1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 static struct class regulator_class; 62 63 /* 64 * struct regulator_map 65 * 66 * Used to provide symbolic supply names to devices. 67 */ 68 struct regulator_map { 69 struct list_head list; 70 const char *dev_name; /* The dev_name() for the consumer */ 71 const char *supply; 72 struct regulator_dev *regulator; 73 }; 74 75 /* 76 * struct regulator_enable_gpio 77 * 78 * Management for shared enable GPIO pin 79 */ 80 struct regulator_enable_gpio { 81 struct list_head list; 82 struct gpio_desc *gpiod; 83 u32 enable_count; /* a number of enabled shared GPIO */ 84 u32 request_count; /* a number of requested shared GPIO */ 85 unsigned int ena_gpio_invert:1; 86 }; 87 88 /* 89 * struct regulator_supply_alias 90 * 91 * Used to map lookups for a supply onto an alternative device. 92 */ 93 struct regulator_supply_alias { 94 struct list_head list; 95 struct device *src_dev; 96 const char *src_supply; 97 struct device *alias_dev; 98 const char *alias_supply; 99 }; 100 101 static int _regulator_is_enabled(struct regulator_dev *rdev); 102 static int _regulator_disable(struct regulator_dev *rdev); 103 static int _regulator_get_voltage(struct regulator_dev *rdev); 104 static int _regulator_get_current_limit(struct regulator_dev *rdev); 105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 106 static int _notifier_call_chain(struct regulator_dev *rdev, 107 unsigned long event, void *data); 108 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 109 int min_uV, int max_uV); 110 static struct regulator *create_regulator(struct regulator_dev *rdev, 111 struct device *dev, 112 const char *supply_name); 113 static void _regulator_put(struct regulator *regulator); 114 115 static struct regulator_dev *dev_to_rdev(struct device *dev) 116 { 117 return container_of(dev, struct regulator_dev, dev); 118 } 119 120 static const char *rdev_get_name(struct regulator_dev *rdev) 121 { 122 if (rdev->constraints && rdev->constraints->name) 123 return rdev->constraints->name; 124 else if (rdev->desc->name) 125 return rdev->desc->name; 126 else 127 return ""; 128 } 129 130 static bool have_full_constraints(void) 131 { 132 return has_full_constraints || of_have_populated_dt(); 133 } 134 135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 136 { 137 if (!rdev->constraints) { 138 rdev_err(rdev, "no constraints\n"); 139 return false; 140 } 141 142 if (rdev->constraints->valid_ops_mask & ops) 143 return true; 144 145 return false; 146 } 147 148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 149 { 150 if (rdev && rdev->supply) 151 return rdev->supply->rdev; 152 153 return NULL; 154 } 155 156 /** 157 * regulator_lock_supply - lock a regulator and its supplies 158 * @rdev: regulator source 159 */ 160 static void regulator_lock_supply(struct regulator_dev *rdev) 161 { 162 int i; 163 164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 165 mutex_lock_nested(&rdev->mutex, i); 166 } 167 168 /** 169 * regulator_unlock_supply - unlock a regulator and its supplies 170 * @rdev: regulator source 171 */ 172 static void regulator_unlock_supply(struct regulator_dev *rdev) 173 { 174 struct regulator *supply; 175 176 while (1) { 177 mutex_unlock(&rdev->mutex); 178 supply = rdev->supply; 179 180 if (!rdev->supply) 181 return; 182 183 rdev = supply->rdev; 184 } 185 } 186 187 /** 188 * of_get_regulator - get a regulator device node based on supply name 189 * @dev: Device pointer for the consumer (of regulator) device 190 * @supply: regulator supply name 191 * 192 * Extract the regulator device node corresponding to the supply name. 193 * returns the device node corresponding to the regulator if found, else 194 * returns NULL. 195 */ 196 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 197 { 198 struct device_node *regnode = NULL; 199 char prop_name[32]; /* 32 is max size of property name */ 200 201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 202 203 snprintf(prop_name, 32, "%s-supply", supply); 204 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 205 206 if (!regnode) { 207 dev_dbg(dev, "Looking up %s property in node %s failed\n", 208 prop_name, dev->of_node->full_name); 209 return NULL; 210 } 211 return regnode; 212 } 213 214 /* Platform voltage constraint check */ 215 static int regulator_check_voltage(struct regulator_dev *rdev, 216 int *min_uV, int *max_uV) 217 { 218 BUG_ON(*min_uV > *max_uV); 219 220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 221 rdev_err(rdev, "voltage operation not allowed\n"); 222 return -EPERM; 223 } 224 225 if (*max_uV > rdev->constraints->max_uV) 226 *max_uV = rdev->constraints->max_uV; 227 if (*min_uV < rdev->constraints->min_uV) 228 *min_uV = rdev->constraints->min_uV; 229 230 if (*min_uV > *max_uV) { 231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 232 *min_uV, *max_uV); 233 return -EINVAL; 234 } 235 236 return 0; 237 } 238 239 /* Make sure we select a voltage that suits the needs of all 240 * regulator consumers 241 */ 242 static int regulator_check_consumers(struct regulator_dev *rdev, 243 int *min_uV, int *max_uV) 244 { 245 struct regulator *regulator; 246 247 list_for_each_entry(regulator, &rdev->consumer_list, list) { 248 /* 249 * Assume consumers that didn't say anything are OK 250 * with anything in the constraint range. 251 */ 252 if (!regulator->min_uV && !regulator->max_uV) 253 continue; 254 255 if (*max_uV > regulator->max_uV) 256 *max_uV = regulator->max_uV; 257 if (*min_uV < regulator->min_uV) 258 *min_uV = regulator->min_uV; 259 } 260 261 if (*min_uV > *max_uV) { 262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 263 *min_uV, *max_uV); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 /* current constraint check */ 271 static int regulator_check_current_limit(struct regulator_dev *rdev, 272 int *min_uA, int *max_uA) 273 { 274 BUG_ON(*min_uA > *max_uA); 275 276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 277 rdev_err(rdev, "current operation not allowed\n"); 278 return -EPERM; 279 } 280 281 if (*max_uA > rdev->constraints->max_uA) 282 *max_uA = rdev->constraints->max_uA; 283 if (*min_uA < rdev->constraints->min_uA) 284 *min_uA = rdev->constraints->min_uA; 285 286 if (*min_uA > *max_uA) { 287 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 288 *min_uA, *max_uA); 289 return -EINVAL; 290 } 291 292 return 0; 293 } 294 295 /* operating mode constraint check */ 296 static int regulator_mode_constrain(struct regulator_dev *rdev, 297 unsigned int *mode) 298 { 299 switch (*mode) { 300 case REGULATOR_MODE_FAST: 301 case REGULATOR_MODE_NORMAL: 302 case REGULATOR_MODE_IDLE: 303 case REGULATOR_MODE_STANDBY: 304 break; 305 default: 306 rdev_err(rdev, "invalid mode %x specified\n", *mode); 307 return -EINVAL; 308 } 309 310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 311 rdev_err(rdev, "mode operation not allowed\n"); 312 return -EPERM; 313 } 314 315 /* The modes are bitmasks, the most power hungry modes having 316 * the lowest values. If the requested mode isn't supported 317 * try higher modes. */ 318 while (*mode) { 319 if (rdev->constraints->valid_modes_mask & *mode) 320 return 0; 321 *mode /= 2; 322 } 323 324 return -EINVAL; 325 } 326 327 static ssize_t regulator_uV_show(struct device *dev, 328 struct device_attribute *attr, char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 ssize_t ret; 332 333 mutex_lock(&rdev->mutex); 334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 335 mutex_unlock(&rdev->mutex); 336 337 return ret; 338 } 339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 340 341 static ssize_t regulator_uA_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 347 } 348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 349 350 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 351 char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 356 } 357 static DEVICE_ATTR_RO(name); 358 359 static ssize_t regulator_print_opmode(char *buf, int mode) 360 { 361 switch (mode) { 362 case REGULATOR_MODE_FAST: 363 return sprintf(buf, "fast\n"); 364 case REGULATOR_MODE_NORMAL: 365 return sprintf(buf, "normal\n"); 366 case REGULATOR_MODE_IDLE: 367 return sprintf(buf, "idle\n"); 368 case REGULATOR_MODE_STANDBY: 369 return sprintf(buf, "standby\n"); 370 } 371 return sprintf(buf, "unknown\n"); 372 } 373 374 static ssize_t regulator_opmode_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct regulator_dev *rdev = dev_get_drvdata(dev); 378 379 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 380 } 381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 382 383 static ssize_t regulator_print_state(char *buf, int state) 384 { 385 if (state > 0) 386 return sprintf(buf, "enabled\n"); 387 else if (state == 0) 388 return sprintf(buf, "disabled\n"); 389 else 390 return sprintf(buf, "unknown\n"); 391 } 392 393 static ssize_t regulator_state_show(struct device *dev, 394 struct device_attribute *attr, char *buf) 395 { 396 struct regulator_dev *rdev = dev_get_drvdata(dev); 397 ssize_t ret; 398 399 mutex_lock(&rdev->mutex); 400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 401 mutex_unlock(&rdev->mutex); 402 403 return ret; 404 } 405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 406 407 static ssize_t regulator_status_show(struct device *dev, 408 struct device_attribute *attr, char *buf) 409 { 410 struct regulator_dev *rdev = dev_get_drvdata(dev); 411 int status; 412 char *label; 413 414 status = rdev->desc->ops->get_status(rdev); 415 if (status < 0) 416 return status; 417 418 switch (status) { 419 case REGULATOR_STATUS_OFF: 420 label = "off"; 421 break; 422 case REGULATOR_STATUS_ON: 423 label = "on"; 424 break; 425 case REGULATOR_STATUS_ERROR: 426 label = "error"; 427 break; 428 case REGULATOR_STATUS_FAST: 429 label = "fast"; 430 break; 431 case REGULATOR_STATUS_NORMAL: 432 label = "normal"; 433 break; 434 case REGULATOR_STATUS_IDLE: 435 label = "idle"; 436 break; 437 case REGULATOR_STATUS_STANDBY: 438 label = "standby"; 439 break; 440 case REGULATOR_STATUS_BYPASS: 441 label = "bypass"; 442 break; 443 case REGULATOR_STATUS_UNDEFINED: 444 label = "undefined"; 445 break; 446 default: 447 return -ERANGE; 448 } 449 450 return sprintf(buf, "%s\n", label); 451 } 452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 453 454 static ssize_t regulator_min_uA_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 463 } 464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 465 466 static ssize_t regulator_max_uA_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 475 } 476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 477 478 static ssize_t regulator_min_uV_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 483 if (!rdev->constraints) 484 return sprintf(buf, "constraint not defined\n"); 485 486 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 487 } 488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 489 490 static ssize_t regulator_max_uV_show(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct regulator_dev *rdev = dev_get_drvdata(dev); 494 495 if (!rdev->constraints) 496 return sprintf(buf, "constraint not defined\n"); 497 498 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 499 } 500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 501 502 static ssize_t regulator_total_uA_show(struct device *dev, 503 struct device_attribute *attr, char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 struct regulator *regulator; 507 int uA = 0; 508 509 mutex_lock(&rdev->mutex); 510 list_for_each_entry(regulator, &rdev->consumer_list, list) 511 uA += regulator->uA_load; 512 mutex_unlock(&rdev->mutex); 513 return sprintf(buf, "%d\n", uA); 514 } 515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 516 517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 518 char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 return sprintf(buf, "%d\n", rdev->use_count); 522 } 523 static DEVICE_ATTR_RO(num_users); 524 525 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 526 char *buf) 527 { 528 struct regulator_dev *rdev = dev_get_drvdata(dev); 529 530 switch (rdev->desc->type) { 531 case REGULATOR_VOLTAGE: 532 return sprintf(buf, "voltage\n"); 533 case REGULATOR_CURRENT: 534 return sprintf(buf, "current\n"); 535 } 536 return sprintf(buf, "unknown\n"); 537 } 538 static DEVICE_ATTR_RO(type); 539 540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 541 struct device_attribute *attr, char *buf) 542 { 543 struct regulator_dev *rdev = dev_get_drvdata(dev); 544 545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 546 } 547 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 548 regulator_suspend_mem_uV_show, NULL); 549 550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 struct regulator_dev *rdev = dev_get_drvdata(dev); 554 555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 556 } 557 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 558 regulator_suspend_disk_uV_show, NULL); 559 560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 566 } 567 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 568 regulator_suspend_standby_uV_show, NULL); 569 570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return regulator_print_opmode(buf, 576 rdev->constraints->state_mem.mode); 577 } 578 static DEVICE_ATTR(suspend_mem_mode, 0444, 579 regulator_suspend_mem_mode_show, NULL); 580 581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct regulator_dev *rdev = dev_get_drvdata(dev); 585 586 return regulator_print_opmode(buf, 587 rdev->constraints->state_disk.mode); 588 } 589 static DEVICE_ATTR(suspend_disk_mode, 0444, 590 regulator_suspend_disk_mode_show, NULL); 591 592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return regulator_print_opmode(buf, 598 rdev->constraints->state_standby.mode); 599 } 600 static DEVICE_ATTR(suspend_standby_mode, 0444, 601 regulator_suspend_standby_mode_show, NULL); 602 603 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605 { 606 struct regulator_dev *rdev = dev_get_drvdata(dev); 607 608 return regulator_print_state(buf, 609 rdev->constraints->state_mem.enabled); 610 } 611 static DEVICE_ATTR(suspend_mem_state, 0444, 612 regulator_suspend_mem_state_show, NULL); 613 614 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 615 struct device_attribute *attr, char *buf) 616 { 617 struct regulator_dev *rdev = dev_get_drvdata(dev); 618 619 return regulator_print_state(buf, 620 rdev->constraints->state_disk.enabled); 621 } 622 static DEVICE_ATTR(suspend_disk_state, 0444, 623 regulator_suspend_disk_state_show, NULL); 624 625 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 626 struct device_attribute *attr, char *buf) 627 { 628 struct regulator_dev *rdev = dev_get_drvdata(dev); 629 630 return regulator_print_state(buf, 631 rdev->constraints->state_standby.enabled); 632 } 633 static DEVICE_ATTR(suspend_standby_state, 0444, 634 regulator_suspend_standby_state_show, NULL); 635 636 static ssize_t regulator_bypass_show(struct device *dev, 637 struct device_attribute *attr, char *buf) 638 { 639 struct regulator_dev *rdev = dev_get_drvdata(dev); 640 const char *report; 641 bool bypass; 642 int ret; 643 644 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 645 646 if (ret != 0) 647 report = "unknown"; 648 else if (bypass) 649 report = "enabled"; 650 else 651 report = "disabled"; 652 653 return sprintf(buf, "%s\n", report); 654 } 655 static DEVICE_ATTR(bypass, 0444, 656 regulator_bypass_show, NULL); 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static int drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 lockdep_assert_held_once(&rdev->mutex); 667 668 /* 669 * first check to see if we can set modes at all, otherwise just 670 * tell the consumer everything is OK. 671 */ 672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 673 return 0; 674 675 if (!rdev->desc->ops->get_optimum_mode && 676 !rdev->desc->ops->set_load) 677 return 0; 678 679 if (!rdev->desc->ops->set_mode && 680 !rdev->desc->ops->set_load) 681 return -EINVAL; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 current_uA += rdev->constraints->system_load; 688 689 if (rdev->desc->ops->set_load) { 690 /* set the optimum mode for our new total regulator load */ 691 err = rdev->desc->ops->set_load(rdev, current_uA); 692 if (err < 0) 693 rdev_err(rdev, "failed to set load %d\n", current_uA); 694 } else { 695 /* get output voltage */ 696 output_uV = _regulator_get_voltage(rdev); 697 if (output_uV <= 0) { 698 rdev_err(rdev, "invalid output voltage found\n"); 699 return -EINVAL; 700 } 701 702 /* get input voltage */ 703 input_uV = 0; 704 if (rdev->supply) 705 input_uV = regulator_get_voltage(rdev->supply); 706 if (input_uV <= 0) 707 input_uV = rdev->constraints->input_uV; 708 if (input_uV <= 0) { 709 rdev_err(rdev, "invalid input voltage found\n"); 710 return -EINVAL; 711 } 712 713 /* now get the optimum mode for our new total regulator load */ 714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 715 output_uV, current_uA); 716 717 /* check the new mode is allowed */ 718 err = regulator_mode_constrain(rdev, &mode); 719 if (err < 0) { 720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 721 current_uA, input_uV, output_uV); 722 return err; 723 } 724 725 err = rdev->desc->ops->set_mode(rdev, mode); 726 if (err < 0) 727 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 728 } 729 730 return err; 731 } 732 733 static int suspend_set_state(struct regulator_dev *rdev, 734 struct regulator_state *rstate) 735 { 736 int ret = 0; 737 738 /* If we have no suspend mode configration don't set anything; 739 * only warn if the driver implements set_suspend_voltage or 740 * set_suspend_mode callback. 741 */ 742 if (!rstate->enabled && !rstate->disabled) { 743 if (rdev->desc->ops->set_suspend_voltage || 744 rdev->desc->ops->set_suspend_mode) 745 rdev_warn(rdev, "No configuration\n"); 746 return 0; 747 } 748 749 if (rstate->enabled && rstate->disabled) { 750 rdev_err(rdev, "invalid configuration\n"); 751 return -EINVAL; 752 } 753 754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 755 ret = rdev->desc->ops->set_suspend_enable(rdev); 756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 757 ret = rdev->desc->ops->set_suspend_disable(rdev); 758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 759 ret = 0; 760 761 if (ret < 0) { 762 rdev_err(rdev, "failed to enabled/disable\n"); 763 return ret; 764 } 765 766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 768 if (ret < 0) { 769 rdev_err(rdev, "failed to set voltage\n"); 770 return ret; 771 } 772 } 773 774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 776 if (ret < 0) { 777 rdev_err(rdev, "failed to set mode\n"); 778 return ret; 779 } 780 } 781 return ret; 782 } 783 784 /* locks held by caller */ 785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 786 { 787 if (!rdev->constraints) 788 return -EINVAL; 789 790 switch (state) { 791 case PM_SUSPEND_STANDBY: 792 return suspend_set_state(rdev, 793 &rdev->constraints->state_standby); 794 case PM_SUSPEND_MEM: 795 return suspend_set_state(rdev, 796 &rdev->constraints->state_mem); 797 case PM_SUSPEND_MAX: 798 return suspend_set_state(rdev, 799 &rdev->constraints->state_disk); 800 default: 801 return -EINVAL; 802 } 803 } 804 805 static void print_constraints(struct regulator_dev *rdev) 806 { 807 struct regulation_constraints *constraints = rdev->constraints; 808 char buf[160] = ""; 809 size_t len = sizeof(buf) - 1; 810 int count = 0; 811 int ret; 812 813 if (constraints->min_uV && constraints->max_uV) { 814 if (constraints->min_uV == constraints->max_uV) 815 count += scnprintf(buf + count, len - count, "%d mV ", 816 constraints->min_uV / 1000); 817 else 818 count += scnprintf(buf + count, len - count, 819 "%d <--> %d mV ", 820 constraints->min_uV / 1000, 821 constraints->max_uV / 1000); 822 } 823 824 if (!constraints->min_uV || 825 constraints->min_uV != constraints->max_uV) { 826 ret = _regulator_get_voltage(rdev); 827 if (ret > 0) 828 count += scnprintf(buf + count, len - count, 829 "at %d mV ", ret / 1000); 830 } 831 832 if (constraints->uV_offset) 833 count += scnprintf(buf + count, len - count, "%dmV offset ", 834 constraints->uV_offset / 1000); 835 836 if (constraints->min_uA && constraints->max_uA) { 837 if (constraints->min_uA == constraints->max_uA) 838 count += scnprintf(buf + count, len - count, "%d mA ", 839 constraints->min_uA / 1000); 840 else 841 count += scnprintf(buf + count, len - count, 842 "%d <--> %d mA ", 843 constraints->min_uA / 1000, 844 constraints->max_uA / 1000); 845 } 846 847 if (!constraints->min_uA || 848 constraints->min_uA != constraints->max_uA) { 849 ret = _regulator_get_current_limit(rdev); 850 if (ret > 0) 851 count += scnprintf(buf + count, len - count, 852 "at %d mA ", ret / 1000); 853 } 854 855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 856 count += scnprintf(buf + count, len - count, "fast "); 857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 858 count += scnprintf(buf + count, len - count, "normal "); 859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 860 count += scnprintf(buf + count, len - count, "idle "); 861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 862 count += scnprintf(buf + count, len - count, "standby"); 863 864 if (!count) 865 scnprintf(buf, len, "no parameters"); 866 867 rdev_dbg(rdev, "%s\n", buf); 868 869 if ((constraints->min_uV != constraints->max_uV) && 870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 871 rdev_warn(rdev, 872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 873 } 874 875 static int machine_constraints_voltage(struct regulator_dev *rdev, 876 struct regulation_constraints *constraints) 877 { 878 const struct regulator_ops *ops = rdev->desc->ops; 879 int ret; 880 881 /* do we need to apply the constraint voltage */ 882 if (rdev->constraints->apply_uV && 883 rdev->constraints->min_uV && rdev->constraints->max_uV) { 884 int target_min, target_max; 885 int current_uV = _regulator_get_voltage(rdev); 886 if (current_uV < 0) { 887 rdev_err(rdev, 888 "failed to get the current voltage(%d)\n", 889 current_uV); 890 return current_uV; 891 } 892 893 /* 894 * If we're below the minimum voltage move up to the 895 * minimum voltage, if we're above the maximum voltage 896 * then move down to the maximum. 897 */ 898 target_min = current_uV; 899 target_max = current_uV; 900 901 if (current_uV < rdev->constraints->min_uV) { 902 target_min = rdev->constraints->min_uV; 903 target_max = rdev->constraints->min_uV; 904 } 905 906 if (current_uV > rdev->constraints->max_uV) { 907 target_min = rdev->constraints->max_uV; 908 target_max = rdev->constraints->max_uV; 909 } 910 911 if (target_min != current_uV || target_max != current_uV) { 912 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 913 current_uV, target_min, target_max); 914 ret = _regulator_do_set_voltage( 915 rdev, target_min, target_max); 916 if (ret < 0) { 917 rdev_err(rdev, 918 "failed to apply %d-%duV constraint(%d)\n", 919 target_min, target_max, ret); 920 return ret; 921 } 922 } 923 } 924 925 /* constrain machine-level voltage specs to fit 926 * the actual range supported by this regulator. 927 */ 928 if (ops->list_voltage && rdev->desc->n_voltages) { 929 int count = rdev->desc->n_voltages; 930 int i; 931 int min_uV = INT_MAX; 932 int max_uV = INT_MIN; 933 int cmin = constraints->min_uV; 934 int cmax = constraints->max_uV; 935 936 /* it's safe to autoconfigure fixed-voltage supplies 937 and the constraints are used by list_voltage. */ 938 if (count == 1 && !cmin) { 939 cmin = 1; 940 cmax = INT_MAX; 941 constraints->min_uV = cmin; 942 constraints->max_uV = cmax; 943 } 944 945 /* voltage constraints are optional */ 946 if ((cmin == 0) && (cmax == 0)) 947 return 0; 948 949 /* else require explicit machine-level constraints */ 950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 951 rdev_err(rdev, "invalid voltage constraints\n"); 952 return -EINVAL; 953 } 954 955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 956 for (i = 0; i < count; i++) { 957 int value; 958 959 value = ops->list_voltage(rdev, i); 960 if (value <= 0) 961 continue; 962 963 /* maybe adjust [min_uV..max_uV] */ 964 if (value >= cmin && value < min_uV) 965 min_uV = value; 966 if (value <= cmax && value > max_uV) 967 max_uV = value; 968 } 969 970 /* final: [min_uV..max_uV] valid iff constraints valid */ 971 if (max_uV < min_uV) { 972 rdev_err(rdev, 973 "unsupportable voltage constraints %u-%uuV\n", 974 min_uV, max_uV); 975 return -EINVAL; 976 } 977 978 /* use regulator's subset of machine constraints */ 979 if (constraints->min_uV < min_uV) { 980 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 981 constraints->min_uV, min_uV); 982 constraints->min_uV = min_uV; 983 } 984 if (constraints->max_uV > max_uV) { 985 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 986 constraints->max_uV, max_uV); 987 constraints->max_uV = max_uV; 988 } 989 } 990 991 return 0; 992 } 993 994 static int machine_constraints_current(struct regulator_dev *rdev, 995 struct regulation_constraints *constraints) 996 { 997 const struct regulator_ops *ops = rdev->desc->ops; 998 int ret; 999 1000 if (!constraints->min_uA && !constraints->max_uA) 1001 return 0; 1002 1003 if (constraints->min_uA > constraints->max_uA) { 1004 rdev_err(rdev, "Invalid current constraints\n"); 1005 return -EINVAL; 1006 } 1007 1008 if (!ops->set_current_limit || !ops->get_current_limit) { 1009 rdev_warn(rdev, "Operation of current configuration missing\n"); 1010 return 0; 1011 } 1012 1013 /* Set regulator current in constraints range */ 1014 ret = ops->set_current_limit(rdev, constraints->min_uA, 1015 constraints->max_uA); 1016 if (ret < 0) { 1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1018 return ret; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int _regulator_do_enable(struct regulator_dev *rdev); 1025 1026 /** 1027 * set_machine_constraints - sets regulator constraints 1028 * @rdev: regulator source 1029 * @constraints: constraints to apply 1030 * 1031 * Allows platform initialisation code to define and constrain 1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1033 * Constraints *must* be set by platform code in order for some 1034 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1035 * set_mode. 1036 */ 1037 static int set_machine_constraints(struct regulator_dev *rdev, 1038 const struct regulation_constraints *constraints) 1039 { 1040 int ret = 0; 1041 const struct regulator_ops *ops = rdev->desc->ops; 1042 1043 if (constraints) 1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1045 GFP_KERNEL); 1046 else 1047 rdev->constraints = kzalloc(sizeof(*constraints), 1048 GFP_KERNEL); 1049 if (!rdev->constraints) 1050 return -ENOMEM; 1051 1052 ret = machine_constraints_voltage(rdev, rdev->constraints); 1053 if (ret != 0) 1054 return ret; 1055 1056 ret = machine_constraints_current(rdev, rdev->constraints); 1057 if (ret != 0) 1058 return ret; 1059 1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1061 ret = ops->set_input_current_limit(rdev, 1062 rdev->constraints->ilim_uA); 1063 if (ret < 0) { 1064 rdev_err(rdev, "failed to set input limit\n"); 1065 return ret; 1066 } 1067 } 1068 1069 /* do we need to setup our suspend state */ 1070 if (rdev->constraints->initial_state) { 1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set suspend state\n"); 1074 return ret; 1075 } 1076 } 1077 1078 if (rdev->constraints->initial_mode) { 1079 if (!ops->set_mode) { 1080 rdev_err(rdev, "no set_mode operation\n"); 1081 return -EINVAL; 1082 } 1083 1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1085 if (ret < 0) { 1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1087 return ret; 1088 } 1089 } 1090 1091 /* If the constraints say the regulator should be on at this point 1092 * and we have control then make sure it is enabled. 1093 */ 1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1095 ret = _regulator_do_enable(rdev); 1096 if (ret < 0 && ret != -EINVAL) { 1097 rdev_err(rdev, "failed to enable\n"); 1098 return ret; 1099 } 1100 } 1101 1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1103 && ops->set_ramp_delay) { 1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1105 if (ret < 0) { 1106 rdev_err(rdev, "failed to set ramp_delay\n"); 1107 return ret; 1108 } 1109 } 1110 1111 if (rdev->constraints->pull_down && ops->set_pull_down) { 1112 ret = ops->set_pull_down(rdev); 1113 if (ret < 0) { 1114 rdev_err(rdev, "failed to set pull down\n"); 1115 return ret; 1116 } 1117 } 1118 1119 if (rdev->constraints->soft_start && ops->set_soft_start) { 1120 ret = ops->set_soft_start(rdev); 1121 if (ret < 0) { 1122 rdev_err(rdev, "failed to set soft start\n"); 1123 return ret; 1124 } 1125 } 1126 1127 if (rdev->constraints->over_current_protection 1128 && ops->set_over_current_protection) { 1129 ret = ops->set_over_current_protection(rdev); 1130 if (ret < 0) { 1131 rdev_err(rdev, "failed to set over current protection\n"); 1132 return ret; 1133 } 1134 } 1135 1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1137 bool ad_state = (rdev->constraints->active_discharge == 1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1139 1140 ret = ops->set_active_discharge(rdev, ad_state); 1141 if (ret < 0) { 1142 rdev_err(rdev, "failed to set active discharge\n"); 1143 return ret; 1144 } 1145 } 1146 1147 print_constraints(rdev); 1148 return 0; 1149 } 1150 1151 /** 1152 * set_supply - set regulator supply regulator 1153 * @rdev: regulator name 1154 * @supply_rdev: supply regulator name 1155 * 1156 * Called by platform initialisation code to set the supply regulator for this 1157 * regulator. This ensures that a regulators supply will also be enabled by the 1158 * core if it's child is enabled. 1159 */ 1160 static int set_supply(struct regulator_dev *rdev, 1161 struct regulator_dev *supply_rdev) 1162 { 1163 int err; 1164 1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1166 1167 if (!try_module_get(supply_rdev->owner)) 1168 return -ENODEV; 1169 1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1171 if (rdev->supply == NULL) { 1172 err = -ENOMEM; 1173 return err; 1174 } 1175 supply_rdev->open_count++; 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1182 * @rdev: regulator source 1183 * @consumer_dev_name: dev_name() string for device supply applies to 1184 * @supply: symbolic name for supply 1185 * 1186 * Allows platform initialisation code to map physical regulator 1187 * sources to symbolic names for supplies for use by devices. Devices 1188 * should use these symbolic names to request regulators, avoiding the 1189 * need to provide board-specific regulator names as platform data. 1190 */ 1191 static int set_consumer_device_supply(struct regulator_dev *rdev, 1192 const char *consumer_dev_name, 1193 const char *supply) 1194 { 1195 struct regulator_map *node; 1196 int has_dev; 1197 1198 if (supply == NULL) 1199 return -EINVAL; 1200 1201 if (consumer_dev_name != NULL) 1202 has_dev = 1; 1203 else 1204 has_dev = 0; 1205 1206 list_for_each_entry(node, ®ulator_map_list, list) { 1207 if (node->dev_name && consumer_dev_name) { 1208 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1209 continue; 1210 } else if (node->dev_name || consumer_dev_name) { 1211 continue; 1212 } 1213 1214 if (strcmp(node->supply, supply) != 0) 1215 continue; 1216 1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1218 consumer_dev_name, 1219 dev_name(&node->regulator->dev), 1220 node->regulator->desc->name, 1221 supply, 1222 dev_name(&rdev->dev), rdev_get_name(rdev)); 1223 return -EBUSY; 1224 } 1225 1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1227 if (node == NULL) 1228 return -ENOMEM; 1229 1230 node->regulator = rdev; 1231 node->supply = supply; 1232 1233 if (has_dev) { 1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1235 if (node->dev_name == NULL) { 1236 kfree(node); 1237 return -ENOMEM; 1238 } 1239 } 1240 1241 list_add(&node->list, ®ulator_map_list); 1242 return 0; 1243 } 1244 1245 static void unset_regulator_supplies(struct regulator_dev *rdev) 1246 { 1247 struct regulator_map *node, *n; 1248 1249 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1250 if (rdev == node->regulator) { 1251 list_del(&node->list); 1252 kfree(node->dev_name); 1253 kfree(node); 1254 } 1255 } 1256 } 1257 1258 #ifdef CONFIG_DEBUG_FS 1259 static ssize_t constraint_flags_read_file(struct file *file, 1260 char __user *user_buf, 1261 size_t count, loff_t *ppos) 1262 { 1263 const struct regulator *regulator = file->private_data; 1264 const struct regulation_constraints *c = regulator->rdev->constraints; 1265 char *buf; 1266 ssize_t ret; 1267 1268 if (!c) 1269 return 0; 1270 1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1272 if (!buf) 1273 return -ENOMEM; 1274 1275 ret = snprintf(buf, PAGE_SIZE, 1276 "always_on: %u\n" 1277 "boot_on: %u\n" 1278 "apply_uV: %u\n" 1279 "ramp_disable: %u\n" 1280 "soft_start: %u\n" 1281 "pull_down: %u\n" 1282 "over_current_protection: %u\n", 1283 c->always_on, 1284 c->boot_on, 1285 c->apply_uV, 1286 c->ramp_disable, 1287 c->soft_start, 1288 c->pull_down, 1289 c->over_current_protection); 1290 1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1292 kfree(buf); 1293 1294 return ret; 1295 } 1296 1297 #endif 1298 1299 static const struct file_operations constraint_flags_fops = { 1300 #ifdef CONFIG_DEBUG_FS 1301 .open = simple_open, 1302 .read = constraint_flags_read_file, 1303 .llseek = default_llseek, 1304 #endif 1305 }; 1306 1307 #define REG_STR_SIZE 64 1308 1309 static struct regulator *create_regulator(struct regulator_dev *rdev, 1310 struct device *dev, 1311 const char *supply_name) 1312 { 1313 struct regulator *regulator; 1314 char buf[REG_STR_SIZE]; 1315 int err, size; 1316 1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1318 if (regulator == NULL) 1319 return NULL; 1320 1321 mutex_lock(&rdev->mutex); 1322 regulator->rdev = rdev; 1323 list_add(®ulator->list, &rdev->consumer_list); 1324 1325 if (dev) { 1326 regulator->dev = dev; 1327 1328 /* Add a link to the device sysfs entry */ 1329 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1330 dev->kobj.name, supply_name); 1331 if (size >= REG_STR_SIZE) 1332 goto overflow_err; 1333 1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1335 if (regulator->supply_name == NULL) 1336 goto overflow_err; 1337 1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1339 buf); 1340 if (err) { 1341 rdev_dbg(rdev, "could not add device link %s err %d\n", 1342 dev->kobj.name, err); 1343 /* non-fatal */ 1344 } 1345 } else { 1346 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1347 if (regulator->supply_name == NULL) 1348 goto overflow_err; 1349 } 1350 1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1352 rdev->debugfs); 1353 if (!regulator->debugfs) { 1354 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1355 } else { 1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1357 ®ulator->uA_load); 1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1359 ®ulator->min_uV); 1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1361 ®ulator->max_uV); 1362 debugfs_create_file("constraint_flags", 0444, 1363 regulator->debugfs, regulator, 1364 &constraint_flags_fops); 1365 } 1366 1367 /* 1368 * Check now if the regulator is an always on regulator - if 1369 * it is then we don't need to do nearly so much work for 1370 * enable/disable calls. 1371 */ 1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1373 _regulator_is_enabled(rdev)) 1374 regulator->always_on = true; 1375 1376 mutex_unlock(&rdev->mutex); 1377 return regulator; 1378 overflow_err: 1379 list_del(®ulator->list); 1380 kfree(regulator); 1381 mutex_unlock(&rdev->mutex); 1382 return NULL; 1383 } 1384 1385 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1386 { 1387 if (rdev->constraints && rdev->constraints->enable_time) 1388 return rdev->constraints->enable_time; 1389 if (!rdev->desc->ops->enable_time) 1390 return rdev->desc->enable_time; 1391 return rdev->desc->ops->enable_time(rdev); 1392 } 1393 1394 static struct regulator_supply_alias *regulator_find_supply_alias( 1395 struct device *dev, const char *supply) 1396 { 1397 struct regulator_supply_alias *map; 1398 1399 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1401 return map; 1402 1403 return NULL; 1404 } 1405 1406 static void regulator_supply_alias(struct device **dev, const char **supply) 1407 { 1408 struct regulator_supply_alias *map; 1409 1410 map = regulator_find_supply_alias(*dev, *supply); 1411 if (map) { 1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1413 *supply, map->alias_supply, 1414 dev_name(map->alias_dev)); 1415 *dev = map->alias_dev; 1416 *supply = map->alias_supply; 1417 } 1418 } 1419 1420 static int of_node_match(struct device *dev, const void *data) 1421 { 1422 return dev->of_node == data; 1423 } 1424 1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 1426 { 1427 struct device *dev; 1428 1429 dev = class_find_device(®ulator_class, NULL, np, of_node_match); 1430 1431 return dev ? dev_to_rdev(dev) : NULL; 1432 } 1433 1434 static int regulator_match(struct device *dev, const void *data) 1435 { 1436 struct regulator_dev *r = dev_to_rdev(dev); 1437 1438 return strcmp(rdev_get_name(r), data) == 0; 1439 } 1440 1441 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1442 { 1443 struct device *dev; 1444 1445 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1446 1447 return dev ? dev_to_rdev(dev) : NULL; 1448 } 1449 1450 /** 1451 * regulator_dev_lookup - lookup a regulator device. 1452 * @dev: device for regulator "consumer". 1453 * @supply: Supply name or regulator ID. 1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if 1455 * lookup could succeed in the future. 1456 * 1457 * If successful, returns a struct regulator_dev that corresponds to the name 1458 * @supply and with the embedded struct device refcount incremented by one. 1459 * The refcount must be dropped by calling put_device(). 1460 * On failure one of the following ERR-PTR-encoded values is returned: 1461 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1462 * in the future. 1463 */ 1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1465 const char *supply) 1466 { 1467 struct regulator_dev *r; 1468 struct device_node *node; 1469 struct regulator_map *map; 1470 const char *devname = NULL; 1471 1472 regulator_supply_alias(&dev, &supply); 1473 1474 /* first do a dt based lookup */ 1475 if (dev && dev->of_node) { 1476 node = of_get_regulator(dev, supply); 1477 if (node) { 1478 r = of_find_regulator_by_node(node); 1479 if (r) 1480 return r; 1481 1482 /* 1483 * We have a node, but there is no device. 1484 * assume it has not registered yet. 1485 */ 1486 return ERR_PTR(-EPROBE_DEFER); 1487 } 1488 } 1489 1490 /* if not found, try doing it non-dt way */ 1491 if (dev) 1492 devname = dev_name(dev); 1493 1494 r = regulator_lookup_by_name(supply); 1495 if (r) 1496 return r; 1497 1498 mutex_lock(®ulator_list_mutex); 1499 list_for_each_entry(map, ®ulator_map_list, list) { 1500 /* If the mapping has a device set up it must match */ 1501 if (map->dev_name && 1502 (!devname || strcmp(map->dev_name, devname))) 1503 continue; 1504 1505 if (strcmp(map->supply, supply) == 0 && 1506 get_device(&map->regulator->dev)) { 1507 r = map->regulator; 1508 break; 1509 } 1510 } 1511 mutex_unlock(®ulator_list_mutex); 1512 1513 if (r) 1514 return r; 1515 1516 return ERR_PTR(-ENODEV); 1517 } 1518 1519 static int regulator_resolve_supply(struct regulator_dev *rdev) 1520 { 1521 struct regulator_dev *r; 1522 struct device *dev = rdev->dev.parent; 1523 int ret; 1524 1525 /* No supply to resovle? */ 1526 if (!rdev->supply_name) 1527 return 0; 1528 1529 /* Supply already resolved? */ 1530 if (rdev->supply) 1531 return 0; 1532 1533 r = regulator_dev_lookup(dev, rdev->supply_name); 1534 if (IS_ERR(r)) { 1535 ret = PTR_ERR(r); 1536 1537 if (ret == -ENODEV) { 1538 /* 1539 * No supply was specified for this regulator and 1540 * there will never be one. 1541 */ 1542 return 0; 1543 } 1544 1545 /* Did the lookup explicitly defer for us? */ 1546 if (ret == -EPROBE_DEFER) 1547 return ret; 1548 1549 if (have_full_constraints()) { 1550 r = dummy_regulator_rdev; 1551 get_device(&r->dev); 1552 } else { 1553 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1554 rdev->supply_name, rdev->desc->name); 1555 return -EPROBE_DEFER; 1556 } 1557 } 1558 1559 /* 1560 * If the supply's parent device is not the same as the 1561 * regulator's parent device, then ensure the parent device 1562 * is bound before we resolve the supply, in case the parent 1563 * device get probe deferred and unregisters the supply. 1564 */ 1565 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1566 if (!device_is_bound(r->dev.parent)) { 1567 put_device(&r->dev); 1568 return -EPROBE_DEFER; 1569 } 1570 } 1571 1572 /* Recursively resolve the supply of the supply */ 1573 ret = regulator_resolve_supply(r); 1574 if (ret < 0) { 1575 put_device(&r->dev); 1576 return ret; 1577 } 1578 1579 ret = set_supply(rdev, r); 1580 if (ret < 0) { 1581 put_device(&r->dev); 1582 return ret; 1583 } 1584 1585 /* Cascade always-on state to supply */ 1586 if (_regulator_is_enabled(rdev)) { 1587 ret = regulator_enable(rdev->supply); 1588 if (ret < 0) { 1589 _regulator_put(rdev->supply); 1590 rdev->supply = NULL; 1591 return ret; 1592 } 1593 } 1594 1595 return 0; 1596 } 1597 1598 /* Internal regulator request function */ 1599 struct regulator *_regulator_get(struct device *dev, const char *id, 1600 enum regulator_get_type get_type) 1601 { 1602 struct regulator_dev *rdev; 1603 struct regulator *regulator; 1604 const char *devname = dev ? dev_name(dev) : "deviceless"; 1605 int ret; 1606 1607 if (get_type >= MAX_GET_TYPE) { 1608 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1609 return ERR_PTR(-EINVAL); 1610 } 1611 1612 if (id == NULL) { 1613 pr_err("get() with no identifier\n"); 1614 return ERR_PTR(-EINVAL); 1615 } 1616 1617 rdev = regulator_dev_lookup(dev, id); 1618 if (IS_ERR(rdev)) { 1619 ret = PTR_ERR(rdev); 1620 1621 /* 1622 * If regulator_dev_lookup() fails with error other 1623 * than -ENODEV our job here is done, we simply return it. 1624 */ 1625 if (ret != -ENODEV) 1626 return ERR_PTR(ret); 1627 1628 if (!have_full_constraints()) { 1629 dev_warn(dev, 1630 "incomplete constraints, dummy supplies not allowed\n"); 1631 return ERR_PTR(-ENODEV); 1632 } 1633 1634 switch (get_type) { 1635 case NORMAL_GET: 1636 /* 1637 * Assume that a regulator is physically present and 1638 * enabled, even if it isn't hooked up, and just 1639 * provide a dummy. 1640 */ 1641 dev_warn(dev, 1642 "%s supply %s not found, using dummy regulator\n", 1643 devname, id); 1644 rdev = dummy_regulator_rdev; 1645 get_device(&rdev->dev); 1646 break; 1647 1648 case EXCLUSIVE_GET: 1649 dev_warn(dev, 1650 "dummy supplies not allowed for exclusive requests\n"); 1651 /* fall through */ 1652 1653 default: 1654 return ERR_PTR(-ENODEV); 1655 } 1656 } 1657 1658 if (rdev->exclusive) { 1659 regulator = ERR_PTR(-EPERM); 1660 put_device(&rdev->dev); 1661 return regulator; 1662 } 1663 1664 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1665 regulator = ERR_PTR(-EBUSY); 1666 put_device(&rdev->dev); 1667 return regulator; 1668 } 1669 1670 ret = regulator_resolve_supply(rdev); 1671 if (ret < 0) { 1672 regulator = ERR_PTR(ret); 1673 put_device(&rdev->dev); 1674 return regulator; 1675 } 1676 1677 if (!try_module_get(rdev->owner)) { 1678 regulator = ERR_PTR(-EPROBE_DEFER); 1679 put_device(&rdev->dev); 1680 return regulator; 1681 } 1682 1683 regulator = create_regulator(rdev, dev, id); 1684 if (regulator == NULL) { 1685 regulator = ERR_PTR(-ENOMEM); 1686 put_device(&rdev->dev); 1687 module_put(rdev->owner); 1688 return regulator; 1689 } 1690 1691 rdev->open_count++; 1692 if (get_type == EXCLUSIVE_GET) { 1693 rdev->exclusive = 1; 1694 1695 ret = _regulator_is_enabled(rdev); 1696 if (ret > 0) 1697 rdev->use_count = 1; 1698 else 1699 rdev->use_count = 0; 1700 } 1701 1702 return regulator; 1703 } 1704 1705 /** 1706 * regulator_get - lookup and obtain a reference to a regulator. 1707 * @dev: device for regulator "consumer" 1708 * @id: Supply name or regulator ID. 1709 * 1710 * Returns a struct regulator corresponding to the regulator producer, 1711 * or IS_ERR() condition containing errno. 1712 * 1713 * Use of supply names configured via regulator_set_device_supply() is 1714 * strongly encouraged. It is recommended that the supply name used 1715 * should match the name used for the supply and/or the relevant 1716 * device pins in the datasheet. 1717 */ 1718 struct regulator *regulator_get(struct device *dev, const char *id) 1719 { 1720 return _regulator_get(dev, id, NORMAL_GET); 1721 } 1722 EXPORT_SYMBOL_GPL(regulator_get); 1723 1724 /** 1725 * regulator_get_exclusive - obtain exclusive access to a regulator. 1726 * @dev: device for regulator "consumer" 1727 * @id: Supply name or regulator ID. 1728 * 1729 * Returns a struct regulator corresponding to the regulator producer, 1730 * or IS_ERR() condition containing errno. Other consumers will be 1731 * unable to obtain this regulator while this reference is held and the 1732 * use count for the regulator will be initialised to reflect the current 1733 * state of the regulator. 1734 * 1735 * This is intended for use by consumers which cannot tolerate shared 1736 * use of the regulator such as those which need to force the 1737 * regulator off for correct operation of the hardware they are 1738 * controlling. 1739 * 1740 * Use of supply names configured via regulator_set_device_supply() is 1741 * strongly encouraged. It is recommended that the supply name used 1742 * should match the name used for the supply and/or the relevant 1743 * device pins in the datasheet. 1744 */ 1745 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1746 { 1747 return _regulator_get(dev, id, EXCLUSIVE_GET); 1748 } 1749 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1750 1751 /** 1752 * regulator_get_optional - obtain optional access to a regulator. 1753 * @dev: device for regulator "consumer" 1754 * @id: Supply name or regulator ID. 1755 * 1756 * Returns a struct regulator corresponding to the regulator producer, 1757 * or IS_ERR() condition containing errno. 1758 * 1759 * This is intended for use by consumers for devices which can have 1760 * some supplies unconnected in normal use, such as some MMC devices. 1761 * It can allow the regulator core to provide stub supplies for other 1762 * supplies requested using normal regulator_get() calls without 1763 * disrupting the operation of drivers that can handle absent 1764 * supplies. 1765 * 1766 * Use of supply names configured via regulator_set_device_supply() is 1767 * strongly encouraged. It is recommended that the supply name used 1768 * should match the name used for the supply and/or the relevant 1769 * device pins in the datasheet. 1770 */ 1771 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1772 { 1773 return _regulator_get(dev, id, OPTIONAL_GET); 1774 } 1775 EXPORT_SYMBOL_GPL(regulator_get_optional); 1776 1777 /* regulator_list_mutex lock held by regulator_put() */ 1778 static void _regulator_put(struct regulator *regulator) 1779 { 1780 struct regulator_dev *rdev; 1781 1782 if (IS_ERR_OR_NULL(regulator)) 1783 return; 1784 1785 lockdep_assert_held_once(®ulator_list_mutex); 1786 1787 rdev = regulator->rdev; 1788 1789 debugfs_remove_recursive(regulator->debugfs); 1790 1791 /* remove any sysfs entries */ 1792 if (regulator->dev) 1793 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1794 mutex_lock(&rdev->mutex); 1795 list_del(®ulator->list); 1796 1797 rdev->open_count--; 1798 rdev->exclusive = 0; 1799 put_device(&rdev->dev); 1800 mutex_unlock(&rdev->mutex); 1801 1802 kfree(regulator->supply_name); 1803 kfree(regulator); 1804 1805 module_put(rdev->owner); 1806 } 1807 1808 /** 1809 * regulator_put - "free" the regulator source 1810 * @regulator: regulator source 1811 * 1812 * Note: drivers must ensure that all regulator_enable calls made on this 1813 * regulator source are balanced by regulator_disable calls prior to calling 1814 * this function. 1815 */ 1816 void regulator_put(struct regulator *regulator) 1817 { 1818 mutex_lock(®ulator_list_mutex); 1819 _regulator_put(regulator); 1820 mutex_unlock(®ulator_list_mutex); 1821 } 1822 EXPORT_SYMBOL_GPL(regulator_put); 1823 1824 /** 1825 * regulator_register_supply_alias - Provide device alias for supply lookup 1826 * 1827 * @dev: device that will be given as the regulator "consumer" 1828 * @id: Supply name or regulator ID 1829 * @alias_dev: device that should be used to lookup the supply 1830 * @alias_id: Supply name or regulator ID that should be used to lookup the 1831 * supply 1832 * 1833 * All lookups for id on dev will instead be conducted for alias_id on 1834 * alias_dev. 1835 */ 1836 int regulator_register_supply_alias(struct device *dev, const char *id, 1837 struct device *alias_dev, 1838 const char *alias_id) 1839 { 1840 struct regulator_supply_alias *map; 1841 1842 map = regulator_find_supply_alias(dev, id); 1843 if (map) 1844 return -EEXIST; 1845 1846 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1847 if (!map) 1848 return -ENOMEM; 1849 1850 map->src_dev = dev; 1851 map->src_supply = id; 1852 map->alias_dev = alias_dev; 1853 map->alias_supply = alias_id; 1854 1855 list_add(&map->list, ®ulator_supply_alias_list); 1856 1857 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1858 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1859 1860 return 0; 1861 } 1862 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1863 1864 /** 1865 * regulator_unregister_supply_alias - Remove device alias 1866 * 1867 * @dev: device that will be given as the regulator "consumer" 1868 * @id: Supply name or regulator ID 1869 * 1870 * Remove a lookup alias if one exists for id on dev. 1871 */ 1872 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1873 { 1874 struct regulator_supply_alias *map; 1875 1876 map = regulator_find_supply_alias(dev, id); 1877 if (map) { 1878 list_del(&map->list); 1879 kfree(map); 1880 } 1881 } 1882 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1883 1884 /** 1885 * regulator_bulk_register_supply_alias - register multiple aliases 1886 * 1887 * @dev: device that will be given as the regulator "consumer" 1888 * @id: List of supply names or regulator IDs 1889 * @alias_dev: device that should be used to lookup the supply 1890 * @alias_id: List of supply names or regulator IDs that should be used to 1891 * lookup the supply 1892 * @num_id: Number of aliases to register 1893 * 1894 * @return 0 on success, an errno on failure. 1895 * 1896 * This helper function allows drivers to register several supply 1897 * aliases in one operation. If any of the aliases cannot be 1898 * registered any aliases that were registered will be removed 1899 * before returning to the caller. 1900 */ 1901 int regulator_bulk_register_supply_alias(struct device *dev, 1902 const char *const *id, 1903 struct device *alias_dev, 1904 const char *const *alias_id, 1905 int num_id) 1906 { 1907 int i; 1908 int ret; 1909 1910 for (i = 0; i < num_id; ++i) { 1911 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1912 alias_id[i]); 1913 if (ret < 0) 1914 goto err; 1915 } 1916 1917 return 0; 1918 1919 err: 1920 dev_err(dev, 1921 "Failed to create supply alias %s,%s -> %s,%s\n", 1922 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1923 1924 while (--i >= 0) 1925 regulator_unregister_supply_alias(dev, id[i]); 1926 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1930 1931 /** 1932 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1933 * 1934 * @dev: device that will be given as the regulator "consumer" 1935 * @id: List of supply names or regulator IDs 1936 * @num_id: Number of aliases to unregister 1937 * 1938 * This helper function allows drivers to unregister several supply 1939 * aliases in one operation. 1940 */ 1941 void regulator_bulk_unregister_supply_alias(struct device *dev, 1942 const char *const *id, 1943 int num_id) 1944 { 1945 int i; 1946 1947 for (i = 0; i < num_id; ++i) 1948 regulator_unregister_supply_alias(dev, id[i]); 1949 } 1950 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1951 1952 1953 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1954 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1955 const struct regulator_config *config) 1956 { 1957 struct regulator_enable_gpio *pin; 1958 struct gpio_desc *gpiod; 1959 int ret; 1960 1961 gpiod = gpio_to_desc(config->ena_gpio); 1962 1963 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1964 if (pin->gpiod == gpiod) { 1965 rdev_dbg(rdev, "GPIO %d is already used\n", 1966 config->ena_gpio); 1967 goto update_ena_gpio_to_rdev; 1968 } 1969 } 1970 1971 ret = gpio_request_one(config->ena_gpio, 1972 GPIOF_DIR_OUT | config->ena_gpio_flags, 1973 rdev_get_name(rdev)); 1974 if (ret) 1975 return ret; 1976 1977 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1978 if (pin == NULL) { 1979 gpio_free(config->ena_gpio); 1980 return -ENOMEM; 1981 } 1982 1983 pin->gpiod = gpiod; 1984 pin->ena_gpio_invert = config->ena_gpio_invert; 1985 list_add(&pin->list, ®ulator_ena_gpio_list); 1986 1987 update_ena_gpio_to_rdev: 1988 pin->request_count++; 1989 rdev->ena_pin = pin; 1990 return 0; 1991 } 1992 1993 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1994 { 1995 struct regulator_enable_gpio *pin, *n; 1996 1997 if (!rdev->ena_pin) 1998 return; 1999 2000 /* Free the GPIO only in case of no use */ 2001 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2002 if (pin->gpiod == rdev->ena_pin->gpiod) { 2003 if (pin->request_count <= 1) { 2004 pin->request_count = 0; 2005 gpiod_put(pin->gpiod); 2006 list_del(&pin->list); 2007 kfree(pin); 2008 rdev->ena_pin = NULL; 2009 return; 2010 } else { 2011 pin->request_count--; 2012 } 2013 } 2014 } 2015 } 2016 2017 /** 2018 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2019 * @rdev: regulator_dev structure 2020 * @enable: enable GPIO at initial use? 2021 * 2022 * GPIO is enabled in case of initial use. (enable_count is 0) 2023 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2024 */ 2025 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2026 { 2027 struct regulator_enable_gpio *pin = rdev->ena_pin; 2028 2029 if (!pin) 2030 return -EINVAL; 2031 2032 if (enable) { 2033 /* Enable GPIO at initial use */ 2034 if (pin->enable_count == 0) 2035 gpiod_set_value_cansleep(pin->gpiod, 2036 !pin->ena_gpio_invert); 2037 2038 pin->enable_count++; 2039 } else { 2040 if (pin->enable_count > 1) { 2041 pin->enable_count--; 2042 return 0; 2043 } 2044 2045 /* Disable GPIO if not used */ 2046 if (pin->enable_count <= 1) { 2047 gpiod_set_value_cansleep(pin->gpiod, 2048 pin->ena_gpio_invert); 2049 pin->enable_count = 0; 2050 } 2051 } 2052 2053 return 0; 2054 } 2055 2056 /** 2057 * _regulator_enable_delay - a delay helper function 2058 * @delay: time to delay in microseconds 2059 * 2060 * Delay for the requested amount of time as per the guidelines in: 2061 * 2062 * Documentation/timers/timers-howto.txt 2063 * 2064 * The assumption here is that regulators will never be enabled in 2065 * atomic context and therefore sleeping functions can be used. 2066 */ 2067 static void _regulator_enable_delay(unsigned int delay) 2068 { 2069 unsigned int ms = delay / 1000; 2070 unsigned int us = delay % 1000; 2071 2072 if (ms > 0) { 2073 /* 2074 * For small enough values, handle super-millisecond 2075 * delays in the usleep_range() call below. 2076 */ 2077 if (ms < 20) 2078 us += ms * 1000; 2079 else 2080 msleep(ms); 2081 } 2082 2083 /* 2084 * Give the scheduler some room to coalesce with any other 2085 * wakeup sources. For delays shorter than 10 us, don't even 2086 * bother setting up high-resolution timers and just busy- 2087 * loop. 2088 */ 2089 if (us >= 10) 2090 usleep_range(us, us + 100); 2091 else 2092 udelay(us); 2093 } 2094 2095 static int _regulator_do_enable(struct regulator_dev *rdev) 2096 { 2097 int ret, delay; 2098 2099 /* Query before enabling in case configuration dependent. */ 2100 ret = _regulator_get_enable_time(rdev); 2101 if (ret >= 0) { 2102 delay = ret; 2103 } else { 2104 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2105 delay = 0; 2106 } 2107 2108 trace_regulator_enable(rdev_get_name(rdev)); 2109 2110 if (rdev->desc->off_on_delay) { 2111 /* if needed, keep a distance of off_on_delay from last time 2112 * this regulator was disabled. 2113 */ 2114 unsigned long start_jiffy = jiffies; 2115 unsigned long intended, max_delay, remaining; 2116 2117 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2118 intended = rdev->last_off_jiffy + max_delay; 2119 2120 if (time_before(start_jiffy, intended)) { 2121 /* calc remaining jiffies to deal with one-time 2122 * timer wrapping. 2123 * in case of multiple timer wrapping, either it can be 2124 * detected by out-of-range remaining, or it cannot be 2125 * detected and we gets a panelty of 2126 * _regulator_enable_delay(). 2127 */ 2128 remaining = intended - start_jiffy; 2129 if (remaining <= max_delay) 2130 _regulator_enable_delay( 2131 jiffies_to_usecs(remaining)); 2132 } 2133 } 2134 2135 if (rdev->ena_pin) { 2136 if (!rdev->ena_gpio_state) { 2137 ret = regulator_ena_gpio_ctrl(rdev, true); 2138 if (ret < 0) 2139 return ret; 2140 rdev->ena_gpio_state = 1; 2141 } 2142 } else if (rdev->desc->ops->enable) { 2143 ret = rdev->desc->ops->enable(rdev); 2144 if (ret < 0) 2145 return ret; 2146 } else { 2147 return -EINVAL; 2148 } 2149 2150 /* Allow the regulator to ramp; it would be useful to extend 2151 * this for bulk operations so that the regulators can ramp 2152 * together. */ 2153 trace_regulator_enable_delay(rdev_get_name(rdev)); 2154 2155 _regulator_enable_delay(delay); 2156 2157 trace_regulator_enable_complete(rdev_get_name(rdev)); 2158 2159 return 0; 2160 } 2161 2162 /* locks held by regulator_enable() */ 2163 static int _regulator_enable(struct regulator_dev *rdev) 2164 { 2165 int ret; 2166 2167 lockdep_assert_held_once(&rdev->mutex); 2168 2169 /* check voltage and requested load before enabling */ 2170 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2171 drms_uA_update(rdev); 2172 2173 if (rdev->use_count == 0) { 2174 /* The regulator may on if it's not switchable or left on */ 2175 ret = _regulator_is_enabled(rdev); 2176 if (ret == -EINVAL || ret == 0) { 2177 if (!regulator_ops_is_valid(rdev, 2178 REGULATOR_CHANGE_STATUS)) 2179 return -EPERM; 2180 2181 ret = _regulator_do_enable(rdev); 2182 if (ret < 0) 2183 return ret; 2184 2185 } else if (ret < 0) { 2186 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2187 return ret; 2188 } 2189 /* Fallthrough on positive return values - already enabled */ 2190 } 2191 2192 rdev->use_count++; 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * regulator_enable - enable regulator output 2199 * @regulator: regulator source 2200 * 2201 * Request that the regulator be enabled with the regulator output at 2202 * the predefined voltage or current value. Calls to regulator_enable() 2203 * must be balanced with calls to regulator_disable(). 2204 * 2205 * NOTE: the output value can be set by other drivers, boot loader or may be 2206 * hardwired in the regulator. 2207 */ 2208 int regulator_enable(struct regulator *regulator) 2209 { 2210 struct regulator_dev *rdev = regulator->rdev; 2211 int ret = 0; 2212 2213 if (regulator->always_on) 2214 return 0; 2215 2216 if (rdev->supply) { 2217 ret = regulator_enable(rdev->supply); 2218 if (ret != 0) 2219 return ret; 2220 } 2221 2222 mutex_lock(&rdev->mutex); 2223 ret = _regulator_enable(rdev); 2224 mutex_unlock(&rdev->mutex); 2225 2226 if (ret != 0 && rdev->supply) 2227 regulator_disable(rdev->supply); 2228 2229 return ret; 2230 } 2231 EXPORT_SYMBOL_GPL(regulator_enable); 2232 2233 static int _regulator_do_disable(struct regulator_dev *rdev) 2234 { 2235 int ret; 2236 2237 trace_regulator_disable(rdev_get_name(rdev)); 2238 2239 if (rdev->ena_pin) { 2240 if (rdev->ena_gpio_state) { 2241 ret = regulator_ena_gpio_ctrl(rdev, false); 2242 if (ret < 0) 2243 return ret; 2244 rdev->ena_gpio_state = 0; 2245 } 2246 2247 } else if (rdev->desc->ops->disable) { 2248 ret = rdev->desc->ops->disable(rdev); 2249 if (ret != 0) 2250 return ret; 2251 } 2252 2253 /* cares about last_off_jiffy only if off_on_delay is required by 2254 * device. 2255 */ 2256 if (rdev->desc->off_on_delay) 2257 rdev->last_off_jiffy = jiffies; 2258 2259 trace_regulator_disable_complete(rdev_get_name(rdev)); 2260 2261 return 0; 2262 } 2263 2264 /* locks held by regulator_disable() */ 2265 static int _regulator_disable(struct regulator_dev *rdev) 2266 { 2267 int ret = 0; 2268 2269 lockdep_assert_held_once(&rdev->mutex); 2270 2271 if (WARN(rdev->use_count <= 0, 2272 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2273 return -EIO; 2274 2275 /* are we the last user and permitted to disable ? */ 2276 if (rdev->use_count == 1 && 2277 (rdev->constraints && !rdev->constraints->always_on)) { 2278 2279 /* we are last user */ 2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2281 ret = _notifier_call_chain(rdev, 2282 REGULATOR_EVENT_PRE_DISABLE, 2283 NULL); 2284 if (ret & NOTIFY_STOP_MASK) 2285 return -EINVAL; 2286 2287 ret = _regulator_do_disable(rdev); 2288 if (ret < 0) { 2289 rdev_err(rdev, "failed to disable\n"); 2290 _notifier_call_chain(rdev, 2291 REGULATOR_EVENT_ABORT_DISABLE, 2292 NULL); 2293 return ret; 2294 } 2295 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2296 NULL); 2297 } 2298 2299 rdev->use_count = 0; 2300 } else if (rdev->use_count > 1) { 2301 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2302 drms_uA_update(rdev); 2303 2304 rdev->use_count--; 2305 } 2306 2307 return ret; 2308 } 2309 2310 /** 2311 * regulator_disable - disable regulator output 2312 * @regulator: regulator source 2313 * 2314 * Disable the regulator output voltage or current. Calls to 2315 * regulator_enable() must be balanced with calls to 2316 * regulator_disable(). 2317 * 2318 * NOTE: this will only disable the regulator output if no other consumer 2319 * devices have it enabled, the regulator device supports disabling and 2320 * machine constraints permit this operation. 2321 */ 2322 int regulator_disable(struct regulator *regulator) 2323 { 2324 struct regulator_dev *rdev = regulator->rdev; 2325 int ret = 0; 2326 2327 if (regulator->always_on) 2328 return 0; 2329 2330 mutex_lock(&rdev->mutex); 2331 ret = _regulator_disable(rdev); 2332 mutex_unlock(&rdev->mutex); 2333 2334 if (ret == 0 && rdev->supply) 2335 regulator_disable(rdev->supply); 2336 2337 return ret; 2338 } 2339 EXPORT_SYMBOL_GPL(regulator_disable); 2340 2341 /* locks held by regulator_force_disable() */ 2342 static int _regulator_force_disable(struct regulator_dev *rdev) 2343 { 2344 int ret = 0; 2345 2346 lockdep_assert_held_once(&rdev->mutex); 2347 2348 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2349 REGULATOR_EVENT_PRE_DISABLE, NULL); 2350 if (ret & NOTIFY_STOP_MASK) 2351 return -EINVAL; 2352 2353 ret = _regulator_do_disable(rdev); 2354 if (ret < 0) { 2355 rdev_err(rdev, "failed to force disable\n"); 2356 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2357 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2358 return ret; 2359 } 2360 2361 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2362 REGULATOR_EVENT_DISABLE, NULL); 2363 2364 return 0; 2365 } 2366 2367 /** 2368 * regulator_force_disable - force disable regulator output 2369 * @regulator: regulator source 2370 * 2371 * Forcibly disable the regulator output voltage or current. 2372 * NOTE: this *will* disable the regulator output even if other consumer 2373 * devices have it enabled. This should be used for situations when device 2374 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2375 */ 2376 int regulator_force_disable(struct regulator *regulator) 2377 { 2378 struct regulator_dev *rdev = regulator->rdev; 2379 int ret; 2380 2381 mutex_lock(&rdev->mutex); 2382 regulator->uA_load = 0; 2383 ret = _regulator_force_disable(regulator->rdev); 2384 mutex_unlock(&rdev->mutex); 2385 2386 if (rdev->supply) 2387 while (rdev->open_count--) 2388 regulator_disable(rdev->supply); 2389 2390 return ret; 2391 } 2392 EXPORT_SYMBOL_GPL(regulator_force_disable); 2393 2394 static void regulator_disable_work(struct work_struct *work) 2395 { 2396 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2397 disable_work.work); 2398 int count, i, ret; 2399 2400 mutex_lock(&rdev->mutex); 2401 2402 BUG_ON(!rdev->deferred_disables); 2403 2404 count = rdev->deferred_disables; 2405 rdev->deferred_disables = 0; 2406 2407 for (i = 0; i < count; i++) { 2408 ret = _regulator_disable(rdev); 2409 if (ret != 0) 2410 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2411 } 2412 2413 mutex_unlock(&rdev->mutex); 2414 2415 if (rdev->supply) { 2416 for (i = 0; i < count; i++) { 2417 ret = regulator_disable(rdev->supply); 2418 if (ret != 0) { 2419 rdev_err(rdev, 2420 "Supply disable failed: %d\n", ret); 2421 } 2422 } 2423 } 2424 } 2425 2426 /** 2427 * regulator_disable_deferred - disable regulator output with delay 2428 * @regulator: regulator source 2429 * @ms: miliseconds until the regulator is disabled 2430 * 2431 * Execute regulator_disable() on the regulator after a delay. This 2432 * is intended for use with devices that require some time to quiesce. 2433 * 2434 * NOTE: this will only disable the regulator output if no other consumer 2435 * devices have it enabled, the regulator device supports disabling and 2436 * machine constraints permit this operation. 2437 */ 2438 int regulator_disable_deferred(struct regulator *regulator, int ms) 2439 { 2440 struct regulator_dev *rdev = regulator->rdev; 2441 2442 if (regulator->always_on) 2443 return 0; 2444 2445 if (!ms) 2446 return regulator_disable(regulator); 2447 2448 mutex_lock(&rdev->mutex); 2449 rdev->deferred_disables++; 2450 mutex_unlock(&rdev->mutex); 2451 2452 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2453 msecs_to_jiffies(ms)); 2454 return 0; 2455 } 2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2457 2458 static int _regulator_is_enabled(struct regulator_dev *rdev) 2459 { 2460 /* A GPIO control always takes precedence */ 2461 if (rdev->ena_pin) 2462 return rdev->ena_gpio_state; 2463 2464 /* If we don't know then assume that the regulator is always on */ 2465 if (!rdev->desc->ops->is_enabled) 2466 return 1; 2467 2468 return rdev->desc->ops->is_enabled(rdev); 2469 } 2470 2471 static int _regulator_list_voltage(struct regulator *regulator, 2472 unsigned selector, int lock) 2473 { 2474 struct regulator_dev *rdev = regulator->rdev; 2475 const struct regulator_ops *ops = rdev->desc->ops; 2476 int ret; 2477 2478 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2479 return rdev->desc->fixed_uV; 2480 2481 if (ops->list_voltage) { 2482 if (selector >= rdev->desc->n_voltages) 2483 return -EINVAL; 2484 if (lock) 2485 mutex_lock(&rdev->mutex); 2486 ret = ops->list_voltage(rdev, selector); 2487 if (lock) 2488 mutex_unlock(&rdev->mutex); 2489 } else if (rdev->supply) { 2490 ret = _regulator_list_voltage(rdev->supply, selector, lock); 2491 } else { 2492 return -EINVAL; 2493 } 2494 2495 if (ret > 0) { 2496 if (ret < rdev->constraints->min_uV) 2497 ret = 0; 2498 else if (ret > rdev->constraints->max_uV) 2499 ret = 0; 2500 } 2501 2502 return ret; 2503 } 2504 2505 /** 2506 * regulator_is_enabled - is the regulator output enabled 2507 * @regulator: regulator source 2508 * 2509 * Returns positive if the regulator driver backing the source/client 2510 * has requested that the device be enabled, zero if it hasn't, else a 2511 * negative errno code. 2512 * 2513 * Note that the device backing this regulator handle can have multiple 2514 * users, so it might be enabled even if regulator_enable() was never 2515 * called for this particular source. 2516 */ 2517 int regulator_is_enabled(struct regulator *regulator) 2518 { 2519 int ret; 2520 2521 if (regulator->always_on) 2522 return 1; 2523 2524 mutex_lock(®ulator->rdev->mutex); 2525 ret = _regulator_is_enabled(regulator->rdev); 2526 mutex_unlock(®ulator->rdev->mutex); 2527 2528 return ret; 2529 } 2530 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2531 2532 /** 2533 * regulator_count_voltages - count regulator_list_voltage() selectors 2534 * @regulator: regulator source 2535 * 2536 * Returns number of selectors, or negative errno. Selectors are 2537 * numbered starting at zero, and typically correspond to bitfields 2538 * in hardware registers. 2539 */ 2540 int regulator_count_voltages(struct regulator *regulator) 2541 { 2542 struct regulator_dev *rdev = regulator->rdev; 2543 2544 if (rdev->desc->n_voltages) 2545 return rdev->desc->n_voltages; 2546 2547 if (!rdev->supply) 2548 return -EINVAL; 2549 2550 return regulator_count_voltages(rdev->supply); 2551 } 2552 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2553 2554 /** 2555 * regulator_list_voltage - enumerate supported voltages 2556 * @regulator: regulator source 2557 * @selector: identify voltage to list 2558 * Context: can sleep 2559 * 2560 * Returns a voltage that can be passed to @regulator_set_voltage(), 2561 * zero if this selector code can't be used on this system, or a 2562 * negative errno. 2563 */ 2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2565 { 2566 return _regulator_list_voltage(regulator, selector, 1); 2567 } 2568 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2569 2570 /** 2571 * regulator_get_regmap - get the regulator's register map 2572 * @regulator: regulator source 2573 * 2574 * Returns the register map for the given regulator, or an ERR_PTR value 2575 * if the regulator doesn't use regmap. 2576 */ 2577 struct regmap *regulator_get_regmap(struct regulator *regulator) 2578 { 2579 struct regmap *map = regulator->rdev->regmap; 2580 2581 return map ? map : ERR_PTR(-EOPNOTSUPP); 2582 } 2583 2584 /** 2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2586 * @regulator: regulator source 2587 * @vsel_reg: voltage selector register, output parameter 2588 * @vsel_mask: mask for voltage selector bitfield, output parameter 2589 * 2590 * Returns the hardware register offset and bitmask used for setting the 2591 * regulator voltage. This might be useful when configuring voltage-scaling 2592 * hardware or firmware that can make I2C requests behind the kernel's back, 2593 * for example. 2594 * 2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2596 * and 0 is returned, otherwise a negative errno is returned. 2597 */ 2598 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2599 unsigned *vsel_reg, 2600 unsigned *vsel_mask) 2601 { 2602 struct regulator_dev *rdev = regulator->rdev; 2603 const struct regulator_ops *ops = rdev->desc->ops; 2604 2605 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2606 return -EOPNOTSUPP; 2607 2608 *vsel_reg = rdev->desc->vsel_reg; 2609 *vsel_mask = rdev->desc->vsel_mask; 2610 2611 return 0; 2612 } 2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2614 2615 /** 2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2617 * @regulator: regulator source 2618 * @selector: identify voltage to list 2619 * 2620 * Converts the selector to a hardware-specific voltage selector that can be 2621 * directly written to the regulator registers. The address of the voltage 2622 * register can be determined by calling @regulator_get_hardware_vsel_register. 2623 * 2624 * On error a negative errno is returned. 2625 */ 2626 int regulator_list_hardware_vsel(struct regulator *regulator, 2627 unsigned selector) 2628 { 2629 struct regulator_dev *rdev = regulator->rdev; 2630 const struct regulator_ops *ops = rdev->desc->ops; 2631 2632 if (selector >= rdev->desc->n_voltages) 2633 return -EINVAL; 2634 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2635 return -EOPNOTSUPP; 2636 2637 return selector; 2638 } 2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2640 2641 /** 2642 * regulator_get_linear_step - return the voltage step size between VSEL values 2643 * @regulator: regulator source 2644 * 2645 * Returns the voltage step size between VSEL values for linear 2646 * regulators, or return 0 if the regulator isn't a linear regulator. 2647 */ 2648 unsigned int regulator_get_linear_step(struct regulator *regulator) 2649 { 2650 struct regulator_dev *rdev = regulator->rdev; 2651 2652 return rdev->desc->uV_step; 2653 } 2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2655 2656 /** 2657 * regulator_is_supported_voltage - check if a voltage range can be supported 2658 * 2659 * @regulator: Regulator to check. 2660 * @min_uV: Minimum required voltage in uV. 2661 * @max_uV: Maximum required voltage in uV. 2662 * 2663 * Returns a boolean or a negative error code. 2664 */ 2665 int regulator_is_supported_voltage(struct regulator *regulator, 2666 int min_uV, int max_uV) 2667 { 2668 struct regulator_dev *rdev = regulator->rdev; 2669 int i, voltages, ret; 2670 2671 /* If we can't change voltage check the current voltage */ 2672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2673 ret = regulator_get_voltage(regulator); 2674 if (ret >= 0) 2675 return min_uV <= ret && ret <= max_uV; 2676 else 2677 return ret; 2678 } 2679 2680 /* Any voltage within constrains range is fine? */ 2681 if (rdev->desc->continuous_voltage_range) 2682 return min_uV >= rdev->constraints->min_uV && 2683 max_uV <= rdev->constraints->max_uV; 2684 2685 ret = regulator_count_voltages(regulator); 2686 if (ret < 0) 2687 return ret; 2688 voltages = ret; 2689 2690 for (i = 0; i < voltages; i++) { 2691 ret = regulator_list_voltage(regulator, i); 2692 2693 if (ret >= min_uV && ret <= max_uV) 2694 return 1; 2695 } 2696 2697 return 0; 2698 } 2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2700 2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2702 int max_uV) 2703 { 2704 const struct regulator_desc *desc = rdev->desc; 2705 2706 if (desc->ops->map_voltage) 2707 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2708 2709 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2710 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2711 2712 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2713 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2714 2715 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2716 } 2717 2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2719 int min_uV, int max_uV, 2720 unsigned *selector) 2721 { 2722 struct pre_voltage_change_data data; 2723 int ret; 2724 2725 data.old_uV = _regulator_get_voltage(rdev); 2726 data.min_uV = min_uV; 2727 data.max_uV = max_uV; 2728 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2729 &data); 2730 if (ret & NOTIFY_STOP_MASK) 2731 return -EINVAL; 2732 2733 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2734 if (ret >= 0) 2735 return ret; 2736 2737 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2738 (void *)data.old_uV); 2739 2740 return ret; 2741 } 2742 2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2744 int uV, unsigned selector) 2745 { 2746 struct pre_voltage_change_data data; 2747 int ret; 2748 2749 data.old_uV = _regulator_get_voltage(rdev); 2750 data.min_uV = uV; 2751 data.max_uV = uV; 2752 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2753 &data); 2754 if (ret & NOTIFY_STOP_MASK) 2755 return -EINVAL; 2756 2757 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2758 if (ret >= 0) 2759 return ret; 2760 2761 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2762 (void *)data.old_uV); 2763 2764 return ret; 2765 } 2766 2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2768 int old_uV, int new_uV) 2769 { 2770 unsigned int ramp_delay = 0; 2771 2772 if (rdev->constraints->ramp_delay) 2773 ramp_delay = rdev->constraints->ramp_delay; 2774 else if (rdev->desc->ramp_delay) 2775 ramp_delay = rdev->desc->ramp_delay; 2776 2777 if (ramp_delay == 0) { 2778 rdev_dbg(rdev, "ramp_delay not set\n"); 2779 return 0; 2780 } 2781 2782 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2783 } 2784 2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2786 int min_uV, int max_uV) 2787 { 2788 int ret; 2789 int delay = 0; 2790 int best_val = 0; 2791 unsigned int selector; 2792 int old_selector = -1; 2793 const struct regulator_ops *ops = rdev->desc->ops; 2794 int old_uV = _regulator_get_voltage(rdev); 2795 2796 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2797 2798 min_uV += rdev->constraints->uV_offset; 2799 max_uV += rdev->constraints->uV_offset; 2800 2801 /* 2802 * If we can't obtain the old selector there is not enough 2803 * info to call set_voltage_time_sel(). 2804 */ 2805 if (_regulator_is_enabled(rdev) && 2806 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2807 old_selector = ops->get_voltage_sel(rdev); 2808 if (old_selector < 0) 2809 return old_selector; 2810 } 2811 2812 if (ops->set_voltage) { 2813 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2814 &selector); 2815 2816 if (ret >= 0) { 2817 if (ops->list_voltage) 2818 best_val = ops->list_voltage(rdev, 2819 selector); 2820 else 2821 best_val = _regulator_get_voltage(rdev); 2822 } 2823 2824 } else if (ops->set_voltage_sel) { 2825 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2826 if (ret >= 0) { 2827 best_val = ops->list_voltage(rdev, ret); 2828 if (min_uV <= best_val && max_uV >= best_val) { 2829 selector = ret; 2830 if (old_selector == selector) 2831 ret = 0; 2832 else 2833 ret = _regulator_call_set_voltage_sel( 2834 rdev, best_val, selector); 2835 } else { 2836 ret = -EINVAL; 2837 } 2838 } 2839 } else { 2840 ret = -EINVAL; 2841 } 2842 2843 if (ret) 2844 goto out; 2845 2846 if (ops->set_voltage_time_sel) { 2847 /* 2848 * Call set_voltage_time_sel if successfully obtained 2849 * old_selector 2850 */ 2851 if (old_selector >= 0 && old_selector != selector) 2852 delay = ops->set_voltage_time_sel(rdev, old_selector, 2853 selector); 2854 } else { 2855 if (old_uV != best_val) { 2856 if (ops->set_voltage_time) 2857 delay = ops->set_voltage_time(rdev, old_uV, 2858 best_val); 2859 else 2860 delay = _regulator_set_voltage_time(rdev, 2861 old_uV, 2862 best_val); 2863 } 2864 } 2865 2866 if (delay < 0) { 2867 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2868 delay = 0; 2869 } 2870 2871 /* Insert any necessary delays */ 2872 if (delay >= 1000) { 2873 mdelay(delay / 1000); 2874 udelay(delay % 1000); 2875 } else if (delay) { 2876 udelay(delay); 2877 } 2878 2879 if (best_val >= 0) { 2880 unsigned long data = best_val; 2881 2882 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2883 (void *)data); 2884 } 2885 2886 out: 2887 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2888 2889 return ret; 2890 } 2891 2892 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2893 int min_uV, int max_uV) 2894 { 2895 struct regulator_dev *rdev = regulator->rdev; 2896 int ret = 0; 2897 int old_min_uV, old_max_uV; 2898 int current_uV; 2899 int best_supply_uV = 0; 2900 int supply_change_uV = 0; 2901 2902 /* If we're setting the same range as last time the change 2903 * should be a noop (some cpufreq implementations use the same 2904 * voltage for multiple frequencies, for example). 2905 */ 2906 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2907 goto out; 2908 2909 /* If we're trying to set a range that overlaps the current voltage, 2910 * return successfully even though the regulator does not support 2911 * changing the voltage. 2912 */ 2913 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2914 current_uV = _regulator_get_voltage(rdev); 2915 if (min_uV <= current_uV && current_uV <= max_uV) { 2916 regulator->min_uV = min_uV; 2917 regulator->max_uV = max_uV; 2918 goto out; 2919 } 2920 } 2921 2922 /* sanity check */ 2923 if (!rdev->desc->ops->set_voltage && 2924 !rdev->desc->ops->set_voltage_sel) { 2925 ret = -EINVAL; 2926 goto out; 2927 } 2928 2929 /* constraints check */ 2930 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2931 if (ret < 0) 2932 goto out; 2933 2934 /* restore original values in case of error */ 2935 old_min_uV = regulator->min_uV; 2936 old_max_uV = regulator->max_uV; 2937 regulator->min_uV = min_uV; 2938 regulator->max_uV = max_uV; 2939 2940 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2941 if (ret < 0) 2942 goto out2; 2943 2944 if (rdev->supply && (rdev->desc->min_dropout_uV || 2945 !rdev->desc->ops->get_voltage)) { 2946 int current_supply_uV; 2947 int selector; 2948 2949 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2950 if (selector < 0) { 2951 ret = selector; 2952 goto out2; 2953 } 2954 2955 best_supply_uV = _regulator_list_voltage(regulator, selector, 0); 2956 if (best_supply_uV < 0) { 2957 ret = best_supply_uV; 2958 goto out2; 2959 } 2960 2961 best_supply_uV += rdev->desc->min_dropout_uV; 2962 2963 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2964 if (current_supply_uV < 0) { 2965 ret = current_supply_uV; 2966 goto out2; 2967 } 2968 2969 supply_change_uV = best_supply_uV - current_supply_uV; 2970 } 2971 2972 if (supply_change_uV > 0) { 2973 ret = regulator_set_voltage_unlocked(rdev->supply, 2974 best_supply_uV, INT_MAX); 2975 if (ret) { 2976 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 2977 ret); 2978 goto out2; 2979 } 2980 } 2981 2982 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2983 if (ret < 0) 2984 goto out2; 2985 2986 if (supply_change_uV < 0) { 2987 ret = regulator_set_voltage_unlocked(rdev->supply, 2988 best_supply_uV, INT_MAX); 2989 if (ret) 2990 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 2991 ret); 2992 /* No need to fail here */ 2993 ret = 0; 2994 } 2995 2996 out: 2997 return ret; 2998 out2: 2999 regulator->min_uV = old_min_uV; 3000 regulator->max_uV = old_max_uV; 3001 3002 return ret; 3003 } 3004 3005 /** 3006 * regulator_set_voltage - set regulator output voltage 3007 * @regulator: regulator source 3008 * @min_uV: Minimum required voltage in uV 3009 * @max_uV: Maximum acceptable voltage in uV 3010 * 3011 * Sets a voltage regulator to the desired output voltage. This can be set 3012 * during any regulator state. IOW, regulator can be disabled or enabled. 3013 * 3014 * If the regulator is enabled then the voltage will change to the new value 3015 * immediately otherwise if the regulator is disabled the regulator will 3016 * output at the new voltage when enabled. 3017 * 3018 * NOTE: If the regulator is shared between several devices then the lowest 3019 * request voltage that meets the system constraints will be used. 3020 * Regulator system constraints must be set for this regulator before 3021 * calling this function otherwise this call will fail. 3022 */ 3023 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3024 { 3025 int ret = 0; 3026 3027 regulator_lock_supply(regulator->rdev); 3028 3029 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV); 3030 3031 regulator_unlock_supply(regulator->rdev); 3032 3033 return ret; 3034 } 3035 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3036 3037 /** 3038 * regulator_set_voltage_time - get raise/fall time 3039 * @regulator: regulator source 3040 * @old_uV: starting voltage in microvolts 3041 * @new_uV: target voltage in microvolts 3042 * 3043 * Provided with the starting and ending voltage, this function attempts to 3044 * calculate the time in microseconds required to rise or fall to this new 3045 * voltage. 3046 */ 3047 int regulator_set_voltage_time(struct regulator *regulator, 3048 int old_uV, int new_uV) 3049 { 3050 struct regulator_dev *rdev = regulator->rdev; 3051 const struct regulator_ops *ops = rdev->desc->ops; 3052 int old_sel = -1; 3053 int new_sel = -1; 3054 int voltage; 3055 int i; 3056 3057 if (ops->set_voltage_time) 3058 return ops->set_voltage_time(rdev, old_uV, new_uV); 3059 else if (!ops->set_voltage_time_sel) 3060 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3061 3062 /* Currently requires operations to do this */ 3063 if (!ops->list_voltage || !rdev->desc->n_voltages) 3064 return -EINVAL; 3065 3066 for (i = 0; i < rdev->desc->n_voltages; i++) { 3067 /* We only look for exact voltage matches here */ 3068 voltage = regulator_list_voltage(regulator, i); 3069 if (voltage < 0) 3070 return -EINVAL; 3071 if (voltage == 0) 3072 continue; 3073 if (voltage == old_uV) 3074 old_sel = i; 3075 if (voltage == new_uV) 3076 new_sel = i; 3077 } 3078 3079 if (old_sel < 0 || new_sel < 0) 3080 return -EINVAL; 3081 3082 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3083 } 3084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3085 3086 /** 3087 * regulator_set_voltage_time_sel - get raise/fall time 3088 * @rdev: regulator source device 3089 * @old_selector: selector for starting voltage 3090 * @new_selector: selector for target voltage 3091 * 3092 * Provided with the starting and target voltage selectors, this function 3093 * returns time in microseconds required to rise or fall to this new voltage 3094 * 3095 * Drivers providing ramp_delay in regulation_constraints can use this as their 3096 * set_voltage_time_sel() operation. 3097 */ 3098 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3099 unsigned int old_selector, 3100 unsigned int new_selector) 3101 { 3102 int old_volt, new_volt; 3103 3104 /* sanity check */ 3105 if (!rdev->desc->ops->list_voltage) 3106 return -EINVAL; 3107 3108 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3109 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3110 3111 if (rdev->desc->ops->set_voltage_time) 3112 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3113 new_volt); 3114 else 3115 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3116 } 3117 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3118 3119 /** 3120 * regulator_sync_voltage - re-apply last regulator output voltage 3121 * @regulator: regulator source 3122 * 3123 * Re-apply the last configured voltage. This is intended to be used 3124 * where some external control source the consumer is cooperating with 3125 * has caused the configured voltage to change. 3126 */ 3127 int regulator_sync_voltage(struct regulator *regulator) 3128 { 3129 struct regulator_dev *rdev = regulator->rdev; 3130 int ret, min_uV, max_uV; 3131 3132 mutex_lock(&rdev->mutex); 3133 3134 if (!rdev->desc->ops->set_voltage && 3135 !rdev->desc->ops->set_voltage_sel) { 3136 ret = -EINVAL; 3137 goto out; 3138 } 3139 3140 /* This is only going to work if we've had a voltage configured. */ 3141 if (!regulator->min_uV && !regulator->max_uV) { 3142 ret = -EINVAL; 3143 goto out; 3144 } 3145 3146 min_uV = regulator->min_uV; 3147 max_uV = regulator->max_uV; 3148 3149 /* This should be a paranoia check... */ 3150 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3151 if (ret < 0) 3152 goto out; 3153 3154 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 3155 if (ret < 0) 3156 goto out; 3157 3158 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3159 3160 out: 3161 mutex_unlock(&rdev->mutex); 3162 return ret; 3163 } 3164 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3165 3166 static int _regulator_get_voltage(struct regulator_dev *rdev) 3167 { 3168 int sel, ret; 3169 bool bypassed; 3170 3171 if (rdev->desc->ops->get_bypass) { 3172 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3173 if (ret < 0) 3174 return ret; 3175 if (bypassed) { 3176 /* if bypassed the regulator must have a supply */ 3177 if (!rdev->supply) { 3178 rdev_err(rdev, 3179 "bypassed regulator has no supply!\n"); 3180 return -EPROBE_DEFER; 3181 } 3182 3183 return _regulator_get_voltage(rdev->supply->rdev); 3184 } 3185 } 3186 3187 if (rdev->desc->ops->get_voltage_sel) { 3188 sel = rdev->desc->ops->get_voltage_sel(rdev); 3189 if (sel < 0) 3190 return sel; 3191 ret = rdev->desc->ops->list_voltage(rdev, sel); 3192 } else if (rdev->desc->ops->get_voltage) { 3193 ret = rdev->desc->ops->get_voltage(rdev); 3194 } else if (rdev->desc->ops->list_voltage) { 3195 ret = rdev->desc->ops->list_voltage(rdev, 0); 3196 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3197 ret = rdev->desc->fixed_uV; 3198 } else if (rdev->supply) { 3199 ret = _regulator_get_voltage(rdev->supply->rdev); 3200 } else { 3201 return -EINVAL; 3202 } 3203 3204 if (ret < 0) 3205 return ret; 3206 return ret - rdev->constraints->uV_offset; 3207 } 3208 3209 /** 3210 * regulator_get_voltage - get regulator output voltage 3211 * @regulator: regulator source 3212 * 3213 * This returns the current regulator voltage in uV. 3214 * 3215 * NOTE: If the regulator is disabled it will return the voltage value. This 3216 * function should not be used to determine regulator state. 3217 */ 3218 int regulator_get_voltage(struct regulator *regulator) 3219 { 3220 int ret; 3221 3222 regulator_lock_supply(regulator->rdev); 3223 3224 ret = _regulator_get_voltage(regulator->rdev); 3225 3226 regulator_unlock_supply(regulator->rdev); 3227 3228 return ret; 3229 } 3230 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3231 3232 /** 3233 * regulator_set_current_limit - set regulator output current limit 3234 * @regulator: regulator source 3235 * @min_uA: Minimum supported current in uA 3236 * @max_uA: Maximum supported current in uA 3237 * 3238 * Sets current sink to the desired output current. This can be set during 3239 * any regulator state. IOW, regulator can be disabled or enabled. 3240 * 3241 * If the regulator is enabled then the current will change to the new value 3242 * immediately otherwise if the regulator is disabled the regulator will 3243 * output at the new current when enabled. 3244 * 3245 * NOTE: Regulator system constraints must be set for this regulator before 3246 * calling this function otherwise this call will fail. 3247 */ 3248 int regulator_set_current_limit(struct regulator *regulator, 3249 int min_uA, int max_uA) 3250 { 3251 struct regulator_dev *rdev = regulator->rdev; 3252 int ret; 3253 3254 mutex_lock(&rdev->mutex); 3255 3256 /* sanity check */ 3257 if (!rdev->desc->ops->set_current_limit) { 3258 ret = -EINVAL; 3259 goto out; 3260 } 3261 3262 /* constraints check */ 3263 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3264 if (ret < 0) 3265 goto out; 3266 3267 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3268 out: 3269 mutex_unlock(&rdev->mutex); 3270 return ret; 3271 } 3272 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3273 3274 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3275 { 3276 int ret; 3277 3278 mutex_lock(&rdev->mutex); 3279 3280 /* sanity check */ 3281 if (!rdev->desc->ops->get_current_limit) { 3282 ret = -EINVAL; 3283 goto out; 3284 } 3285 3286 ret = rdev->desc->ops->get_current_limit(rdev); 3287 out: 3288 mutex_unlock(&rdev->mutex); 3289 return ret; 3290 } 3291 3292 /** 3293 * regulator_get_current_limit - get regulator output current 3294 * @regulator: regulator source 3295 * 3296 * This returns the current supplied by the specified current sink in uA. 3297 * 3298 * NOTE: If the regulator is disabled it will return the current value. This 3299 * function should not be used to determine regulator state. 3300 */ 3301 int regulator_get_current_limit(struct regulator *regulator) 3302 { 3303 return _regulator_get_current_limit(regulator->rdev); 3304 } 3305 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3306 3307 /** 3308 * regulator_set_mode - set regulator operating mode 3309 * @regulator: regulator source 3310 * @mode: operating mode - one of the REGULATOR_MODE constants 3311 * 3312 * Set regulator operating mode to increase regulator efficiency or improve 3313 * regulation performance. 3314 * 3315 * NOTE: Regulator system constraints must be set for this regulator before 3316 * calling this function otherwise this call will fail. 3317 */ 3318 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3319 { 3320 struct regulator_dev *rdev = regulator->rdev; 3321 int ret; 3322 int regulator_curr_mode; 3323 3324 mutex_lock(&rdev->mutex); 3325 3326 /* sanity check */ 3327 if (!rdev->desc->ops->set_mode) { 3328 ret = -EINVAL; 3329 goto out; 3330 } 3331 3332 /* return if the same mode is requested */ 3333 if (rdev->desc->ops->get_mode) { 3334 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3335 if (regulator_curr_mode == mode) { 3336 ret = 0; 3337 goto out; 3338 } 3339 } 3340 3341 /* constraints check */ 3342 ret = regulator_mode_constrain(rdev, &mode); 3343 if (ret < 0) 3344 goto out; 3345 3346 ret = rdev->desc->ops->set_mode(rdev, mode); 3347 out: 3348 mutex_unlock(&rdev->mutex); 3349 return ret; 3350 } 3351 EXPORT_SYMBOL_GPL(regulator_set_mode); 3352 3353 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3354 { 3355 int ret; 3356 3357 mutex_lock(&rdev->mutex); 3358 3359 /* sanity check */ 3360 if (!rdev->desc->ops->get_mode) { 3361 ret = -EINVAL; 3362 goto out; 3363 } 3364 3365 ret = rdev->desc->ops->get_mode(rdev); 3366 out: 3367 mutex_unlock(&rdev->mutex); 3368 return ret; 3369 } 3370 3371 /** 3372 * regulator_get_mode - get regulator operating mode 3373 * @regulator: regulator source 3374 * 3375 * Get the current regulator operating mode. 3376 */ 3377 unsigned int regulator_get_mode(struct regulator *regulator) 3378 { 3379 return _regulator_get_mode(regulator->rdev); 3380 } 3381 EXPORT_SYMBOL_GPL(regulator_get_mode); 3382 3383 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3384 unsigned int *flags) 3385 { 3386 int ret; 3387 3388 mutex_lock(&rdev->mutex); 3389 3390 /* sanity check */ 3391 if (!rdev->desc->ops->get_error_flags) { 3392 ret = -EINVAL; 3393 goto out; 3394 } 3395 3396 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3397 out: 3398 mutex_unlock(&rdev->mutex); 3399 return ret; 3400 } 3401 3402 /** 3403 * regulator_get_error_flags - get regulator error information 3404 * @regulator: regulator source 3405 * @flags: pointer to store error flags 3406 * 3407 * Get the current regulator error information. 3408 */ 3409 int regulator_get_error_flags(struct regulator *regulator, 3410 unsigned int *flags) 3411 { 3412 return _regulator_get_error_flags(regulator->rdev, flags); 3413 } 3414 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3415 3416 /** 3417 * regulator_set_load - set regulator load 3418 * @regulator: regulator source 3419 * @uA_load: load current 3420 * 3421 * Notifies the regulator core of a new device load. This is then used by 3422 * DRMS (if enabled by constraints) to set the most efficient regulator 3423 * operating mode for the new regulator loading. 3424 * 3425 * Consumer devices notify their supply regulator of the maximum power 3426 * they will require (can be taken from device datasheet in the power 3427 * consumption tables) when they change operational status and hence power 3428 * state. Examples of operational state changes that can affect power 3429 * consumption are :- 3430 * 3431 * o Device is opened / closed. 3432 * o Device I/O is about to begin or has just finished. 3433 * o Device is idling in between work. 3434 * 3435 * This information is also exported via sysfs to userspace. 3436 * 3437 * DRMS will sum the total requested load on the regulator and change 3438 * to the most efficient operating mode if platform constraints allow. 3439 * 3440 * On error a negative errno is returned. 3441 */ 3442 int regulator_set_load(struct regulator *regulator, int uA_load) 3443 { 3444 struct regulator_dev *rdev = regulator->rdev; 3445 int ret; 3446 3447 mutex_lock(&rdev->mutex); 3448 regulator->uA_load = uA_load; 3449 ret = drms_uA_update(rdev); 3450 mutex_unlock(&rdev->mutex); 3451 3452 return ret; 3453 } 3454 EXPORT_SYMBOL_GPL(regulator_set_load); 3455 3456 /** 3457 * regulator_allow_bypass - allow the regulator to go into bypass mode 3458 * 3459 * @regulator: Regulator to configure 3460 * @enable: enable or disable bypass mode 3461 * 3462 * Allow the regulator to go into bypass mode if all other consumers 3463 * for the regulator also enable bypass mode and the machine 3464 * constraints allow this. Bypass mode means that the regulator is 3465 * simply passing the input directly to the output with no regulation. 3466 */ 3467 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3468 { 3469 struct regulator_dev *rdev = regulator->rdev; 3470 int ret = 0; 3471 3472 if (!rdev->desc->ops->set_bypass) 3473 return 0; 3474 3475 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3476 return 0; 3477 3478 mutex_lock(&rdev->mutex); 3479 3480 if (enable && !regulator->bypass) { 3481 rdev->bypass_count++; 3482 3483 if (rdev->bypass_count == rdev->open_count) { 3484 ret = rdev->desc->ops->set_bypass(rdev, enable); 3485 if (ret != 0) 3486 rdev->bypass_count--; 3487 } 3488 3489 } else if (!enable && regulator->bypass) { 3490 rdev->bypass_count--; 3491 3492 if (rdev->bypass_count != rdev->open_count) { 3493 ret = rdev->desc->ops->set_bypass(rdev, enable); 3494 if (ret != 0) 3495 rdev->bypass_count++; 3496 } 3497 } 3498 3499 if (ret == 0) 3500 regulator->bypass = enable; 3501 3502 mutex_unlock(&rdev->mutex); 3503 3504 return ret; 3505 } 3506 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3507 3508 /** 3509 * regulator_register_notifier - register regulator event notifier 3510 * @regulator: regulator source 3511 * @nb: notifier block 3512 * 3513 * Register notifier block to receive regulator events. 3514 */ 3515 int regulator_register_notifier(struct regulator *regulator, 3516 struct notifier_block *nb) 3517 { 3518 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3519 nb); 3520 } 3521 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3522 3523 /** 3524 * regulator_unregister_notifier - unregister regulator event notifier 3525 * @regulator: regulator source 3526 * @nb: notifier block 3527 * 3528 * Unregister regulator event notifier block. 3529 */ 3530 int regulator_unregister_notifier(struct regulator *regulator, 3531 struct notifier_block *nb) 3532 { 3533 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3534 nb); 3535 } 3536 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3537 3538 /* notify regulator consumers and downstream regulator consumers. 3539 * Note mutex must be held by caller. 3540 */ 3541 static int _notifier_call_chain(struct regulator_dev *rdev, 3542 unsigned long event, void *data) 3543 { 3544 /* call rdev chain first */ 3545 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3546 } 3547 3548 /** 3549 * regulator_bulk_get - get multiple regulator consumers 3550 * 3551 * @dev: Device to supply 3552 * @num_consumers: Number of consumers to register 3553 * @consumers: Configuration of consumers; clients are stored here. 3554 * 3555 * @return 0 on success, an errno on failure. 3556 * 3557 * This helper function allows drivers to get several regulator 3558 * consumers in one operation. If any of the regulators cannot be 3559 * acquired then any regulators that were allocated will be freed 3560 * before returning to the caller. 3561 */ 3562 int regulator_bulk_get(struct device *dev, int num_consumers, 3563 struct regulator_bulk_data *consumers) 3564 { 3565 int i; 3566 int ret; 3567 3568 for (i = 0; i < num_consumers; i++) 3569 consumers[i].consumer = NULL; 3570 3571 for (i = 0; i < num_consumers; i++) { 3572 consumers[i].consumer = regulator_get(dev, 3573 consumers[i].supply); 3574 if (IS_ERR(consumers[i].consumer)) { 3575 ret = PTR_ERR(consumers[i].consumer); 3576 dev_err(dev, "Failed to get supply '%s': %d\n", 3577 consumers[i].supply, ret); 3578 consumers[i].consumer = NULL; 3579 goto err; 3580 } 3581 } 3582 3583 return 0; 3584 3585 err: 3586 while (--i >= 0) 3587 regulator_put(consumers[i].consumer); 3588 3589 return ret; 3590 } 3591 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3592 3593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3594 { 3595 struct regulator_bulk_data *bulk = data; 3596 3597 bulk->ret = regulator_enable(bulk->consumer); 3598 } 3599 3600 /** 3601 * regulator_bulk_enable - enable multiple regulator consumers 3602 * 3603 * @num_consumers: Number of consumers 3604 * @consumers: Consumer data; clients are stored here. 3605 * @return 0 on success, an errno on failure 3606 * 3607 * This convenience API allows consumers to enable multiple regulator 3608 * clients in a single API call. If any consumers cannot be enabled 3609 * then any others that were enabled will be disabled again prior to 3610 * return. 3611 */ 3612 int regulator_bulk_enable(int num_consumers, 3613 struct regulator_bulk_data *consumers) 3614 { 3615 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3616 int i; 3617 int ret = 0; 3618 3619 for (i = 0; i < num_consumers; i++) { 3620 if (consumers[i].consumer->always_on) 3621 consumers[i].ret = 0; 3622 else 3623 async_schedule_domain(regulator_bulk_enable_async, 3624 &consumers[i], &async_domain); 3625 } 3626 3627 async_synchronize_full_domain(&async_domain); 3628 3629 /* If any consumer failed we need to unwind any that succeeded */ 3630 for (i = 0; i < num_consumers; i++) { 3631 if (consumers[i].ret != 0) { 3632 ret = consumers[i].ret; 3633 goto err; 3634 } 3635 } 3636 3637 return 0; 3638 3639 err: 3640 for (i = 0; i < num_consumers; i++) { 3641 if (consumers[i].ret < 0) 3642 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3643 consumers[i].ret); 3644 else 3645 regulator_disable(consumers[i].consumer); 3646 } 3647 3648 return ret; 3649 } 3650 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3651 3652 /** 3653 * regulator_bulk_disable - disable multiple regulator consumers 3654 * 3655 * @num_consumers: Number of consumers 3656 * @consumers: Consumer data; clients are stored here. 3657 * @return 0 on success, an errno on failure 3658 * 3659 * This convenience API allows consumers to disable multiple regulator 3660 * clients in a single API call. If any consumers cannot be disabled 3661 * then any others that were disabled will be enabled again prior to 3662 * return. 3663 */ 3664 int regulator_bulk_disable(int num_consumers, 3665 struct regulator_bulk_data *consumers) 3666 { 3667 int i; 3668 int ret, r; 3669 3670 for (i = num_consumers - 1; i >= 0; --i) { 3671 ret = regulator_disable(consumers[i].consumer); 3672 if (ret != 0) 3673 goto err; 3674 } 3675 3676 return 0; 3677 3678 err: 3679 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3680 for (++i; i < num_consumers; ++i) { 3681 r = regulator_enable(consumers[i].consumer); 3682 if (r != 0) 3683 pr_err("Failed to re-enable %s: %d\n", 3684 consumers[i].supply, r); 3685 } 3686 3687 return ret; 3688 } 3689 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3690 3691 /** 3692 * regulator_bulk_force_disable - force disable multiple regulator consumers 3693 * 3694 * @num_consumers: Number of consumers 3695 * @consumers: Consumer data; clients are stored here. 3696 * @return 0 on success, an errno on failure 3697 * 3698 * This convenience API allows consumers to forcibly disable multiple regulator 3699 * clients in a single API call. 3700 * NOTE: This should be used for situations when device damage will 3701 * likely occur if the regulators are not disabled (e.g. over temp). 3702 * Although regulator_force_disable function call for some consumers can 3703 * return error numbers, the function is called for all consumers. 3704 */ 3705 int regulator_bulk_force_disable(int num_consumers, 3706 struct regulator_bulk_data *consumers) 3707 { 3708 int i; 3709 int ret = 0; 3710 3711 for (i = 0; i < num_consumers; i++) { 3712 consumers[i].ret = 3713 regulator_force_disable(consumers[i].consumer); 3714 3715 /* Store first error for reporting */ 3716 if (consumers[i].ret && !ret) 3717 ret = consumers[i].ret; 3718 } 3719 3720 return ret; 3721 } 3722 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3723 3724 /** 3725 * regulator_bulk_free - free multiple regulator consumers 3726 * 3727 * @num_consumers: Number of consumers 3728 * @consumers: Consumer data; clients are stored here. 3729 * 3730 * This convenience API allows consumers to free multiple regulator 3731 * clients in a single API call. 3732 */ 3733 void regulator_bulk_free(int num_consumers, 3734 struct regulator_bulk_data *consumers) 3735 { 3736 int i; 3737 3738 for (i = 0; i < num_consumers; i++) { 3739 regulator_put(consumers[i].consumer); 3740 consumers[i].consumer = NULL; 3741 } 3742 } 3743 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3744 3745 /** 3746 * regulator_notifier_call_chain - call regulator event notifier 3747 * @rdev: regulator source 3748 * @event: notifier block 3749 * @data: callback-specific data. 3750 * 3751 * Called by regulator drivers to notify clients a regulator event has 3752 * occurred. We also notify regulator clients downstream. 3753 * Note lock must be held by caller. 3754 */ 3755 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3756 unsigned long event, void *data) 3757 { 3758 lockdep_assert_held_once(&rdev->mutex); 3759 3760 _notifier_call_chain(rdev, event, data); 3761 return NOTIFY_DONE; 3762 3763 } 3764 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3765 3766 /** 3767 * regulator_mode_to_status - convert a regulator mode into a status 3768 * 3769 * @mode: Mode to convert 3770 * 3771 * Convert a regulator mode into a status. 3772 */ 3773 int regulator_mode_to_status(unsigned int mode) 3774 { 3775 switch (mode) { 3776 case REGULATOR_MODE_FAST: 3777 return REGULATOR_STATUS_FAST; 3778 case REGULATOR_MODE_NORMAL: 3779 return REGULATOR_STATUS_NORMAL; 3780 case REGULATOR_MODE_IDLE: 3781 return REGULATOR_STATUS_IDLE; 3782 case REGULATOR_MODE_STANDBY: 3783 return REGULATOR_STATUS_STANDBY; 3784 default: 3785 return REGULATOR_STATUS_UNDEFINED; 3786 } 3787 } 3788 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3789 3790 static struct attribute *regulator_dev_attrs[] = { 3791 &dev_attr_name.attr, 3792 &dev_attr_num_users.attr, 3793 &dev_attr_type.attr, 3794 &dev_attr_microvolts.attr, 3795 &dev_attr_microamps.attr, 3796 &dev_attr_opmode.attr, 3797 &dev_attr_state.attr, 3798 &dev_attr_status.attr, 3799 &dev_attr_bypass.attr, 3800 &dev_attr_requested_microamps.attr, 3801 &dev_attr_min_microvolts.attr, 3802 &dev_attr_max_microvolts.attr, 3803 &dev_attr_min_microamps.attr, 3804 &dev_attr_max_microamps.attr, 3805 &dev_attr_suspend_standby_state.attr, 3806 &dev_attr_suspend_mem_state.attr, 3807 &dev_attr_suspend_disk_state.attr, 3808 &dev_attr_suspend_standby_microvolts.attr, 3809 &dev_attr_suspend_mem_microvolts.attr, 3810 &dev_attr_suspend_disk_microvolts.attr, 3811 &dev_attr_suspend_standby_mode.attr, 3812 &dev_attr_suspend_mem_mode.attr, 3813 &dev_attr_suspend_disk_mode.attr, 3814 NULL 3815 }; 3816 3817 /* 3818 * To avoid cluttering sysfs (and memory) with useless state, only 3819 * create attributes that can be meaningfully displayed. 3820 */ 3821 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3822 struct attribute *attr, int idx) 3823 { 3824 struct device *dev = kobj_to_dev(kobj); 3825 struct regulator_dev *rdev = dev_to_rdev(dev); 3826 const struct regulator_ops *ops = rdev->desc->ops; 3827 umode_t mode = attr->mode; 3828 3829 /* these three are always present */ 3830 if (attr == &dev_attr_name.attr || 3831 attr == &dev_attr_num_users.attr || 3832 attr == &dev_attr_type.attr) 3833 return mode; 3834 3835 /* some attributes need specific methods to be displayed */ 3836 if (attr == &dev_attr_microvolts.attr) { 3837 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3838 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3839 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3840 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3841 return mode; 3842 return 0; 3843 } 3844 3845 if (attr == &dev_attr_microamps.attr) 3846 return ops->get_current_limit ? mode : 0; 3847 3848 if (attr == &dev_attr_opmode.attr) 3849 return ops->get_mode ? mode : 0; 3850 3851 if (attr == &dev_attr_state.attr) 3852 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3853 3854 if (attr == &dev_attr_status.attr) 3855 return ops->get_status ? mode : 0; 3856 3857 if (attr == &dev_attr_bypass.attr) 3858 return ops->get_bypass ? mode : 0; 3859 3860 /* some attributes are type-specific */ 3861 if (attr == &dev_attr_requested_microamps.attr) 3862 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3863 3864 /* constraints need specific supporting methods */ 3865 if (attr == &dev_attr_min_microvolts.attr || 3866 attr == &dev_attr_max_microvolts.attr) 3867 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3868 3869 if (attr == &dev_attr_min_microamps.attr || 3870 attr == &dev_attr_max_microamps.attr) 3871 return ops->set_current_limit ? mode : 0; 3872 3873 if (attr == &dev_attr_suspend_standby_state.attr || 3874 attr == &dev_attr_suspend_mem_state.attr || 3875 attr == &dev_attr_suspend_disk_state.attr) 3876 return mode; 3877 3878 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3879 attr == &dev_attr_suspend_mem_microvolts.attr || 3880 attr == &dev_attr_suspend_disk_microvolts.attr) 3881 return ops->set_suspend_voltage ? mode : 0; 3882 3883 if (attr == &dev_attr_suspend_standby_mode.attr || 3884 attr == &dev_attr_suspend_mem_mode.attr || 3885 attr == &dev_attr_suspend_disk_mode.attr) 3886 return ops->set_suspend_mode ? mode : 0; 3887 3888 return mode; 3889 } 3890 3891 static const struct attribute_group regulator_dev_group = { 3892 .attrs = regulator_dev_attrs, 3893 .is_visible = regulator_attr_is_visible, 3894 }; 3895 3896 static const struct attribute_group *regulator_dev_groups[] = { 3897 ®ulator_dev_group, 3898 NULL 3899 }; 3900 3901 static void regulator_dev_release(struct device *dev) 3902 { 3903 struct regulator_dev *rdev = dev_get_drvdata(dev); 3904 3905 kfree(rdev->constraints); 3906 of_node_put(rdev->dev.of_node); 3907 kfree(rdev); 3908 } 3909 3910 static struct class regulator_class = { 3911 .name = "regulator", 3912 .dev_release = regulator_dev_release, 3913 .dev_groups = regulator_dev_groups, 3914 }; 3915 3916 static void rdev_init_debugfs(struct regulator_dev *rdev) 3917 { 3918 struct device *parent = rdev->dev.parent; 3919 const char *rname = rdev_get_name(rdev); 3920 char name[NAME_MAX]; 3921 3922 /* Avoid duplicate debugfs directory names */ 3923 if (parent && rname == rdev->desc->name) { 3924 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3925 rname); 3926 rname = name; 3927 } 3928 3929 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3930 if (!rdev->debugfs) { 3931 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3932 return; 3933 } 3934 3935 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3936 &rdev->use_count); 3937 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3938 &rdev->open_count); 3939 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3940 &rdev->bypass_count); 3941 } 3942 3943 static int regulator_register_resolve_supply(struct device *dev, void *data) 3944 { 3945 struct regulator_dev *rdev = dev_to_rdev(dev); 3946 3947 if (regulator_resolve_supply(rdev)) 3948 rdev_dbg(rdev, "unable to resolve supply\n"); 3949 3950 return 0; 3951 } 3952 3953 /** 3954 * regulator_register - register regulator 3955 * @regulator_desc: regulator to register 3956 * @cfg: runtime configuration for regulator 3957 * 3958 * Called by regulator drivers to register a regulator. 3959 * Returns a valid pointer to struct regulator_dev on success 3960 * or an ERR_PTR() on error. 3961 */ 3962 struct regulator_dev * 3963 regulator_register(const struct regulator_desc *regulator_desc, 3964 const struct regulator_config *cfg) 3965 { 3966 const struct regulation_constraints *constraints = NULL; 3967 const struct regulator_init_data *init_data; 3968 struct regulator_config *config = NULL; 3969 static atomic_t regulator_no = ATOMIC_INIT(-1); 3970 struct regulator_dev *rdev; 3971 struct device *dev; 3972 int ret, i; 3973 3974 if (regulator_desc == NULL || cfg == NULL) 3975 return ERR_PTR(-EINVAL); 3976 3977 dev = cfg->dev; 3978 WARN_ON(!dev); 3979 3980 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3981 return ERR_PTR(-EINVAL); 3982 3983 if (regulator_desc->type != REGULATOR_VOLTAGE && 3984 regulator_desc->type != REGULATOR_CURRENT) 3985 return ERR_PTR(-EINVAL); 3986 3987 /* Only one of each should be implemented */ 3988 WARN_ON(regulator_desc->ops->get_voltage && 3989 regulator_desc->ops->get_voltage_sel); 3990 WARN_ON(regulator_desc->ops->set_voltage && 3991 regulator_desc->ops->set_voltage_sel); 3992 3993 /* If we're using selectors we must implement list_voltage. */ 3994 if (regulator_desc->ops->get_voltage_sel && 3995 !regulator_desc->ops->list_voltage) { 3996 return ERR_PTR(-EINVAL); 3997 } 3998 if (regulator_desc->ops->set_voltage_sel && 3999 !regulator_desc->ops->list_voltage) { 4000 return ERR_PTR(-EINVAL); 4001 } 4002 4003 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4004 if (rdev == NULL) 4005 return ERR_PTR(-ENOMEM); 4006 4007 /* 4008 * Duplicate the config so the driver could override it after 4009 * parsing init data. 4010 */ 4011 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4012 if (config == NULL) { 4013 kfree(rdev); 4014 return ERR_PTR(-ENOMEM); 4015 } 4016 4017 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4018 &rdev->dev.of_node); 4019 if (!init_data) { 4020 init_data = config->init_data; 4021 rdev->dev.of_node = of_node_get(config->of_node); 4022 } 4023 4024 mutex_init(&rdev->mutex); 4025 rdev->reg_data = config->driver_data; 4026 rdev->owner = regulator_desc->owner; 4027 rdev->desc = regulator_desc; 4028 if (config->regmap) 4029 rdev->regmap = config->regmap; 4030 else if (dev_get_regmap(dev, NULL)) 4031 rdev->regmap = dev_get_regmap(dev, NULL); 4032 else if (dev->parent) 4033 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4034 INIT_LIST_HEAD(&rdev->consumer_list); 4035 INIT_LIST_HEAD(&rdev->list); 4036 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4037 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4038 4039 /* preform any regulator specific init */ 4040 if (init_data && init_data->regulator_init) { 4041 ret = init_data->regulator_init(rdev->reg_data); 4042 if (ret < 0) 4043 goto clean; 4044 } 4045 4046 if ((config->ena_gpio || config->ena_gpio_initialized) && 4047 gpio_is_valid(config->ena_gpio)) { 4048 mutex_lock(®ulator_list_mutex); 4049 ret = regulator_ena_gpio_request(rdev, config); 4050 mutex_unlock(®ulator_list_mutex); 4051 if (ret != 0) { 4052 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4053 config->ena_gpio, ret); 4054 goto clean; 4055 } 4056 } 4057 4058 /* register with sysfs */ 4059 rdev->dev.class = ®ulator_class; 4060 rdev->dev.parent = dev; 4061 dev_set_name(&rdev->dev, "regulator.%lu", 4062 (unsigned long) atomic_inc_return(®ulator_no)); 4063 4064 /* set regulator constraints */ 4065 if (init_data) 4066 constraints = &init_data->constraints; 4067 4068 if (init_data && init_data->supply_regulator) 4069 rdev->supply_name = init_data->supply_regulator; 4070 else if (regulator_desc->supply_name) 4071 rdev->supply_name = regulator_desc->supply_name; 4072 4073 /* 4074 * Attempt to resolve the regulator supply, if specified, 4075 * but don't return an error if we fail because we will try 4076 * to resolve it again later as more regulators are added. 4077 */ 4078 if (regulator_resolve_supply(rdev)) 4079 rdev_dbg(rdev, "unable to resolve supply\n"); 4080 4081 ret = set_machine_constraints(rdev, constraints); 4082 if (ret < 0) 4083 goto wash; 4084 4085 /* add consumers devices */ 4086 if (init_data) { 4087 mutex_lock(®ulator_list_mutex); 4088 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4089 ret = set_consumer_device_supply(rdev, 4090 init_data->consumer_supplies[i].dev_name, 4091 init_data->consumer_supplies[i].supply); 4092 if (ret < 0) { 4093 mutex_unlock(®ulator_list_mutex); 4094 dev_err(dev, "Failed to set supply %s\n", 4095 init_data->consumer_supplies[i].supply); 4096 goto unset_supplies; 4097 } 4098 } 4099 mutex_unlock(®ulator_list_mutex); 4100 } 4101 4102 ret = device_register(&rdev->dev); 4103 if (ret != 0) { 4104 put_device(&rdev->dev); 4105 goto unset_supplies; 4106 } 4107 4108 dev_set_drvdata(&rdev->dev, rdev); 4109 rdev_init_debugfs(rdev); 4110 4111 /* try to resolve regulators supply since a new one was registered */ 4112 class_for_each_device(®ulator_class, NULL, NULL, 4113 regulator_register_resolve_supply); 4114 kfree(config); 4115 return rdev; 4116 4117 unset_supplies: 4118 mutex_lock(®ulator_list_mutex); 4119 unset_regulator_supplies(rdev); 4120 mutex_unlock(®ulator_list_mutex); 4121 wash: 4122 kfree(rdev->constraints); 4123 mutex_lock(®ulator_list_mutex); 4124 regulator_ena_gpio_free(rdev); 4125 mutex_unlock(®ulator_list_mutex); 4126 clean: 4127 kfree(rdev); 4128 kfree(config); 4129 return ERR_PTR(ret); 4130 } 4131 EXPORT_SYMBOL_GPL(regulator_register); 4132 4133 /** 4134 * regulator_unregister - unregister regulator 4135 * @rdev: regulator to unregister 4136 * 4137 * Called by regulator drivers to unregister a regulator. 4138 */ 4139 void regulator_unregister(struct regulator_dev *rdev) 4140 { 4141 if (rdev == NULL) 4142 return; 4143 4144 if (rdev->supply) { 4145 while (rdev->use_count--) 4146 regulator_disable(rdev->supply); 4147 regulator_put(rdev->supply); 4148 } 4149 mutex_lock(®ulator_list_mutex); 4150 debugfs_remove_recursive(rdev->debugfs); 4151 flush_work(&rdev->disable_work.work); 4152 WARN_ON(rdev->open_count); 4153 unset_regulator_supplies(rdev); 4154 list_del(&rdev->list); 4155 regulator_ena_gpio_free(rdev); 4156 mutex_unlock(®ulator_list_mutex); 4157 device_unregister(&rdev->dev); 4158 } 4159 EXPORT_SYMBOL_GPL(regulator_unregister); 4160 4161 static int _regulator_suspend_prepare(struct device *dev, void *data) 4162 { 4163 struct regulator_dev *rdev = dev_to_rdev(dev); 4164 const suspend_state_t *state = data; 4165 int ret; 4166 4167 mutex_lock(&rdev->mutex); 4168 ret = suspend_prepare(rdev, *state); 4169 mutex_unlock(&rdev->mutex); 4170 4171 return ret; 4172 } 4173 4174 /** 4175 * regulator_suspend_prepare - prepare regulators for system wide suspend 4176 * @state: system suspend state 4177 * 4178 * Configure each regulator with it's suspend operating parameters for state. 4179 * This will usually be called by machine suspend code prior to supending. 4180 */ 4181 int regulator_suspend_prepare(suspend_state_t state) 4182 { 4183 /* ON is handled by regulator active state */ 4184 if (state == PM_SUSPEND_ON) 4185 return -EINVAL; 4186 4187 return class_for_each_device(®ulator_class, NULL, &state, 4188 _regulator_suspend_prepare); 4189 } 4190 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 4191 4192 static int _regulator_suspend_finish(struct device *dev, void *data) 4193 { 4194 struct regulator_dev *rdev = dev_to_rdev(dev); 4195 int ret; 4196 4197 mutex_lock(&rdev->mutex); 4198 if (rdev->use_count > 0 || rdev->constraints->always_on) { 4199 if (!_regulator_is_enabled(rdev)) { 4200 ret = _regulator_do_enable(rdev); 4201 if (ret) 4202 dev_err(dev, 4203 "Failed to resume regulator %d\n", 4204 ret); 4205 } 4206 } else { 4207 if (!have_full_constraints()) 4208 goto unlock; 4209 if (!_regulator_is_enabled(rdev)) 4210 goto unlock; 4211 4212 ret = _regulator_do_disable(rdev); 4213 if (ret) 4214 dev_err(dev, "Failed to suspend regulator %d\n", ret); 4215 } 4216 unlock: 4217 mutex_unlock(&rdev->mutex); 4218 4219 /* Keep processing regulators in spite of any errors */ 4220 return 0; 4221 } 4222 4223 /** 4224 * regulator_suspend_finish - resume regulators from system wide suspend 4225 * 4226 * Turn on regulators that might be turned off by regulator_suspend_prepare 4227 * and that should be turned on according to the regulators properties. 4228 */ 4229 int regulator_suspend_finish(void) 4230 { 4231 return class_for_each_device(®ulator_class, NULL, NULL, 4232 _regulator_suspend_finish); 4233 } 4234 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 4235 4236 /** 4237 * regulator_has_full_constraints - the system has fully specified constraints 4238 * 4239 * Calling this function will cause the regulator API to disable all 4240 * regulators which have a zero use count and don't have an always_on 4241 * constraint in a late_initcall. 4242 * 4243 * The intention is that this will become the default behaviour in a 4244 * future kernel release so users are encouraged to use this facility 4245 * now. 4246 */ 4247 void regulator_has_full_constraints(void) 4248 { 4249 has_full_constraints = 1; 4250 } 4251 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4252 4253 /** 4254 * rdev_get_drvdata - get rdev regulator driver data 4255 * @rdev: regulator 4256 * 4257 * Get rdev regulator driver private data. This call can be used in the 4258 * regulator driver context. 4259 */ 4260 void *rdev_get_drvdata(struct regulator_dev *rdev) 4261 { 4262 return rdev->reg_data; 4263 } 4264 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4265 4266 /** 4267 * regulator_get_drvdata - get regulator driver data 4268 * @regulator: regulator 4269 * 4270 * Get regulator driver private data. This call can be used in the consumer 4271 * driver context when non API regulator specific functions need to be called. 4272 */ 4273 void *regulator_get_drvdata(struct regulator *regulator) 4274 { 4275 return regulator->rdev->reg_data; 4276 } 4277 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4278 4279 /** 4280 * regulator_set_drvdata - set regulator driver data 4281 * @regulator: regulator 4282 * @data: data 4283 */ 4284 void regulator_set_drvdata(struct regulator *regulator, void *data) 4285 { 4286 regulator->rdev->reg_data = data; 4287 } 4288 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4289 4290 /** 4291 * regulator_get_id - get regulator ID 4292 * @rdev: regulator 4293 */ 4294 int rdev_get_id(struct regulator_dev *rdev) 4295 { 4296 return rdev->desc->id; 4297 } 4298 EXPORT_SYMBOL_GPL(rdev_get_id); 4299 4300 struct device *rdev_get_dev(struct regulator_dev *rdev) 4301 { 4302 return &rdev->dev; 4303 } 4304 EXPORT_SYMBOL_GPL(rdev_get_dev); 4305 4306 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4307 { 4308 return reg_init_data->driver_data; 4309 } 4310 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4311 4312 #ifdef CONFIG_DEBUG_FS 4313 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4314 size_t count, loff_t *ppos) 4315 { 4316 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4317 ssize_t len, ret = 0; 4318 struct regulator_map *map; 4319 4320 if (!buf) 4321 return -ENOMEM; 4322 4323 list_for_each_entry(map, ®ulator_map_list, list) { 4324 len = snprintf(buf + ret, PAGE_SIZE - ret, 4325 "%s -> %s.%s\n", 4326 rdev_get_name(map->regulator), map->dev_name, 4327 map->supply); 4328 if (len >= 0) 4329 ret += len; 4330 if (ret > PAGE_SIZE) { 4331 ret = PAGE_SIZE; 4332 break; 4333 } 4334 } 4335 4336 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4337 4338 kfree(buf); 4339 4340 return ret; 4341 } 4342 #endif 4343 4344 static const struct file_operations supply_map_fops = { 4345 #ifdef CONFIG_DEBUG_FS 4346 .read = supply_map_read_file, 4347 .llseek = default_llseek, 4348 #endif 4349 }; 4350 4351 #ifdef CONFIG_DEBUG_FS 4352 struct summary_data { 4353 struct seq_file *s; 4354 struct regulator_dev *parent; 4355 int level; 4356 }; 4357 4358 static void regulator_summary_show_subtree(struct seq_file *s, 4359 struct regulator_dev *rdev, 4360 int level); 4361 4362 static int regulator_summary_show_children(struct device *dev, void *data) 4363 { 4364 struct regulator_dev *rdev = dev_to_rdev(dev); 4365 struct summary_data *summary_data = data; 4366 4367 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4368 regulator_summary_show_subtree(summary_data->s, rdev, 4369 summary_data->level + 1); 4370 4371 return 0; 4372 } 4373 4374 static void regulator_summary_show_subtree(struct seq_file *s, 4375 struct regulator_dev *rdev, 4376 int level) 4377 { 4378 struct regulation_constraints *c; 4379 struct regulator *consumer; 4380 struct summary_data summary_data; 4381 4382 if (!rdev) 4383 return; 4384 4385 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4386 level * 3 + 1, "", 4387 30 - level * 3, rdev_get_name(rdev), 4388 rdev->use_count, rdev->open_count, rdev->bypass_count); 4389 4390 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4391 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4392 4393 c = rdev->constraints; 4394 if (c) { 4395 switch (rdev->desc->type) { 4396 case REGULATOR_VOLTAGE: 4397 seq_printf(s, "%5dmV %5dmV ", 4398 c->min_uV / 1000, c->max_uV / 1000); 4399 break; 4400 case REGULATOR_CURRENT: 4401 seq_printf(s, "%5dmA %5dmA ", 4402 c->min_uA / 1000, c->max_uA / 1000); 4403 break; 4404 } 4405 } 4406 4407 seq_puts(s, "\n"); 4408 4409 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4410 if (consumer->dev && consumer->dev->class == ®ulator_class) 4411 continue; 4412 4413 seq_printf(s, "%*s%-*s ", 4414 (level + 1) * 3 + 1, "", 4415 30 - (level + 1) * 3, 4416 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4417 4418 switch (rdev->desc->type) { 4419 case REGULATOR_VOLTAGE: 4420 seq_printf(s, "%37dmV %5dmV", 4421 consumer->min_uV / 1000, 4422 consumer->max_uV / 1000); 4423 break; 4424 case REGULATOR_CURRENT: 4425 break; 4426 } 4427 4428 seq_puts(s, "\n"); 4429 } 4430 4431 summary_data.s = s; 4432 summary_data.level = level; 4433 summary_data.parent = rdev; 4434 4435 class_for_each_device(®ulator_class, NULL, &summary_data, 4436 regulator_summary_show_children); 4437 } 4438 4439 static int regulator_summary_show_roots(struct device *dev, void *data) 4440 { 4441 struct regulator_dev *rdev = dev_to_rdev(dev); 4442 struct seq_file *s = data; 4443 4444 if (!rdev->supply) 4445 regulator_summary_show_subtree(s, rdev, 0); 4446 4447 return 0; 4448 } 4449 4450 static int regulator_summary_show(struct seq_file *s, void *data) 4451 { 4452 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4453 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4454 4455 class_for_each_device(®ulator_class, NULL, s, 4456 regulator_summary_show_roots); 4457 4458 return 0; 4459 } 4460 4461 static int regulator_summary_open(struct inode *inode, struct file *file) 4462 { 4463 return single_open(file, regulator_summary_show, inode->i_private); 4464 } 4465 #endif 4466 4467 static const struct file_operations regulator_summary_fops = { 4468 #ifdef CONFIG_DEBUG_FS 4469 .open = regulator_summary_open, 4470 .read = seq_read, 4471 .llseek = seq_lseek, 4472 .release = single_release, 4473 #endif 4474 }; 4475 4476 static int __init regulator_init(void) 4477 { 4478 int ret; 4479 4480 ret = class_register(®ulator_class); 4481 4482 debugfs_root = debugfs_create_dir("regulator", NULL); 4483 if (!debugfs_root) 4484 pr_warn("regulator: Failed to create debugfs directory\n"); 4485 4486 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4487 &supply_map_fops); 4488 4489 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4490 NULL, ®ulator_summary_fops); 4491 4492 regulator_dummy_init(); 4493 4494 return ret; 4495 } 4496 4497 /* init early to allow our consumers to complete system booting */ 4498 core_initcall(regulator_init); 4499 4500 static int __init regulator_late_cleanup(struct device *dev, void *data) 4501 { 4502 struct regulator_dev *rdev = dev_to_rdev(dev); 4503 const struct regulator_ops *ops = rdev->desc->ops; 4504 struct regulation_constraints *c = rdev->constraints; 4505 int enabled, ret; 4506 4507 if (c && c->always_on) 4508 return 0; 4509 4510 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4511 return 0; 4512 4513 mutex_lock(&rdev->mutex); 4514 4515 if (rdev->use_count) 4516 goto unlock; 4517 4518 /* If we can't read the status assume it's on. */ 4519 if (ops->is_enabled) 4520 enabled = ops->is_enabled(rdev); 4521 else 4522 enabled = 1; 4523 4524 if (!enabled) 4525 goto unlock; 4526 4527 if (have_full_constraints()) { 4528 /* We log since this may kill the system if it goes 4529 * wrong. */ 4530 rdev_info(rdev, "disabling\n"); 4531 ret = _regulator_do_disable(rdev); 4532 if (ret != 0) 4533 rdev_err(rdev, "couldn't disable: %d\n", ret); 4534 } else { 4535 /* The intention is that in future we will 4536 * assume that full constraints are provided 4537 * so warn even if we aren't going to do 4538 * anything here. 4539 */ 4540 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4541 } 4542 4543 unlock: 4544 mutex_unlock(&rdev->mutex); 4545 4546 return 0; 4547 } 4548 4549 static int __init regulator_init_complete(void) 4550 { 4551 /* 4552 * Since DT doesn't provide an idiomatic mechanism for 4553 * enabling full constraints and since it's much more natural 4554 * with DT to provide them just assume that a DT enabled 4555 * system has full constraints. 4556 */ 4557 if (of_have_populated_dt()) 4558 has_full_constraints = true; 4559 4560 /* 4561 * Regulators may had failed to resolve their input supplies 4562 * when were registered, either because the input supply was 4563 * not registered yet or because its parent device was not 4564 * bound yet. So attempt to resolve the input supplies for 4565 * pending regulators before trying to disable unused ones. 4566 */ 4567 class_for_each_device(®ulator_class, NULL, NULL, 4568 regulator_register_resolve_supply); 4569 4570 /* If we have a full configuration then disable any regulators 4571 * we have permission to change the status for and which are 4572 * not in use or always_on. This is effectively the default 4573 * for DT and ACPI as they have full constraints. 4574 */ 4575 class_for_each_device(®ulator_class, NULL, NULL, 4576 regulator_late_cleanup); 4577 4578 return 0; 4579 } 4580 late_initcall_sync(regulator_init_complete); 4581