xref: /linux/drivers/regulator/core.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	struct gpio_desc *gpiod;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130 	if (!rdev->constraints) {
131 		rdev_err(rdev, "no constraints\n");
132 		return false;
133 	}
134 
135 	if (rdev->constraints->valid_ops_mask & ops)
136 		return true;
137 
138 	return false;
139 }
140 
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143 	if (rdev && rdev->supply)
144 		return rdev->supply->rdev;
145 
146 	return NULL;
147 }
148 
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:		regulator source
152  * @subclass:		mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 				  unsigned int subclass)
162 {
163 	if (!mutex_trylock(&rdev->mutex)) {
164 		if (rdev->mutex_owner == current) {
165 			rdev->ref_cnt++;
166 			return;
167 		}
168 		mutex_lock_nested(&rdev->mutex, subclass);
169 	}
170 
171 	rdev->ref_cnt = 1;
172 	rdev->mutex_owner = current;
173 }
174 
175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177 	regulator_lock_nested(rdev, 0);
178 }
179 
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:		regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189 	if (rdev->ref_cnt != 0) {
190 		rdev->ref_cnt--;
191 
192 		if (!rdev->ref_cnt) {
193 			rdev->mutex_owner = NULL;
194 			mutex_unlock(&rdev->mutex);
195 		}
196 	}
197 }
198 
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205 	int i;
206 
207 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 		regulator_lock_nested(rdev, i);
209 }
210 
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217 	struct regulator *supply;
218 
219 	while (1) {
220 		regulator_unlock(rdev);
221 		supply = rdev->supply;
222 
223 		if (!rdev->supply)
224 			return;
225 
226 		rdev = supply->rdev;
227 	}
228 }
229 
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241 	struct device_node *regnode = NULL;
242 	char prop_name[32]; /* 32 is max size of property name */
243 
244 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245 
246 	snprintf(prop_name, 32, "%s-supply", supply);
247 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248 
249 	if (!regnode) {
250 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 				prop_name, dev->of_node);
252 		return NULL;
253 	}
254 	return regnode;
255 }
256 
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 				   int *min_uV, int *max_uV)
260 {
261 	BUG_ON(*min_uV > *max_uV);
262 
263 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 		rdev_err(rdev, "voltage operation not allowed\n");
265 		return -EPERM;
266 	}
267 
268 	if (*max_uV > rdev->constraints->max_uV)
269 		*max_uV = rdev->constraints->max_uV;
270 	if (*min_uV < rdev->constraints->min_uV)
271 		*min_uV = rdev->constraints->min_uV;
272 
273 	if (*min_uV > *max_uV) {
274 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 			 *min_uV, *max_uV);
276 		return -EINVAL;
277 	}
278 
279 	return 0;
280 }
281 
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
284 {
285 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287 
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 				     int *min_uV, int *max_uV,
293 				     suspend_state_t state)
294 {
295 	struct regulator *regulator;
296 	struct regulator_voltage *voltage;
297 
298 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 		voltage = &regulator->voltage[state];
300 		/*
301 		 * Assume consumers that didn't say anything are OK
302 		 * with anything in the constraint range.
303 		 */
304 		if (!voltage->min_uV && !voltage->max_uV)
305 			continue;
306 
307 		if (*max_uV > voltage->max_uV)
308 			*max_uV = voltage->max_uV;
309 		if (*min_uV < voltage->min_uV)
310 			*min_uV = voltage->min_uV;
311 	}
312 
313 	if (*min_uV > *max_uV) {
314 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 			*min_uV, *max_uV);
316 		return -EINVAL;
317 	}
318 
319 	return 0;
320 }
321 
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 					int *min_uA, int *max_uA)
325 {
326 	BUG_ON(*min_uA > *max_uA);
327 
328 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 		rdev_err(rdev, "current operation not allowed\n");
330 		return -EPERM;
331 	}
332 
333 	if (*max_uA > rdev->constraints->max_uA)
334 		*max_uA = rdev->constraints->max_uA;
335 	if (*min_uA < rdev->constraints->min_uA)
336 		*min_uA = rdev->constraints->min_uA;
337 
338 	if (*min_uA > *max_uA) {
339 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 			 *min_uA, *max_uA);
341 		return -EINVAL;
342 	}
343 
344 	return 0;
345 }
346 
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 				    unsigned int *mode)
350 {
351 	switch (*mode) {
352 	case REGULATOR_MODE_FAST:
353 	case REGULATOR_MODE_NORMAL:
354 	case REGULATOR_MODE_IDLE:
355 	case REGULATOR_MODE_STANDBY:
356 		break;
357 	default:
358 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 		return -EINVAL;
360 	}
361 
362 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 		rdev_err(rdev, "mode operation not allowed\n");
364 		return -EPERM;
365 	}
366 
367 	/* The modes are bitmasks, the most power hungry modes having
368 	 * the lowest values. If the requested mode isn't supported
369 	 * try higher modes. */
370 	while (*mode) {
371 		if (rdev->constraints->valid_modes_mask & *mode)
372 			return 0;
373 		*mode /= 2;
374 	}
375 
376 	return -EINVAL;
377 }
378 
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382 	if (rdev->constraints == NULL)
383 		return NULL;
384 
385 	switch (state) {
386 	case PM_SUSPEND_STANDBY:
387 		return &rdev->constraints->state_standby;
388 	case PM_SUSPEND_MEM:
389 		return &rdev->constraints->state_mem;
390 	case PM_SUSPEND_MAX:
391 		return &rdev->constraints->state_disk;
392 	default:
393 		return NULL;
394 	}
395 }
396 
397 static ssize_t regulator_uV_show(struct device *dev,
398 				struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	ssize_t ret;
402 
403 	regulator_lock(rdev);
404 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 	regulator_unlock(rdev);
406 
407 	return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410 
411 static ssize_t regulator_uA_show(struct device *dev,
412 				struct device_attribute *attr, char *buf)
413 {
414 	struct regulator_dev *rdev = dev_get_drvdata(dev);
415 
416 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419 
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 			 char *buf)
422 {
423 	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 
425 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428 
429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431 	switch (mode) {
432 	case REGULATOR_MODE_FAST:
433 		return sprintf(buf, "fast\n");
434 	case REGULATOR_MODE_NORMAL:
435 		return sprintf(buf, "normal\n");
436 	case REGULATOR_MODE_IDLE:
437 		return sprintf(buf, "idle\n");
438 	case REGULATOR_MODE_STANDBY:
439 		return sprintf(buf, "standby\n");
440 	}
441 	return sprintf(buf, "unknown\n");
442 }
443 
444 static ssize_t regulator_opmode_show(struct device *dev,
445 				    struct device_attribute *attr, char *buf)
446 {
447 	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 
449 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452 
453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455 	if (state > 0)
456 		return sprintf(buf, "enabled\n");
457 	else if (state == 0)
458 		return sprintf(buf, "disabled\n");
459 	else
460 		return sprintf(buf, "unknown\n");
461 }
462 
463 static ssize_t regulator_state_show(struct device *dev,
464 				   struct device_attribute *attr, char *buf)
465 {
466 	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 	ssize_t ret;
468 
469 	regulator_lock(rdev);
470 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 	regulator_unlock(rdev);
472 
473 	return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476 
477 static ssize_t regulator_status_show(struct device *dev,
478 				   struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 	int status;
482 	char *label;
483 
484 	status = rdev->desc->ops->get_status(rdev);
485 	if (status < 0)
486 		return status;
487 
488 	switch (status) {
489 	case REGULATOR_STATUS_OFF:
490 		label = "off";
491 		break;
492 	case REGULATOR_STATUS_ON:
493 		label = "on";
494 		break;
495 	case REGULATOR_STATUS_ERROR:
496 		label = "error";
497 		break;
498 	case REGULATOR_STATUS_FAST:
499 		label = "fast";
500 		break;
501 	case REGULATOR_STATUS_NORMAL:
502 		label = "normal";
503 		break;
504 	case REGULATOR_STATUS_IDLE:
505 		label = "idle";
506 		break;
507 	case REGULATOR_STATUS_STANDBY:
508 		label = "standby";
509 		break;
510 	case REGULATOR_STATUS_BYPASS:
511 		label = "bypass";
512 		break;
513 	case REGULATOR_STATUS_UNDEFINED:
514 		label = "undefined";
515 		break;
516 	default:
517 		return -ERANGE;
518 	}
519 
520 	return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523 
524 static ssize_t regulator_min_uA_show(struct device *dev,
525 				    struct device_attribute *attr, char *buf)
526 {
527 	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 
529 	if (!rdev->constraints)
530 		return sprintf(buf, "constraint not defined\n");
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535 
536 static ssize_t regulator_max_uA_show(struct device *dev,
537 				    struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	if (!rdev->constraints)
542 		return sprintf(buf, "constraint not defined\n");
543 
544 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547 
548 static ssize_t regulator_min_uV_show(struct device *dev,
549 				    struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	if (!rdev->constraints)
554 		return sprintf(buf, "constraint not defined\n");
555 
556 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559 
560 static ssize_t regulator_max_uV_show(struct device *dev,
561 				    struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	if (!rdev->constraints)
566 		return sprintf(buf, "constraint not defined\n");
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571 
572 static ssize_t regulator_total_uA_show(struct device *dev,
573 				      struct device_attribute *attr, char *buf)
574 {
575 	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 	struct regulator *regulator;
577 	int uA = 0;
578 
579 	regulator_lock(rdev);
580 	list_for_each_entry(regulator, &rdev->consumer_list, list)
581 		uA += regulator->uA_load;
582 	regulator_unlock(rdev);
583 	return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586 
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 			      char *buf)
589 {
590 	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 	return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594 
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 			 char *buf)
597 {
598 	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 
600 	switch (rdev->desc->type) {
601 	case REGULATOR_VOLTAGE:
602 		return sprintf(buf, "voltage\n");
603 	case REGULATOR_CURRENT:
604 		return sprintf(buf, "current\n");
605 	}
606 	return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609 
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 				struct device_attribute *attr, char *buf)
612 {
613 	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 
615 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 		regulator_suspend_mem_uV_show, NULL);
619 
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 				struct device_attribute *attr, char *buf)
622 {
623 	struct regulator_dev *rdev = dev_get_drvdata(dev);
624 
625 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 		regulator_suspend_disk_uV_show, NULL);
629 
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 				struct device_attribute *attr, char *buf)
632 {
633 	struct regulator_dev *rdev = dev_get_drvdata(dev);
634 
635 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 		regulator_suspend_standby_uV_show, NULL);
639 
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 				struct device_attribute *attr, char *buf)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 
645 	return regulator_print_opmode(buf,
646 		rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 		regulator_suspend_mem_mode_show, NULL);
650 
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 				struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 
656 	return regulator_print_opmode(buf,
657 		rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 		regulator_suspend_disk_mode_show, NULL);
661 
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 				struct device_attribute *attr, char *buf)
664 {
665 	struct regulator_dev *rdev = dev_get_drvdata(dev);
666 
667 	return regulator_print_opmode(buf,
668 		rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 		regulator_suspend_standby_mode_show, NULL);
672 
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 				   struct device_attribute *attr, char *buf)
675 {
676 	struct regulator_dev *rdev = dev_get_drvdata(dev);
677 
678 	return regulator_print_state(buf,
679 			rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 		regulator_suspend_mem_state_show, NULL);
683 
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 				   struct device_attribute *attr, char *buf)
686 {
687 	struct regulator_dev *rdev = dev_get_drvdata(dev);
688 
689 	return regulator_print_state(buf,
690 			rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 		regulator_suspend_disk_state_show, NULL);
694 
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 				   struct device_attribute *attr, char *buf)
697 {
698 	struct regulator_dev *rdev = dev_get_drvdata(dev);
699 
700 	return regulator_print_state(buf,
701 			rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 		regulator_suspend_standby_state_show, NULL);
705 
706 static ssize_t regulator_bypass_show(struct device *dev,
707 				     struct device_attribute *attr, char *buf)
708 {
709 	struct regulator_dev *rdev = dev_get_drvdata(dev);
710 	const char *report;
711 	bool bypass;
712 	int ret;
713 
714 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715 
716 	if (ret != 0)
717 		report = "unknown";
718 	else if (bypass)
719 		report = "enabled";
720 	else
721 		report = "disabled";
722 
723 	return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726 		   regulator_bypass_show, NULL);
727 
728 /* Calculate the new optimum regulator operating mode based on the new total
729  * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732 	struct regulator *sibling;
733 	int current_uA = 0, output_uV, input_uV, err;
734 	unsigned int mode;
735 
736 	lockdep_assert_held_once(&rdev->mutex);
737 
738 	/*
739 	 * first check to see if we can set modes at all, otherwise just
740 	 * tell the consumer everything is OK.
741 	 */
742 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 		return 0;
744 
745 	if (!rdev->desc->ops->get_optimum_mode &&
746 	    !rdev->desc->ops->set_load)
747 		return 0;
748 
749 	if (!rdev->desc->ops->set_mode &&
750 	    !rdev->desc->ops->set_load)
751 		return -EINVAL;
752 
753 	/* calc total requested load */
754 	list_for_each_entry(sibling, &rdev->consumer_list, list)
755 		current_uA += sibling->uA_load;
756 
757 	current_uA += rdev->constraints->system_load;
758 
759 	if (rdev->desc->ops->set_load) {
760 		/* set the optimum mode for our new total regulator load */
761 		err = rdev->desc->ops->set_load(rdev, current_uA);
762 		if (err < 0)
763 			rdev_err(rdev, "failed to set load %d\n", current_uA);
764 	} else {
765 		/* get output voltage */
766 		output_uV = _regulator_get_voltage(rdev);
767 		if (output_uV <= 0) {
768 			rdev_err(rdev, "invalid output voltage found\n");
769 			return -EINVAL;
770 		}
771 
772 		/* get input voltage */
773 		input_uV = 0;
774 		if (rdev->supply)
775 			input_uV = regulator_get_voltage(rdev->supply);
776 		if (input_uV <= 0)
777 			input_uV = rdev->constraints->input_uV;
778 		if (input_uV <= 0) {
779 			rdev_err(rdev, "invalid input voltage found\n");
780 			return -EINVAL;
781 		}
782 
783 		/* now get the optimum mode for our new total regulator load */
784 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 							 output_uV, current_uA);
786 
787 		/* check the new mode is allowed */
788 		err = regulator_mode_constrain(rdev, &mode);
789 		if (err < 0) {
790 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 				 current_uA, input_uV, output_uV);
792 			return err;
793 		}
794 
795 		err = rdev->desc->ops->set_mode(rdev, mode);
796 		if (err < 0)
797 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798 	}
799 
800 	return err;
801 }
802 
803 static int suspend_set_state(struct regulator_dev *rdev,
804 				    suspend_state_t state)
805 {
806 	int ret = 0;
807 	struct regulator_state *rstate;
808 
809 	rstate = regulator_get_suspend_state(rdev, state);
810 	if (rstate == NULL)
811 		return 0;
812 
813 	/* If we have no suspend mode configration don't set anything;
814 	 * only warn if the driver implements set_suspend_voltage or
815 	 * set_suspend_mode callback.
816 	 */
817 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 	    rstate->enabled != DISABLE_IN_SUSPEND) {
819 		if (rdev->desc->ops->set_suspend_voltage ||
820 		    rdev->desc->ops->set_suspend_mode)
821 			rdev_warn(rdev, "No configuration\n");
822 		return 0;
823 	}
824 
825 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 		rdev->desc->ops->set_suspend_enable)
827 		ret = rdev->desc->ops->set_suspend_enable(rdev);
828 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 		rdev->desc->ops->set_suspend_disable)
830 		ret = rdev->desc->ops->set_suspend_disable(rdev);
831 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 		ret = 0;
833 
834 	if (ret < 0) {
835 		rdev_err(rdev, "failed to enabled/disable\n");
836 		return ret;
837 	}
838 
839 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 		if (ret < 0) {
842 			rdev_err(rdev, "failed to set voltage\n");
843 			return ret;
844 		}
845 	}
846 
847 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 		if (ret < 0) {
850 			rdev_err(rdev, "failed to set mode\n");
851 			return ret;
852 		}
853 	}
854 
855 	return ret;
856 }
857 
858 static void print_constraints(struct regulator_dev *rdev)
859 {
860 	struct regulation_constraints *constraints = rdev->constraints;
861 	char buf[160] = "";
862 	size_t len = sizeof(buf) - 1;
863 	int count = 0;
864 	int ret;
865 
866 	if (constraints->min_uV && constraints->max_uV) {
867 		if (constraints->min_uV == constraints->max_uV)
868 			count += scnprintf(buf + count, len - count, "%d mV ",
869 					   constraints->min_uV / 1000);
870 		else
871 			count += scnprintf(buf + count, len - count,
872 					   "%d <--> %d mV ",
873 					   constraints->min_uV / 1000,
874 					   constraints->max_uV / 1000);
875 	}
876 
877 	if (!constraints->min_uV ||
878 	    constraints->min_uV != constraints->max_uV) {
879 		ret = _regulator_get_voltage(rdev);
880 		if (ret > 0)
881 			count += scnprintf(buf + count, len - count,
882 					   "at %d mV ", ret / 1000);
883 	}
884 
885 	if (constraints->uV_offset)
886 		count += scnprintf(buf + count, len - count, "%dmV offset ",
887 				   constraints->uV_offset / 1000);
888 
889 	if (constraints->min_uA && constraints->max_uA) {
890 		if (constraints->min_uA == constraints->max_uA)
891 			count += scnprintf(buf + count, len - count, "%d mA ",
892 					   constraints->min_uA / 1000);
893 		else
894 			count += scnprintf(buf + count, len - count,
895 					   "%d <--> %d mA ",
896 					   constraints->min_uA / 1000,
897 					   constraints->max_uA / 1000);
898 	}
899 
900 	if (!constraints->min_uA ||
901 	    constraints->min_uA != constraints->max_uA) {
902 		ret = _regulator_get_current_limit(rdev);
903 		if (ret > 0)
904 			count += scnprintf(buf + count, len - count,
905 					   "at %d mA ", ret / 1000);
906 	}
907 
908 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 		count += scnprintf(buf + count, len - count, "fast ");
910 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 		count += scnprintf(buf + count, len - count, "normal ");
912 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 		count += scnprintf(buf + count, len - count, "idle ");
914 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 		count += scnprintf(buf + count, len - count, "standby");
916 
917 	if (!count)
918 		scnprintf(buf, len, "no parameters");
919 
920 	rdev_dbg(rdev, "%s\n", buf);
921 
922 	if ((constraints->min_uV != constraints->max_uV) &&
923 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 		rdev_warn(rdev,
925 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927 
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 	struct regulation_constraints *constraints)
930 {
931 	const struct regulator_ops *ops = rdev->desc->ops;
932 	int ret;
933 
934 	/* do we need to apply the constraint voltage */
935 	if (rdev->constraints->apply_uV &&
936 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 		int target_min, target_max;
938 		int current_uV = _regulator_get_voltage(rdev);
939 
940 		if (current_uV == -ENOTRECOVERABLE) {
941 			/* This regulator can't be read and must be initted */
942 			rdev_info(rdev, "Setting %d-%duV\n",
943 				  rdev->constraints->min_uV,
944 				  rdev->constraints->max_uV);
945 			_regulator_do_set_voltage(rdev,
946 						  rdev->constraints->min_uV,
947 						  rdev->constraints->max_uV);
948 			current_uV = _regulator_get_voltage(rdev);
949 		}
950 
951 		if (current_uV < 0) {
952 			rdev_err(rdev,
953 				 "failed to get the current voltage(%d)\n",
954 				 current_uV);
955 			return current_uV;
956 		}
957 
958 		/*
959 		 * If we're below the minimum voltage move up to the
960 		 * minimum voltage, if we're above the maximum voltage
961 		 * then move down to the maximum.
962 		 */
963 		target_min = current_uV;
964 		target_max = current_uV;
965 
966 		if (current_uV < rdev->constraints->min_uV) {
967 			target_min = rdev->constraints->min_uV;
968 			target_max = rdev->constraints->min_uV;
969 		}
970 
971 		if (current_uV > rdev->constraints->max_uV) {
972 			target_min = rdev->constraints->max_uV;
973 			target_max = rdev->constraints->max_uV;
974 		}
975 
976 		if (target_min != current_uV || target_max != current_uV) {
977 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 				  current_uV, target_min, target_max);
979 			ret = _regulator_do_set_voltage(
980 				rdev, target_min, target_max);
981 			if (ret < 0) {
982 				rdev_err(rdev,
983 					"failed to apply %d-%duV constraint(%d)\n",
984 					target_min, target_max, ret);
985 				return ret;
986 			}
987 		}
988 	}
989 
990 	/* constrain machine-level voltage specs to fit
991 	 * the actual range supported by this regulator.
992 	 */
993 	if (ops->list_voltage && rdev->desc->n_voltages) {
994 		int	count = rdev->desc->n_voltages;
995 		int	i;
996 		int	min_uV = INT_MAX;
997 		int	max_uV = INT_MIN;
998 		int	cmin = constraints->min_uV;
999 		int	cmax = constraints->max_uV;
1000 
1001 		/* it's safe to autoconfigure fixed-voltage supplies
1002 		   and the constraints are used by list_voltage. */
1003 		if (count == 1 && !cmin) {
1004 			cmin = 1;
1005 			cmax = INT_MAX;
1006 			constraints->min_uV = cmin;
1007 			constraints->max_uV = cmax;
1008 		}
1009 
1010 		/* voltage constraints are optional */
1011 		if ((cmin == 0) && (cmax == 0))
1012 			return 0;
1013 
1014 		/* else require explicit machine-level constraints */
1015 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 			rdev_err(rdev, "invalid voltage constraints\n");
1017 			return -EINVAL;
1018 		}
1019 
1020 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 		for (i = 0; i < count; i++) {
1022 			int	value;
1023 
1024 			value = ops->list_voltage(rdev, i);
1025 			if (value <= 0)
1026 				continue;
1027 
1028 			/* maybe adjust [min_uV..max_uV] */
1029 			if (value >= cmin && value < min_uV)
1030 				min_uV = value;
1031 			if (value <= cmax && value > max_uV)
1032 				max_uV = value;
1033 		}
1034 
1035 		/* final: [min_uV..max_uV] valid iff constraints valid */
1036 		if (max_uV < min_uV) {
1037 			rdev_err(rdev,
1038 				 "unsupportable voltage constraints %u-%uuV\n",
1039 				 min_uV, max_uV);
1040 			return -EINVAL;
1041 		}
1042 
1043 		/* use regulator's subset of machine constraints */
1044 		if (constraints->min_uV < min_uV) {
1045 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 				 constraints->min_uV, min_uV);
1047 			constraints->min_uV = min_uV;
1048 		}
1049 		if (constraints->max_uV > max_uV) {
1050 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 				 constraints->max_uV, max_uV);
1052 			constraints->max_uV = max_uV;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 	struct regulation_constraints *constraints)
1061 {
1062 	const struct regulator_ops *ops = rdev->desc->ops;
1063 	int ret;
1064 
1065 	if (!constraints->min_uA && !constraints->max_uA)
1066 		return 0;
1067 
1068 	if (constraints->min_uA > constraints->max_uA) {
1069 		rdev_err(rdev, "Invalid current constraints\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	if (!ops->set_current_limit || !ops->get_current_limit) {
1074 		rdev_warn(rdev, "Operation of current configuration missing\n");
1075 		return 0;
1076 	}
1077 
1078 	/* Set regulator current in constraints range */
1079 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 			constraints->max_uA);
1081 	if (ret < 0) {
1082 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 		return ret;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090 
1091 /**
1092  * set_machine_constraints - sets regulator constraints
1093  * @rdev: regulator source
1094  * @constraints: constraints to apply
1095  *
1096  * Allows platform initialisation code to define and constrain
1097  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1098  * Constraints *must* be set by platform code in order for some
1099  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100  * set_mode.
1101  */
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103 	const struct regulation_constraints *constraints)
1104 {
1105 	int ret = 0;
1106 	const struct regulator_ops *ops = rdev->desc->ops;
1107 
1108 	if (constraints)
1109 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110 					    GFP_KERNEL);
1111 	else
1112 		rdev->constraints = kzalloc(sizeof(*constraints),
1113 					    GFP_KERNEL);
1114 	if (!rdev->constraints)
1115 		return -ENOMEM;
1116 
1117 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1118 	if (ret != 0)
1119 		return ret;
1120 
1121 	ret = machine_constraints_current(rdev, rdev->constraints);
1122 	if (ret != 0)
1123 		return ret;
1124 
1125 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126 		ret = ops->set_input_current_limit(rdev,
1127 						   rdev->constraints->ilim_uA);
1128 		if (ret < 0) {
1129 			rdev_err(rdev, "failed to set input limit\n");
1130 			return ret;
1131 		}
1132 	}
1133 
1134 	/* do we need to setup our suspend state */
1135 	if (rdev->constraints->initial_state) {
1136 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137 		if (ret < 0) {
1138 			rdev_err(rdev, "failed to set suspend state\n");
1139 			return ret;
1140 		}
1141 	}
1142 
1143 	if (rdev->constraints->initial_mode) {
1144 		if (!ops->set_mode) {
1145 			rdev_err(rdev, "no set_mode operation\n");
1146 			return -EINVAL;
1147 		}
1148 
1149 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150 		if (ret < 0) {
1151 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152 			return ret;
1153 		}
1154 	}
1155 
1156 	/* If the constraints say the regulator should be on at this point
1157 	 * and we have control then make sure it is enabled.
1158 	 */
1159 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160 		ret = _regulator_do_enable(rdev);
1161 		if (ret < 0 && ret != -EINVAL) {
1162 			rdev_err(rdev, "failed to enable\n");
1163 			return ret;
1164 		}
1165 	}
1166 
1167 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168 		&& ops->set_ramp_delay) {
1169 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170 		if (ret < 0) {
1171 			rdev_err(rdev, "failed to set ramp_delay\n");
1172 			return ret;
1173 		}
1174 	}
1175 
1176 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1177 		ret = ops->set_pull_down(rdev);
1178 		if (ret < 0) {
1179 			rdev_err(rdev, "failed to set pull down\n");
1180 			return ret;
1181 		}
1182 	}
1183 
1184 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1185 		ret = ops->set_soft_start(rdev);
1186 		if (ret < 0) {
1187 			rdev_err(rdev, "failed to set soft start\n");
1188 			return ret;
1189 		}
1190 	}
1191 
1192 	if (rdev->constraints->over_current_protection
1193 		&& ops->set_over_current_protection) {
1194 		ret = ops->set_over_current_protection(rdev);
1195 		if (ret < 0) {
1196 			rdev_err(rdev, "failed to set over current protection\n");
1197 			return ret;
1198 		}
1199 	}
1200 
1201 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202 		bool ad_state = (rdev->constraints->active_discharge ==
1203 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1204 
1205 		ret = ops->set_active_discharge(rdev, ad_state);
1206 		if (ret < 0) {
1207 			rdev_err(rdev, "failed to set active discharge\n");
1208 			return ret;
1209 		}
1210 	}
1211 
1212 	print_constraints(rdev);
1213 	return 0;
1214 }
1215 
1216 /**
1217  * set_supply - set regulator supply regulator
1218  * @rdev: regulator name
1219  * @supply_rdev: supply regulator name
1220  *
1221  * Called by platform initialisation code to set the supply regulator for this
1222  * regulator. This ensures that a regulators supply will also be enabled by the
1223  * core if it's child is enabled.
1224  */
1225 static int set_supply(struct regulator_dev *rdev,
1226 		      struct regulator_dev *supply_rdev)
1227 {
1228 	int err;
1229 
1230 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1231 
1232 	if (!try_module_get(supply_rdev->owner))
1233 		return -ENODEV;
1234 
1235 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236 	if (rdev->supply == NULL) {
1237 		err = -ENOMEM;
1238 		return err;
1239 	}
1240 	supply_rdev->open_count++;
1241 
1242 	return 0;
1243 }
1244 
1245 /**
1246  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247  * @rdev:         regulator source
1248  * @consumer_dev_name: dev_name() string for device supply applies to
1249  * @supply:       symbolic name for supply
1250  *
1251  * Allows platform initialisation code to map physical regulator
1252  * sources to symbolic names for supplies for use by devices.  Devices
1253  * should use these symbolic names to request regulators, avoiding the
1254  * need to provide board-specific regulator names as platform data.
1255  */
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257 				      const char *consumer_dev_name,
1258 				      const char *supply)
1259 {
1260 	struct regulator_map *node;
1261 	int has_dev;
1262 
1263 	if (supply == NULL)
1264 		return -EINVAL;
1265 
1266 	if (consumer_dev_name != NULL)
1267 		has_dev = 1;
1268 	else
1269 		has_dev = 0;
1270 
1271 	list_for_each_entry(node, &regulator_map_list, list) {
1272 		if (node->dev_name && consumer_dev_name) {
1273 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274 				continue;
1275 		} else if (node->dev_name || consumer_dev_name) {
1276 			continue;
1277 		}
1278 
1279 		if (strcmp(node->supply, supply) != 0)
1280 			continue;
1281 
1282 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283 			 consumer_dev_name,
1284 			 dev_name(&node->regulator->dev),
1285 			 node->regulator->desc->name,
1286 			 supply,
1287 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1288 		return -EBUSY;
1289 	}
1290 
1291 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292 	if (node == NULL)
1293 		return -ENOMEM;
1294 
1295 	node->regulator = rdev;
1296 	node->supply = supply;
1297 
1298 	if (has_dev) {
1299 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300 		if (node->dev_name == NULL) {
1301 			kfree(node);
1302 			return -ENOMEM;
1303 		}
1304 	}
1305 
1306 	list_add(&node->list, &regulator_map_list);
1307 	return 0;
1308 }
1309 
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1311 {
1312 	struct regulator_map *node, *n;
1313 
1314 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315 		if (rdev == node->regulator) {
1316 			list_del(&node->list);
1317 			kfree(node->dev_name);
1318 			kfree(node);
1319 		}
1320 	}
1321 }
1322 
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325 					  char __user *user_buf,
1326 					  size_t count, loff_t *ppos)
1327 {
1328 	const struct regulator *regulator = file->private_data;
1329 	const struct regulation_constraints *c = regulator->rdev->constraints;
1330 	char *buf;
1331 	ssize_t ret;
1332 
1333 	if (!c)
1334 		return 0;
1335 
1336 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337 	if (!buf)
1338 		return -ENOMEM;
1339 
1340 	ret = snprintf(buf, PAGE_SIZE,
1341 			"always_on: %u\n"
1342 			"boot_on: %u\n"
1343 			"apply_uV: %u\n"
1344 			"ramp_disable: %u\n"
1345 			"soft_start: %u\n"
1346 			"pull_down: %u\n"
1347 			"over_current_protection: %u\n",
1348 			c->always_on,
1349 			c->boot_on,
1350 			c->apply_uV,
1351 			c->ramp_disable,
1352 			c->soft_start,
1353 			c->pull_down,
1354 			c->over_current_protection);
1355 
1356 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357 	kfree(buf);
1358 
1359 	return ret;
1360 }
1361 
1362 #endif
1363 
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366 	.open = simple_open,
1367 	.read = constraint_flags_read_file,
1368 	.llseek = default_llseek,
1369 #endif
1370 };
1371 
1372 #define REG_STR_SIZE	64
1373 
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375 					  struct device *dev,
1376 					  const char *supply_name)
1377 {
1378 	struct regulator *regulator;
1379 	char buf[REG_STR_SIZE];
1380 	int err, size;
1381 
1382 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383 	if (regulator == NULL)
1384 		return NULL;
1385 
1386 	regulator_lock(rdev);
1387 	regulator->rdev = rdev;
1388 	list_add(&regulator->list, &rdev->consumer_list);
1389 
1390 	if (dev) {
1391 		regulator->dev = dev;
1392 
1393 		/* Add a link to the device sysfs entry */
1394 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395 				dev->kobj.name, supply_name);
1396 		if (size >= REG_STR_SIZE)
1397 			goto overflow_err;
1398 
1399 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400 		if (regulator->supply_name == NULL)
1401 			goto overflow_err;
1402 
1403 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404 					buf);
1405 		if (err) {
1406 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1407 				  dev->kobj.name, err);
1408 			/* non-fatal */
1409 		}
1410 	} else {
1411 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412 		if (regulator->supply_name == NULL)
1413 			goto overflow_err;
1414 	}
1415 
1416 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417 						rdev->debugfs);
1418 	if (!regulator->debugfs) {
1419 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420 	} else {
1421 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422 				   &regulator->uA_load);
1423 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427 		debugfs_create_file("constraint_flags", 0444,
1428 				    regulator->debugfs, regulator,
1429 				    &constraint_flags_fops);
1430 	}
1431 
1432 	/*
1433 	 * Check now if the regulator is an always on regulator - if
1434 	 * it is then we don't need to do nearly so much work for
1435 	 * enable/disable calls.
1436 	 */
1437 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438 	    _regulator_is_enabled(rdev))
1439 		regulator->always_on = true;
1440 
1441 	regulator_unlock(rdev);
1442 	return regulator;
1443 overflow_err:
1444 	list_del(&regulator->list);
1445 	kfree(regulator);
1446 	regulator_unlock(rdev);
1447 	return NULL;
1448 }
1449 
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1451 {
1452 	if (rdev->constraints && rdev->constraints->enable_time)
1453 		return rdev->constraints->enable_time;
1454 	if (!rdev->desc->ops->enable_time)
1455 		return rdev->desc->enable_time;
1456 	return rdev->desc->ops->enable_time(rdev);
1457 }
1458 
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460 		struct device *dev, const char *supply)
1461 {
1462 	struct regulator_supply_alias *map;
1463 
1464 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1465 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466 			return map;
1467 
1468 	return NULL;
1469 }
1470 
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1472 {
1473 	struct regulator_supply_alias *map;
1474 
1475 	map = regulator_find_supply_alias(*dev, *supply);
1476 	if (map) {
1477 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478 				*supply, map->alias_supply,
1479 				dev_name(map->alias_dev));
1480 		*dev = map->alias_dev;
1481 		*supply = map->alias_supply;
1482 	}
1483 }
1484 
1485 static int regulator_match(struct device *dev, const void *data)
1486 {
1487 	struct regulator_dev *r = dev_to_rdev(dev);
1488 
1489 	return strcmp(rdev_get_name(r), data) == 0;
1490 }
1491 
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1493 {
1494 	struct device *dev;
1495 
1496 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1497 
1498 	return dev ? dev_to_rdev(dev) : NULL;
1499 }
1500 
1501 /**
1502  * regulator_dev_lookup - lookup a regulator device.
1503  * @dev: device for regulator "consumer".
1504  * @supply: Supply name or regulator ID.
1505  *
1506  * If successful, returns a struct regulator_dev that corresponds to the name
1507  * @supply and with the embedded struct device refcount incremented by one.
1508  * The refcount must be dropped by calling put_device().
1509  * On failure one of the following ERR-PTR-encoded values is returned:
1510  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511  * in the future.
1512  */
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514 						  const char *supply)
1515 {
1516 	struct regulator_dev *r = NULL;
1517 	struct device_node *node;
1518 	struct regulator_map *map;
1519 	const char *devname = NULL;
1520 
1521 	regulator_supply_alias(&dev, &supply);
1522 
1523 	/* first do a dt based lookup */
1524 	if (dev && dev->of_node) {
1525 		node = of_get_regulator(dev, supply);
1526 		if (node) {
1527 			r = of_find_regulator_by_node(node);
1528 			if (r)
1529 				return r;
1530 
1531 			/*
1532 			 * We have a node, but there is no device.
1533 			 * assume it has not registered yet.
1534 			 */
1535 			return ERR_PTR(-EPROBE_DEFER);
1536 		}
1537 	}
1538 
1539 	/* if not found, try doing it non-dt way */
1540 	if (dev)
1541 		devname = dev_name(dev);
1542 
1543 	mutex_lock(&regulator_list_mutex);
1544 	list_for_each_entry(map, &regulator_map_list, list) {
1545 		/* If the mapping has a device set up it must match */
1546 		if (map->dev_name &&
1547 		    (!devname || strcmp(map->dev_name, devname)))
1548 			continue;
1549 
1550 		if (strcmp(map->supply, supply) == 0 &&
1551 		    get_device(&map->regulator->dev)) {
1552 			r = map->regulator;
1553 			break;
1554 		}
1555 	}
1556 	mutex_unlock(&regulator_list_mutex);
1557 
1558 	if (r)
1559 		return r;
1560 
1561 	r = regulator_lookup_by_name(supply);
1562 	if (r)
1563 		return r;
1564 
1565 	return ERR_PTR(-ENODEV);
1566 }
1567 
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1569 {
1570 	struct regulator_dev *r;
1571 	struct device *dev = rdev->dev.parent;
1572 	int ret;
1573 
1574 	/* No supply to resovle? */
1575 	if (!rdev->supply_name)
1576 		return 0;
1577 
1578 	/* Supply already resolved? */
1579 	if (rdev->supply)
1580 		return 0;
1581 
1582 	r = regulator_dev_lookup(dev, rdev->supply_name);
1583 	if (IS_ERR(r)) {
1584 		ret = PTR_ERR(r);
1585 
1586 		/* Did the lookup explicitly defer for us? */
1587 		if (ret == -EPROBE_DEFER)
1588 			return ret;
1589 
1590 		if (have_full_constraints()) {
1591 			r = dummy_regulator_rdev;
1592 			get_device(&r->dev);
1593 		} else {
1594 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595 				rdev->supply_name, rdev->desc->name);
1596 			return -EPROBE_DEFER;
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * If the supply's parent device is not the same as the
1602 	 * regulator's parent device, then ensure the parent device
1603 	 * is bound before we resolve the supply, in case the parent
1604 	 * device get probe deferred and unregisters the supply.
1605 	 */
1606 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607 		if (!device_is_bound(r->dev.parent)) {
1608 			put_device(&r->dev);
1609 			return -EPROBE_DEFER;
1610 		}
1611 	}
1612 
1613 	/* Recursively resolve the supply of the supply */
1614 	ret = regulator_resolve_supply(r);
1615 	if (ret < 0) {
1616 		put_device(&r->dev);
1617 		return ret;
1618 	}
1619 
1620 	ret = set_supply(rdev, r);
1621 	if (ret < 0) {
1622 		put_device(&r->dev);
1623 		return ret;
1624 	}
1625 
1626 	/* Cascade always-on state to supply */
1627 	if (_regulator_is_enabled(rdev)) {
1628 		ret = regulator_enable(rdev->supply);
1629 		if (ret < 0) {
1630 			_regulator_put(rdev->supply);
1631 			rdev->supply = NULL;
1632 			return ret;
1633 		}
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641 				 enum regulator_get_type get_type)
1642 {
1643 	struct regulator_dev *rdev;
1644 	struct regulator *regulator;
1645 	const char *devname = dev ? dev_name(dev) : "deviceless";
1646 	int ret;
1647 
1648 	if (get_type >= MAX_GET_TYPE) {
1649 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650 		return ERR_PTR(-EINVAL);
1651 	}
1652 
1653 	if (id == NULL) {
1654 		pr_err("get() with no identifier\n");
1655 		return ERR_PTR(-EINVAL);
1656 	}
1657 
1658 	rdev = regulator_dev_lookup(dev, id);
1659 	if (IS_ERR(rdev)) {
1660 		ret = PTR_ERR(rdev);
1661 
1662 		/*
1663 		 * If regulator_dev_lookup() fails with error other
1664 		 * than -ENODEV our job here is done, we simply return it.
1665 		 */
1666 		if (ret != -ENODEV)
1667 			return ERR_PTR(ret);
1668 
1669 		if (!have_full_constraints()) {
1670 			dev_warn(dev,
1671 				 "incomplete constraints, dummy supplies not allowed\n");
1672 			return ERR_PTR(-ENODEV);
1673 		}
1674 
1675 		switch (get_type) {
1676 		case NORMAL_GET:
1677 			/*
1678 			 * Assume that a regulator is physically present and
1679 			 * enabled, even if it isn't hooked up, and just
1680 			 * provide a dummy.
1681 			 */
1682 			dev_warn(dev,
1683 				 "%s supply %s not found, using dummy regulator\n",
1684 				 devname, id);
1685 			rdev = dummy_regulator_rdev;
1686 			get_device(&rdev->dev);
1687 			break;
1688 
1689 		case EXCLUSIVE_GET:
1690 			dev_warn(dev,
1691 				 "dummy supplies not allowed for exclusive requests\n");
1692 			/* fall through */
1693 
1694 		default:
1695 			return ERR_PTR(-ENODEV);
1696 		}
1697 	}
1698 
1699 	if (rdev->exclusive) {
1700 		regulator = ERR_PTR(-EPERM);
1701 		put_device(&rdev->dev);
1702 		return regulator;
1703 	}
1704 
1705 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706 		regulator = ERR_PTR(-EBUSY);
1707 		put_device(&rdev->dev);
1708 		return regulator;
1709 	}
1710 
1711 	ret = regulator_resolve_supply(rdev);
1712 	if (ret < 0) {
1713 		regulator = ERR_PTR(ret);
1714 		put_device(&rdev->dev);
1715 		return regulator;
1716 	}
1717 
1718 	if (!try_module_get(rdev->owner)) {
1719 		regulator = ERR_PTR(-EPROBE_DEFER);
1720 		put_device(&rdev->dev);
1721 		return regulator;
1722 	}
1723 
1724 	regulator = create_regulator(rdev, dev, id);
1725 	if (regulator == NULL) {
1726 		regulator = ERR_PTR(-ENOMEM);
1727 		put_device(&rdev->dev);
1728 		module_put(rdev->owner);
1729 		return regulator;
1730 	}
1731 
1732 	rdev->open_count++;
1733 	if (get_type == EXCLUSIVE_GET) {
1734 		rdev->exclusive = 1;
1735 
1736 		ret = _regulator_is_enabled(rdev);
1737 		if (ret > 0)
1738 			rdev->use_count = 1;
1739 		else
1740 			rdev->use_count = 0;
1741 	}
1742 
1743 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1744 
1745 	return regulator;
1746 }
1747 
1748 /**
1749  * regulator_get - lookup and obtain a reference to a regulator.
1750  * @dev: device for regulator "consumer"
1751  * @id: Supply name or regulator ID.
1752  *
1753  * Returns a struct regulator corresponding to the regulator producer,
1754  * or IS_ERR() condition containing errno.
1755  *
1756  * Use of supply names configured via regulator_set_device_supply() is
1757  * strongly encouraged.  It is recommended that the supply name used
1758  * should match the name used for the supply and/or the relevant
1759  * device pins in the datasheet.
1760  */
1761 struct regulator *regulator_get(struct device *dev, const char *id)
1762 {
1763 	return _regulator_get(dev, id, NORMAL_GET);
1764 }
1765 EXPORT_SYMBOL_GPL(regulator_get);
1766 
1767 /**
1768  * regulator_get_exclusive - obtain exclusive access to a regulator.
1769  * @dev: device for regulator "consumer"
1770  * @id: Supply name or regulator ID.
1771  *
1772  * Returns a struct regulator corresponding to the regulator producer,
1773  * or IS_ERR() condition containing errno.  Other consumers will be
1774  * unable to obtain this regulator while this reference is held and the
1775  * use count for the regulator will be initialised to reflect the current
1776  * state of the regulator.
1777  *
1778  * This is intended for use by consumers which cannot tolerate shared
1779  * use of the regulator such as those which need to force the
1780  * regulator off for correct operation of the hardware they are
1781  * controlling.
1782  *
1783  * Use of supply names configured via regulator_set_device_supply() is
1784  * strongly encouraged.  It is recommended that the supply name used
1785  * should match the name used for the supply and/or the relevant
1786  * device pins in the datasheet.
1787  */
1788 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1789 {
1790 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1791 }
1792 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1793 
1794 /**
1795  * regulator_get_optional - obtain optional access to a regulator.
1796  * @dev: device for regulator "consumer"
1797  * @id: Supply name or regulator ID.
1798  *
1799  * Returns a struct regulator corresponding to the regulator producer,
1800  * or IS_ERR() condition containing errno.
1801  *
1802  * This is intended for use by consumers for devices which can have
1803  * some supplies unconnected in normal use, such as some MMC devices.
1804  * It can allow the regulator core to provide stub supplies for other
1805  * supplies requested using normal regulator_get() calls without
1806  * disrupting the operation of drivers that can handle absent
1807  * supplies.
1808  *
1809  * Use of supply names configured via regulator_set_device_supply() is
1810  * strongly encouraged.  It is recommended that the supply name used
1811  * should match the name used for the supply and/or the relevant
1812  * device pins in the datasheet.
1813  */
1814 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1815 {
1816 	return _regulator_get(dev, id, OPTIONAL_GET);
1817 }
1818 EXPORT_SYMBOL_GPL(regulator_get_optional);
1819 
1820 /* regulator_list_mutex lock held by regulator_put() */
1821 static void _regulator_put(struct regulator *regulator)
1822 {
1823 	struct regulator_dev *rdev;
1824 
1825 	if (IS_ERR_OR_NULL(regulator))
1826 		return;
1827 
1828 	lockdep_assert_held_once(&regulator_list_mutex);
1829 
1830 	rdev = regulator->rdev;
1831 
1832 	debugfs_remove_recursive(regulator->debugfs);
1833 
1834 	if (regulator->dev) {
1835 		int count = 0;
1836 		struct regulator *r;
1837 
1838 		list_for_each_entry(r, &rdev->consumer_list, list)
1839 			if (r->dev == regulator->dev)
1840 				count++;
1841 
1842 		if (count == 1)
1843 			device_link_remove(regulator->dev, &rdev->dev);
1844 
1845 		/* remove any sysfs entries */
1846 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1847 	}
1848 
1849 	regulator_lock(rdev);
1850 	list_del(&regulator->list);
1851 
1852 	rdev->open_count--;
1853 	rdev->exclusive = 0;
1854 	put_device(&rdev->dev);
1855 	regulator_unlock(rdev);
1856 
1857 	kfree_const(regulator->supply_name);
1858 	kfree(regulator);
1859 
1860 	module_put(rdev->owner);
1861 }
1862 
1863 /**
1864  * regulator_put - "free" the regulator source
1865  * @regulator: regulator source
1866  *
1867  * Note: drivers must ensure that all regulator_enable calls made on this
1868  * regulator source are balanced by regulator_disable calls prior to calling
1869  * this function.
1870  */
1871 void regulator_put(struct regulator *regulator)
1872 {
1873 	mutex_lock(&regulator_list_mutex);
1874 	_regulator_put(regulator);
1875 	mutex_unlock(&regulator_list_mutex);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_put);
1878 
1879 /**
1880  * regulator_register_supply_alias - Provide device alias for supply lookup
1881  *
1882  * @dev: device that will be given as the regulator "consumer"
1883  * @id: Supply name or regulator ID
1884  * @alias_dev: device that should be used to lookup the supply
1885  * @alias_id: Supply name or regulator ID that should be used to lookup the
1886  * supply
1887  *
1888  * All lookups for id on dev will instead be conducted for alias_id on
1889  * alias_dev.
1890  */
1891 int regulator_register_supply_alias(struct device *dev, const char *id,
1892 				    struct device *alias_dev,
1893 				    const char *alias_id)
1894 {
1895 	struct regulator_supply_alias *map;
1896 
1897 	map = regulator_find_supply_alias(dev, id);
1898 	if (map)
1899 		return -EEXIST;
1900 
1901 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1902 	if (!map)
1903 		return -ENOMEM;
1904 
1905 	map->src_dev = dev;
1906 	map->src_supply = id;
1907 	map->alias_dev = alias_dev;
1908 	map->alias_supply = alias_id;
1909 
1910 	list_add(&map->list, &regulator_supply_alias_list);
1911 
1912 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1913 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1914 
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1918 
1919 /**
1920  * regulator_unregister_supply_alias - Remove device alias
1921  *
1922  * @dev: device that will be given as the regulator "consumer"
1923  * @id: Supply name or regulator ID
1924  *
1925  * Remove a lookup alias if one exists for id on dev.
1926  */
1927 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1928 {
1929 	struct regulator_supply_alias *map;
1930 
1931 	map = regulator_find_supply_alias(dev, id);
1932 	if (map) {
1933 		list_del(&map->list);
1934 		kfree(map);
1935 	}
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1938 
1939 /**
1940  * regulator_bulk_register_supply_alias - register multiple aliases
1941  *
1942  * @dev: device that will be given as the regulator "consumer"
1943  * @id: List of supply names or regulator IDs
1944  * @alias_dev: device that should be used to lookup the supply
1945  * @alias_id: List of supply names or regulator IDs that should be used to
1946  * lookup the supply
1947  * @num_id: Number of aliases to register
1948  *
1949  * @return 0 on success, an errno on failure.
1950  *
1951  * This helper function allows drivers to register several supply
1952  * aliases in one operation.  If any of the aliases cannot be
1953  * registered any aliases that were registered will be removed
1954  * before returning to the caller.
1955  */
1956 int regulator_bulk_register_supply_alias(struct device *dev,
1957 					 const char *const *id,
1958 					 struct device *alias_dev,
1959 					 const char *const *alias_id,
1960 					 int num_id)
1961 {
1962 	int i;
1963 	int ret;
1964 
1965 	for (i = 0; i < num_id; ++i) {
1966 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1967 						      alias_id[i]);
1968 		if (ret < 0)
1969 			goto err;
1970 	}
1971 
1972 	return 0;
1973 
1974 err:
1975 	dev_err(dev,
1976 		"Failed to create supply alias %s,%s -> %s,%s\n",
1977 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1978 
1979 	while (--i >= 0)
1980 		regulator_unregister_supply_alias(dev, id[i]);
1981 
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1985 
1986 /**
1987  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1988  *
1989  * @dev: device that will be given as the regulator "consumer"
1990  * @id: List of supply names or regulator IDs
1991  * @num_id: Number of aliases to unregister
1992  *
1993  * This helper function allows drivers to unregister several supply
1994  * aliases in one operation.
1995  */
1996 void regulator_bulk_unregister_supply_alias(struct device *dev,
1997 					    const char *const *id,
1998 					    int num_id)
1999 {
2000 	int i;
2001 
2002 	for (i = 0; i < num_id; ++i)
2003 		regulator_unregister_supply_alias(dev, id[i]);
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2006 
2007 
2008 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2009 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2010 				const struct regulator_config *config)
2011 {
2012 	struct regulator_enable_gpio *pin;
2013 	struct gpio_desc *gpiod;
2014 	int ret;
2015 
2016 	if (config->ena_gpiod)
2017 		gpiod = config->ena_gpiod;
2018 	else
2019 		gpiod = gpio_to_desc(config->ena_gpio);
2020 
2021 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2022 		if (pin->gpiod == gpiod) {
2023 			rdev_dbg(rdev, "GPIO %d is already used\n",
2024 				config->ena_gpio);
2025 			goto update_ena_gpio_to_rdev;
2026 		}
2027 	}
2028 
2029 	if (!config->ena_gpiod) {
2030 		ret = gpio_request_one(config->ena_gpio,
2031 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
2032 				       rdev_get_name(rdev));
2033 		if (ret)
2034 			return ret;
2035 	}
2036 
2037 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2038 	if (pin == NULL) {
2039 		if (!config->ena_gpiod)
2040 			gpio_free(config->ena_gpio);
2041 		return -ENOMEM;
2042 	}
2043 
2044 	pin->gpiod = gpiod;
2045 	pin->ena_gpio_invert = config->ena_gpio_invert;
2046 	list_add(&pin->list, &regulator_ena_gpio_list);
2047 
2048 update_ena_gpio_to_rdev:
2049 	pin->request_count++;
2050 	rdev->ena_pin = pin;
2051 	return 0;
2052 }
2053 
2054 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2055 {
2056 	struct regulator_enable_gpio *pin, *n;
2057 
2058 	if (!rdev->ena_pin)
2059 		return;
2060 
2061 	/* Free the GPIO only in case of no use */
2062 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2063 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2064 			if (pin->request_count <= 1) {
2065 				pin->request_count = 0;
2066 				gpiod_put(pin->gpiod);
2067 				list_del(&pin->list);
2068 				kfree(pin);
2069 				rdev->ena_pin = NULL;
2070 				return;
2071 			} else {
2072 				pin->request_count--;
2073 			}
2074 		}
2075 	}
2076 }
2077 
2078 /**
2079  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2080  * @rdev: regulator_dev structure
2081  * @enable: enable GPIO at initial use?
2082  *
2083  * GPIO is enabled in case of initial use. (enable_count is 0)
2084  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2085  */
2086 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2087 {
2088 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2089 
2090 	if (!pin)
2091 		return -EINVAL;
2092 
2093 	if (enable) {
2094 		/* Enable GPIO at initial use */
2095 		if (pin->enable_count == 0)
2096 			gpiod_set_value_cansleep(pin->gpiod,
2097 						 !pin->ena_gpio_invert);
2098 
2099 		pin->enable_count++;
2100 	} else {
2101 		if (pin->enable_count > 1) {
2102 			pin->enable_count--;
2103 			return 0;
2104 		}
2105 
2106 		/* Disable GPIO if not used */
2107 		if (pin->enable_count <= 1) {
2108 			gpiod_set_value_cansleep(pin->gpiod,
2109 						 pin->ena_gpio_invert);
2110 			pin->enable_count = 0;
2111 		}
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /**
2118  * _regulator_enable_delay - a delay helper function
2119  * @delay: time to delay in microseconds
2120  *
2121  * Delay for the requested amount of time as per the guidelines in:
2122  *
2123  *     Documentation/timers/timers-howto.txt
2124  *
2125  * The assumption here is that regulators will never be enabled in
2126  * atomic context and therefore sleeping functions can be used.
2127  */
2128 static void _regulator_enable_delay(unsigned int delay)
2129 {
2130 	unsigned int ms = delay / 1000;
2131 	unsigned int us = delay % 1000;
2132 
2133 	if (ms > 0) {
2134 		/*
2135 		 * For small enough values, handle super-millisecond
2136 		 * delays in the usleep_range() call below.
2137 		 */
2138 		if (ms < 20)
2139 			us += ms * 1000;
2140 		else
2141 			msleep(ms);
2142 	}
2143 
2144 	/*
2145 	 * Give the scheduler some room to coalesce with any other
2146 	 * wakeup sources. For delays shorter than 10 us, don't even
2147 	 * bother setting up high-resolution timers and just busy-
2148 	 * loop.
2149 	 */
2150 	if (us >= 10)
2151 		usleep_range(us, us + 100);
2152 	else
2153 		udelay(us);
2154 }
2155 
2156 static int _regulator_do_enable(struct regulator_dev *rdev)
2157 {
2158 	int ret, delay;
2159 
2160 	/* Query before enabling in case configuration dependent.  */
2161 	ret = _regulator_get_enable_time(rdev);
2162 	if (ret >= 0) {
2163 		delay = ret;
2164 	} else {
2165 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2166 		delay = 0;
2167 	}
2168 
2169 	trace_regulator_enable(rdev_get_name(rdev));
2170 
2171 	if (rdev->desc->off_on_delay) {
2172 		/* if needed, keep a distance of off_on_delay from last time
2173 		 * this regulator was disabled.
2174 		 */
2175 		unsigned long start_jiffy = jiffies;
2176 		unsigned long intended, max_delay, remaining;
2177 
2178 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2179 		intended = rdev->last_off_jiffy + max_delay;
2180 
2181 		if (time_before(start_jiffy, intended)) {
2182 			/* calc remaining jiffies to deal with one-time
2183 			 * timer wrapping.
2184 			 * in case of multiple timer wrapping, either it can be
2185 			 * detected by out-of-range remaining, or it cannot be
2186 			 * detected and we gets a panelty of
2187 			 * _regulator_enable_delay().
2188 			 */
2189 			remaining = intended - start_jiffy;
2190 			if (remaining <= max_delay)
2191 				_regulator_enable_delay(
2192 						jiffies_to_usecs(remaining));
2193 		}
2194 	}
2195 
2196 	if (rdev->ena_pin) {
2197 		if (!rdev->ena_gpio_state) {
2198 			ret = regulator_ena_gpio_ctrl(rdev, true);
2199 			if (ret < 0)
2200 				return ret;
2201 			rdev->ena_gpio_state = 1;
2202 		}
2203 	} else if (rdev->desc->ops->enable) {
2204 		ret = rdev->desc->ops->enable(rdev);
2205 		if (ret < 0)
2206 			return ret;
2207 	} else {
2208 		return -EINVAL;
2209 	}
2210 
2211 	/* Allow the regulator to ramp; it would be useful to extend
2212 	 * this for bulk operations so that the regulators can ramp
2213 	 * together.  */
2214 	trace_regulator_enable_delay(rdev_get_name(rdev));
2215 
2216 	_regulator_enable_delay(delay);
2217 
2218 	trace_regulator_enable_complete(rdev_get_name(rdev));
2219 
2220 	return 0;
2221 }
2222 
2223 /* locks held by regulator_enable() */
2224 static int _regulator_enable(struct regulator_dev *rdev)
2225 {
2226 	int ret;
2227 
2228 	lockdep_assert_held_once(&rdev->mutex);
2229 
2230 	/* check voltage and requested load before enabling */
2231 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2232 		drms_uA_update(rdev);
2233 
2234 	if (rdev->use_count == 0) {
2235 		/* The regulator may on if it's not switchable or left on */
2236 		ret = _regulator_is_enabled(rdev);
2237 		if (ret == -EINVAL || ret == 0) {
2238 			if (!regulator_ops_is_valid(rdev,
2239 					REGULATOR_CHANGE_STATUS))
2240 				return -EPERM;
2241 
2242 			ret = _regulator_do_enable(rdev);
2243 			if (ret < 0)
2244 				return ret;
2245 
2246 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2247 					     NULL);
2248 		} else if (ret < 0) {
2249 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2250 			return ret;
2251 		}
2252 		/* Fallthrough on positive return values - already enabled */
2253 	}
2254 
2255 	rdev->use_count++;
2256 
2257 	return 0;
2258 }
2259 
2260 /**
2261  * regulator_enable - enable regulator output
2262  * @regulator: regulator source
2263  *
2264  * Request that the regulator be enabled with the regulator output at
2265  * the predefined voltage or current value.  Calls to regulator_enable()
2266  * must be balanced with calls to regulator_disable().
2267  *
2268  * NOTE: the output value can be set by other drivers, boot loader or may be
2269  * hardwired in the regulator.
2270  */
2271 int regulator_enable(struct regulator *regulator)
2272 {
2273 	struct regulator_dev *rdev = regulator->rdev;
2274 	int ret = 0;
2275 
2276 	if (regulator->always_on)
2277 		return 0;
2278 
2279 	if (rdev->supply) {
2280 		ret = regulator_enable(rdev->supply);
2281 		if (ret != 0)
2282 			return ret;
2283 	}
2284 
2285 	mutex_lock(&rdev->mutex);
2286 	ret = _regulator_enable(rdev);
2287 	mutex_unlock(&rdev->mutex);
2288 
2289 	if (ret != 0 && rdev->supply)
2290 		regulator_disable(rdev->supply);
2291 
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_enable);
2295 
2296 static int _regulator_do_disable(struct regulator_dev *rdev)
2297 {
2298 	int ret;
2299 
2300 	trace_regulator_disable(rdev_get_name(rdev));
2301 
2302 	if (rdev->ena_pin) {
2303 		if (rdev->ena_gpio_state) {
2304 			ret = regulator_ena_gpio_ctrl(rdev, false);
2305 			if (ret < 0)
2306 				return ret;
2307 			rdev->ena_gpio_state = 0;
2308 		}
2309 
2310 	} else if (rdev->desc->ops->disable) {
2311 		ret = rdev->desc->ops->disable(rdev);
2312 		if (ret != 0)
2313 			return ret;
2314 	}
2315 
2316 	/* cares about last_off_jiffy only if off_on_delay is required by
2317 	 * device.
2318 	 */
2319 	if (rdev->desc->off_on_delay)
2320 		rdev->last_off_jiffy = jiffies;
2321 
2322 	trace_regulator_disable_complete(rdev_get_name(rdev));
2323 
2324 	return 0;
2325 }
2326 
2327 /* locks held by regulator_disable() */
2328 static int _regulator_disable(struct regulator_dev *rdev)
2329 {
2330 	int ret = 0;
2331 
2332 	lockdep_assert_held_once(&rdev->mutex);
2333 
2334 	if (WARN(rdev->use_count <= 0,
2335 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2336 		return -EIO;
2337 
2338 	/* are we the last user and permitted to disable ? */
2339 	if (rdev->use_count == 1 &&
2340 	    (rdev->constraints && !rdev->constraints->always_on)) {
2341 
2342 		/* we are last user */
2343 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2344 			ret = _notifier_call_chain(rdev,
2345 						   REGULATOR_EVENT_PRE_DISABLE,
2346 						   NULL);
2347 			if (ret & NOTIFY_STOP_MASK)
2348 				return -EINVAL;
2349 
2350 			ret = _regulator_do_disable(rdev);
2351 			if (ret < 0) {
2352 				rdev_err(rdev, "failed to disable\n");
2353 				_notifier_call_chain(rdev,
2354 						REGULATOR_EVENT_ABORT_DISABLE,
2355 						NULL);
2356 				return ret;
2357 			}
2358 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2359 					NULL);
2360 		}
2361 
2362 		rdev->use_count = 0;
2363 	} else if (rdev->use_count > 1) {
2364 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2365 			drms_uA_update(rdev);
2366 
2367 		rdev->use_count--;
2368 	}
2369 
2370 	return ret;
2371 }
2372 
2373 /**
2374  * regulator_disable - disable regulator output
2375  * @regulator: regulator source
2376  *
2377  * Disable the regulator output voltage or current.  Calls to
2378  * regulator_enable() must be balanced with calls to
2379  * regulator_disable().
2380  *
2381  * NOTE: this will only disable the regulator output if no other consumer
2382  * devices have it enabled, the regulator device supports disabling and
2383  * machine constraints permit this operation.
2384  */
2385 int regulator_disable(struct regulator *regulator)
2386 {
2387 	struct regulator_dev *rdev = regulator->rdev;
2388 	int ret = 0;
2389 
2390 	if (regulator->always_on)
2391 		return 0;
2392 
2393 	mutex_lock(&rdev->mutex);
2394 	ret = _regulator_disable(rdev);
2395 	mutex_unlock(&rdev->mutex);
2396 
2397 	if (ret == 0 && rdev->supply)
2398 		regulator_disable(rdev->supply);
2399 
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_disable);
2403 
2404 /* locks held by regulator_force_disable() */
2405 static int _regulator_force_disable(struct regulator_dev *rdev)
2406 {
2407 	int ret = 0;
2408 
2409 	lockdep_assert_held_once(&rdev->mutex);
2410 
2411 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2412 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2413 	if (ret & NOTIFY_STOP_MASK)
2414 		return -EINVAL;
2415 
2416 	ret = _regulator_do_disable(rdev);
2417 	if (ret < 0) {
2418 		rdev_err(rdev, "failed to force disable\n");
2419 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2420 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2421 		return ret;
2422 	}
2423 
2424 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2425 			REGULATOR_EVENT_DISABLE, NULL);
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * regulator_force_disable - force disable regulator output
2432  * @regulator: regulator source
2433  *
2434  * Forcibly disable the regulator output voltage or current.
2435  * NOTE: this *will* disable the regulator output even if other consumer
2436  * devices have it enabled. This should be used for situations when device
2437  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2438  */
2439 int regulator_force_disable(struct regulator *regulator)
2440 {
2441 	struct regulator_dev *rdev = regulator->rdev;
2442 	int ret;
2443 
2444 	mutex_lock(&rdev->mutex);
2445 	regulator->uA_load = 0;
2446 	ret = _regulator_force_disable(regulator->rdev);
2447 	mutex_unlock(&rdev->mutex);
2448 
2449 	if (rdev->supply)
2450 		while (rdev->open_count--)
2451 			regulator_disable(rdev->supply);
2452 
2453 	return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_force_disable);
2456 
2457 static void regulator_disable_work(struct work_struct *work)
2458 {
2459 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2460 						  disable_work.work);
2461 	int count, i, ret;
2462 
2463 	regulator_lock(rdev);
2464 
2465 	BUG_ON(!rdev->deferred_disables);
2466 
2467 	count = rdev->deferred_disables;
2468 	rdev->deferred_disables = 0;
2469 
2470 	/*
2471 	 * Workqueue functions queue the new work instance while the previous
2472 	 * work instance is being processed. Cancel the queued work instance
2473 	 * as the work instance under processing does the job of the queued
2474 	 * work instance.
2475 	 */
2476 	cancel_delayed_work(&rdev->disable_work);
2477 
2478 	for (i = 0; i < count; i++) {
2479 		ret = _regulator_disable(rdev);
2480 		if (ret != 0)
2481 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2482 	}
2483 
2484 	regulator_unlock(rdev);
2485 
2486 	if (rdev->supply) {
2487 		for (i = 0; i < count; i++) {
2488 			ret = regulator_disable(rdev->supply);
2489 			if (ret != 0) {
2490 				rdev_err(rdev,
2491 					 "Supply disable failed: %d\n", ret);
2492 			}
2493 		}
2494 	}
2495 }
2496 
2497 /**
2498  * regulator_disable_deferred - disable regulator output with delay
2499  * @regulator: regulator source
2500  * @ms: miliseconds until the regulator is disabled
2501  *
2502  * Execute regulator_disable() on the regulator after a delay.  This
2503  * is intended for use with devices that require some time to quiesce.
2504  *
2505  * NOTE: this will only disable the regulator output if no other consumer
2506  * devices have it enabled, the regulator device supports disabling and
2507  * machine constraints permit this operation.
2508  */
2509 int regulator_disable_deferred(struct regulator *regulator, int ms)
2510 {
2511 	struct regulator_dev *rdev = regulator->rdev;
2512 
2513 	if (regulator->always_on)
2514 		return 0;
2515 
2516 	if (!ms)
2517 		return regulator_disable(regulator);
2518 
2519 	regulator_lock(rdev);
2520 	rdev->deferred_disables++;
2521 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2522 			 msecs_to_jiffies(ms));
2523 	regulator_unlock(rdev);
2524 
2525 	return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2528 
2529 static int _regulator_is_enabled(struct regulator_dev *rdev)
2530 {
2531 	/* A GPIO control always takes precedence */
2532 	if (rdev->ena_pin)
2533 		return rdev->ena_gpio_state;
2534 
2535 	/* If we don't know then assume that the regulator is always on */
2536 	if (!rdev->desc->ops->is_enabled)
2537 		return 1;
2538 
2539 	return rdev->desc->ops->is_enabled(rdev);
2540 }
2541 
2542 static int _regulator_list_voltage(struct regulator_dev *rdev,
2543 				   unsigned selector, int lock)
2544 {
2545 	const struct regulator_ops *ops = rdev->desc->ops;
2546 	int ret;
2547 
2548 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2549 		return rdev->desc->fixed_uV;
2550 
2551 	if (ops->list_voltage) {
2552 		if (selector >= rdev->desc->n_voltages)
2553 			return -EINVAL;
2554 		if (lock)
2555 			regulator_lock(rdev);
2556 		ret = ops->list_voltage(rdev, selector);
2557 		if (lock)
2558 			regulator_unlock(rdev);
2559 	} else if (rdev->is_switch && rdev->supply) {
2560 		ret = _regulator_list_voltage(rdev->supply->rdev,
2561 					      selector, lock);
2562 	} else {
2563 		return -EINVAL;
2564 	}
2565 
2566 	if (ret > 0) {
2567 		if (ret < rdev->constraints->min_uV)
2568 			ret = 0;
2569 		else if (ret > rdev->constraints->max_uV)
2570 			ret = 0;
2571 	}
2572 
2573 	return ret;
2574 }
2575 
2576 /**
2577  * regulator_is_enabled - is the regulator output enabled
2578  * @regulator: regulator source
2579  *
2580  * Returns positive if the regulator driver backing the source/client
2581  * has requested that the device be enabled, zero if it hasn't, else a
2582  * negative errno code.
2583  *
2584  * Note that the device backing this regulator handle can have multiple
2585  * users, so it might be enabled even if regulator_enable() was never
2586  * called for this particular source.
2587  */
2588 int regulator_is_enabled(struct regulator *regulator)
2589 {
2590 	int ret;
2591 
2592 	if (regulator->always_on)
2593 		return 1;
2594 
2595 	mutex_lock(&regulator->rdev->mutex);
2596 	ret = _regulator_is_enabled(regulator->rdev);
2597 	mutex_unlock(&regulator->rdev->mutex);
2598 
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2602 
2603 /**
2604  * regulator_count_voltages - count regulator_list_voltage() selectors
2605  * @regulator: regulator source
2606  *
2607  * Returns number of selectors, or negative errno.  Selectors are
2608  * numbered starting at zero, and typically correspond to bitfields
2609  * in hardware registers.
2610  */
2611 int regulator_count_voltages(struct regulator *regulator)
2612 {
2613 	struct regulator_dev	*rdev = regulator->rdev;
2614 
2615 	if (rdev->desc->n_voltages)
2616 		return rdev->desc->n_voltages;
2617 
2618 	if (!rdev->is_switch || !rdev->supply)
2619 		return -EINVAL;
2620 
2621 	return regulator_count_voltages(rdev->supply);
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2624 
2625 /**
2626  * regulator_list_voltage - enumerate supported voltages
2627  * @regulator: regulator source
2628  * @selector: identify voltage to list
2629  * Context: can sleep
2630  *
2631  * Returns a voltage that can be passed to @regulator_set_voltage(),
2632  * zero if this selector code can't be used on this system, or a
2633  * negative errno.
2634  */
2635 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2636 {
2637 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2640 
2641 /**
2642  * regulator_get_regmap - get the regulator's register map
2643  * @regulator: regulator source
2644  *
2645  * Returns the register map for the given regulator, or an ERR_PTR value
2646  * if the regulator doesn't use regmap.
2647  */
2648 struct regmap *regulator_get_regmap(struct regulator *regulator)
2649 {
2650 	struct regmap *map = regulator->rdev->regmap;
2651 
2652 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2653 }
2654 
2655 /**
2656  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2657  * @regulator: regulator source
2658  * @vsel_reg: voltage selector register, output parameter
2659  * @vsel_mask: mask for voltage selector bitfield, output parameter
2660  *
2661  * Returns the hardware register offset and bitmask used for setting the
2662  * regulator voltage. This might be useful when configuring voltage-scaling
2663  * hardware or firmware that can make I2C requests behind the kernel's back,
2664  * for example.
2665  *
2666  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2667  * and 0 is returned, otherwise a negative errno is returned.
2668  */
2669 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2670 					 unsigned *vsel_reg,
2671 					 unsigned *vsel_mask)
2672 {
2673 	struct regulator_dev *rdev = regulator->rdev;
2674 	const struct regulator_ops *ops = rdev->desc->ops;
2675 
2676 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2677 		return -EOPNOTSUPP;
2678 
2679 	*vsel_reg = rdev->desc->vsel_reg;
2680 	*vsel_mask = rdev->desc->vsel_mask;
2681 
2682 	 return 0;
2683 }
2684 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2685 
2686 /**
2687  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2688  * @regulator: regulator source
2689  * @selector: identify voltage to list
2690  *
2691  * Converts the selector to a hardware-specific voltage selector that can be
2692  * directly written to the regulator registers. The address of the voltage
2693  * register can be determined by calling @regulator_get_hardware_vsel_register.
2694  *
2695  * On error a negative errno is returned.
2696  */
2697 int regulator_list_hardware_vsel(struct regulator *regulator,
2698 				 unsigned selector)
2699 {
2700 	struct regulator_dev *rdev = regulator->rdev;
2701 	const struct regulator_ops *ops = rdev->desc->ops;
2702 
2703 	if (selector >= rdev->desc->n_voltages)
2704 		return -EINVAL;
2705 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2706 		return -EOPNOTSUPP;
2707 
2708 	return selector;
2709 }
2710 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2711 
2712 /**
2713  * regulator_get_linear_step - return the voltage step size between VSEL values
2714  * @regulator: regulator source
2715  *
2716  * Returns the voltage step size between VSEL values for linear
2717  * regulators, or return 0 if the regulator isn't a linear regulator.
2718  */
2719 unsigned int regulator_get_linear_step(struct regulator *regulator)
2720 {
2721 	struct regulator_dev *rdev = regulator->rdev;
2722 
2723 	return rdev->desc->uV_step;
2724 }
2725 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2726 
2727 /**
2728  * regulator_is_supported_voltage - check if a voltage range can be supported
2729  *
2730  * @regulator: Regulator to check.
2731  * @min_uV: Minimum required voltage in uV.
2732  * @max_uV: Maximum required voltage in uV.
2733  *
2734  * Returns a boolean or a negative error code.
2735  */
2736 int regulator_is_supported_voltage(struct regulator *regulator,
2737 				   int min_uV, int max_uV)
2738 {
2739 	struct regulator_dev *rdev = regulator->rdev;
2740 	int i, voltages, ret;
2741 
2742 	/* If we can't change voltage check the current voltage */
2743 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2744 		ret = regulator_get_voltage(regulator);
2745 		if (ret >= 0)
2746 			return min_uV <= ret && ret <= max_uV;
2747 		else
2748 			return ret;
2749 	}
2750 
2751 	/* Any voltage within constrains range is fine? */
2752 	if (rdev->desc->continuous_voltage_range)
2753 		return min_uV >= rdev->constraints->min_uV &&
2754 				max_uV <= rdev->constraints->max_uV;
2755 
2756 	ret = regulator_count_voltages(regulator);
2757 	if (ret < 0)
2758 		return ret;
2759 	voltages = ret;
2760 
2761 	for (i = 0; i < voltages; i++) {
2762 		ret = regulator_list_voltage(regulator, i);
2763 
2764 		if (ret >= min_uV && ret <= max_uV)
2765 			return 1;
2766 	}
2767 
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2771 
2772 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2773 				 int max_uV)
2774 {
2775 	const struct regulator_desc *desc = rdev->desc;
2776 
2777 	if (desc->ops->map_voltage)
2778 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2779 
2780 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2781 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2782 
2783 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2784 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2785 
2786 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2787 }
2788 
2789 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2790 				       int min_uV, int max_uV,
2791 				       unsigned *selector)
2792 {
2793 	struct pre_voltage_change_data data;
2794 	int ret;
2795 
2796 	data.old_uV = _regulator_get_voltage(rdev);
2797 	data.min_uV = min_uV;
2798 	data.max_uV = max_uV;
2799 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2800 				   &data);
2801 	if (ret & NOTIFY_STOP_MASK)
2802 		return -EINVAL;
2803 
2804 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2805 	if (ret >= 0)
2806 		return ret;
2807 
2808 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2809 			     (void *)data.old_uV);
2810 
2811 	return ret;
2812 }
2813 
2814 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2815 					   int uV, unsigned selector)
2816 {
2817 	struct pre_voltage_change_data data;
2818 	int ret;
2819 
2820 	data.old_uV = _regulator_get_voltage(rdev);
2821 	data.min_uV = uV;
2822 	data.max_uV = uV;
2823 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2824 				   &data);
2825 	if (ret & NOTIFY_STOP_MASK)
2826 		return -EINVAL;
2827 
2828 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2829 	if (ret >= 0)
2830 		return ret;
2831 
2832 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2833 			     (void *)data.old_uV);
2834 
2835 	return ret;
2836 }
2837 
2838 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2839 				       int old_uV, int new_uV)
2840 {
2841 	unsigned int ramp_delay = 0;
2842 
2843 	if (rdev->constraints->ramp_delay)
2844 		ramp_delay = rdev->constraints->ramp_delay;
2845 	else if (rdev->desc->ramp_delay)
2846 		ramp_delay = rdev->desc->ramp_delay;
2847 	else if (rdev->constraints->settling_time)
2848 		return rdev->constraints->settling_time;
2849 	else if (rdev->constraints->settling_time_up &&
2850 		 (new_uV > old_uV))
2851 		return rdev->constraints->settling_time_up;
2852 	else if (rdev->constraints->settling_time_down &&
2853 		 (new_uV < old_uV))
2854 		return rdev->constraints->settling_time_down;
2855 
2856 	if (ramp_delay == 0) {
2857 		rdev_dbg(rdev, "ramp_delay not set\n");
2858 		return 0;
2859 	}
2860 
2861 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2862 }
2863 
2864 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2865 				     int min_uV, int max_uV)
2866 {
2867 	int ret;
2868 	int delay = 0;
2869 	int best_val = 0;
2870 	unsigned int selector;
2871 	int old_selector = -1;
2872 	const struct regulator_ops *ops = rdev->desc->ops;
2873 	int old_uV = _regulator_get_voltage(rdev);
2874 
2875 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2876 
2877 	min_uV += rdev->constraints->uV_offset;
2878 	max_uV += rdev->constraints->uV_offset;
2879 
2880 	/*
2881 	 * If we can't obtain the old selector there is not enough
2882 	 * info to call set_voltage_time_sel().
2883 	 */
2884 	if (_regulator_is_enabled(rdev) &&
2885 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2886 		old_selector = ops->get_voltage_sel(rdev);
2887 		if (old_selector < 0)
2888 			return old_selector;
2889 	}
2890 
2891 	if (ops->set_voltage) {
2892 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2893 						  &selector);
2894 
2895 		if (ret >= 0) {
2896 			if (ops->list_voltage)
2897 				best_val = ops->list_voltage(rdev,
2898 							     selector);
2899 			else
2900 				best_val = _regulator_get_voltage(rdev);
2901 		}
2902 
2903 	} else if (ops->set_voltage_sel) {
2904 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2905 		if (ret >= 0) {
2906 			best_val = ops->list_voltage(rdev, ret);
2907 			if (min_uV <= best_val && max_uV >= best_val) {
2908 				selector = ret;
2909 				if (old_selector == selector)
2910 					ret = 0;
2911 				else
2912 					ret = _regulator_call_set_voltage_sel(
2913 						rdev, best_val, selector);
2914 			} else {
2915 				ret = -EINVAL;
2916 			}
2917 		}
2918 	} else {
2919 		ret = -EINVAL;
2920 	}
2921 
2922 	if (ret)
2923 		goto out;
2924 
2925 	if (ops->set_voltage_time_sel) {
2926 		/*
2927 		 * Call set_voltage_time_sel if successfully obtained
2928 		 * old_selector
2929 		 */
2930 		if (old_selector >= 0 && old_selector != selector)
2931 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2932 							  selector);
2933 	} else {
2934 		if (old_uV != best_val) {
2935 			if (ops->set_voltage_time)
2936 				delay = ops->set_voltage_time(rdev, old_uV,
2937 							      best_val);
2938 			else
2939 				delay = _regulator_set_voltage_time(rdev,
2940 								    old_uV,
2941 								    best_val);
2942 		}
2943 	}
2944 
2945 	if (delay < 0) {
2946 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2947 		delay = 0;
2948 	}
2949 
2950 	/* Insert any necessary delays */
2951 	if (delay >= 1000) {
2952 		mdelay(delay / 1000);
2953 		udelay(delay % 1000);
2954 	} else if (delay) {
2955 		udelay(delay);
2956 	}
2957 
2958 	if (best_val >= 0) {
2959 		unsigned long data = best_val;
2960 
2961 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2962 				     (void *)data);
2963 	}
2964 
2965 out:
2966 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2967 
2968 	return ret;
2969 }
2970 
2971 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2972 				  int min_uV, int max_uV, suspend_state_t state)
2973 {
2974 	struct regulator_state *rstate;
2975 	int uV, sel;
2976 
2977 	rstate = regulator_get_suspend_state(rdev, state);
2978 	if (rstate == NULL)
2979 		return -EINVAL;
2980 
2981 	if (min_uV < rstate->min_uV)
2982 		min_uV = rstate->min_uV;
2983 	if (max_uV > rstate->max_uV)
2984 		max_uV = rstate->max_uV;
2985 
2986 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
2987 	if (sel < 0)
2988 		return sel;
2989 
2990 	uV = rdev->desc->ops->list_voltage(rdev, sel);
2991 	if (uV >= min_uV && uV <= max_uV)
2992 		rstate->uV = uV;
2993 
2994 	return 0;
2995 }
2996 
2997 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2998 					  int min_uV, int max_uV,
2999 					  suspend_state_t state)
3000 {
3001 	struct regulator_dev *rdev = regulator->rdev;
3002 	struct regulator_voltage *voltage = &regulator->voltage[state];
3003 	int ret = 0;
3004 	int old_min_uV, old_max_uV;
3005 	int current_uV;
3006 	int best_supply_uV = 0;
3007 	int supply_change_uV = 0;
3008 
3009 	/* If we're setting the same range as last time the change
3010 	 * should be a noop (some cpufreq implementations use the same
3011 	 * voltage for multiple frequencies, for example).
3012 	 */
3013 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3014 		goto out;
3015 
3016 	/* If we're trying to set a range that overlaps the current voltage,
3017 	 * return successfully even though the regulator does not support
3018 	 * changing the voltage.
3019 	 */
3020 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021 		current_uV = _regulator_get_voltage(rdev);
3022 		if (min_uV <= current_uV && current_uV <= max_uV) {
3023 			voltage->min_uV = min_uV;
3024 			voltage->max_uV = max_uV;
3025 			goto out;
3026 		}
3027 	}
3028 
3029 	/* sanity check */
3030 	if (!rdev->desc->ops->set_voltage &&
3031 	    !rdev->desc->ops->set_voltage_sel) {
3032 		ret = -EINVAL;
3033 		goto out;
3034 	}
3035 
3036 	/* constraints check */
3037 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3038 	if (ret < 0)
3039 		goto out;
3040 
3041 	/* restore original values in case of error */
3042 	old_min_uV = voltage->min_uV;
3043 	old_max_uV = voltage->max_uV;
3044 	voltage->min_uV = min_uV;
3045 	voltage->max_uV = max_uV;
3046 
3047 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3048 	if (ret < 0)
3049 		goto out2;
3050 
3051 	if (rdev->supply &&
3052 	    regulator_ops_is_valid(rdev->supply->rdev,
3053 				   REGULATOR_CHANGE_VOLTAGE) &&
3054 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3055 					   rdev->desc->ops->get_voltage_sel))) {
3056 		int current_supply_uV;
3057 		int selector;
3058 
3059 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3060 		if (selector < 0) {
3061 			ret = selector;
3062 			goto out2;
3063 		}
3064 
3065 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3066 		if (best_supply_uV < 0) {
3067 			ret = best_supply_uV;
3068 			goto out2;
3069 		}
3070 
3071 		best_supply_uV += rdev->desc->min_dropout_uV;
3072 
3073 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3074 		if (current_supply_uV < 0) {
3075 			ret = current_supply_uV;
3076 			goto out2;
3077 		}
3078 
3079 		supply_change_uV = best_supply_uV - current_supply_uV;
3080 	}
3081 
3082 	if (supply_change_uV > 0) {
3083 		ret = regulator_set_voltage_unlocked(rdev->supply,
3084 				best_supply_uV, INT_MAX, state);
3085 		if (ret) {
3086 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3087 					ret);
3088 			goto out2;
3089 		}
3090 	}
3091 
3092 	if (state == PM_SUSPEND_ON)
3093 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3094 	else
3095 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3096 							max_uV, state);
3097 	if (ret < 0)
3098 		goto out2;
3099 
3100 	if (supply_change_uV < 0) {
3101 		ret = regulator_set_voltage_unlocked(rdev->supply,
3102 				best_supply_uV, INT_MAX, state);
3103 		if (ret)
3104 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3105 					ret);
3106 		/* No need to fail here */
3107 		ret = 0;
3108 	}
3109 
3110 out:
3111 	return ret;
3112 out2:
3113 	voltage->min_uV = old_min_uV;
3114 	voltage->max_uV = old_max_uV;
3115 
3116 	return ret;
3117 }
3118 
3119 /**
3120  * regulator_set_voltage - set regulator output voltage
3121  * @regulator: regulator source
3122  * @min_uV: Minimum required voltage in uV
3123  * @max_uV: Maximum acceptable voltage in uV
3124  *
3125  * Sets a voltage regulator to the desired output voltage. This can be set
3126  * during any regulator state. IOW, regulator can be disabled or enabled.
3127  *
3128  * If the regulator is enabled then the voltage will change to the new value
3129  * immediately otherwise if the regulator is disabled the regulator will
3130  * output at the new voltage when enabled.
3131  *
3132  * NOTE: If the regulator is shared between several devices then the lowest
3133  * request voltage that meets the system constraints will be used.
3134  * Regulator system constraints must be set for this regulator before
3135  * calling this function otherwise this call will fail.
3136  */
3137 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3138 {
3139 	int ret = 0;
3140 
3141 	regulator_lock_supply(regulator->rdev);
3142 
3143 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3144 					     PM_SUSPEND_ON);
3145 
3146 	regulator_unlock_supply(regulator->rdev);
3147 
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3151 
3152 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3153 					   suspend_state_t state, bool en)
3154 {
3155 	struct regulator_state *rstate;
3156 
3157 	rstate = regulator_get_suspend_state(rdev, state);
3158 	if (rstate == NULL)
3159 		return -EINVAL;
3160 
3161 	if (!rstate->changeable)
3162 		return -EPERM;
3163 
3164 	rstate->enabled = en;
3165 
3166 	return 0;
3167 }
3168 
3169 int regulator_suspend_enable(struct regulator_dev *rdev,
3170 				    suspend_state_t state)
3171 {
3172 	return regulator_suspend_toggle(rdev, state, true);
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3175 
3176 int regulator_suspend_disable(struct regulator_dev *rdev,
3177 				     suspend_state_t state)
3178 {
3179 	struct regulator *regulator;
3180 	struct regulator_voltage *voltage;
3181 
3182 	/*
3183 	 * if any consumer wants this regulator device keeping on in
3184 	 * suspend states, don't set it as disabled.
3185 	 */
3186 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3187 		voltage = &regulator->voltage[state];
3188 		if (voltage->min_uV || voltage->max_uV)
3189 			return 0;
3190 	}
3191 
3192 	return regulator_suspend_toggle(rdev, state, false);
3193 }
3194 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3195 
3196 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3197 					  int min_uV, int max_uV,
3198 					  suspend_state_t state)
3199 {
3200 	struct regulator_dev *rdev = regulator->rdev;
3201 	struct regulator_state *rstate;
3202 
3203 	rstate = regulator_get_suspend_state(rdev, state);
3204 	if (rstate == NULL)
3205 		return -EINVAL;
3206 
3207 	if (rstate->min_uV == rstate->max_uV) {
3208 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3209 		return -EPERM;
3210 	}
3211 
3212 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3213 }
3214 
3215 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3216 				  int max_uV, suspend_state_t state)
3217 {
3218 	int ret = 0;
3219 
3220 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3221 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3222 		return -EINVAL;
3223 
3224 	regulator_lock_supply(regulator->rdev);
3225 
3226 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3227 					     max_uV, state);
3228 
3229 	regulator_unlock_supply(regulator->rdev);
3230 
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3234 
3235 /**
3236  * regulator_set_voltage_time - get raise/fall time
3237  * @regulator: regulator source
3238  * @old_uV: starting voltage in microvolts
3239  * @new_uV: target voltage in microvolts
3240  *
3241  * Provided with the starting and ending voltage, this function attempts to
3242  * calculate the time in microseconds required to rise or fall to this new
3243  * voltage.
3244  */
3245 int regulator_set_voltage_time(struct regulator *regulator,
3246 			       int old_uV, int new_uV)
3247 {
3248 	struct regulator_dev *rdev = regulator->rdev;
3249 	const struct regulator_ops *ops = rdev->desc->ops;
3250 	int old_sel = -1;
3251 	int new_sel = -1;
3252 	int voltage;
3253 	int i;
3254 
3255 	if (ops->set_voltage_time)
3256 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3257 	else if (!ops->set_voltage_time_sel)
3258 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3259 
3260 	/* Currently requires operations to do this */
3261 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3262 		return -EINVAL;
3263 
3264 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3265 		/* We only look for exact voltage matches here */
3266 		voltage = regulator_list_voltage(regulator, i);
3267 		if (voltage < 0)
3268 			return -EINVAL;
3269 		if (voltage == 0)
3270 			continue;
3271 		if (voltage == old_uV)
3272 			old_sel = i;
3273 		if (voltage == new_uV)
3274 			new_sel = i;
3275 	}
3276 
3277 	if (old_sel < 0 || new_sel < 0)
3278 		return -EINVAL;
3279 
3280 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3281 }
3282 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3283 
3284 /**
3285  * regulator_set_voltage_time_sel - get raise/fall time
3286  * @rdev: regulator source device
3287  * @old_selector: selector for starting voltage
3288  * @new_selector: selector for target voltage
3289  *
3290  * Provided with the starting and target voltage selectors, this function
3291  * returns time in microseconds required to rise or fall to this new voltage
3292  *
3293  * Drivers providing ramp_delay in regulation_constraints can use this as their
3294  * set_voltage_time_sel() operation.
3295  */
3296 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3297 				   unsigned int old_selector,
3298 				   unsigned int new_selector)
3299 {
3300 	int old_volt, new_volt;
3301 
3302 	/* sanity check */
3303 	if (!rdev->desc->ops->list_voltage)
3304 		return -EINVAL;
3305 
3306 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3307 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3308 
3309 	if (rdev->desc->ops->set_voltage_time)
3310 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3311 							 new_volt);
3312 	else
3313 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3314 }
3315 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3316 
3317 /**
3318  * regulator_sync_voltage - re-apply last regulator output voltage
3319  * @regulator: regulator source
3320  *
3321  * Re-apply the last configured voltage.  This is intended to be used
3322  * where some external control source the consumer is cooperating with
3323  * has caused the configured voltage to change.
3324  */
3325 int regulator_sync_voltage(struct regulator *regulator)
3326 {
3327 	struct regulator_dev *rdev = regulator->rdev;
3328 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3329 	int ret, min_uV, max_uV;
3330 
3331 	regulator_lock(rdev);
3332 
3333 	if (!rdev->desc->ops->set_voltage &&
3334 	    !rdev->desc->ops->set_voltage_sel) {
3335 		ret = -EINVAL;
3336 		goto out;
3337 	}
3338 
3339 	/* This is only going to work if we've had a voltage configured. */
3340 	if (!voltage->min_uV && !voltage->max_uV) {
3341 		ret = -EINVAL;
3342 		goto out;
3343 	}
3344 
3345 	min_uV = voltage->min_uV;
3346 	max_uV = voltage->max_uV;
3347 
3348 	/* This should be a paranoia check... */
3349 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3350 	if (ret < 0)
3351 		goto out;
3352 
3353 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3354 	if (ret < 0)
3355 		goto out;
3356 
3357 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3358 
3359 out:
3360 	regulator_unlock(rdev);
3361 	return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3364 
3365 static int _regulator_get_voltage(struct regulator_dev *rdev)
3366 {
3367 	int sel, ret;
3368 	bool bypassed;
3369 
3370 	if (rdev->desc->ops->get_bypass) {
3371 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3372 		if (ret < 0)
3373 			return ret;
3374 		if (bypassed) {
3375 			/* if bypassed the regulator must have a supply */
3376 			if (!rdev->supply) {
3377 				rdev_err(rdev,
3378 					 "bypassed regulator has no supply!\n");
3379 				return -EPROBE_DEFER;
3380 			}
3381 
3382 			return _regulator_get_voltage(rdev->supply->rdev);
3383 		}
3384 	}
3385 
3386 	if (rdev->desc->ops->get_voltage_sel) {
3387 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3388 		if (sel < 0)
3389 			return sel;
3390 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3391 	} else if (rdev->desc->ops->get_voltage) {
3392 		ret = rdev->desc->ops->get_voltage(rdev);
3393 	} else if (rdev->desc->ops->list_voltage) {
3394 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3395 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3396 		ret = rdev->desc->fixed_uV;
3397 	} else if (rdev->supply) {
3398 		ret = _regulator_get_voltage(rdev->supply->rdev);
3399 	} else {
3400 		return -EINVAL;
3401 	}
3402 
3403 	if (ret < 0)
3404 		return ret;
3405 	return ret - rdev->constraints->uV_offset;
3406 }
3407 
3408 /**
3409  * regulator_get_voltage - get regulator output voltage
3410  * @regulator: regulator source
3411  *
3412  * This returns the current regulator voltage in uV.
3413  *
3414  * NOTE: If the regulator is disabled it will return the voltage value. This
3415  * function should not be used to determine regulator state.
3416  */
3417 int regulator_get_voltage(struct regulator *regulator)
3418 {
3419 	int ret;
3420 
3421 	regulator_lock_supply(regulator->rdev);
3422 
3423 	ret = _regulator_get_voltage(regulator->rdev);
3424 
3425 	regulator_unlock_supply(regulator->rdev);
3426 
3427 	return ret;
3428 }
3429 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3430 
3431 /**
3432  * regulator_set_current_limit - set regulator output current limit
3433  * @regulator: regulator source
3434  * @min_uA: Minimum supported current in uA
3435  * @max_uA: Maximum supported current in uA
3436  *
3437  * Sets current sink to the desired output current. This can be set during
3438  * any regulator state. IOW, regulator can be disabled or enabled.
3439  *
3440  * If the regulator is enabled then the current will change to the new value
3441  * immediately otherwise if the regulator is disabled the regulator will
3442  * output at the new current when enabled.
3443  *
3444  * NOTE: Regulator system constraints must be set for this regulator before
3445  * calling this function otherwise this call will fail.
3446  */
3447 int regulator_set_current_limit(struct regulator *regulator,
3448 			       int min_uA, int max_uA)
3449 {
3450 	struct regulator_dev *rdev = regulator->rdev;
3451 	int ret;
3452 
3453 	regulator_lock(rdev);
3454 
3455 	/* sanity check */
3456 	if (!rdev->desc->ops->set_current_limit) {
3457 		ret = -EINVAL;
3458 		goto out;
3459 	}
3460 
3461 	/* constraints check */
3462 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3463 	if (ret < 0)
3464 		goto out;
3465 
3466 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3467 out:
3468 	regulator_unlock(rdev);
3469 	return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3472 
3473 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3474 {
3475 	int ret;
3476 
3477 	regulator_lock(rdev);
3478 
3479 	/* sanity check */
3480 	if (!rdev->desc->ops->get_current_limit) {
3481 		ret = -EINVAL;
3482 		goto out;
3483 	}
3484 
3485 	ret = rdev->desc->ops->get_current_limit(rdev);
3486 out:
3487 	regulator_unlock(rdev);
3488 	return ret;
3489 }
3490 
3491 /**
3492  * regulator_get_current_limit - get regulator output current
3493  * @regulator: regulator source
3494  *
3495  * This returns the current supplied by the specified current sink in uA.
3496  *
3497  * NOTE: If the regulator is disabled it will return the current value. This
3498  * function should not be used to determine regulator state.
3499  */
3500 int regulator_get_current_limit(struct regulator *regulator)
3501 {
3502 	return _regulator_get_current_limit(regulator->rdev);
3503 }
3504 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3505 
3506 /**
3507  * regulator_set_mode - set regulator operating mode
3508  * @regulator: regulator source
3509  * @mode: operating mode - one of the REGULATOR_MODE constants
3510  *
3511  * Set regulator operating mode to increase regulator efficiency or improve
3512  * regulation performance.
3513  *
3514  * NOTE: Regulator system constraints must be set for this regulator before
3515  * calling this function otherwise this call will fail.
3516  */
3517 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3518 {
3519 	struct regulator_dev *rdev = regulator->rdev;
3520 	int ret;
3521 	int regulator_curr_mode;
3522 
3523 	regulator_lock(rdev);
3524 
3525 	/* sanity check */
3526 	if (!rdev->desc->ops->set_mode) {
3527 		ret = -EINVAL;
3528 		goto out;
3529 	}
3530 
3531 	/* return if the same mode is requested */
3532 	if (rdev->desc->ops->get_mode) {
3533 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3534 		if (regulator_curr_mode == mode) {
3535 			ret = 0;
3536 			goto out;
3537 		}
3538 	}
3539 
3540 	/* constraints check */
3541 	ret = regulator_mode_constrain(rdev, &mode);
3542 	if (ret < 0)
3543 		goto out;
3544 
3545 	ret = rdev->desc->ops->set_mode(rdev, mode);
3546 out:
3547 	regulator_unlock(rdev);
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(regulator_set_mode);
3551 
3552 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3553 {
3554 	int ret;
3555 
3556 	regulator_lock(rdev);
3557 
3558 	/* sanity check */
3559 	if (!rdev->desc->ops->get_mode) {
3560 		ret = -EINVAL;
3561 		goto out;
3562 	}
3563 
3564 	ret = rdev->desc->ops->get_mode(rdev);
3565 out:
3566 	regulator_unlock(rdev);
3567 	return ret;
3568 }
3569 
3570 /**
3571  * regulator_get_mode - get regulator operating mode
3572  * @regulator: regulator source
3573  *
3574  * Get the current regulator operating mode.
3575  */
3576 unsigned int regulator_get_mode(struct regulator *regulator)
3577 {
3578 	return _regulator_get_mode(regulator->rdev);
3579 }
3580 EXPORT_SYMBOL_GPL(regulator_get_mode);
3581 
3582 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3583 					unsigned int *flags)
3584 {
3585 	int ret;
3586 
3587 	regulator_lock(rdev);
3588 
3589 	/* sanity check */
3590 	if (!rdev->desc->ops->get_error_flags) {
3591 		ret = -EINVAL;
3592 		goto out;
3593 	}
3594 
3595 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3596 out:
3597 	regulator_unlock(rdev);
3598 	return ret;
3599 }
3600 
3601 /**
3602  * regulator_get_error_flags - get regulator error information
3603  * @regulator: regulator source
3604  * @flags: pointer to store error flags
3605  *
3606  * Get the current regulator error information.
3607  */
3608 int regulator_get_error_flags(struct regulator *regulator,
3609 				unsigned int *flags)
3610 {
3611 	return _regulator_get_error_flags(regulator->rdev, flags);
3612 }
3613 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3614 
3615 /**
3616  * regulator_set_load - set regulator load
3617  * @regulator: regulator source
3618  * @uA_load: load current
3619  *
3620  * Notifies the regulator core of a new device load. This is then used by
3621  * DRMS (if enabled by constraints) to set the most efficient regulator
3622  * operating mode for the new regulator loading.
3623  *
3624  * Consumer devices notify their supply regulator of the maximum power
3625  * they will require (can be taken from device datasheet in the power
3626  * consumption tables) when they change operational status and hence power
3627  * state. Examples of operational state changes that can affect power
3628  * consumption are :-
3629  *
3630  *    o Device is opened / closed.
3631  *    o Device I/O is about to begin or has just finished.
3632  *    o Device is idling in between work.
3633  *
3634  * This information is also exported via sysfs to userspace.
3635  *
3636  * DRMS will sum the total requested load on the regulator and change
3637  * to the most efficient operating mode if platform constraints allow.
3638  *
3639  * On error a negative errno is returned.
3640  */
3641 int regulator_set_load(struct regulator *regulator, int uA_load)
3642 {
3643 	struct regulator_dev *rdev = regulator->rdev;
3644 	int ret;
3645 
3646 	regulator_lock(rdev);
3647 	regulator->uA_load = uA_load;
3648 	ret = drms_uA_update(rdev);
3649 	regulator_unlock(rdev);
3650 
3651 	return ret;
3652 }
3653 EXPORT_SYMBOL_GPL(regulator_set_load);
3654 
3655 /**
3656  * regulator_allow_bypass - allow the regulator to go into bypass mode
3657  *
3658  * @regulator: Regulator to configure
3659  * @enable: enable or disable bypass mode
3660  *
3661  * Allow the regulator to go into bypass mode if all other consumers
3662  * for the regulator also enable bypass mode and the machine
3663  * constraints allow this.  Bypass mode means that the regulator is
3664  * simply passing the input directly to the output with no regulation.
3665  */
3666 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3667 {
3668 	struct regulator_dev *rdev = regulator->rdev;
3669 	int ret = 0;
3670 
3671 	if (!rdev->desc->ops->set_bypass)
3672 		return 0;
3673 
3674 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3675 		return 0;
3676 
3677 	regulator_lock(rdev);
3678 
3679 	if (enable && !regulator->bypass) {
3680 		rdev->bypass_count++;
3681 
3682 		if (rdev->bypass_count == rdev->open_count) {
3683 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3684 			if (ret != 0)
3685 				rdev->bypass_count--;
3686 		}
3687 
3688 	} else if (!enable && regulator->bypass) {
3689 		rdev->bypass_count--;
3690 
3691 		if (rdev->bypass_count != rdev->open_count) {
3692 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3693 			if (ret != 0)
3694 				rdev->bypass_count++;
3695 		}
3696 	}
3697 
3698 	if (ret == 0)
3699 		regulator->bypass = enable;
3700 
3701 	regulator_unlock(rdev);
3702 
3703 	return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3706 
3707 /**
3708  * regulator_register_notifier - register regulator event notifier
3709  * @regulator: regulator source
3710  * @nb: notifier block
3711  *
3712  * Register notifier block to receive regulator events.
3713  */
3714 int regulator_register_notifier(struct regulator *regulator,
3715 			      struct notifier_block *nb)
3716 {
3717 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3718 						nb);
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3721 
3722 /**
3723  * regulator_unregister_notifier - unregister regulator event notifier
3724  * @regulator: regulator source
3725  * @nb: notifier block
3726  *
3727  * Unregister regulator event notifier block.
3728  */
3729 int regulator_unregister_notifier(struct regulator *regulator,
3730 				struct notifier_block *nb)
3731 {
3732 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3733 						  nb);
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3736 
3737 /* notify regulator consumers and downstream regulator consumers.
3738  * Note mutex must be held by caller.
3739  */
3740 static int _notifier_call_chain(struct regulator_dev *rdev,
3741 				  unsigned long event, void *data)
3742 {
3743 	/* call rdev chain first */
3744 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3745 }
3746 
3747 /**
3748  * regulator_bulk_get - get multiple regulator consumers
3749  *
3750  * @dev:           Device to supply
3751  * @num_consumers: Number of consumers to register
3752  * @consumers:     Configuration of consumers; clients are stored here.
3753  *
3754  * @return 0 on success, an errno on failure.
3755  *
3756  * This helper function allows drivers to get several regulator
3757  * consumers in one operation.  If any of the regulators cannot be
3758  * acquired then any regulators that were allocated will be freed
3759  * before returning to the caller.
3760  */
3761 int regulator_bulk_get(struct device *dev, int num_consumers,
3762 		       struct regulator_bulk_data *consumers)
3763 {
3764 	int i;
3765 	int ret;
3766 
3767 	for (i = 0; i < num_consumers; i++)
3768 		consumers[i].consumer = NULL;
3769 
3770 	for (i = 0; i < num_consumers; i++) {
3771 		consumers[i].consumer = regulator_get(dev,
3772 						      consumers[i].supply);
3773 		if (IS_ERR(consumers[i].consumer)) {
3774 			ret = PTR_ERR(consumers[i].consumer);
3775 			dev_err(dev, "Failed to get supply '%s': %d\n",
3776 				consumers[i].supply, ret);
3777 			consumers[i].consumer = NULL;
3778 			goto err;
3779 		}
3780 	}
3781 
3782 	return 0;
3783 
3784 err:
3785 	while (--i >= 0)
3786 		regulator_put(consumers[i].consumer);
3787 
3788 	return ret;
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3791 
3792 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3793 {
3794 	struct regulator_bulk_data *bulk = data;
3795 
3796 	bulk->ret = regulator_enable(bulk->consumer);
3797 }
3798 
3799 /**
3800  * regulator_bulk_enable - enable multiple regulator consumers
3801  *
3802  * @num_consumers: Number of consumers
3803  * @consumers:     Consumer data; clients are stored here.
3804  * @return         0 on success, an errno on failure
3805  *
3806  * This convenience API allows consumers to enable multiple regulator
3807  * clients in a single API call.  If any consumers cannot be enabled
3808  * then any others that were enabled will be disabled again prior to
3809  * return.
3810  */
3811 int regulator_bulk_enable(int num_consumers,
3812 			  struct regulator_bulk_data *consumers)
3813 {
3814 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3815 	int i;
3816 	int ret = 0;
3817 
3818 	for (i = 0; i < num_consumers; i++) {
3819 		if (consumers[i].consumer->always_on)
3820 			consumers[i].ret = 0;
3821 		else
3822 			async_schedule_domain(regulator_bulk_enable_async,
3823 					      &consumers[i], &async_domain);
3824 	}
3825 
3826 	async_synchronize_full_domain(&async_domain);
3827 
3828 	/* If any consumer failed we need to unwind any that succeeded */
3829 	for (i = 0; i < num_consumers; i++) {
3830 		if (consumers[i].ret != 0) {
3831 			ret = consumers[i].ret;
3832 			goto err;
3833 		}
3834 	}
3835 
3836 	return 0;
3837 
3838 err:
3839 	for (i = 0; i < num_consumers; i++) {
3840 		if (consumers[i].ret < 0)
3841 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3842 			       consumers[i].ret);
3843 		else
3844 			regulator_disable(consumers[i].consumer);
3845 	}
3846 
3847 	return ret;
3848 }
3849 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3850 
3851 /**
3852  * regulator_bulk_disable - disable multiple regulator consumers
3853  *
3854  * @num_consumers: Number of consumers
3855  * @consumers:     Consumer data; clients are stored here.
3856  * @return         0 on success, an errno on failure
3857  *
3858  * This convenience API allows consumers to disable multiple regulator
3859  * clients in a single API call.  If any consumers cannot be disabled
3860  * then any others that were disabled will be enabled again prior to
3861  * return.
3862  */
3863 int regulator_bulk_disable(int num_consumers,
3864 			   struct regulator_bulk_data *consumers)
3865 {
3866 	int i;
3867 	int ret, r;
3868 
3869 	for (i = num_consumers - 1; i >= 0; --i) {
3870 		ret = regulator_disable(consumers[i].consumer);
3871 		if (ret != 0)
3872 			goto err;
3873 	}
3874 
3875 	return 0;
3876 
3877 err:
3878 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3879 	for (++i; i < num_consumers; ++i) {
3880 		r = regulator_enable(consumers[i].consumer);
3881 		if (r != 0)
3882 			pr_err("Failed to re-enable %s: %d\n",
3883 			       consumers[i].supply, r);
3884 	}
3885 
3886 	return ret;
3887 }
3888 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3889 
3890 /**
3891  * regulator_bulk_force_disable - force disable multiple regulator consumers
3892  *
3893  * @num_consumers: Number of consumers
3894  * @consumers:     Consumer data; clients are stored here.
3895  * @return         0 on success, an errno on failure
3896  *
3897  * This convenience API allows consumers to forcibly disable multiple regulator
3898  * clients in a single API call.
3899  * NOTE: This should be used for situations when device damage will
3900  * likely occur if the regulators are not disabled (e.g. over temp).
3901  * Although regulator_force_disable function call for some consumers can
3902  * return error numbers, the function is called for all consumers.
3903  */
3904 int regulator_bulk_force_disable(int num_consumers,
3905 			   struct regulator_bulk_data *consumers)
3906 {
3907 	int i;
3908 	int ret = 0;
3909 
3910 	for (i = 0; i < num_consumers; i++) {
3911 		consumers[i].ret =
3912 			    regulator_force_disable(consumers[i].consumer);
3913 
3914 		/* Store first error for reporting */
3915 		if (consumers[i].ret && !ret)
3916 			ret = consumers[i].ret;
3917 	}
3918 
3919 	return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3922 
3923 /**
3924  * regulator_bulk_free - free multiple regulator consumers
3925  *
3926  * @num_consumers: Number of consumers
3927  * @consumers:     Consumer data; clients are stored here.
3928  *
3929  * This convenience API allows consumers to free multiple regulator
3930  * clients in a single API call.
3931  */
3932 void regulator_bulk_free(int num_consumers,
3933 			 struct regulator_bulk_data *consumers)
3934 {
3935 	int i;
3936 
3937 	for (i = 0; i < num_consumers; i++) {
3938 		regulator_put(consumers[i].consumer);
3939 		consumers[i].consumer = NULL;
3940 	}
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3943 
3944 /**
3945  * regulator_notifier_call_chain - call regulator event notifier
3946  * @rdev: regulator source
3947  * @event: notifier block
3948  * @data: callback-specific data.
3949  *
3950  * Called by regulator drivers to notify clients a regulator event has
3951  * occurred. We also notify regulator clients downstream.
3952  * Note lock must be held by caller.
3953  */
3954 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3955 				  unsigned long event, void *data)
3956 {
3957 	lockdep_assert_held_once(&rdev->mutex);
3958 
3959 	_notifier_call_chain(rdev, event, data);
3960 	return NOTIFY_DONE;
3961 
3962 }
3963 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3964 
3965 /**
3966  * regulator_mode_to_status - convert a regulator mode into a status
3967  *
3968  * @mode: Mode to convert
3969  *
3970  * Convert a regulator mode into a status.
3971  */
3972 int regulator_mode_to_status(unsigned int mode)
3973 {
3974 	switch (mode) {
3975 	case REGULATOR_MODE_FAST:
3976 		return REGULATOR_STATUS_FAST;
3977 	case REGULATOR_MODE_NORMAL:
3978 		return REGULATOR_STATUS_NORMAL;
3979 	case REGULATOR_MODE_IDLE:
3980 		return REGULATOR_STATUS_IDLE;
3981 	case REGULATOR_MODE_STANDBY:
3982 		return REGULATOR_STATUS_STANDBY;
3983 	default:
3984 		return REGULATOR_STATUS_UNDEFINED;
3985 	}
3986 }
3987 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3988 
3989 static struct attribute *regulator_dev_attrs[] = {
3990 	&dev_attr_name.attr,
3991 	&dev_attr_num_users.attr,
3992 	&dev_attr_type.attr,
3993 	&dev_attr_microvolts.attr,
3994 	&dev_attr_microamps.attr,
3995 	&dev_attr_opmode.attr,
3996 	&dev_attr_state.attr,
3997 	&dev_attr_status.attr,
3998 	&dev_attr_bypass.attr,
3999 	&dev_attr_requested_microamps.attr,
4000 	&dev_attr_min_microvolts.attr,
4001 	&dev_attr_max_microvolts.attr,
4002 	&dev_attr_min_microamps.attr,
4003 	&dev_attr_max_microamps.attr,
4004 	&dev_attr_suspend_standby_state.attr,
4005 	&dev_attr_suspend_mem_state.attr,
4006 	&dev_attr_suspend_disk_state.attr,
4007 	&dev_attr_suspend_standby_microvolts.attr,
4008 	&dev_attr_suspend_mem_microvolts.attr,
4009 	&dev_attr_suspend_disk_microvolts.attr,
4010 	&dev_attr_suspend_standby_mode.attr,
4011 	&dev_attr_suspend_mem_mode.attr,
4012 	&dev_attr_suspend_disk_mode.attr,
4013 	NULL
4014 };
4015 
4016 /*
4017  * To avoid cluttering sysfs (and memory) with useless state, only
4018  * create attributes that can be meaningfully displayed.
4019  */
4020 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4021 					 struct attribute *attr, int idx)
4022 {
4023 	struct device *dev = kobj_to_dev(kobj);
4024 	struct regulator_dev *rdev = dev_to_rdev(dev);
4025 	const struct regulator_ops *ops = rdev->desc->ops;
4026 	umode_t mode = attr->mode;
4027 
4028 	/* these three are always present */
4029 	if (attr == &dev_attr_name.attr ||
4030 	    attr == &dev_attr_num_users.attr ||
4031 	    attr == &dev_attr_type.attr)
4032 		return mode;
4033 
4034 	/* some attributes need specific methods to be displayed */
4035 	if (attr == &dev_attr_microvolts.attr) {
4036 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4037 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4038 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4039 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4040 			return mode;
4041 		return 0;
4042 	}
4043 
4044 	if (attr == &dev_attr_microamps.attr)
4045 		return ops->get_current_limit ? mode : 0;
4046 
4047 	if (attr == &dev_attr_opmode.attr)
4048 		return ops->get_mode ? mode : 0;
4049 
4050 	if (attr == &dev_attr_state.attr)
4051 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4052 
4053 	if (attr == &dev_attr_status.attr)
4054 		return ops->get_status ? mode : 0;
4055 
4056 	if (attr == &dev_attr_bypass.attr)
4057 		return ops->get_bypass ? mode : 0;
4058 
4059 	/* some attributes are type-specific */
4060 	if (attr == &dev_attr_requested_microamps.attr)
4061 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4062 
4063 	/* constraints need specific supporting methods */
4064 	if (attr == &dev_attr_min_microvolts.attr ||
4065 	    attr == &dev_attr_max_microvolts.attr)
4066 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4067 
4068 	if (attr == &dev_attr_min_microamps.attr ||
4069 	    attr == &dev_attr_max_microamps.attr)
4070 		return ops->set_current_limit ? mode : 0;
4071 
4072 	if (attr == &dev_attr_suspend_standby_state.attr ||
4073 	    attr == &dev_attr_suspend_mem_state.attr ||
4074 	    attr == &dev_attr_suspend_disk_state.attr)
4075 		return mode;
4076 
4077 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4078 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4079 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4080 		return ops->set_suspend_voltage ? mode : 0;
4081 
4082 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4083 	    attr == &dev_attr_suspend_mem_mode.attr ||
4084 	    attr == &dev_attr_suspend_disk_mode.attr)
4085 		return ops->set_suspend_mode ? mode : 0;
4086 
4087 	return mode;
4088 }
4089 
4090 static const struct attribute_group regulator_dev_group = {
4091 	.attrs = regulator_dev_attrs,
4092 	.is_visible = regulator_attr_is_visible,
4093 };
4094 
4095 static const struct attribute_group *regulator_dev_groups[] = {
4096 	&regulator_dev_group,
4097 	NULL
4098 };
4099 
4100 static void regulator_dev_release(struct device *dev)
4101 {
4102 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4103 
4104 	kfree(rdev->constraints);
4105 	of_node_put(rdev->dev.of_node);
4106 	kfree(rdev);
4107 }
4108 
4109 static void rdev_init_debugfs(struct regulator_dev *rdev)
4110 {
4111 	struct device *parent = rdev->dev.parent;
4112 	const char *rname = rdev_get_name(rdev);
4113 	char name[NAME_MAX];
4114 
4115 	/* Avoid duplicate debugfs directory names */
4116 	if (parent && rname == rdev->desc->name) {
4117 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4118 			 rname);
4119 		rname = name;
4120 	}
4121 
4122 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4123 	if (!rdev->debugfs) {
4124 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4125 		return;
4126 	}
4127 
4128 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4129 			   &rdev->use_count);
4130 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4131 			   &rdev->open_count);
4132 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4133 			   &rdev->bypass_count);
4134 }
4135 
4136 static int regulator_register_resolve_supply(struct device *dev, void *data)
4137 {
4138 	struct regulator_dev *rdev = dev_to_rdev(dev);
4139 
4140 	if (regulator_resolve_supply(rdev))
4141 		rdev_dbg(rdev, "unable to resolve supply\n");
4142 
4143 	return 0;
4144 }
4145 
4146 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4147 {
4148 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4149 	int n_coupled = c_desc->n_coupled;
4150 	struct regulator_dev *c_rdev;
4151 	int i;
4152 
4153 	for (i = 1; i < n_coupled; i++) {
4154 		/* already resolved */
4155 		if (c_desc->coupled_rdevs[i])
4156 			continue;
4157 
4158 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4159 
4160 		if (c_rdev) {
4161 			c_desc->coupled_rdevs[i] = c_rdev;
4162 			c_desc->n_resolved++;
4163 		}
4164 	}
4165 
4166 	if (rdev->coupling_desc.n_resolved < n_coupled)
4167 		return -1;
4168 	else
4169 		return 0;
4170 }
4171 
4172 static int regulator_register_fill_coupling_array(struct device *dev,
4173 						  void *data)
4174 {
4175 	struct regulator_dev *rdev = dev_to_rdev(dev);
4176 
4177 	if (!IS_ENABLED(CONFIG_OF))
4178 		return 0;
4179 
4180 	if (regulator_fill_coupling_array(rdev))
4181 		rdev_dbg(rdev, "unable to resolve coupling\n");
4182 
4183 	return 0;
4184 }
4185 
4186 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4187 {
4188 	int n_phandles;
4189 
4190 	if (!IS_ENABLED(CONFIG_OF))
4191 		n_phandles = 0;
4192 	else
4193 		n_phandles = of_get_n_coupled(rdev);
4194 
4195 	if (n_phandles + 1 > MAX_COUPLED) {
4196 		rdev_err(rdev, "too many regulators coupled\n");
4197 		return -EPERM;
4198 	}
4199 
4200 	/*
4201 	 * Every regulator should always have coupling descriptor filled with
4202 	 * at least pointer to itself.
4203 	 */
4204 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4205 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4206 	rdev->coupling_desc.n_resolved++;
4207 
4208 	/* regulator isn't coupled */
4209 	if (n_phandles == 0)
4210 		return 0;
4211 
4212 	/* regulator, which can't change its voltage, can't be coupled */
4213 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4214 		rdev_err(rdev, "voltage operation not allowed\n");
4215 		return -EPERM;
4216 	}
4217 
4218 	if (rdev->constraints->max_spread <= 0) {
4219 		rdev_err(rdev, "wrong max_spread value\n");
4220 		return -EPERM;
4221 	}
4222 
4223 	if (!of_check_coupling_data(rdev))
4224 		return -EPERM;
4225 
4226 	/*
4227 	 * After everything has been checked, try to fill rdevs array
4228 	 * with pointers to regulators parsed from device tree. If some
4229 	 * regulators are not registered yet, retry in late init call
4230 	 */
4231 	regulator_fill_coupling_array(rdev);
4232 
4233 	return 0;
4234 }
4235 
4236 /**
4237  * regulator_register - register regulator
4238  * @regulator_desc: regulator to register
4239  * @cfg: runtime configuration for regulator
4240  *
4241  * Called by regulator drivers to register a regulator.
4242  * Returns a valid pointer to struct regulator_dev on success
4243  * or an ERR_PTR() on error.
4244  */
4245 struct regulator_dev *
4246 regulator_register(const struct regulator_desc *regulator_desc,
4247 		   const struct regulator_config *cfg)
4248 {
4249 	const struct regulation_constraints *constraints = NULL;
4250 	const struct regulator_init_data *init_data;
4251 	struct regulator_config *config = NULL;
4252 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4253 	struct regulator_dev *rdev;
4254 	struct device *dev;
4255 	int ret, i;
4256 
4257 	if (regulator_desc == NULL || cfg == NULL)
4258 		return ERR_PTR(-EINVAL);
4259 
4260 	dev = cfg->dev;
4261 	WARN_ON(!dev);
4262 
4263 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4264 		return ERR_PTR(-EINVAL);
4265 
4266 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4267 	    regulator_desc->type != REGULATOR_CURRENT)
4268 		return ERR_PTR(-EINVAL);
4269 
4270 	/* Only one of each should be implemented */
4271 	WARN_ON(regulator_desc->ops->get_voltage &&
4272 		regulator_desc->ops->get_voltage_sel);
4273 	WARN_ON(regulator_desc->ops->set_voltage &&
4274 		regulator_desc->ops->set_voltage_sel);
4275 
4276 	/* If we're using selectors we must implement list_voltage. */
4277 	if (regulator_desc->ops->get_voltage_sel &&
4278 	    !regulator_desc->ops->list_voltage) {
4279 		return ERR_PTR(-EINVAL);
4280 	}
4281 	if (regulator_desc->ops->set_voltage_sel &&
4282 	    !regulator_desc->ops->list_voltage) {
4283 		return ERR_PTR(-EINVAL);
4284 	}
4285 
4286 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4287 	if (rdev == NULL)
4288 		return ERR_PTR(-ENOMEM);
4289 
4290 	/*
4291 	 * Duplicate the config so the driver could override it after
4292 	 * parsing init data.
4293 	 */
4294 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4295 	if (config == NULL) {
4296 		kfree(rdev);
4297 		return ERR_PTR(-ENOMEM);
4298 	}
4299 
4300 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4301 					       &rdev->dev.of_node);
4302 	if (!init_data) {
4303 		init_data = config->init_data;
4304 		rdev->dev.of_node = of_node_get(config->of_node);
4305 	}
4306 
4307 	mutex_init(&rdev->mutex);
4308 	rdev->reg_data = config->driver_data;
4309 	rdev->owner = regulator_desc->owner;
4310 	rdev->desc = regulator_desc;
4311 	if (config->regmap)
4312 		rdev->regmap = config->regmap;
4313 	else if (dev_get_regmap(dev, NULL))
4314 		rdev->regmap = dev_get_regmap(dev, NULL);
4315 	else if (dev->parent)
4316 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4317 	INIT_LIST_HEAD(&rdev->consumer_list);
4318 	INIT_LIST_HEAD(&rdev->list);
4319 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4320 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4321 
4322 	/* preform any regulator specific init */
4323 	if (init_data && init_data->regulator_init) {
4324 		ret = init_data->regulator_init(rdev->reg_data);
4325 		if (ret < 0)
4326 			goto clean;
4327 	}
4328 
4329 	if (config->ena_gpiod ||
4330 	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4331 	     gpio_is_valid(config->ena_gpio))) {
4332 		mutex_lock(&regulator_list_mutex);
4333 		ret = regulator_ena_gpio_request(rdev, config);
4334 		mutex_unlock(&regulator_list_mutex);
4335 		if (ret != 0) {
4336 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4337 				 config->ena_gpio, ret);
4338 			goto clean;
4339 		}
4340 	}
4341 
4342 	/* register with sysfs */
4343 	rdev->dev.class = &regulator_class;
4344 	rdev->dev.parent = dev;
4345 	dev_set_name(&rdev->dev, "regulator.%lu",
4346 		    (unsigned long) atomic_inc_return(&regulator_no));
4347 
4348 	/* set regulator constraints */
4349 	if (init_data)
4350 		constraints = &init_data->constraints;
4351 
4352 	if (init_data && init_data->supply_regulator)
4353 		rdev->supply_name = init_data->supply_regulator;
4354 	else if (regulator_desc->supply_name)
4355 		rdev->supply_name = regulator_desc->supply_name;
4356 
4357 	/*
4358 	 * Attempt to resolve the regulator supply, if specified,
4359 	 * but don't return an error if we fail because we will try
4360 	 * to resolve it again later as more regulators are added.
4361 	 */
4362 	if (regulator_resolve_supply(rdev))
4363 		rdev_dbg(rdev, "unable to resolve supply\n");
4364 
4365 	ret = set_machine_constraints(rdev, constraints);
4366 	if (ret < 0)
4367 		goto wash;
4368 
4369 	mutex_lock(&regulator_list_mutex);
4370 	ret = regulator_resolve_coupling(rdev);
4371 	mutex_unlock(&regulator_list_mutex);
4372 
4373 	if (ret != 0)
4374 		goto wash;
4375 
4376 	/* add consumers devices */
4377 	if (init_data) {
4378 		mutex_lock(&regulator_list_mutex);
4379 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4380 			ret = set_consumer_device_supply(rdev,
4381 				init_data->consumer_supplies[i].dev_name,
4382 				init_data->consumer_supplies[i].supply);
4383 			if (ret < 0) {
4384 				mutex_unlock(&regulator_list_mutex);
4385 				dev_err(dev, "Failed to set supply %s\n",
4386 					init_data->consumer_supplies[i].supply);
4387 				goto unset_supplies;
4388 			}
4389 		}
4390 		mutex_unlock(&regulator_list_mutex);
4391 	}
4392 
4393 	if (!rdev->desc->ops->get_voltage &&
4394 	    !rdev->desc->ops->list_voltage &&
4395 	    !rdev->desc->fixed_uV)
4396 		rdev->is_switch = true;
4397 
4398 	ret = device_register(&rdev->dev);
4399 	if (ret != 0) {
4400 		put_device(&rdev->dev);
4401 		goto unset_supplies;
4402 	}
4403 
4404 	dev_set_drvdata(&rdev->dev, rdev);
4405 	rdev_init_debugfs(rdev);
4406 
4407 	/* try to resolve regulators supply since a new one was registered */
4408 	class_for_each_device(&regulator_class, NULL, NULL,
4409 			      regulator_register_resolve_supply);
4410 	kfree(config);
4411 	return rdev;
4412 
4413 unset_supplies:
4414 	mutex_lock(&regulator_list_mutex);
4415 	unset_regulator_supplies(rdev);
4416 	mutex_unlock(&regulator_list_mutex);
4417 wash:
4418 	kfree(rdev->constraints);
4419 	mutex_lock(&regulator_list_mutex);
4420 	regulator_ena_gpio_free(rdev);
4421 	mutex_unlock(&regulator_list_mutex);
4422 clean:
4423 	kfree(rdev);
4424 	kfree(config);
4425 	return ERR_PTR(ret);
4426 }
4427 EXPORT_SYMBOL_GPL(regulator_register);
4428 
4429 /**
4430  * regulator_unregister - unregister regulator
4431  * @rdev: regulator to unregister
4432  *
4433  * Called by regulator drivers to unregister a regulator.
4434  */
4435 void regulator_unregister(struct regulator_dev *rdev)
4436 {
4437 	if (rdev == NULL)
4438 		return;
4439 
4440 	if (rdev->supply) {
4441 		while (rdev->use_count--)
4442 			regulator_disable(rdev->supply);
4443 		regulator_put(rdev->supply);
4444 	}
4445 	mutex_lock(&regulator_list_mutex);
4446 	debugfs_remove_recursive(rdev->debugfs);
4447 	flush_work(&rdev->disable_work.work);
4448 	WARN_ON(rdev->open_count);
4449 	unset_regulator_supplies(rdev);
4450 	list_del(&rdev->list);
4451 	regulator_ena_gpio_free(rdev);
4452 	mutex_unlock(&regulator_list_mutex);
4453 	device_unregister(&rdev->dev);
4454 }
4455 EXPORT_SYMBOL_GPL(regulator_unregister);
4456 
4457 #ifdef CONFIG_SUSPEND
4458 static int _regulator_suspend(struct device *dev, void *data)
4459 {
4460 	struct regulator_dev *rdev = dev_to_rdev(dev);
4461 	suspend_state_t *state = data;
4462 	int ret;
4463 
4464 	regulator_lock(rdev);
4465 	ret = suspend_set_state(rdev, *state);
4466 	regulator_unlock(rdev);
4467 
4468 	return ret;
4469 }
4470 
4471 /**
4472  * regulator_suspend - prepare regulators for system wide suspend
4473  * @state: system suspend state
4474  *
4475  * Configure each regulator with it's suspend operating parameters for state.
4476  */
4477 static int regulator_suspend(struct device *dev)
4478 {
4479 	suspend_state_t state = pm_suspend_target_state;
4480 
4481 	return class_for_each_device(&regulator_class, NULL, &state,
4482 				     _regulator_suspend);
4483 }
4484 
4485 static int _regulator_resume(struct device *dev, void *data)
4486 {
4487 	int ret = 0;
4488 	struct regulator_dev *rdev = dev_to_rdev(dev);
4489 	suspend_state_t *state = data;
4490 	struct regulator_state *rstate;
4491 
4492 	rstate = regulator_get_suspend_state(rdev, *state);
4493 	if (rstate == NULL)
4494 		return 0;
4495 
4496 	regulator_lock(rdev);
4497 
4498 	if (rdev->desc->ops->resume &&
4499 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4500 	     rstate->enabled == DISABLE_IN_SUSPEND))
4501 		ret = rdev->desc->ops->resume(rdev);
4502 
4503 	regulator_unlock(rdev);
4504 
4505 	return ret;
4506 }
4507 
4508 static int regulator_resume(struct device *dev)
4509 {
4510 	suspend_state_t state = pm_suspend_target_state;
4511 
4512 	return class_for_each_device(&regulator_class, NULL, &state,
4513 				     _regulator_resume);
4514 }
4515 
4516 #else /* !CONFIG_SUSPEND */
4517 
4518 #define regulator_suspend	NULL
4519 #define regulator_resume	NULL
4520 
4521 #endif /* !CONFIG_SUSPEND */
4522 
4523 #ifdef CONFIG_PM
4524 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4525 	.suspend	= regulator_suspend,
4526 	.resume		= regulator_resume,
4527 };
4528 #endif
4529 
4530 struct class regulator_class = {
4531 	.name = "regulator",
4532 	.dev_release = regulator_dev_release,
4533 	.dev_groups = regulator_dev_groups,
4534 #ifdef CONFIG_PM
4535 	.pm = &regulator_pm_ops,
4536 #endif
4537 };
4538 /**
4539  * regulator_has_full_constraints - the system has fully specified constraints
4540  *
4541  * Calling this function will cause the regulator API to disable all
4542  * regulators which have a zero use count and don't have an always_on
4543  * constraint in a late_initcall.
4544  *
4545  * The intention is that this will become the default behaviour in a
4546  * future kernel release so users are encouraged to use this facility
4547  * now.
4548  */
4549 void regulator_has_full_constraints(void)
4550 {
4551 	has_full_constraints = 1;
4552 }
4553 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4554 
4555 /**
4556  * rdev_get_drvdata - get rdev regulator driver data
4557  * @rdev: regulator
4558  *
4559  * Get rdev regulator driver private data. This call can be used in the
4560  * regulator driver context.
4561  */
4562 void *rdev_get_drvdata(struct regulator_dev *rdev)
4563 {
4564 	return rdev->reg_data;
4565 }
4566 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4567 
4568 /**
4569  * regulator_get_drvdata - get regulator driver data
4570  * @regulator: regulator
4571  *
4572  * Get regulator driver private data. This call can be used in the consumer
4573  * driver context when non API regulator specific functions need to be called.
4574  */
4575 void *regulator_get_drvdata(struct regulator *regulator)
4576 {
4577 	return regulator->rdev->reg_data;
4578 }
4579 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4580 
4581 /**
4582  * regulator_set_drvdata - set regulator driver data
4583  * @regulator: regulator
4584  * @data: data
4585  */
4586 void regulator_set_drvdata(struct regulator *regulator, void *data)
4587 {
4588 	regulator->rdev->reg_data = data;
4589 }
4590 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4591 
4592 /**
4593  * regulator_get_id - get regulator ID
4594  * @rdev: regulator
4595  */
4596 int rdev_get_id(struct regulator_dev *rdev)
4597 {
4598 	return rdev->desc->id;
4599 }
4600 EXPORT_SYMBOL_GPL(rdev_get_id);
4601 
4602 struct device *rdev_get_dev(struct regulator_dev *rdev)
4603 {
4604 	return &rdev->dev;
4605 }
4606 EXPORT_SYMBOL_GPL(rdev_get_dev);
4607 
4608 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4609 {
4610 	return reg_init_data->driver_data;
4611 }
4612 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4613 
4614 #ifdef CONFIG_DEBUG_FS
4615 static int supply_map_show(struct seq_file *sf, void *data)
4616 {
4617 	struct regulator_map *map;
4618 
4619 	list_for_each_entry(map, &regulator_map_list, list) {
4620 		seq_printf(sf, "%s -> %s.%s\n",
4621 				rdev_get_name(map->regulator), map->dev_name,
4622 				map->supply);
4623 	}
4624 
4625 	return 0;
4626 }
4627 
4628 static int supply_map_open(struct inode *inode, struct file *file)
4629 {
4630 	return single_open(file, supply_map_show, inode->i_private);
4631 }
4632 #endif
4633 
4634 static const struct file_operations supply_map_fops = {
4635 #ifdef CONFIG_DEBUG_FS
4636 	.open = supply_map_open,
4637 	.read = seq_read,
4638 	.llseek = seq_lseek,
4639 	.release = single_release,
4640 #endif
4641 };
4642 
4643 #ifdef CONFIG_DEBUG_FS
4644 struct summary_data {
4645 	struct seq_file *s;
4646 	struct regulator_dev *parent;
4647 	int level;
4648 };
4649 
4650 static void regulator_summary_show_subtree(struct seq_file *s,
4651 					   struct regulator_dev *rdev,
4652 					   int level);
4653 
4654 static int regulator_summary_show_children(struct device *dev, void *data)
4655 {
4656 	struct regulator_dev *rdev = dev_to_rdev(dev);
4657 	struct summary_data *summary_data = data;
4658 
4659 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4660 		regulator_summary_show_subtree(summary_data->s, rdev,
4661 					       summary_data->level + 1);
4662 
4663 	return 0;
4664 }
4665 
4666 static void regulator_summary_show_subtree(struct seq_file *s,
4667 					   struct regulator_dev *rdev,
4668 					   int level)
4669 {
4670 	struct regulation_constraints *c;
4671 	struct regulator *consumer;
4672 	struct summary_data summary_data;
4673 
4674 	if (!rdev)
4675 		return;
4676 
4677 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4678 		   level * 3 + 1, "",
4679 		   30 - level * 3, rdev_get_name(rdev),
4680 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4681 
4682 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4683 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4684 
4685 	c = rdev->constraints;
4686 	if (c) {
4687 		switch (rdev->desc->type) {
4688 		case REGULATOR_VOLTAGE:
4689 			seq_printf(s, "%5dmV %5dmV ",
4690 				   c->min_uV / 1000, c->max_uV / 1000);
4691 			break;
4692 		case REGULATOR_CURRENT:
4693 			seq_printf(s, "%5dmA %5dmA ",
4694 				   c->min_uA / 1000, c->max_uA / 1000);
4695 			break;
4696 		}
4697 	}
4698 
4699 	seq_puts(s, "\n");
4700 
4701 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4702 		if (consumer->dev && consumer->dev->class == &regulator_class)
4703 			continue;
4704 
4705 		seq_printf(s, "%*s%-*s ",
4706 			   (level + 1) * 3 + 1, "",
4707 			   30 - (level + 1) * 3,
4708 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4709 
4710 		switch (rdev->desc->type) {
4711 		case REGULATOR_VOLTAGE:
4712 			seq_printf(s, "%37dmV %5dmV",
4713 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4714 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4715 			break;
4716 		case REGULATOR_CURRENT:
4717 			break;
4718 		}
4719 
4720 		seq_puts(s, "\n");
4721 	}
4722 
4723 	summary_data.s = s;
4724 	summary_data.level = level;
4725 	summary_data.parent = rdev;
4726 
4727 	class_for_each_device(&regulator_class, NULL, &summary_data,
4728 			      regulator_summary_show_children);
4729 }
4730 
4731 static int regulator_summary_show_roots(struct device *dev, void *data)
4732 {
4733 	struct regulator_dev *rdev = dev_to_rdev(dev);
4734 	struct seq_file *s = data;
4735 
4736 	if (!rdev->supply)
4737 		regulator_summary_show_subtree(s, rdev, 0);
4738 
4739 	return 0;
4740 }
4741 
4742 static int regulator_summary_show(struct seq_file *s, void *data)
4743 {
4744 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4745 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4746 
4747 	class_for_each_device(&regulator_class, NULL, s,
4748 			      regulator_summary_show_roots);
4749 
4750 	return 0;
4751 }
4752 
4753 static int regulator_summary_open(struct inode *inode, struct file *file)
4754 {
4755 	return single_open(file, regulator_summary_show, inode->i_private);
4756 }
4757 #endif
4758 
4759 static const struct file_operations regulator_summary_fops = {
4760 #ifdef CONFIG_DEBUG_FS
4761 	.open		= regulator_summary_open,
4762 	.read		= seq_read,
4763 	.llseek		= seq_lseek,
4764 	.release	= single_release,
4765 #endif
4766 };
4767 
4768 static int __init regulator_init(void)
4769 {
4770 	int ret;
4771 
4772 	ret = class_register(&regulator_class);
4773 
4774 	debugfs_root = debugfs_create_dir("regulator", NULL);
4775 	if (!debugfs_root)
4776 		pr_warn("regulator: Failed to create debugfs directory\n");
4777 
4778 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4779 			    &supply_map_fops);
4780 
4781 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4782 			    NULL, &regulator_summary_fops);
4783 
4784 	regulator_dummy_init();
4785 
4786 	return ret;
4787 }
4788 
4789 /* init early to allow our consumers to complete system booting */
4790 core_initcall(regulator_init);
4791 
4792 static int __init regulator_late_cleanup(struct device *dev, void *data)
4793 {
4794 	struct regulator_dev *rdev = dev_to_rdev(dev);
4795 	const struct regulator_ops *ops = rdev->desc->ops;
4796 	struct regulation_constraints *c = rdev->constraints;
4797 	int enabled, ret;
4798 
4799 	if (c && c->always_on)
4800 		return 0;
4801 
4802 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4803 		return 0;
4804 
4805 	regulator_lock(rdev);
4806 
4807 	if (rdev->use_count)
4808 		goto unlock;
4809 
4810 	/* If we can't read the status assume it's on. */
4811 	if (ops->is_enabled)
4812 		enabled = ops->is_enabled(rdev);
4813 	else
4814 		enabled = 1;
4815 
4816 	if (!enabled)
4817 		goto unlock;
4818 
4819 	if (have_full_constraints()) {
4820 		/* We log since this may kill the system if it goes
4821 		 * wrong. */
4822 		rdev_info(rdev, "disabling\n");
4823 		ret = _regulator_do_disable(rdev);
4824 		if (ret != 0)
4825 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4826 	} else {
4827 		/* The intention is that in future we will
4828 		 * assume that full constraints are provided
4829 		 * so warn even if we aren't going to do
4830 		 * anything here.
4831 		 */
4832 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4833 	}
4834 
4835 unlock:
4836 	regulator_unlock(rdev);
4837 
4838 	return 0;
4839 }
4840 
4841 static int __init regulator_init_complete(void)
4842 {
4843 	/*
4844 	 * Since DT doesn't provide an idiomatic mechanism for
4845 	 * enabling full constraints and since it's much more natural
4846 	 * with DT to provide them just assume that a DT enabled
4847 	 * system has full constraints.
4848 	 */
4849 	if (of_have_populated_dt())
4850 		has_full_constraints = true;
4851 
4852 	/*
4853 	 * Regulators may had failed to resolve their input supplies
4854 	 * when were registered, either because the input supply was
4855 	 * not registered yet or because its parent device was not
4856 	 * bound yet. So attempt to resolve the input supplies for
4857 	 * pending regulators before trying to disable unused ones.
4858 	 */
4859 	class_for_each_device(&regulator_class, NULL, NULL,
4860 			      regulator_register_resolve_supply);
4861 
4862 	/* If we have a full configuration then disable any regulators
4863 	 * we have permission to change the status for and which are
4864 	 * not in use or always_on.  This is effectively the default
4865 	 * for DT and ACPI as they have full constraints.
4866 	 */
4867 	class_for_each_device(&regulator_class, NULL, NULL,
4868 			      regulator_late_cleanup);
4869 
4870 	class_for_each_device(&regulator_class, NULL, NULL,
4871 			      regulator_register_fill_coupling_array);
4872 
4873 	return 0;
4874 }
4875 late_initcall_sync(regulator_init_complete);
4876