_unregister_supply_alias(dev, id[i]); 2542 2543 return ret; 2544 } 2545 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2546 2547 /** 2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2549 * 2550 * @dev: device that will be given as the regulator "consumer" 2551 * @id: List of supply names or regulator IDs 2552 * @num_id: Number of aliases to unregister 2553 * 2554 * This helper function allows drivers to unregister several supply 2555 * aliases in one operation. 2556 */ 2557 void regulator_bulk_unregister_supply_alias(struct device *dev, 2558 const char *const *id, 2559 int num_id) 2560 { 2561 int i; 2562 2563 for (i = 0; i < num_id; ++i) 2564 regulator_unregister_supply_alias(dev, id[i]); 2565 } 2566 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2567 2568 2569 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2570 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2571 const struct regulator_config *config) 2572 { 2573 struct regulator_enable_gpio *pin, *new_pin; 2574 struct gpio_desc *gpiod; 2575 2576 gpiod = config->ena_gpiod; 2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2578 2579 mutex_lock(®ulator_list_mutex); 2580 2581 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2582 if (pin->gpiod == gpiod) { 2583 rdev_dbg(rdev, "GPIO is already used\n"); 2584 goto update_ena_gpio_to_rdev; 2585 } 2586 } 2587 2588 if (new_pin == NULL) { 2589 mutex_unlock(®ulator_list_mutex); 2590 return -ENOMEM; 2591 } 2592 2593 pin = new_pin; 2594 new_pin = NULL; 2595 2596 pin->gpiod = gpiod; 2597 list_add(&pin->list, ®ulator_ena_gpio_list); 2598 2599 update_ena_gpio_to_rdev: 2600 pin->request_count++; 2601 rdev->ena_pin = pin; 2602 2603 mutex_unlock(®ulator_list_mutex); 2604 kfree(new_pin); 2605 2606 return 0; 2607 } 2608 2609 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2610 { 2611 struct regulator_enable_gpio *pin, *n; 2612 2613 if (!rdev->ena_pin) 2614 return; 2615 2616 /* Free the GPIO only in case of no use */ 2617 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2618 if (pin != rdev->ena_pin) 2619 continue; 2620 2621 if (--pin->request_count) 2622 break; 2623 2624 gpiod_put(pin->gpiod); 2625 list_del(&pin->list); 2626 kfree(pin); 2627 break; 2628 } 2629 2630 rdev->ena_pin = NULL; 2631 } 2632 2633 /** 2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2635 * @rdev: regulator_dev structure 2636 * @enable: enable GPIO at initial use? 2637 * 2638 * GPIO is enabled in case of initial use. (enable_count is 0) 2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2640 */ 2641 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2642 { 2643 struct regulator_enable_gpio *pin = rdev->ena_pin; 2644 2645 if (!pin) 2646 return -EINVAL; 2647 2648 if (enable) { 2649 /* Enable GPIO at initial use */ 2650 if (pin->enable_count == 0) 2651 gpiod_set_value_cansleep(pin->gpiod, 1); 2652 2653 pin->enable_count++; 2654 } else { 2655 if (pin->enable_count > 1) { 2656 pin->enable_count--; 2657 return 0; 2658 } 2659 2660 /* Disable GPIO if not used */ 2661 if (pin->enable_count <= 1) { 2662 gpiod_set_value_cansleep(pin->gpiod, 0); 2663 pin->enable_count = 0; 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 /** 2671 * _regulator_delay_helper - a delay helper function 2672 * @delay: time to delay in microseconds 2673 * 2674 * Delay for the requested amount of time as per the guidelines in: 2675 * 2676 * Documentation/timers/timers-howto.rst 2677 * 2678 * The assumption here is that these regulator operations will never used in 2679 * atomic context and therefore sleeping functions can be used. 2680 */ 2681 static void _regulator_delay_helper(unsigned int delay) 2682 { 2683 unsigned int ms = delay / 1000; 2684 unsigned int us = delay % 1000; 2685 2686 if (ms > 0) { 2687 /* 2688 * For small enough values, handle super-millisecond 2689 * delays in the usleep_range() call below. 2690 */ 2691 if (ms < 20) 2692 us += ms * 1000; 2693 else 2694 msleep(ms); 2695 } 2696 2697 /* 2698 * Give the scheduler some room to coalesce with any other 2699 * wakeup sources. For delays shorter than 10 us, don't even 2700 * bother setting up high-resolution timers and just busy- 2701 * loop. 2702 */ 2703 if (us >= 10) 2704 usleep_range(us, us + 100); 2705 else 2706 udelay(us); 2707 } 2708 2709 /** 2710 * _regulator_check_status_enabled 2711 * 2712 * A helper function to check if the regulator status can be interpreted 2713 * as 'regulator is enabled'. 2714 * @rdev: the regulator device to check 2715 * 2716 * Return: 2717 * * 1 - if status shows regulator is in enabled state 2718 * * 0 - if not enabled state 2719 * * Error Value - as received from ops->get_status() 2720 */ 2721 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2722 { 2723 int ret = rdev->desc->ops->get_status(rdev); 2724 2725 if (ret < 0) { 2726 rdev_info(rdev, "get_status returned error: %d\n", ret); 2727 return ret; 2728 } 2729 2730 switch (ret) { 2731 case REGULATOR_STATUS_OFF: 2732 case REGULATOR_STATUS_ERROR: 2733 case REGULATOR_STATUS_UNDEFINED: 2734 return 0; 2735 default: 2736 return 1; 2737 } 2738 } 2739 2740 static int _regulator_do_enable(struct regulator_dev *rdev) 2741 { 2742 int ret, delay; 2743 2744 /* Query before enabling in case configuration dependent. */ 2745 ret = _regulator_get_enable_time(rdev); 2746 if (ret >= 0) { 2747 delay = ret; 2748 } else { 2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2750 delay = 0; 2751 } 2752 2753 trace_regulator_enable(rdev_get_name(rdev)); 2754 2755 if (rdev->desc->off_on_delay) { 2756 /* if needed, keep a distance of off_on_delay from last time 2757 * this regulator was disabled. 2758 */ 2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2761 2762 if (remaining > 0) 2763 _regulator_delay_helper(remaining); 2764 } 2765 2766 if (rdev->ena_pin) { 2767 if (!rdev->ena_gpio_state) { 2768 ret = regulator_ena_gpio_ctrl(rdev, true); 2769 if (ret < 0) 2770 return ret; 2771 rdev->ena_gpio_state = 1; 2772 } 2773 } else if (rdev->desc->ops->enable) { 2774 ret = rdev->desc->ops->enable(rdev); 2775 if (ret < 0) 2776 return ret; 2777 } else { 2778 return -EINVAL; 2779 } 2780 2781 /* Allow the regulator to ramp; it would be useful to extend 2782 * this for bulk operations so that the regulators can ramp 2783 * together. 2784 */ 2785 trace_regulator_enable_delay(rdev_get_name(rdev)); 2786 2787 /* If poll_enabled_time is set, poll upto the delay calculated 2788 * above, delaying poll_enabled_time uS to check if the regulator 2789 * actually got enabled. 2790 * If the regulator isn't enabled after our delay helper has expired, 2791 * return -ETIMEDOUT. 2792 */ 2793 if (rdev->desc->poll_enabled_time) { 2794 int time_remaining = delay; 2795 2796 while (time_remaining > 0) { 2797 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2798 2799 if (rdev->desc->ops->get_status) { 2800 ret = _regulator_check_status_enabled(rdev); 2801 if (ret < 0) 2802 return ret; 2803 else if (ret) 2804 break; 2805 } else if (rdev->desc->ops->is_enabled(rdev)) 2806 break; 2807 2808 time_remaining -= rdev->desc->poll_enabled_time; 2809 } 2810 2811 if (time_remaining <= 0) { 2812 rdev_err(rdev, "Enabled check timed out\n"); 2813 return -ETIMEDOUT; 2814 } 2815 } else { 2816 _regulator_delay_helper(delay); 2817 } 2818 2819 trace_regulator_enable_complete(rdev_get_name(rdev)); 2820 2821 return 0; 2822 } 2823 2824 /** 2825 * _regulator_handle_consumer_enable - handle that a consumer enabled 2826 * @regulator: regulator source 2827 * 2828 * Some things on a regulator consumer (like the contribution towards total 2829 * load on the regulator) only have an effect when the consumer wants the 2830 * regulator enabled. Explained in example with two consumers of the same 2831 * regulator: 2832 * consumer A: set_load(100); => total load = 0 2833 * consumer A: regulator_enable(); => total load = 100 2834 * consumer B: set_load(1000); => total load = 100 2835 * consumer B: regulator_enable(); => total load = 1100 2836 * consumer A: regulator_disable(); => total_load = 1000 2837 * 2838 * This function (together with _regulator_handle_consumer_disable) is 2839 * responsible for keeping track of the refcount for a given regulator consumer 2840 * and applying / unapplying these things. 2841 * 2842 * Returns 0 upon no error; -error upon error. 2843 */ 2844 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2845 { 2846 int ret; 2847 struct regulator_dev *rdev = regulator->rdev; 2848 2849 lockdep_assert_held_once(&rdev->mutex.base); 2850 2851 regulator->enable_count++; 2852 if (regulator->uA_load && regulator->enable_count == 1) { 2853 ret = drms_uA_update(rdev); 2854 if (ret) 2855 regulator->enable_count--; 2856 return ret; 2857 } 2858 2859 return 0; 2860 } 2861 2862 /** 2863 * _regulator_handle_consumer_disable - handle that a consumer disabled 2864 * @regulator: regulator source 2865 * 2866 * The opposite of _regulator_handle_consumer_enable(). 2867 * 2868 * Returns 0 upon no error; -error upon error. 2869 */ 2870 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2871 { 2872 struct regulator_dev *rdev = regulator->rdev; 2873 2874 lockdep_assert_held_once(&rdev->mutex.base); 2875 2876 if (!regulator->enable_count) { 2877 rdev_err(rdev, "Underflow of regulator enable count\n"); 2878 return -EINVAL; 2879 } 2880 2881 regulator->enable_count--; 2882 if (regulator->uA_load && regulator->enable_count == 0) 2883 return drms_uA_update(rdev); 2884 2885 return 0; 2886 } 2887 2888 /* locks held by regulator_enable() */ 2889 static int _regulator_enable(struct regulator *regulator) 2890 { 2891 struct regulator_dev *rdev = regulator->rdev; 2892 int ret; 2893 2894 lockdep_assert_held_once(&rdev->mutex.base); 2895 2896 if (rdev->use_count == 0 && rdev->supply) { 2897 ret = _regulator_enable(rdev->supply); 2898 if (ret < 0) 2899 return ret; 2900 } 2901 2902 /* balance only if there are regulators coupled */ 2903 if (rdev->coupling_desc.n_coupled > 1) { 2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2905 if (ret < 0) 2906 goto err_disable_supply; 2907 } 2908 2909 ret = _regulator_handle_consumer_enable(regulator); 2910 if (ret < 0) 2911 goto err_disable_supply; 2912 2913 if (rdev->use_count == 0) { 2914 /* 2915 * The regulator may already be enabled if it's not switchable 2916 * or was left on 2917 */ 2918 ret = _regulator_is_enabled(rdev); 2919 if (ret == -EINVAL || ret == 0) { 2920 if (!regulator_ops_is_valid(rdev, 2921 REGULATOR_CHANGE_STATUS)) { 2922 ret = -EPERM; 2923 goto err_consumer_disable; 2924 } 2925 2926 ret = _regulator_do_enable(rdev); 2927 if (ret < 0) 2928 goto err_consumer_disable; 2929 2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2931 NULL); 2932 } else if (ret < 0) { 2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2934 goto err_consumer_disable; 2935 } 2936 /* Fallthrough on positive return values - already enabled */ 2937 } 2938 2939 if (regulator->enable_count == 1) 2940 rdev->use_count++; 2941 2942 return 0; 2943 2944 err_consumer_disable: 2945 _regulator_handle_consumer_disable(regulator); 2946 2947 err_disable_supply: 2948 if (rdev->use_count == 0 && rdev->supply) 2949 _regulator_disable(rdev->supply); 2950 2951 return ret; 2952 } 2953 2954 /** 2955 * regulator_enable - enable regulator output 2956 * @regulator: regulator source 2957 * 2958 * Request that the regulator be enabled with the regulator output at 2959 * the predefined voltage or current value. Calls to regulator_enable() 2960 * must be balanced with calls to regulator_disable(). 2961 * 2962 * NOTE: the output value can be set by other drivers, boot loader or may be 2963 * hardwired in the regulator. 2964 */ 2965 int regulator_enable(struct regulator *regulator) 2966 { 2967 struct regulator_dev *rdev = regulator->rdev; 2968 struct ww_acquire_ctx ww_ctx; 2969 int ret; 2970 2971 regulator_lock_dependent(rdev, &ww_ctx); 2972 ret = _regulator_enable(regulator); 2973 regulator_unlock_dependent(rdev, &ww_ctx); 2974 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(regulator_enable); 2978 2979 static int _regulator_do_disable(struct regulator_dev *rdev) 2980 { 2981 int ret; 2982 2983 trace_regulator_disable(rdev_get_name(rdev)); 2984 2985 if (rdev->ena_pin) { 2986 if (rdev->ena_gpio_state) { 2987 ret = regulator_ena_gpio_ctrl(rdev, false); 2988 if (ret < 0) 2989 return ret; 2990 rdev->ena_gpio_state = 0; 2991 } 2992 2993 } else if (rdev->desc->ops->disable) { 2994 ret = rdev->desc->ops->disable(rdev); 2995 if (ret != 0) 2996 return ret; 2997 } 2998 2999 if (rdev->desc->off_on_delay) 3000 rdev->last_off = ktime_get_boottime(); 3001 3002 trace_regulator_disable_complete(rdev_get_name(rdev)); 3003 3004 return 0; 3005 } 3006 3007 /* locks held by regulator_disable() */ 3008 static int _regulator_disable(struct regulator *regulator) 3009 { 3010 struct regulator_dev *rdev = regulator->rdev; 3011 int ret = 0; 3012 3013 lockdep_assert_held_once(&rdev->mutex.base); 3014 3015 if (WARN(regulator->enable_count == 0, 3016 "unbalanced disables for %s\n", rdev_get_name(rdev))) 3017 return -EIO; 3018 3019 if (regulator->enable_count == 1) { 3020 /* disabling last enable_count from this regulator */ 3021 /* are we the last user and permitted to disable ? */ 3022 if (rdev->use_count == 1 && 3023 (rdev->constraints && !rdev->constraints->always_on)) { 3024 3025 /* we are last user */ 3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3027 ret = _notifier_call_chain(rdev, 3028 REGULATOR_EVENT_PRE_DISABLE, 3029 NULL); 3030 if (ret & NOTIFY_STOP_MASK) 3031 return -EINVAL; 3032 3033 ret = _regulator_do_disable(rdev); 3034 if (ret < 0) { 3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3036 _notifier_call_chain(rdev, 3037 REGULATOR_EVENT_ABORT_DISABLE, 3038 NULL); 3039 return ret; 3040 } 3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3042 NULL); 3043 } 3044 3045 rdev->use_count = 0; 3046 } else if (rdev->use_count > 1) { 3047 rdev->use_count--; 3048 } 3049 } 3050 3051 if (ret == 0) 3052 ret = _regulator_handle_consumer_disable(regulator); 3053 3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3056 3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3058 ret = _regulator_disable(rdev->supply); 3059 3060 return ret; 3061 } 3062 3063 /** 3064 * regulator_disable - disable regulator output 3065 * @regulator: regulator source 3066 * 3067 * Disable the regulator output voltage or current. Calls to 3068 * regulator_enable() must be balanced with calls to 3069 * regulator_disable(). 3070 * 3071 * NOTE: this will only disable the regulator output if no other consumer 3072 * devices have it enabled, the regulator device supports disabling and 3073 * machine constraints permit this operation. 3074 */ 3075 int regulator_disable(struct regulator *regulator) 3076 { 3077 struct regulator_dev *rdev = regulator->rdev; 3078 struct ww_acquire_ctx ww_ctx; 3079 int ret; 3080 3081 regulator_lock_dependent(rdev, &ww_ctx); 3082 ret = _regulator_disable(regulator); 3083 regulator_unlock_dependent(rdev, &ww_ctx); 3084 3085 return ret; 3086 } 3087 EXPORT_SYMBOL_GPL(regulator_disable); 3088 3089 /* locks held by regulator_force_disable() */ 3090 static int _regulator_force_disable(struct regulator_dev *rdev) 3091 { 3092 int ret = 0; 3093 3094 lockdep_assert_held_once(&rdev->mutex.base); 3095 3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3097 REGULATOR_EVENT_PRE_DISABLE, NULL); 3098 if (ret & NOTIFY_STOP_MASK) 3099 return -EINVAL; 3100 3101 ret = _regulator_do_disable(rdev); 3102 if (ret < 0) { 3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3105 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3106 return ret; 3107 } 3108 3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3110 REGULATOR_EVENT_DISABLE, NULL); 3111 3112 return 0; 3113 } 3114 3115 /** 3116 * regulator_force_disable - force disable regulator output 3117 * @regulator: regulator source 3118 * 3119 * Forcibly disable the regulator output voltage or current. 3120 * NOTE: this *will* disable the regulator output even if other consumer 3121 * devices have it enabled. This should be used for situations when device 3122 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3123 */ 3124 int regulator_force_disable(struct regulator *regulator) 3125 { 3126 struct regulator_dev *rdev = regulator->rdev; 3127 struct ww_acquire_ctx ww_ctx; 3128 int ret; 3129 3130 regulator_lock_dependent(rdev, &ww_ctx); 3131 3132 ret = _regulator_force_disable(regulator->rdev); 3133 3134 if (rdev->coupling_desc.n_coupled > 1) 3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3136 3137 if (regulator->uA_load) { 3138 regulator->uA_load = 0; 3139 ret = drms_uA_update(rdev); 3140 } 3141 3142 if (rdev->use_count != 0 && rdev->supply) 3143 _regulator_disable(rdev->supply); 3144 3145 regulator_unlock_dependent(rdev, &ww_ctx); 3146 3147 return ret; 3148 } 3149 EXPORT_SYMBOL_GPL(regulator_force_disable); 3150 3151 static void regulator_disable_work(struct work_struct *work) 3152 { 3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3154 disable_work.work); 3155 struct ww_acquire_ctx ww_ctx; 3156 int count, i, ret; 3157 struct regulator *regulator; 3158 int total_count = 0; 3159 3160 regulator_lock_dependent(rdev, &ww_ctx); 3161 3162 /* 3163 * Workqueue functions queue the new work instance while the previous 3164 * work instance is being processed. Cancel the queued work instance 3165 * as the work instance under processing does the job of the queued 3166 * work instance. 3167 */ 3168 cancel_delayed_work(&rdev->disable_work); 3169 3170 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3171 count = regulator->deferred_disables; 3172 3173 if (!count) 3174 continue; 3175 3176 total_count += count; 3177 regulator->deferred_disables = 0; 3178 3179 for (i = 0; i < count; i++) { 3180 ret = _regulator_disable(regulator); 3181 if (ret != 0) 3182 rdev_err(rdev, "Deferred disable failed: %pe\n", 3183 ERR_PTR(ret)); 3184 } 3185 } 3186 WARN_ON(!total_count); 3187 3188 if (rdev->coupling_desc.n_coupled > 1) 3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3190 3191 regulator_unlock_dependent(rdev, &ww_ctx); 3192 } 3193 3194 /** 3195 * regulator_disable_deferred - disable regulator output with delay 3196 * @regulator: regulator source 3197 * @ms: milliseconds until the regulator is disabled 3198 * 3199 * Execute regulator_disable() on the regulator after a delay. This 3200 * is intended for use with devices that require some time to quiesce. 3201 * 3202 * NOTE: this will only disable the regulator output if no other consumer 3203 * devices have it enabled, the regulator device supports disabling and 3204 * machine constraints permit this operation. 3205 */ 3206 int regulator_disable_deferred(struct regulator *regulator, int ms) 3207 { 3208 struct regulator_dev *rdev = regulator->rdev; 3209 3210 if (!ms) 3211 return regulator_disable(regulator); 3212 3213 regulator_lock(rdev); 3214 regulator->deferred_disables++; 3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3216 msecs_to_jiffies(ms)); 3217 regulator_unlock(rdev); 3218 3219 return 0; 3220 } 3221 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3222 3223 static int _regulator_is_enabled(struct regulator_dev *rdev) 3224 { 3225 /* A GPIO control always takes precedence */ 3226 if (rdev->ena_pin) 3227 return rdev->ena_gpio_state; 3228 3229 /* If we don't know then assume that the regulator is always on */ 3230 if (!rdev->desc->ops->is_enabled) 3231 return 1; 3232 3233 return rdev->desc->ops->is_enabled(rdev); 3234 } 3235 3236 static int _regulator_list_voltage(struct regulator_dev *rdev, 3237 unsigned selector, int lock) 3238 { 3239 const struct regulator_ops *ops = rdev->desc->ops; 3240 int ret; 3241 3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3243 return rdev->desc->fixed_uV; 3244 3245 if (ops->list_voltage) { 3246 if (selector >= rdev->desc->n_voltages) 3247 return -EINVAL; 3248 if (selector < rdev->desc->linear_min_sel) 3249 return 0; 3250 if (lock) 3251 regulator_lock(rdev); 3252 ret = ops->list_voltage(rdev, selector); 3253 if (lock) 3254 regulator_unlock(rdev); 3255 } else if (rdev->is_switch && rdev->supply) { 3256 ret = _regulator_list_voltage(rdev->supply->rdev, 3257 selector, lock); 3258 } else { 3259 return -EINVAL; 3260 } 3261 3262 if (ret > 0) { 3263 if (ret < rdev->constraints->min_uV) 3264 ret = 0; 3265 else if (ret > rdev->constraints->max_uV) 3266 ret = 0; 3267 } 3268 3269 return ret; 3270 } 3271 3272 /** 3273 * regulator_is_enabled - is the regulator output enabled 3274 * @regulator: regulator source 3275 * 3276 * Returns positive if the regulator driver backing the source/client 3277 * has requested that the device be enabled, zero if it hasn't, else a 3278 * negative errno code. 3279 * 3280 * Note that the device backing this regulator handle can have multiple 3281 * users, so it might be enabled even if regulator_enable() was never 3282 * called for this particular source. 3283 */ 3284 int regulator_is_enabled(struct regulator *regulator) 3285 { 3286 int ret; 3287 3288 if (regulator->always_on) 3289 return 1; 3290 3291 regulator_lock(regulator->rdev); 3292 ret = _regulator_is_enabled(regulator->rdev); 3293 regulator_unlock(regulator->rdev); 3294 3295 return ret; 3296 } 3297 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3298 3299 /** 3300 * regulator_count_voltages - count regulator_list_voltage() selectors 3301 * @regulator: regulator source 3302 * 3303 * Returns number of selectors, or negative errno. Selectors are 3304 * numbered starting at zero, and typically correspond to bitfields 3305 * in hardware registers. 3306 */ 3307 int regulator_count_voltages(struct regulator *regulator) 3308 { 3309 struct regulator_dev *rdev = regulator->rdev; 3310 3311 if (rdev->desc->n_voltages) 3312 return rdev->desc->n_voltages; 3313 3314 if (!rdev->is_switch || !rdev->supply) 3315 return -EINVAL; 3316 3317 return regulator_count_voltages(rdev->supply); 3318 } 3319 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3320 3321 /** 3322 * regulator_list_voltage - enumerate supported voltages 3323 * @regulator: regulator source 3324 * @selector: identify voltage to list 3325 * Context: can sleep 3326 * 3327 * Returns a voltage that can be passed to @regulator_set_voltage(), 3328 * zero if this selector code can't be used on this system, or a 3329 * negative errno. 3330 */ 3331 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3332 { 3333 return _regulator_list_voltage(regulator->rdev, selector, 1); 3334 } 3335 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3336 3337 /** 3338 * regulator_get_regmap - get the regulator's register map 3339 * @regulator: regulator source 3340 * 3341 * Returns the register map for the given regulator, or an ERR_PTR value 3342 * if the regulator doesn't use regmap. 3343 */ 3344 struct regmap *regulator_get_regmap(struct regulator *regulator) 3345 { 3346 struct regmap *map = regulator->rdev->regmap; 3347 3348 return map ? map : ERR_PTR(-EOPNOTSUPP); 3349 } 3350 3351 /** 3352 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3353 * @regulator: regulator source 3354 * @vsel_reg: voltage selector register, output parameter 3355 * @vsel_mask: mask for voltage selector bitfield, output parameter 3356 * 3357 * Returns the hardware register offset and bitmask used for setting the 3358 * regulator voltage. This might be useful when configuring voltage-scaling 3359 * hardware or firmware that can make I2C requests behind the kernel's back, 3360 * for example. 3361 * 3362 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3363 * and 0 is returned, otherwise a negative errno is returned. 3364 */ 3365 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3366 unsigned *vsel_reg, 3367 unsigned *vsel_mask) 3368 { 3369 struct regulator_dev *rdev = regulator->rdev; 3370 const struct regulator_ops *ops = rdev->desc->ops; 3371 3372 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3373 return -EOPNOTSUPP; 3374 3375 *vsel_reg = rdev->desc->vsel_reg; 3376 *vsel_mask = rdev->desc->vsel_mask; 3377 3378 return 0; 3379 } 3380 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3381 3382 /** 3383 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3384 * @regulator: regulator source 3385 * @selector: identify voltage to list 3386 * 3387 * Converts the selector to a hardware-specific voltage selector that can be 3388 * directly written to the regulator registers. The address of the voltage 3389 * register can be determined by calling @regulator_get_hardware_vsel_register. 3390 * 3391 * On error a negative errno is returned. 3392 */ 3393 int regulator_list_hardware_vsel(struct regulator *regulator, 3394 unsigned selector) 3395 { 3396 struct regulator_dev *rdev = regulator->rdev; 3397 const struct regulator_ops *ops = rdev->desc->ops; 3398 3399 if (selector >= rdev->desc->n_voltages) 3400 return -EINVAL; 3401 if (selector < rdev->desc->linear_min_sel) 3402 return 0; 3403 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3404 return -EOPNOTSUPP; 3405 3406 return selector; 3407 } 3408 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3409 3410 /** 3411 * regulator_get_linear_step - return the voltage step size between VSEL values 3412 * @regulator: regulator source 3413 * 3414 * Returns the voltage step size between VSEL values for linear 3415 * regulators, or return 0 if the regulator isn't a linear regulator. 3416 */ 3417 unsigned int regulator_get_linear_step(struct regulator *regulator) 3418 { 3419 struct regulator_dev *rdev = regulator->rdev; 3420 3421 return rdev->desc->uV_step; 3422 } 3423 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3424 3425 /** 3426 * regulator_is_supported_voltage - check if a voltage range can be supported 3427 * 3428 * @regulator: Regulator to check. 3429 * @min_uV: Minimum required voltage in uV. 3430 * @max_uV: Maximum required voltage in uV. 3431 * 3432 * Returns a boolean. 3433 */ 3434 int regulator_is_supported_voltage(struct regulator *regulator, 3435 int min_uV, int max_uV) 3436 { 3437 struct regulator_dev *rdev = regulator->rdev; 3438 int i, voltages, ret; 3439 3440 /* If we can't change voltage check the current voltage */ 3441 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3442 ret = regulator_get_voltage(regulator); 3443 if (ret >= 0) 3444 return min_uV <= ret && ret <= max_uV; 3445 else 3446 return ret; 3447 } 3448 3449 /* Any voltage within constrains range is fine? */ 3450 if (rdev->desc->continuous_voltage_range) 3451 return min_uV >= rdev->constraints->min_uV && 3452 max_uV <= rdev->constraints->max_uV; 3453 3454 ret = regulator_count_voltages(regulator); 3455 if (ret < 0) 3456 return 0; 3457 voltages = ret; 3458 3459 for (i = 0; i < voltages; i++) { 3460 ret = regulator_list_voltage(regulator, i); 3461 3462 if (ret >= min_uV && ret <= max_uV) 3463 return 1; 3464 } 3465 3466 return 0; 3467 } 3468 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3469 3470 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3471 int max_uV) 3472 { 3473 const struct regulator_desc *desc = rdev->desc; 3474 3475 if (desc->ops->map_voltage) 3476 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3477 3478 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3479 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3480 3481 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3482 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3483 3484 if (desc->ops->list_voltage == 3485 regulator_list_voltage_pickable_linear_range) 3486 return regulator_map_voltage_pickable_linear_range(rdev, 3487 min_uV, max_uV); 3488 3489 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3490 } 3491 3492 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3493 int min_uV, int max_uV, 3494 unsigned *selector) 3495 { 3496 struct pre_voltage_change_data data; 3497 int ret; 3498 3499 data.old_uV = regulator_get_voltage_rdev(rdev); 3500 data.min_uV = min_uV; 3501 data.max_uV = max_uV; 3502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3503 &data); 3504 if (ret & NOTIFY_STOP_MASK) 3505 return -EINVAL; 3506 3507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3508 if (ret >= 0) 3509 return ret; 3510 3511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3512 (void *)data.old_uV); 3513 3514 return ret; 3515 } 3516 3517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3518 int uV, unsigned selector) 3519 { 3520 struct pre_voltage_change_data data; 3521 int ret; 3522 3523 data.old_uV = regulator_get_voltage_rdev(rdev); 3524 data.min_uV = uV; 3525 data.max_uV = uV; 3526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3527 &data); 3528 if (ret & NOTIFY_STOP_MASK) 3529 return -EINVAL; 3530 3531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3532 if (ret >= 0) 3533 return ret; 3534 3535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3536 (void *)data.old_uV); 3537 3538 return ret; 3539 } 3540 3541 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3542 int uV, int new_selector) 3543 { 3544 const struct regulator_ops *ops = rdev->desc->ops; 3545 int diff, old_sel, curr_sel, ret; 3546 3547 /* Stepping is only needed if the regulator is enabled. */ 3548 if (!_regulator_is_enabled(rdev)) 3549 goto final_set; 3550 3551 if (!ops->get_voltage_sel) 3552 return -EINVAL; 3553 3554 old_sel = ops->get_voltage_sel(rdev); 3555 if (old_sel < 0) 3556 return old_sel; 3557 3558 diff = new_selector - old_sel; 3559 if (diff == 0) 3560 return 0; /* No change needed. */ 3561 3562 if (diff > 0) { 3563 /* Stepping up. */ 3564 for (curr_sel = old_sel + rdev->desc->vsel_step; 3565 curr_sel < new_selector; 3566 curr_sel += rdev->desc->vsel_step) { 3567 /* 3568 * Call the callback directly instead of using 3569 * _regulator_call_set_voltage_sel() as we don't 3570 * want to notify anyone yet. Same in the branch 3571 * below. 3572 */ 3573 ret = ops->set_voltage_sel(rdev, curr_sel); 3574 if (ret) 3575 goto try_revert; 3576 } 3577 } else { 3578 /* Stepping down. */ 3579 for (curr_sel = old_sel - rdev->desc->vsel_step; 3580 curr_sel > new_selector; 3581 curr_sel -= rdev->desc->vsel_step) { 3582 ret = ops->set_voltage_sel(rdev, curr_sel); 3583 if (ret) 3584 goto try_revert; 3585 } 3586 } 3587 3588 final_set: 3589 /* The final selector will trigger the notifiers. */ 3590 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3591 3592 try_revert: 3593 /* 3594 * At least try to return to the previous voltage if setting a new 3595 * one failed. 3596 */ 3597 (void)ops->set_voltage_sel(rdev, old_sel); 3598 return ret; 3599 } 3600 3601 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3602 int old_uV, int new_uV) 3603 { 3604 unsigned int ramp_delay = 0; 3605 3606 if (rdev->constraints->ramp_delay) 3607 ramp_delay = rdev->constraints->ramp_delay; 3608 else if (rdev->desc->ramp_delay) 3609 ramp_delay = rdev->desc->ramp_delay; 3610 else if (rdev->constraints->settling_time) 3611 return rdev->constraints->settling_time; 3612 else if (rdev->constraints->settling_time_up && 3613 (new_uV > old_uV)) 3614 return rdev->constraints->settling_time_up; 3615 else if (rdev->constraints->settling_time_down && 3616 (new_uV < old_uV)) 3617 return rdev->constraints->settling_time_down; 3618 3619 if (ramp_delay == 0) 3620 return 0; 3621 3622 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3623 } 3624 3625 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3626 int min_uV, int max_uV) 3627 { 3628 int ret; 3629 int delay = 0; 3630 int best_val = 0; 3631 unsigned int selector; 3632 int old_selector = -1; 3633 const struct regulator_ops *ops = rdev->desc->ops; 3634 int old_uV = regulator_get_voltage_rdev(rdev); 3635 3636 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3637 3638 min_uV += rdev->constraints->uV_offset; 3639 max_uV += rdev->constraints->uV_offset; 3640 3641 /* 3642 * If we can't obtain the old selector there is not enough 3643 * info to call set_voltage_time_sel(). 3644 */ 3645 if (_regulator_is_enabled(rdev) && 3646 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3647 old_selector = ops->get_voltage_sel(rdev); 3648 if (old_selector < 0) 3649 return old_selector; 3650 } 3651 3652 if (ops->set_voltage) { 3653 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3654 &selector); 3655 3656 if (ret >= 0) { 3657 if (ops->list_voltage) 3658 best_val = ops->list_voltage(rdev, 3659 selector); 3660 else 3661 best_val = regulator_get_voltage_rdev(rdev); 3662 } 3663 3664 } else if (ops->set_voltage_sel) { 3665 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3666 if (ret >= 0) { 3667 best_val = ops->list_voltage(rdev, ret); 3668 if (min_uV <= best_val && max_uV >= best_val) { 3669 selector = ret; 3670 if (old_selector == selector) 3671 ret = 0; 3672 else if (rdev->desc->vsel_step) 3673 ret = _regulator_set_voltage_sel_step( 3674 rdev, best_val, selector); 3675 else 3676 ret = _regulator_call_set_voltage_sel( 3677 rdev, best_val, selector); 3678 } else { 3679 ret = -EINVAL; 3680 } 3681 } 3682 } else { 3683 ret = -EINVAL; 3684 } 3685 3686 if (ret) 3687 goto out; 3688 3689 if (ops->set_voltage_time_sel) { 3690 /* 3691 * Call set_voltage_time_sel if successfully obtained 3692 * old_selector 3693 */ 3694 if (old_selector >= 0 && old_selector != selector) 3695 delay = ops->set_voltage_time_sel(rdev, old_selector, 3696 selector); 3697 } else { 3698 if (old_uV != best_val) { 3699 if (ops->set_voltage_time) 3700 delay = ops->set_voltage_time(rdev, old_uV, 3701 best_val); 3702 else 3703 delay = _regulator_set_voltage_time(rdev, 3704 old_uV, 3705 best_val); 3706 } 3707 } 3708 3709 if (delay < 0) { 3710 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3711 delay = 0; 3712 } 3713 3714 /* Insert any necessary delays */ 3715 _regulator_delay_helper(delay); 3716 3717 if (best_val >= 0) { 3718 unsigned long data = best_val; 3719 3720 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3721 (void *)data); 3722 } 3723 3724 out: 3725 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3726 3727 return ret; 3728 } 3729 3730 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3731 int min_uV, int max_uV, suspend_state_t state) 3732 { 3733 struct regulator_state *rstate; 3734 int uV, sel; 3735 3736 rstate = regulator_get_suspend_state(rdev, state); 3737 if (rstate == NULL) 3738 return -EINVAL; 3739 3740 if (min_uV < rstate->min_uV) 3741 min_uV = rstate->min_uV; 3742 if (max_uV > rstate->max_uV) 3743 max_uV = rstate->max_uV; 3744 3745 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3746 if (sel < 0) 3747 return sel; 3748 3749 uV = rdev->desc->ops->list_voltage(rdev, sel); 3750 if (uV >= min_uV && uV <= max_uV) 3751 rstate->uV = uV; 3752 3753 return 0; 3754 } 3755 3756 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3757 int min_uV, int max_uV, 3758 suspend_state_t state) 3759 { 3760 struct regulator_dev *rdev = regulator->rdev; 3761 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3762 int ret = 0; 3763 int old_min_uV, old_max_uV; 3764 int current_uV; 3765 3766 /* If we're setting the same range as last time the change 3767 * should be a noop (some cpufreq implementations use the same 3768 * voltage for multiple frequencies, for example). 3769 */ 3770 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3771 goto out; 3772 3773 /* If we're trying to set a range that overlaps the current voltage, 3774 * return successfully even though the regulator does not support 3775 * changing the voltage. 3776 */ 3777 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3778 current_uV = regulator_get_voltage_rdev(rdev); 3779 if (min_uV <= current_uV && current_uV <= max_uV) { 3780 voltage->min_uV = min_uV; 3781 voltage->max_uV = max_uV; 3782 goto out; 3783 } 3784 } 3785 3786 /* sanity check */ 3787 if (!rdev->desc->ops->set_voltage && 3788 !rdev->desc->ops->set_voltage_sel) { 3789 ret = -EINVAL; 3790 goto out; 3791 } 3792 3793 /* constraints check */ 3794 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3795 if (ret < 0) 3796 goto out; 3797 3798 /* restore original values in case of error */ 3799 old_min_uV = voltage->min_uV; 3800 old_max_uV = voltage->max_uV; 3801 voltage->min_uV = min_uV; 3802 voltage->max_uV = max_uV; 3803 3804 /* for not coupled regulators this will just set the voltage */ 3805 ret = regulator_balance_voltage(rdev, state); 3806 if (ret < 0) { 3807 voltage->min_uV = old_min_uV; 3808 voltage->max_uV = old_max_uV; 3809 } 3810 3811 out: 3812 return ret; 3813 } 3814 3815 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3816 int max_uV, suspend_state_t state) 3817 { 3818 int best_supply_uV = 0; 3819 int supply_change_uV = 0; 3820 int ret; 3821 3822 if (rdev->supply && 3823 regulator_ops_is_valid(rdev->supply->rdev, 3824 REGULATOR_CHANGE_VOLTAGE) && 3825 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3826 rdev->desc->ops->get_voltage_sel))) { 3827 int current_supply_uV; 3828 int selector; 3829 3830 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3831 if (selector < 0) { 3832 ret = selector; 3833 goto out; 3834 } 3835 3836 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3837 if (best_supply_uV < 0) { 3838 ret = best_supply_uV; 3839 goto out; 3840 } 3841 3842 best_supply_uV += rdev->desc->min_dropout_uV; 3843 3844 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3845 if (current_supply_uV < 0) { 3846 ret = current_supply_uV; 3847 goto out; 3848 } 3849 3850 supply_change_uV = best_supply_uV - current_supply_uV; 3851 } 3852 3853 if (supply_change_uV > 0) { 3854 ret = regulator_set_voltage_unlocked(rdev->supply, 3855 best_supply_uV, INT_MAX, state); 3856 if (ret) { 3857 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3858 ERR_PTR(ret)); 3859 goto out; 3860 } 3861 } 3862 3863 if (state == PM_SUSPEND_ON) 3864 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3865 else 3866 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3867 max_uV, state); 3868 if (ret < 0) 3869 goto out; 3870 3871 if (supply_change_uV < 0) { 3872 ret = regulator_set_voltage_unlocked(rdev->supply, 3873 best_supply_uV, INT_MAX, state); 3874 if (ret) 3875 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3876 ERR_PTR(ret)); 3877 /* No need to fail here */ 3878 ret = 0; 3879 } 3880 3881 out: 3882 return ret; 3883 } 3884 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3885 3886 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3887 int *current_uV, int *min_uV) 3888 { 3889 struct regulation_constraints *constraints = rdev->constraints; 3890 3891 /* Limit voltage change only if necessary */ 3892 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3893 return 1; 3894 3895 if (*current_uV < 0) { 3896 *current_uV = regulator_get_voltage_rdev(rdev); 3897 3898 if (*current_uV < 0) 3899 return *current_uV; 3900 } 3901 3902 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3903 return 1; 3904 3905 /* Clamp target voltage within the given step */ 3906 if (*current_uV < *min_uV) 3907 *min_uV = min(*current_uV + constraints->max_uV_step, 3908 *min_uV); 3909 else 3910 *min_uV = max(*current_uV - constraints->max_uV_step, 3911 *min_uV); 3912 3913 return 0; 3914 } 3915 3916 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3917 int *current_uV, 3918 int *min_uV, int *max_uV, 3919 suspend_state_t state, 3920 int n_coupled) 3921 { 3922 struct coupling_desc *c_desc = &rdev->coupling_desc; 3923 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3924 struct regulation_constraints *constraints = rdev->constraints; 3925 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3926 int max_current_uV = 0, min_current_uV = INT_MAX; 3927 int highest_min_uV = 0, target_uV, possible_uV; 3928 int i, ret, max_spread; 3929 bool done; 3930 3931 *current_uV = -1; 3932 3933 /* 3934 * If there are no coupled regulators, simply set the voltage 3935 * demanded by consumers. 3936 */ 3937 if (n_coupled == 1) { 3938 /* 3939 * If consumers don't provide any demands, set voltage 3940 * to min_uV 3941 */ 3942 desired_min_uV = constraints->min_uV; 3943 desired_max_uV = constraints->max_uV; 3944 3945 ret = regulator_check_consumers(rdev, 3946 &desired_min_uV, 3947 &desired_max_uV, state); 3948 if (ret < 0) 3949 return ret; 3950 3951 done = true; 3952 3953 goto finish; 3954 } 3955 3956 /* Find highest min desired voltage */ 3957 for (i = 0; i < n_coupled; i++) { 3958 int tmp_min = 0; 3959 int tmp_max = INT_MAX; 3960 3961 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3962 3963 ret = regulator_check_consumers(c_rdevs[i], 3964 &tmp_min, 3965 &tmp_max, state); 3966 if (ret < 0) 3967 return ret; 3968 3969 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3970 if (ret < 0) 3971 return ret; 3972 3973 highest_min_uV = max(highest_min_uV, tmp_min); 3974 3975 if (i == 0) { 3976 desired_min_uV = tmp_min; 3977 desired_max_uV = tmp_max; 3978 } 3979 } 3980 3981 max_spread = constraints->max_spread[0]; 3982 3983 /* 3984 * Let target_uV be equal to the desired one if possible. 3985 * If not, set it to minimum voltage, allowed by other coupled 3986 * regulators. 3987 */ 3988 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3989 3990 /* 3991 * Find min and max voltages, which currently aren't violating 3992 * max_spread. 3993 */ 3994 for (i = 1; i < n_coupled; i++) { 3995 int tmp_act; 3996 3997 if (!_regulator_is_enabled(c_rdevs[i])) 3998 continue; 3999 4000 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 4001 if (tmp_act < 0) 4002 return tmp_act; 4003 4004 min_current_uV = min(tmp_act, min_current_uV); 4005 max_current_uV = max(tmp_act, max_current_uV); 4006 } 4007 4008 /* There aren't any other regulators enabled */ 4009 if (max_current_uV == 0) { 4010 possible_uV = target_uV; 4011 } else { 4012 /* 4013 * Correct target voltage, so as it currently isn't 4014 * violating max_spread 4015 */ 4016 possible_uV = max(target_uV, max_current_uV - max_spread); 4017 possible_uV = min(possible_uV, min_current_uV + max_spread); 4018 } 4019 4020 if (possible_uV > desired_max_uV) 4021 return -EINVAL; 4022 4023 done = (possible_uV == target_uV); 4024 desired_min_uV = possible_uV; 4025 4026 finish: 4027 /* Apply max_uV_step constraint if necessary */ 4028 if (state == PM_SUSPEND_ON) { 4029 ret = regulator_limit_voltage_step(rdev, current_uV, 4030 &desired_min_uV); 4031 if (ret < 0) 4032 return ret; 4033 4034 if (ret == 0) 4035 done = false; 4036 } 4037 4038 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4039 if (n_coupled > 1 && *current_uV == -1) { 4040 4041 if (_regulator_is_enabled(rdev)) { 4042 ret = regulator_get_voltage_rdev(rdev); 4043 if (ret < 0) 4044 return ret; 4045 4046 *current_uV = ret; 4047 } else { 4048 *current_uV = desired_min_uV; 4049 } 4050 } 4051 4052 *min_uV = desired_min_uV; 4053 *max_uV = desired_max_uV; 4054 4055 return done; 4056 } 4057 4058 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4059 suspend_state_t state, bool skip_coupled) 4060 { 4061 struct regulator_dev **c_rdevs; 4062 struct regulator_dev *best_rdev; 4063 struct coupling_desc *c_desc = &rdev->coupling_desc; 4064 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4065 unsigned int delta, best_delta; 4066 unsigned long c_rdev_done = 0; 4067 bool best_c_rdev_done; 4068 4069 c_rdevs = c_desc->coupled_rdevs; 4070 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4071 4072 /* 4073 * Find the best possible voltage change on each loop. Leave the loop 4074 * if there isn't any possible change. 4075 */ 4076 do { 4077 best_c_rdev_done = false; 4078 best_delta = 0; 4079 best_min_uV = 0; 4080 best_max_uV = 0; 4081 best_c_rdev = 0; 4082 best_rdev = NULL; 4083 4084 /* 4085 * Find highest difference between optimal voltage 4086 * and current voltage. 4087 */ 4088 for (i = 0; i < n_coupled; i++) { 4089 /* 4090 * optimal_uV is the best voltage that can be set for 4091 * i-th regulator at the moment without violating 4092 * max_spread constraint in order to balance 4093 * the coupled voltages. 4094 */ 4095 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4096 4097 if (test_bit(i, &c_rdev_done)) 4098 continue; 4099 4100 ret = regulator_get_optimal_voltage(c_rdevs[i], 4101 ¤t_uV, 4102 &optimal_uV, 4103 &optimal_max_uV, 4104 state, n_coupled); 4105 if (ret < 0) 4106 goto out; 4107 4108 delta = abs(optimal_uV - current_uV); 4109 4110 if (delta && best_delta <= delta) { 4111 best_c_rdev_done = ret; 4112 best_delta = delta; 4113 best_rdev = c_rdevs[i]; 4114 best_min_uV = optimal_uV; 4115 best_max_uV = optimal_max_uV; 4116 best_c_rdev = i; 4117 } 4118 } 4119 4120 /* Nothing to change, return successfully */ 4121 if (!best_rdev) { 4122 ret = 0; 4123 goto out; 4124 } 4125 4126 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4127 best_max_uV, state); 4128 4129 if (ret < 0) 4130 goto out; 4131 4132 if (best_c_rdev_done) 4133 set_bit(best_c_rdev, &c_rdev_done); 4134 4135 } while (n_coupled > 1); 4136 4137 out: 4138 return ret; 4139 } 4140 4141 static int regulator_balance_voltage(struct regulator_dev *rdev, 4142 suspend_state_t state) 4143 { 4144 struct coupling_desc *c_desc = &rdev->coupling_desc; 4145 struct regulator_coupler *coupler = c_desc->coupler; 4146 bool skip_coupled = false; 4147 4148 /* 4149 * If system is in a state other than PM_SUSPEND_ON, don't check 4150 * other coupled regulators. 4151 */ 4152 if (state != PM_SUSPEND_ON) 4153 skip_coupled = true; 4154 4155 if (c_desc->n_resolved < c_desc->n_coupled) { 4156 rdev_err(rdev, "Not all coupled regulators registered\n"); 4157 return -EPERM; 4158 } 4159 4160 /* Invoke custom balancer for customized couplers */ 4161 if (coupler && coupler->balance_voltage) 4162 return coupler->balance_voltage(coupler, rdev, state); 4163 4164 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4165 } 4166 4167 /** 4168 * regulator_set_voltage - set regulator output voltage 4169 * @regulator: regulator source 4170 * @min_uV: Minimum required voltage in uV 4171 * @max_uV: Maximum acceptable voltage in uV 4172 * 4173 * Sets a voltage regulator to the desired output voltage. This can be set 4174 * during any regulator state. IOW, regulator can be disabled or enabled. 4175 * 4176 * If the regulator is enabled then the voltage will change to the new value 4177 * immediately otherwise if the regulator is disabled the regulator will 4178 * output at the new voltage when enabled. 4179 * 4180 * NOTE: If the regulator is shared between several devices then the lowest 4181 * request voltage that meets the system constraints will be used. 4182 * Regulator system constraints must be set for this regulator before 4183 * calling this function otherwise this call will fail. 4184 */ 4185 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4186 { 4187 struct ww_acquire_ctx ww_ctx; 4188 int ret; 4189 4190 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4191 4192 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4193 PM_SUSPEND_ON); 4194 4195 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4196 4197 return ret; 4198 } 4199 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4200 4201 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4202 suspend_state_t state, bool en) 4203 { 4204 struct regulator_state *rstate; 4205 4206 rstate = regulator_get_suspend_state(rdev, state); 4207 if (rstate == NULL) 4208 return -EINVAL; 4209 4210 if (!rstate->changeable) 4211 return -EPERM; 4212 4213 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4214 4215 return 0; 4216 } 4217 4218 int regulator_suspend_enable(struct regulator_dev *rdev, 4219 suspend_state_t state) 4220 { 4221 return regulator_suspend_toggle(rdev, state, true); 4222 } 4223 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4224 4225 int regulator_suspend_disable(struct regulator_dev *rdev, 4226 suspend_state_t state) 4227 { 4228 struct regulator *regulator; 4229 struct regulator_voltage *voltage; 4230 4231 /* 4232 * if any consumer wants this regulator device keeping on in 4233 * suspend states, don't set it as disabled. 4234 */ 4235 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4236 voltage = ®ulator->voltage[state]; 4237 if (voltage->min_uV || voltage->max_uV) 4238 return 0; 4239 } 4240 4241 return regulator_suspend_toggle(rdev, state, false); 4242 } 4243 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4244 4245 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4246 int min_uV, int max_uV, 4247 suspend_state_t state) 4248 { 4249 struct regulator_dev *rdev = regulator->rdev; 4250 struct regulator_state *rstate; 4251 4252 rstate = regulator_get_suspend_state(rdev, state); 4253 if (rstate == NULL) 4254 return -EINVAL; 4255 4256 if (rstate->min_uV == rstate->max_uV) { 4257 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4258 return -EPERM; 4259 } 4260 4261 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4262 } 4263 4264 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4265 int max_uV, suspend_state_t state) 4266 { 4267 struct ww_acquire_ctx ww_ctx; 4268 int ret; 4269 4270 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4271 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4272 return -EINVAL; 4273 4274 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4275 4276 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4277 max_uV, state); 4278 4279 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4280 4281 return ret; 4282 } 4283 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4284 4285 /** 4286 * regulator_set_voltage_time - get raise/fall time 4287 * @regulator: regulator source 4288 * @old_uV: starting voltage in microvolts 4289 * @new_uV: target voltage in microvolts 4290 * 4291 * Provided with the starting and ending voltage, this function attempts to 4292 * calculate the time in microseconds required to rise or fall to this new 4293 * voltage. 4294 */ 4295 int regulator_set_voltage_time(struct regulator *regulator, 4296 int old_uV, int new_uV) 4297 { 4298 struct regulator_dev *rdev = regulator->rdev; 4299 const struct regulator_ops *ops = rdev->desc->ops; 4300 int old_sel = -1; 4301 int new_sel = -1; 4302 int voltage; 4303 int i; 4304 4305 if (ops->set_voltage_time) 4306 return ops->set_voltage_time(rdev, old_uV, new_uV); 4307 else if (!ops->set_voltage_time_sel) 4308 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4309 4310 /* Currently requires operations to do this */ 4311 if (!ops->list_voltage || !rdev->desc->n_voltages) 4312 return -EINVAL; 4313 4314 for (i = 0; i < rdev->desc->n_voltages; i++) { 4315 /* We only look for exact voltage matches here */ 4316 if (i < rdev->desc->linear_min_sel) 4317 continue; 4318 4319 if (old_sel >= 0 && new_sel >= 0) 4320 break; 4321 4322 voltage = regulator_list_voltage(regulator, i); 4323 if (voltage < 0) 4324 return -EINVAL; 4325 if (voltage == 0) 4326 continue; 4327 if (voltage == old_uV) 4328 old_sel = i; 4329 if (voltage == new_uV) 4330 new_sel = i; 4331 } 4332 4333 if (old_sel < 0 || new_sel < 0) 4334 return -EINVAL; 4335 4336 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4337 } 4338 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4339 4340 /** 4341 * regulator_set_voltage_time_sel - get raise/fall time 4342 * @rdev: regulator source device 4343 * @old_selector: selector for starting voltage 4344 * @new_selector: selector for target voltage 4345 * 4346 * Provided with the starting and target voltage selectors, this function 4347 * returns time in microseconds required to rise or fall to this new voltage 4348 * 4349 * Drivers providing ramp_delay in regulation_constraints can use this as their 4350 * set_voltage_time_sel() operation. 4351 */ 4352 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4353 unsigned int old_selector, 4354 unsigned int new_selector) 4355 { 4356 int old_volt, new_volt; 4357 4358 /* sanity check */ 4359 if (!rdev->desc->ops->list_voltage) 4360 return -EINVAL; 4361 4362 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4363 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4364 4365 if (rdev->desc->ops->set_voltage_time) 4366 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4367 new_volt); 4368 else 4369 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4370 } 4371 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4372 4373 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4374 { 4375 int ret; 4376 4377 regulator_lock(rdev); 4378 4379 if (!rdev->desc->ops->set_voltage && 4380 !rdev->desc->ops->set_voltage_sel) { 4381 ret = -EINVAL; 4382 goto out; 4383 } 4384 4385 /* balance only, if regulator is coupled */ 4386 if (rdev->coupling_desc.n_coupled > 1) 4387 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4388 else 4389 ret = -EOPNOTSUPP; 4390 4391 out: 4392 regulator_unlock(rdev); 4393 return ret; 4394 } 4395 4396 /** 4397 * regulator_sync_voltage - re-apply last regulator output voltage 4398 * @regulator: regulator source 4399 * 4400 * Re-apply the last configured voltage. This is intended to be used 4401 * where some external control source the consumer is cooperating with 4402 * has caused the configured voltage to change. 4403 */ 4404 int regulator_sync_voltage(struct regulator *regulator) 4405 { 4406 struct regulator_dev *rdev = regulator->rdev; 4407 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4408 int ret, min_uV, max_uV; 4409 4410 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4411 return 0; 4412 4413 regulator_lock(rdev); 4414 4415 if (!rdev->desc->ops->set_voltage && 4416 !rdev->desc->ops->set_voltage_sel) { 4417 ret = -EINVAL; 4418 goto out; 4419 } 4420 4421 /* This is only going to work if we've had a voltage configured. */ 4422 if (!voltage->min_uV && !voltage->max_uV) { 4423 ret = -EINVAL; 4424 goto out; 4425 } 4426 4427 min_uV = voltage->min_uV; 4428 max_uV = voltage->max_uV; 4429 4430 /* This should be a paranoia check... */ 4431 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4432 if (ret < 0) 4433 goto out; 4434 4435 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4436 if (ret < 0) 4437 goto out; 4438 4439 /* balance only, if regulator is coupled */ 4440 if (rdev->coupling_desc.n_coupled > 1) 4441 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4442 else 4443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4444 4445 out: 4446 regulator_unlock(rdev); 4447 return ret; 4448 } 4449 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4450 4451 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4452 { 4453 int sel, ret; 4454 bool bypassed; 4455 4456 if (rdev->desc->ops->get_bypass) { 4457 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4458 if (ret < 0) 4459 return ret; 4460 if (bypassed) { 4461 /* if bypassed the regulator must have a supply */ 4462 if (!rdev->supply) { 4463 rdev_err(rdev, 4464 "bypassed regulator has no supply!\n"); 4465 return -EPROBE_DEFER; 4466 } 4467 4468 return regulator_get_voltage_rdev(rdev->supply->rdev); 4469 } 4470 } 4471 4472 if (rdev->desc->ops->get_voltage_sel) { 4473 sel = rdev->desc->ops->get_voltage_sel(rdev); 4474 if (sel < 0) 4475 return sel; 4476 ret = rdev->desc->ops->list_voltage(rdev, sel); 4477 } else if (rdev->desc->ops->get_voltage) { 4478 ret = rdev->desc->ops->get_voltage(rdev); 4479 } else if (rdev->desc->ops->list_voltage) { 4480 ret = rdev->desc->ops->list_voltage(rdev, 0); 4481 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4482 ret = rdev->desc->fixed_uV; 4483 } else if (rdev->supply) { 4484 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4485 } else if (rdev->supply_name) { 4486 return -EPROBE_DEFER; 4487 } else { 4488 return -EINVAL; 4489 } 4490 4491 if (ret < 0) 4492 return ret; 4493 return ret - rdev->constraints->uV_offset; 4494 } 4495 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4496 4497 /** 4498 * regulator_get_voltage - get regulator output voltage 4499 * @regulator: regulator source 4500 * 4501 * This returns the current regulator voltage in uV. 4502 * 4503 * NOTE: If the regulator is disabled it will return the voltage value. This 4504 * function should not be used to determine regulator state. 4505 */ 4506 int regulator_get_voltage(struct regulator *regulator) 4507 { 4508 struct ww_acquire_ctx ww_ctx; 4509 int ret; 4510 4511 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4512 ret = regulator_get_voltage_rdev(regulator->rdev); 4513 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4514 4515 return ret; 4516 } 4517 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4518 4519 /** 4520 * regulator_set_current_limit - set regulator output current limit 4521 * @regulator: regulator source 4522 * @min_uA: Minimum supported current in uA 4523 * @max_uA: Maximum supported current in uA 4524 * 4525 * Sets current sink to the desired output current. This can be set during 4526 * any regulator state. IOW, regulator can be disabled or enabled. 4527 * 4528 * If the regulator is enabled then the current will change to the new value 4529 * immediately otherwise if the regulator is disabled the regulator will 4530 * output at the new current when enabled. 4531 * 4532 * NOTE: Regulator system constraints must be set for this regulator before 4533 * calling this function otherwise this call will fail. 4534 */ 4535 int regulator_set_current_limit(struct regulator *regulator, 4536 int min_uA, int max_uA) 4537 { 4538 struct regulator_dev *rdev = regulator->rdev; 4539 int ret; 4540 4541 regulator_lock(rdev); 4542 4543 /* sanity check */ 4544 if (!rdev->desc->ops->set_current_limit) { 4545 ret = -EINVAL; 4546 goto out; 4547 } 4548 4549 /* constraints check */ 4550 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4551 if (ret < 0) 4552 goto out; 4553 4554 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4555 out: 4556 regulator_unlock(rdev); 4557 return ret; 4558 } 4559 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4560 4561 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4562 { 4563 /* sanity check */ 4564 if (!rdev->desc->ops->get_current_limit) 4565 return -EINVAL; 4566 4567 return rdev->desc->ops->get_current_limit(rdev); 4568 } 4569 4570 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4571 { 4572 int ret; 4573 4574 regulator_lock(rdev); 4575 ret = _regulator_get_current_limit_unlocked(rdev); 4576 regulator_unlock(rdev); 4577 4578 return ret; 4579 } 4580 4581 /** 4582 * regulator_get_current_limit - get regulator output current 4583 * @regulator: regulator source 4584 * 4585 * This returns the current supplied by the specified current sink in uA. 4586 * 4587 * NOTE: If the regulator is disabled it will return the current value. This 4588 * function should not be used to determine regulator state. 4589 */ 4590 int regulator_get_current_limit(struct regulator *regulator) 4591 { 4592 return _regulator_get_current_limit(regulator->rdev); 4593 } 4594 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4595 4596 /** 4597 * regulator_set_mode - set regulator operating mode 4598 * @regulator: regulator source 4599 * @mode: operating mode - one of the REGULATOR_MODE constants 4600 * 4601 * Set regulator operating mode to increase regulator efficiency or improve 4602 * regulation performance. 4603 * 4604 * NOTE: Regulator system constraints must be set for this regulator before 4605 * calling this function otherwise this call will fail. 4606 */ 4607 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4608 { 4609 struct regulator_dev *rdev = regulator->rdev; 4610 int ret; 4611 int regulator_curr_mode; 4612 4613 regulator_lock(rdev); 4614 4615 /* sanity check */ 4616 if (!rdev->desc->ops->set_mode) { 4617 ret = -EINVAL; 4618 goto out; 4619 } 4620 4621 /* return if the same mode is requested */ 4622 if (rdev->desc->ops->get_mode) { 4623 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4624 if (regulator_curr_mode == mode) { 4625 ret = 0; 4626 goto out; 4627 } 4628 } 4629 4630 /* constraints check */ 4631 ret = regulator_mode_constrain(rdev, &mode); 4632 if (ret < 0) 4633 goto out; 4634 4635 ret = rdev->desc->ops->set_mode(rdev, mode); 4636 out: 4637 regulator_unlock(rdev); 4638 return ret; 4639 } 4640 EXPORT_SYMBOL_GPL(regulator_set_mode); 4641 4642 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4643 { 4644 /* sanity check */ 4645 if (!rdev->desc->ops->get_mode) 4646 return -EINVAL; 4647 4648 return rdev->desc->ops->get_mode(rdev); 4649 } 4650 4651 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4652 { 4653 int ret; 4654 4655 regulator_lock(rdev); 4656 ret = _regulator_get_mode_unlocked(rdev); 4657 regulator_unlock(rdev); 4658 4659 return ret; 4660 } 4661 4662 /** 4663 * regulator_get_mode - get regulator operating mode 4664 * @regulator: regulator source 4665 * 4666 * Get the current regulator operating mode. 4667 */ 4668 unsigned int regulator_get_mode(struct regulator *regulator) 4669 { 4670 return _regulator_get_mode(regulator->rdev); 4671 } 4672 EXPORT_SYMBOL_GPL(regulator_get_mode); 4673 4674 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4675 { 4676 int ret = 0; 4677 4678 if (rdev->use_cached_err) { 4679 spin_lock(&rdev->err_lock); 4680 ret = rdev->cached_err; 4681 spin_unlock(&rdev->err_lock); 4682 } 4683 return ret; 4684 } 4685 4686 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4687 unsigned int *flags) 4688 { 4689 int cached_flags, ret = 0; 4690 4691 regulator_lock(rdev); 4692 4693 cached_flags = rdev_get_cached_err_flags(rdev); 4694 4695 if (rdev->desc->ops->get_error_flags) 4696 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4697 else if (!rdev->use_cached_err) 4698 ret = -EINVAL; 4699 4700 *flags |= cached_flags; 4701 4702 regulator_unlock(rdev); 4703 4704 return ret; 4705 } 4706 4707 /** 4708 * regulator_get_error_flags - get regulator error information 4709 * @regulator: regulator source 4710 * @flags: pointer to store error flags 4711 * 4712 * Get the current regulator error information. 4713 */ 4714 int regulator_get_error_flags(struct regulator *regulator, 4715 unsigned int *flags) 4716 { 4717 return _regulator_get_error_flags(regulator->rdev, flags); 4718 } 4719 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4720 4721 /** 4722 * regulator_set_load - set regulator load 4723 * @regulator: regulator source 4724 * @uA_load: load current 4725 * 4726 * Notifies the regulator core of a new device load. This is then used by 4727 * DRMS (if enabled by constraints) to set the most efficient regulator 4728 * operating mode for the new regulator loading. 4729 * 4730 * Consumer devices notify their supply regulator of the maximum power 4731 * they will require (can be taken from device datasheet in the power 4732 * consumption tables) when they change operational status and hence power 4733 * state. Examples of operational state changes that can affect power 4734 * consumption are :- 4735 * 4736 * o Device is opened / closed. 4737 * o Device I/O is about to begin or has just finished. 4738 * o Device is idling in between work. 4739 * 4740 * This information is also exported via sysfs to userspace. 4741 * 4742 * DRMS will sum the total requested load on the regulator and change 4743 * to the most efficient operating mode if platform constraints allow. 4744 * 4745 * NOTE: when a regulator consumer requests to have a regulator 4746 * disabled then any load that consumer requested no longer counts 4747 * toward the total requested load. If the regulator is re-enabled 4748 * then the previously requested load will start counting again. 4749 * 4750 * If a regulator is an always-on regulator then an individual consumer's 4751 * load will still be removed if that consumer is fully disabled. 4752 * 4753 * On error a negative errno is returned. 4754 */ 4755 int regulator_set_load(struct regulator *regulator, int uA_load) 4756 { 4757 struct regulator_dev *rdev = regulator->rdev; 4758 int old_uA_load; 4759 int ret = 0; 4760 4761 regulator_lock(rdev); 4762 old_uA_load = regulator->uA_load; 4763 regulator->uA_load = uA_load; 4764 if (regulator->enable_count && old_uA_load != uA_load) { 4765 ret = drms_uA_update(rdev); 4766 if (ret < 0) 4767 regulator->uA_load = old_uA_load; 4768 } 4769 regulator_unlock(rdev); 4770 4771 return ret; 4772 } 4773 EXPORT_SYMBOL_GPL(regulator_set_load); 4774 4775 /** 4776 * regulator_allow_bypass - allow the regulator to go into bypass mode 4777 * 4778 * @regulator: Regulator to configure 4779 * @enable: enable or disable bypass mode 4780 * 4781 * Allow the regulator to go into bypass mode if all other consumers 4782 * for the regulator also enable bypass mode and the machine 4783 * constraints allow this. Bypass mode means that the regulator is 4784 * simply passing the input directly to the output with no regulation. 4785 */ 4786 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4787 { 4788 struct regulator_dev *rdev = regulator->rdev; 4789 const char *name = rdev_get_name(rdev); 4790 int ret = 0; 4791 4792 if (!rdev->desc->ops->set_bypass) 4793 return 0; 4794 4795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4796 return 0; 4797 4798 regulator_lock(rdev); 4799 4800 if (enable && !regulator->bypass) { 4801 rdev->bypass_count++; 4802 4803 if (rdev->bypass_count == rdev->open_count) { 4804 trace_regulator_bypass_enable(name); 4805 4806 ret = rdev->desc->ops->set_bypass(rdev, enable); 4807 if (ret != 0) 4808 rdev->bypass_count--; 4809 else 4810 trace_regulator_bypass_enable_complete(name); 4811 } 4812 4813 } else if (!enable && regulator->bypass) { 4814 rdev->bypass_count--; 4815 4816 if (rdev->bypass_count != rdev->open_count) { 4817 trace_regulator_bypass_disable(name); 4818 4819 ret = rdev->desc->ops->set_bypass(rdev, enable); 4820 if (ret != 0) 4821 rdev->bypass_count++; 4822 else 4823 trace_regulator_bypass_disable_complete(name); 4824 } 4825 } 4826 4827 if (ret == 0) 4828 regulator->bypass = enable; 4829 4830 regulator_unlock(rdev); 4831 4832 return ret; 4833 } 4834 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4835 4836 /** 4837 * regulator_register_notifier - register regulator event notifier 4838 * @regulator: regulator source 4839 * @nb: notifier block 4840 * 4841 * Register notifier block to receive regulator events. 4842 */ 4843 int regulator_register_notifier(struct regulator *regulator, 4844 struct notifier_block *nb) 4845 { 4846 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4847 nb); 4848 } 4849 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4850 4851 /** 4852 * regulator_unregister_notifier - unregister regulator event notifier 4853 * @regulator: regulator source 4854 * @nb: notifier block 4855 * 4856 * Unregister regulator event notifier block. 4857 */ 4858 int regulator_unregister_notifier(struct regulator *regulator, 4859 struct notifier_block *nb) 4860 { 4861 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4862 nb); 4863 } 4864 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4865 4866 /* notify regulator consumers and downstream regulator consumers. 4867 * Note mutex must be held by caller. 4868 */ 4869 static int _notifier_call_chain(struct regulator_dev *rdev, 4870 unsigned long event, void *data) 4871 { 4872 /* call rdev chain first */ 4873 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 4874 4875 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 4876 struct device *parent = rdev->dev.parent; 4877 const char *rname = rdev_get_name(rdev); 4878 char name[32]; 4879 4880 /* Avoid duplicate debugfs directory names */ 4881 if (parent && rname == rdev->desc->name) { 4882 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4883 rname); 4884 rname = name; 4885 } 4886 reg_generate_netlink_event(rname, event); 4887 } 4888 4889 return ret; 4890 } 4891 4892 int _regulator_bulk_get(struct device *dev, int num_consumers, 4893 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4894 { 4895 int i; 4896 int ret; 4897 4898 for (i = 0; i < num_consumers; i++) 4899 consumers[i].consumer = NULL; 4900 4901 for (i = 0; i < num_consumers; i++) { 4902 consumers[i].consumer = _regulator_get(dev, 4903 consumers[i].supply, get_type); 4904 if (IS_ERR(consumers[i].consumer)) { 4905 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4906 "Failed to get supply '%s'", 4907 consumers[i].supply); 4908 consumers[i].consumer = NULL; 4909 goto err; 4910 } 4911 4912 if (consumers[i].init_load_uA > 0) { 4913 ret = regulator_set_load(consumers[i].consumer, 4914 consumers[i].init_load_uA); 4915 if (ret) { 4916 i++; 4917 goto err; 4918 } 4919 } 4920 } 4921 4922 return 0; 4923 4924 err: 4925 while (--i >= 0) 4926 regulator_put(consumers[i].consumer); 4927 4928 return ret; 4929 } 4930 4931 /** 4932 * regulator_bulk_get - get multiple regulator consumers 4933 * 4934 * @dev: Device to supply 4935 * @num_consumers: Number of consumers to register 4936 * @consumers: Configuration of consumers; clients are stored here. 4937 * 4938 * @return 0 on success, an errno on failure. 4939 * 4940 * This helper function allows drivers to get several regulator 4941 * consumers in one operation. If any of the regulators cannot be 4942 * acquired then any regulators that were allocated will be freed 4943 * before returning to the caller. 4944 */ 4945 int regulator_bulk_get(struct device *dev, int num_consumers, 4946 struct regulator_bulk_data *consumers) 4947 { 4948 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4949 } 4950 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4951 4952 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4953 { 4954 struct regulator_bulk_data *bulk = data; 4955 4956 bulk->ret = regulator_enable(bulk->consumer); 4957 } 4958 4959 /** 4960 * regulator_bulk_enable - enable multiple regulator consumers 4961 * 4962 * @num_consumers: Number of consumers 4963 * @consumers: Consumer data; clients are stored here. 4964 * @return 0 on success, an errno on failure 4965 * 4966 * This convenience API allows consumers to enable multiple regulator 4967 * clients in a single API call. If any consumers cannot be enabled 4968 * then any others that were enabled will be disabled again prior to 4969 * return. 4970 */ 4971 int regulator_bulk_enable(int num_consumers, 4972 struct regulator_bulk_data *consumers) 4973 { 4974 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4975 int i; 4976 int ret = 0; 4977 4978 for (i = 0; i < num_consumers; i++) { 4979 async_schedule_domain(regulator_bulk_enable_async, 4980 &consumers[i], &async_domain); 4981 } 4982 4983 async_synchronize_full_domain(&async_domain); 4984 4985 /* If any consumer failed we need to unwind any that succeeded */ 4986 for (i = 0; i < num_consumers; i++) { 4987 if (consumers[i].ret != 0) { 4988 ret = consumers[i].ret; 4989 goto err; 4990 } 4991 } 4992 4993 return 0; 4994 4995 err: 4996 for (i = 0; i < num_consumers; i++) { 4997 if (consumers[i].ret < 0) 4998 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4999 ERR_PTR(consumers[i].ret)); 5000 else 5001 regulator_disable(consumers[i].consumer); 5002 } 5003 5004 return ret; 5005 } 5006 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 5007 5008 /** 5009 * regulator_bulk_disable - disable multiple regulator consumers 5010 * 5011 * @num_consumers: Number of consumers 5012 * @consumers: Consumer data; clients are stored here. 5013 * @return 0 on success, an errno on failure 5014 * 5015 * This convenience API allows consumers to disable multiple regulator 5016 * clients in a single API call. If any consumers cannot be disabled 5017 * then any others that were disabled will be enabled again prior to 5018 * return. 5019 */ 5020 int regulator_bulk_disable(int num_consumers, 5021 struct regulator_bulk_data *consumers) 5022 { 5023 int i; 5024 int ret, r; 5025 5026 for (i = num_consumers - 1; i >= 0; --i) { 5027 ret = regulator_disable(consumers[i].consumer); 5028 if (ret != 0) 5029 goto err; 5030 } 5031 5032 return 0; 5033 5034 err: 5035 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5036 for (++i; i < num_consumers; ++i) { 5037 r = regulator_enable(consumers[i].consumer); 5038 if (r != 0) 5039 pr_err("Failed to re-enable %s: %pe\n", 5040 consumers[i].supply, ERR_PTR(r)); 5041 } 5042 5043 return ret; 5044 } 5045 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5046 5047 /** 5048 * regulator_bulk_force_disable - force disable multiple regulator consumers 5049 * 5050 * @num_consumers: Number of consumers 5051 * @consumers: Consumer data; clients are stored here. 5052 * @return 0 on success, an errno on failure 5053 * 5054 * This convenience API allows consumers to forcibly disable multiple regulator 5055 * clients in a single API call. 5056 * NOTE: This should be used for situations when device damage will 5057 * likely occur if the regulators are not disabled (e.g. over temp). 5058 * Although regulator_force_disable function call for some consumers can 5059 * return error numbers, the function is called for all consumers. 5060 */ 5061 int regulator_bulk_force_disable(int num_consumers, 5062 struct regulator_bulk_data *consumers) 5063 { 5064 int i; 5065 int ret = 0; 5066 5067 for (i = 0; i < num_consumers; i++) { 5068 consumers[i].ret = 5069 regulator_force_disable(consumers[i].consumer); 5070 5071 /* Store first error for reporting */ 5072 if (consumers[i].ret && !ret) 5073 ret = consumers[i].ret; 5074 } 5075 5076 return ret; 5077 } 5078 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5079 5080 /** 5081 * regulator_bulk_free - free multiple regulator consumers 5082 * 5083 * @num_consumers: Number of consumers 5084 * @consumers: Consumer data; clients are stored here. 5085 * 5086 * This convenience API allows consumers to free multiple regulator 5087 * clients in a single API call. 5088 */ 5089 void regulator_bulk_free(int num_consumers, 5090 struct regulator_bulk_data *consumers) 5091 { 5092 int i; 5093 5094 for (i = 0; i < num_consumers; i++) { 5095 regulator_put(consumers[i].consumer); 5096 consumers[i].consumer = NULL; 5097 } 5098 } 5099 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5100 5101 /** 5102 * regulator_handle_critical - Handle events for system-critical regulators. 5103 * @rdev: The regulator device. 5104 * @event: The event being handled. 5105 * 5106 * This function handles critical events such as under-voltage, over-current, 5107 * and unknown errors for regulators deemed system-critical. On detecting such 5108 * events, it triggers a hardware protection shutdown with a defined timeout. 5109 */ 5110 static void regulator_handle_critical(struct regulator_dev *rdev, 5111 unsigned long event) 5112 { 5113 const char *reason = NULL; 5114 5115 if (!rdev->constraints->system_critical) 5116 return; 5117 5118 switch (event) { 5119 case REGULATOR_EVENT_UNDER_VOLTAGE: 5120 reason = "System critical regulator: voltage drop detected"; 5121 break; 5122 case REGULATOR_EVENT_OVER_CURRENT: 5123 reason = "System critical regulator: over-current detected"; 5124 break; 5125 case REGULATOR_EVENT_FAIL: 5126 reason = "System critical regulator: unknown error"; 5127 } 5128 5129 if (!reason) 5130 return; 5131 5132 hw_protection_shutdown(reason, 5133 rdev->constraints->uv_less_critical_window_ms); 5134 } 5135 5136 /** 5137 * regulator_notifier_call_chain - call regulator event notifier 5138 * @rdev: regulator source 5139 * @event: notifier block 5140 * @data: callback-specific data. 5141 * 5142 * Called by regulator drivers to notify clients a regulator event has 5143 * occurred. 5144 */ 5145 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5146 unsigned long event, void *data) 5147 { 5148 regulator_handle_critical(rdev, event); 5149 5150 _notifier_call_chain(rdev, event, data); 5151 return NOTIFY_DONE; 5152 5153 } 5154 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5155 5156 /** 5157 * regulator_mode_to_status - convert a regulator mode into a status 5158 * 5159 * @mode: Mode to convert 5160 * 5161 * Convert a regulator mode into a status. 5162 */ 5163 int regulator_mode_to_status(unsigned int mode) 5164 { 5165 switch (mode) { 5166 case REGULATOR_MODE_FAST: 5167 return REGULATOR_STATUS_FAST; 5168 case REGULATOR_MODE_NORMAL: 5169 return REGULATOR_STATUS_NORMAL; 5170 case REGULATOR_MODE_IDLE: 5171 return REGULATOR_STATUS_IDLE; 5172 case REGULATOR_MODE_STANDBY: 5173 return REGULATOR_STATUS_STANDBY; 5174 default: 5175 return REGULATOR_STATUS_UNDEFINED; 5176 } 5177 } 5178 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5179 5180 static struct attribute *regulator_dev_attrs[] = { 5181 &dev_attr_name.attr, 5182 &dev_attr_num_users.attr, 5183 &dev_attr_type.attr, 5184 &dev_attr_microvolts.attr, 5185 &dev_attr_microamps.attr, 5186 &dev_attr_opmode.attr, 5187 &dev_attr_state.attr, 5188 &dev_attr_status.attr, 5189 &dev_attr_bypass.attr, 5190 &dev_attr_requested_microamps.attr, 5191 &dev_attr_min_microvolts.attr, 5192 &dev_attr_max_microvolts.attr, 5193 &dev_attr_min_microamps.attr, 5194 &dev_attr_max_microamps.attr, 5195 &dev_attr_under_voltage.attr, 5196 &dev_attr_over_current.attr, 5197 &dev_attr_regulation_out.attr, 5198 &dev_attr_fail.attr, 5199 &dev_attr_over_temp.attr, 5200 &dev_attr_under_voltage_warn.attr, 5201 &dev_attr_over_current_warn.attr, 5202 &dev_attr_over_voltage_warn.attr, 5203 &dev_attr_over_temp_warn.attr, 5204 &dev_attr_suspend_standby_state.attr, 5205 &dev_attr_suspend_mem_state.attr, 5206 &dev_attr_suspend_disk_state.attr, 5207 &dev_attr_suspend_standby_microvolts.attr, 5208 &dev_attr_suspend_mem_microvolts.attr, 5209 &dev_attr_suspend_disk_microvolts.attr, 5210 &dev_attr_suspend_standby_mode.attr, 5211 &dev_attr_suspend_mem_mode.attr, 5212 &dev_attr_suspend_disk_mode.attr, 5213 NULL 5214 }; 5215 5216 /* 5217 * To avoid cluttering sysfs (and memory) with useless state, only 5218 * create attributes that can be meaningfully displayed. 5219 */ 5220 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5221 struct attribute *attr, int idx) 5222 { 5223 struct device *dev = kobj_to_dev(kobj); 5224 struct regulator_dev *rdev = dev_to_rdev(dev); 5225 const struct regulator_ops *ops = rdev->desc->ops; 5226 umode_t mode = attr->mode; 5227 5228 /* these three are always present */ 5229 if (attr == &dev_attr_name.attr || 5230 attr == &dev_attr_num_users.attr || 5231 attr == &dev_attr_type.attr) 5232 return mode; 5233 5234 /* some attributes need specific methods to be displayed */ 5235 if (attr == &dev_attr_microvolts.attr) { 5236 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5237 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5238 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5239 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5240 return mode; 5241 return 0; 5242 } 5243 5244 if (attr == &dev_attr_microamps.attr) 5245 return ops->get_current_limit ? mode : 0; 5246 5247 if (attr == &dev_attr_opmode.attr) 5248 return ops->get_mode ? mode : 0; 5249 5250 if (attr == &dev_attr_state.attr) 5251 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5252 5253 if (attr == &dev_attr_status.attr) 5254 return ops->get_status ? mode : 0; 5255 5256 if (attr == &dev_attr_bypass.attr) 5257 return ops->get_bypass ? mode : 0; 5258 5259 if (attr == &dev_attr_under_voltage.attr || 5260 attr == &dev_attr_over_current.attr || 5261 attr == &dev_attr_regulation_out.attr || 5262 attr == &dev_attr_fail.attr || 5263 attr == &dev_attr_over_temp.attr || 5264 attr == &dev_attr_under_voltage_warn.attr || 5265 attr == &dev_attr_over_current_warn.attr || 5266 attr == &dev_attr_over_voltage_warn.attr || 5267 attr == &dev_attr_over_temp_warn.attr) 5268 return ops->get_error_flags ? mode : 0; 5269 5270 /* constraints need specific supporting methods */ 5271 if (attr == &dev_attr_min_microvolts.attr || 5272 attr == &dev_attr_max_microvolts.attr) 5273 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5274 5275 if (attr == &dev_attr_min_microamps.attr || 5276 attr == &dev_attr_max_microamps.attr) 5277 return ops->set_current_limit ? mode : 0; 5278 5279 if (attr == &dev_attr_suspend_standby_state.attr || 5280 attr == &dev_attr_suspend_mem_state.attr || 5281 attr == &dev_attr_suspend_disk_state.attr) 5282 return mode; 5283 5284 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5285 attr == &dev_attr_suspend_mem_microvolts.attr || 5286 attr == &dev_attr_suspend_disk_microvolts.attr) 5287 return ops->set_suspend_voltage ? mode : 0; 5288 5289 if (attr == &dev_attr_suspend_standby_mode.attr || 5290 attr == &dev_attr_suspend_mem_mode.attr || 5291 attr == &dev_attr_suspend_disk_mode.attr) 5292 return ops->set_suspend_mode ? mode : 0; 5293 5294 return mode; 5295 } 5296 5297 static const struct attribute_group regulator_dev_group = { 5298 .attrs = regulator_dev_attrs, 5299 .is_visible = regulator_attr_is_visible, 5300 }; 5301 5302 static const struct attribute_group *regulator_dev_groups[] = { 5303 ®ulator_dev_group, 5304 NULL 5305 }; 5306 5307 static void regulator_dev_release(struct device *dev) 5308 { 5309 struct regulator_dev *rdev = dev_get_drvdata(dev); 5310 5311 debugfs_remove_recursive(rdev->debugfs); 5312 kfree(rdev->constraints); 5313 of_node_put(rdev->dev.of_node); 5314 kfree(rdev); 5315 } 5316 5317 static void rdev_init_debugfs(struct regulator_dev *rdev) 5318 { 5319 struct device *parent = rdev->dev.parent; 5320 const char *rname = rdev_get_name(rdev); 5321 char name[NAME_MAX]; 5322 5323 /* Avoid duplicate debugfs directory names */ 5324 if (parent && rname == rdev->desc->name) { 5325 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5326 rname); 5327 rname = name; 5328 } 5329 5330 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5331 if (IS_ERR(rdev->debugfs)) 5332 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5333 5334 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5335 &rdev->use_count); 5336 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5337 &rdev->open_count); 5338 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5339 &rdev->bypass_count); 5340 } 5341 5342 static int regulator_register_resolve_supply(struct device *dev, void *data) 5343 { 5344 struct regulator_dev *rdev = dev_to_rdev(dev); 5345 5346 if (regulator_resolve_supply(rdev)) 5347 rdev_dbg(rdev, "unable to resolve supply\n"); 5348 5349 return 0; 5350 } 5351 5352 int regulator_coupler_register(struct regulator_coupler *coupler) 5353 { 5354 mutex_lock(®ulator_list_mutex); 5355 list_add_tail(&coupler->list, ®ulator_coupler_list); 5356 mutex_unlock(®ulator_list_mutex); 5357 5358 return 0; 5359 } 5360 5361 static struct regulator_coupler * 5362 regulator_find_coupler(struct regulator_dev *rdev) 5363 { 5364 struct regulator_coupler *coupler; 5365 int err; 5366 5367 /* 5368 * Note that regulators are appended to the list and the generic 5369 * coupler is registered first, hence it will be attached at last 5370 * if nobody cared. 5371 */ 5372 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5373 err = coupler->attach_regulator(coupler, rdev); 5374 if (!err) { 5375 if (!coupler->balance_voltage && 5376 rdev->coupling_desc.n_coupled > 2) 5377 goto err_unsupported; 5378 5379 return coupler; 5380 } 5381 5382 if (err < 0) 5383 return ERR_PTR(err); 5384 5385 if (err == 1) 5386 continue; 5387 5388 break; 5389 } 5390 5391 return ERR_PTR(-EINVAL); 5392 5393 err_unsupported: 5394 if (coupler->detach_regulator) 5395 coupler->detach_regulator(coupler, rdev); 5396 5397 rdev_err(rdev, 5398 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5399 5400 return ERR_PTR(-EPERM); 5401 } 5402 5403 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5404 { 5405 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5406 struct coupling_desc *c_desc = &rdev->coupling_desc; 5407 int n_coupled = c_desc->n_coupled; 5408 struct regulator_dev *c_rdev; 5409 int i; 5410 5411 for (i = 1; i < n_coupled; i++) { 5412 /* already resolved */ 5413 if (c_desc->coupled_rdevs[i]) 5414 continue; 5415 5416 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5417 5418 if (!c_rdev) 5419 continue; 5420 5421 if (c_rdev->coupling_desc.coupler != coupler) { 5422 rdev_err(rdev, "coupler mismatch with %s\n", 5423 rdev_get_name(c_rdev)); 5424 return; 5425 } 5426 5427 c_desc->coupled_rdevs[i] = c_rdev; 5428 c_desc->n_resolved++; 5429 5430 regulator_resolve_coupling(c_rdev); 5431 } 5432 } 5433 5434 static void regulator_remove_coupling(struct regulator_dev *rdev) 5435 { 5436 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5437 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5438 struct regulator_dev *__c_rdev, *c_rdev; 5439 unsigned int __n_coupled, n_coupled; 5440 int i, k; 5441 int err; 5442 5443 n_coupled = c_desc->n_coupled; 5444 5445 for (i = 1; i < n_coupled; i++) { 5446 c_rdev = c_desc->coupled_rdevs[i]; 5447 5448 if (!c_rdev) 5449 continue; 5450 5451 regulator_lock(c_rdev); 5452 5453 __c_desc = &c_rdev->coupling_desc; 5454 __n_coupled = __c_desc->n_coupled; 5455 5456 for (k = 1; k < __n_coupled; k++) { 5457 __c_rdev = __c_desc->coupled_rdevs[k]; 5458 5459 if (__c_rdev == rdev) { 5460 __c_desc->coupled_rdevs[k] = NULL; 5461 __c_desc->n_resolved--; 5462 break; 5463 } 5464 } 5465 5466 regulator_unlock(c_rdev); 5467 5468 c_desc->coupled_rdevs[i] = NULL; 5469 c_desc->n_resolved--; 5470 } 5471 5472 if (coupler && coupler->detach_regulator) { 5473 err = coupler->detach_regulator(coupler, rdev); 5474 if (err) 5475 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5476 ERR_PTR(err)); 5477 } 5478 5479 kfree(rdev->coupling_desc.coupled_rdevs); 5480 rdev->coupling_desc.coupled_rdevs = NULL; 5481 } 5482 5483 static int regulator_init_coupling(struct regulator_dev *rdev) 5484 { 5485 struct regulator_dev **coupled; 5486 int err, n_phandles; 5487 5488 if (!IS_ENABLED(CONFIG_OF)) 5489 n_phandles = 0; 5490 else 5491 n_phandles = of_get_n_coupled(rdev); 5492 5493 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5494 if (!coupled) 5495 return -ENOMEM; 5496 5497 rdev->coupling_desc.coupled_rdevs = coupled; 5498 5499 /* 5500 * Every regulator should always have coupling descriptor filled with 5501 * at least pointer to itself. 5502 */ 5503 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5504 rdev->coupling_desc.n_coupled = n_phandles + 1; 5505 rdev->coupling_desc.n_resolved++; 5506 5507 /* regulator isn't coupled */ 5508 if (n_phandles == 0) 5509 return 0; 5510 5511 if (!of_check_coupling_data(rdev)) 5512 return -EPERM; 5513 5514 mutex_lock(®ulator_list_mutex); 5515 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5516 mutex_unlock(®ulator_list_mutex); 5517 5518 if (IS_ERR(rdev->coupling_desc.coupler)) { 5519 err = PTR_ERR(rdev->coupling_desc.coupler); 5520 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5521 return err; 5522 } 5523 5524 return 0; 5525 } 5526 5527 static int generic_coupler_attach(struct regulator_coupler *coupler, 5528 struct regulator_dev *rdev) 5529 { 5530 if (rdev->coupling_desc.n_coupled > 2) { 5531 rdev_err(rdev, 5532 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5533 return -EPERM; 5534 } 5535 5536 if (!rdev->constraints->always_on) { 5537 rdev_err(rdev, 5538 "Coupling of a non always-on regulator is unimplemented\n"); 5539 return -ENOTSUPP; 5540 } 5541 5542 return 0; 5543 } 5544 5545 static struct regulator_coupler generic_regulator_coupler = { 5546 .attach_regulator = generic_coupler_attach, 5547 }; 5548 5549 /** 5550 * regulator_register - register regulator 5551 * @dev: the device that drive the regulator 5552 * @regulator_desc: regulator to register 5553 * @cfg: runtime configuration for regulator 5554 * 5555 * Called by regulator drivers to register a regulator. 5556 * Returns a valid pointer to struct regulator_dev on success 5557 * or an ERR_PTR() on error. 5558 */ 5559 struct regulator_dev * 5560 regulator_register(struct device *dev, 5561 const struct regulator_desc *regulator_desc, 5562 const struct regulator_config *cfg) 5563 { 5564 const struct regulator_init_data *init_data; 5565 struct regulator_config *config = NULL; 5566 static atomic_t regulator_no = ATOMIC_INIT(-1); 5567 struct regulator_dev *rdev; 5568 bool dangling_cfg_gpiod = false; 5569 bool dangling_of_gpiod = false; 5570 int ret, i; 5571 bool resolved_early = false; 5572 5573 if (cfg == NULL) 5574 return ERR_PTR(-EINVAL); 5575 if (cfg->ena_gpiod) 5576 dangling_cfg_gpiod = true; 5577 if (regulator_desc == NULL) { 5578 ret = -EINVAL; 5579 goto rinse; 5580 } 5581 5582 WARN_ON(!dev || !cfg->dev); 5583 5584 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5585 ret = -EINVAL; 5586 goto rinse; 5587 } 5588 5589 if (regulator_desc->type != REGULATOR_VOLTAGE && 5590 regulator_desc->type != REGULATOR_CURRENT) { 5591 ret = -EINVAL; 5592 goto rinse; 5593 } 5594 5595 /* Only one of each should be implemented */ 5596 WARN_ON(regulator_desc->ops->get_voltage && 5597 regulator_desc->ops->get_voltage_sel); 5598 WARN_ON(regulator_desc->ops->set_voltage && 5599 regulator_desc->ops->set_voltage_sel); 5600 5601 /* If we're using selectors we must implement list_voltage. */ 5602 if (regulator_desc->ops->get_voltage_sel && 5603 !regulator_desc->ops->list_voltage) { 5604 ret = -EINVAL; 5605 goto rinse; 5606 } 5607 if (regulator_desc->ops->set_voltage_sel && 5608 !regulator_desc->ops->list_voltage) { 5609 ret = -EINVAL; 5610 goto rinse; 5611 } 5612 5613 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5614 if (rdev == NULL) { 5615 ret = -ENOMEM; 5616 goto rinse; 5617 } 5618 device_initialize(&rdev->dev); 5619 dev_set_drvdata(&rdev->dev, rdev); 5620 rdev->dev.class = ®ulator_class; 5621 spin_lock_init(&rdev->err_lock); 5622 5623 /* 5624 * Duplicate the config so the driver could override it after 5625 * parsing init data. 5626 */ 5627 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5628 if (config == NULL) { 5629 ret = -ENOMEM; 5630 goto clean; 5631 } 5632 5633 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5634 &rdev->dev.of_node); 5635 5636 /* 5637 * Sometimes not all resources are probed already so we need to take 5638 * that into account. This happens most the time if the ena_gpiod comes 5639 * from a gpio extender or something else. 5640 */ 5641 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5642 ret = -EPROBE_DEFER; 5643 goto clean; 5644 } 5645 5646 /* 5647 * We need to keep track of any GPIO descriptor coming from the 5648 * device tree until we have handled it over to the core. If the 5649 * config that was passed in to this function DOES NOT contain 5650 * a descriptor, and the config after this call DOES contain 5651 * a descriptor, we definitely got one from parsing the device 5652 * tree. 5653 */ 5654 if (!cfg->ena_gpiod && config->ena_gpiod) 5655 dangling_of_gpiod = true; 5656 if (!init_data) { 5657 init_data = config->init_data; 5658 rdev->dev.of_node = of_node_get(config->of_node); 5659 } 5660 5661 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5662 rdev->reg_data = config->driver_data; 5663 rdev->owner = regulator_desc->owner; 5664 rdev->desc = regulator_desc; 5665 if (config->regmap) 5666 rdev->regmap = config->regmap; 5667 else if (dev_get_regmap(dev, NULL)) 5668 rdev->regmap = dev_get_regmap(dev, NULL); 5669 else if (dev->parent) 5670 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5671 INIT_LIST_HEAD(&rdev->consumer_list); 5672 INIT_LIST_HEAD(&rdev->list); 5673 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5674 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5675 5676 if (init_data && init_data->supply_regulator) 5677 rdev->supply_name = init_data->supply_regulator; 5678 else if (regulator_desc->supply_name) 5679 rdev->supply_name = regulator_desc->supply_name; 5680 5681 /* register with sysfs */ 5682 rdev->dev.parent = config->dev; 5683 dev_set_name(&rdev->dev, "regulator.%lu", 5684 (unsigned long) atomic_inc_return(®ulator_no)); 5685 5686 /* set regulator constraints */ 5687 if (init_data) 5688 rdev->constraints = kmemdup(&init_data->constraints, 5689 sizeof(*rdev->constraints), 5690 GFP_KERNEL); 5691 else 5692 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5693 GFP_KERNEL); 5694 if (!rdev->constraints) { 5695 ret = -ENOMEM; 5696 goto wash; 5697 } 5698 5699 if ((rdev->supply_name && !rdev->supply) && 5700 (rdev->constraints->always_on || 5701 rdev->constraints->boot_on)) { 5702 ret = regulator_resolve_supply(rdev); 5703 if (ret) 5704 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5705 ERR_PTR(ret)); 5706 5707 resolved_early = true; 5708 } 5709 5710 /* perform any regulator specific init */ 5711 if (init_data && init_data->regulator_init) { 5712 ret = init_data->regulator_init(rdev->reg_data); 5713 if (ret < 0) 5714 goto wash; 5715 } 5716 5717 if (config->ena_gpiod) { 5718 ret = regulator_ena_gpio_request(rdev, config); 5719 if (ret != 0) { 5720 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5721 ERR_PTR(ret)); 5722 goto wash; 5723 } 5724 /* The regulator core took over the GPIO descriptor */ 5725 dangling_cfg_gpiod = false; 5726 dangling_of_gpiod = false; 5727 } 5728 5729 ret = set_machine_constraints(rdev); 5730 if (ret == -EPROBE_DEFER && !resolved_early) { 5731 /* Regulator might be in bypass mode and so needs its supply 5732 * to set the constraints 5733 */ 5734 /* FIXME: this currently triggers a chicken-and-egg problem 5735 * when creating -SUPPLY symlink in sysfs to a regulator 5736 * that is just being created 5737 */ 5738 rdev_dbg(rdev, "will resolve supply early: %s\n", 5739 rdev->supply_name); 5740 ret = regulator_resolve_supply(rdev); 5741 if (!ret) 5742 ret = set_machine_constraints(rdev); 5743 else 5744 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5745 ERR_PTR(ret)); 5746 } 5747 if (ret < 0) 5748 goto wash; 5749 5750 ret = regulator_init_coupling(rdev); 5751 if (ret < 0) 5752 goto wash; 5753 5754 /* add consumers devices */ 5755 if (init_data) { 5756 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5757 ret = set_consumer_device_supply(rdev, 5758 init_data->consumer_supplies[i].dev_name, 5759 init_data->consumer_supplies[i].supply); 5760 if (ret < 0) { 5761 dev_err(dev, "Failed to set supply %s\n", 5762 init_data->consumer_supplies[i].supply); 5763 goto unset_supplies; 5764 } 5765 } 5766 } 5767 5768 if (!rdev->desc->ops->get_voltage && 5769 !rdev->desc->ops->list_voltage && 5770 !rdev->desc->fixed_uV) 5771 rdev->is_switch = true; 5772 5773 ret = device_add(&rdev->dev); 5774 if (ret != 0) 5775 goto unset_supplies; 5776 5777 rdev_init_debugfs(rdev); 5778 5779 /* try to resolve regulators coupling since a new one was registered */ 5780 mutex_lock(®ulator_list_mutex); 5781 regulator_resolve_coupling(rdev); 5782 mutex_unlock(®ulator_list_mutex); 5783 5784 /* try to resolve regulators supply since a new one was registered */ 5785 class_for_each_device(®ulator_class, NULL, NULL, 5786 regulator_register_resolve_supply); 5787 kfree(config); 5788 return rdev; 5789 5790 unset_supplies: 5791 mutex_lock(®ulator_list_mutex); 5792 unset_regulator_supplies(rdev); 5793 regulator_remove_coupling(rdev); 5794 mutex_unlock(®ulator_list_mutex); 5795 wash: 5796 regulator_put(rdev->supply); 5797 kfree(rdev->coupling_desc.coupled_rdevs); 5798 mutex_lock(®ulator_list_mutex); 5799 regulator_ena_gpio_free(rdev); 5800 mutex_unlock(®ulator_list_mutex); 5801 clean: 5802 if (dangling_of_gpiod) 5803 gpiod_put(config->ena_gpiod); 5804 kfree(config); 5805 put_device(&rdev->dev); 5806 rinse: 5807 if (dangling_cfg_gpiod) 5808 gpiod_put(cfg->ena_gpiod); 5809 return ERR_PTR(ret); 5810 } 5811 EXPORT_SYMBOL_GPL(regulator_register); 5812 5813 /** 5814 * regulator_unregister - unregister regulator 5815 * @rdev: regulator to unregister 5816 * 5817 * Called by regulator drivers to unregister a regulator. 5818 */ 5819 void regulator_unregister(struct regulator_dev *rdev) 5820 { 5821 if (rdev == NULL) 5822 return; 5823 5824 if (rdev->supply) { 5825 while (rdev->use_count--) 5826 regulator_disable(rdev->supply); 5827 regulator_put(rdev->supply); 5828 } 5829 5830 flush_work(&rdev->disable_work.work); 5831 5832 mutex_lock(®ulator_list_mutex); 5833 5834 WARN_ON(rdev->open_count); 5835 regulator_remove_coupling(rdev); 5836 unset_regulator_supplies(rdev); 5837 list_del(&rdev->list); 5838 regulator_ena_gpio_free(rdev); 5839 device_unregister(&rdev->dev); 5840 5841 mutex_unlock(®ulator_list_mutex); 5842 } 5843 EXPORT_SYMBOL_GPL(regulator_unregister); 5844 5845 #ifdef CONFIG_SUSPEND 5846 /** 5847 * regulator_suspend - prepare regulators for system wide suspend 5848 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5849 * 5850 * Configure each regulator with it's suspend operating parameters for state. 5851 */ 5852 static int regulator_suspend(struct device *dev) 5853 { 5854 struct regulator_dev *rdev = dev_to_rdev(dev); 5855 suspend_state_t state = pm_suspend_target_state; 5856 int ret; 5857 const struct regulator_state *rstate; 5858 5859 rstate = regulator_get_suspend_state_check(rdev, state); 5860 if (!rstate) 5861 return 0; 5862 5863 regulator_lock(rdev); 5864 ret = __suspend_set_state(rdev, rstate); 5865 regulator_unlock(rdev); 5866 5867 return ret; 5868 } 5869 5870 static int regulator_resume(struct device *dev) 5871 { 5872 suspend_state_t state = pm_suspend_target_state; 5873 struct regulator_dev *rdev = dev_to_rdev(dev); 5874 struct regulator_state *rstate; 5875 int ret = 0; 5876 5877 rstate = regulator_get_suspend_state(rdev, state); 5878 if (rstate == NULL) 5879 return 0; 5880 5881 /* Avoid grabbing the lock if we don't need to */ 5882 if (!rdev->desc->ops->resume) 5883 return 0; 5884 5885 regulator_lock(rdev); 5886 5887 if (rstate->enabled == ENABLE_IN_SUSPEND || 5888 rstate->enabled == DISABLE_IN_SUSPEND) 5889 ret = rdev->desc->ops->resume(rdev); 5890 5891 regulator_unlock(rdev); 5892 5893 return ret; 5894 } 5895 #else /* !CONFIG_SUSPEND */ 5896 5897 #define regulator_suspend NULL 5898 #define regulator_resume NULL 5899 5900 #endif /* !CONFIG_SUSPEND */ 5901 5902 #ifdef CONFIG_PM 5903 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5904 .suspend = regulator_suspend, 5905 .resume = regulator_resume, 5906 }; 5907 #endif 5908 5909 const struct class regulator_class = { 5910 .name = "regulator", 5911 .dev_release = regulator_dev_release, 5912 .dev_groups = regulator_dev_groups, 5913 #ifdef CONFIG_PM 5914 .pm = ®ulator_pm_ops, 5915 #endif 5916 }; 5917 /** 5918 * regulator_has_full_constraints - the system has fully specified constraints 5919 * 5920 * Calling this function will cause the regulator API to disable all 5921 * regulators which have a zero use count and don't have an always_on 5922 * constraint in a late_initcall. 5923 * 5924 * The intention is that this will become the default behaviour in a 5925 * future kernel release so users are encouraged to use this facility 5926 * now. 5927 */ 5928 void regulator_has_full_constraints(void) 5929 { 5930 has_full_constraints = 1; 5931 } 5932 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5933 5934 /** 5935 * rdev_get_drvdata - get rdev regulator driver data 5936 * @rdev: regulator 5937 * 5938 * Get rdev regulator driver private data. This call can be used in the 5939 * regulator driver context. 5940 */ 5941 void *rdev_get_drvdata(struct regulator_dev *rdev) 5942 { 5943 return rdev->reg_data; 5944 } 5945 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5946 5947 /** 5948 * regulator_get_drvdata - get regulator driver data 5949 * @regulator: regulator 5950 * 5951 * Get regulator driver private data. This call can be used in the consumer 5952 * driver context when non API regulator specific functions need to be called. 5953 */ 5954 void *regulator_get_drvdata(struct regulator *regulator) 5955 { 5956 return regulator->rdev->reg_data; 5957 } 5958 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5959 5960 /** 5961 * regulator_set_drvdata - set regulator driver data 5962 * @regulator: regulator 5963 * @data: data 5964 */ 5965 void regulator_set_drvdata(struct regulator *regulator, void *data) 5966 { 5967 regulator->rdev->reg_data = data; 5968 } 5969 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5970 5971 /** 5972 * rdev_get_id - get regulator ID 5973 * @rdev: regulator 5974 */ 5975 int rdev_get_id(struct regulator_dev *rdev) 5976 { 5977 return rdev->desc->id; 5978 } 5979 EXPORT_SYMBOL_GPL(rdev_get_id); 5980 5981 struct device *rdev_get_dev(struct regulator_dev *rdev) 5982 { 5983 return &rdev->dev; 5984 } 5985 EXPORT_SYMBOL_GPL(rdev_get_dev); 5986 5987 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5988 { 5989 return rdev->regmap; 5990 } 5991 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5992 5993 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5994 { 5995 return reg_init_data->driver_data; 5996 } 5997 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5998 5999 #ifdef CONFIG_DEBUG_FS 6000 static int supply_map_show(struct seq_file *sf, void *data) 6001 { 6002 struct regulator_map *map; 6003 6004 list_for_each_entry(map, ®ulator_map_list, list) { 6005 seq_printf(sf, "%s -> %s.%s\n", 6006 rdev_get_name(map->regulator), map->dev_name, 6007 map->supply); 6008 } 6009 6010 return 0; 6011 } 6012 DEFINE_SHOW_ATTRIBUTE(supply_map); 6013 6014 struct summary_data { 6015 struct seq_file *s; 6016 struct regulator_dev *parent; 6017 int level; 6018 }; 6019 6020 static void regulator_summary_show_subtree(struct seq_file *s, 6021 struct regulator_dev *rdev, 6022 int level); 6023 6024 static int regulator_summary_show_children(struct device *dev, void *data) 6025 { 6026 struct regulator_dev *rdev = dev_to_rdev(dev); 6027 struct summary_data *summary_data = data; 6028 6029 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6030 regulator_summary_show_subtree(summary_data->s, rdev, 6031 summary_data->level + 1); 6032 6033 return 0; 6034 } 6035 6036 static void regulator_summary_show_subtree(struct seq_file *s, 6037 struct regulator_dev *rdev, 6038 int level) 6039 { 6040 struct regulation_constraints *c; 6041 struct regulator *consumer; 6042 struct summary_data summary_data; 6043 unsigned int opmode; 6044 6045 if (!rdev) 6046 return; 6047 6048 opmode = _regulator_get_mode_unlocked(rdev); 6049 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6050 level * 3 + 1, "", 6051 30 - level * 3, rdev_get_name(rdev), 6052 rdev->use_count, rdev->open_count, rdev->bypass_count, 6053 regulator_opmode_to_str(opmode)); 6054 6055 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6056 seq_printf(s, "%5dmA ", 6057 _regulator_get_current_limit_unlocked(rdev) / 1000); 6058 6059 c = rdev->constraints; 6060 if (c) { 6061 switch (rdev->desc->type) { 6062 case REGULATOR_VOLTAGE: 6063 seq_printf(s, "%5dmV %5dmV ", 6064 c->min_uV / 1000, c->max_uV / 1000); 6065 break; 6066 case REGULATOR_CURRENT: 6067 seq_printf(s, "%5dmA %5dmA ", 6068 c->min_uA / 1000, c->max_uA / 1000); 6069 break; 6070 } 6071 } 6072 6073 seq_puts(s, "\n"); 6074 6075 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6076 if (consumer->dev && consumer->dev->class == ®ulator_class) 6077 continue; 6078 6079 seq_printf(s, "%*s%-*s ", 6080 (level + 1) * 3 + 1, "", 6081 30 - (level + 1) * 3, 6082 consumer->supply_name ? consumer->supply_name : 6083 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6084 6085 switch (rdev->desc->type) { 6086 case REGULATOR_VOLTAGE: 6087 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6088 consumer->enable_count, 6089 consumer->uA_load / 1000, 6090 consumer->uA_load && !consumer->enable_count ? 6091 '*' : ' ', 6092 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6093 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6094 break; 6095 case REGULATOR_CURRENT: 6096 break; 6097 } 6098 6099 seq_puts(s, "\n"); 6100 } 6101 6102 summary_data.s = s; 6103 summary_data.level = level; 6104 summary_data.parent = rdev; 6105 6106 class_for_each_device(®ulator_class, NULL, &summary_data, 6107 regulator_summary_show_children); 6108 } 6109 6110 struct summary_lock_data { 6111 struct ww_acquire_ctx *ww_ctx; 6112 struct regulator_dev **new_contended_rdev; 6113 struct regulator_dev **old_contended_rdev; 6114 }; 6115 6116 static int regulator_summary_lock_one(struct device *dev, void *data) 6117 { 6118 struct regulator_dev *rdev = dev_to_rdev(dev); 6119 struct summary_lock_data *lock_data = data; 6120 int ret = 0; 6121 6122 if (rdev != *lock_data->old_contended_rdev) { 6123 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6124 6125 if (ret == -EDEADLK) 6126 *lock_data->new_contended_rdev = rdev; 6127 else 6128 WARN_ON_ONCE(ret); 6129 } else { 6130 *lock_data->old_contended_rdev = NULL; 6131 } 6132 6133 return ret; 6134 } 6135 6136 static int regulator_summary_unlock_one(struct device *dev, void *data) 6137 { 6138 struct regulator_dev *rdev = dev_to_rdev(dev); 6139 struct summary_lock_data *lock_data = data; 6140 6141 if (lock_data) { 6142 if (rdev == *lock_data->new_contended_rdev) 6143 return -EDEADLK; 6144 } 6145 6146 regulator_unlock(rdev); 6147 6148 return 0; 6149 } 6150 6151 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6152 struct regulator_dev **new_contended_rdev, 6153 struct regulator_dev **old_contended_rdev) 6154 { 6155 struct summary_lock_data lock_data; 6156 int ret; 6157 6158 lock_data.ww_ctx = ww_ctx; 6159 lock_data.new_contended_rdev = new_contended_rdev; 6160 lock_data.old_contended_rdev = old_contended_rdev; 6161 6162 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6163 regulator_summary_lock_one); 6164 if (ret) 6165 class_for_each_device(®ulator_class, NULL, &lock_data, 6166 regulator_summary_unlock_one); 6167 6168 return ret; 6169 } 6170 6171 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6172 { 6173 struct regulator_dev *new_contended_rdev = NULL; 6174 struct regulator_dev *old_contended_rdev = NULL; 6175 int err; 6176 6177 mutex_lock(®ulator_list_mutex); 6178 6179 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6180 6181 do { 6182 if (new_contended_rdev) { 6183 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6184 old_contended_rdev = new_contended_rdev; 6185 old_contended_rdev->ref_cnt++; 6186 old_contended_rdev->mutex_owner = current; 6187 } 6188 6189 err = regulator_summary_lock_all(ww_ctx, 6190 &new_contended_rdev, 6191 &old_contended_rdev); 6192 6193 if (old_contended_rdev) 6194 regulator_unlock(old_contended_rdev); 6195 6196 } while (err == -EDEADLK); 6197 6198 ww_acquire_done(ww_ctx); 6199 } 6200 6201 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6202 { 6203 class_for_each_device(®ulator_class, NULL, NULL, 6204 regulator_summary_unlock_one); 6205 ww_acquire_fini(ww_ctx); 6206 6207 mutex_unlock(®ulator_list_mutex); 6208 } 6209 6210 static int regulator_summary_show_roots(struct device *dev, void *data) 6211 { 6212 struct regulator_dev *rdev = dev_to_rdev(dev); 6213 struct seq_file *s = data; 6214 6215 if (!rdev->supply) 6216 regulator_summary_show_subtree(s, rdev, 0); 6217 6218 return 0; 6219 } 6220 6221 static int regulator_summary_show(struct seq_file *s, void *data) 6222 { 6223 struct ww_acquire_ctx ww_ctx; 6224 6225 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6226 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6227 6228 regulator_summary_lock(&ww_ctx); 6229 6230 class_for_each_device(®ulator_class, NULL, s, 6231 regulator_summary_show_roots); 6232 6233 regulator_summary_unlock(&ww_ctx); 6234 6235 return 0; 6236 } 6237 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6238 #endif /* CONFIG_DEBUG_FS */ 6239 6240 static int __init regulator_init(void) 6241 { 6242 int ret; 6243 6244 ret = class_register(®ulator_class); 6245 6246 debugfs_root = debugfs_create_dir("regulator", NULL); 6247 if (IS_ERR(debugfs_root)) 6248 pr_debug("regulator: Failed to create debugfs directory\n"); 6249 6250 #ifdef CONFIG_DEBUG_FS 6251 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6252 &supply_map_fops); 6253 6254 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6255 NULL, ®ulator_summary_fops); 6256 #endif 6257 regulator_dummy_init(); 6258 6259 regulator_coupler_register(&generic_regulator_coupler); 6260 6261 return ret; 6262 } 6263 6264 /* init early to allow our consumers to complete system booting */ 6265 core_initcall(regulator_init); 6266 6267 static int regulator_late_cleanup(struct device *dev, void *data) 6268 { 6269 struct regulator_dev *rdev = dev_to_rdev(dev); 6270 struct regulation_constraints *c = rdev->constraints; 6271 int ret; 6272 6273 if (c && c->always_on) 6274 return 0; 6275 6276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6277 return 0; 6278 6279 regulator_lock(rdev); 6280 6281 if (rdev->use_count) 6282 goto unlock; 6283 6284 /* If reading the status failed, assume that it's off. */ 6285 if (_regulator_is_enabled(rdev) <= 0) 6286 goto unlock; 6287 6288 if (have_full_constraints()) { 6289 /* We log since this may kill the system if it goes 6290 * wrong. 6291 */ 6292 rdev_info(rdev, "disabling\n"); 6293 ret = _regulator_do_disable(rdev); 6294 if (ret != 0) 6295 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6296 } else { 6297 /* The intention is that in future we will 6298 * assume that full constraints are provided 6299 * so warn even if we aren't going to do 6300 * anything here. 6301 */ 6302 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6303 } 6304 6305 unlock: 6306 regulator_unlock(rdev); 6307 6308 return 0; 6309 } 6310 6311 static bool regulator_ignore_unused; 6312 static int __init regulator_ignore_unused_setup(char *__unused) 6313 { 6314 regulator_ignore_unused = true; 6315 return 1; 6316 } 6317 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6318 6319 static void regulator_init_complete_work_function(struct work_struct *work) 6320 { 6321 /* 6322 * Regulators may had failed to resolve their input supplies 6323 * when were registered, either because the input supply was 6324 * not registered yet or because its parent device was not 6325 * bound yet. So attempt to resolve the input supplies for 6326 * pending regulators before trying to disable unused ones. 6327 */ 6328 class_for_each_device(®ulator_class, NULL, NULL, 6329 regulator_register_resolve_supply); 6330 6331 /* 6332 * For debugging purposes, it may be useful to prevent unused 6333 * regulators from being disabled. 6334 */ 6335 if (regulator_ignore_unused) { 6336 pr_warn("regulator: Not disabling unused regulators\n"); 6337 return; 6338 } 6339 6340 /* If we have a full configuration then disable any regulators 6341 * we have permission to change the status for and which are 6342 * not in use or always_on. This is effectively the default 6343 * for DT and ACPI as they have full constraints. 6344 */ 6345 class_for_each_device(®ulator_class, NULL, NULL, 6346 regulator_late_cleanup); 6347 } 6348 6349 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6350 regulator_init_complete_work_function); 6351 6352 static int __init regulator_init_complete(void) 6353 { 6354 /* 6355 * Since DT doesn't provide an idiomatic mechanism for 6356 * enabling full constraints and since it's much more natural 6357 * with DT to provide them just assume that a DT enabled 6358 * system has full constraints. 6359 */ 6360 if (of_have_populated_dt()) 6361 has_full_constraints = true; 6362 6363 /* 6364 * We punt completion for an arbitrary amount of time since 6365 * systems like distros will load many drivers from userspace 6366 * so consumers might not always be ready yet, this is 6367 * particularly an issue with laptops where this might bounce 6368 * the display off then on. Ideally we'd get a notification 6369 * from userspace when this happens but we don't so just wait 6370 * a bit and hope we waited long enough. It'd be better if 6371 * we'd only do this on systems that need it, and a kernel 6372 * command line option might be useful. 6373 */ 6374 schedule_delayed_work(®ulator_init_complete_work, 6375 msecs_to_jiffies(30000)); 6376 6377 return 0; 6378 } 6379 late_initcall_sync(regulator_init_complete); 6380