xref: /linux/drivers/regulator/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 				     suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102 
103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113 
114 static bool have_full_constraints(void)
115 {
116 	return has_full_constraints || of_have_populated_dt();
117 }
118 
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 	if (!rdev->constraints) {
122 		rdev_err(rdev, "no constraints\n");
123 		return false;
124 	}
125 
126 	if (rdev->constraints->valid_ops_mask & ops)
127 		return true;
128 
129 	return false;
130 }
131 
132 /**
133  * regulator_lock_nested - lock a single regulator
134  * @rdev:		regulator source
135  * @ww_ctx:		w/w mutex acquire context
136  *
137  * This function can be called many times by one task on
138  * a single regulator and its mutex will be locked only
139  * once. If a task, which is calling this function is other
140  * than the one, which initially locked the mutex, it will
141  * wait on mutex.
142  */
143 static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 					struct ww_acquire_ctx *ww_ctx)
145 {
146 	bool lock = false;
147 	int ret = 0;
148 
149 	mutex_lock(&regulator_nesting_mutex);
150 
151 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 		if (rdev->mutex_owner == current)
153 			rdev->ref_cnt++;
154 		else
155 			lock = true;
156 
157 		if (lock) {
158 			mutex_unlock(&regulator_nesting_mutex);
159 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 			mutex_lock(&regulator_nesting_mutex);
161 		}
162 	} else {
163 		lock = true;
164 	}
165 
166 	if (lock && ret != -EDEADLK) {
167 		rdev->ref_cnt++;
168 		rdev->mutex_owner = current;
169 	}
170 
171 	mutex_unlock(&regulator_nesting_mutex);
172 
173 	return ret;
174 }
175 
176 /**
177  * regulator_lock - lock a single regulator
178  * @rdev:		regulator source
179  *
180  * This function can be called many times by one task on
181  * a single regulator and its mutex will be locked only
182  * once. If a task, which is calling this function is other
183  * than the one, which initially locked the mutex, it will
184  * wait on mutex.
185  */
186 static void regulator_lock(struct regulator_dev *rdev)
187 {
188 	regulator_lock_nested(rdev, NULL);
189 }
190 
191 /**
192  * regulator_unlock - unlock a single regulator
193  * @rdev:		regulator_source
194  *
195  * This function unlocks the mutex when the
196  * reference counter reaches 0.
197  */
198 static void regulator_unlock(struct regulator_dev *rdev)
199 {
200 	mutex_lock(&regulator_nesting_mutex);
201 
202 	if (--rdev->ref_cnt == 0) {
203 		rdev->mutex_owner = NULL;
204 		ww_mutex_unlock(&rdev->mutex);
205 	}
206 
207 	WARN_ON_ONCE(rdev->ref_cnt < 0);
208 
209 	mutex_unlock(&regulator_nesting_mutex);
210 }
211 
212 /**
213  * regulator_lock_two - lock two regulators
214  * @rdev1:		first regulator
215  * @rdev2:		second regulator
216  * @ww_ctx:		w/w mutex acquire context
217  *
218  * Locks both rdevs using the regulator_ww_class.
219  */
220 static void regulator_lock_two(struct regulator_dev *rdev1,
221 			       struct regulator_dev *rdev2,
222 			       struct ww_acquire_ctx *ww_ctx)
223 {
224 	struct regulator_dev *held, *contended;
225 	int ret;
226 
227 	ww_acquire_init(ww_ctx, &regulator_ww_class);
228 
229 	/* Try to just grab both of them */
230 	ret = regulator_lock_nested(rdev1, ww_ctx);
231 	WARN_ON(ret);
232 	ret = regulator_lock_nested(rdev2, ww_ctx);
233 	if (ret != -EDEADLOCK) {
234 		WARN_ON(ret);
235 		goto exit;
236 	}
237 
238 	held = rdev1;
239 	contended = rdev2;
240 	while (true) {
241 		regulator_unlock(held);
242 
243 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 		contended->ref_cnt++;
245 		contended->mutex_owner = current;
246 		swap(held, contended);
247 		ret = regulator_lock_nested(contended, ww_ctx);
248 
249 		if (ret != -EDEADLOCK) {
250 			WARN_ON(ret);
251 			break;
252 		}
253 	}
254 
255 exit:
256 	ww_acquire_done(ww_ctx);
257 }
258 
259 /**
260  * regulator_unlock_two - unlock two regulators
261  * @rdev1:		first regulator
262  * @rdev2:		second regulator
263  * @ww_ctx:		w/w mutex acquire context
264  *
265  * The inverse of regulator_lock_two().
266  */
267 
268 static void regulator_unlock_two(struct regulator_dev *rdev1,
269 				 struct regulator_dev *rdev2,
270 				 struct ww_acquire_ctx *ww_ctx)
271 {
272 	regulator_unlock(rdev2);
273 	regulator_unlock(rdev1);
274 	ww_acquire_fini(ww_ctx);
275 }
276 
277 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278 {
279 	struct regulator_dev *c_rdev;
280 	int i;
281 
282 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284 
285 		if (rdev->supply->rdev == c_rdev)
286 			return true;
287 	}
288 
289 	return false;
290 }
291 
292 static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 				       unsigned int n_coupled)
294 {
295 	struct regulator_dev *c_rdev, *supply_rdev;
296 	int i, supply_n_coupled;
297 
298 	for (i = n_coupled; i > 0; i--) {
299 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300 
301 		if (!c_rdev)
302 			continue;
303 
304 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 			supply_rdev = c_rdev->supply->rdev;
306 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307 
308 			regulator_unlock_recursive(supply_rdev,
309 						   supply_n_coupled);
310 		}
311 
312 		regulator_unlock(c_rdev);
313 	}
314 }
315 
316 static int regulator_lock_recursive(struct regulator_dev *rdev,
317 				    struct regulator_dev **new_contended_rdev,
318 				    struct regulator_dev **old_contended_rdev,
319 				    struct ww_acquire_ctx *ww_ctx)
320 {
321 	struct regulator_dev *c_rdev;
322 	int i, err;
323 
324 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326 
327 		if (!c_rdev)
328 			continue;
329 
330 		if (c_rdev != *old_contended_rdev) {
331 			err = regulator_lock_nested(c_rdev, ww_ctx);
332 			if (err) {
333 				if (err == -EDEADLK) {
334 					*new_contended_rdev = c_rdev;
335 					goto err_unlock;
336 				}
337 
338 				/* shouldn't happen */
339 				WARN_ON_ONCE(err != -EALREADY);
340 			}
341 		} else {
342 			*old_contended_rdev = NULL;
343 		}
344 
345 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 			err = regulator_lock_recursive(c_rdev->supply->rdev,
347 						       new_contended_rdev,
348 						       old_contended_rdev,
349 						       ww_ctx);
350 			if (err) {
351 				regulator_unlock(c_rdev);
352 				goto err_unlock;
353 			}
354 		}
355 	}
356 
357 	return 0;
358 
359 err_unlock:
360 	regulator_unlock_recursive(rdev, i);
361 
362 	return err;
363 }
364 
365 /**
366  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367  *				regulators
368  * @rdev:			regulator source
369  * @ww_ctx:			w/w mutex acquire context
370  *
371  * Unlock all regulators related with rdev by coupling or supplying.
372  */
373 static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 				       struct ww_acquire_ctx *ww_ctx)
375 {
376 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 	ww_acquire_fini(ww_ctx);
378 }
379 
380 /**
381  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * This function as a wrapper on regulator_lock_recursive(), which locks
386  * all regulators related with rdev by coupling or supplying.
387  */
388 static void regulator_lock_dependent(struct regulator_dev *rdev,
389 				     struct ww_acquire_ctx *ww_ctx)
390 {
391 	struct regulator_dev *new_contended_rdev = NULL;
392 	struct regulator_dev *old_contended_rdev = NULL;
393 	int err;
394 
395 	mutex_lock(&regulator_list_mutex);
396 
397 	ww_acquire_init(ww_ctx, &regulator_ww_class);
398 
399 	do {
400 		if (new_contended_rdev) {
401 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 			old_contended_rdev = new_contended_rdev;
403 			old_contended_rdev->ref_cnt++;
404 			old_contended_rdev->mutex_owner = current;
405 		}
406 
407 		err = regulator_lock_recursive(rdev,
408 					       &new_contended_rdev,
409 					       &old_contended_rdev,
410 					       ww_ctx);
411 
412 		if (old_contended_rdev)
413 			regulator_unlock(old_contended_rdev);
414 
415 	} while (err == -EDEADLK);
416 
417 	ww_acquire_done(ww_ctx);
418 
419 	mutex_unlock(&regulator_list_mutex);
420 }
421 
422 /**
423  * of_get_child_regulator - get a child regulator device node
424  * based on supply name
425  * @parent: Parent device node
426  * @prop_name: Combination regulator supply name and "-supply"
427  *
428  * Traverse all child nodes.
429  * Extract the child regulator device node corresponding to the supply name.
430  * returns the device node corresponding to the regulator if found, else
431  * returns NULL.
432  */
433 static struct device_node *of_get_child_regulator(struct device_node *parent,
434 						  const char *prop_name)
435 {
436 	struct device_node *regnode = NULL;
437 	struct device_node *child = NULL;
438 
439 	for_each_child_of_node(parent, child) {
440 		regnode = of_parse_phandle(child, prop_name, 0);
441 
442 		if (!regnode) {
443 			regnode = of_get_child_regulator(child, prop_name);
444 			if (regnode)
445 				goto err_node_put;
446 		} else {
447 			goto err_node_put;
448 		}
449 	}
450 	return NULL;
451 
452 err_node_put:
453 	of_node_put(child);
454 	return regnode;
455 }
456 
457 /**
458  * of_get_regulator - get a regulator device node based on supply name
459  * @dev: Device pointer for the consumer (of regulator) device
460  * @supply: regulator supply name
461  *
462  * Extract the regulator device node corresponding to the supply name.
463  * returns the device node corresponding to the regulator if found, else
464  * returns NULL.
465  */
466 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467 {
468 	struct device_node *regnode = NULL;
469 	char prop_name[64]; /* 64 is max size of property name */
470 
471 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472 
473 	snprintf(prop_name, 64, "%s-supply", supply);
474 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475 
476 	if (!regnode) {
477 		regnode = of_get_child_regulator(dev->of_node, prop_name);
478 		if (regnode)
479 			return regnode;
480 
481 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 				prop_name, dev->of_node);
483 		return NULL;
484 	}
485 	return regnode;
486 }
487 
488 /* Platform voltage constraint check */
489 int regulator_check_voltage(struct regulator_dev *rdev,
490 			    int *min_uV, int *max_uV)
491 {
492 	BUG_ON(*min_uV > *max_uV);
493 
494 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 		rdev_err(rdev, "voltage operation not allowed\n");
496 		return -EPERM;
497 	}
498 
499 	if (*max_uV > rdev->constraints->max_uV)
500 		*max_uV = rdev->constraints->max_uV;
501 	if (*min_uV < rdev->constraints->min_uV)
502 		*min_uV = rdev->constraints->min_uV;
503 
504 	if (*min_uV > *max_uV) {
505 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 			 *min_uV, *max_uV);
507 		return -EINVAL;
508 	}
509 
510 	return 0;
511 }
512 
513 /* return 0 if the state is valid */
514 static int regulator_check_states(suspend_state_t state)
515 {
516 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517 }
518 
519 /* Make sure we select a voltage that suits the needs of all
520  * regulator consumers
521  */
522 int regulator_check_consumers(struct regulator_dev *rdev,
523 			      int *min_uV, int *max_uV,
524 			      suspend_state_t state)
525 {
526 	struct regulator *regulator;
527 	struct regulator_voltage *voltage;
528 
529 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 		voltage = &regulator->voltage[state];
531 		/*
532 		 * Assume consumers that didn't say anything are OK
533 		 * with anything in the constraint range.
534 		 */
535 		if (!voltage->min_uV && !voltage->max_uV)
536 			continue;
537 
538 		if (*max_uV > voltage->max_uV)
539 			*max_uV = voltage->max_uV;
540 		if (*min_uV < voltage->min_uV)
541 			*min_uV = voltage->min_uV;
542 	}
543 
544 	if (*min_uV > *max_uV) {
545 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 			*min_uV, *max_uV);
547 		return -EINVAL;
548 	}
549 
550 	return 0;
551 }
552 
553 /* current constraint check */
554 static int regulator_check_current_limit(struct regulator_dev *rdev,
555 					int *min_uA, int *max_uA)
556 {
557 	BUG_ON(*min_uA > *max_uA);
558 
559 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 		rdev_err(rdev, "current operation not allowed\n");
561 		return -EPERM;
562 	}
563 
564 	if (*max_uA > rdev->constraints->max_uA)
565 		*max_uA = rdev->constraints->max_uA;
566 	if (*min_uA < rdev->constraints->min_uA)
567 		*min_uA = rdev->constraints->min_uA;
568 
569 	if (*min_uA > *max_uA) {
570 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 			 *min_uA, *max_uA);
572 		return -EINVAL;
573 	}
574 
575 	return 0;
576 }
577 
578 /* operating mode constraint check */
579 static int regulator_mode_constrain(struct regulator_dev *rdev,
580 				    unsigned int *mode)
581 {
582 	switch (*mode) {
583 	case REGULATOR_MODE_FAST:
584 	case REGULATOR_MODE_NORMAL:
585 	case REGULATOR_MODE_IDLE:
586 	case REGULATOR_MODE_STANDBY:
587 		break;
588 	default:
589 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 		return -EINVAL;
591 	}
592 
593 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 		rdev_err(rdev, "mode operation not allowed\n");
595 		return -EPERM;
596 	}
597 
598 	/* The modes are bitmasks, the most power hungry modes having
599 	 * the lowest values. If the requested mode isn't supported
600 	 * try higher modes.
601 	 */
602 	while (*mode) {
603 		if (rdev->constraints->valid_modes_mask & *mode)
604 			return 0;
605 		*mode /= 2;
606 	}
607 
608 	return -EINVAL;
609 }
610 
611 static inline struct regulator_state *
612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613 {
614 	if (rdev->constraints == NULL)
615 		return NULL;
616 
617 	switch (state) {
618 	case PM_SUSPEND_STANDBY:
619 		return &rdev->constraints->state_standby;
620 	case PM_SUSPEND_MEM:
621 		return &rdev->constraints->state_mem;
622 	case PM_SUSPEND_MAX:
623 		return &rdev->constraints->state_disk;
624 	default:
625 		return NULL;
626 	}
627 }
628 
629 static const struct regulator_state *
630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631 {
632 	const struct regulator_state *rstate;
633 
634 	rstate = regulator_get_suspend_state(rdev, state);
635 	if (rstate == NULL)
636 		return NULL;
637 
638 	/* If we have no suspend mode configuration don't set anything;
639 	 * only warn if the driver implements set_suspend_voltage or
640 	 * set_suspend_mode callback.
641 	 */
642 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 	    rstate->enabled != DISABLE_IN_SUSPEND) {
644 		if (rdev->desc->ops->set_suspend_voltage ||
645 		    rdev->desc->ops->set_suspend_mode)
646 			rdev_warn(rdev, "No configuration\n");
647 		return NULL;
648 	}
649 
650 	return rstate;
651 }
652 
653 static ssize_t microvolts_show(struct device *dev,
654 			       struct device_attribute *attr, char *buf)
655 {
656 	struct regulator_dev *rdev = dev_get_drvdata(dev);
657 	int uV;
658 
659 	regulator_lock(rdev);
660 	uV = regulator_get_voltage_rdev(rdev);
661 	regulator_unlock(rdev);
662 
663 	if (uV < 0)
664 		return uV;
665 	return sprintf(buf, "%d\n", uV);
666 }
667 static DEVICE_ATTR_RO(microvolts);
668 
669 static ssize_t microamps_show(struct device *dev,
670 			      struct device_attribute *attr, char *buf)
671 {
672 	struct regulator_dev *rdev = dev_get_drvdata(dev);
673 
674 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675 }
676 static DEVICE_ATTR_RO(microamps);
677 
678 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 			 char *buf)
680 {
681 	struct regulator_dev *rdev = dev_get_drvdata(dev);
682 
683 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
684 }
685 static DEVICE_ATTR_RO(name);
686 
687 static const char *regulator_opmode_to_str(int mode)
688 {
689 	switch (mode) {
690 	case REGULATOR_MODE_FAST:
691 		return "fast";
692 	case REGULATOR_MODE_NORMAL:
693 		return "normal";
694 	case REGULATOR_MODE_IDLE:
695 		return "idle";
696 	case REGULATOR_MODE_STANDBY:
697 		return "standby";
698 	}
699 	return "unknown";
700 }
701 
702 static ssize_t regulator_print_opmode(char *buf, int mode)
703 {
704 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705 }
706 
707 static ssize_t opmode_show(struct device *dev,
708 			   struct device_attribute *attr, char *buf)
709 {
710 	struct regulator_dev *rdev = dev_get_drvdata(dev);
711 
712 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713 }
714 static DEVICE_ATTR_RO(opmode);
715 
716 static ssize_t regulator_print_state(char *buf, int state)
717 {
718 	if (state > 0)
719 		return sprintf(buf, "enabled\n");
720 	else if (state == 0)
721 		return sprintf(buf, "disabled\n");
722 	else
723 		return sprintf(buf, "unknown\n");
724 }
725 
726 static ssize_t state_show(struct device *dev,
727 			  struct device_attribute *attr, char *buf)
728 {
729 	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 	ssize_t ret;
731 
732 	regulator_lock(rdev);
733 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 	regulator_unlock(rdev);
735 
736 	return ret;
737 }
738 static DEVICE_ATTR_RO(state);
739 
740 static ssize_t status_show(struct device *dev,
741 			   struct device_attribute *attr, char *buf)
742 {
743 	struct regulator_dev *rdev = dev_get_drvdata(dev);
744 	int status;
745 	char *label;
746 
747 	status = rdev->desc->ops->get_status(rdev);
748 	if (status < 0)
749 		return status;
750 
751 	switch (status) {
752 	case REGULATOR_STATUS_OFF:
753 		label = "off";
754 		break;
755 	case REGULATOR_STATUS_ON:
756 		label = "on";
757 		break;
758 	case REGULATOR_STATUS_ERROR:
759 		label = "error";
760 		break;
761 	case REGULATOR_STATUS_FAST:
762 		label = "fast";
763 		break;
764 	case REGULATOR_STATUS_NORMAL:
765 		label = "normal";
766 		break;
767 	case REGULATOR_STATUS_IDLE:
768 		label = "idle";
769 		break;
770 	case REGULATOR_STATUS_STANDBY:
771 		label = "standby";
772 		break;
773 	case REGULATOR_STATUS_BYPASS:
774 		label = "bypass";
775 		break;
776 	case REGULATOR_STATUS_UNDEFINED:
777 		label = "undefined";
778 		break;
779 	default:
780 		return -ERANGE;
781 	}
782 
783 	return sprintf(buf, "%s\n", label);
784 }
785 static DEVICE_ATTR_RO(status);
786 
787 static ssize_t min_microamps_show(struct device *dev,
788 				  struct device_attribute *attr, char *buf)
789 {
790 	struct regulator_dev *rdev = dev_get_drvdata(dev);
791 
792 	if (!rdev->constraints)
793 		return sprintf(buf, "constraint not defined\n");
794 
795 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796 }
797 static DEVICE_ATTR_RO(min_microamps);
798 
799 static ssize_t max_microamps_show(struct device *dev,
800 				  struct device_attribute *attr, char *buf)
801 {
802 	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 
804 	if (!rdev->constraints)
805 		return sprintf(buf, "constraint not defined\n");
806 
807 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808 }
809 static DEVICE_ATTR_RO(max_microamps);
810 
811 static ssize_t min_microvolts_show(struct device *dev,
812 				   struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	if (!rdev->constraints)
817 		return sprintf(buf, "constraint not defined\n");
818 
819 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820 }
821 static DEVICE_ATTR_RO(min_microvolts);
822 
823 static ssize_t max_microvolts_show(struct device *dev,
824 				   struct device_attribute *attr, char *buf)
825 {
826 	struct regulator_dev *rdev = dev_get_drvdata(dev);
827 
828 	if (!rdev->constraints)
829 		return sprintf(buf, "constraint not defined\n");
830 
831 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832 }
833 static DEVICE_ATTR_RO(max_microvolts);
834 
835 static ssize_t requested_microamps_show(struct device *dev,
836 					struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 	struct regulator *regulator;
840 	int uA = 0;
841 
842 	regulator_lock(rdev);
843 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 		if (regulator->enable_count)
845 			uA += regulator->uA_load;
846 	}
847 	regulator_unlock(rdev);
848 	return sprintf(buf, "%d\n", uA);
849 }
850 static DEVICE_ATTR_RO(requested_microamps);
851 
852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 			      char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 	return sprintf(buf, "%d\n", rdev->use_count);
857 }
858 static DEVICE_ATTR_RO(num_users);
859 
860 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 			 char *buf)
862 {
863 	struct regulator_dev *rdev = dev_get_drvdata(dev);
864 
865 	switch (rdev->desc->type) {
866 	case REGULATOR_VOLTAGE:
867 		return sprintf(buf, "voltage\n");
868 	case REGULATOR_CURRENT:
869 		return sprintf(buf, "current\n");
870 	}
871 	return sprintf(buf, "unknown\n");
872 }
873 static DEVICE_ATTR_RO(type);
874 
875 static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 					   struct device_attribute *attr, char *buf)
877 {
878 	struct regulator_dev *rdev = dev_get_drvdata(dev);
879 
880 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881 }
882 static DEVICE_ATTR_RO(suspend_mem_microvolts);
883 
884 static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 					    struct device_attribute *attr, char *buf)
886 {
887 	struct regulator_dev *rdev = dev_get_drvdata(dev);
888 
889 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890 }
891 static DEVICE_ATTR_RO(suspend_disk_microvolts);
892 
893 static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 					       struct device_attribute *attr, char *buf)
895 {
896 	struct regulator_dev *rdev = dev_get_drvdata(dev);
897 
898 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899 }
900 static DEVICE_ATTR_RO(suspend_standby_microvolts);
901 
902 static ssize_t suspend_mem_mode_show(struct device *dev,
903 				     struct device_attribute *attr, char *buf)
904 {
905 	struct regulator_dev *rdev = dev_get_drvdata(dev);
906 
907 	return regulator_print_opmode(buf,
908 		rdev->constraints->state_mem.mode);
909 }
910 static DEVICE_ATTR_RO(suspend_mem_mode);
911 
912 static ssize_t suspend_disk_mode_show(struct device *dev,
913 				      struct device_attribute *attr, char *buf)
914 {
915 	struct regulator_dev *rdev = dev_get_drvdata(dev);
916 
917 	return regulator_print_opmode(buf,
918 		rdev->constraints->state_disk.mode);
919 }
920 static DEVICE_ATTR_RO(suspend_disk_mode);
921 
922 static ssize_t suspend_standby_mode_show(struct device *dev,
923 					 struct device_attribute *attr, char *buf)
924 {
925 	struct regulator_dev *rdev = dev_get_drvdata(dev);
926 
927 	return regulator_print_opmode(buf,
928 		rdev->constraints->state_standby.mode);
929 }
930 static DEVICE_ATTR_RO(suspend_standby_mode);
931 
932 static ssize_t suspend_mem_state_show(struct device *dev,
933 				      struct device_attribute *attr, char *buf)
934 {
935 	struct regulator_dev *rdev = dev_get_drvdata(dev);
936 
937 	return regulator_print_state(buf,
938 			rdev->constraints->state_mem.enabled);
939 }
940 static DEVICE_ATTR_RO(suspend_mem_state);
941 
942 static ssize_t suspend_disk_state_show(struct device *dev,
943 				       struct device_attribute *attr, char *buf)
944 {
945 	struct regulator_dev *rdev = dev_get_drvdata(dev);
946 
947 	return regulator_print_state(buf,
948 			rdev->constraints->state_disk.enabled);
949 }
950 static DEVICE_ATTR_RO(suspend_disk_state);
951 
952 static ssize_t suspend_standby_state_show(struct device *dev,
953 					  struct device_attribute *attr, char *buf)
954 {
955 	struct regulator_dev *rdev = dev_get_drvdata(dev);
956 
957 	return regulator_print_state(buf,
958 			rdev->constraints->state_standby.enabled);
959 }
960 static DEVICE_ATTR_RO(suspend_standby_state);
961 
962 static ssize_t bypass_show(struct device *dev,
963 			   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 	const char *report;
967 	bool bypass;
968 	int ret;
969 
970 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971 
972 	if (ret != 0)
973 		report = "unknown";
974 	else if (bypass)
975 		report = "enabled";
976 	else
977 		report = "disabled";
978 
979 	return sprintf(buf, "%s\n", report);
980 }
981 static DEVICE_ATTR_RO(bypass);
982 
983 #define REGULATOR_ERROR_ATTR(name, bit)							\
984 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
985 				   char *buf)						\
986 	{										\
987 		int ret;								\
988 		unsigned int flags;							\
989 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
990 		ret = _regulator_get_error_flags(rdev, &flags);				\
991 		if (ret)								\
992 			return ret;							\
993 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
994 	}										\
995 	static DEVICE_ATTR_RO(name)
996 
997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006 
1007 /* Calculate the new optimum regulator operating mode based on the new total
1008  * consumer load. All locks held by caller
1009  */
1010 static int drms_uA_update(struct regulator_dev *rdev)
1011 {
1012 	struct regulator *sibling;
1013 	int current_uA = 0, output_uV, input_uV, err;
1014 	unsigned int mode;
1015 
1016 	/*
1017 	 * first check to see if we can set modes at all, otherwise just
1018 	 * tell the consumer everything is OK.
1019 	 */
1020 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 		return 0;
1023 	}
1024 
1025 	if (!rdev->desc->ops->get_optimum_mode &&
1026 	    !rdev->desc->ops->set_load)
1027 		return 0;
1028 
1029 	if (!rdev->desc->ops->set_mode &&
1030 	    !rdev->desc->ops->set_load)
1031 		return -EINVAL;
1032 
1033 	/* calc total requested load */
1034 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 		if (sibling->enable_count)
1036 			current_uA += sibling->uA_load;
1037 	}
1038 
1039 	current_uA += rdev->constraints->system_load;
1040 
1041 	if (rdev->desc->ops->set_load) {
1042 		/* set the optimum mode for our new total regulator load */
1043 		err = rdev->desc->ops->set_load(rdev, current_uA);
1044 		if (err < 0)
1045 			rdev_err(rdev, "failed to set load %d: %pe\n",
1046 				 current_uA, ERR_PTR(err));
1047 	} else {
1048 		/*
1049 		 * Unfortunately in some cases the constraints->valid_ops has
1050 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 		 * That's not really legit but we won't consider it a fatal
1052 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 		 * wasn't set.
1054 		 */
1055 		if (!rdev->constraints->valid_modes_mask) {
1056 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 			return 0;
1058 		}
1059 
1060 		/* get output voltage */
1061 		output_uV = regulator_get_voltage_rdev(rdev);
1062 
1063 		/*
1064 		 * Don't return an error; if regulator driver cares about
1065 		 * output_uV then it's up to the driver to validate.
1066 		 */
1067 		if (output_uV <= 0)
1068 			rdev_dbg(rdev, "invalid output voltage found\n");
1069 
1070 		/* get input voltage */
1071 		input_uV = 0;
1072 		if (rdev->supply)
1073 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 		if (input_uV <= 0)
1075 			input_uV = rdev->constraints->input_uV;
1076 
1077 		/*
1078 		 * Don't return an error; if regulator driver cares about
1079 		 * input_uV then it's up to the driver to validate.
1080 		 */
1081 		if (input_uV <= 0)
1082 			rdev_dbg(rdev, "invalid input voltage found\n");
1083 
1084 		/* now get the optimum mode for our new total regulator load */
1085 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 							 output_uV, current_uA);
1087 
1088 		/* check the new mode is allowed */
1089 		err = regulator_mode_constrain(rdev, &mode);
1090 		if (err < 0) {
1091 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 			return err;
1094 		}
1095 
1096 		err = rdev->desc->ops->set_mode(rdev, mode);
1097 		if (err < 0)
1098 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 				 mode, ERR_PTR(err));
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 static int __suspend_set_state(struct regulator_dev *rdev,
1106 			       const struct regulator_state *rstate)
1107 {
1108 	int ret = 0;
1109 
1110 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 		rdev->desc->ops->set_suspend_enable)
1112 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 		rdev->desc->ops->set_suspend_disable)
1115 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 		ret = 0;
1118 
1119 	if (ret < 0) {
1120 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 		return ret;
1122 	}
1123 
1124 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 		if (ret < 0) {
1127 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 		if (ret < 0) {
1135 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 			return ret;
1137 		}
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static int suspend_set_initial_state(struct regulator_dev *rdev)
1144 {
1145 	const struct regulator_state *rstate;
1146 
1147 	rstate = regulator_get_suspend_state_check(rdev,
1148 			rdev->constraints->initial_state);
1149 	if (!rstate)
1150 		return 0;
1151 
1152 	return __suspend_set_state(rdev, rstate);
1153 }
1154 
1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156 static void print_constraints_debug(struct regulator_dev *rdev)
1157 {
1158 	struct regulation_constraints *constraints = rdev->constraints;
1159 	char buf[160] = "";
1160 	size_t len = sizeof(buf) - 1;
1161 	int count = 0;
1162 	int ret;
1163 
1164 	if (constraints->min_uV && constraints->max_uV) {
1165 		if (constraints->min_uV == constraints->max_uV)
1166 			count += scnprintf(buf + count, len - count, "%d mV ",
1167 					   constraints->min_uV / 1000);
1168 		else
1169 			count += scnprintf(buf + count, len - count,
1170 					   "%d <--> %d mV ",
1171 					   constraints->min_uV / 1000,
1172 					   constraints->max_uV / 1000);
1173 	}
1174 
1175 	if (!constraints->min_uV ||
1176 	    constraints->min_uV != constraints->max_uV) {
1177 		ret = regulator_get_voltage_rdev(rdev);
1178 		if (ret > 0)
1179 			count += scnprintf(buf + count, len - count,
1180 					   "at %d mV ", ret / 1000);
1181 	}
1182 
1183 	if (constraints->uV_offset)
1184 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 				   constraints->uV_offset / 1000);
1186 
1187 	if (constraints->min_uA && constraints->max_uA) {
1188 		if (constraints->min_uA == constraints->max_uA)
1189 			count += scnprintf(buf + count, len - count, "%d mA ",
1190 					   constraints->min_uA / 1000);
1191 		else
1192 			count += scnprintf(buf + count, len - count,
1193 					   "%d <--> %d mA ",
1194 					   constraints->min_uA / 1000,
1195 					   constraints->max_uA / 1000);
1196 	}
1197 
1198 	if (!constraints->min_uA ||
1199 	    constraints->min_uA != constraints->max_uA) {
1200 		ret = _regulator_get_current_limit(rdev);
1201 		if (ret > 0)
1202 			count += scnprintf(buf + count, len - count,
1203 					   "at %d mA ", ret / 1000);
1204 	}
1205 
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 		count += scnprintf(buf + count, len - count, "fast ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 		count += scnprintf(buf + count, len - count, "normal ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 		count += scnprintf(buf + count, len - count, "idle ");
1212 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 		count += scnprintf(buf + count, len - count, "standby ");
1214 
1215 	if (!count)
1216 		count = scnprintf(buf, len, "no parameters");
1217 	else
1218 		--count;
1219 
1220 	count += scnprintf(buf + count, len - count, ", %s",
1221 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222 
1223 	rdev_dbg(rdev, "%s\n", buf);
1224 }
1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228 
1229 static void print_constraints(struct regulator_dev *rdev)
1230 {
1231 	struct regulation_constraints *constraints = rdev->constraints;
1232 
1233 	print_constraints_debug(rdev);
1234 
1235 	if ((constraints->min_uV != constraints->max_uV) &&
1236 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 		rdev_warn(rdev,
1238 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239 }
1240 
1241 static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 	struct regulation_constraints *constraints)
1243 {
1244 	const struct regulator_ops *ops = rdev->desc->ops;
1245 	int ret;
1246 
1247 	/* do we need to apply the constraint voltage */
1248 	if (rdev->constraints->apply_uV &&
1249 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 		int target_min, target_max;
1251 		int current_uV = regulator_get_voltage_rdev(rdev);
1252 
1253 		if (current_uV == -ENOTRECOVERABLE) {
1254 			/* This regulator can't be read and must be initialized */
1255 			rdev_info(rdev, "Setting %d-%duV\n",
1256 				  rdev->constraints->min_uV,
1257 				  rdev->constraints->max_uV);
1258 			_regulator_do_set_voltage(rdev,
1259 						  rdev->constraints->min_uV,
1260 						  rdev->constraints->max_uV);
1261 			current_uV = regulator_get_voltage_rdev(rdev);
1262 		}
1263 
1264 		if (current_uV < 0) {
1265 			if (current_uV != -EPROBE_DEFER)
1266 				rdev_err(rdev,
1267 					 "failed to get the current voltage: %pe\n",
1268 					 ERR_PTR(current_uV));
1269 			return current_uV;
1270 		}
1271 
1272 		/*
1273 		 * If we're below the minimum voltage move up to the
1274 		 * minimum voltage, if we're above the maximum voltage
1275 		 * then move down to the maximum.
1276 		 */
1277 		target_min = current_uV;
1278 		target_max = current_uV;
1279 
1280 		if (current_uV < rdev->constraints->min_uV) {
1281 			target_min = rdev->constraints->min_uV;
1282 			target_max = rdev->constraints->min_uV;
1283 		}
1284 
1285 		if (current_uV > rdev->constraints->max_uV) {
1286 			target_min = rdev->constraints->max_uV;
1287 			target_max = rdev->constraints->max_uV;
1288 		}
1289 
1290 		if (target_min != current_uV || target_max != current_uV) {
1291 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 				  current_uV, target_min, target_max);
1293 			ret = _regulator_do_set_voltage(
1294 				rdev, target_min, target_max);
1295 			if (ret < 0) {
1296 				rdev_err(rdev,
1297 					"failed to apply %d-%duV constraint: %pe\n",
1298 					target_min, target_max, ERR_PTR(ret));
1299 				return ret;
1300 			}
1301 		}
1302 	}
1303 
1304 	/* constrain machine-level voltage specs to fit
1305 	 * the actual range supported by this regulator.
1306 	 */
1307 	if (ops->list_voltage && rdev->desc->n_voltages) {
1308 		int	count = rdev->desc->n_voltages;
1309 		int	i;
1310 		int	min_uV = INT_MAX;
1311 		int	max_uV = INT_MIN;
1312 		int	cmin = constraints->min_uV;
1313 		int	cmax = constraints->max_uV;
1314 
1315 		/* it's safe to autoconfigure fixed-voltage supplies
1316 		 * and the constraints are used by list_voltage.
1317 		 */
1318 		if (count == 1 && !cmin) {
1319 			cmin = 1;
1320 			cmax = INT_MAX;
1321 			constraints->min_uV = cmin;
1322 			constraints->max_uV = cmax;
1323 		}
1324 
1325 		/* voltage constraints are optional */
1326 		if ((cmin == 0) && (cmax == 0))
1327 			return 0;
1328 
1329 		/* else require explicit machine-level constraints */
1330 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 			rdev_err(rdev, "invalid voltage constraints\n");
1332 			return -EINVAL;
1333 		}
1334 
1335 		/* no need to loop voltages if range is continuous */
1336 		if (rdev->desc->continuous_voltage_range)
1337 			return 0;
1338 
1339 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 		for (i = 0; i < count; i++) {
1341 			int	value;
1342 
1343 			value = ops->list_voltage(rdev, i);
1344 			if (value <= 0)
1345 				continue;
1346 
1347 			/* maybe adjust [min_uV..max_uV] */
1348 			if (value >= cmin && value < min_uV)
1349 				min_uV = value;
1350 			if (value <= cmax && value > max_uV)
1351 				max_uV = value;
1352 		}
1353 
1354 		/* final: [min_uV..max_uV] valid iff constraints valid */
1355 		if (max_uV < min_uV) {
1356 			rdev_err(rdev,
1357 				 "unsupportable voltage constraints %u-%uuV\n",
1358 				 min_uV, max_uV);
1359 			return -EINVAL;
1360 		}
1361 
1362 		/* use regulator's subset of machine constraints */
1363 		if (constraints->min_uV < min_uV) {
1364 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 				 constraints->min_uV, min_uV);
1366 			constraints->min_uV = min_uV;
1367 		}
1368 		if (constraints->max_uV > max_uV) {
1369 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 				 constraints->max_uV, max_uV);
1371 			constraints->max_uV = max_uV;
1372 		}
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int machine_constraints_current(struct regulator_dev *rdev,
1379 	struct regulation_constraints *constraints)
1380 {
1381 	const struct regulator_ops *ops = rdev->desc->ops;
1382 	int ret;
1383 
1384 	if (!constraints->min_uA && !constraints->max_uA)
1385 		return 0;
1386 
1387 	if (constraints->min_uA > constraints->max_uA) {
1388 		rdev_err(rdev, "Invalid current constraints\n");
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (!ops->set_current_limit || !ops->get_current_limit) {
1393 		rdev_warn(rdev, "Operation of current configuration missing\n");
1394 		return 0;
1395 	}
1396 
1397 	/* Set regulator current in constraints range */
1398 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 			constraints->max_uA);
1400 	if (ret < 0) {
1401 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 		return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int _regulator_do_enable(struct regulator_dev *rdev);
1409 
1410 static int notif_set_limit(struct regulator_dev *rdev,
1411 			   int (*set)(struct regulator_dev *, int, int, bool),
1412 			   int limit, int severity)
1413 {
1414 	bool enable;
1415 
1416 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 		enable = false;
1418 		limit = 0;
1419 	} else {
1420 		enable = true;
1421 	}
1422 
1423 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 		limit = 0;
1425 
1426 	return set(rdev, limit, severity, enable);
1427 }
1428 
1429 static int handle_notify_limits(struct regulator_dev *rdev,
1430 			int (*set)(struct regulator_dev *, int, int, bool),
1431 			struct notification_limit *limits)
1432 {
1433 	int ret = 0;
1434 
1435 	if (!set)
1436 		return -EOPNOTSUPP;
1437 
1438 	if (limits->prot)
1439 		ret = notif_set_limit(rdev, set, limits->prot,
1440 				      REGULATOR_SEVERITY_PROT);
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (limits->err)
1445 		ret = notif_set_limit(rdev, set, limits->err,
1446 				      REGULATOR_SEVERITY_ERR);
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (limits->warn)
1451 		ret = notif_set_limit(rdev, set, limits->warn,
1452 				      REGULATOR_SEVERITY_WARN);
1453 
1454 	return ret;
1455 }
1456 /**
1457  * set_machine_constraints - sets regulator constraints
1458  * @rdev: regulator source
1459  *
1460  * Allows platform initialisation code to define and constrain
1461  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462  * Constraints *must* be set by platform code in order for some
1463  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464  * set_mode.
1465  */
1466 static int set_machine_constraints(struct regulator_dev *rdev)
1467 {
1468 	int ret = 0;
1469 	const struct regulator_ops *ops = rdev->desc->ops;
1470 
1471 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 	if (ret != 0)
1473 		return ret;
1474 
1475 	ret = machine_constraints_current(rdev, rdev->constraints);
1476 	if (ret != 0)
1477 		return ret;
1478 
1479 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 		ret = ops->set_input_current_limit(rdev,
1481 						   rdev->constraints->ilim_uA);
1482 		if (ret < 0) {
1483 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 			return ret;
1485 		}
1486 	}
1487 
1488 	/* do we need to setup our suspend state */
1489 	if (rdev->constraints->initial_state) {
1490 		ret = suspend_set_initial_state(rdev);
1491 		if (ret < 0) {
1492 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 			return ret;
1494 		}
1495 	}
1496 
1497 	if (rdev->constraints->initial_mode) {
1498 		if (!ops->set_mode) {
1499 			rdev_err(rdev, "no set_mode operation\n");
1500 			return -EINVAL;
1501 		}
1502 
1503 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 		if (ret < 0) {
1505 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 			return ret;
1507 		}
1508 	} else if (rdev->constraints->system_load) {
1509 		/*
1510 		 * We'll only apply the initial system load if an
1511 		 * initial mode wasn't specified.
1512 		 */
1513 		drms_uA_update(rdev);
1514 	}
1515 
1516 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 		&& ops->set_ramp_delay) {
1518 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 		if (ret < 0) {
1520 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 			return ret;
1522 		}
1523 	}
1524 
1525 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 		ret = ops->set_pull_down(rdev);
1527 		if (ret < 0) {
1528 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 			return ret;
1530 		}
1531 	}
1532 
1533 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 		ret = ops->set_soft_start(rdev);
1535 		if (ret < 0) {
1536 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 			return ret;
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Existing logic does not warn if over_current_protection is given as
1543 	 * a constraint but driver does not support that. I think we should
1544 	 * warn about this type of issues as it is possible someone changes
1545 	 * PMIC on board to another type - and the another PMIC's driver does
1546 	 * not support setting protection. Board composer may happily believe
1547 	 * the DT limits are respected - especially if the new PMIC HW also
1548 	 * supports protection but the driver does not. I won't change the logic
1549 	 * without hearing more experienced opinion on this though.
1550 	 *
1551 	 * If warning is seen as a good idea then we can merge handling the
1552 	 * over-curret protection and detection and get rid of this special
1553 	 * handling.
1554 	 */
1555 	if (rdev->constraints->over_current_protection
1556 		&& ops->set_over_current_protection) {
1557 		int lim = rdev->constraints->over_curr_limits.prot;
1558 
1559 		ret = ops->set_over_current_protection(rdev, lim,
1560 						       REGULATOR_SEVERITY_PROT,
1561 						       true);
1562 		if (ret < 0) {
1563 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 				 ERR_PTR(ret));
1565 			return ret;
1566 		}
1567 	}
1568 
1569 	if (rdev->constraints->over_current_detection)
1570 		ret = handle_notify_limits(rdev,
1571 					   ops->set_over_current_protection,
1572 					   &rdev->constraints->over_curr_limits);
1573 	if (ret) {
1574 		if (ret != -EOPNOTSUPP) {
1575 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 				 ERR_PTR(ret));
1577 			return ret;
1578 		}
1579 		rdev_warn(rdev,
1580 			  "IC does not support requested over-current limits\n");
1581 	}
1582 
1583 	if (rdev->constraints->over_voltage_detection)
1584 		ret = handle_notify_limits(rdev,
1585 					   ops->set_over_voltage_protection,
1586 					   &rdev->constraints->over_voltage_limits);
1587 	if (ret) {
1588 		if (ret != -EOPNOTSUPP) {
1589 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 				 ERR_PTR(ret));
1591 			return ret;
1592 		}
1593 		rdev_warn(rdev,
1594 			  "IC does not support requested over voltage limits\n");
1595 	}
1596 
1597 	if (rdev->constraints->under_voltage_detection)
1598 		ret = handle_notify_limits(rdev,
1599 					   ops->set_under_voltage_protection,
1600 					   &rdev->constraints->under_voltage_limits);
1601 	if (ret) {
1602 		if (ret != -EOPNOTSUPP) {
1603 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 				 ERR_PTR(ret));
1605 			return ret;
1606 		}
1607 		rdev_warn(rdev,
1608 			  "IC does not support requested under voltage limits\n");
1609 	}
1610 
1611 	if (rdev->constraints->over_temp_detection)
1612 		ret = handle_notify_limits(rdev,
1613 					   ops->set_thermal_protection,
1614 					   &rdev->constraints->temp_limits);
1615 	if (ret) {
1616 		if (ret != -EOPNOTSUPP) {
1617 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 				 ERR_PTR(ret));
1619 			return ret;
1620 		}
1621 		rdev_warn(rdev,
1622 			  "IC does not support requested temperature limits\n");
1623 	}
1624 
1625 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 		bool ad_state = (rdev->constraints->active_discharge ==
1627 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628 
1629 		ret = ops->set_active_discharge(rdev, ad_state);
1630 		if (ret < 0) {
1631 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 			return ret;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * If there is no mechanism for controlling the regulator then
1638 	 * flag it as always_on so we don't end up duplicating checks
1639 	 * for this so much.  Note that we could control the state of
1640 	 * a supply to control the output on a regulator that has no
1641 	 * direct control.
1642 	 */
1643 	if (!rdev->ena_pin && !ops->enable) {
1644 		if (rdev->supply_name && !rdev->supply)
1645 			return -EPROBE_DEFER;
1646 
1647 		if (rdev->supply)
1648 			rdev->constraints->always_on =
1649 				rdev->supply->rdev->constraints->always_on;
1650 		else
1651 			rdev->constraints->always_on = true;
1652 	}
1653 
1654 	/* If the constraints say the regulator should be on at this point
1655 	 * and we have control then make sure it is enabled.
1656 	 */
1657 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 		/* If we want to enable this regulator, make sure that we know
1659 		 * the supplying regulator.
1660 		 */
1661 		if (rdev->supply_name && !rdev->supply)
1662 			return -EPROBE_DEFER;
1663 
1664 		/* If supplying regulator has already been enabled,
1665 		 * it's not intended to have use_count increment
1666 		 * when rdev is only boot-on.
1667 		 */
1668 		if (rdev->supply &&
1669 		    (rdev->constraints->always_on ||
1670 		     !regulator_is_enabled(rdev->supply))) {
1671 			ret = regulator_enable(rdev->supply);
1672 			if (ret < 0) {
1673 				_regulator_put(rdev->supply);
1674 				rdev->supply = NULL;
1675 				return ret;
1676 			}
1677 		}
1678 
1679 		ret = _regulator_do_enable(rdev);
1680 		if (ret < 0 && ret != -EINVAL) {
1681 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 			return ret;
1683 		}
1684 
1685 		if (rdev->constraints->always_on)
1686 			rdev->use_count++;
1687 	} else if (rdev->desc->off_on_delay) {
1688 		rdev->last_off = ktime_get();
1689 	}
1690 
1691 	print_constraints(rdev);
1692 	return 0;
1693 }
1694 
1695 /**
1696  * set_supply - set regulator supply regulator
1697  * @rdev: regulator (locked)
1698  * @supply_rdev: supply regulator (locked))
1699  *
1700  * Called by platform initialisation code to set the supply regulator for this
1701  * regulator. This ensures that a regulators supply will also be enabled by the
1702  * core if it's child is enabled.
1703  */
1704 static int set_supply(struct regulator_dev *rdev,
1705 		      struct regulator_dev *supply_rdev)
1706 {
1707 	int err;
1708 
1709 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710 
1711 	if (!try_module_get(supply_rdev->owner))
1712 		return -ENODEV;
1713 
1714 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 	if (rdev->supply == NULL) {
1716 		module_put(supply_rdev->owner);
1717 		err = -ENOMEM;
1718 		return err;
1719 	}
1720 	supply_rdev->open_count++;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727  * @rdev:         regulator source
1728  * @consumer_dev_name: dev_name() string for device supply applies to
1729  * @supply:       symbolic name for supply
1730  *
1731  * Allows platform initialisation code to map physical regulator
1732  * sources to symbolic names for supplies for use by devices.  Devices
1733  * should use these symbolic names to request regulators, avoiding the
1734  * need to provide board-specific regulator names as platform data.
1735  */
1736 static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 				      const char *consumer_dev_name,
1738 				      const char *supply)
1739 {
1740 	struct regulator_map *node, *new_node;
1741 	int has_dev;
1742 
1743 	if (supply == NULL)
1744 		return -EINVAL;
1745 
1746 	if (consumer_dev_name != NULL)
1747 		has_dev = 1;
1748 	else
1749 		has_dev = 0;
1750 
1751 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 	if (new_node == NULL)
1753 		return -ENOMEM;
1754 
1755 	new_node->regulator = rdev;
1756 	new_node->supply = supply;
1757 
1758 	if (has_dev) {
1759 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 		if (new_node->dev_name == NULL) {
1761 			kfree(new_node);
1762 			return -ENOMEM;
1763 		}
1764 	}
1765 
1766 	mutex_lock(&regulator_list_mutex);
1767 	list_for_each_entry(node, &regulator_map_list, list) {
1768 		if (node->dev_name && consumer_dev_name) {
1769 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 				continue;
1771 		} else if (node->dev_name || consumer_dev_name) {
1772 			continue;
1773 		}
1774 
1775 		if (strcmp(node->supply, supply) != 0)
1776 			continue;
1777 
1778 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 			 consumer_dev_name,
1780 			 dev_name(&node->regulator->dev),
1781 			 node->regulator->desc->name,
1782 			 supply,
1783 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 		goto fail;
1785 	}
1786 
1787 	list_add(&new_node->list, &regulator_map_list);
1788 	mutex_unlock(&regulator_list_mutex);
1789 
1790 	return 0;
1791 
1792 fail:
1793 	mutex_unlock(&regulator_list_mutex);
1794 	kfree(new_node->dev_name);
1795 	kfree(new_node);
1796 	return -EBUSY;
1797 }
1798 
1799 static void unset_regulator_supplies(struct regulator_dev *rdev)
1800 {
1801 	struct regulator_map *node, *n;
1802 
1803 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804 		if (rdev == node->regulator) {
1805 			list_del(&node->list);
1806 			kfree(node->dev_name);
1807 			kfree(node);
1808 		}
1809 	}
1810 }
1811 
1812 #ifdef CONFIG_DEBUG_FS
1813 static ssize_t constraint_flags_read_file(struct file *file,
1814 					  char __user *user_buf,
1815 					  size_t count, loff_t *ppos)
1816 {
1817 	const struct regulator *regulator = file->private_data;
1818 	const struct regulation_constraints *c = regulator->rdev->constraints;
1819 	char *buf;
1820 	ssize_t ret;
1821 
1822 	if (!c)
1823 		return 0;
1824 
1825 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 	if (!buf)
1827 		return -ENOMEM;
1828 
1829 	ret = snprintf(buf, PAGE_SIZE,
1830 			"always_on: %u\n"
1831 			"boot_on: %u\n"
1832 			"apply_uV: %u\n"
1833 			"ramp_disable: %u\n"
1834 			"soft_start: %u\n"
1835 			"pull_down: %u\n"
1836 			"over_current_protection: %u\n",
1837 			c->always_on,
1838 			c->boot_on,
1839 			c->apply_uV,
1840 			c->ramp_disable,
1841 			c->soft_start,
1842 			c->pull_down,
1843 			c->over_current_protection);
1844 
1845 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 	kfree(buf);
1847 
1848 	return ret;
1849 }
1850 
1851 #endif
1852 
1853 static const struct file_operations constraint_flags_fops = {
1854 #ifdef CONFIG_DEBUG_FS
1855 	.open = simple_open,
1856 	.read = constraint_flags_read_file,
1857 	.llseek = default_llseek,
1858 #endif
1859 };
1860 
1861 #define REG_STR_SIZE	64
1862 
1863 static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 					  struct device *dev,
1865 					  const char *supply_name)
1866 {
1867 	struct regulator *regulator;
1868 	int err = 0;
1869 
1870 	lockdep_assert_held_once(&rdev->mutex.base);
1871 
1872 	if (dev) {
1873 		char buf[REG_STR_SIZE];
1874 		int size;
1875 
1876 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 				dev->kobj.name, supply_name);
1878 		if (size >= REG_STR_SIZE)
1879 			return NULL;
1880 
1881 		supply_name = kstrdup(buf, GFP_KERNEL);
1882 		if (supply_name == NULL)
1883 			return NULL;
1884 	} else {
1885 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 		if (supply_name == NULL)
1887 			return NULL;
1888 	}
1889 
1890 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 	if (regulator == NULL) {
1892 		kfree_const(supply_name);
1893 		return NULL;
1894 	}
1895 
1896 	regulator->rdev = rdev;
1897 	regulator->supply_name = supply_name;
1898 
1899 	list_add(&regulator->list, &rdev->consumer_list);
1900 
1901 	if (dev) {
1902 		regulator->dev = dev;
1903 
1904 		/* Add a link to the device sysfs entry */
1905 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 					       supply_name);
1907 		if (err) {
1908 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 				  dev->kobj.name, ERR_PTR(err));
1910 			/* non-fatal */
1911 		}
1912 	}
1913 
1914 	if (err != -EEXIST)
1915 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 	if (IS_ERR(regulator->debugfs))
1917 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 
1919 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920 			   &regulator->uA_load);
1921 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926 			    regulator, &constraint_flags_fops);
1927 
1928 	/*
1929 	 * Check now if the regulator is an always on regulator - if
1930 	 * it is then we don't need to do nearly so much work for
1931 	 * enable/disable calls.
1932 	 */
1933 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 	    _regulator_is_enabled(rdev))
1935 		regulator->always_on = true;
1936 
1937 	return regulator;
1938 }
1939 
1940 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941 {
1942 	if (rdev->constraints && rdev->constraints->enable_time)
1943 		return rdev->constraints->enable_time;
1944 	if (rdev->desc->ops->enable_time)
1945 		return rdev->desc->ops->enable_time(rdev);
1946 	return rdev->desc->enable_time;
1947 }
1948 
1949 static struct regulator_supply_alias *regulator_find_supply_alias(
1950 		struct device *dev, const char *supply)
1951 {
1952 	struct regulator_supply_alias *map;
1953 
1954 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 			return map;
1957 
1958 	return NULL;
1959 }
1960 
1961 static void regulator_supply_alias(struct device **dev, const char **supply)
1962 {
1963 	struct regulator_supply_alias *map;
1964 
1965 	map = regulator_find_supply_alias(*dev, *supply);
1966 	if (map) {
1967 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 				*supply, map->alias_supply,
1969 				dev_name(map->alias_dev));
1970 		*dev = map->alias_dev;
1971 		*supply = map->alias_supply;
1972 	}
1973 }
1974 
1975 static int regulator_match(struct device *dev, const void *data)
1976 {
1977 	struct regulator_dev *r = dev_to_rdev(dev);
1978 
1979 	return strcmp(rdev_get_name(r), data) == 0;
1980 }
1981 
1982 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983 {
1984 	struct device *dev;
1985 
1986 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987 
1988 	return dev ? dev_to_rdev(dev) : NULL;
1989 }
1990 
1991 /**
1992  * regulator_dev_lookup - lookup a regulator device.
1993  * @dev: device for regulator "consumer".
1994  * @supply: Supply name or regulator ID.
1995  *
1996  * If successful, returns a struct regulator_dev that corresponds to the name
1997  * @supply and with the embedded struct device refcount incremented by one.
1998  * The refcount must be dropped by calling put_device().
1999  * On failure one of the following ERR-PTR-encoded values is returned:
2000  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001  * in the future.
2002  */
2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 						  const char *supply)
2005 {
2006 	struct regulator_dev *r = NULL;
2007 	struct device_node *node;
2008 	struct regulator_map *map;
2009 	const char *devname = NULL;
2010 
2011 	regulator_supply_alias(&dev, &supply);
2012 
2013 	/* first do a dt based lookup */
2014 	if (dev && dev->of_node) {
2015 		node = of_get_regulator(dev, supply);
2016 		if (node) {
2017 			r = of_find_regulator_by_node(node);
2018 			of_node_put(node);
2019 			if (r)
2020 				return r;
2021 
2022 			/*
2023 			 * We have a node, but there is no device.
2024 			 * assume it has not registered yet.
2025 			 */
2026 			return ERR_PTR(-EPROBE_DEFER);
2027 		}
2028 	}
2029 
2030 	/* if not found, try doing it non-dt way */
2031 	if (dev)
2032 		devname = dev_name(dev);
2033 
2034 	mutex_lock(&regulator_list_mutex);
2035 	list_for_each_entry(map, &regulator_map_list, list) {
2036 		/* If the mapping has a device set up it must match */
2037 		if (map->dev_name &&
2038 		    (!devname || strcmp(map->dev_name, devname)))
2039 			continue;
2040 
2041 		if (strcmp(map->supply, supply) == 0 &&
2042 		    get_device(&map->regulator->dev)) {
2043 			r = map->regulator;
2044 			break;
2045 		}
2046 	}
2047 	mutex_unlock(&regulator_list_mutex);
2048 
2049 	if (r)
2050 		return r;
2051 
2052 	r = regulator_lookup_by_name(supply);
2053 	if (r)
2054 		return r;
2055 
2056 	return ERR_PTR(-ENODEV);
2057 }
2058 
2059 static int regulator_resolve_supply(struct regulator_dev *rdev)
2060 {
2061 	struct regulator_dev *r;
2062 	struct device *dev = rdev->dev.parent;
2063 	struct ww_acquire_ctx ww_ctx;
2064 	int ret = 0;
2065 
2066 	/* No supply to resolve? */
2067 	if (!rdev->supply_name)
2068 		return 0;
2069 
2070 	/* Supply already resolved? (fast-path without locking contention) */
2071 	if (rdev->supply)
2072 		return 0;
2073 
2074 	r = regulator_dev_lookup(dev, rdev->supply_name);
2075 	if (IS_ERR(r)) {
2076 		ret = PTR_ERR(r);
2077 
2078 		/* Did the lookup explicitly defer for us? */
2079 		if (ret == -EPROBE_DEFER)
2080 			goto out;
2081 
2082 		if (have_full_constraints()) {
2083 			r = dummy_regulator_rdev;
2084 			get_device(&r->dev);
2085 		} else {
2086 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 				rdev->supply_name, rdev->desc->name);
2088 			ret = -EPROBE_DEFER;
2089 			goto out;
2090 		}
2091 	}
2092 
2093 	if (r == rdev) {
2094 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 			rdev->desc->name, rdev->supply_name);
2096 		if (!have_full_constraints()) {
2097 			ret = -EINVAL;
2098 			goto out;
2099 		}
2100 		r = dummy_regulator_rdev;
2101 		get_device(&r->dev);
2102 	}
2103 
2104 	/*
2105 	 * If the supply's parent device is not the same as the
2106 	 * regulator's parent device, then ensure the parent device
2107 	 * is bound before we resolve the supply, in case the parent
2108 	 * device get probe deferred and unregisters the supply.
2109 	 */
2110 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 		if (!device_is_bound(r->dev.parent)) {
2112 			put_device(&r->dev);
2113 			ret = -EPROBE_DEFER;
2114 			goto out;
2115 		}
2116 	}
2117 
2118 	/* Recursively resolve the supply of the supply */
2119 	ret = regulator_resolve_supply(r);
2120 	if (ret < 0) {
2121 		put_device(&r->dev);
2122 		goto out;
2123 	}
2124 
2125 	/*
2126 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 	 * between rdev->supply null check and setting rdev->supply in
2128 	 * set_supply() from concurrent tasks.
2129 	 */
2130 	regulator_lock_two(rdev, r, &ww_ctx);
2131 
2132 	/* Supply just resolved by a concurrent task? */
2133 	if (rdev->supply) {
2134 		regulator_unlock_two(rdev, r, &ww_ctx);
2135 		put_device(&r->dev);
2136 		goto out;
2137 	}
2138 
2139 	ret = set_supply(rdev, r);
2140 	if (ret < 0) {
2141 		regulator_unlock_two(rdev, r, &ww_ctx);
2142 		put_device(&r->dev);
2143 		goto out;
2144 	}
2145 
2146 	regulator_unlock_two(rdev, r, &ww_ctx);
2147 
2148 	/*
2149 	 * In set_machine_constraints() we may have turned this regulator on
2150 	 * but we couldn't propagate to the supply if it hadn't been resolved
2151 	 * yet.  Do it now.
2152 	 */
2153 	if (rdev->use_count) {
2154 		ret = regulator_enable(rdev->supply);
2155 		if (ret < 0) {
2156 			_regulator_put(rdev->supply);
2157 			rdev->supply = NULL;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 out:
2163 	return ret;
2164 }
2165 
2166 /* Internal regulator request function */
2167 struct regulator *_regulator_get(struct device *dev, const char *id,
2168 				 enum regulator_get_type get_type)
2169 {
2170 	struct regulator_dev *rdev;
2171 	struct regulator *regulator;
2172 	struct device_link *link;
2173 	int ret;
2174 
2175 	if (get_type >= MAX_GET_TYPE) {
2176 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 		return ERR_PTR(-EINVAL);
2178 	}
2179 
2180 	if (id == NULL) {
2181 		pr_err("get() with no identifier\n");
2182 		return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	rdev = regulator_dev_lookup(dev, id);
2186 	if (IS_ERR(rdev)) {
2187 		ret = PTR_ERR(rdev);
2188 
2189 		/*
2190 		 * If regulator_dev_lookup() fails with error other
2191 		 * than -ENODEV our job here is done, we simply return it.
2192 		 */
2193 		if (ret != -ENODEV)
2194 			return ERR_PTR(ret);
2195 
2196 		if (!have_full_constraints()) {
2197 			dev_warn(dev,
2198 				 "incomplete constraints, dummy supplies not allowed\n");
2199 			return ERR_PTR(-ENODEV);
2200 		}
2201 
2202 		switch (get_type) {
2203 		case NORMAL_GET:
2204 			/*
2205 			 * Assume that a regulator is physically present and
2206 			 * enabled, even if it isn't hooked up, and just
2207 			 * provide a dummy.
2208 			 */
2209 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 			rdev = dummy_regulator_rdev;
2211 			get_device(&rdev->dev);
2212 			break;
2213 
2214 		case EXCLUSIVE_GET:
2215 			dev_warn(dev,
2216 				 "dummy supplies not allowed for exclusive requests\n");
2217 			fallthrough;
2218 
2219 		default:
2220 			return ERR_PTR(-ENODEV);
2221 		}
2222 	}
2223 
2224 	if (rdev->exclusive) {
2225 		regulator = ERR_PTR(-EPERM);
2226 		put_device(&rdev->dev);
2227 		return regulator;
2228 	}
2229 
2230 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 		regulator = ERR_PTR(-EBUSY);
2232 		put_device(&rdev->dev);
2233 		return regulator;
2234 	}
2235 
2236 	mutex_lock(&regulator_list_mutex);
2237 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 	mutex_unlock(&regulator_list_mutex);
2239 
2240 	if (ret != 0) {
2241 		regulator = ERR_PTR(-EPROBE_DEFER);
2242 		put_device(&rdev->dev);
2243 		return regulator;
2244 	}
2245 
2246 	ret = regulator_resolve_supply(rdev);
2247 	if (ret < 0) {
2248 		regulator = ERR_PTR(ret);
2249 		put_device(&rdev->dev);
2250 		return regulator;
2251 	}
2252 
2253 	if (!try_module_get(rdev->owner)) {
2254 		regulator = ERR_PTR(-EPROBE_DEFER);
2255 		put_device(&rdev->dev);
2256 		return regulator;
2257 	}
2258 
2259 	regulator_lock(rdev);
2260 	regulator = create_regulator(rdev, dev, id);
2261 	regulator_unlock(rdev);
2262 	if (regulator == NULL) {
2263 		regulator = ERR_PTR(-ENOMEM);
2264 		module_put(rdev->owner);
2265 		put_device(&rdev->dev);
2266 		return regulator;
2267 	}
2268 
2269 	rdev->open_count++;
2270 	if (get_type == EXCLUSIVE_GET) {
2271 		rdev->exclusive = 1;
2272 
2273 		ret = _regulator_is_enabled(rdev);
2274 		if (ret > 0) {
2275 			rdev->use_count = 1;
2276 			regulator->enable_count = 1;
2277 		} else {
2278 			rdev->use_count = 0;
2279 			regulator->enable_count = 0;
2280 		}
2281 	}
2282 
2283 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 	if (!IS_ERR_OR_NULL(link))
2285 		regulator->device_link = true;
2286 
2287 	return regulator;
2288 }
2289 
2290 /**
2291  * regulator_get - lookup and obtain a reference to a regulator.
2292  * @dev: device for regulator "consumer"
2293  * @id: Supply name or regulator ID.
2294  *
2295  * Returns a struct regulator corresponding to the regulator producer,
2296  * or IS_ERR() condition containing errno.
2297  *
2298  * Use of supply names configured via set_consumer_device_supply() is
2299  * strongly encouraged.  It is recommended that the supply name used
2300  * should match the name used for the supply and/or the relevant
2301  * device pins in the datasheet.
2302  */
2303 struct regulator *regulator_get(struct device *dev, const char *id)
2304 {
2305 	return _regulator_get(dev, id, NORMAL_GET);
2306 }
2307 EXPORT_SYMBOL_GPL(regulator_get);
2308 
2309 /**
2310  * regulator_get_exclusive - obtain exclusive access to a regulator.
2311  * @dev: device for regulator "consumer"
2312  * @id: Supply name or regulator ID.
2313  *
2314  * Returns a struct regulator corresponding to the regulator producer,
2315  * or IS_ERR() condition containing errno.  Other consumers will be
2316  * unable to obtain this regulator while this reference is held and the
2317  * use count for the regulator will be initialised to reflect the current
2318  * state of the regulator.
2319  *
2320  * This is intended for use by consumers which cannot tolerate shared
2321  * use of the regulator such as those which need to force the
2322  * regulator off for correct operation of the hardware they are
2323  * controlling.
2324  *
2325  * Use of supply names configured via set_consumer_device_supply() is
2326  * strongly encouraged.  It is recommended that the supply name used
2327  * should match the name used for the supply and/or the relevant
2328  * device pins in the datasheet.
2329  */
2330 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331 {
2332 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333 }
2334 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335 
2336 /**
2337  * regulator_get_optional - obtain optional access to a regulator.
2338  * @dev: device for regulator "consumer"
2339  * @id: Supply name or regulator ID.
2340  *
2341  * Returns a struct regulator corresponding to the regulator producer,
2342  * or IS_ERR() condition containing errno.
2343  *
2344  * This is intended for use by consumers for devices which can have
2345  * some supplies unconnected in normal use, such as some MMC devices.
2346  * It can allow the regulator core to provide stub supplies for other
2347  * supplies requested using normal regulator_get() calls without
2348  * disrupting the operation of drivers that can handle absent
2349  * supplies.
2350  *
2351  * Use of supply names configured via set_consumer_device_supply() is
2352  * strongly encouraged.  It is recommended that the supply name used
2353  * should match the name used for the supply and/or the relevant
2354  * device pins in the datasheet.
2355  */
2356 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357 {
2358 	return _regulator_get(dev, id, OPTIONAL_GET);
2359 }
2360 EXPORT_SYMBOL_GPL(regulator_get_optional);
2361 
2362 static void destroy_regulator(struct regulator *regulator)
2363 {
2364 	struct regulator_dev *rdev = regulator->rdev;
2365 
2366 	debugfs_remove_recursive(regulator->debugfs);
2367 
2368 	if (regulator->dev) {
2369 		if (regulator->device_link)
2370 			device_link_remove(regulator->dev, &rdev->dev);
2371 
2372 		/* remove any sysfs entries */
2373 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 	}
2375 
2376 	regulator_lock(rdev);
2377 	list_del(&regulator->list);
2378 
2379 	rdev->open_count--;
2380 	rdev->exclusive = 0;
2381 	regulator_unlock(rdev);
2382 
2383 	kfree_const(regulator->supply_name);
2384 	kfree(regulator);
2385 }
2386 
2387 /* regulator_list_mutex lock held by regulator_put() */
2388 static void _regulator_put(struct regulator *regulator)
2389 {
2390 	struct regulator_dev *rdev;
2391 
2392 	if (IS_ERR_OR_NULL(regulator))
2393 		return;
2394 
2395 	lockdep_assert_held_once(&regulator_list_mutex);
2396 
2397 	/* Docs say you must disable before calling regulator_put() */
2398 	WARN_ON(regulator->enable_count);
2399 
2400 	rdev = regulator->rdev;
2401 
2402 	destroy_regulator(regulator);
2403 
2404 	module_put(rdev->owner);
2405 	put_device(&rdev->dev);
2406 }
2407 
2408 /**
2409  * regulator_put - "free" the regulator source
2410  * @regulator: regulator source
2411  *
2412  * Note: drivers must ensure that all regulator_enable calls made on this
2413  * regulator source are balanced by regulator_disable calls prior to calling
2414  * this function.
2415  */
2416 void regulator_put(struct regulator *regulator)
2417 {
2418 	mutex_lock(&regulator_list_mutex);
2419 	_regulator_put(regulator);
2420 	mutex_unlock(&regulator_list_mutex);
2421 }
2422 EXPORT_SYMBOL_GPL(regulator_put);
2423 
2424 /**
2425  * regulator_register_supply_alias - Provide device alias for supply lookup
2426  *
2427  * @dev: device that will be given as the regulator "consumer"
2428  * @id: Supply name or regulator ID
2429  * @alias_dev: device that should be used to lookup the supply
2430  * @alias_id: Supply name or regulator ID that should be used to lookup the
2431  * supply
2432  *
2433  * All lookups for id on dev will instead be conducted for alias_id on
2434  * alias_dev.
2435  */
2436 int regulator_register_supply_alias(struct device *dev, const char *id,
2437 				    struct device *alias_dev,
2438 				    const char *alias_id)
2439 {
2440 	struct regulator_supply_alias *map;
2441 
2442 	map = regulator_find_supply_alias(dev, id);
2443 	if (map)
2444 		return -EEXIST;
2445 
2446 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 	if (!map)
2448 		return -ENOMEM;
2449 
2450 	map->src_dev = dev;
2451 	map->src_supply = id;
2452 	map->alias_dev = alias_dev;
2453 	map->alias_supply = alias_id;
2454 
2455 	list_add(&map->list, &regulator_supply_alias_list);
2456 
2457 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459 
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463 
2464 /**
2465  * regulator_unregister_supply_alias - Remove device alias
2466  *
2467  * @dev: device that will be given as the regulator "consumer"
2468  * @id: Supply name or regulator ID
2469  *
2470  * Remove a lookup alias if one exists for id on dev.
2471  */
2472 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473 {
2474 	struct regulator_supply_alias *map;
2475 
2476 	map = regulator_find_supply_alias(dev, id);
2477 	if (map) {
2478 		list_del(&map->list);
2479 		kfree(map);
2480 	}
2481 }
2482 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483 
2484 /**
2485  * regulator_bulk_register_supply_alias - register multiple aliases
2486  *
2487  * @dev: device that will be given as the regulator "consumer"
2488  * @id: List of supply names or regulator IDs
2489  * @alias_dev: device that should be used to lookup the supply
2490  * @alias_id: List of supply names or regulator IDs that should be used to
2491  * lookup the supply
2492  * @num_id: Number of aliases to register
2493  *
2494  * @return 0 on success, an errno on failure.
2495  *
2496  * This helper function allows drivers to register several supply
2497  * aliases in one operation.  If any of the aliases cannot be
2498  * registered any aliases that were registered will be removed
2499  * before returning to the caller.
2500  */
2501 int regulator_bulk_register_supply_alias(struct device *dev,
2502 					 const char *const *id,
2503 					 struct device *alias_dev,
2504 					 const char *const *alias_id,
2505 					 int num_id)
2506 {
2507 	int i;
2508 	int ret;
2509 
2510 	for (i = 0; i < num_id; ++i) {
2511 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 						      alias_id[i]);
2513 		if (ret < 0)
2514 			goto err;
2515 	}
2516 
2517 	return 0;
2518 
2519 err:
2520 	dev_err(dev,
2521 		"Failed to create supply alias %s,%s -> %s,%s\n",
2522 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523 
2524 	while (--i >= 0)
2525 		regulator_unregister_supply_alias(dev, id[i]);
2526 
2527 	return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530 
2531 /**
2532  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533  *
2534  * @dev: device that will be given as the regulator "consumer"
2535  * @id: List of supply names or regulator IDs
2536  * @num_id: Number of aliases to unregister
2537  *
2538  * This helper function allows drivers to unregister several supply
2539  * aliases in one operation.
2540  */
2541 void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 					    const char *const *id,
2543 					    int num_id)
2544 {
2545 	int i;
2546 
2547 	for (i = 0; i < num_id; ++i)
2548 		regulator_unregister_supply_alias(dev, id[i]);
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551 
2552 
2553 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 				const struct regulator_config *config)
2556 {
2557 	struct regulator_enable_gpio *pin, *new_pin;
2558 	struct gpio_desc *gpiod;
2559 
2560 	gpiod = config->ena_gpiod;
2561 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562 
2563 	mutex_lock(&regulator_list_mutex);
2564 
2565 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566 		if (pin->gpiod == gpiod) {
2567 			rdev_dbg(rdev, "GPIO is already used\n");
2568 			goto update_ena_gpio_to_rdev;
2569 		}
2570 	}
2571 
2572 	if (new_pin == NULL) {
2573 		mutex_unlock(&regulator_list_mutex);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	pin = new_pin;
2578 	new_pin = NULL;
2579 
2580 	pin->gpiod = gpiod;
2581 	list_add(&pin->list, &regulator_ena_gpio_list);
2582 
2583 update_ena_gpio_to_rdev:
2584 	pin->request_count++;
2585 	rdev->ena_pin = pin;
2586 
2587 	mutex_unlock(&regulator_list_mutex);
2588 	kfree(new_pin);
2589 
2590 	return 0;
2591 }
2592 
2593 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594 {
2595 	struct regulator_enable_gpio *pin, *n;
2596 
2597 	if (!rdev->ena_pin)
2598 		return;
2599 
2600 	/* Free the GPIO only in case of no use */
2601 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602 		if (pin != rdev->ena_pin)
2603 			continue;
2604 
2605 		if (--pin->request_count)
2606 			break;
2607 
2608 		gpiod_put(pin->gpiod);
2609 		list_del(&pin->list);
2610 		kfree(pin);
2611 		break;
2612 	}
2613 
2614 	rdev->ena_pin = NULL;
2615 }
2616 
2617 /**
2618  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619  * @rdev: regulator_dev structure
2620  * @enable: enable GPIO at initial use?
2621  *
2622  * GPIO is enabled in case of initial use. (enable_count is 0)
2623  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624  */
2625 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626 {
2627 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628 
2629 	if (!pin)
2630 		return -EINVAL;
2631 
2632 	if (enable) {
2633 		/* Enable GPIO at initial use */
2634 		if (pin->enable_count == 0)
2635 			gpiod_set_value_cansleep(pin->gpiod, 1);
2636 
2637 		pin->enable_count++;
2638 	} else {
2639 		if (pin->enable_count > 1) {
2640 			pin->enable_count--;
2641 			return 0;
2642 		}
2643 
2644 		/* Disable GPIO if not used */
2645 		if (pin->enable_count <= 1) {
2646 			gpiod_set_value_cansleep(pin->gpiod, 0);
2647 			pin->enable_count = 0;
2648 		}
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * _regulator_delay_helper - a delay helper function
2656  * @delay: time to delay in microseconds
2657  *
2658  * Delay for the requested amount of time as per the guidelines in:
2659  *
2660  *     Documentation/timers/timers-howto.rst
2661  *
2662  * The assumption here is that these regulator operations will never used in
2663  * atomic context and therefore sleeping functions can be used.
2664  */
2665 static void _regulator_delay_helper(unsigned int delay)
2666 {
2667 	unsigned int ms = delay / 1000;
2668 	unsigned int us = delay % 1000;
2669 
2670 	if (ms > 0) {
2671 		/*
2672 		 * For small enough values, handle super-millisecond
2673 		 * delays in the usleep_range() call below.
2674 		 */
2675 		if (ms < 20)
2676 			us += ms * 1000;
2677 		else
2678 			msleep(ms);
2679 	}
2680 
2681 	/*
2682 	 * Give the scheduler some room to coalesce with any other
2683 	 * wakeup sources. For delays shorter than 10 us, don't even
2684 	 * bother setting up high-resolution timers and just busy-
2685 	 * loop.
2686 	 */
2687 	if (us >= 10)
2688 		usleep_range(us, us + 100);
2689 	else
2690 		udelay(us);
2691 }
2692 
2693 /**
2694  * _regulator_check_status_enabled
2695  *
2696  * A helper function to check if the regulator status can be interpreted
2697  * as 'regulator is enabled'.
2698  * @rdev: the regulator device to check
2699  *
2700  * Return:
2701  * * 1			- if status shows regulator is in enabled state
2702  * * 0			- if not enabled state
2703  * * Error Value	- as received from ops->get_status()
2704  */
2705 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706 {
2707 	int ret = rdev->desc->ops->get_status(rdev);
2708 
2709 	if (ret < 0) {
2710 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 		return ret;
2712 	}
2713 
2714 	switch (ret) {
2715 	case REGULATOR_STATUS_OFF:
2716 	case REGULATOR_STATUS_ERROR:
2717 	case REGULATOR_STATUS_UNDEFINED:
2718 		return 0;
2719 	default:
2720 		return 1;
2721 	}
2722 }
2723 
2724 static int _regulator_do_enable(struct regulator_dev *rdev)
2725 {
2726 	int ret, delay;
2727 
2728 	/* Query before enabling in case configuration dependent.  */
2729 	ret = _regulator_get_enable_time(rdev);
2730 	if (ret >= 0) {
2731 		delay = ret;
2732 	} else {
2733 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 		delay = 0;
2735 	}
2736 
2737 	trace_regulator_enable(rdev_get_name(rdev));
2738 
2739 	if (rdev->desc->off_on_delay) {
2740 		/* if needed, keep a distance of off_on_delay from last time
2741 		 * this regulator was disabled.
2742 		 */
2743 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745 
2746 		if (remaining > 0)
2747 			_regulator_delay_helper(remaining);
2748 	}
2749 
2750 	if (rdev->ena_pin) {
2751 		if (!rdev->ena_gpio_state) {
2752 			ret = regulator_ena_gpio_ctrl(rdev, true);
2753 			if (ret < 0)
2754 				return ret;
2755 			rdev->ena_gpio_state = 1;
2756 		}
2757 	} else if (rdev->desc->ops->enable) {
2758 		ret = rdev->desc->ops->enable(rdev);
2759 		if (ret < 0)
2760 			return ret;
2761 	} else {
2762 		return -EINVAL;
2763 	}
2764 
2765 	/* Allow the regulator to ramp; it would be useful to extend
2766 	 * this for bulk operations so that the regulators can ramp
2767 	 * together.
2768 	 */
2769 	trace_regulator_enable_delay(rdev_get_name(rdev));
2770 
2771 	/* If poll_enabled_time is set, poll upto the delay calculated
2772 	 * above, delaying poll_enabled_time uS to check if the regulator
2773 	 * actually got enabled.
2774 	 * If the regulator isn't enabled after our delay helper has expired,
2775 	 * return -ETIMEDOUT.
2776 	 */
2777 	if (rdev->desc->poll_enabled_time) {
2778 		int time_remaining = delay;
2779 
2780 		while (time_remaining > 0) {
2781 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782 
2783 			if (rdev->desc->ops->get_status) {
2784 				ret = _regulator_check_status_enabled(rdev);
2785 				if (ret < 0)
2786 					return ret;
2787 				else if (ret)
2788 					break;
2789 			} else if (rdev->desc->ops->is_enabled(rdev))
2790 				break;
2791 
2792 			time_remaining -= rdev->desc->poll_enabled_time;
2793 		}
2794 
2795 		if (time_remaining <= 0) {
2796 			rdev_err(rdev, "Enabled check timed out\n");
2797 			return -ETIMEDOUT;
2798 		}
2799 	} else {
2800 		_regulator_delay_helper(delay);
2801 	}
2802 
2803 	trace_regulator_enable_complete(rdev_get_name(rdev));
2804 
2805 	return 0;
2806 }
2807 
2808 /**
2809  * _regulator_handle_consumer_enable - handle that a consumer enabled
2810  * @regulator: regulator source
2811  *
2812  * Some things on a regulator consumer (like the contribution towards total
2813  * load on the regulator) only have an effect when the consumer wants the
2814  * regulator enabled.  Explained in example with two consumers of the same
2815  * regulator:
2816  *   consumer A: set_load(100);       => total load = 0
2817  *   consumer A: regulator_enable();  => total load = 100
2818  *   consumer B: set_load(1000);      => total load = 100
2819  *   consumer B: regulator_enable();  => total load = 1100
2820  *   consumer A: regulator_disable(); => total_load = 1000
2821  *
2822  * This function (together with _regulator_handle_consumer_disable) is
2823  * responsible for keeping track of the refcount for a given regulator consumer
2824  * and applying / unapplying these things.
2825  *
2826  * Returns 0 upon no error; -error upon error.
2827  */
2828 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829 {
2830 	int ret;
2831 	struct regulator_dev *rdev = regulator->rdev;
2832 
2833 	lockdep_assert_held_once(&rdev->mutex.base);
2834 
2835 	regulator->enable_count++;
2836 	if (regulator->uA_load && regulator->enable_count == 1) {
2837 		ret = drms_uA_update(rdev);
2838 		if (ret)
2839 			regulator->enable_count--;
2840 		return ret;
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 /**
2847  * _regulator_handle_consumer_disable - handle that a consumer disabled
2848  * @regulator: regulator source
2849  *
2850  * The opposite of _regulator_handle_consumer_enable().
2851  *
2852  * Returns 0 upon no error; -error upon error.
2853  */
2854 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855 {
2856 	struct regulator_dev *rdev = regulator->rdev;
2857 
2858 	lockdep_assert_held_once(&rdev->mutex.base);
2859 
2860 	if (!regulator->enable_count) {
2861 		rdev_err(rdev, "Underflow of regulator enable count\n");
2862 		return -EINVAL;
2863 	}
2864 
2865 	regulator->enable_count--;
2866 	if (regulator->uA_load && regulator->enable_count == 0)
2867 		return drms_uA_update(rdev);
2868 
2869 	return 0;
2870 }
2871 
2872 /* locks held by regulator_enable() */
2873 static int _regulator_enable(struct regulator *regulator)
2874 {
2875 	struct regulator_dev *rdev = regulator->rdev;
2876 	int ret;
2877 
2878 	lockdep_assert_held_once(&rdev->mutex.base);
2879 
2880 	if (rdev->use_count == 0 && rdev->supply) {
2881 		ret = _regulator_enable(rdev->supply);
2882 		if (ret < 0)
2883 			return ret;
2884 	}
2885 
2886 	/* balance only if there are regulators coupled */
2887 	if (rdev->coupling_desc.n_coupled > 1) {
2888 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 		if (ret < 0)
2890 			goto err_disable_supply;
2891 	}
2892 
2893 	ret = _regulator_handle_consumer_enable(regulator);
2894 	if (ret < 0)
2895 		goto err_disable_supply;
2896 
2897 	if (rdev->use_count == 0) {
2898 		/*
2899 		 * The regulator may already be enabled if it's not switchable
2900 		 * or was left on
2901 		 */
2902 		ret = _regulator_is_enabled(rdev);
2903 		if (ret == -EINVAL || ret == 0) {
2904 			if (!regulator_ops_is_valid(rdev,
2905 					REGULATOR_CHANGE_STATUS)) {
2906 				ret = -EPERM;
2907 				goto err_consumer_disable;
2908 			}
2909 
2910 			ret = _regulator_do_enable(rdev);
2911 			if (ret < 0)
2912 				goto err_consumer_disable;
2913 
2914 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 					     NULL);
2916 		} else if (ret < 0) {
2917 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 			goto err_consumer_disable;
2919 		}
2920 		/* Fallthrough on positive return values - already enabled */
2921 	}
2922 
2923 	if (regulator->enable_count == 1)
2924 		rdev->use_count++;
2925 
2926 	return 0;
2927 
2928 err_consumer_disable:
2929 	_regulator_handle_consumer_disable(regulator);
2930 
2931 err_disable_supply:
2932 	if (rdev->use_count == 0 && rdev->supply)
2933 		_regulator_disable(rdev->supply);
2934 
2935 	return ret;
2936 }
2937 
2938 /**
2939  * regulator_enable - enable regulator output
2940  * @regulator: regulator source
2941  *
2942  * Request that the regulator be enabled with the regulator output at
2943  * the predefined voltage or current value.  Calls to regulator_enable()
2944  * must be balanced with calls to regulator_disable().
2945  *
2946  * NOTE: the output value can be set by other drivers, boot loader or may be
2947  * hardwired in the regulator.
2948  */
2949 int regulator_enable(struct regulator *regulator)
2950 {
2951 	struct regulator_dev *rdev = regulator->rdev;
2952 	struct ww_acquire_ctx ww_ctx;
2953 	int ret;
2954 
2955 	regulator_lock_dependent(rdev, &ww_ctx);
2956 	ret = _regulator_enable(regulator);
2957 	regulator_unlock_dependent(rdev, &ww_ctx);
2958 
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL_GPL(regulator_enable);
2962 
2963 static int _regulator_do_disable(struct regulator_dev *rdev)
2964 {
2965 	int ret;
2966 
2967 	trace_regulator_disable(rdev_get_name(rdev));
2968 
2969 	if (rdev->ena_pin) {
2970 		if (rdev->ena_gpio_state) {
2971 			ret = regulator_ena_gpio_ctrl(rdev, false);
2972 			if (ret < 0)
2973 				return ret;
2974 			rdev->ena_gpio_state = 0;
2975 		}
2976 
2977 	} else if (rdev->desc->ops->disable) {
2978 		ret = rdev->desc->ops->disable(rdev);
2979 		if (ret != 0)
2980 			return ret;
2981 	}
2982 
2983 	if (rdev->desc->off_on_delay)
2984 		rdev->last_off = ktime_get_boottime();
2985 
2986 	trace_regulator_disable_complete(rdev_get_name(rdev));
2987 
2988 	return 0;
2989 }
2990 
2991 /* locks held by regulator_disable() */
2992 static int _regulator_disable(struct regulator *regulator)
2993 {
2994 	struct regulator_dev *rdev = regulator->rdev;
2995 	int ret = 0;
2996 
2997 	lockdep_assert_held_once(&rdev->mutex.base);
2998 
2999 	if (WARN(regulator->enable_count == 0,
3000 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001 		return -EIO;
3002 
3003 	if (regulator->enable_count == 1) {
3004 	/* disabling last enable_count from this regulator */
3005 		/* are we the last user and permitted to disable ? */
3006 		if (rdev->use_count == 1 &&
3007 		    (rdev->constraints && !rdev->constraints->always_on)) {
3008 
3009 			/* we are last user */
3010 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011 				ret = _notifier_call_chain(rdev,
3012 							   REGULATOR_EVENT_PRE_DISABLE,
3013 							   NULL);
3014 				if (ret & NOTIFY_STOP_MASK)
3015 					return -EINVAL;
3016 
3017 				ret = _regulator_do_disable(rdev);
3018 				if (ret < 0) {
3019 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020 					_notifier_call_chain(rdev,
3021 							REGULATOR_EVENT_ABORT_DISABLE,
3022 							NULL);
3023 					return ret;
3024 				}
3025 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026 						NULL);
3027 			}
3028 
3029 			rdev->use_count = 0;
3030 		} else if (rdev->use_count > 1) {
3031 			rdev->use_count--;
3032 		}
3033 	}
3034 
3035 	if (ret == 0)
3036 		ret = _regulator_handle_consumer_disable(regulator);
3037 
3038 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040 
3041 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042 		ret = _regulator_disable(rdev->supply);
3043 
3044 	return ret;
3045 }
3046 
3047 /**
3048  * regulator_disable - disable regulator output
3049  * @regulator: regulator source
3050  *
3051  * Disable the regulator output voltage or current.  Calls to
3052  * regulator_enable() must be balanced with calls to
3053  * regulator_disable().
3054  *
3055  * NOTE: this will only disable the regulator output if no other consumer
3056  * devices have it enabled, the regulator device supports disabling and
3057  * machine constraints permit this operation.
3058  */
3059 int regulator_disable(struct regulator *regulator)
3060 {
3061 	struct regulator_dev *rdev = regulator->rdev;
3062 	struct ww_acquire_ctx ww_ctx;
3063 	int ret;
3064 
3065 	regulator_lock_dependent(rdev, &ww_ctx);
3066 	ret = _regulator_disable(regulator);
3067 	regulator_unlock_dependent(rdev, &ww_ctx);
3068 
3069 	return ret;
3070 }
3071 EXPORT_SYMBOL_GPL(regulator_disable);
3072 
3073 /* locks held by regulator_force_disable() */
3074 static int _regulator_force_disable(struct regulator_dev *rdev)
3075 {
3076 	int ret = 0;
3077 
3078 	lockdep_assert_held_once(&rdev->mutex.base);
3079 
3080 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3082 	if (ret & NOTIFY_STOP_MASK)
3083 		return -EINVAL;
3084 
3085 	ret = _regulator_do_disable(rdev);
3086 	if (ret < 0) {
3087 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090 		return ret;
3091 	}
3092 
3093 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 			REGULATOR_EVENT_DISABLE, NULL);
3095 
3096 	return 0;
3097 }
3098 
3099 /**
3100  * regulator_force_disable - force disable regulator output
3101  * @regulator: regulator source
3102  *
3103  * Forcibly disable the regulator output voltage or current.
3104  * NOTE: this *will* disable the regulator output even if other consumer
3105  * devices have it enabled. This should be used for situations when device
3106  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107  */
3108 int regulator_force_disable(struct regulator *regulator)
3109 {
3110 	struct regulator_dev *rdev = regulator->rdev;
3111 	struct ww_acquire_ctx ww_ctx;
3112 	int ret;
3113 
3114 	regulator_lock_dependent(rdev, &ww_ctx);
3115 
3116 	ret = _regulator_force_disable(regulator->rdev);
3117 
3118 	if (rdev->coupling_desc.n_coupled > 1)
3119 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120 
3121 	if (regulator->uA_load) {
3122 		regulator->uA_load = 0;
3123 		ret = drms_uA_update(rdev);
3124 	}
3125 
3126 	if (rdev->use_count != 0 && rdev->supply)
3127 		_regulator_disable(rdev->supply);
3128 
3129 	regulator_unlock_dependent(rdev, &ww_ctx);
3130 
3131 	return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_force_disable);
3134 
3135 static void regulator_disable_work(struct work_struct *work)
3136 {
3137 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138 						  disable_work.work);
3139 	struct ww_acquire_ctx ww_ctx;
3140 	int count, i, ret;
3141 	struct regulator *regulator;
3142 	int total_count = 0;
3143 
3144 	regulator_lock_dependent(rdev, &ww_ctx);
3145 
3146 	/*
3147 	 * Workqueue functions queue the new work instance while the previous
3148 	 * work instance is being processed. Cancel the queued work instance
3149 	 * as the work instance under processing does the job of the queued
3150 	 * work instance.
3151 	 */
3152 	cancel_delayed_work(&rdev->disable_work);
3153 
3154 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155 		count = regulator->deferred_disables;
3156 
3157 		if (!count)
3158 			continue;
3159 
3160 		total_count += count;
3161 		regulator->deferred_disables = 0;
3162 
3163 		for (i = 0; i < count; i++) {
3164 			ret = _regulator_disable(regulator);
3165 			if (ret != 0)
3166 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3167 					 ERR_PTR(ret));
3168 		}
3169 	}
3170 	WARN_ON(!total_count);
3171 
3172 	if (rdev->coupling_desc.n_coupled > 1)
3173 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174 
3175 	regulator_unlock_dependent(rdev, &ww_ctx);
3176 }
3177 
3178 /**
3179  * regulator_disable_deferred - disable regulator output with delay
3180  * @regulator: regulator source
3181  * @ms: milliseconds until the regulator is disabled
3182  *
3183  * Execute regulator_disable() on the regulator after a delay.  This
3184  * is intended for use with devices that require some time to quiesce.
3185  *
3186  * NOTE: this will only disable the regulator output if no other consumer
3187  * devices have it enabled, the regulator device supports disabling and
3188  * machine constraints permit this operation.
3189  */
3190 int regulator_disable_deferred(struct regulator *regulator, int ms)
3191 {
3192 	struct regulator_dev *rdev = regulator->rdev;
3193 
3194 	if (!ms)
3195 		return regulator_disable(regulator);
3196 
3197 	regulator_lock(rdev);
3198 	regulator->deferred_disables++;
3199 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200 			 msecs_to_jiffies(ms));
3201 	regulator_unlock(rdev);
3202 
3203 	return 0;
3204 }
3205 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206 
3207 static int _regulator_is_enabled(struct regulator_dev *rdev)
3208 {
3209 	/* A GPIO control always takes precedence */
3210 	if (rdev->ena_pin)
3211 		return rdev->ena_gpio_state;
3212 
3213 	/* If we don't know then assume that the regulator is always on */
3214 	if (!rdev->desc->ops->is_enabled)
3215 		return 1;
3216 
3217 	return rdev->desc->ops->is_enabled(rdev);
3218 }
3219 
3220 static int _regulator_list_voltage(struct regulator_dev *rdev,
3221 				   unsigned selector, int lock)
3222 {
3223 	const struct regulator_ops *ops = rdev->desc->ops;
3224 	int ret;
3225 
3226 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227 		return rdev->desc->fixed_uV;
3228 
3229 	if (ops->list_voltage) {
3230 		if (selector >= rdev->desc->n_voltages)
3231 			return -EINVAL;
3232 		if (selector < rdev->desc->linear_min_sel)
3233 			return 0;
3234 		if (lock)
3235 			regulator_lock(rdev);
3236 		ret = ops->list_voltage(rdev, selector);
3237 		if (lock)
3238 			regulator_unlock(rdev);
3239 	} else if (rdev->is_switch && rdev->supply) {
3240 		ret = _regulator_list_voltage(rdev->supply->rdev,
3241 					      selector, lock);
3242 	} else {
3243 		return -EINVAL;
3244 	}
3245 
3246 	if (ret > 0) {
3247 		if (ret < rdev->constraints->min_uV)
3248 			ret = 0;
3249 		else if (ret > rdev->constraints->max_uV)
3250 			ret = 0;
3251 	}
3252 
3253 	return ret;
3254 }
3255 
3256 /**
3257  * regulator_is_enabled - is the regulator output enabled
3258  * @regulator: regulator source
3259  *
3260  * Returns positive if the regulator driver backing the source/client
3261  * has requested that the device be enabled, zero if it hasn't, else a
3262  * negative errno code.
3263  *
3264  * Note that the device backing this regulator handle can have multiple
3265  * users, so it might be enabled even if regulator_enable() was never
3266  * called for this particular source.
3267  */
3268 int regulator_is_enabled(struct regulator *regulator)
3269 {
3270 	int ret;
3271 
3272 	if (regulator->always_on)
3273 		return 1;
3274 
3275 	regulator_lock(regulator->rdev);
3276 	ret = _regulator_is_enabled(regulator->rdev);
3277 	regulator_unlock(regulator->rdev);
3278 
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282 
3283 /**
3284  * regulator_count_voltages - count regulator_list_voltage() selectors
3285  * @regulator: regulator source
3286  *
3287  * Returns number of selectors, or negative errno.  Selectors are
3288  * numbered starting at zero, and typically correspond to bitfields
3289  * in hardware registers.
3290  */
3291 int regulator_count_voltages(struct regulator *regulator)
3292 {
3293 	struct regulator_dev	*rdev = regulator->rdev;
3294 
3295 	if (rdev->desc->n_voltages)
3296 		return rdev->desc->n_voltages;
3297 
3298 	if (!rdev->is_switch || !rdev->supply)
3299 		return -EINVAL;
3300 
3301 	return regulator_count_voltages(rdev->supply);
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304 
3305 /**
3306  * regulator_list_voltage - enumerate supported voltages
3307  * @regulator: regulator source
3308  * @selector: identify voltage to list
3309  * Context: can sleep
3310  *
3311  * Returns a voltage that can be passed to @regulator_set_voltage(),
3312  * zero if this selector code can't be used on this system, or a
3313  * negative errno.
3314  */
3315 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316 {
3317 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3318 }
3319 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320 
3321 /**
3322  * regulator_get_regmap - get the regulator's register map
3323  * @regulator: regulator source
3324  *
3325  * Returns the register map for the given regulator, or an ERR_PTR value
3326  * if the regulator doesn't use regmap.
3327  */
3328 struct regmap *regulator_get_regmap(struct regulator *regulator)
3329 {
3330 	struct regmap *map = regulator->rdev->regmap;
3331 
3332 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3333 }
3334 
3335 /**
3336  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337  * @regulator: regulator source
3338  * @vsel_reg: voltage selector register, output parameter
3339  * @vsel_mask: mask for voltage selector bitfield, output parameter
3340  *
3341  * Returns the hardware register offset and bitmask used for setting the
3342  * regulator voltage. This might be useful when configuring voltage-scaling
3343  * hardware or firmware that can make I2C requests behind the kernel's back,
3344  * for example.
3345  *
3346  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347  * and 0 is returned, otherwise a negative errno is returned.
3348  */
3349 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350 					 unsigned *vsel_reg,
3351 					 unsigned *vsel_mask)
3352 {
3353 	struct regulator_dev *rdev = regulator->rdev;
3354 	const struct regulator_ops *ops = rdev->desc->ops;
3355 
3356 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357 		return -EOPNOTSUPP;
3358 
3359 	*vsel_reg = rdev->desc->vsel_reg;
3360 	*vsel_mask = rdev->desc->vsel_mask;
3361 
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365 
3366 /**
3367  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368  * @regulator: regulator source
3369  * @selector: identify voltage to list
3370  *
3371  * Converts the selector to a hardware-specific voltage selector that can be
3372  * directly written to the regulator registers. The address of the voltage
3373  * register can be determined by calling @regulator_get_hardware_vsel_register.
3374  *
3375  * On error a negative errno is returned.
3376  */
3377 int regulator_list_hardware_vsel(struct regulator *regulator,
3378 				 unsigned selector)
3379 {
3380 	struct regulator_dev *rdev = regulator->rdev;
3381 	const struct regulator_ops *ops = rdev->desc->ops;
3382 
3383 	if (selector >= rdev->desc->n_voltages)
3384 		return -EINVAL;
3385 	if (selector < rdev->desc->linear_min_sel)
3386 		return 0;
3387 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388 		return -EOPNOTSUPP;
3389 
3390 	return selector;
3391 }
3392 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393 
3394 /**
3395  * regulator_get_linear_step - return the voltage step size between VSEL values
3396  * @regulator: regulator source
3397  *
3398  * Returns the voltage step size between VSEL values for linear
3399  * regulators, or return 0 if the regulator isn't a linear regulator.
3400  */
3401 unsigned int regulator_get_linear_step(struct regulator *regulator)
3402 {
3403 	struct regulator_dev *rdev = regulator->rdev;
3404 
3405 	return rdev->desc->uV_step;
3406 }
3407 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408 
3409 /**
3410  * regulator_is_supported_voltage - check if a voltage range can be supported
3411  *
3412  * @regulator: Regulator to check.
3413  * @min_uV: Minimum required voltage in uV.
3414  * @max_uV: Maximum required voltage in uV.
3415  *
3416  * Returns a boolean.
3417  */
3418 int regulator_is_supported_voltage(struct regulator *regulator,
3419 				   int min_uV, int max_uV)
3420 {
3421 	struct regulator_dev *rdev = regulator->rdev;
3422 	int i, voltages, ret;
3423 
3424 	/* If we can't change voltage check the current voltage */
3425 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426 		ret = regulator_get_voltage(regulator);
3427 		if (ret >= 0)
3428 			return min_uV <= ret && ret <= max_uV;
3429 		else
3430 			return ret;
3431 	}
3432 
3433 	/* Any voltage within constrains range is fine? */
3434 	if (rdev->desc->continuous_voltage_range)
3435 		return min_uV >= rdev->constraints->min_uV &&
3436 				max_uV <= rdev->constraints->max_uV;
3437 
3438 	ret = regulator_count_voltages(regulator);
3439 	if (ret < 0)
3440 		return 0;
3441 	voltages = ret;
3442 
3443 	for (i = 0; i < voltages; i++) {
3444 		ret = regulator_list_voltage(regulator, i);
3445 
3446 		if (ret >= min_uV && ret <= max_uV)
3447 			return 1;
3448 	}
3449 
3450 	return 0;
3451 }
3452 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453 
3454 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455 				 int max_uV)
3456 {
3457 	const struct regulator_desc *desc = rdev->desc;
3458 
3459 	if (desc->ops->map_voltage)
3460 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461 
3462 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464 
3465 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467 
3468 	if (desc->ops->list_voltage ==
3469 		regulator_list_voltage_pickable_linear_range)
3470 		return regulator_map_voltage_pickable_linear_range(rdev,
3471 							min_uV, max_uV);
3472 
3473 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474 }
3475 
3476 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477 				       int min_uV, int max_uV,
3478 				       unsigned *selector)
3479 {
3480 	struct pre_voltage_change_data data;
3481 	int ret;
3482 
3483 	data.old_uV = regulator_get_voltage_rdev(rdev);
3484 	data.min_uV = min_uV;
3485 	data.max_uV = max_uV;
3486 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487 				   &data);
3488 	if (ret & NOTIFY_STOP_MASK)
3489 		return -EINVAL;
3490 
3491 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492 	if (ret >= 0)
3493 		return ret;
3494 
3495 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496 			     (void *)data.old_uV);
3497 
3498 	return ret;
3499 }
3500 
3501 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502 					   int uV, unsigned selector)
3503 {
3504 	struct pre_voltage_change_data data;
3505 	int ret;
3506 
3507 	data.old_uV = regulator_get_voltage_rdev(rdev);
3508 	data.min_uV = uV;
3509 	data.max_uV = uV;
3510 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511 				   &data);
3512 	if (ret & NOTIFY_STOP_MASK)
3513 		return -EINVAL;
3514 
3515 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516 	if (ret >= 0)
3517 		return ret;
3518 
3519 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520 			     (void *)data.old_uV);
3521 
3522 	return ret;
3523 }
3524 
3525 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526 					   int uV, int new_selector)
3527 {
3528 	const struct regulator_ops *ops = rdev->desc->ops;
3529 	int diff, old_sel, curr_sel, ret;
3530 
3531 	/* Stepping is only needed if the regulator is enabled. */
3532 	if (!_regulator_is_enabled(rdev))
3533 		goto final_set;
3534 
3535 	if (!ops->get_voltage_sel)
3536 		return -EINVAL;
3537 
3538 	old_sel = ops->get_voltage_sel(rdev);
3539 	if (old_sel < 0)
3540 		return old_sel;
3541 
3542 	diff = new_selector - old_sel;
3543 	if (diff == 0)
3544 		return 0; /* No change needed. */
3545 
3546 	if (diff > 0) {
3547 		/* Stepping up. */
3548 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3549 		     curr_sel < new_selector;
3550 		     curr_sel += rdev->desc->vsel_step) {
3551 			/*
3552 			 * Call the callback directly instead of using
3553 			 * _regulator_call_set_voltage_sel() as we don't
3554 			 * want to notify anyone yet. Same in the branch
3555 			 * below.
3556 			 */
3557 			ret = ops->set_voltage_sel(rdev, curr_sel);
3558 			if (ret)
3559 				goto try_revert;
3560 		}
3561 	} else {
3562 		/* Stepping down. */
3563 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3564 		     curr_sel > new_selector;
3565 		     curr_sel -= rdev->desc->vsel_step) {
3566 			ret = ops->set_voltage_sel(rdev, curr_sel);
3567 			if (ret)
3568 				goto try_revert;
3569 		}
3570 	}
3571 
3572 final_set:
3573 	/* The final selector will trigger the notifiers. */
3574 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575 
3576 try_revert:
3577 	/*
3578 	 * At least try to return to the previous voltage if setting a new
3579 	 * one failed.
3580 	 */
3581 	(void)ops->set_voltage_sel(rdev, old_sel);
3582 	return ret;
3583 }
3584 
3585 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586 				       int old_uV, int new_uV)
3587 {
3588 	unsigned int ramp_delay = 0;
3589 
3590 	if (rdev->constraints->ramp_delay)
3591 		ramp_delay = rdev->constraints->ramp_delay;
3592 	else if (rdev->desc->ramp_delay)
3593 		ramp_delay = rdev->desc->ramp_delay;
3594 	else if (rdev->constraints->settling_time)
3595 		return rdev->constraints->settling_time;
3596 	else if (rdev->constraints->settling_time_up &&
3597 		 (new_uV > old_uV))
3598 		return rdev->constraints->settling_time_up;
3599 	else if (rdev->constraints->settling_time_down &&
3600 		 (new_uV < old_uV))
3601 		return rdev->constraints->settling_time_down;
3602 
3603 	if (ramp_delay == 0)
3604 		return 0;
3605 
3606 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607 }
3608 
3609 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610 				     int min_uV, int max_uV)
3611 {
3612 	int ret;
3613 	int delay = 0;
3614 	int best_val = 0;
3615 	unsigned int selector;
3616 	int old_selector = -1;
3617 	const struct regulator_ops *ops = rdev->desc->ops;
3618 	int old_uV = regulator_get_voltage_rdev(rdev);
3619 
3620 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621 
3622 	min_uV += rdev->constraints->uV_offset;
3623 	max_uV += rdev->constraints->uV_offset;
3624 
3625 	/*
3626 	 * If we can't obtain the old selector there is not enough
3627 	 * info to call set_voltage_time_sel().
3628 	 */
3629 	if (_regulator_is_enabled(rdev) &&
3630 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631 		old_selector = ops->get_voltage_sel(rdev);
3632 		if (old_selector < 0)
3633 			return old_selector;
3634 	}
3635 
3636 	if (ops->set_voltage) {
3637 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638 						  &selector);
3639 
3640 		if (ret >= 0) {
3641 			if (ops->list_voltage)
3642 				best_val = ops->list_voltage(rdev,
3643 							     selector);
3644 			else
3645 				best_val = regulator_get_voltage_rdev(rdev);
3646 		}
3647 
3648 	} else if (ops->set_voltage_sel) {
3649 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650 		if (ret >= 0) {
3651 			best_val = ops->list_voltage(rdev, ret);
3652 			if (min_uV <= best_val && max_uV >= best_val) {
3653 				selector = ret;
3654 				if (old_selector == selector)
3655 					ret = 0;
3656 				else if (rdev->desc->vsel_step)
3657 					ret = _regulator_set_voltage_sel_step(
3658 						rdev, best_val, selector);
3659 				else
3660 					ret = _regulator_call_set_voltage_sel(
3661 						rdev, best_val, selector);
3662 			} else {
3663 				ret = -EINVAL;
3664 			}
3665 		}
3666 	} else {
3667 		ret = -EINVAL;
3668 	}
3669 
3670 	if (ret)
3671 		goto out;
3672 
3673 	if (ops->set_voltage_time_sel) {
3674 		/*
3675 		 * Call set_voltage_time_sel if successfully obtained
3676 		 * old_selector
3677 		 */
3678 		if (old_selector >= 0 && old_selector != selector)
3679 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3680 							  selector);
3681 	} else {
3682 		if (old_uV != best_val) {
3683 			if (ops->set_voltage_time)
3684 				delay = ops->set_voltage_time(rdev, old_uV,
3685 							      best_val);
3686 			else
3687 				delay = _regulator_set_voltage_time(rdev,
3688 								    old_uV,
3689 								    best_val);
3690 		}
3691 	}
3692 
3693 	if (delay < 0) {
3694 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695 		delay = 0;
3696 	}
3697 
3698 	/* Insert any necessary delays */
3699 	_regulator_delay_helper(delay);
3700 
3701 	if (best_val >= 0) {
3702 		unsigned long data = best_val;
3703 
3704 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705 				     (void *)data);
3706 	}
3707 
3708 out:
3709 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710 
3711 	return ret;
3712 }
3713 
3714 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715 				  int min_uV, int max_uV, suspend_state_t state)
3716 {
3717 	struct regulator_state *rstate;
3718 	int uV, sel;
3719 
3720 	rstate = regulator_get_suspend_state(rdev, state);
3721 	if (rstate == NULL)
3722 		return -EINVAL;
3723 
3724 	if (min_uV < rstate->min_uV)
3725 		min_uV = rstate->min_uV;
3726 	if (max_uV > rstate->max_uV)
3727 		max_uV = rstate->max_uV;
3728 
3729 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730 	if (sel < 0)
3731 		return sel;
3732 
3733 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3734 	if (uV >= min_uV && uV <= max_uV)
3735 		rstate->uV = uV;
3736 
3737 	return 0;
3738 }
3739 
3740 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741 					  int min_uV, int max_uV,
3742 					  suspend_state_t state)
3743 {
3744 	struct regulator_dev *rdev = regulator->rdev;
3745 	struct regulator_voltage *voltage = &regulator->voltage[state];
3746 	int ret = 0;
3747 	int old_min_uV, old_max_uV;
3748 	int current_uV;
3749 
3750 	/* If we're setting the same range as last time the change
3751 	 * should be a noop (some cpufreq implementations use the same
3752 	 * voltage for multiple frequencies, for example).
3753 	 */
3754 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755 		goto out;
3756 
3757 	/* If we're trying to set a range that overlaps the current voltage,
3758 	 * return successfully even though the regulator does not support
3759 	 * changing the voltage.
3760 	 */
3761 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762 		current_uV = regulator_get_voltage_rdev(rdev);
3763 		if (min_uV <= current_uV && current_uV <= max_uV) {
3764 			voltage->min_uV = min_uV;
3765 			voltage->max_uV = max_uV;
3766 			goto out;
3767 		}
3768 	}
3769 
3770 	/* sanity check */
3771 	if (!rdev->desc->ops->set_voltage &&
3772 	    !rdev->desc->ops->set_voltage_sel) {
3773 		ret = -EINVAL;
3774 		goto out;
3775 	}
3776 
3777 	/* constraints check */
3778 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779 	if (ret < 0)
3780 		goto out;
3781 
3782 	/* restore original values in case of error */
3783 	old_min_uV = voltage->min_uV;
3784 	old_max_uV = voltage->max_uV;
3785 	voltage->min_uV = min_uV;
3786 	voltage->max_uV = max_uV;
3787 
3788 	/* for not coupled regulators this will just set the voltage */
3789 	ret = regulator_balance_voltage(rdev, state);
3790 	if (ret < 0) {
3791 		voltage->min_uV = old_min_uV;
3792 		voltage->max_uV = old_max_uV;
3793 	}
3794 
3795 out:
3796 	return ret;
3797 }
3798 
3799 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800 			       int max_uV, suspend_state_t state)
3801 {
3802 	int best_supply_uV = 0;
3803 	int supply_change_uV = 0;
3804 	int ret;
3805 
3806 	if (rdev->supply &&
3807 	    regulator_ops_is_valid(rdev->supply->rdev,
3808 				   REGULATOR_CHANGE_VOLTAGE) &&
3809 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810 					   rdev->desc->ops->get_voltage_sel))) {
3811 		int current_supply_uV;
3812 		int selector;
3813 
3814 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815 		if (selector < 0) {
3816 			ret = selector;
3817 			goto out;
3818 		}
3819 
3820 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821 		if (best_supply_uV < 0) {
3822 			ret = best_supply_uV;
3823 			goto out;
3824 		}
3825 
3826 		best_supply_uV += rdev->desc->min_dropout_uV;
3827 
3828 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829 		if (current_supply_uV < 0) {
3830 			ret = current_supply_uV;
3831 			goto out;
3832 		}
3833 
3834 		supply_change_uV = best_supply_uV - current_supply_uV;
3835 	}
3836 
3837 	if (supply_change_uV > 0) {
3838 		ret = regulator_set_voltage_unlocked(rdev->supply,
3839 				best_supply_uV, INT_MAX, state);
3840 		if (ret) {
3841 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842 				ERR_PTR(ret));
3843 			goto out;
3844 		}
3845 	}
3846 
3847 	if (state == PM_SUSPEND_ON)
3848 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849 	else
3850 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851 							max_uV, state);
3852 	if (ret < 0)
3853 		goto out;
3854 
3855 	if (supply_change_uV < 0) {
3856 		ret = regulator_set_voltage_unlocked(rdev->supply,
3857 				best_supply_uV, INT_MAX, state);
3858 		if (ret)
3859 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860 				 ERR_PTR(ret));
3861 		/* No need to fail here */
3862 		ret = 0;
3863 	}
3864 
3865 out:
3866 	return ret;
3867 }
3868 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869 
3870 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871 					int *current_uV, int *min_uV)
3872 {
3873 	struct regulation_constraints *constraints = rdev->constraints;
3874 
3875 	/* Limit voltage change only if necessary */
3876 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877 		return 1;
3878 
3879 	if (*current_uV < 0) {
3880 		*current_uV = regulator_get_voltage_rdev(rdev);
3881 
3882 		if (*current_uV < 0)
3883 			return *current_uV;
3884 	}
3885 
3886 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887 		return 1;
3888 
3889 	/* Clamp target voltage within the given step */
3890 	if (*current_uV < *min_uV)
3891 		*min_uV = min(*current_uV + constraints->max_uV_step,
3892 			      *min_uV);
3893 	else
3894 		*min_uV = max(*current_uV - constraints->max_uV_step,
3895 			      *min_uV);
3896 
3897 	return 0;
3898 }
3899 
3900 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901 					 int *current_uV,
3902 					 int *min_uV, int *max_uV,
3903 					 suspend_state_t state,
3904 					 int n_coupled)
3905 {
3906 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3907 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908 	struct regulation_constraints *constraints = rdev->constraints;
3909 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910 	int max_current_uV = 0, min_current_uV = INT_MAX;
3911 	int highest_min_uV = 0, target_uV, possible_uV;
3912 	int i, ret, max_spread;
3913 	bool done;
3914 
3915 	*current_uV = -1;
3916 
3917 	/*
3918 	 * If there are no coupled regulators, simply set the voltage
3919 	 * demanded by consumers.
3920 	 */
3921 	if (n_coupled == 1) {
3922 		/*
3923 		 * If consumers don't provide any demands, set voltage
3924 		 * to min_uV
3925 		 */
3926 		desired_min_uV = constraints->min_uV;
3927 		desired_max_uV = constraints->max_uV;
3928 
3929 		ret = regulator_check_consumers(rdev,
3930 						&desired_min_uV,
3931 						&desired_max_uV, state);
3932 		if (ret < 0)
3933 			return ret;
3934 
3935 		done = true;
3936 
3937 		goto finish;
3938 	}
3939 
3940 	/* Find highest min desired voltage */
3941 	for (i = 0; i < n_coupled; i++) {
3942 		int tmp_min = 0;
3943 		int tmp_max = INT_MAX;
3944 
3945 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3946 
3947 		ret = regulator_check_consumers(c_rdevs[i],
3948 						&tmp_min,
3949 						&tmp_max, state);
3950 		if (ret < 0)
3951 			return ret;
3952 
3953 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3954 		if (ret < 0)
3955 			return ret;
3956 
3957 		highest_min_uV = max(highest_min_uV, tmp_min);
3958 
3959 		if (i == 0) {
3960 			desired_min_uV = tmp_min;
3961 			desired_max_uV = tmp_max;
3962 		}
3963 	}
3964 
3965 	max_spread = constraints->max_spread[0];
3966 
3967 	/*
3968 	 * Let target_uV be equal to the desired one if possible.
3969 	 * If not, set it to minimum voltage, allowed by other coupled
3970 	 * regulators.
3971 	 */
3972 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3973 
3974 	/*
3975 	 * Find min and max voltages, which currently aren't violating
3976 	 * max_spread.
3977 	 */
3978 	for (i = 1; i < n_coupled; i++) {
3979 		int tmp_act;
3980 
3981 		if (!_regulator_is_enabled(c_rdevs[i]))
3982 			continue;
3983 
3984 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3985 		if (tmp_act < 0)
3986 			return tmp_act;
3987 
3988 		min_current_uV = min(tmp_act, min_current_uV);
3989 		max_current_uV = max(tmp_act, max_current_uV);
3990 	}
3991 
3992 	/* There aren't any other regulators enabled */
3993 	if (max_current_uV == 0) {
3994 		possible_uV = target_uV;
3995 	} else {
3996 		/*
3997 		 * Correct target voltage, so as it currently isn't
3998 		 * violating max_spread
3999 		 */
4000 		possible_uV = max(target_uV, max_current_uV - max_spread);
4001 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4002 	}
4003 
4004 	if (possible_uV > desired_max_uV)
4005 		return -EINVAL;
4006 
4007 	done = (possible_uV == target_uV);
4008 	desired_min_uV = possible_uV;
4009 
4010 finish:
4011 	/* Apply max_uV_step constraint if necessary */
4012 	if (state == PM_SUSPEND_ON) {
4013 		ret = regulator_limit_voltage_step(rdev, current_uV,
4014 						   &desired_min_uV);
4015 		if (ret < 0)
4016 			return ret;
4017 
4018 		if (ret == 0)
4019 			done = false;
4020 	}
4021 
4022 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4023 	if (n_coupled > 1 && *current_uV == -1) {
4024 
4025 		if (_regulator_is_enabled(rdev)) {
4026 			ret = regulator_get_voltage_rdev(rdev);
4027 			if (ret < 0)
4028 				return ret;
4029 
4030 			*current_uV = ret;
4031 		} else {
4032 			*current_uV = desired_min_uV;
4033 		}
4034 	}
4035 
4036 	*min_uV = desired_min_uV;
4037 	*max_uV = desired_max_uV;
4038 
4039 	return done;
4040 }
4041 
4042 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4043 				 suspend_state_t state, bool skip_coupled)
4044 {
4045 	struct regulator_dev **c_rdevs;
4046 	struct regulator_dev *best_rdev;
4047 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4048 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4049 	unsigned int delta, best_delta;
4050 	unsigned long c_rdev_done = 0;
4051 	bool best_c_rdev_done;
4052 
4053 	c_rdevs = c_desc->coupled_rdevs;
4054 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4055 
4056 	/*
4057 	 * Find the best possible voltage change on each loop. Leave the loop
4058 	 * if there isn't any possible change.
4059 	 */
4060 	do {
4061 		best_c_rdev_done = false;
4062 		best_delta = 0;
4063 		best_min_uV = 0;
4064 		best_max_uV = 0;
4065 		best_c_rdev = 0;
4066 		best_rdev = NULL;
4067 
4068 		/*
4069 		 * Find highest difference between optimal voltage
4070 		 * and current voltage.
4071 		 */
4072 		for (i = 0; i < n_coupled; i++) {
4073 			/*
4074 			 * optimal_uV is the best voltage that can be set for
4075 			 * i-th regulator at the moment without violating
4076 			 * max_spread constraint in order to balance
4077 			 * the coupled voltages.
4078 			 */
4079 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4080 
4081 			if (test_bit(i, &c_rdev_done))
4082 				continue;
4083 
4084 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4085 							    &current_uV,
4086 							    &optimal_uV,
4087 							    &optimal_max_uV,
4088 							    state, n_coupled);
4089 			if (ret < 0)
4090 				goto out;
4091 
4092 			delta = abs(optimal_uV - current_uV);
4093 
4094 			if (delta && best_delta <= delta) {
4095 				best_c_rdev_done = ret;
4096 				best_delta = delta;
4097 				best_rdev = c_rdevs[i];
4098 				best_min_uV = optimal_uV;
4099 				best_max_uV = optimal_max_uV;
4100 				best_c_rdev = i;
4101 			}
4102 		}
4103 
4104 		/* Nothing to change, return successfully */
4105 		if (!best_rdev) {
4106 			ret = 0;
4107 			goto out;
4108 		}
4109 
4110 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4111 						 best_max_uV, state);
4112 
4113 		if (ret < 0)
4114 			goto out;
4115 
4116 		if (best_c_rdev_done)
4117 			set_bit(best_c_rdev, &c_rdev_done);
4118 
4119 	} while (n_coupled > 1);
4120 
4121 out:
4122 	return ret;
4123 }
4124 
4125 static int regulator_balance_voltage(struct regulator_dev *rdev,
4126 				     suspend_state_t state)
4127 {
4128 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4129 	struct regulator_coupler *coupler = c_desc->coupler;
4130 	bool skip_coupled = false;
4131 
4132 	/*
4133 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4134 	 * other coupled regulators.
4135 	 */
4136 	if (state != PM_SUSPEND_ON)
4137 		skip_coupled = true;
4138 
4139 	if (c_desc->n_resolved < c_desc->n_coupled) {
4140 		rdev_err(rdev, "Not all coupled regulators registered\n");
4141 		return -EPERM;
4142 	}
4143 
4144 	/* Invoke custom balancer for customized couplers */
4145 	if (coupler && coupler->balance_voltage)
4146 		return coupler->balance_voltage(coupler, rdev, state);
4147 
4148 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4149 }
4150 
4151 /**
4152  * regulator_set_voltage - set regulator output voltage
4153  * @regulator: regulator source
4154  * @min_uV: Minimum required voltage in uV
4155  * @max_uV: Maximum acceptable voltage in uV
4156  *
4157  * Sets a voltage regulator to the desired output voltage. This can be set
4158  * during any regulator state. IOW, regulator can be disabled or enabled.
4159  *
4160  * If the regulator is enabled then the voltage will change to the new value
4161  * immediately otherwise if the regulator is disabled the regulator will
4162  * output at the new voltage when enabled.
4163  *
4164  * NOTE: If the regulator is shared between several devices then the lowest
4165  * request voltage that meets the system constraints will be used.
4166  * Regulator system constraints must be set for this regulator before
4167  * calling this function otherwise this call will fail.
4168  */
4169 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4170 {
4171 	struct ww_acquire_ctx ww_ctx;
4172 	int ret;
4173 
4174 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4175 
4176 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4177 					     PM_SUSPEND_ON);
4178 
4179 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4180 
4181 	return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4184 
4185 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4186 					   suspend_state_t state, bool en)
4187 {
4188 	struct regulator_state *rstate;
4189 
4190 	rstate = regulator_get_suspend_state(rdev, state);
4191 	if (rstate == NULL)
4192 		return -EINVAL;
4193 
4194 	if (!rstate->changeable)
4195 		return -EPERM;
4196 
4197 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4198 
4199 	return 0;
4200 }
4201 
4202 int regulator_suspend_enable(struct regulator_dev *rdev,
4203 				    suspend_state_t state)
4204 {
4205 	return regulator_suspend_toggle(rdev, state, true);
4206 }
4207 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4208 
4209 int regulator_suspend_disable(struct regulator_dev *rdev,
4210 				     suspend_state_t state)
4211 {
4212 	struct regulator *regulator;
4213 	struct regulator_voltage *voltage;
4214 
4215 	/*
4216 	 * if any consumer wants this regulator device keeping on in
4217 	 * suspend states, don't set it as disabled.
4218 	 */
4219 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4220 		voltage = &regulator->voltage[state];
4221 		if (voltage->min_uV || voltage->max_uV)
4222 			return 0;
4223 	}
4224 
4225 	return regulator_suspend_toggle(rdev, state, false);
4226 }
4227 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4228 
4229 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4230 					  int min_uV, int max_uV,
4231 					  suspend_state_t state)
4232 {
4233 	struct regulator_dev *rdev = regulator->rdev;
4234 	struct regulator_state *rstate;
4235 
4236 	rstate = regulator_get_suspend_state(rdev, state);
4237 	if (rstate == NULL)
4238 		return -EINVAL;
4239 
4240 	if (rstate->min_uV == rstate->max_uV) {
4241 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4242 		return -EPERM;
4243 	}
4244 
4245 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4246 }
4247 
4248 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4249 				  int max_uV, suspend_state_t state)
4250 {
4251 	struct ww_acquire_ctx ww_ctx;
4252 	int ret;
4253 
4254 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4255 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4256 		return -EINVAL;
4257 
4258 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4259 
4260 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4261 					     max_uV, state);
4262 
4263 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4264 
4265 	return ret;
4266 }
4267 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4268 
4269 /**
4270  * regulator_set_voltage_time - get raise/fall time
4271  * @regulator: regulator source
4272  * @old_uV: starting voltage in microvolts
4273  * @new_uV: target voltage in microvolts
4274  *
4275  * Provided with the starting and ending voltage, this function attempts to
4276  * calculate the time in microseconds required to rise or fall to this new
4277  * voltage.
4278  */
4279 int regulator_set_voltage_time(struct regulator *regulator,
4280 			       int old_uV, int new_uV)
4281 {
4282 	struct regulator_dev *rdev = regulator->rdev;
4283 	const struct regulator_ops *ops = rdev->desc->ops;
4284 	int old_sel = -1;
4285 	int new_sel = -1;
4286 	int voltage;
4287 	int i;
4288 
4289 	if (ops->set_voltage_time)
4290 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 	else if (!ops->set_voltage_time_sel)
4292 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293 
4294 	/* Currently requires operations to do this */
4295 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 		return -EINVAL;
4297 
4298 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 		/* We only look for exact voltage matches here */
4300 		if (i < rdev->desc->linear_min_sel)
4301 			continue;
4302 
4303 		if (old_sel >= 0 && new_sel >= 0)
4304 			break;
4305 
4306 		voltage = regulator_list_voltage(regulator, i);
4307 		if (voltage < 0)
4308 			return -EINVAL;
4309 		if (voltage == 0)
4310 			continue;
4311 		if (voltage == old_uV)
4312 			old_sel = i;
4313 		if (voltage == new_uV)
4314 			new_sel = i;
4315 	}
4316 
4317 	if (old_sel < 0 || new_sel < 0)
4318 		return -EINVAL;
4319 
4320 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321 }
4322 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323 
4324 /**
4325  * regulator_set_voltage_time_sel - get raise/fall time
4326  * @rdev: regulator source device
4327  * @old_selector: selector for starting voltage
4328  * @new_selector: selector for target voltage
4329  *
4330  * Provided with the starting and target voltage selectors, this function
4331  * returns time in microseconds required to rise or fall to this new voltage
4332  *
4333  * Drivers providing ramp_delay in regulation_constraints can use this as their
4334  * set_voltage_time_sel() operation.
4335  */
4336 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4337 				   unsigned int old_selector,
4338 				   unsigned int new_selector)
4339 {
4340 	int old_volt, new_volt;
4341 
4342 	/* sanity check */
4343 	if (!rdev->desc->ops->list_voltage)
4344 		return -EINVAL;
4345 
4346 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4347 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4348 
4349 	if (rdev->desc->ops->set_voltage_time)
4350 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4351 							 new_volt);
4352 	else
4353 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4356 
4357 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4358 {
4359 	int ret;
4360 
4361 	regulator_lock(rdev);
4362 
4363 	if (!rdev->desc->ops->set_voltage &&
4364 	    !rdev->desc->ops->set_voltage_sel) {
4365 		ret = -EINVAL;
4366 		goto out;
4367 	}
4368 
4369 	/* balance only, if regulator is coupled */
4370 	if (rdev->coupling_desc.n_coupled > 1)
4371 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4372 	else
4373 		ret = -EOPNOTSUPP;
4374 
4375 out:
4376 	regulator_unlock(rdev);
4377 	return ret;
4378 }
4379 
4380 /**
4381  * regulator_sync_voltage - re-apply last regulator output voltage
4382  * @regulator: regulator source
4383  *
4384  * Re-apply the last configured voltage.  This is intended to be used
4385  * where some external control source the consumer is cooperating with
4386  * has caused the configured voltage to change.
4387  */
4388 int regulator_sync_voltage(struct regulator *regulator)
4389 {
4390 	struct regulator_dev *rdev = regulator->rdev;
4391 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4392 	int ret, min_uV, max_uV;
4393 
4394 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4395 		return 0;
4396 
4397 	regulator_lock(rdev);
4398 
4399 	if (!rdev->desc->ops->set_voltage &&
4400 	    !rdev->desc->ops->set_voltage_sel) {
4401 		ret = -EINVAL;
4402 		goto out;
4403 	}
4404 
4405 	/* This is only going to work if we've had a voltage configured. */
4406 	if (!voltage->min_uV && !voltage->max_uV) {
4407 		ret = -EINVAL;
4408 		goto out;
4409 	}
4410 
4411 	min_uV = voltage->min_uV;
4412 	max_uV = voltage->max_uV;
4413 
4414 	/* This should be a paranoia check... */
4415 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4416 	if (ret < 0)
4417 		goto out;
4418 
4419 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4420 	if (ret < 0)
4421 		goto out;
4422 
4423 	/* balance only, if regulator is coupled */
4424 	if (rdev->coupling_desc.n_coupled > 1)
4425 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4426 	else
4427 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4428 
4429 out:
4430 	regulator_unlock(rdev);
4431 	return ret;
4432 }
4433 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4434 
4435 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4436 {
4437 	int sel, ret;
4438 	bool bypassed;
4439 
4440 	if (rdev->desc->ops->get_bypass) {
4441 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4442 		if (ret < 0)
4443 			return ret;
4444 		if (bypassed) {
4445 			/* if bypassed the regulator must have a supply */
4446 			if (!rdev->supply) {
4447 				rdev_err(rdev,
4448 					 "bypassed regulator has no supply!\n");
4449 				return -EPROBE_DEFER;
4450 			}
4451 
4452 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4453 		}
4454 	}
4455 
4456 	if (rdev->desc->ops->get_voltage_sel) {
4457 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4458 		if (sel < 0)
4459 			return sel;
4460 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4461 	} else if (rdev->desc->ops->get_voltage) {
4462 		ret = rdev->desc->ops->get_voltage(rdev);
4463 	} else if (rdev->desc->ops->list_voltage) {
4464 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4465 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4466 		ret = rdev->desc->fixed_uV;
4467 	} else if (rdev->supply) {
4468 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4469 	} else if (rdev->supply_name) {
4470 		return -EPROBE_DEFER;
4471 	} else {
4472 		return -EINVAL;
4473 	}
4474 
4475 	if (ret < 0)
4476 		return ret;
4477 	return ret - rdev->constraints->uV_offset;
4478 }
4479 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4480 
4481 /**
4482  * regulator_get_voltage - get regulator output voltage
4483  * @regulator: regulator source
4484  *
4485  * This returns the current regulator voltage in uV.
4486  *
4487  * NOTE: If the regulator is disabled it will return the voltage value. This
4488  * function should not be used to determine regulator state.
4489  */
4490 int regulator_get_voltage(struct regulator *regulator)
4491 {
4492 	struct ww_acquire_ctx ww_ctx;
4493 	int ret;
4494 
4495 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4496 	ret = regulator_get_voltage_rdev(regulator->rdev);
4497 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4498 
4499 	return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4502 
4503 /**
4504  * regulator_set_current_limit - set regulator output current limit
4505  * @regulator: regulator source
4506  * @min_uA: Minimum supported current in uA
4507  * @max_uA: Maximum supported current in uA
4508  *
4509  * Sets current sink to the desired output current. This can be set during
4510  * any regulator state. IOW, regulator can be disabled or enabled.
4511  *
4512  * If the regulator is enabled then the current will change to the new value
4513  * immediately otherwise if the regulator is disabled the regulator will
4514  * output at the new current when enabled.
4515  *
4516  * NOTE: Regulator system constraints must be set for this regulator before
4517  * calling this function otherwise this call will fail.
4518  */
4519 int regulator_set_current_limit(struct regulator *regulator,
4520 			       int min_uA, int max_uA)
4521 {
4522 	struct regulator_dev *rdev = regulator->rdev;
4523 	int ret;
4524 
4525 	regulator_lock(rdev);
4526 
4527 	/* sanity check */
4528 	if (!rdev->desc->ops->set_current_limit) {
4529 		ret = -EINVAL;
4530 		goto out;
4531 	}
4532 
4533 	/* constraints check */
4534 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4535 	if (ret < 0)
4536 		goto out;
4537 
4538 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4539 out:
4540 	regulator_unlock(rdev);
4541 	return ret;
4542 }
4543 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4544 
4545 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4546 {
4547 	/* sanity check */
4548 	if (!rdev->desc->ops->get_current_limit)
4549 		return -EINVAL;
4550 
4551 	return rdev->desc->ops->get_current_limit(rdev);
4552 }
4553 
4554 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4555 {
4556 	int ret;
4557 
4558 	regulator_lock(rdev);
4559 	ret = _regulator_get_current_limit_unlocked(rdev);
4560 	regulator_unlock(rdev);
4561 
4562 	return ret;
4563 }
4564 
4565 /**
4566  * regulator_get_current_limit - get regulator output current
4567  * @regulator: regulator source
4568  *
4569  * This returns the current supplied by the specified current sink in uA.
4570  *
4571  * NOTE: If the regulator is disabled it will return the current value. This
4572  * function should not be used to determine regulator state.
4573  */
4574 int regulator_get_current_limit(struct regulator *regulator)
4575 {
4576 	return _regulator_get_current_limit(regulator->rdev);
4577 }
4578 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4579 
4580 /**
4581  * regulator_set_mode - set regulator operating mode
4582  * @regulator: regulator source
4583  * @mode: operating mode - one of the REGULATOR_MODE constants
4584  *
4585  * Set regulator operating mode to increase regulator efficiency or improve
4586  * regulation performance.
4587  *
4588  * NOTE: Regulator system constraints must be set for this regulator before
4589  * calling this function otherwise this call will fail.
4590  */
4591 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4592 {
4593 	struct regulator_dev *rdev = regulator->rdev;
4594 	int ret;
4595 	int regulator_curr_mode;
4596 
4597 	regulator_lock(rdev);
4598 
4599 	/* sanity check */
4600 	if (!rdev->desc->ops->set_mode) {
4601 		ret = -EINVAL;
4602 		goto out;
4603 	}
4604 
4605 	/* return if the same mode is requested */
4606 	if (rdev->desc->ops->get_mode) {
4607 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4608 		if (regulator_curr_mode == mode) {
4609 			ret = 0;
4610 			goto out;
4611 		}
4612 	}
4613 
4614 	/* constraints check */
4615 	ret = regulator_mode_constrain(rdev, &mode);
4616 	if (ret < 0)
4617 		goto out;
4618 
4619 	ret = rdev->desc->ops->set_mode(rdev, mode);
4620 out:
4621 	regulator_unlock(rdev);
4622 	return ret;
4623 }
4624 EXPORT_SYMBOL_GPL(regulator_set_mode);
4625 
4626 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4627 {
4628 	/* sanity check */
4629 	if (!rdev->desc->ops->get_mode)
4630 		return -EINVAL;
4631 
4632 	return rdev->desc->ops->get_mode(rdev);
4633 }
4634 
4635 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4636 {
4637 	int ret;
4638 
4639 	regulator_lock(rdev);
4640 	ret = _regulator_get_mode_unlocked(rdev);
4641 	regulator_unlock(rdev);
4642 
4643 	return ret;
4644 }
4645 
4646 /**
4647  * regulator_get_mode - get regulator operating mode
4648  * @regulator: regulator source
4649  *
4650  * Get the current regulator operating mode.
4651  */
4652 unsigned int regulator_get_mode(struct regulator *regulator)
4653 {
4654 	return _regulator_get_mode(regulator->rdev);
4655 }
4656 EXPORT_SYMBOL_GPL(regulator_get_mode);
4657 
4658 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4659 {
4660 	int ret = 0;
4661 
4662 	if (rdev->use_cached_err) {
4663 		spin_lock(&rdev->err_lock);
4664 		ret = rdev->cached_err;
4665 		spin_unlock(&rdev->err_lock);
4666 	}
4667 	return ret;
4668 }
4669 
4670 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4671 					unsigned int *flags)
4672 {
4673 	int cached_flags, ret = 0;
4674 
4675 	regulator_lock(rdev);
4676 
4677 	cached_flags = rdev_get_cached_err_flags(rdev);
4678 
4679 	if (rdev->desc->ops->get_error_flags)
4680 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4681 	else if (!rdev->use_cached_err)
4682 		ret = -EINVAL;
4683 
4684 	*flags |= cached_flags;
4685 
4686 	regulator_unlock(rdev);
4687 
4688 	return ret;
4689 }
4690 
4691 /**
4692  * regulator_get_error_flags - get regulator error information
4693  * @regulator: regulator source
4694  * @flags: pointer to store error flags
4695  *
4696  * Get the current regulator error information.
4697  */
4698 int regulator_get_error_flags(struct regulator *regulator,
4699 				unsigned int *flags)
4700 {
4701 	return _regulator_get_error_flags(regulator->rdev, flags);
4702 }
4703 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4704 
4705 /**
4706  * regulator_set_load - set regulator load
4707  * @regulator: regulator source
4708  * @uA_load: load current
4709  *
4710  * Notifies the regulator core of a new device load. This is then used by
4711  * DRMS (if enabled by constraints) to set the most efficient regulator
4712  * operating mode for the new regulator loading.
4713  *
4714  * Consumer devices notify their supply regulator of the maximum power
4715  * they will require (can be taken from device datasheet in the power
4716  * consumption tables) when they change operational status and hence power
4717  * state. Examples of operational state changes that can affect power
4718  * consumption are :-
4719  *
4720  *    o Device is opened / closed.
4721  *    o Device I/O is about to begin or has just finished.
4722  *    o Device is idling in between work.
4723  *
4724  * This information is also exported via sysfs to userspace.
4725  *
4726  * DRMS will sum the total requested load on the regulator and change
4727  * to the most efficient operating mode if platform constraints allow.
4728  *
4729  * NOTE: when a regulator consumer requests to have a regulator
4730  * disabled then any load that consumer requested no longer counts
4731  * toward the total requested load.  If the regulator is re-enabled
4732  * then the previously requested load will start counting again.
4733  *
4734  * If a regulator is an always-on regulator then an individual consumer's
4735  * load will still be removed if that consumer is fully disabled.
4736  *
4737  * On error a negative errno is returned.
4738  */
4739 int regulator_set_load(struct regulator *regulator, int uA_load)
4740 {
4741 	struct regulator_dev *rdev = regulator->rdev;
4742 	int old_uA_load;
4743 	int ret = 0;
4744 
4745 	regulator_lock(rdev);
4746 	old_uA_load = regulator->uA_load;
4747 	regulator->uA_load = uA_load;
4748 	if (regulator->enable_count && old_uA_load != uA_load) {
4749 		ret = drms_uA_update(rdev);
4750 		if (ret < 0)
4751 			regulator->uA_load = old_uA_load;
4752 	}
4753 	regulator_unlock(rdev);
4754 
4755 	return ret;
4756 }
4757 EXPORT_SYMBOL_GPL(regulator_set_load);
4758 
4759 /**
4760  * regulator_allow_bypass - allow the regulator to go into bypass mode
4761  *
4762  * @regulator: Regulator to configure
4763  * @enable: enable or disable bypass mode
4764  *
4765  * Allow the regulator to go into bypass mode if all other consumers
4766  * for the regulator also enable bypass mode and the machine
4767  * constraints allow this.  Bypass mode means that the regulator is
4768  * simply passing the input directly to the output with no regulation.
4769  */
4770 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4771 {
4772 	struct regulator_dev *rdev = regulator->rdev;
4773 	const char *name = rdev_get_name(rdev);
4774 	int ret = 0;
4775 
4776 	if (!rdev->desc->ops->set_bypass)
4777 		return 0;
4778 
4779 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4780 		return 0;
4781 
4782 	regulator_lock(rdev);
4783 
4784 	if (enable && !regulator->bypass) {
4785 		rdev->bypass_count++;
4786 
4787 		if (rdev->bypass_count == rdev->open_count) {
4788 			trace_regulator_bypass_enable(name);
4789 
4790 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4791 			if (ret != 0)
4792 				rdev->bypass_count--;
4793 			else
4794 				trace_regulator_bypass_enable_complete(name);
4795 		}
4796 
4797 	} else if (!enable && regulator->bypass) {
4798 		rdev->bypass_count--;
4799 
4800 		if (rdev->bypass_count != rdev->open_count) {
4801 			trace_regulator_bypass_disable(name);
4802 
4803 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4804 			if (ret != 0)
4805 				rdev->bypass_count++;
4806 			else
4807 				trace_regulator_bypass_disable_complete(name);
4808 		}
4809 	}
4810 
4811 	if (ret == 0)
4812 		regulator->bypass = enable;
4813 
4814 	regulator_unlock(rdev);
4815 
4816 	return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4819 
4820 /**
4821  * regulator_register_notifier - register regulator event notifier
4822  * @regulator: regulator source
4823  * @nb: notifier block
4824  *
4825  * Register notifier block to receive regulator events.
4826  */
4827 int regulator_register_notifier(struct regulator *regulator,
4828 			      struct notifier_block *nb)
4829 {
4830 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4831 						nb);
4832 }
4833 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4834 
4835 /**
4836  * regulator_unregister_notifier - unregister regulator event notifier
4837  * @regulator: regulator source
4838  * @nb: notifier block
4839  *
4840  * Unregister regulator event notifier block.
4841  */
4842 int regulator_unregister_notifier(struct regulator *regulator,
4843 				struct notifier_block *nb)
4844 {
4845 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4846 						  nb);
4847 }
4848 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4849 
4850 /* notify regulator consumers and downstream regulator consumers.
4851  * Note mutex must be held by caller.
4852  */
4853 static int _notifier_call_chain(struct regulator_dev *rdev,
4854 				  unsigned long event, void *data)
4855 {
4856 	/* call rdev chain first */
4857 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4858 
4859 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4860 		struct device *parent = rdev->dev.parent;
4861 		const char *rname = rdev_get_name(rdev);
4862 		char name[32];
4863 
4864 		/* Avoid duplicate debugfs directory names */
4865 		if (parent && rname == rdev->desc->name) {
4866 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4867 				 rname);
4868 			rname = name;
4869 		}
4870 		reg_generate_netlink_event(rname, event);
4871 	}
4872 
4873 	return ret;
4874 }
4875 
4876 int _regulator_bulk_get(struct device *dev, int num_consumers,
4877 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4878 {
4879 	int i;
4880 	int ret;
4881 
4882 	for (i = 0; i < num_consumers; i++)
4883 		consumers[i].consumer = NULL;
4884 
4885 	for (i = 0; i < num_consumers; i++) {
4886 		consumers[i].consumer = _regulator_get(dev,
4887 						       consumers[i].supply, get_type);
4888 		if (IS_ERR(consumers[i].consumer)) {
4889 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4890 					    "Failed to get supply '%s'",
4891 					    consumers[i].supply);
4892 			consumers[i].consumer = NULL;
4893 			goto err;
4894 		}
4895 
4896 		if (consumers[i].init_load_uA > 0) {
4897 			ret = regulator_set_load(consumers[i].consumer,
4898 						 consumers[i].init_load_uA);
4899 			if (ret) {
4900 				i++;
4901 				goto err;
4902 			}
4903 		}
4904 	}
4905 
4906 	return 0;
4907 
4908 err:
4909 	while (--i >= 0)
4910 		regulator_put(consumers[i].consumer);
4911 
4912 	return ret;
4913 }
4914 
4915 /**
4916  * regulator_bulk_get - get multiple regulator consumers
4917  *
4918  * @dev:           Device to supply
4919  * @num_consumers: Number of consumers to register
4920  * @consumers:     Configuration of consumers; clients are stored here.
4921  *
4922  * @return 0 on success, an errno on failure.
4923  *
4924  * This helper function allows drivers to get several regulator
4925  * consumers in one operation.  If any of the regulators cannot be
4926  * acquired then any regulators that were allocated will be freed
4927  * before returning to the caller.
4928  */
4929 int regulator_bulk_get(struct device *dev, int num_consumers,
4930 		       struct regulator_bulk_data *consumers)
4931 {
4932 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4933 }
4934 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4935 
4936 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4937 {
4938 	struct regulator_bulk_data *bulk = data;
4939 
4940 	bulk->ret = regulator_enable(bulk->consumer);
4941 }
4942 
4943 /**
4944  * regulator_bulk_enable - enable multiple regulator consumers
4945  *
4946  * @num_consumers: Number of consumers
4947  * @consumers:     Consumer data; clients are stored here.
4948  * @return         0 on success, an errno on failure
4949  *
4950  * This convenience API allows consumers to enable multiple regulator
4951  * clients in a single API call.  If any consumers cannot be enabled
4952  * then any others that were enabled will be disabled again prior to
4953  * return.
4954  */
4955 int regulator_bulk_enable(int num_consumers,
4956 			  struct regulator_bulk_data *consumers)
4957 {
4958 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4959 	int i;
4960 	int ret = 0;
4961 
4962 	for (i = 0; i < num_consumers; i++) {
4963 		async_schedule_domain(regulator_bulk_enable_async,
4964 				      &consumers[i], &async_domain);
4965 	}
4966 
4967 	async_synchronize_full_domain(&async_domain);
4968 
4969 	/* If any consumer failed we need to unwind any that succeeded */
4970 	for (i = 0; i < num_consumers; i++) {
4971 		if (consumers[i].ret != 0) {
4972 			ret = consumers[i].ret;
4973 			goto err;
4974 		}
4975 	}
4976 
4977 	return 0;
4978 
4979 err:
4980 	for (i = 0; i < num_consumers; i++) {
4981 		if (consumers[i].ret < 0)
4982 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4983 			       ERR_PTR(consumers[i].ret));
4984 		else
4985 			regulator_disable(consumers[i].consumer);
4986 	}
4987 
4988 	return ret;
4989 }
4990 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4991 
4992 /**
4993  * regulator_bulk_disable - disable multiple regulator consumers
4994  *
4995  * @num_consumers: Number of consumers
4996  * @consumers:     Consumer data; clients are stored here.
4997  * @return         0 on success, an errno on failure
4998  *
4999  * This convenience API allows consumers to disable multiple regulator
5000  * clients in a single API call.  If any consumers cannot be disabled
5001  * then any others that were disabled will be enabled again prior to
5002  * return.
5003  */
5004 int regulator_bulk_disable(int num_consumers,
5005 			   struct regulator_bulk_data *consumers)
5006 {
5007 	int i;
5008 	int ret, r;
5009 
5010 	for (i = num_consumers - 1; i >= 0; --i) {
5011 		ret = regulator_disable(consumers[i].consumer);
5012 		if (ret != 0)
5013 			goto err;
5014 	}
5015 
5016 	return 0;
5017 
5018 err:
5019 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5020 	for (++i; i < num_consumers; ++i) {
5021 		r = regulator_enable(consumers[i].consumer);
5022 		if (r != 0)
5023 			pr_err("Failed to re-enable %s: %pe\n",
5024 			       consumers[i].supply, ERR_PTR(r));
5025 	}
5026 
5027 	return ret;
5028 }
5029 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5030 
5031 /**
5032  * regulator_bulk_force_disable - force disable multiple regulator consumers
5033  *
5034  * @num_consumers: Number of consumers
5035  * @consumers:     Consumer data; clients are stored here.
5036  * @return         0 on success, an errno on failure
5037  *
5038  * This convenience API allows consumers to forcibly disable multiple regulator
5039  * clients in a single API call.
5040  * NOTE: This should be used for situations when device damage will
5041  * likely occur if the regulators are not disabled (e.g. over temp).
5042  * Although regulator_force_disable function call for some consumers can
5043  * return error numbers, the function is called for all consumers.
5044  */
5045 int regulator_bulk_force_disable(int num_consumers,
5046 			   struct regulator_bulk_data *consumers)
5047 {
5048 	int i;
5049 	int ret = 0;
5050 
5051 	for (i = 0; i < num_consumers; i++) {
5052 		consumers[i].ret =
5053 			    regulator_force_disable(consumers[i].consumer);
5054 
5055 		/* Store first error for reporting */
5056 		if (consumers[i].ret && !ret)
5057 			ret = consumers[i].ret;
5058 	}
5059 
5060 	return ret;
5061 }
5062 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5063 
5064 /**
5065  * regulator_bulk_free - free multiple regulator consumers
5066  *
5067  * @num_consumers: Number of consumers
5068  * @consumers:     Consumer data; clients are stored here.
5069  *
5070  * This convenience API allows consumers to free multiple regulator
5071  * clients in a single API call.
5072  */
5073 void regulator_bulk_free(int num_consumers,
5074 			 struct regulator_bulk_data *consumers)
5075 {
5076 	int i;
5077 
5078 	for (i = 0; i < num_consumers; i++) {
5079 		regulator_put(consumers[i].consumer);
5080 		consumers[i].consumer = NULL;
5081 	}
5082 }
5083 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5084 
5085 /**
5086  * regulator_handle_critical - Handle events for system-critical regulators.
5087  * @rdev: The regulator device.
5088  * @event: The event being handled.
5089  *
5090  * This function handles critical events such as under-voltage, over-current,
5091  * and unknown errors for regulators deemed system-critical. On detecting such
5092  * events, it triggers a hardware protection shutdown with a defined timeout.
5093  */
5094 static void regulator_handle_critical(struct regulator_dev *rdev,
5095 				      unsigned long event)
5096 {
5097 	const char *reason = NULL;
5098 
5099 	if (!rdev->constraints->system_critical)
5100 		return;
5101 
5102 	switch (event) {
5103 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5104 		reason = "System critical regulator: voltage drop detected";
5105 		break;
5106 	case REGULATOR_EVENT_OVER_CURRENT:
5107 		reason = "System critical regulator: over-current detected";
5108 		break;
5109 	case REGULATOR_EVENT_FAIL:
5110 		reason = "System critical regulator: unknown error";
5111 	}
5112 
5113 	if (!reason)
5114 		return;
5115 
5116 	hw_protection_shutdown(reason,
5117 			       rdev->constraints->uv_less_critical_window_ms);
5118 }
5119 
5120 /**
5121  * regulator_notifier_call_chain - call regulator event notifier
5122  * @rdev: regulator source
5123  * @event: notifier block
5124  * @data: callback-specific data.
5125  *
5126  * Called by regulator drivers to notify clients a regulator event has
5127  * occurred.
5128  */
5129 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5130 				  unsigned long event, void *data)
5131 {
5132 	regulator_handle_critical(rdev, event);
5133 
5134 	_notifier_call_chain(rdev, event, data);
5135 	return NOTIFY_DONE;
5136 
5137 }
5138 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5139 
5140 /**
5141  * regulator_mode_to_status - convert a regulator mode into a status
5142  *
5143  * @mode: Mode to convert
5144  *
5145  * Convert a regulator mode into a status.
5146  */
5147 int regulator_mode_to_status(unsigned int mode)
5148 {
5149 	switch (mode) {
5150 	case REGULATOR_MODE_FAST:
5151 		return REGULATOR_STATUS_FAST;
5152 	case REGULATOR_MODE_NORMAL:
5153 		return REGULATOR_STATUS_NORMAL;
5154 	case REGULATOR_MODE_IDLE:
5155 		return REGULATOR_STATUS_IDLE;
5156 	case REGULATOR_MODE_STANDBY:
5157 		return REGULATOR_STATUS_STANDBY;
5158 	default:
5159 		return REGULATOR_STATUS_UNDEFINED;
5160 	}
5161 }
5162 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5163 
5164 static struct attribute *regulator_dev_attrs[] = {
5165 	&dev_attr_name.attr,
5166 	&dev_attr_num_users.attr,
5167 	&dev_attr_type.attr,
5168 	&dev_attr_microvolts.attr,
5169 	&dev_attr_microamps.attr,
5170 	&dev_attr_opmode.attr,
5171 	&dev_attr_state.attr,
5172 	&dev_attr_status.attr,
5173 	&dev_attr_bypass.attr,
5174 	&dev_attr_requested_microamps.attr,
5175 	&dev_attr_min_microvolts.attr,
5176 	&dev_attr_max_microvolts.attr,
5177 	&dev_attr_min_microamps.attr,
5178 	&dev_attr_max_microamps.attr,
5179 	&dev_attr_under_voltage.attr,
5180 	&dev_attr_over_current.attr,
5181 	&dev_attr_regulation_out.attr,
5182 	&dev_attr_fail.attr,
5183 	&dev_attr_over_temp.attr,
5184 	&dev_attr_under_voltage_warn.attr,
5185 	&dev_attr_over_current_warn.attr,
5186 	&dev_attr_over_voltage_warn.attr,
5187 	&dev_attr_over_temp_warn.attr,
5188 	&dev_attr_suspend_standby_state.attr,
5189 	&dev_attr_suspend_mem_state.attr,
5190 	&dev_attr_suspend_disk_state.attr,
5191 	&dev_attr_suspend_standby_microvolts.attr,
5192 	&dev_attr_suspend_mem_microvolts.attr,
5193 	&dev_attr_suspend_disk_microvolts.attr,
5194 	&dev_attr_suspend_standby_mode.attr,
5195 	&dev_attr_suspend_mem_mode.attr,
5196 	&dev_attr_suspend_disk_mode.attr,
5197 	NULL
5198 };
5199 
5200 /*
5201  * To avoid cluttering sysfs (and memory) with useless state, only
5202  * create attributes that can be meaningfully displayed.
5203  */
5204 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5205 					 struct attribute *attr, int idx)
5206 {
5207 	struct device *dev = kobj_to_dev(kobj);
5208 	struct regulator_dev *rdev = dev_to_rdev(dev);
5209 	const struct regulator_ops *ops = rdev->desc->ops;
5210 	umode_t mode = attr->mode;
5211 
5212 	/* these three are always present */
5213 	if (attr == &dev_attr_name.attr ||
5214 	    attr == &dev_attr_num_users.attr ||
5215 	    attr == &dev_attr_type.attr)
5216 		return mode;
5217 
5218 	/* some attributes need specific methods to be displayed */
5219 	if (attr == &dev_attr_microvolts.attr) {
5220 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5221 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5222 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5223 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5224 			return mode;
5225 		return 0;
5226 	}
5227 
5228 	if (attr == &dev_attr_microamps.attr)
5229 		return ops->get_current_limit ? mode : 0;
5230 
5231 	if (attr == &dev_attr_opmode.attr)
5232 		return ops->get_mode ? mode : 0;
5233 
5234 	if (attr == &dev_attr_state.attr)
5235 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5236 
5237 	if (attr == &dev_attr_status.attr)
5238 		return ops->get_status ? mode : 0;
5239 
5240 	if (attr == &dev_attr_bypass.attr)
5241 		return ops->get_bypass ? mode : 0;
5242 
5243 	if (attr == &dev_attr_under_voltage.attr ||
5244 	    attr == &dev_attr_over_current.attr ||
5245 	    attr == &dev_attr_regulation_out.attr ||
5246 	    attr == &dev_attr_fail.attr ||
5247 	    attr == &dev_attr_over_temp.attr ||
5248 	    attr == &dev_attr_under_voltage_warn.attr ||
5249 	    attr == &dev_attr_over_current_warn.attr ||
5250 	    attr == &dev_attr_over_voltage_warn.attr ||
5251 	    attr == &dev_attr_over_temp_warn.attr)
5252 		return ops->get_error_flags ? mode : 0;
5253 
5254 	/* constraints need specific supporting methods */
5255 	if (attr == &dev_attr_min_microvolts.attr ||
5256 	    attr == &dev_attr_max_microvolts.attr)
5257 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5258 
5259 	if (attr == &dev_attr_min_microamps.attr ||
5260 	    attr == &dev_attr_max_microamps.attr)
5261 		return ops->set_current_limit ? mode : 0;
5262 
5263 	if (attr == &dev_attr_suspend_standby_state.attr ||
5264 	    attr == &dev_attr_suspend_mem_state.attr ||
5265 	    attr == &dev_attr_suspend_disk_state.attr)
5266 		return mode;
5267 
5268 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5269 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5270 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5271 		return ops->set_suspend_voltage ? mode : 0;
5272 
5273 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5274 	    attr == &dev_attr_suspend_mem_mode.attr ||
5275 	    attr == &dev_attr_suspend_disk_mode.attr)
5276 		return ops->set_suspend_mode ? mode : 0;
5277 
5278 	return mode;
5279 }
5280 
5281 static const struct attribute_group regulator_dev_group = {
5282 	.attrs = regulator_dev_attrs,
5283 	.is_visible = regulator_attr_is_visible,
5284 };
5285 
5286 static const struct attribute_group *regulator_dev_groups[] = {
5287 	&regulator_dev_group,
5288 	NULL
5289 };
5290 
5291 static void regulator_dev_release(struct device *dev)
5292 {
5293 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5294 
5295 	debugfs_remove_recursive(rdev->debugfs);
5296 	kfree(rdev->constraints);
5297 	of_node_put(rdev->dev.of_node);
5298 	kfree(rdev);
5299 }
5300 
5301 static void rdev_init_debugfs(struct regulator_dev *rdev)
5302 {
5303 	struct device *parent = rdev->dev.parent;
5304 	const char *rname = rdev_get_name(rdev);
5305 	char name[NAME_MAX];
5306 
5307 	/* Avoid duplicate debugfs directory names */
5308 	if (parent && rname == rdev->desc->name) {
5309 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5310 			 rname);
5311 		rname = name;
5312 	}
5313 
5314 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5315 	if (IS_ERR(rdev->debugfs))
5316 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5317 
5318 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5319 			   &rdev->use_count);
5320 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5321 			   &rdev->open_count);
5322 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5323 			   &rdev->bypass_count);
5324 }
5325 
5326 static int regulator_register_resolve_supply(struct device *dev, void *data)
5327 {
5328 	struct regulator_dev *rdev = dev_to_rdev(dev);
5329 
5330 	if (regulator_resolve_supply(rdev))
5331 		rdev_dbg(rdev, "unable to resolve supply\n");
5332 
5333 	return 0;
5334 }
5335 
5336 int regulator_coupler_register(struct regulator_coupler *coupler)
5337 {
5338 	mutex_lock(&regulator_list_mutex);
5339 	list_add_tail(&coupler->list, &regulator_coupler_list);
5340 	mutex_unlock(&regulator_list_mutex);
5341 
5342 	return 0;
5343 }
5344 
5345 static struct regulator_coupler *
5346 regulator_find_coupler(struct regulator_dev *rdev)
5347 {
5348 	struct regulator_coupler *coupler;
5349 	int err;
5350 
5351 	/*
5352 	 * Note that regulators are appended to the list and the generic
5353 	 * coupler is registered first, hence it will be attached at last
5354 	 * if nobody cared.
5355 	 */
5356 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5357 		err = coupler->attach_regulator(coupler, rdev);
5358 		if (!err) {
5359 			if (!coupler->balance_voltage &&
5360 			    rdev->coupling_desc.n_coupled > 2)
5361 				goto err_unsupported;
5362 
5363 			return coupler;
5364 		}
5365 
5366 		if (err < 0)
5367 			return ERR_PTR(err);
5368 
5369 		if (err == 1)
5370 			continue;
5371 
5372 		break;
5373 	}
5374 
5375 	return ERR_PTR(-EINVAL);
5376 
5377 err_unsupported:
5378 	if (coupler->detach_regulator)
5379 		coupler->detach_regulator(coupler, rdev);
5380 
5381 	rdev_err(rdev,
5382 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5383 
5384 	return ERR_PTR(-EPERM);
5385 }
5386 
5387 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5388 {
5389 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5390 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5391 	int n_coupled = c_desc->n_coupled;
5392 	struct regulator_dev *c_rdev;
5393 	int i;
5394 
5395 	for (i = 1; i < n_coupled; i++) {
5396 		/* already resolved */
5397 		if (c_desc->coupled_rdevs[i])
5398 			continue;
5399 
5400 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5401 
5402 		if (!c_rdev)
5403 			continue;
5404 
5405 		if (c_rdev->coupling_desc.coupler != coupler) {
5406 			rdev_err(rdev, "coupler mismatch with %s\n",
5407 				 rdev_get_name(c_rdev));
5408 			return;
5409 		}
5410 
5411 		c_desc->coupled_rdevs[i] = c_rdev;
5412 		c_desc->n_resolved++;
5413 
5414 		regulator_resolve_coupling(c_rdev);
5415 	}
5416 }
5417 
5418 static void regulator_remove_coupling(struct regulator_dev *rdev)
5419 {
5420 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5421 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5422 	struct regulator_dev *__c_rdev, *c_rdev;
5423 	unsigned int __n_coupled, n_coupled;
5424 	int i, k;
5425 	int err;
5426 
5427 	n_coupled = c_desc->n_coupled;
5428 
5429 	for (i = 1; i < n_coupled; i++) {
5430 		c_rdev = c_desc->coupled_rdevs[i];
5431 
5432 		if (!c_rdev)
5433 			continue;
5434 
5435 		regulator_lock(c_rdev);
5436 
5437 		__c_desc = &c_rdev->coupling_desc;
5438 		__n_coupled = __c_desc->n_coupled;
5439 
5440 		for (k = 1; k < __n_coupled; k++) {
5441 			__c_rdev = __c_desc->coupled_rdevs[k];
5442 
5443 			if (__c_rdev == rdev) {
5444 				__c_desc->coupled_rdevs[k] = NULL;
5445 				__c_desc->n_resolved--;
5446 				break;
5447 			}
5448 		}
5449 
5450 		regulator_unlock(c_rdev);
5451 
5452 		c_desc->coupled_rdevs[i] = NULL;
5453 		c_desc->n_resolved--;
5454 	}
5455 
5456 	if (coupler && coupler->detach_regulator) {
5457 		err = coupler->detach_regulator(coupler, rdev);
5458 		if (err)
5459 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5460 				 ERR_PTR(err));
5461 	}
5462 
5463 	kfree(rdev->coupling_desc.coupled_rdevs);
5464 	rdev->coupling_desc.coupled_rdevs = NULL;
5465 }
5466 
5467 static int regulator_init_coupling(struct regulator_dev *rdev)
5468 {
5469 	struct regulator_dev **coupled;
5470 	int err, n_phandles;
5471 
5472 	if (!IS_ENABLED(CONFIG_OF))
5473 		n_phandles = 0;
5474 	else
5475 		n_phandles = of_get_n_coupled(rdev);
5476 
5477 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5478 	if (!coupled)
5479 		return -ENOMEM;
5480 
5481 	rdev->coupling_desc.coupled_rdevs = coupled;
5482 
5483 	/*
5484 	 * Every regulator should always have coupling descriptor filled with
5485 	 * at least pointer to itself.
5486 	 */
5487 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5488 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5489 	rdev->coupling_desc.n_resolved++;
5490 
5491 	/* regulator isn't coupled */
5492 	if (n_phandles == 0)
5493 		return 0;
5494 
5495 	if (!of_check_coupling_data(rdev))
5496 		return -EPERM;
5497 
5498 	mutex_lock(&regulator_list_mutex);
5499 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5500 	mutex_unlock(&regulator_list_mutex);
5501 
5502 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5503 		err = PTR_ERR(rdev->coupling_desc.coupler);
5504 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5505 		return err;
5506 	}
5507 
5508 	return 0;
5509 }
5510 
5511 static int generic_coupler_attach(struct regulator_coupler *coupler,
5512 				  struct regulator_dev *rdev)
5513 {
5514 	if (rdev->coupling_desc.n_coupled > 2) {
5515 		rdev_err(rdev,
5516 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5517 		return -EPERM;
5518 	}
5519 
5520 	if (!rdev->constraints->always_on) {
5521 		rdev_err(rdev,
5522 			 "Coupling of a non always-on regulator is unimplemented\n");
5523 		return -ENOTSUPP;
5524 	}
5525 
5526 	return 0;
5527 }
5528 
5529 static struct regulator_coupler generic_regulator_coupler = {
5530 	.attach_regulator = generic_coupler_attach,
5531 };
5532 
5533 /**
5534  * regulator_register - register regulator
5535  * @dev: the device that drive the regulator
5536  * @regulator_desc: regulator to register
5537  * @cfg: runtime configuration for regulator
5538  *
5539  * Called by regulator drivers to register a regulator.
5540  * Returns a valid pointer to struct regulator_dev on success
5541  * or an ERR_PTR() on error.
5542  */
5543 struct regulator_dev *
5544 regulator_register(struct device *dev,
5545 		   const struct regulator_desc *regulator_desc,
5546 		   const struct regulator_config *cfg)
5547 {
5548 	const struct regulator_init_data *init_data;
5549 	struct regulator_config *config = NULL;
5550 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5551 	struct regulator_dev *rdev;
5552 	bool dangling_cfg_gpiod = false;
5553 	bool dangling_of_gpiod = false;
5554 	int ret, i;
5555 	bool resolved_early = false;
5556 
5557 	if (cfg == NULL)
5558 		return ERR_PTR(-EINVAL);
5559 	if (cfg->ena_gpiod)
5560 		dangling_cfg_gpiod = true;
5561 	if (regulator_desc == NULL) {
5562 		ret = -EINVAL;
5563 		goto rinse;
5564 	}
5565 
5566 	WARN_ON(!dev || !cfg->dev);
5567 
5568 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5569 		ret = -EINVAL;
5570 		goto rinse;
5571 	}
5572 
5573 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5574 	    regulator_desc->type != REGULATOR_CURRENT) {
5575 		ret = -EINVAL;
5576 		goto rinse;
5577 	}
5578 
5579 	/* Only one of each should be implemented */
5580 	WARN_ON(regulator_desc->ops->get_voltage &&
5581 		regulator_desc->ops->get_voltage_sel);
5582 	WARN_ON(regulator_desc->ops->set_voltage &&
5583 		regulator_desc->ops->set_voltage_sel);
5584 
5585 	/* If we're using selectors we must implement list_voltage. */
5586 	if (regulator_desc->ops->get_voltage_sel &&
5587 	    !regulator_desc->ops->list_voltage) {
5588 		ret = -EINVAL;
5589 		goto rinse;
5590 	}
5591 	if (regulator_desc->ops->set_voltage_sel &&
5592 	    !regulator_desc->ops->list_voltage) {
5593 		ret = -EINVAL;
5594 		goto rinse;
5595 	}
5596 
5597 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5598 	if (rdev == NULL) {
5599 		ret = -ENOMEM;
5600 		goto rinse;
5601 	}
5602 	device_initialize(&rdev->dev);
5603 	dev_set_drvdata(&rdev->dev, rdev);
5604 	rdev->dev.class = &regulator_class;
5605 	spin_lock_init(&rdev->err_lock);
5606 
5607 	/*
5608 	 * Duplicate the config so the driver could override it after
5609 	 * parsing init data.
5610 	 */
5611 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5612 	if (config == NULL) {
5613 		ret = -ENOMEM;
5614 		goto clean;
5615 	}
5616 
5617 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5618 					       &rdev->dev.of_node);
5619 
5620 	/*
5621 	 * Sometimes not all resources are probed already so we need to take
5622 	 * that into account. This happens most the time if the ena_gpiod comes
5623 	 * from a gpio extender or something else.
5624 	 */
5625 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5626 		ret = -EPROBE_DEFER;
5627 		goto clean;
5628 	}
5629 
5630 	/*
5631 	 * We need to keep track of any GPIO descriptor coming from the
5632 	 * device tree until we have handled it over to the core. If the
5633 	 * config that was passed in to this function DOES NOT contain
5634 	 * a descriptor, and the config after this call DOES contain
5635 	 * a descriptor, we definitely got one from parsing the device
5636 	 * tree.
5637 	 */
5638 	if (!cfg->ena_gpiod && config->ena_gpiod)
5639 		dangling_of_gpiod = true;
5640 	if (!init_data) {
5641 		init_data = config->init_data;
5642 		rdev->dev.of_node = of_node_get(config->of_node);
5643 	}
5644 
5645 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5646 	rdev->reg_data = config->driver_data;
5647 	rdev->owner = regulator_desc->owner;
5648 	rdev->desc = regulator_desc;
5649 	if (config->regmap)
5650 		rdev->regmap = config->regmap;
5651 	else if (dev_get_regmap(dev, NULL))
5652 		rdev->regmap = dev_get_regmap(dev, NULL);
5653 	else if (dev->parent)
5654 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5655 	INIT_LIST_HEAD(&rdev->consumer_list);
5656 	INIT_LIST_HEAD(&rdev->list);
5657 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5658 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5659 
5660 	if (init_data && init_data->supply_regulator)
5661 		rdev->supply_name = init_data->supply_regulator;
5662 	else if (regulator_desc->supply_name)
5663 		rdev->supply_name = regulator_desc->supply_name;
5664 
5665 	/* register with sysfs */
5666 	rdev->dev.parent = config->dev;
5667 	dev_set_name(&rdev->dev, "regulator.%lu",
5668 		    (unsigned long) atomic_inc_return(&regulator_no));
5669 
5670 	/* set regulator constraints */
5671 	if (init_data)
5672 		rdev->constraints = kmemdup(&init_data->constraints,
5673 					    sizeof(*rdev->constraints),
5674 					    GFP_KERNEL);
5675 	else
5676 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5677 					    GFP_KERNEL);
5678 	if (!rdev->constraints) {
5679 		ret = -ENOMEM;
5680 		goto wash;
5681 	}
5682 
5683 	if ((rdev->supply_name && !rdev->supply) &&
5684 		(rdev->constraints->always_on ||
5685 		 rdev->constraints->boot_on)) {
5686 		ret = regulator_resolve_supply(rdev);
5687 		if (ret)
5688 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5689 					 ERR_PTR(ret));
5690 
5691 		resolved_early = true;
5692 	}
5693 
5694 	/* perform any regulator specific init */
5695 	if (init_data && init_data->regulator_init) {
5696 		ret = init_data->regulator_init(rdev->reg_data);
5697 		if (ret < 0)
5698 			goto wash;
5699 	}
5700 
5701 	if (config->ena_gpiod) {
5702 		ret = regulator_ena_gpio_request(rdev, config);
5703 		if (ret != 0) {
5704 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5705 				 ERR_PTR(ret));
5706 			goto wash;
5707 		}
5708 		/* The regulator core took over the GPIO descriptor */
5709 		dangling_cfg_gpiod = false;
5710 		dangling_of_gpiod = false;
5711 	}
5712 
5713 	ret = set_machine_constraints(rdev);
5714 	if (ret == -EPROBE_DEFER && !resolved_early) {
5715 		/* Regulator might be in bypass mode and so needs its supply
5716 		 * to set the constraints
5717 		 */
5718 		/* FIXME: this currently triggers a chicken-and-egg problem
5719 		 * when creating -SUPPLY symlink in sysfs to a regulator
5720 		 * that is just being created
5721 		 */
5722 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5723 			 rdev->supply_name);
5724 		ret = regulator_resolve_supply(rdev);
5725 		if (!ret)
5726 			ret = set_machine_constraints(rdev);
5727 		else
5728 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5729 				 ERR_PTR(ret));
5730 	}
5731 	if (ret < 0)
5732 		goto wash;
5733 
5734 	ret = regulator_init_coupling(rdev);
5735 	if (ret < 0)
5736 		goto wash;
5737 
5738 	/* add consumers devices */
5739 	if (init_data) {
5740 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5741 			ret = set_consumer_device_supply(rdev,
5742 				init_data->consumer_supplies[i].dev_name,
5743 				init_data->consumer_supplies[i].supply);
5744 			if (ret < 0) {
5745 				dev_err(dev, "Failed to set supply %s\n",
5746 					init_data->consumer_supplies[i].supply);
5747 				goto unset_supplies;
5748 			}
5749 		}
5750 	}
5751 
5752 	if (!rdev->desc->ops->get_voltage &&
5753 	    !rdev->desc->ops->list_voltage &&
5754 	    !rdev->desc->fixed_uV)
5755 		rdev->is_switch = true;
5756 
5757 	ret = device_add(&rdev->dev);
5758 	if (ret != 0)
5759 		goto unset_supplies;
5760 
5761 	rdev_init_debugfs(rdev);
5762 
5763 	/* try to resolve regulators coupling since a new one was registered */
5764 	mutex_lock(&regulator_list_mutex);
5765 	regulator_resolve_coupling(rdev);
5766 	mutex_unlock(&regulator_list_mutex);
5767 
5768 	/* try to resolve regulators supply since a new one was registered */
5769 	class_for_each_device(&regulator_class, NULL, NULL,
5770 			      regulator_register_resolve_supply);
5771 	kfree(config);
5772 	return rdev;
5773 
5774 unset_supplies:
5775 	mutex_lock(&regulator_list_mutex);
5776 	unset_regulator_supplies(rdev);
5777 	regulator_remove_coupling(rdev);
5778 	mutex_unlock(&regulator_list_mutex);
5779 wash:
5780 	regulator_put(rdev->supply);
5781 	kfree(rdev->coupling_desc.coupled_rdevs);
5782 	mutex_lock(&regulator_list_mutex);
5783 	regulator_ena_gpio_free(rdev);
5784 	mutex_unlock(&regulator_list_mutex);
5785 clean:
5786 	if (dangling_of_gpiod)
5787 		gpiod_put(config->ena_gpiod);
5788 	kfree(config);
5789 	put_device(&rdev->dev);
5790 rinse:
5791 	if (dangling_cfg_gpiod)
5792 		gpiod_put(cfg->ena_gpiod);
5793 	return ERR_PTR(ret);
5794 }
5795 EXPORT_SYMBOL_GPL(regulator_register);
5796 
5797 /**
5798  * regulator_unregister - unregister regulator
5799  * @rdev: regulator to unregister
5800  *
5801  * Called by regulator drivers to unregister a regulator.
5802  */
5803 void regulator_unregister(struct regulator_dev *rdev)
5804 {
5805 	if (rdev == NULL)
5806 		return;
5807 
5808 	if (rdev->supply) {
5809 		while (rdev->use_count--)
5810 			regulator_disable(rdev->supply);
5811 		regulator_put(rdev->supply);
5812 	}
5813 
5814 	flush_work(&rdev->disable_work.work);
5815 
5816 	mutex_lock(&regulator_list_mutex);
5817 
5818 	WARN_ON(rdev->open_count);
5819 	regulator_remove_coupling(rdev);
5820 	unset_regulator_supplies(rdev);
5821 	list_del(&rdev->list);
5822 	regulator_ena_gpio_free(rdev);
5823 	device_unregister(&rdev->dev);
5824 
5825 	mutex_unlock(&regulator_list_mutex);
5826 }
5827 EXPORT_SYMBOL_GPL(regulator_unregister);
5828 
5829 #ifdef CONFIG_SUSPEND
5830 /**
5831  * regulator_suspend - prepare regulators for system wide suspend
5832  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5833  *
5834  * Configure each regulator with it's suspend operating parameters for state.
5835  */
5836 static int regulator_suspend(struct device *dev)
5837 {
5838 	struct regulator_dev *rdev = dev_to_rdev(dev);
5839 	suspend_state_t state = pm_suspend_target_state;
5840 	int ret;
5841 	const struct regulator_state *rstate;
5842 
5843 	rstate = regulator_get_suspend_state_check(rdev, state);
5844 	if (!rstate)
5845 		return 0;
5846 
5847 	regulator_lock(rdev);
5848 	ret = __suspend_set_state(rdev, rstate);
5849 	regulator_unlock(rdev);
5850 
5851 	return ret;
5852 }
5853 
5854 static int regulator_resume(struct device *dev)
5855 {
5856 	suspend_state_t state = pm_suspend_target_state;
5857 	struct regulator_dev *rdev = dev_to_rdev(dev);
5858 	struct regulator_state *rstate;
5859 	int ret = 0;
5860 
5861 	rstate = regulator_get_suspend_state(rdev, state);
5862 	if (rstate == NULL)
5863 		return 0;
5864 
5865 	/* Avoid grabbing the lock if we don't need to */
5866 	if (!rdev->desc->ops->resume)
5867 		return 0;
5868 
5869 	regulator_lock(rdev);
5870 
5871 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5872 	    rstate->enabled == DISABLE_IN_SUSPEND)
5873 		ret = rdev->desc->ops->resume(rdev);
5874 
5875 	regulator_unlock(rdev);
5876 
5877 	return ret;
5878 }
5879 #else /* !CONFIG_SUSPEND */
5880 
5881 #define regulator_suspend	NULL
5882 #define regulator_resume	NULL
5883 
5884 #endif /* !CONFIG_SUSPEND */
5885 
5886 #ifdef CONFIG_PM
5887 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5888 	.suspend	= regulator_suspend,
5889 	.resume		= regulator_resume,
5890 };
5891 #endif
5892 
5893 const struct class regulator_class = {
5894 	.name = "regulator",
5895 	.dev_release = regulator_dev_release,
5896 	.dev_groups = regulator_dev_groups,
5897 #ifdef CONFIG_PM
5898 	.pm = &regulator_pm_ops,
5899 #endif
5900 };
5901 /**
5902  * regulator_has_full_constraints - the system has fully specified constraints
5903  *
5904  * Calling this function will cause the regulator API to disable all
5905  * regulators which have a zero use count and don't have an always_on
5906  * constraint in a late_initcall.
5907  *
5908  * The intention is that this will become the default behaviour in a
5909  * future kernel release so users are encouraged to use this facility
5910  * now.
5911  */
5912 void regulator_has_full_constraints(void)
5913 {
5914 	has_full_constraints = 1;
5915 }
5916 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5917 
5918 /**
5919  * rdev_get_drvdata - get rdev regulator driver data
5920  * @rdev: regulator
5921  *
5922  * Get rdev regulator driver private data. This call can be used in the
5923  * regulator driver context.
5924  */
5925 void *rdev_get_drvdata(struct regulator_dev *rdev)
5926 {
5927 	return rdev->reg_data;
5928 }
5929 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5930 
5931 /**
5932  * regulator_get_drvdata - get regulator driver data
5933  * @regulator: regulator
5934  *
5935  * Get regulator driver private data. This call can be used in the consumer
5936  * driver context when non API regulator specific functions need to be called.
5937  */
5938 void *regulator_get_drvdata(struct regulator *regulator)
5939 {
5940 	return regulator->rdev->reg_data;
5941 }
5942 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5943 
5944 /**
5945  * regulator_set_drvdata - set regulator driver data
5946  * @regulator: regulator
5947  * @data: data
5948  */
5949 void regulator_set_drvdata(struct regulator *regulator, void *data)
5950 {
5951 	regulator->rdev->reg_data = data;
5952 }
5953 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5954 
5955 /**
5956  * rdev_get_id - get regulator ID
5957  * @rdev: regulator
5958  */
5959 int rdev_get_id(struct regulator_dev *rdev)
5960 {
5961 	return rdev->desc->id;
5962 }
5963 EXPORT_SYMBOL_GPL(rdev_get_id);
5964 
5965 struct device *rdev_get_dev(struct regulator_dev *rdev)
5966 {
5967 	return &rdev->dev;
5968 }
5969 EXPORT_SYMBOL_GPL(rdev_get_dev);
5970 
5971 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5972 {
5973 	return rdev->regmap;
5974 }
5975 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5976 
5977 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5978 {
5979 	return reg_init_data->driver_data;
5980 }
5981 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5982 
5983 #ifdef CONFIG_DEBUG_FS
5984 static int supply_map_show(struct seq_file *sf, void *data)
5985 {
5986 	struct regulator_map *map;
5987 
5988 	list_for_each_entry(map, &regulator_map_list, list) {
5989 		seq_printf(sf, "%s -> %s.%s\n",
5990 				rdev_get_name(map->regulator), map->dev_name,
5991 				map->supply);
5992 	}
5993 
5994 	return 0;
5995 }
5996 DEFINE_SHOW_ATTRIBUTE(supply_map);
5997 
5998 struct summary_data {
5999 	struct seq_file *s;
6000 	struct regulator_dev *parent;
6001 	int level;
6002 };
6003 
6004 static void regulator_summary_show_subtree(struct seq_file *s,
6005 					   struct regulator_dev *rdev,
6006 					   int level);
6007 
6008 static int regulator_summary_show_children(struct device *dev, void *data)
6009 {
6010 	struct regulator_dev *rdev = dev_to_rdev(dev);
6011 	struct summary_data *summary_data = data;
6012 
6013 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6014 		regulator_summary_show_subtree(summary_data->s, rdev,
6015 					       summary_data->level + 1);
6016 
6017 	return 0;
6018 }
6019 
6020 static void regulator_summary_show_subtree(struct seq_file *s,
6021 					   struct regulator_dev *rdev,
6022 					   int level)
6023 {
6024 	struct regulation_constraints *c;
6025 	struct regulator *consumer;
6026 	struct summary_data summary_data;
6027 	unsigned int opmode;
6028 
6029 	if (!rdev)
6030 		return;
6031 
6032 	opmode = _regulator_get_mode_unlocked(rdev);
6033 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6034 		   level * 3 + 1, "",
6035 		   30 - level * 3, rdev_get_name(rdev),
6036 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6037 		   regulator_opmode_to_str(opmode));
6038 
6039 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6040 	seq_printf(s, "%5dmA ",
6041 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6042 
6043 	c = rdev->constraints;
6044 	if (c) {
6045 		switch (rdev->desc->type) {
6046 		case REGULATOR_VOLTAGE:
6047 			seq_printf(s, "%5dmV %5dmV ",
6048 				   c->min_uV / 1000, c->max_uV / 1000);
6049 			break;
6050 		case REGULATOR_CURRENT:
6051 			seq_printf(s, "%5dmA %5dmA ",
6052 				   c->min_uA / 1000, c->max_uA / 1000);
6053 			break;
6054 		}
6055 	}
6056 
6057 	seq_puts(s, "\n");
6058 
6059 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6060 		if (consumer->dev && consumer->dev->class == &regulator_class)
6061 			continue;
6062 
6063 		seq_printf(s, "%*s%-*s ",
6064 			   (level + 1) * 3 + 1, "",
6065 			   30 - (level + 1) * 3,
6066 			   consumer->supply_name ? consumer->supply_name :
6067 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6068 
6069 		switch (rdev->desc->type) {
6070 		case REGULATOR_VOLTAGE:
6071 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6072 				   consumer->enable_count,
6073 				   consumer->uA_load / 1000,
6074 				   consumer->uA_load && !consumer->enable_count ?
6075 				   '*' : ' ',
6076 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6077 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6078 			break;
6079 		case REGULATOR_CURRENT:
6080 			break;
6081 		}
6082 
6083 		seq_puts(s, "\n");
6084 	}
6085 
6086 	summary_data.s = s;
6087 	summary_data.level = level;
6088 	summary_data.parent = rdev;
6089 
6090 	class_for_each_device(&regulator_class, NULL, &summary_data,
6091 			      regulator_summary_show_children);
6092 }
6093 
6094 struct summary_lock_data {
6095 	struct ww_acquire_ctx *ww_ctx;
6096 	struct regulator_dev **new_contended_rdev;
6097 	struct regulator_dev **old_contended_rdev;
6098 };
6099 
6100 static int regulator_summary_lock_one(struct device *dev, void *data)
6101 {
6102 	struct regulator_dev *rdev = dev_to_rdev(dev);
6103 	struct summary_lock_data *lock_data = data;
6104 	int ret = 0;
6105 
6106 	if (rdev != *lock_data->old_contended_rdev) {
6107 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6108 
6109 		if (ret == -EDEADLK)
6110 			*lock_data->new_contended_rdev = rdev;
6111 		else
6112 			WARN_ON_ONCE(ret);
6113 	} else {
6114 		*lock_data->old_contended_rdev = NULL;
6115 	}
6116 
6117 	return ret;
6118 }
6119 
6120 static int regulator_summary_unlock_one(struct device *dev, void *data)
6121 {
6122 	struct regulator_dev *rdev = dev_to_rdev(dev);
6123 	struct summary_lock_data *lock_data = data;
6124 
6125 	if (lock_data) {
6126 		if (rdev == *lock_data->new_contended_rdev)
6127 			return -EDEADLK;
6128 	}
6129 
6130 	regulator_unlock(rdev);
6131 
6132 	return 0;
6133 }
6134 
6135 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6136 				      struct regulator_dev **new_contended_rdev,
6137 				      struct regulator_dev **old_contended_rdev)
6138 {
6139 	struct summary_lock_data lock_data;
6140 	int ret;
6141 
6142 	lock_data.ww_ctx = ww_ctx;
6143 	lock_data.new_contended_rdev = new_contended_rdev;
6144 	lock_data.old_contended_rdev = old_contended_rdev;
6145 
6146 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6147 				    regulator_summary_lock_one);
6148 	if (ret)
6149 		class_for_each_device(&regulator_class, NULL, &lock_data,
6150 				      regulator_summary_unlock_one);
6151 
6152 	return ret;
6153 }
6154 
6155 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6156 {
6157 	struct regulator_dev *new_contended_rdev = NULL;
6158 	struct regulator_dev *old_contended_rdev = NULL;
6159 	int err;
6160 
6161 	mutex_lock(&regulator_list_mutex);
6162 
6163 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6164 
6165 	do {
6166 		if (new_contended_rdev) {
6167 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6168 			old_contended_rdev = new_contended_rdev;
6169 			old_contended_rdev->ref_cnt++;
6170 			old_contended_rdev->mutex_owner = current;
6171 		}
6172 
6173 		err = regulator_summary_lock_all(ww_ctx,
6174 						 &new_contended_rdev,
6175 						 &old_contended_rdev);
6176 
6177 		if (old_contended_rdev)
6178 			regulator_unlock(old_contended_rdev);
6179 
6180 	} while (err == -EDEADLK);
6181 
6182 	ww_acquire_done(ww_ctx);
6183 }
6184 
6185 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6186 {
6187 	class_for_each_device(&regulator_class, NULL, NULL,
6188 			      regulator_summary_unlock_one);
6189 	ww_acquire_fini(ww_ctx);
6190 
6191 	mutex_unlock(&regulator_list_mutex);
6192 }
6193 
6194 static int regulator_summary_show_roots(struct device *dev, void *data)
6195 {
6196 	struct regulator_dev *rdev = dev_to_rdev(dev);
6197 	struct seq_file *s = data;
6198 
6199 	if (!rdev->supply)
6200 		regulator_summary_show_subtree(s, rdev, 0);
6201 
6202 	return 0;
6203 }
6204 
6205 static int regulator_summary_show(struct seq_file *s, void *data)
6206 {
6207 	struct ww_acquire_ctx ww_ctx;
6208 
6209 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6210 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6211 
6212 	regulator_summary_lock(&ww_ctx);
6213 
6214 	class_for_each_device(&regulator_class, NULL, s,
6215 			      regulator_summary_show_roots);
6216 
6217 	regulator_summary_unlock(&ww_ctx);
6218 
6219 	return 0;
6220 }
6221 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6222 #endif /* CONFIG_DEBUG_FS */
6223 
6224 static int __init regulator_init(void)
6225 {
6226 	int ret;
6227 
6228 	ret = class_register(&regulator_class);
6229 
6230 	debugfs_root = debugfs_create_dir("regulator", NULL);
6231 	if (IS_ERR(debugfs_root))
6232 		pr_debug("regulator: Failed to create debugfs directory\n");
6233 
6234 #ifdef CONFIG_DEBUG_FS
6235 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6236 			    &supply_map_fops);
6237 
6238 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6239 			    NULL, &regulator_summary_fops);
6240 #endif
6241 	regulator_dummy_init();
6242 
6243 	regulator_coupler_register(&generic_regulator_coupler);
6244 
6245 	return ret;
6246 }
6247 
6248 /* init early to allow our consumers to complete system booting */
6249 core_initcall(regulator_init);
6250 
6251 static int regulator_late_cleanup(struct device *dev, void *data)
6252 {
6253 	struct regulator_dev *rdev = dev_to_rdev(dev);
6254 	struct regulation_constraints *c = rdev->constraints;
6255 	int ret;
6256 
6257 	if (c && c->always_on)
6258 		return 0;
6259 
6260 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6261 		return 0;
6262 
6263 	regulator_lock(rdev);
6264 
6265 	if (rdev->use_count)
6266 		goto unlock;
6267 
6268 	/* If reading the status failed, assume that it's off. */
6269 	if (_regulator_is_enabled(rdev) <= 0)
6270 		goto unlock;
6271 
6272 	if (have_full_constraints()) {
6273 		/* We log since this may kill the system if it goes
6274 		 * wrong.
6275 		 */
6276 		rdev_info(rdev, "disabling\n");
6277 		ret = _regulator_do_disable(rdev);
6278 		if (ret != 0)
6279 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6280 	} else {
6281 		/* The intention is that in future we will
6282 		 * assume that full constraints are provided
6283 		 * so warn even if we aren't going to do
6284 		 * anything here.
6285 		 */
6286 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6287 	}
6288 
6289 unlock:
6290 	regulator_unlock(rdev);
6291 
6292 	return 0;
6293 }
6294 
6295 static bool regulator_ignore_unused;
6296 static int __init regulator_ignore_unused_setup(char *__unused)
6297 {
6298 	regulator_ignore_unused = true;
6299 	return 1;
6300 }
6301 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6302 
6303 static void regulator_init_complete_work_function(struct work_struct *work)
6304 {
6305 	/*
6306 	 * Regulators may had failed to resolve their input supplies
6307 	 * when were registered, either because the input supply was
6308 	 * not registered yet or because its parent device was not
6309 	 * bound yet. So attempt to resolve the input supplies for
6310 	 * pending regulators before trying to disable unused ones.
6311 	 */
6312 	class_for_each_device(&regulator_class, NULL, NULL,
6313 			      regulator_register_resolve_supply);
6314 
6315 	/*
6316 	 * For debugging purposes, it may be useful to prevent unused
6317 	 * regulators from being disabled.
6318 	 */
6319 	if (regulator_ignore_unused) {
6320 		pr_warn("regulator: Not disabling unused regulators\n");
6321 		return;
6322 	}
6323 
6324 	/* If we have a full configuration then disable any regulators
6325 	 * we have permission to change the status for and which are
6326 	 * not in use or always_on.  This is effectively the default
6327 	 * for DT and ACPI as they have full constraints.
6328 	 */
6329 	class_for_each_device(&regulator_class, NULL, NULL,
6330 			      regulator_late_cleanup);
6331 }
6332 
6333 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6334 			    regulator_init_complete_work_function);
6335 
6336 static int __init regulator_init_complete(void)
6337 {
6338 	/*
6339 	 * Since DT doesn't provide an idiomatic mechanism for
6340 	 * enabling full constraints and since it's much more natural
6341 	 * with DT to provide them just assume that a DT enabled
6342 	 * system has full constraints.
6343 	 */
6344 	if (of_have_populated_dt())
6345 		has_full_constraints = true;
6346 
6347 	/*
6348 	 * We punt completion for an arbitrary amount of time since
6349 	 * systems like distros will load many drivers from userspace
6350 	 * so consumers might not always be ready yet, this is
6351 	 * particularly an issue with laptops where this might bounce
6352 	 * the display off then on.  Ideally we'd get a notification
6353 	 * from userspace when this happens but we don't so just wait
6354 	 * a bit and hope we waited long enough.  It'd be better if
6355 	 * we'd only do this on systems that need it, and a kernel
6356 	 * command line option might be useful.
6357 	 */
6358 	schedule_delayed_work(&regulator_init_complete_work,
6359 			      msecs_to_jiffies(30000));
6360 
6361 	return 0;
6362 }
6363 late_initcall_sync(regulator_init_complete);
6364