xref: /linux/drivers/regulator/core.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	struct gpio_desc *gpiod;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130 	if (!rdev->constraints) {
131 		rdev_err(rdev, "no constraints\n");
132 		return false;
133 	}
134 
135 	if (rdev->constraints->valid_ops_mask & ops)
136 		return true;
137 
138 	return false;
139 }
140 
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143 	if (rdev && rdev->supply)
144 		return rdev->supply->rdev;
145 
146 	return NULL;
147 }
148 
149 /**
150  * regulator_lock_supply - lock a regulator and its supplies
151  * @rdev:         regulator source
152  */
153 static void regulator_lock_supply(struct regulator_dev *rdev)
154 {
155 	int i;
156 
157 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
158 		mutex_lock_nested(&rdev->mutex, i);
159 }
160 
161 /**
162  * regulator_unlock_supply - unlock a regulator and its supplies
163  * @rdev:         regulator source
164  */
165 static void regulator_unlock_supply(struct regulator_dev *rdev)
166 {
167 	struct regulator *supply;
168 
169 	while (1) {
170 		mutex_unlock(&rdev->mutex);
171 		supply = rdev->supply;
172 
173 		if (!rdev->supply)
174 			return;
175 
176 		rdev = supply->rdev;
177 	}
178 }
179 
180 /**
181  * of_get_regulator - get a regulator device node based on supply name
182  * @dev: Device pointer for the consumer (of regulator) device
183  * @supply: regulator supply name
184  *
185  * Extract the regulator device node corresponding to the supply name.
186  * returns the device node corresponding to the regulator if found, else
187  * returns NULL.
188  */
189 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
190 {
191 	struct device_node *regnode = NULL;
192 	char prop_name[32]; /* 32 is max size of property name */
193 
194 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
195 
196 	snprintf(prop_name, 32, "%s-supply", supply);
197 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
198 
199 	if (!regnode) {
200 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
201 				prop_name, dev->of_node);
202 		return NULL;
203 	}
204 	return regnode;
205 }
206 
207 /* Platform voltage constraint check */
208 static int regulator_check_voltage(struct regulator_dev *rdev,
209 				   int *min_uV, int *max_uV)
210 {
211 	BUG_ON(*min_uV > *max_uV);
212 
213 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
214 		rdev_err(rdev, "voltage operation not allowed\n");
215 		return -EPERM;
216 	}
217 
218 	if (*max_uV > rdev->constraints->max_uV)
219 		*max_uV = rdev->constraints->max_uV;
220 	if (*min_uV < rdev->constraints->min_uV)
221 		*min_uV = rdev->constraints->min_uV;
222 
223 	if (*min_uV > *max_uV) {
224 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
225 			 *min_uV, *max_uV);
226 		return -EINVAL;
227 	}
228 
229 	return 0;
230 }
231 
232 /* return 0 if the state is valid */
233 static int regulator_check_states(suspend_state_t state)
234 {
235 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
236 }
237 
238 /* Make sure we select a voltage that suits the needs of all
239  * regulator consumers
240  */
241 static int regulator_check_consumers(struct regulator_dev *rdev,
242 				     int *min_uV, int *max_uV,
243 				     suspend_state_t state)
244 {
245 	struct regulator *regulator;
246 	struct regulator_voltage *voltage;
247 
248 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 		voltage = &regulator->voltage[state];
250 		/*
251 		 * Assume consumers that didn't say anything are OK
252 		 * with anything in the constraint range.
253 		 */
254 		if (!voltage->min_uV && !voltage->max_uV)
255 			continue;
256 
257 		if (*max_uV > voltage->max_uV)
258 			*max_uV = voltage->max_uV;
259 		if (*min_uV < voltage->min_uV)
260 			*min_uV = voltage->min_uV;
261 	}
262 
263 	if (*min_uV > *max_uV) {
264 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 			*min_uV, *max_uV);
266 		return -EINVAL;
267 	}
268 
269 	return 0;
270 }
271 
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 					int *min_uA, int *max_uA)
275 {
276 	BUG_ON(*min_uA > *max_uA);
277 
278 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
279 		rdev_err(rdev, "current operation not allowed\n");
280 		return -EPERM;
281 	}
282 
283 	if (*max_uA > rdev->constraints->max_uA)
284 		*max_uA = rdev->constraints->max_uA;
285 	if (*min_uA < rdev->constraints->min_uA)
286 		*min_uA = rdev->constraints->min_uA;
287 
288 	if (*min_uA > *max_uA) {
289 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
290 			 *min_uA, *max_uA);
291 		return -EINVAL;
292 	}
293 
294 	return 0;
295 }
296 
297 /* operating mode constraint check */
298 static int regulator_mode_constrain(struct regulator_dev *rdev,
299 				    unsigned int *mode)
300 {
301 	switch (*mode) {
302 	case REGULATOR_MODE_FAST:
303 	case REGULATOR_MODE_NORMAL:
304 	case REGULATOR_MODE_IDLE:
305 	case REGULATOR_MODE_STANDBY:
306 		break;
307 	default:
308 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
309 		return -EINVAL;
310 	}
311 
312 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
313 		rdev_err(rdev, "mode operation not allowed\n");
314 		return -EPERM;
315 	}
316 
317 	/* The modes are bitmasks, the most power hungry modes having
318 	 * the lowest values. If the requested mode isn't supported
319 	 * try higher modes. */
320 	while (*mode) {
321 		if (rdev->constraints->valid_modes_mask & *mode)
322 			return 0;
323 		*mode /= 2;
324 	}
325 
326 	return -EINVAL;
327 }
328 
329 static inline struct regulator_state *
330 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
331 {
332 	if (rdev->constraints == NULL)
333 		return NULL;
334 
335 	switch (state) {
336 	case PM_SUSPEND_STANDBY:
337 		return &rdev->constraints->state_standby;
338 	case PM_SUSPEND_MEM:
339 		return &rdev->constraints->state_mem;
340 	case PM_SUSPEND_MAX:
341 		return &rdev->constraints->state_disk;
342 	default:
343 		return NULL;
344 	}
345 }
346 
347 static ssize_t regulator_uV_show(struct device *dev,
348 				struct device_attribute *attr, char *buf)
349 {
350 	struct regulator_dev *rdev = dev_get_drvdata(dev);
351 	ssize_t ret;
352 
353 	mutex_lock(&rdev->mutex);
354 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
355 	mutex_unlock(&rdev->mutex);
356 
357 	return ret;
358 }
359 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
360 
361 static ssize_t regulator_uA_show(struct device *dev,
362 				struct device_attribute *attr, char *buf)
363 {
364 	struct regulator_dev *rdev = dev_get_drvdata(dev);
365 
366 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
367 }
368 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
369 
370 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
371 			 char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 
375 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
376 }
377 static DEVICE_ATTR_RO(name);
378 
379 static ssize_t regulator_print_opmode(char *buf, int mode)
380 {
381 	switch (mode) {
382 	case REGULATOR_MODE_FAST:
383 		return sprintf(buf, "fast\n");
384 	case REGULATOR_MODE_NORMAL:
385 		return sprintf(buf, "normal\n");
386 	case REGULATOR_MODE_IDLE:
387 		return sprintf(buf, "idle\n");
388 	case REGULATOR_MODE_STANDBY:
389 		return sprintf(buf, "standby\n");
390 	}
391 	return sprintf(buf, "unknown\n");
392 }
393 
394 static ssize_t regulator_opmode_show(struct device *dev,
395 				    struct device_attribute *attr, char *buf)
396 {
397 	struct regulator_dev *rdev = dev_get_drvdata(dev);
398 
399 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
400 }
401 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
402 
403 static ssize_t regulator_print_state(char *buf, int state)
404 {
405 	if (state > 0)
406 		return sprintf(buf, "enabled\n");
407 	else if (state == 0)
408 		return sprintf(buf, "disabled\n");
409 	else
410 		return sprintf(buf, "unknown\n");
411 }
412 
413 static ssize_t regulator_state_show(struct device *dev,
414 				   struct device_attribute *attr, char *buf)
415 {
416 	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 	ssize_t ret;
418 
419 	mutex_lock(&rdev->mutex);
420 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
421 	mutex_unlock(&rdev->mutex);
422 
423 	return ret;
424 }
425 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
426 
427 static ssize_t regulator_status_show(struct device *dev,
428 				   struct device_attribute *attr, char *buf)
429 {
430 	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 	int status;
432 	char *label;
433 
434 	status = rdev->desc->ops->get_status(rdev);
435 	if (status < 0)
436 		return status;
437 
438 	switch (status) {
439 	case REGULATOR_STATUS_OFF:
440 		label = "off";
441 		break;
442 	case REGULATOR_STATUS_ON:
443 		label = "on";
444 		break;
445 	case REGULATOR_STATUS_ERROR:
446 		label = "error";
447 		break;
448 	case REGULATOR_STATUS_FAST:
449 		label = "fast";
450 		break;
451 	case REGULATOR_STATUS_NORMAL:
452 		label = "normal";
453 		break;
454 	case REGULATOR_STATUS_IDLE:
455 		label = "idle";
456 		break;
457 	case REGULATOR_STATUS_STANDBY:
458 		label = "standby";
459 		break;
460 	case REGULATOR_STATUS_BYPASS:
461 		label = "bypass";
462 		break;
463 	case REGULATOR_STATUS_UNDEFINED:
464 		label = "undefined";
465 		break;
466 	default:
467 		return -ERANGE;
468 	}
469 
470 	return sprintf(buf, "%s\n", label);
471 }
472 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
473 
474 static ssize_t regulator_min_uA_show(struct device *dev,
475 				    struct device_attribute *attr, char *buf)
476 {
477 	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 
479 	if (!rdev->constraints)
480 		return sprintf(buf, "constraint not defined\n");
481 
482 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
483 }
484 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
485 
486 static ssize_t regulator_max_uA_show(struct device *dev,
487 				    struct device_attribute *attr, char *buf)
488 {
489 	struct regulator_dev *rdev = dev_get_drvdata(dev);
490 
491 	if (!rdev->constraints)
492 		return sprintf(buf, "constraint not defined\n");
493 
494 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
495 }
496 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
497 
498 static ssize_t regulator_min_uV_show(struct device *dev,
499 				    struct device_attribute *attr, char *buf)
500 {
501 	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 
503 	if (!rdev->constraints)
504 		return sprintf(buf, "constraint not defined\n");
505 
506 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
507 }
508 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
509 
510 static ssize_t regulator_max_uV_show(struct device *dev,
511 				    struct device_attribute *attr, char *buf)
512 {
513 	struct regulator_dev *rdev = dev_get_drvdata(dev);
514 
515 	if (!rdev->constraints)
516 		return sprintf(buf, "constraint not defined\n");
517 
518 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
519 }
520 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
521 
522 static ssize_t regulator_total_uA_show(struct device *dev,
523 				      struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 	struct regulator *regulator;
527 	int uA = 0;
528 
529 	mutex_lock(&rdev->mutex);
530 	list_for_each_entry(regulator, &rdev->consumer_list, list)
531 		uA += regulator->uA_load;
532 	mutex_unlock(&rdev->mutex);
533 	return sprintf(buf, "%d\n", uA);
534 }
535 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
536 
537 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
538 			      char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 	return sprintf(buf, "%d\n", rdev->use_count);
542 }
543 static DEVICE_ATTR_RO(num_users);
544 
545 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
546 			 char *buf)
547 {
548 	struct regulator_dev *rdev = dev_get_drvdata(dev);
549 
550 	switch (rdev->desc->type) {
551 	case REGULATOR_VOLTAGE:
552 		return sprintf(buf, "voltage\n");
553 	case REGULATOR_CURRENT:
554 		return sprintf(buf, "current\n");
555 	}
556 	return sprintf(buf, "unknown\n");
557 }
558 static DEVICE_ATTR_RO(type);
559 
560 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
561 				struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
566 }
567 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
568 		regulator_suspend_mem_uV_show, NULL);
569 
570 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
571 				struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
576 }
577 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
578 		regulator_suspend_disk_uV_show, NULL);
579 
580 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
581 				struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
586 }
587 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
588 		regulator_suspend_standby_uV_show, NULL);
589 
590 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
591 				struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_opmode(buf,
596 		rdev->constraints->state_mem.mode);
597 }
598 static DEVICE_ATTR(suspend_mem_mode, 0444,
599 		regulator_suspend_mem_mode_show, NULL);
600 
601 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
602 				struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_opmode(buf,
607 		rdev->constraints->state_disk.mode);
608 }
609 static DEVICE_ATTR(suspend_disk_mode, 0444,
610 		regulator_suspend_disk_mode_show, NULL);
611 
612 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
613 				struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 
617 	return regulator_print_opmode(buf,
618 		rdev->constraints->state_standby.mode);
619 }
620 static DEVICE_ATTR(suspend_standby_mode, 0444,
621 		regulator_suspend_standby_mode_show, NULL);
622 
623 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
624 				   struct device_attribute *attr, char *buf)
625 {
626 	struct regulator_dev *rdev = dev_get_drvdata(dev);
627 
628 	return regulator_print_state(buf,
629 			rdev->constraints->state_mem.enabled);
630 }
631 static DEVICE_ATTR(suspend_mem_state, 0444,
632 		regulator_suspend_mem_state_show, NULL);
633 
634 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
635 				   struct device_attribute *attr, char *buf)
636 {
637 	struct regulator_dev *rdev = dev_get_drvdata(dev);
638 
639 	return regulator_print_state(buf,
640 			rdev->constraints->state_disk.enabled);
641 }
642 static DEVICE_ATTR(suspend_disk_state, 0444,
643 		regulator_suspend_disk_state_show, NULL);
644 
645 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
646 				   struct device_attribute *attr, char *buf)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 
650 	return regulator_print_state(buf,
651 			rdev->constraints->state_standby.enabled);
652 }
653 static DEVICE_ATTR(suspend_standby_state, 0444,
654 		regulator_suspend_standby_state_show, NULL);
655 
656 static ssize_t regulator_bypass_show(struct device *dev,
657 				     struct device_attribute *attr, char *buf)
658 {
659 	struct regulator_dev *rdev = dev_get_drvdata(dev);
660 	const char *report;
661 	bool bypass;
662 	int ret;
663 
664 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
665 
666 	if (ret != 0)
667 		report = "unknown";
668 	else if (bypass)
669 		report = "enabled";
670 	else
671 		report = "disabled";
672 
673 	return sprintf(buf, "%s\n", report);
674 }
675 static DEVICE_ATTR(bypass, 0444,
676 		   regulator_bypass_show, NULL);
677 
678 /* Calculate the new optimum regulator operating mode based on the new total
679  * consumer load. All locks held by caller */
680 static int drms_uA_update(struct regulator_dev *rdev)
681 {
682 	struct regulator *sibling;
683 	int current_uA = 0, output_uV, input_uV, err;
684 	unsigned int mode;
685 
686 	lockdep_assert_held_once(&rdev->mutex);
687 
688 	/*
689 	 * first check to see if we can set modes at all, otherwise just
690 	 * tell the consumer everything is OK.
691 	 */
692 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
693 		return 0;
694 
695 	if (!rdev->desc->ops->get_optimum_mode &&
696 	    !rdev->desc->ops->set_load)
697 		return 0;
698 
699 	if (!rdev->desc->ops->set_mode &&
700 	    !rdev->desc->ops->set_load)
701 		return -EINVAL;
702 
703 	/* calc total requested load */
704 	list_for_each_entry(sibling, &rdev->consumer_list, list)
705 		current_uA += sibling->uA_load;
706 
707 	current_uA += rdev->constraints->system_load;
708 
709 	if (rdev->desc->ops->set_load) {
710 		/* set the optimum mode for our new total regulator load */
711 		err = rdev->desc->ops->set_load(rdev, current_uA);
712 		if (err < 0)
713 			rdev_err(rdev, "failed to set load %d\n", current_uA);
714 	} else {
715 		/* get output voltage */
716 		output_uV = _regulator_get_voltage(rdev);
717 		if (output_uV <= 0) {
718 			rdev_err(rdev, "invalid output voltage found\n");
719 			return -EINVAL;
720 		}
721 
722 		/* get input voltage */
723 		input_uV = 0;
724 		if (rdev->supply)
725 			input_uV = regulator_get_voltage(rdev->supply);
726 		if (input_uV <= 0)
727 			input_uV = rdev->constraints->input_uV;
728 		if (input_uV <= 0) {
729 			rdev_err(rdev, "invalid input voltage found\n");
730 			return -EINVAL;
731 		}
732 
733 		/* now get the optimum mode for our new total regulator load */
734 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
735 							 output_uV, current_uA);
736 
737 		/* check the new mode is allowed */
738 		err = regulator_mode_constrain(rdev, &mode);
739 		if (err < 0) {
740 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
741 				 current_uA, input_uV, output_uV);
742 			return err;
743 		}
744 
745 		err = rdev->desc->ops->set_mode(rdev, mode);
746 		if (err < 0)
747 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
748 	}
749 
750 	return err;
751 }
752 
753 static int suspend_set_state(struct regulator_dev *rdev,
754 				    suspend_state_t state)
755 {
756 	int ret = 0;
757 	struct regulator_state *rstate;
758 
759 	rstate = regulator_get_suspend_state(rdev, state);
760 	if (rstate == NULL)
761 		return 0;
762 
763 	/* If we have no suspend mode configration don't set anything;
764 	 * only warn if the driver implements set_suspend_voltage or
765 	 * set_suspend_mode callback.
766 	 */
767 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
768 	    rstate->enabled != DISABLE_IN_SUSPEND) {
769 		if (rdev->desc->ops->set_suspend_voltage ||
770 		    rdev->desc->ops->set_suspend_mode)
771 			rdev_warn(rdev, "No configuration\n");
772 		return 0;
773 	}
774 
775 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
776 		rdev->desc->ops->set_suspend_enable)
777 		ret = rdev->desc->ops->set_suspend_enable(rdev);
778 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
779 		rdev->desc->ops->set_suspend_disable)
780 		ret = rdev->desc->ops->set_suspend_disable(rdev);
781 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
782 		ret = 0;
783 
784 	if (ret < 0) {
785 		rdev_err(rdev, "failed to enabled/disable\n");
786 		return ret;
787 	}
788 
789 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
790 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
791 		if (ret < 0) {
792 			rdev_err(rdev, "failed to set voltage\n");
793 			return ret;
794 		}
795 	}
796 
797 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
798 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
799 		if (ret < 0) {
800 			rdev_err(rdev, "failed to set mode\n");
801 			return ret;
802 		}
803 	}
804 
805 	return ret;
806 }
807 
808 static void print_constraints(struct regulator_dev *rdev)
809 {
810 	struct regulation_constraints *constraints = rdev->constraints;
811 	char buf[160] = "";
812 	size_t len = sizeof(buf) - 1;
813 	int count = 0;
814 	int ret;
815 
816 	if (constraints->min_uV && constraints->max_uV) {
817 		if (constraints->min_uV == constraints->max_uV)
818 			count += scnprintf(buf + count, len - count, "%d mV ",
819 					   constraints->min_uV / 1000);
820 		else
821 			count += scnprintf(buf + count, len - count,
822 					   "%d <--> %d mV ",
823 					   constraints->min_uV / 1000,
824 					   constraints->max_uV / 1000);
825 	}
826 
827 	if (!constraints->min_uV ||
828 	    constraints->min_uV != constraints->max_uV) {
829 		ret = _regulator_get_voltage(rdev);
830 		if (ret > 0)
831 			count += scnprintf(buf + count, len - count,
832 					   "at %d mV ", ret / 1000);
833 	}
834 
835 	if (constraints->uV_offset)
836 		count += scnprintf(buf + count, len - count, "%dmV offset ",
837 				   constraints->uV_offset / 1000);
838 
839 	if (constraints->min_uA && constraints->max_uA) {
840 		if (constraints->min_uA == constraints->max_uA)
841 			count += scnprintf(buf + count, len - count, "%d mA ",
842 					   constraints->min_uA / 1000);
843 		else
844 			count += scnprintf(buf + count, len - count,
845 					   "%d <--> %d mA ",
846 					   constraints->min_uA / 1000,
847 					   constraints->max_uA / 1000);
848 	}
849 
850 	if (!constraints->min_uA ||
851 	    constraints->min_uA != constraints->max_uA) {
852 		ret = _regulator_get_current_limit(rdev);
853 		if (ret > 0)
854 			count += scnprintf(buf + count, len - count,
855 					   "at %d mA ", ret / 1000);
856 	}
857 
858 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
859 		count += scnprintf(buf + count, len - count, "fast ");
860 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
861 		count += scnprintf(buf + count, len - count, "normal ");
862 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
863 		count += scnprintf(buf + count, len - count, "idle ");
864 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
865 		count += scnprintf(buf + count, len - count, "standby");
866 
867 	if (!count)
868 		scnprintf(buf, len, "no parameters");
869 
870 	rdev_dbg(rdev, "%s\n", buf);
871 
872 	if ((constraints->min_uV != constraints->max_uV) &&
873 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
874 		rdev_warn(rdev,
875 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
876 }
877 
878 static int machine_constraints_voltage(struct regulator_dev *rdev,
879 	struct regulation_constraints *constraints)
880 {
881 	const struct regulator_ops *ops = rdev->desc->ops;
882 	int ret;
883 
884 	/* do we need to apply the constraint voltage */
885 	if (rdev->constraints->apply_uV &&
886 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
887 		int target_min, target_max;
888 		int current_uV = _regulator_get_voltage(rdev);
889 		if (current_uV < 0) {
890 			rdev_err(rdev,
891 				 "failed to get the current voltage(%d)\n",
892 				 current_uV);
893 			return current_uV;
894 		}
895 
896 		/*
897 		 * If we're below the minimum voltage move up to the
898 		 * minimum voltage, if we're above the maximum voltage
899 		 * then move down to the maximum.
900 		 */
901 		target_min = current_uV;
902 		target_max = current_uV;
903 
904 		if (current_uV < rdev->constraints->min_uV) {
905 			target_min = rdev->constraints->min_uV;
906 			target_max = rdev->constraints->min_uV;
907 		}
908 
909 		if (current_uV > rdev->constraints->max_uV) {
910 			target_min = rdev->constraints->max_uV;
911 			target_max = rdev->constraints->max_uV;
912 		}
913 
914 		if (target_min != current_uV || target_max != current_uV) {
915 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
916 				  current_uV, target_min, target_max);
917 			ret = _regulator_do_set_voltage(
918 				rdev, target_min, target_max);
919 			if (ret < 0) {
920 				rdev_err(rdev,
921 					"failed to apply %d-%duV constraint(%d)\n",
922 					target_min, target_max, ret);
923 				return ret;
924 			}
925 		}
926 	}
927 
928 	/* constrain machine-level voltage specs to fit
929 	 * the actual range supported by this regulator.
930 	 */
931 	if (ops->list_voltage && rdev->desc->n_voltages) {
932 		int	count = rdev->desc->n_voltages;
933 		int	i;
934 		int	min_uV = INT_MAX;
935 		int	max_uV = INT_MIN;
936 		int	cmin = constraints->min_uV;
937 		int	cmax = constraints->max_uV;
938 
939 		/* it's safe to autoconfigure fixed-voltage supplies
940 		   and the constraints are used by list_voltage. */
941 		if (count == 1 && !cmin) {
942 			cmin = 1;
943 			cmax = INT_MAX;
944 			constraints->min_uV = cmin;
945 			constraints->max_uV = cmax;
946 		}
947 
948 		/* voltage constraints are optional */
949 		if ((cmin == 0) && (cmax == 0))
950 			return 0;
951 
952 		/* else require explicit machine-level constraints */
953 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
954 			rdev_err(rdev, "invalid voltage constraints\n");
955 			return -EINVAL;
956 		}
957 
958 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
959 		for (i = 0; i < count; i++) {
960 			int	value;
961 
962 			value = ops->list_voltage(rdev, i);
963 			if (value <= 0)
964 				continue;
965 
966 			/* maybe adjust [min_uV..max_uV] */
967 			if (value >= cmin && value < min_uV)
968 				min_uV = value;
969 			if (value <= cmax && value > max_uV)
970 				max_uV = value;
971 		}
972 
973 		/* final: [min_uV..max_uV] valid iff constraints valid */
974 		if (max_uV < min_uV) {
975 			rdev_err(rdev,
976 				 "unsupportable voltage constraints %u-%uuV\n",
977 				 min_uV, max_uV);
978 			return -EINVAL;
979 		}
980 
981 		/* use regulator's subset of machine constraints */
982 		if (constraints->min_uV < min_uV) {
983 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
984 				 constraints->min_uV, min_uV);
985 			constraints->min_uV = min_uV;
986 		}
987 		if (constraints->max_uV > max_uV) {
988 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
989 				 constraints->max_uV, max_uV);
990 			constraints->max_uV = max_uV;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 static int machine_constraints_current(struct regulator_dev *rdev,
998 	struct regulation_constraints *constraints)
999 {
1000 	const struct regulator_ops *ops = rdev->desc->ops;
1001 	int ret;
1002 
1003 	if (!constraints->min_uA && !constraints->max_uA)
1004 		return 0;
1005 
1006 	if (constraints->min_uA > constraints->max_uA) {
1007 		rdev_err(rdev, "Invalid current constraints\n");
1008 		return -EINVAL;
1009 	}
1010 
1011 	if (!ops->set_current_limit || !ops->get_current_limit) {
1012 		rdev_warn(rdev, "Operation of current configuration missing\n");
1013 		return 0;
1014 	}
1015 
1016 	/* Set regulator current in constraints range */
1017 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1018 			constraints->max_uA);
1019 	if (ret < 0) {
1020 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1021 		return ret;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int _regulator_do_enable(struct regulator_dev *rdev);
1028 
1029 /**
1030  * set_machine_constraints - sets regulator constraints
1031  * @rdev: regulator source
1032  * @constraints: constraints to apply
1033  *
1034  * Allows platform initialisation code to define and constrain
1035  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1036  * Constraints *must* be set by platform code in order for some
1037  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1038  * set_mode.
1039  */
1040 static int set_machine_constraints(struct regulator_dev *rdev,
1041 	const struct regulation_constraints *constraints)
1042 {
1043 	int ret = 0;
1044 	const struct regulator_ops *ops = rdev->desc->ops;
1045 
1046 	if (constraints)
1047 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1048 					    GFP_KERNEL);
1049 	else
1050 		rdev->constraints = kzalloc(sizeof(*constraints),
1051 					    GFP_KERNEL);
1052 	if (!rdev->constraints)
1053 		return -ENOMEM;
1054 
1055 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1056 	if (ret != 0)
1057 		return ret;
1058 
1059 	ret = machine_constraints_current(rdev, rdev->constraints);
1060 	if (ret != 0)
1061 		return ret;
1062 
1063 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1064 		ret = ops->set_input_current_limit(rdev,
1065 						   rdev->constraints->ilim_uA);
1066 		if (ret < 0) {
1067 			rdev_err(rdev, "failed to set input limit\n");
1068 			return ret;
1069 		}
1070 	}
1071 
1072 	/* do we need to setup our suspend state */
1073 	if (rdev->constraints->initial_state) {
1074 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1075 		if (ret < 0) {
1076 			rdev_err(rdev, "failed to set suspend state\n");
1077 			return ret;
1078 		}
1079 	}
1080 
1081 	if (rdev->constraints->initial_mode) {
1082 		if (!ops->set_mode) {
1083 			rdev_err(rdev, "no set_mode operation\n");
1084 			return -EINVAL;
1085 		}
1086 
1087 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1088 		if (ret < 0) {
1089 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1090 			return ret;
1091 		}
1092 	}
1093 
1094 	/* If the constraints say the regulator should be on at this point
1095 	 * and we have control then make sure it is enabled.
1096 	 */
1097 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1098 		ret = _regulator_do_enable(rdev);
1099 		if (ret < 0 && ret != -EINVAL) {
1100 			rdev_err(rdev, "failed to enable\n");
1101 			return ret;
1102 		}
1103 	}
1104 
1105 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1106 		&& ops->set_ramp_delay) {
1107 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1108 		if (ret < 0) {
1109 			rdev_err(rdev, "failed to set ramp_delay\n");
1110 			return ret;
1111 		}
1112 	}
1113 
1114 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1115 		ret = ops->set_pull_down(rdev);
1116 		if (ret < 0) {
1117 			rdev_err(rdev, "failed to set pull down\n");
1118 			return ret;
1119 		}
1120 	}
1121 
1122 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1123 		ret = ops->set_soft_start(rdev);
1124 		if (ret < 0) {
1125 			rdev_err(rdev, "failed to set soft start\n");
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	if (rdev->constraints->over_current_protection
1131 		&& ops->set_over_current_protection) {
1132 		ret = ops->set_over_current_protection(rdev);
1133 		if (ret < 0) {
1134 			rdev_err(rdev, "failed to set over current protection\n");
1135 			return ret;
1136 		}
1137 	}
1138 
1139 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1140 		bool ad_state = (rdev->constraints->active_discharge ==
1141 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1142 
1143 		ret = ops->set_active_discharge(rdev, ad_state);
1144 		if (ret < 0) {
1145 			rdev_err(rdev, "failed to set active discharge\n");
1146 			return ret;
1147 		}
1148 	}
1149 
1150 	print_constraints(rdev);
1151 	return 0;
1152 }
1153 
1154 /**
1155  * set_supply - set regulator supply regulator
1156  * @rdev: regulator name
1157  * @supply_rdev: supply regulator name
1158  *
1159  * Called by platform initialisation code to set the supply regulator for this
1160  * regulator. This ensures that a regulators supply will also be enabled by the
1161  * core if it's child is enabled.
1162  */
1163 static int set_supply(struct regulator_dev *rdev,
1164 		      struct regulator_dev *supply_rdev)
1165 {
1166 	int err;
1167 
1168 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1169 
1170 	if (!try_module_get(supply_rdev->owner))
1171 		return -ENODEV;
1172 
1173 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1174 	if (rdev->supply == NULL) {
1175 		err = -ENOMEM;
1176 		return err;
1177 	}
1178 	supply_rdev->open_count++;
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185  * @rdev:         regulator source
1186  * @consumer_dev_name: dev_name() string for device supply applies to
1187  * @supply:       symbolic name for supply
1188  *
1189  * Allows platform initialisation code to map physical regulator
1190  * sources to symbolic names for supplies for use by devices.  Devices
1191  * should use these symbolic names to request regulators, avoiding the
1192  * need to provide board-specific regulator names as platform data.
1193  */
1194 static int set_consumer_device_supply(struct regulator_dev *rdev,
1195 				      const char *consumer_dev_name,
1196 				      const char *supply)
1197 {
1198 	struct regulator_map *node;
1199 	int has_dev;
1200 
1201 	if (supply == NULL)
1202 		return -EINVAL;
1203 
1204 	if (consumer_dev_name != NULL)
1205 		has_dev = 1;
1206 	else
1207 		has_dev = 0;
1208 
1209 	list_for_each_entry(node, &regulator_map_list, list) {
1210 		if (node->dev_name && consumer_dev_name) {
1211 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1212 				continue;
1213 		} else if (node->dev_name || consumer_dev_name) {
1214 			continue;
1215 		}
1216 
1217 		if (strcmp(node->supply, supply) != 0)
1218 			continue;
1219 
1220 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1221 			 consumer_dev_name,
1222 			 dev_name(&node->regulator->dev),
1223 			 node->regulator->desc->name,
1224 			 supply,
1225 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1226 		return -EBUSY;
1227 	}
1228 
1229 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230 	if (node == NULL)
1231 		return -ENOMEM;
1232 
1233 	node->regulator = rdev;
1234 	node->supply = supply;
1235 
1236 	if (has_dev) {
1237 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1238 		if (node->dev_name == NULL) {
1239 			kfree(node);
1240 			return -ENOMEM;
1241 		}
1242 	}
1243 
1244 	list_add(&node->list, &regulator_map_list);
1245 	return 0;
1246 }
1247 
1248 static void unset_regulator_supplies(struct regulator_dev *rdev)
1249 {
1250 	struct regulator_map *node, *n;
1251 
1252 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1253 		if (rdev == node->regulator) {
1254 			list_del(&node->list);
1255 			kfree(node->dev_name);
1256 			kfree(node);
1257 		}
1258 	}
1259 }
1260 
1261 #ifdef CONFIG_DEBUG_FS
1262 static ssize_t constraint_flags_read_file(struct file *file,
1263 					  char __user *user_buf,
1264 					  size_t count, loff_t *ppos)
1265 {
1266 	const struct regulator *regulator = file->private_data;
1267 	const struct regulation_constraints *c = regulator->rdev->constraints;
1268 	char *buf;
1269 	ssize_t ret;
1270 
1271 	if (!c)
1272 		return 0;
1273 
1274 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275 	if (!buf)
1276 		return -ENOMEM;
1277 
1278 	ret = snprintf(buf, PAGE_SIZE,
1279 			"always_on: %u\n"
1280 			"boot_on: %u\n"
1281 			"apply_uV: %u\n"
1282 			"ramp_disable: %u\n"
1283 			"soft_start: %u\n"
1284 			"pull_down: %u\n"
1285 			"over_current_protection: %u\n",
1286 			c->always_on,
1287 			c->boot_on,
1288 			c->apply_uV,
1289 			c->ramp_disable,
1290 			c->soft_start,
1291 			c->pull_down,
1292 			c->over_current_protection);
1293 
1294 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1295 	kfree(buf);
1296 
1297 	return ret;
1298 }
1299 
1300 #endif
1301 
1302 static const struct file_operations constraint_flags_fops = {
1303 #ifdef CONFIG_DEBUG_FS
1304 	.open = simple_open,
1305 	.read = constraint_flags_read_file,
1306 	.llseek = default_llseek,
1307 #endif
1308 };
1309 
1310 #define REG_STR_SIZE	64
1311 
1312 static struct regulator *create_regulator(struct regulator_dev *rdev,
1313 					  struct device *dev,
1314 					  const char *supply_name)
1315 {
1316 	struct regulator *regulator;
1317 	char buf[REG_STR_SIZE];
1318 	int err, size;
1319 
1320 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1321 	if (regulator == NULL)
1322 		return NULL;
1323 
1324 	mutex_lock(&rdev->mutex);
1325 	regulator->rdev = rdev;
1326 	list_add(&regulator->list, &rdev->consumer_list);
1327 
1328 	if (dev) {
1329 		regulator->dev = dev;
1330 
1331 		/* Add a link to the device sysfs entry */
1332 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1333 				dev->kobj.name, supply_name);
1334 		if (size >= REG_STR_SIZE)
1335 			goto overflow_err;
1336 
1337 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1338 		if (regulator->supply_name == NULL)
1339 			goto overflow_err;
1340 
1341 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1342 					buf);
1343 		if (err) {
1344 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1345 				  dev->kobj.name, err);
1346 			/* non-fatal */
1347 		}
1348 	} else {
1349 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1350 		if (regulator->supply_name == NULL)
1351 			goto overflow_err;
1352 	}
1353 
1354 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1355 						rdev->debugfs);
1356 	if (!regulator->debugfs) {
1357 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1358 	} else {
1359 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1360 				   &regulator->uA_load);
1361 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1362 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1363 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1364 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1365 		debugfs_create_file("constraint_flags", 0444,
1366 				    regulator->debugfs, regulator,
1367 				    &constraint_flags_fops);
1368 	}
1369 
1370 	/*
1371 	 * Check now if the regulator is an always on regulator - if
1372 	 * it is then we don't need to do nearly so much work for
1373 	 * enable/disable calls.
1374 	 */
1375 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1376 	    _regulator_is_enabled(rdev))
1377 		regulator->always_on = true;
1378 
1379 	mutex_unlock(&rdev->mutex);
1380 	return regulator;
1381 overflow_err:
1382 	list_del(&regulator->list);
1383 	kfree(regulator);
1384 	mutex_unlock(&rdev->mutex);
1385 	return NULL;
1386 }
1387 
1388 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1389 {
1390 	if (rdev->constraints && rdev->constraints->enable_time)
1391 		return rdev->constraints->enable_time;
1392 	if (!rdev->desc->ops->enable_time)
1393 		return rdev->desc->enable_time;
1394 	return rdev->desc->ops->enable_time(rdev);
1395 }
1396 
1397 static struct regulator_supply_alias *regulator_find_supply_alias(
1398 		struct device *dev, const char *supply)
1399 {
1400 	struct regulator_supply_alias *map;
1401 
1402 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1403 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1404 			return map;
1405 
1406 	return NULL;
1407 }
1408 
1409 static void regulator_supply_alias(struct device **dev, const char **supply)
1410 {
1411 	struct regulator_supply_alias *map;
1412 
1413 	map = regulator_find_supply_alias(*dev, *supply);
1414 	if (map) {
1415 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1416 				*supply, map->alias_supply,
1417 				dev_name(map->alias_dev));
1418 		*dev = map->alias_dev;
1419 		*supply = map->alias_supply;
1420 	}
1421 }
1422 
1423 static int regulator_match(struct device *dev, const void *data)
1424 {
1425 	struct regulator_dev *r = dev_to_rdev(dev);
1426 
1427 	return strcmp(rdev_get_name(r), data) == 0;
1428 }
1429 
1430 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1431 {
1432 	struct device *dev;
1433 
1434 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1435 
1436 	return dev ? dev_to_rdev(dev) : NULL;
1437 }
1438 
1439 /**
1440  * regulator_dev_lookup - lookup a regulator device.
1441  * @dev: device for regulator "consumer".
1442  * @supply: Supply name or regulator ID.
1443  *
1444  * If successful, returns a struct regulator_dev that corresponds to the name
1445  * @supply and with the embedded struct device refcount incremented by one.
1446  * The refcount must be dropped by calling put_device().
1447  * On failure one of the following ERR-PTR-encoded values is returned:
1448  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1449  * in the future.
1450  */
1451 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1452 						  const char *supply)
1453 {
1454 	struct regulator_dev *r = NULL;
1455 	struct device_node *node;
1456 	struct regulator_map *map;
1457 	const char *devname = NULL;
1458 
1459 	regulator_supply_alias(&dev, &supply);
1460 
1461 	/* first do a dt based lookup */
1462 	if (dev && dev->of_node) {
1463 		node = of_get_regulator(dev, supply);
1464 		if (node) {
1465 			r = of_find_regulator_by_node(node);
1466 			if (r)
1467 				return r;
1468 
1469 			/*
1470 			 * We have a node, but there is no device.
1471 			 * assume it has not registered yet.
1472 			 */
1473 			return ERR_PTR(-EPROBE_DEFER);
1474 		}
1475 	}
1476 
1477 	/* if not found, try doing it non-dt way */
1478 	if (dev)
1479 		devname = dev_name(dev);
1480 
1481 	mutex_lock(&regulator_list_mutex);
1482 	list_for_each_entry(map, &regulator_map_list, list) {
1483 		/* If the mapping has a device set up it must match */
1484 		if (map->dev_name &&
1485 		    (!devname || strcmp(map->dev_name, devname)))
1486 			continue;
1487 
1488 		if (strcmp(map->supply, supply) == 0 &&
1489 		    get_device(&map->regulator->dev)) {
1490 			r = map->regulator;
1491 			break;
1492 		}
1493 	}
1494 	mutex_unlock(&regulator_list_mutex);
1495 
1496 	if (r)
1497 		return r;
1498 
1499 	r = regulator_lookup_by_name(supply);
1500 	if (r)
1501 		return r;
1502 
1503 	return ERR_PTR(-ENODEV);
1504 }
1505 
1506 static int regulator_resolve_supply(struct regulator_dev *rdev)
1507 {
1508 	struct regulator_dev *r;
1509 	struct device *dev = rdev->dev.parent;
1510 	int ret;
1511 
1512 	/* No supply to resovle? */
1513 	if (!rdev->supply_name)
1514 		return 0;
1515 
1516 	/* Supply already resolved? */
1517 	if (rdev->supply)
1518 		return 0;
1519 
1520 	r = regulator_dev_lookup(dev, rdev->supply_name);
1521 	if (IS_ERR(r)) {
1522 		ret = PTR_ERR(r);
1523 
1524 		/* Did the lookup explicitly defer for us? */
1525 		if (ret == -EPROBE_DEFER)
1526 			return ret;
1527 
1528 		if (have_full_constraints()) {
1529 			r = dummy_regulator_rdev;
1530 			get_device(&r->dev);
1531 		} else {
1532 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1533 				rdev->supply_name, rdev->desc->name);
1534 			return -EPROBE_DEFER;
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * If the supply's parent device is not the same as the
1540 	 * regulator's parent device, then ensure the parent device
1541 	 * is bound before we resolve the supply, in case the parent
1542 	 * device get probe deferred and unregisters the supply.
1543 	 */
1544 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1545 		if (!device_is_bound(r->dev.parent)) {
1546 			put_device(&r->dev);
1547 			return -EPROBE_DEFER;
1548 		}
1549 	}
1550 
1551 	/* Recursively resolve the supply of the supply */
1552 	ret = regulator_resolve_supply(r);
1553 	if (ret < 0) {
1554 		put_device(&r->dev);
1555 		return ret;
1556 	}
1557 
1558 	ret = set_supply(rdev, r);
1559 	if (ret < 0) {
1560 		put_device(&r->dev);
1561 		return ret;
1562 	}
1563 
1564 	/* Cascade always-on state to supply */
1565 	if (_regulator_is_enabled(rdev)) {
1566 		ret = regulator_enable(rdev->supply);
1567 		if (ret < 0) {
1568 			_regulator_put(rdev->supply);
1569 			rdev->supply = NULL;
1570 			return ret;
1571 		}
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 /* Internal regulator request function */
1578 struct regulator *_regulator_get(struct device *dev, const char *id,
1579 				 enum regulator_get_type get_type)
1580 {
1581 	struct regulator_dev *rdev;
1582 	struct regulator *regulator;
1583 	const char *devname = dev ? dev_name(dev) : "deviceless";
1584 	int ret;
1585 
1586 	if (get_type >= MAX_GET_TYPE) {
1587 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1588 		return ERR_PTR(-EINVAL);
1589 	}
1590 
1591 	if (id == NULL) {
1592 		pr_err("get() with no identifier\n");
1593 		return ERR_PTR(-EINVAL);
1594 	}
1595 
1596 	rdev = regulator_dev_lookup(dev, id);
1597 	if (IS_ERR(rdev)) {
1598 		ret = PTR_ERR(rdev);
1599 
1600 		/*
1601 		 * If regulator_dev_lookup() fails with error other
1602 		 * than -ENODEV our job here is done, we simply return it.
1603 		 */
1604 		if (ret != -ENODEV)
1605 			return ERR_PTR(ret);
1606 
1607 		if (!have_full_constraints()) {
1608 			dev_warn(dev,
1609 				 "incomplete constraints, dummy supplies not allowed\n");
1610 			return ERR_PTR(-ENODEV);
1611 		}
1612 
1613 		switch (get_type) {
1614 		case NORMAL_GET:
1615 			/*
1616 			 * Assume that a regulator is physically present and
1617 			 * enabled, even if it isn't hooked up, and just
1618 			 * provide a dummy.
1619 			 */
1620 			dev_warn(dev,
1621 				 "%s supply %s not found, using dummy regulator\n",
1622 				 devname, id);
1623 			rdev = dummy_regulator_rdev;
1624 			get_device(&rdev->dev);
1625 			break;
1626 
1627 		case EXCLUSIVE_GET:
1628 			dev_warn(dev,
1629 				 "dummy supplies not allowed for exclusive requests\n");
1630 			/* fall through */
1631 
1632 		default:
1633 			return ERR_PTR(-ENODEV);
1634 		}
1635 	}
1636 
1637 	if (rdev->exclusive) {
1638 		regulator = ERR_PTR(-EPERM);
1639 		put_device(&rdev->dev);
1640 		return regulator;
1641 	}
1642 
1643 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1644 		regulator = ERR_PTR(-EBUSY);
1645 		put_device(&rdev->dev);
1646 		return regulator;
1647 	}
1648 
1649 	ret = regulator_resolve_supply(rdev);
1650 	if (ret < 0) {
1651 		regulator = ERR_PTR(ret);
1652 		put_device(&rdev->dev);
1653 		return regulator;
1654 	}
1655 
1656 	if (!try_module_get(rdev->owner)) {
1657 		regulator = ERR_PTR(-EPROBE_DEFER);
1658 		put_device(&rdev->dev);
1659 		return regulator;
1660 	}
1661 
1662 	regulator = create_regulator(rdev, dev, id);
1663 	if (regulator == NULL) {
1664 		regulator = ERR_PTR(-ENOMEM);
1665 		put_device(&rdev->dev);
1666 		module_put(rdev->owner);
1667 		return regulator;
1668 	}
1669 
1670 	rdev->open_count++;
1671 	if (get_type == EXCLUSIVE_GET) {
1672 		rdev->exclusive = 1;
1673 
1674 		ret = _regulator_is_enabled(rdev);
1675 		if (ret > 0)
1676 			rdev->use_count = 1;
1677 		else
1678 			rdev->use_count = 0;
1679 	}
1680 
1681 	return regulator;
1682 }
1683 
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699 	return _regulator_get(dev, id, NORMAL_GET);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702 
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729 
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752 	return _regulator_get(dev, id, OPTIONAL_GET);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755 
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759 	struct regulator_dev *rdev;
1760 
1761 	if (IS_ERR_OR_NULL(regulator))
1762 		return;
1763 
1764 	lockdep_assert_held_once(&regulator_list_mutex);
1765 
1766 	rdev = regulator->rdev;
1767 
1768 	debugfs_remove_recursive(regulator->debugfs);
1769 
1770 	/* remove any sysfs entries */
1771 	if (regulator->dev)
1772 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 	mutex_lock(&rdev->mutex);
1774 	list_del(&regulator->list);
1775 
1776 	rdev->open_count--;
1777 	rdev->exclusive = 0;
1778 	put_device(&rdev->dev);
1779 	mutex_unlock(&rdev->mutex);
1780 
1781 	kfree_const(regulator->supply_name);
1782 	kfree(regulator);
1783 
1784 	module_put(rdev->owner);
1785 }
1786 
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797 	mutex_lock(&regulator_list_mutex);
1798 	_regulator_put(regulator);
1799 	mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802 
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 				    struct device *alias_dev,
1817 				    const char *alias_id)
1818 {
1819 	struct regulator_supply_alias *map;
1820 
1821 	map = regulator_find_supply_alias(dev, id);
1822 	if (map)
1823 		return -EEXIST;
1824 
1825 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 	if (!map)
1827 		return -ENOMEM;
1828 
1829 	map->src_dev = dev;
1830 	map->src_supply = id;
1831 	map->alias_dev = alias_dev;
1832 	map->alias_supply = alias_id;
1833 
1834 	list_add(&map->list, &regulator_supply_alias_list);
1835 
1836 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842 
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853 	struct regulator_supply_alias *map;
1854 
1855 	map = regulator_find_supply_alias(dev, id);
1856 	if (map) {
1857 		list_del(&map->list);
1858 		kfree(map);
1859 	}
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862 
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 					 const char *const *id,
1882 					 struct device *alias_dev,
1883 					 const char *const *alias_id,
1884 					 int num_id)
1885 {
1886 	int i;
1887 	int ret;
1888 
1889 	for (i = 0; i < num_id; ++i) {
1890 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 						      alias_id[i]);
1892 		if (ret < 0)
1893 			goto err;
1894 	}
1895 
1896 	return 0;
1897 
1898 err:
1899 	dev_err(dev,
1900 		"Failed to create supply alias %s,%s -> %s,%s\n",
1901 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902 
1903 	while (--i >= 0)
1904 		regulator_unregister_supply_alias(dev, id[i]);
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909 
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 					    const char *const *id,
1922 					    int num_id)
1923 {
1924 	int i;
1925 
1926 	for (i = 0; i < num_id; ++i)
1927 		regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930 
1931 
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 				const struct regulator_config *config)
1935 {
1936 	struct regulator_enable_gpio *pin;
1937 	struct gpio_desc *gpiod;
1938 	int ret;
1939 
1940 	gpiod = gpio_to_desc(config->ena_gpio);
1941 
1942 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 		if (pin->gpiod == gpiod) {
1944 			rdev_dbg(rdev, "GPIO %d is already used\n",
1945 				config->ena_gpio);
1946 			goto update_ena_gpio_to_rdev;
1947 		}
1948 	}
1949 
1950 	ret = gpio_request_one(config->ena_gpio,
1951 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 				rdev_get_name(rdev));
1953 	if (ret)
1954 		return ret;
1955 
1956 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 	if (pin == NULL) {
1958 		gpio_free(config->ena_gpio);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	pin->gpiod = gpiod;
1963 	pin->ena_gpio_invert = config->ena_gpio_invert;
1964 	list_add(&pin->list, &regulator_ena_gpio_list);
1965 
1966 update_ena_gpio_to_rdev:
1967 	pin->request_count++;
1968 	rdev->ena_pin = pin;
1969 	return 0;
1970 }
1971 
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974 	struct regulator_enable_gpio *pin, *n;
1975 
1976 	if (!rdev->ena_pin)
1977 		return;
1978 
1979 	/* Free the GPIO only in case of no use */
1980 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 			if (pin->request_count <= 1) {
1983 				pin->request_count = 0;
1984 				gpiod_put(pin->gpiod);
1985 				list_del(&pin->list);
1986 				kfree(pin);
1987 				rdev->ena_pin = NULL;
1988 				return;
1989 			} else {
1990 				pin->request_count--;
1991 			}
1992 		}
1993 	}
1994 }
1995 
1996 /**
1997  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998  * @rdev: regulator_dev structure
1999  * @enable: enable GPIO at initial use?
2000  *
2001  * GPIO is enabled in case of initial use. (enable_count is 0)
2002  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003  */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2007 
2008 	if (!pin)
2009 		return -EINVAL;
2010 
2011 	if (enable) {
2012 		/* Enable GPIO at initial use */
2013 		if (pin->enable_count == 0)
2014 			gpiod_set_value_cansleep(pin->gpiod,
2015 						 !pin->ena_gpio_invert);
2016 
2017 		pin->enable_count++;
2018 	} else {
2019 		if (pin->enable_count > 1) {
2020 			pin->enable_count--;
2021 			return 0;
2022 		}
2023 
2024 		/* Disable GPIO if not used */
2025 		if (pin->enable_count <= 1) {
2026 			gpiod_set_value_cansleep(pin->gpiod,
2027 						 pin->ena_gpio_invert);
2028 			pin->enable_count = 0;
2029 		}
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * _regulator_enable_delay - a delay helper function
2037  * @delay: time to delay in microseconds
2038  *
2039  * Delay for the requested amount of time as per the guidelines in:
2040  *
2041  *     Documentation/timers/timers-howto.txt
2042  *
2043  * The assumption here is that regulators will never be enabled in
2044  * atomic context and therefore sleeping functions can be used.
2045  */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048 	unsigned int ms = delay / 1000;
2049 	unsigned int us = delay % 1000;
2050 
2051 	if (ms > 0) {
2052 		/*
2053 		 * For small enough values, handle super-millisecond
2054 		 * delays in the usleep_range() call below.
2055 		 */
2056 		if (ms < 20)
2057 			us += ms * 1000;
2058 		else
2059 			msleep(ms);
2060 	}
2061 
2062 	/*
2063 	 * Give the scheduler some room to coalesce with any other
2064 	 * wakeup sources. For delays shorter than 10 us, don't even
2065 	 * bother setting up high-resolution timers and just busy-
2066 	 * loop.
2067 	 */
2068 	if (us >= 10)
2069 		usleep_range(us, us + 100);
2070 	else
2071 		udelay(us);
2072 }
2073 
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076 	int ret, delay;
2077 
2078 	/* Query before enabling in case configuration dependent.  */
2079 	ret = _regulator_get_enable_time(rdev);
2080 	if (ret >= 0) {
2081 		delay = ret;
2082 	} else {
2083 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 		delay = 0;
2085 	}
2086 
2087 	trace_regulator_enable(rdev_get_name(rdev));
2088 
2089 	if (rdev->desc->off_on_delay) {
2090 		/* if needed, keep a distance of off_on_delay from last time
2091 		 * this regulator was disabled.
2092 		 */
2093 		unsigned long start_jiffy = jiffies;
2094 		unsigned long intended, max_delay, remaining;
2095 
2096 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 		intended = rdev->last_off_jiffy + max_delay;
2098 
2099 		if (time_before(start_jiffy, intended)) {
2100 			/* calc remaining jiffies to deal with one-time
2101 			 * timer wrapping.
2102 			 * in case of multiple timer wrapping, either it can be
2103 			 * detected by out-of-range remaining, or it cannot be
2104 			 * detected and we gets a panelty of
2105 			 * _regulator_enable_delay().
2106 			 */
2107 			remaining = intended - start_jiffy;
2108 			if (remaining <= max_delay)
2109 				_regulator_enable_delay(
2110 						jiffies_to_usecs(remaining));
2111 		}
2112 	}
2113 
2114 	if (rdev->ena_pin) {
2115 		if (!rdev->ena_gpio_state) {
2116 			ret = regulator_ena_gpio_ctrl(rdev, true);
2117 			if (ret < 0)
2118 				return ret;
2119 			rdev->ena_gpio_state = 1;
2120 		}
2121 	} else if (rdev->desc->ops->enable) {
2122 		ret = rdev->desc->ops->enable(rdev);
2123 		if (ret < 0)
2124 			return ret;
2125 	} else {
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* Allow the regulator to ramp; it would be useful to extend
2130 	 * this for bulk operations so that the regulators can ramp
2131 	 * together.  */
2132 	trace_regulator_enable_delay(rdev_get_name(rdev));
2133 
2134 	_regulator_enable_delay(delay);
2135 
2136 	trace_regulator_enable_complete(rdev_get_name(rdev));
2137 
2138 	return 0;
2139 }
2140 
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144 	int ret;
2145 
2146 	lockdep_assert_held_once(&rdev->mutex);
2147 
2148 	/* check voltage and requested load before enabling */
2149 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 		drms_uA_update(rdev);
2151 
2152 	if (rdev->use_count == 0) {
2153 		/* The regulator may on if it's not switchable or left on */
2154 		ret = _regulator_is_enabled(rdev);
2155 		if (ret == -EINVAL || ret == 0) {
2156 			if (!regulator_ops_is_valid(rdev,
2157 					REGULATOR_CHANGE_STATUS))
2158 				return -EPERM;
2159 
2160 			ret = _regulator_do_enable(rdev);
2161 			if (ret < 0)
2162 				return ret;
2163 
2164 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2165 					     NULL);
2166 		} else if (ret < 0) {
2167 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2168 			return ret;
2169 		}
2170 		/* Fallthrough on positive return values - already enabled */
2171 	}
2172 
2173 	rdev->use_count++;
2174 
2175 	return 0;
2176 }
2177 
2178 /**
2179  * regulator_enable - enable regulator output
2180  * @regulator: regulator source
2181  *
2182  * Request that the regulator be enabled with the regulator output at
2183  * the predefined voltage or current value.  Calls to regulator_enable()
2184  * must be balanced with calls to regulator_disable().
2185  *
2186  * NOTE: the output value can be set by other drivers, boot loader or may be
2187  * hardwired in the regulator.
2188  */
2189 int regulator_enable(struct regulator *regulator)
2190 {
2191 	struct regulator_dev *rdev = regulator->rdev;
2192 	int ret = 0;
2193 
2194 	if (regulator->always_on)
2195 		return 0;
2196 
2197 	if (rdev->supply) {
2198 		ret = regulator_enable(rdev->supply);
2199 		if (ret != 0)
2200 			return ret;
2201 	}
2202 
2203 	mutex_lock(&rdev->mutex);
2204 	ret = _regulator_enable(rdev);
2205 	mutex_unlock(&rdev->mutex);
2206 
2207 	if (ret != 0 && rdev->supply)
2208 		regulator_disable(rdev->supply);
2209 
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_enable);
2213 
2214 static int _regulator_do_disable(struct regulator_dev *rdev)
2215 {
2216 	int ret;
2217 
2218 	trace_regulator_disable(rdev_get_name(rdev));
2219 
2220 	if (rdev->ena_pin) {
2221 		if (rdev->ena_gpio_state) {
2222 			ret = regulator_ena_gpio_ctrl(rdev, false);
2223 			if (ret < 0)
2224 				return ret;
2225 			rdev->ena_gpio_state = 0;
2226 		}
2227 
2228 	} else if (rdev->desc->ops->disable) {
2229 		ret = rdev->desc->ops->disable(rdev);
2230 		if (ret != 0)
2231 			return ret;
2232 	}
2233 
2234 	/* cares about last_off_jiffy only if off_on_delay is required by
2235 	 * device.
2236 	 */
2237 	if (rdev->desc->off_on_delay)
2238 		rdev->last_off_jiffy = jiffies;
2239 
2240 	trace_regulator_disable_complete(rdev_get_name(rdev));
2241 
2242 	return 0;
2243 }
2244 
2245 /* locks held by regulator_disable() */
2246 static int _regulator_disable(struct regulator_dev *rdev)
2247 {
2248 	int ret = 0;
2249 
2250 	lockdep_assert_held_once(&rdev->mutex);
2251 
2252 	if (WARN(rdev->use_count <= 0,
2253 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2254 		return -EIO;
2255 
2256 	/* are we the last user and permitted to disable ? */
2257 	if (rdev->use_count == 1 &&
2258 	    (rdev->constraints && !rdev->constraints->always_on)) {
2259 
2260 		/* we are last user */
2261 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2262 			ret = _notifier_call_chain(rdev,
2263 						   REGULATOR_EVENT_PRE_DISABLE,
2264 						   NULL);
2265 			if (ret & NOTIFY_STOP_MASK)
2266 				return -EINVAL;
2267 
2268 			ret = _regulator_do_disable(rdev);
2269 			if (ret < 0) {
2270 				rdev_err(rdev, "failed to disable\n");
2271 				_notifier_call_chain(rdev,
2272 						REGULATOR_EVENT_ABORT_DISABLE,
2273 						NULL);
2274 				return ret;
2275 			}
2276 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2277 					NULL);
2278 		}
2279 
2280 		rdev->use_count = 0;
2281 	} else if (rdev->use_count > 1) {
2282 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2283 			drms_uA_update(rdev);
2284 
2285 		rdev->use_count--;
2286 	}
2287 
2288 	return ret;
2289 }
2290 
2291 /**
2292  * regulator_disable - disable regulator output
2293  * @regulator: regulator source
2294  *
2295  * Disable the regulator output voltage or current.  Calls to
2296  * regulator_enable() must be balanced with calls to
2297  * regulator_disable().
2298  *
2299  * NOTE: this will only disable the regulator output if no other consumer
2300  * devices have it enabled, the regulator device supports disabling and
2301  * machine constraints permit this operation.
2302  */
2303 int regulator_disable(struct regulator *regulator)
2304 {
2305 	struct regulator_dev *rdev = regulator->rdev;
2306 	int ret = 0;
2307 
2308 	if (regulator->always_on)
2309 		return 0;
2310 
2311 	mutex_lock(&rdev->mutex);
2312 	ret = _regulator_disable(rdev);
2313 	mutex_unlock(&rdev->mutex);
2314 
2315 	if (ret == 0 && rdev->supply)
2316 		regulator_disable(rdev->supply);
2317 
2318 	return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_disable);
2321 
2322 /* locks held by regulator_force_disable() */
2323 static int _regulator_force_disable(struct regulator_dev *rdev)
2324 {
2325 	int ret = 0;
2326 
2327 	lockdep_assert_held_once(&rdev->mutex);
2328 
2329 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2330 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2331 	if (ret & NOTIFY_STOP_MASK)
2332 		return -EINVAL;
2333 
2334 	ret = _regulator_do_disable(rdev);
2335 	if (ret < 0) {
2336 		rdev_err(rdev, "failed to force disable\n");
2337 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2338 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2339 		return ret;
2340 	}
2341 
2342 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2343 			REGULATOR_EVENT_DISABLE, NULL);
2344 
2345 	return 0;
2346 }
2347 
2348 /**
2349  * regulator_force_disable - force disable regulator output
2350  * @regulator: regulator source
2351  *
2352  * Forcibly disable the regulator output voltage or current.
2353  * NOTE: this *will* disable the regulator output even if other consumer
2354  * devices have it enabled. This should be used for situations when device
2355  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2356  */
2357 int regulator_force_disable(struct regulator *regulator)
2358 {
2359 	struct regulator_dev *rdev = regulator->rdev;
2360 	int ret;
2361 
2362 	mutex_lock(&rdev->mutex);
2363 	regulator->uA_load = 0;
2364 	ret = _regulator_force_disable(regulator->rdev);
2365 	mutex_unlock(&rdev->mutex);
2366 
2367 	if (rdev->supply)
2368 		while (rdev->open_count--)
2369 			regulator_disable(rdev->supply);
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(regulator_force_disable);
2374 
2375 static void regulator_disable_work(struct work_struct *work)
2376 {
2377 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2378 						  disable_work.work);
2379 	int count, i, ret;
2380 
2381 	mutex_lock(&rdev->mutex);
2382 
2383 	BUG_ON(!rdev->deferred_disables);
2384 
2385 	count = rdev->deferred_disables;
2386 	rdev->deferred_disables = 0;
2387 
2388 	/*
2389 	 * Workqueue functions queue the new work instance while the previous
2390 	 * work instance is being processed. Cancel the queued work instance
2391 	 * as the work instance under processing does the job of the queued
2392 	 * work instance.
2393 	 */
2394 	cancel_delayed_work(&rdev->disable_work);
2395 
2396 	for (i = 0; i < count; i++) {
2397 		ret = _regulator_disable(rdev);
2398 		if (ret != 0)
2399 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2400 	}
2401 
2402 	mutex_unlock(&rdev->mutex);
2403 
2404 	if (rdev->supply) {
2405 		for (i = 0; i < count; i++) {
2406 			ret = regulator_disable(rdev->supply);
2407 			if (ret != 0) {
2408 				rdev_err(rdev,
2409 					 "Supply disable failed: %d\n", ret);
2410 			}
2411 		}
2412 	}
2413 }
2414 
2415 /**
2416  * regulator_disable_deferred - disable regulator output with delay
2417  * @regulator: regulator source
2418  * @ms: miliseconds until the regulator is disabled
2419  *
2420  * Execute regulator_disable() on the regulator after a delay.  This
2421  * is intended for use with devices that require some time to quiesce.
2422  *
2423  * NOTE: this will only disable the regulator output if no other consumer
2424  * devices have it enabled, the regulator device supports disabling and
2425  * machine constraints permit this operation.
2426  */
2427 int regulator_disable_deferred(struct regulator *regulator, int ms)
2428 {
2429 	struct regulator_dev *rdev = regulator->rdev;
2430 
2431 	if (regulator->always_on)
2432 		return 0;
2433 
2434 	if (!ms)
2435 		return regulator_disable(regulator);
2436 
2437 	mutex_lock(&rdev->mutex);
2438 	rdev->deferred_disables++;
2439 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2440 			 msecs_to_jiffies(ms));
2441 	mutex_unlock(&rdev->mutex);
2442 
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2446 
2447 static int _regulator_is_enabled(struct regulator_dev *rdev)
2448 {
2449 	/* A GPIO control always takes precedence */
2450 	if (rdev->ena_pin)
2451 		return rdev->ena_gpio_state;
2452 
2453 	/* If we don't know then assume that the regulator is always on */
2454 	if (!rdev->desc->ops->is_enabled)
2455 		return 1;
2456 
2457 	return rdev->desc->ops->is_enabled(rdev);
2458 }
2459 
2460 static int _regulator_list_voltage(struct regulator_dev *rdev,
2461 				   unsigned selector, int lock)
2462 {
2463 	const struct regulator_ops *ops = rdev->desc->ops;
2464 	int ret;
2465 
2466 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2467 		return rdev->desc->fixed_uV;
2468 
2469 	if (ops->list_voltage) {
2470 		if (selector >= rdev->desc->n_voltages)
2471 			return -EINVAL;
2472 		if (lock)
2473 			mutex_lock(&rdev->mutex);
2474 		ret = ops->list_voltage(rdev, selector);
2475 		if (lock)
2476 			mutex_unlock(&rdev->mutex);
2477 	} else if (rdev->is_switch && rdev->supply) {
2478 		ret = _regulator_list_voltage(rdev->supply->rdev,
2479 					      selector, lock);
2480 	} else {
2481 		return -EINVAL;
2482 	}
2483 
2484 	if (ret > 0) {
2485 		if (ret < rdev->constraints->min_uV)
2486 			ret = 0;
2487 		else if (ret > rdev->constraints->max_uV)
2488 			ret = 0;
2489 	}
2490 
2491 	return ret;
2492 }
2493 
2494 /**
2495  * regulator_is_enabled - is the regulator output enabled
2496  * @regulator: regulator source
2497  *
2498  * Returns positive if the regulator driver backing the source/client
2499  * has requested that the device be enabled, zero if it hasn't, else a
2500  * negative errno code.
2501  *
2502  * Note that the device backing this regulator handle can have multiple
2503  * users, so it might be enabled even if regulator_enable() was never
2504  * called for this particular source.
2505  */
2506 int regulator_is_enabled(struct regulator *regulator)
2507 {
2508 	int ret;
2509 
2510 	if (regulator->always_on)
2511 		return 1;
2512 
2513 	mutex_lock(&regulator->rdev->mutex);
2514 	ret = _regulator_is_enabled(regulator->rdev);
2515 	mutex_unlock(&regulator->rdev->mutex);
2516 
2517 	return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2520 
2521 /**
2522  * regulator_count_voltages - count regulator_list_voltage() selectors
2523  * @regulator: regulator source
2524  *
2525  * Returns number of selectors, or negative errno.  Selectors are
2526  * numbered starting at zero, and typically correspond to bitfields
2527  * in hardware registers.
2528  */
2529 int regulator_count_voltages(struct regulator *regulator)
2530 {
2531 	struct regulator_dev	*rdev = regulator->rdev;
2532 
2533 	if (rdev->desc->n_voltages)
2534 		return rdev->desc->n_voltages;
2535 
2536 	if (!rdev->is_switch || !rdev->supply)
2537 		return -EINVAL;
2538 
2539 	return regulator_count_voltages(rdev->supply);
2540 }
2541 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2542 
2543 /**
2544  * regulator_list_voltage - enumerate supported voltages
2545  * @regulator: regulator source
2546  * @selector: identify voltage to list
2547  * Context: can sleep
2548  *
2549  * Returns a voltage that can be passed to @regulator_set_voltage(),
2550  * zero if this selector code can't be used on this system, or a
2551  * negative errno.
2552  */
2553 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2554 {
2555 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2556 }
2557 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2558 
2559 /**
2560  * regulator_get_regmap - get the regulator's register map
2561  * @regulator: regulator source
2562  *
2563  * Returns the register map for the given regulator, or an ERR_PTR value
2564  * if the regulator doesn't use regmap.
2565  */
2566 struct regmap *regulator_get_regmap(struct regulator *regulator)
2567 {
2568 	struct regmap *map = regulator->rdev->regmap;
2569 
2570 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2571 }
2572 
2573 /**
2574  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2575  * @regulator: regulator source
2576  * @vsel_reg: voltage selector register, output parameter
2577  * @vsel_mask: mask for voltage selector bitfield, output parameter
2578  *
2579  * Returns the hardware register offset and bitmask used for setting the
2580  * regulator voltage. This might be useful when configuring voltage-scaling
2581  * hardware or firmware that can make I2C requests behind the kernel's back,
2582  * for example.
2583  *
2584  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2585  * and 0 is returned, otherwise a negative errno is returned.
2586  */
2587 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2588 					 unsigned *vsel_reg,
2589 					 unsigned *vsel_mask)
2590 {
2591 	struct regulator_dev *rdev = regulator->rdev;
2592 	const struct regulator_ops *ops = rdev->desc->ops;
2593 
2594 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2595 		return -EOPNOTSUPP;
2596 
2597 	*vsel_reg = rdev->desc->vsel_reg;
2598 	*vsel_mask = rdev->desc->vsel_mask;
2599 
2600 	 return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2603 
2604 /**
2605  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2606  * @regulator: regulator source
2607  * @selector: identify voltage to list
2608  *
2609  * Converts the selector to a hardware-specific voltage selector that can be
2610  * directly written to the regulator registers. The address of the voltage
2611  * register can be determined by calling @regulator_get_hardware_vsel_register.
2612  *
2613  * On error a negative errno is returned.
2614  */
2615 int regulator_list_hardware_vsel(struct regulator *regulator,
2616 				 unsigned selector)
2617 {
2618 	struct regulator_dev *rdev = regulator->rdev;
2619 	const struct regulator_ops *ops = rdev->desc->ops;
2620 
2621 	if (selector >= rdev->desc->n_voltages)
2622 		return -EINVAL;
2623 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2624 		return -EOPNOTSUPP;
2625 
2626 	return selector;
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2629 
2630 /**
2631  * regulator_get_linear_step - return the voltage step size between VSEL values
2632  * @regulator: regulator source
2633  *
2634  * Returns the voltage step size between VSEL values for linear
2635  * regulators, or return 0 if the regulator isn't a linear regulator.
2636  */
2637 unsigned int regulator_get_linear_step(struct regulator *regulator)
2638 {
2639 	struct regulator_dev *rdev = regulator->rdev;
2640 
2641 	return rdev->desc->uV_step;
2642 }
2643 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2644 
2645 /**
2646  * regulator_is_supported_voltage - check if a voltage range can be supported
2647  *
2648  * @regulator: Regulator to check.
2649  * @min_uV: Minimum required voltage in uV.
2650  * @max_uV: Maximum required voltage in uV.
2651  *
2652  * Returns a boolean or a negative error code.
2653  */
2654 int regulator_is_supported_voltage(struct regulator *regulator,
2655 				   int min_uV, int max_uV)
2656 {
2657 	struct regulator_dev *rdev = regulator->rdev;
2658 	int i, voltages, ret;
2659 
2660 	/* If we can't change voltage check the current voltage */
2661 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2662 		ret = regulator_get_voltage(regulator);
2663 		if (ret >= 0)
2664 			return min_uV <= ret && ret <= max_uV;
2665 		else
2666 			return ret;
2667 	}
2668 
2669 	/* Any voltage within constrains range is fine? */
2670 	if (rdev->desc->continuous_voltage_range)
2671 		return min_uV >= rdev->constraints->min_uV &&
2672 				max_uV <= rdev->constraints->max_uV;
2673 
2674 	ret = regulator_count_voltages(regulator);
2675 	if (ret < 0)
2676 		return ret;
2677 	voltages = ret;
2678 
2679 	for (i = 0; i < voltages; i++) {
2680 		ret = regulator_list_voltage(regulator, i);
2681 
2682 		if (ret >= min_uV && ret <= max_uV)
2683 			return 1;
2684 	}
2685 
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2689 
2690 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2691 				 int max_uV)
2692 {
2693 	const struct regulator_desc *desc = rdev->desc;
2694 
2695 	if (desc->ops->map_voltage)
2696 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2697 
2698 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2699 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2700 
2701 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2702 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2703 
2704 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2705 }
2706 
2707 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2708 				       int min_uV, int max_uV,
2709 				       unsigned *selector)
2710 {
2711 	struct pre_voltage_change_data data;
2712 	int ret;
2713 
2714 	data.old_uV = _regulator_get_voltage(rdev);
2715 	data.min_uV = min_uV;
2716 	data.max_uV = max_uV;
2717 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2718 				   &data);
2719 	if (ret & NOTIFY_STOP_MASK)
2720 		return -EINVAL;
2721 
2722 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2723 	if (ret >= 0)
2724 		return ret;
2725 
2726 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2727 			     (void *)data.old_uV);
2728 
2729 	return ret;
2730 }
2731 
2732 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2733 					   int uV, unsigned selector)
2734 {
2735 	struct pre_voltage_change_data data;
2736 	int ret;
2737 
2738 	data.old_uV = _regulator_get_voltage(rdev);
2739 	data.min_uV = uV;
2740 	data.max_uV = uV;
2741 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2742 				   &data);
2743 	if (ret & NOTIFY_STOP_MASK)
2744 		return -EINVAL;
2745 
2746 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2747 	if (ret >= 0)
2748 		return ret;
2749 
2750 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2751 			     (void *)data.old_uV);
2752 
2753 	return ret;
2754 }
2755 
2756 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2757 				       int old_uV, int new_uV)
2758 {
2759 	unsigned int ramp_delay = 0;
2760 
2761 	if (rdev->constraints->ramp_delay)
2762 		ramp_delay = rdev->constraints->ramp_delay;
2763 	else if (rdev->desc->ramp_delay)
2764 		ramp_delay = rdev->desc->ramp_delay;
2765 	else if (rdev->constraints->settling_time)
2766 		return rdev->constraints->settling_time;
2767 	else if (rdev->constraints->settling_time_up &&
2768 		 (new_uV > old_uV))
2769 		return rdev->constraints->settling_time_up;
2770 	else if (rdev->constraints->settling_time_down &&
2771 		 (new_uV < old_uV))
2772 		return rdev->constraints->settling_time_down;
2773 
2774 	if (ramp_delay == 0) {
2775 		rdev_dbg(rdev, "ramp_delay not set\n");
2776 		return 0;
2777 	}
2778 
2779 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2780 }
2781 
2782 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2783 				     int min_uV, int max_uV)
2784 {
2785 	int ret;
2786 	int delay = 0;
2787 	int best_val = 0;
2788 	unsigned int selector;
2789 	int old_selector = -1;
2790 	const struct regulator_ops *ops = rdev->desc->ops;
2791 	int old_uV = _regulator_get_voltage(rdev);
2792 
2793 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2794 
2795 	min_uV += rdev->constraints->uV_offset;
2796 	max_uV += rdev->constraints->uV_offset;
2797 
2798 	/*
2799 	 * If we can't obtain the old selector there is not enough
2800 	 * info to call set_voltage_time_sel().
2801 	 */
2802 	if (_regulator_is_enabled(rdev) &&
2803 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2804 		old_selector = ops->get_voltage_sel(rdev);
2805 		if (old_selector < 0)
2806 			return old_selector;
2807 	}
2808 
2809 	if (ops->set_voltage) {
2810 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2811 						  &selector);
2812 
2813 		if (ret >= 0) {
2814 			if (ops->list_voltage)
2815 				best_val = ops->list_voltage(rdev,
2816 							     selector);
2817 			else
2818 				best_val = _regulator_get_voltage(rdev);
2819 		}
2820 
2821 	} else if (ops->set_voltage_sel) {
2822 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2823 		if (ret >= 0) {
2824 			best_val = ops->list_voltage(rdev, ret);
2825 			if (min_uV <= best_val && max_uV >= best_val) {
2826 				selector = ret;
2827 				if (old_selector == selector)
2828 					ret = 0;
2829 				else
2830 					ret = _regulator_call_set_voltage_sel(
2831 						rdev, best_val, selector);
2832 			} else {
2833 				ret = -EINVAL;
2834 			}
2835 		}
2836 	} else {
2837 		ret = -EINVAL;
2838 	}
2839 
2840 	if (ret)
2841 		goto out;
2842 
2843 	if (ops->set_voltage_time_sel) {
2844 		/*
2845 		 * Call set_voltage_time_sel if successfully obtained
2846 		 * old_selector
2847 		 */
2848 		if (old_selector >= 0 && old_selector != selector)
2849 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2850 							  selector);
2851 	} else {
2852 		if (old_uV != best_val) {
2853 			if (ops->set_voltage_time)
2854 				delay = ops->set_voltage_time(rdev, old_uV,
2855 							      best_val);
2856 			else
2857 				delay = _regulator_set_voltage_time(rdev,
2858 								    old_uV,
2859 								    best_val);
2860 		}
2861 	}
2862 
2863 	if (delay < 0) {
2864 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2865 		delay = 0;
2866 	}
2867 
2868 	/* Insert any necessary delays */
2869 	if (delay >= 1000) {
2870 		mdelay(delay / 1000);
2871 		udelay(delay % 1000);
2872 	} else if (delay) {
2873 		udelay(delay);
2874 	}
2875 
2876 	if (best_val >= 0) {
2877 		unsigned long data = best_val;
2878 
2879 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2880 				     (void *)data);
2881 	}
2882 
2883 out:
2884 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2885 
2886 	return ret;
2887 }
2888 
2889 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2890 				  int min_uV, int max_uV, suspend_state_t state)
2891 {
2892 	struct regulator_state *rstate;
2893 	int uV, sel;
2894 
2895 	rstate = regulator_get_suspend_state(rdev, state);
2896 	if (rstate == NULL)
2897 		return -EINVAL;
2898 
2899 	if (min_uV < rstate->min_uV)
2900 		min_uV = rstate->min_uV;
2901 	if (max_uV > rstate->max_uV)
2902 		max_uV = rstate->max_uV;
2903 
2904 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
2905 	if (sel < 0)
2906 		return sel;
2907 
2908 	uV = rdev->desc->ops->list_voltage(rdev, sel);
2909 	if (uV >= min_uV && uV <= max_uV)
2910 		rstate->uV = uV;
2911 
2912 	return 0;
2913 }
2914 
2915 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2916 					  int min_uV, int max_uV,
2917 					  suspend_state_t state)
2918 {
2919 	struct regulator_dev *rdev = regulator->rdev;
2920 	struct regulator_voltage *voltage = &regulator->voltage[state];
2921 	int ret = 0;
2922 	int old_min_uV, old_max_uV;
2923 	int current_uV;
2924 	int best_supply_uV = 0;
2925 	int supply_change_uV = 0;
2926 
2927 	/* If we're setting the same range as last time the change
2928 	 * should be a noop (some cpufreq implementations use the same
2929 	 * voltage for multiple frequencies, for example).
2930 	 */
2931 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2932 		goto out;
2933 
2934 	/* If we're trying to set a range that overlaps the current voltage,
2935 	 * return successfully even though the regulator does not support
2936 	 * changing the voltage.
2937 	 */
2938 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2939 		current_uV = _regulator_get_voltage(rdev);
2940 		if (min_uV <= current_uV && current_uV <= max_uV) {
2941 			voltage->min_uV = min_uV;
2942 			voltage->max_uV = max_uV;
2943 			goto out;
2944 		}
2945 	}
2946 
2947 	/* sanity check */
2948 	if (!rdev->desc->ops->set_voltage &&
2949 	    !rdev->desc->ops->set_voltage_sel) {
2950 		ret = -EINVAL;
2951 		goto out;
2952 	}
2953 
2954 	/* constraints check */
2955 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2956 	if (ret < 0)
2957 		goto out;
2958 
2959 	/* restore original values in case of error */
2960 	old_min_uV = voltage->min_uV;
2961 	old_max_uV = voltage->max_uV;
2962 	voltage->min_uV = min_uV;
2963 	voltage->max_uV = max_uV;
2964 
2965 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2966 	if (ret < 0)
2967 		goto out2;
2968 
2969 	if (rdev->supply &&
2970 	    regulator_ops_is_valid(rdev->supply->rdev,
2971 				   REGULATOR_CHANGE_VOLTAGE) &&
2972 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2973 					   rdev->desc->ops->get_voltage_sel))) {
2974 		int current_supply_uV;
2975 		int selector;
2976 
2977 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2978 		if (selector < 0) {
2979 			ret = selector;
2980 			goto out2;
2981 		}
2982 
2983 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
2984 		if (best_supply_uV < 0) {
2985 			ret = best_supply_uV;
2986 			goto out2;
2987 		}
2988 
2989 		best_supply_uV += rdev->desc->min_dropout_uV;
2990 
2991 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2992 		if (current_supply_uV < 0) {
2993 			ret = current_supply_uV;
2994 			goto out2;
2995 		}
2996 
2997 		supply_change_uV = best_supply_uV - current_supply_uV;
2998 	}
2999 
3000 	if (supply_change_uV > 0) {
3001 		ret = regulator_set_voltage_unlocked(rdev->supply,
3002 				best_supply_uV, INT_MAX, state);
3003 		if (ret) {
3004 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3005 					ret);
3006 			goto out2;
3007 		}
3008 	}
3009 
3010 	if (state == PM_SUSPEND_ON)
3011 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3012 	else
3013 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3014 							max_uV, state);
3015 	if (ret < 0)
3016 		goto out2;
3017 
3018 	if (supply_change_uV < 0) {
3019 		ret = regulator_set_voltage_unlocked(rdev->supply,
3020 				best_supply_uV, INT_MAX, state);
3021 		if (ret)
3022 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3023 					ret);
3024 		/* No need to fail here */
3025 		ret = 0;
3026 	}
3027 
3028 out:
3029 	return ret;
3030 out2:
3031 	voltage->min_uV = old_min_uV;
3032 	voltage->max_uV = old_max_uV;
3033 
3034 	return ret;
3035 }
3036 
3037 /**
3038  * regulator_set_voltage - set regulator output voltage
3039  * @regulator: regulator source
3040  * @min_uV: Minimum required voltage in uV
3041  * @max_uV: Maximum acceptable voltage in uV
3042  *
3043  * Sets a voltage regulator to the desired output voltage. This can be set
3044  * during any regulator state. IOW, regulator can be disabled or enabled.
3045  *
3046  * If the regulator is enabled then the voltage will change to the new value
3047  * immediately otherwise if the regulator is disabled the regulator will
3048  * output at the new voltage when enabled.
3049  *
3050  * NOTE: If the regulator is shared between several devices then the lowest
3051  * request voltage that meets the system constraints will be used.
3052  * Regulator system constraints must be set for this regulator before
3053  * calling this function otherwise this call will fail.
3054  */
3055 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3056 {
3057 	int ret = 0;
3058 
3059 	regulator_lock_supply(regulator->rdev);
3060 
3061 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3062 					     PM_SUSPEND_ON);
3063 
3064 	regulator_unlock_supply(regulator->rdev);
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3069 
3070 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3071 					   suspend_state_t state, bool en)
3072 {
3073 	struct regulator_state *rstate;
3074 
3075 	rstate = regulator_get_suspend_state(rdev, state);
3076 	if (rstate == NULL)
3077 		return -EINVAL;
3078 
3079 	if (!rstate->changeable)
3080 		return -EPERM;
3081 
3082 	rstate->enabled = en;
3083 
3084 	return 0;
3085 }
3086 
3087 int regulator_suspend_enable(struct regulator_dev *rdev,
3088 				    suspend_state_t state)
3089 {
3090 	return regulator_suspend_toggle(rdev, state, true);
3091 }
3092 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3093 
3094 int regulator_suspend_disable(struct regulator_dev *rdev,
3095 				     suspend_state_t state)
3096 {
3097 	struct regulator *regulator;
3098 	struct regulator_voltage *voltage;
3099 
3100 	/*
3101 	 * if any consumer wants this regulator device keeping on in
3102 	 * suspend states, don't set it as disabled.
3103 	 */
3104 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3105 		voltage = &regulator->voltage[state];
3106 		if (voltage->min_uV || voltage->max_uV)
3107 			return 0;
3108 	}
3109 
3110 	return regulator_suspend_toggle(rdev, state, false);
3111 }
3112 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3113 
3114 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3115 					  int min_uV, int max_uV,
3116 					  suspend_state_t state)
3117 {
3118 	struct regulator_dev *rdev = regulator->rdev;
3119 	struct regulator_state *rstate;
3120 
3121 	rstate = regulator_get_suspend_state(rdev, state);
3122 	if (rstate == NULL)
3123 		return -EINVAL;
3124 
3125 	if (rstate->min_uV == rstate->max_uV) {
3126 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3127 		return -EPERM;
3128 	}
3129 
3130 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3131 }
3132 
3133 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3134 				  int max_uV, suspend_state_t state)
3135 {
3136 	int ret = 0;
3137 
3138 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3139 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3140 		return -EINVAL;
3141 
3142 	regulator_lock_supply(regulator->rdev);
3143 
3144 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3145 					     max_uV, state);
3146 
3147 	regulator_unlock_supply(regulator->rdev);
3148 
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3152 
3153 /**
3154  * regulator_set_voltage_time - get raise/fall time
3155  * @regulator: regulator source
3156  * @old_uV: starting voltage in microvolts
3157  * @new_uV: target voltage in microvolts
3158  *
3159  * Provided with the starting and ending voltage, this function attempts to
3160  * calculate the time in microseconds required to rise or fall to this new
3161  * voltage.
3162  */
3163 int regulator_set_voltage_time(struct regulator *regulator,
3164 			       int old_uV, int new_uV)
3165 {
3166 	struct regulator_dev *rdev = regulator->rdev;
3167 	const struct regulator_ops *ops = rdev->desc->ops;
3168 	int old_sel = -1;
3169 	int new_sel = -1;
3170 	int voltage;
3171 	int i;
3172 
3173 	if (ops->set_voltage_time)
3174 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3175 	else if (!ops->set_voltage_time_sel)
3176 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3177 
3178 	/* Currently requires operations to do this */
3179 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3180 		return -EINVAL;
3181 
3182 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3183 		/* We only look for exact voltage matches here */
3184 		voltage = regulator_list_voltage(regulator, i);
3185 		if (voltage < 0)
3186 			return -EINVAL;
3187 		if (voltage == 0)
3188 			continue;
3189 		if (voltage == old_uV)
3190 			old_sel = i;
3191 		if (voltage == new_uV)
3192 			new_sel = i;
3193 	}
3194 
3195 	if (old_sel < 0 || new_sel < 0)
3196 		return -EINVAL;
3197 
3198 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3199 }
3200 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3201 
3202 /**
3203  * regulator_set_voltage_time_sel - get raise/fall time
3204  * @rdev: regulator source device
3205  * @old_selector: selector for starting voltage
3206  * @new_selector: selector for target voltage
3207  *
3208  * Provided with the starting and target voltage selectors, this function
3209  * returns time in microseconds required to rise or fall to this new voltage
3210  *
3211  * Drivers providing ramp_delay in regulation_constraints can use this as their
3212  * set_voltage_time_sel() operation.
3213  */
3214 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3215 				   unsigned int old_selector,
3216 				   unsigned int new_selector)
3217 {
3218 	int old_volt, new_volt;
3219 
3220 	/* sanity check */
3221 	if (!rdev->desc->ops->list_voltage)
3222 		return -EINVAL;
3223 
3224 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3225 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3226 
3227 	if (rdev->desc->ops->set_voltage_time)
3228 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3229 							 new_volt);
3230 	else
3231 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3234 
3235 /**
3236  * regulator_sync_voltage - re-apply last regulator output voltage
3237  * @regulator: regulator source
3238  *
3239  * Re-apply the last configured voltage.  This is intended to be used
3240  * where some external control source the consumer is cooperating with
3241  * has caused the configured voltage to change.
3242  */
3243 int regulator_sync_voltage(struct regulator *regulator)
3244 {
3245 	struct regulator_dev *rdev = regulator->rdev;
3246 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3247 	int ret, min_uV, max_uV;
3248 
3249 	mutex_lock(&rdev->mutex);
3250 
3251 	if (!rdev->desc->ops->set_voltage &&
3252 	    !rdev->desc->ops->set_voltage_sel) {
3253 		ret = -EINVAL;
3254 		goto out;
3255 	}
3256 
3257 	/* This is only going to work if we've had a voltage configured. */
3258 	if (!voltage->min_uV && !voltage->max_uV) {
3259 		ret = -EINVAL;
3260 		goto out;
3261 	}
3262 
3263 	min_uV = voltage->min_uV;
3264 	max_uV = voltage->max_uV;
3265 
3266 	/* This should be a paranoia check... */
3267 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3268 	if (ret < 0)
3269 		goto out;
3270 
3271 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3272 	if (ret < 0)
3273 		goto out;
3274 
3275 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3276 
3277 out:
3278 	mutex_unlock(&rdev->mutex);
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3282 
3283 static int _regulator_get_voltage(struct regulator_dev *rdev)
3284 {
3285 	int sel, ret;
3286 	bool bypassed;
3287 
3288 	if (rdev->desc->ops->get_bypass) {
3289 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3290 		if (ret < 0)
3291 			return ret;
3292 		if (bypassed) {
3293 			/* if bypassed the regulator must have a supply */
3294 			if (!rdev->supply) {
3295 				rdev_err(rdev,
3296 					 "bypassed regulator has no supply!\n");
3297 				return -EPROBE_DEFER;
3298 			}
3299 
3300 			return _regulator_get_voltage(rdev->supply->rdev);
3301 		}
3302 	}
3303 
3304 	if (rdev->desc->ops->get_voltage_sel) {
3305 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3306 		if (sel < 0)
3307 			return sel;
3308 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3309 	} else if (rdev->desc->ops->get_voltage) {
3310 		ret = rdev->desc->ops->get_voltage(rdev);
3311 	} else if (rdev->desc->ops->list_voltage) {
3312 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3313 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3314 		ret = rdev->desc->fixed_uV;
3315 	} else if (rdev->supply) {
3316 		ret = _regulator_get_voltage(rdev->supply->rdev);
3317 	} else {
3318 		return -EINVAL;
3319 	}
3320 
3321 	if (ret < 0)
3322 		return ret;
3323 	return ret - rdev->constraints->uV_offset;
3324 }
3325 
3326 /**
3327  * regulator_get_voltage - get regulator output voltage
3328  * @regulator: regulator source
3329  *
3330  * This returns the current regulator voltage in uV.
3331  *
3332  * NOTE: If the regulator is disabled it will return the voltage value. This
3333  * function should not be used to determine regulator state.
3334  */
3335 int regulator_get_voltage(struct regulator *regulator)
3336 {
3337 	int ret;
3338 
3339 	regulator_lock_supply(regulator->rdev);
3340 
3341 	ret = _regulator_get_voltage(regulator->rdev);
3342 
3343 	regulator_unlock_supply(regulator->rdev);
3344 
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3348 
3349 /**
3350  * regulator_set_current_limit - set regulator output current limit
3351  * @regulator: regulator source
3352  * @min_uA: Minimum supported current in uA
3353  * @max_uA: Maximum supported current in uA
3354  *
3355  * Sets current sink to the desired output current. This can be set during
3356  * any regulator state. IOW, regulator can be disabled or enabled.
3357  *
3358  * If the regulator is enabled then the current will change to the new value
3359  * immediately otherwise if the regulator is disabled the regulator will
3360  * output at the new current when enabled.
3361  *
3362  * NOTE: Regulator system constraints must be set for this regulator before
3363  * calling this function otherwise this call will fail.
3364  */
3365 int regulator_set_current_limit(struct regulator *regulator,
3366 			       int min_uA, int max_uA)
3367 {
3368 	struct regulator_dev *rdev = regulator->rdev;
3369 	int ret;
3370 
3371 	mutex_lock(&rdev->mutex);
3372 
3373 	/* sanity check */
3374 	if (!rdev->desc->ops->set_current_limit) {
3375 		ret = -EINVAL;
3376 		goto out;
3377 	}
3378 
3379 	/* constraints check */
3380 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3381 	if (ret < 0)
3382 		goto out;
3383 
3384 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3385 out:
3386 	mutex_unlock(&rdev->mutex);
3387 	return ret;
3388 }
3389 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3390 
3391 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3392 {
3393 	int ret;
3394 
3395 	mutex_lock(&rdev->mutex);
3396 
3397 	/* sanity check */
3398 	if (!rdev->desc->ops->get_current_limit) {
3399 		ret = -EINVAL;
3400 		goto out;
3401 	}
3402 
3403 	ret = rdev->desc->ops->get_current_limit(rdev);
3404 out:
3405 	mutex_unlock(&rdev->mutex);
3406 	return ret;
3407 }
3408 
3409 /**
3410  * regulator_get_current_limit - get regulator output current
3411  * @regulator: regulator source
3412  *
3413  * This returns the current supplied by the specified current sink in uA.
3414  *
3415  * NOTE: If the regulator is disabled it will return the current value. This
3416  * function should not be used to determine regulator state.
3417  */
3418 int regulator_get_current_limit(struct regulator *regulator)
3419 {
3420 	return _regulator_get_current_limit(regulator->rdev);
3421 }
3422 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3423 
3424 /**
3425  * regulator_set_mode - set regulator operating mode
3426  * @regulator: regulator source
3427  * @mode: operating mode - one of the REGULATOR_MODE constants
3428  *
3429  * Set regulator operating mode to increase regulator efficiency or improve
3430  * regulation performance.
3431  *
3432  * NOTE: Regulator system constraints must be set for this regulator before
3433  * calling this function otherwise this call will fail.
3434  */
3435 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3436 {
3437 	struct regulator_dev *rdev = regulator->rdev;
3438 	int ret;
3439 	int regulator_curr_mode;
3440 
3441 	mutex_lock(&rdev->mutex);
3442 
3443 	/* sanity check */
3444 	if (!rdev->desc->ops->set_mode) {
3445 		ret = -EINVAL;
3446 		goto out;
3447 	}
3448 
3449 	/* return if the same mode is requested */
3450 	if (rdev->desc->ops->get_mode) {
3451 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3452 		if (regulator_curr_mode == mode) {
3453 			ret = 0;
3454 			goto out;
3455 		}
3456 	}
3457 
3458 	/* constraints check */
3459 	ret = regulator_mode_constrain(rdev, &mode);
3460 	if (ret < 0)
3461 		goto out;
3462 
3463 	ret = rdev->desc->ops->set_mode(rdev, mode);
3464 out:
3465 	mutex_unlock(&rdev->mutex);
3466 	return ret;
3467 }
3468 EXPORT_SYMBOL_GPL(regulator_set_mode);
3469 
3470 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3471 {
3472 	int ret;
3473 
3474 	mutex_lock(&rdev->mutex);
3475 
3476 	/* sanity check */
3477 	if (!rdev->desc->ops->get_mode) {
3478 		ret = -EINVAL;
3479 		goto out;
3480 	}
3481 
3482 	ret = rdev->desc->ops->get_mode(rdev);
3483 out:
3484 	mutex_unlock(&rdev->mutex);
3485 	return ret;
3486 }
3487 
3488 /**
3489  * regulator_get_mode - get regulator operating mode
3490  * @regulator: regulator source
3491  *
3492  * Get the current regulator operating mode.
3493  */
3494 unsigned int regulator_get_mode(struct regulator *regulator)
3495 {
3496 	return _regulator_get_mode(regulator->rdev);
3497 }
3498 EXPORT_SYMBOL_GPL(regulator_get_mode);
3499 
3500 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3501 					unsigned int *flags)
3502 {
3503 	int ret;
3504 
3505 	mutex_lock(&rdev->mutex);
3506 
3507 	/* sanity check */
3508 	if (!rdev->desc->ops->get_error_flags) {
3509 		ret = -EINVAL;
3510 		goto out;
3511 	}
3512 
3513 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3514 out:
3515 	mutex_unlock(&rdev->mutex);
3516 	return ret;
3517 }
3518 
3519 /**
3520  * regulator_get_error_flags - get regulator error information
3521  * @regulator: regulator source
3522  * @flags: pointer to store error flags
3523  *
3524  * Get the current regulator error information.
3525  */
3526 int regulator_get_error_flags(struct regulator *regulator,
3527 				unsigned int *flags)
3528 {
3529 	return _regulator_get_error_flags(regulator->rdev, flags);
3530 }
3531 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3532 
3533 /**
3534  * regulator_set_load - set regulator load
3535  * @regulator: regulator source
3536  * @uA_load: load current
3537  *
3538  * Notifies the regulator core of a new device load. This is then used by
3539  * DRMS (if enabled by constraints) to set the most efficient regulator
3540  * operating mode for the new regulator loading.
3541  *
3542  * Consumer devices notify their supply regulator of the maximum power
3543  * they will require (can be taken from device datasheet in the power
3544  * consumption tables) when they change operational status and hence power
3545  * state. Examples of operational state changes that can affect power
3546  * consumption are :-
3547  *
3548  *    o Device is opened / closed.
3549  *    o Device I/O is about to begin or has just finished.
3550  *    o Device is idling in between work.
3551  *
3552  * This information is also exported via sysfs to userspace.
3553  *
3554  * DRMS will sum the total requested load on the regulator and change
3555  * to the most efficient operating mode if platform constraints allow.
3556  *
3557  * On error a negative errno is returned.
3558  */
3559 int regulator_set_load(struct regulator *regulator, int uA_load)
3560 {
3561 	struct regulator_dev *rdev = regulator->rdev;
3562 	int ret;
3563 
3564 	mutex_lock(&rdev->mutex);
3565 	regulator->uA_load = uA_load;
3566 	ret = drms_uA_update(rdev);
3567 	mutex_unlock(&rdev->mutex);
3568 
3569 	return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_set_load);
3572 
3573 /**
3574  * regulator_allow_bypass - allow the regulator to go into bypass mode
3575  *
3576  * @regulator: Regulator to configure
3577  * @enable: enable or disable bypass mode
3578  *
3579  * Allow the regulator to go into bypass mode if all other consumers
3580  * for the regulator also enable bypass mode and the machine
3581  * constraints allow this.  Bypass mode means that the regulator is
3582  * simply passing the input directly to the output with no regulation.
3583  */
3584 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3585 {
3586 	struct regulator_dev *rdev = regulator->rdev;
3587 	int ret = 0;
3588 
3589 	if (!rdev->desc->ops->set_bypass)
3590 		return 0;
3591 
3592 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3593 		return 0;
3594 
3595 	mutex_lock(&rdev->mutex);
3596 
3597 	if (enable && !regulator->bypass) {
3598 		rdev->bypass_count++;
3599 
3600 		if (rdev->bypass_count == rdev->open_count) {
3601 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3602 			if (ret != 0)
3603 				rdev->bypass_count--;
3604 		}
3605 
3606 	} else if (!enable && regulator->bypass) {
3607 		rdev->bypass_count--;
3608 
3609 		if (rdev->bypass_count != rdev->open_count) {
3610 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3611 			if (ret != 0)
3612 				rdev->bypass_count++;
3613 		}
3614 	}
3615 
3616 	if (ret == 0)
3617 		regulator->bypass = enable;
3618 
3619 	mutex_unlock(&rdev->mutex);
3620 
3621 	return ret;
3622 }
3623 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3624 
3625 /**
3626  * regulator_register_notifier - register regulator event notifier
3627  * @regulator: regulator source
3628  * @nb: notifier block
3629  *
3630  * Register notifier block to receive regulator events.
3631  */
3632 int regulator_register_notifier(struct regulator *regulator,
3633 			      struct notifier_block *nb)
3634 {
3635 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3636 						nb);
3637 }
3638 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3639 
3640 /**
3641  * regulator_unregister_notifier - unregister regulator event notifier
3642  * @regulator: regulator source
3643  * @nb: notifier block
3644  *
3645  * Unregister regulator event notifier block.
3646  */
3647 int regulator_unregister_notifier(struct regulator *regulator,
3648 				struct notifier_block *nb)
3649 {
3650 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3651 						  nb);
3652 }
3653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3654 
3655 /* notify regulator consumers and downstream regulator consumers.
3656  * Note mutex must be held by caller.
3657  */
3658 static int _notifier_call_chain(struct regulator_dev *rdev,
3659 				  unsigned long event, void *data)
3660 {
3661 	/* call rdev chain first */
3662 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3663 }
3664 
3665 /**
3666  * regulator_bulk_get - get multiple regulator consumers
3667  *
3668  * @dev:           Device to supply
3669  * @num_consumers: Number of consumers to register
3670  * @consumers:     Configuration of consumers; clients are stored here.
3671  *
3672  * @return 0 on success, an errno on failure.
3673  *
3674  * This helper function allows drivers to get several regulator
3675  * consumers in one operation.  If any of the regulators cannot be
3676  * acquired then any regulators that were allocated will be freed
3677  * before returning to the caller.
3678  */
3679 int regulator_bulk_get(struct device *dev, int num_consumers,
3680 		       struct regulator_bulk_data *consumers)
3681 {
3682 	int i;
3683 	int ret;
3684 
3685 	for (i = 0; i < num_consumers; i++)
3686 		consumers[i].consumer = NULL;
3687 
3688 	for (i = 0; i < num_consumers; i++) {
3689 		consumers[i].consumer = regulator_get(dev,
3690 						      consumers[i].supply);
3691 		if (IS_ERR(consumers[i].consumer)) {
3692 			ret = PTR_ERR(consumers[i].consumer);
3693 			dev_err(dev, "Failed to get supply '%s': %d\n",
3694 				consumers[i].supply, ret);
3695 			consumers[i].consumer = NULL;
3696 			goto err;
3697 		}
3698 	}
3699 
3700 	return 0;
3701 
3702 err:
3703 	while (--i >= 0)
3704 		regulator_put(consumers[i].consumer);
3705 
3706 	return ret;
3707 }
3708 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3709 
3710 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3711 {
3712 	struct regulator_bulk_data *bulk = data;
3713 
3714 	bulk->ret = regulator_enable(bulk->consumer);
3715 }
3716 
3717 /**
3718  * regulator_bulk_enable - enable multiple regulator consumers
3719  *
3720  * @num_consumers: Number of consumers
3721  * @consumers:     Consumer data; clients are stored here.
3722  * @return         0 on success, an errno on failure
3723  *
3724  * This convenience API allows consumers to enable multiple regulator
3725  * clients in a single API call.  If any consumers cannot be enabled
3726  * then any others that were enabled will be disabled again prior to
3727  * return.
3728  */
3729 int regulator_bulk_enable(int num_consumers,
3730 			  struct regulator_bulk_data *consumers)
3731 {
3732 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3733 	int i;
3734 	int ret = 0;
3735 
3736 	for (i = 0; i < num_consumers; i++) {
3737 		if (consumers[i].consumer->always_on)
3738 			consumers[i].ret = 0;
3739 		else
3740 			async_schedule_domain(regulator_bulk_enable_async,
3741 					      &consumers[i], &async_domain);
3742 	}
3743 
3744 	async_synchronize_full_domain(&async_domain);
3745 
3746 	/* If any consumer failed we need to unwind any that succeeded */
3747 	for (i = 0; i < num_consumers; i++) {
3748 		if (consumers[i].ret != 0) {
3749 			ret = consumers[i].ret;
3750 			goto err;
3751 		}
3752 	}
3753 
3754 	return 0;
3755 
3756 err:
3757 	for (i = 0; i < num_consumers; i++) {
3758 		if (consumers[i].ret < 0)
3759 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3760 			       consumers[i].ret);
3761 		else
3762 			regulator_disable(consumers[i].consumer);
3763 	}
3764 
3765 	return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3768 
3769 /**
3770  * regulator_bulk_disable - disable multiple regulator consumers
3771  *
3772  * @num_consumers: Number of consumers
3773  * @consumers:     Consumer data; clients are stored here.
3774  * @return         0 on success, an errno on failure
3775  *
3776  * This convenience API allows consumers to disable multiple regulator
3777  * clients in a single API call.  If any consumers cannot be disabled
3778  * then any others that were disabled will be enabled again prior to
3779  * return.
3780  */
3781 int regulator_bulk_disable(int num_consumers,
3782 			   struct regulator_bulk_data *consumers)
3783 {
3784 	int i;
3785 	int ret, r;
3786 
3787 	for (i = num_consumers - 1; i >= 0; --i) {
3788 		ret = regulator_disable(consumers[i].consumer);
3789 		if (ret != 0)
3790 			goto err;
3791 	}
3792 
3793 	return 0;
3794 
3795 err:
3796 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3797 	for (++i; i < num_consumers; ++i) {
3798 		r = regulator_enable(consumers[i].consumer);
3799 		if (r != 0)
3800 			pr_err("Failed to re-enable %s: %d\n",
3801 			       consumers[i].supply, r);
3802 	}
3803 
3804 	return ret;
3805 }
3806 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3807 
3808 /**
3809  * regulator_bulk_force_disable - force disable multiple regulator consumers
3810  *
3811  * @num_consumers: Number of consumers
3812  * @consumers:     Consumer data; clients are stored here.
3813  * @return         0 on success, an errno on failure
3814  *
3815  * This convenience API allows consumers to forcibly disable multiple regulator
3816  * clients in a single API call.
3817  * NOTE: This should be used for situations when device damage will
3818  * likely occur if the regulators are not disabled (e.g. over temp).
3819  * Although regulator_force_disable function call for some consumers can
3820  * return error numbers, the function is called for all consumers.
3821  */
3822 int regulator_bulk_force_disable(int num_consumers,
3823 			   struct regulator_bulk_data *consumers)
3824 {
3825 	int i;
3826 	int ret = 0;
3827 
3828 	for (i = 0; i < num_consumers; i++) {
3829 		consumers[i].ret =
3830 			    regulator_force_disable(consumers[i].consumer);
3831 
3832 		/* Store first error for reporting */
3833 		if (consumers[i].ret && !ret)
3834 			ret = consumers[i].ret;
3835 	}
3836 
3837 	return ret;
3838 }
3839 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3840 
3841 /**
3842  * regulator_bulk_free - free multiple regulator consumers
3843  *
3844  * @num_consumers: Number of consumers
3845  * @consumers:     Consumer data; clients are stored here.
3846  *
3847  * This convenience API allows consumers to free multiple regulator
3848  * clients in a single API call.
3849  */
3850 void regulator_bulk_free(int num_consumers,
3851 			 struct regulator_bulk_data *consumers)
3852 {
3853 	int i;
3854 
3855 	for (i = 0; i < num_consumers; i++) {
3856 		regulator_put(consumers[i].consumer);
3857 		consumers[i].consumer = NULL;
3858 	}
3859 }
3860 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3861 
3862 /**
3863  * regulator_notifier_call_chain - call regulator event notifier
3864  * @rdev: regulator source
3865  * @event: notifier block
3866  * @data: callback-specific data.
3867  *
3868  * Called by regulator drivers to notify clients a regulator event has
3869  * occurred. We also notify regulator clients downstream.
3870  * Note lock must be held by caller.
3871  */
3872 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3873 				  unsigned long event, void *data)
3874 {
3875 	lockdep_assert_held_once(&rdev->mutex);
3876 
3877 	_notifier_call_chain(rdev, event, data);
3878 	return NOTIFY_DONE;
3879 
3880 }
3881 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3882 
3883 /**
3884  * regulator_mode_to_status - convert a regulator mode into a status
3885  *
3886  * @mode: Mode to convert
3887  *
3888  * Convert a regulator mode into a status.
3889  */
3890 int regulator_mode_to_status(unsigned int mode)
3891 {
3892 	switch (mode) {
3893 	case REGULATOR_MODE_FAST:
3894 		return REGULATOR_STATUS_FAST;
3895 	case REGULATOR_MODE_NORMAL:
3896 		return REGULATOR_STATUS_NORMAL;
3897 	case REGULATOR_MODE_IDLE:
3898 		return REGULATOR_STATUS_IDLE;
3899 	case REGULATOR_MODE_STANDBY:
3900 		return REGULATOR_STATUS_STANDBY;
3901 	default:
3902 		return REGULATOR_STATUS_UNDEFINED;
3903 	}
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3906 
3907 static struct attribute *regulator_dev_attrs[] = {
3908 	&dev_attr_name.attr,
3909 	&dev_attr_num_users.attr,
3910 	&dev_attr_type.attr,
3911 	&dev_attr_microvolts.attr,
3912 	&dev_attr_microamps.attr,
3913 	&dev_attr_opmode.attr,
3914 	&dev_attr_state.attr,
3915 	&dev_attr_status.attr,
3916 	&dev_attr_bypass.attr,
3917 	&dev_attr_requested_microamps.attr,
3918 	&dev_attr_min_microvolts.attr,
3919 	&dev_attr_max_microvolts.attr,
3920 	&dev_attr_min_microamps.attr,
3921 	&dev_attr_max_microamps.attr,
3922 	&dev_attr_suspend_standby_state.attr,
3923 	&dev_attr_suspend_mem_state.attr,
3924 	&dev_attr_suspend_disk_state.attr,
3925 	&dev_attr_suspend_standby_microvolts.attr,
3926 	&dev_attr_suspend_mem_microvolts.attr,
3927 	&dev_attr_suspend_disk_microvolts.attr,
3928 	&dev_attr_suspend_standby_mode.attr,
3929 	&dev_attr_suspend_mem_mode.attr,
3930 	&dev_attr_suspend_disk_mode.attr,
3931 	NULL
3932 };
3933 
3934 /*
3935  * To avoid cluttering sysfs (and memory) with useless state, only
3936  * create attributes that can be meaningfully displayed.
3937  */
3938 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3939 					 struct attribute *attr, int idx)
3940 {
3941 	struct device *dev = kobj_to_dev(kobj);
3942 	struct regulator_dev *rdev = dev_to_rdev(dev);
3943 	const struct regulator_ops *ops = rdev->desc->ops;
3944 	umode_t mode = attr->mode;
3945 
3946 	/* these three are always present */
3947 	if (attr == &dev_attr_name.attr ||
3948 	    attr == &dev_attr_num_users.attr ||
3949 	    attr == &dev_attr_type.attr)
3950 		return mode;
3951 
3952 	/* some attributes need specific methods to be displayed */
3953 	if (attr == &dev_attr_microvolts.attr) {
3954 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3955 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3956 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3957 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3958 			return mode;
3959 		return 0;
3960 	}
3961 
3962 	if (attr == &dev_attr_microamps.attr)
3963 		return ops->get_current_limit ? mode : 0;
3964 
3965 	if (attr == &dev_attr_opmode.attr)
3966 		return ops->get_mode ? mode : 0;
3967 
3968 	if (attr == &dev_attr_state.attr)
3969 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3970 
3971 	if (attr == &dev_attr_status.attr)
3972 		return ops->get_status ? mode : 0;
3973 
3974 	if (attr == &dev_attr_bypass.attr)
3975 		return ops->get_bypass ? mode : 0;
3976 
3977 	/* some attributes are type-specific */
3978 	if (attr == &dev_attr_requested_microamps.attr)
3979 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3980 
3981 	/* constraints need specific supporting methods */
3982 	if (attr == &dev_attr_min_microvolts.attr ||
3983 	    attr == &dev_attr_max_microvolts.attr)
3984 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3985 
3986 	if (attr == &dev_attr_min_microamps.attr ||
3987 	    attr == &dev_attr_max_microamps.attr)
3988 		return ops->set_current_limit ? mode : 0;
3989 
3990 	if (attr == &dev_attr_suspend_standby_state.attr ||
3991 	    attr == &dev_attr_suspend_mem_state.attr ||
3992 	    attr == &dev_attr_suspend_disk_state.attr)
3993 		return mode;
3994 
3995 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3996 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3997 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3998 		return ops->set_suspend_voltage ? mode : 0;
3999 
4000 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4001 	    attr == &dev_attr_suspend_mem_mode.attr ||
4002 	    attr == &dev_attr_suspend_disk_mode.attr)
4003 		return ops->set_suspend_mode ? mode : 0;
4004 
4005 	return mode;
4006 }
4007 
4008 static const struct attribute_group regulator_dev_group = {
4009 	.attrs = regulator_dev_attrs,
4010 	.is_visible = regulator_attr_is_visible,
4011 };
4012 
4013 static const struct attribute_group *regulator_dev_groups[] = {
4014 	&regulator_dev_group,
4015 	NULL
4016 };
4017 
4018 static void regulator_dev_release(struct device *dev)
4019 {
4020 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4021 
4022 	kfree(rdev->constraints);
4023 	of_node_put(rdev->dev.of_node);
4024 	kfree(rdev);
4025 }
4026 
4027 static void rdev_init_debugfs(struct regulator_dev *rdev)
4028 {
4029 	struct device *parent = rdev->dev.parent;
4030 	const char *rname = rdev_get_name(rdev);
4031 	char name[NAME_MAX];
4032 
4033 	/* Avoid duplicate debugfs directory names */
4034 	if (parent && rname == rdev->desc->name) {
4035 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4036 			 rname);
4037 		rname = name;
4038 	}
4039 
4040 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4041 	if (!rdev->debugfs) {
4042 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4043 		return;
4044 	}
4045 
4046 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4047 			   &rdev->use_count);
4048 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4049 			   &rdev->open_count);
4050 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4051 			   &rdev->bypass_count);
4052 }
4053 
4054 static int regulator_register_resolve_supply(struct device *dev, void *data)
4055 {
4056 	struct regulator_dev *rdev = dev_to_rdev(dev);
4057 
4058 	if (regulator_resolve_supply(rdev))
4059 		rdev_dbg(rdev, "unable to resolve supply\n");
4060 
4061 	return 0;
4062 }
4063 
4064 /**
4065  * regulator_register - register regulator
4066  * @regulator_desc: regulator to register
4067  * @cfg: runtime configuration for regulator
4068  *
4069  * Called by regulator drivers to register a regulator.
4070  * Returns a valid pointer to struct regulator_dev on success
4071  * or an ERR_PTR() on error.
4072  */
4073 struct regulator_dev *
4074 regulator_register(const struct regulator_desc *regulator_desc,
4075 		   const struct regulator_config *cfg)
4076 {
4077 	const struct regulation_constraints *constraints = NULL;
4078 	const struct regulator_init_data *init_data;
4079 	struct regulator_config *config = NULL;
4080 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4081 	struct regulator_dev *rdev;
4082 	struct device *dev;
4083 	int ret, i;
4084 
4085 	if (regulator_desc == NULL || cfg == NULL)
4086 		return ERR_PTR(-EINVAL);
4087 
4088 	dev = cfg->dev;
4089 	WARN_ON(!dev);
4090 
4091 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4092 		return ERR_PTR(-EINVAL);
4093 
4094 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4095 	    regulator_desc->type != REGULATOR_CURRENT)
4096 		return ERR_PTR(-EINVAL);
4097 
4098 	/* Only one of each should be implemented */
4099 	WARN_ON(regulator_desc->ops->get_voltage &&
4100 		regulator_desc->ops->get_voltage_sel);
4101 	WARN_ON(regulator_desc->ops->set_voltage &&
4102 		regulator_desc->ops->set_voltage_sel);
4103 
4104 	/* If we're using selectors we must implement list_voltage. */
4105 	if (regulator_desc->ops->get_voltage_sel &&
4106 	    !regulator_desc->ops->list_voltage) {
4107 		return ERR_PTR(-EINVAL);
4108 	}
4109 	if (regulator_desc->ops->set_voltage_sel &&
4110 	    !regulator_desc->ops->list_voltage) {
4111 		return ERR_PTR(-EINVAL);
4112 	}
4113 
4114 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4115 	if (rdev == NULL)
4116 		return ERR_PTR(-ENOMEM);
4117 
4118 	/*
4119 	 * Duplicate the config so the driver could override it after
4120 	 * parsing init data.
4121 	 */
4122 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4123 	if (config == NULL) {
4124 		kfree(rdev);
4125 		return ERR_PTR(-ENOMEM);
4126 	}
4127 
4128 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4129 					       &rdev->dev.of_node);
4130 	if (!init_data) {
4131 		init_data = config->init_data;
4132 		rdev->dev.of_node = of_node_get(config->of_node);
4133 	}
4134 
4135 	mutex_init(&rdev->mutex);
4136 	rdev->reg_data = config->driver_data;
4137 	rdev->owner = regulator_desc->owner;
4138 	rdev->desc = regulator_desc;
4139 	if (config->regmap)
4140 		rdev->regmap = config->regmap;
4141 	else if (dev_get_regmap(dev, NULL))
4142 		rdev->regmap = dev_get_regmap(dev, NULL);
4143 	else if (dev->parent)
4144 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4145 	INIT_LIST_HEAD(&rdev->consumer_list);
4146 	INIT_LIST_HEAD(&rdev->list);
4147 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4148 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4149 
4150 	/* preform any regulator specific init */
4151 	if (init_data && init_data->regulator_init) {
4152 		ret = init_data->regulator_init(rdev->reg_data);
4153 		if (ret < 0)
4154 			goto clean;
4155 	}
4156 
4157 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4158 	    gpio_is_valid(config->ena_gpio)) {
4159 		mutex_lock(&regulator_list_mutex);
4160 		ret = regulator_ena_gpio_request(rdev, config);
4161 		mutex_unlock(&regulator_list_mutex);
4162 		if (ret != 0) {
4163 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4164 				 config->ena_gpio, ret);
4165 			goto clean;
4166 		}
4167 	}
4168 
4169 	/* register with sysfs */
4170 	rdev->dev.class = &regulator_class;
4171 	rdev->dev.parent = dev;
4172 	dev_set_name(&rdev->dev, "regulator.%lu",
4173 		    (unsigned long) atomic_inc_return(&regulator_no));
4174 
4175 	/* set regulator constraints */
4176 	if (init_data)
4177 		constraints = &init_data->constraints;
4178 
4179 	if (init_data && init_data->supply_regulator)
4180 		rdev->supply_name = init_data->supply_regulator;
4181 	else if (regulator_desc->supply_name)
4182 		rdev->supply_name = regulator_desc->supply_name;
4183 
4184 	/*
4185 	 * Attempt to resolve the regulator supply, if specified,
4186 	 * but don't return an error if we fail because we will try
4187 	 * to resolve it again later as more regulators are added.
4188 	 */
4189 	if (regulator_resolve_supply(rdev))
4190 		rdev_dbg(rdev, "unable to resolve supply\n");
4191 
4192 	ret = set_machine_constraints(rdev, constraints);
4193 	if (ret < 0)
4194 		goto wash;
4195 
4196 	/* add consumers devices */
4197 	if (init_data) {
4198 		mutex_lock(&regulator_list_mutex);
4199 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4200 			ret = set_consumer_device_supply(rdev,
4201 				init_data->consumer_supplies[i].dev_name,
4202 				init_data->consumer_supplies[i].supply);
4203 			if (ret < 0) {
4204 				mutex_unlock(&regulator_list_mutex);
4205 				dev_err(dev, "Failed to set supply %s\n",
4206 					init_data->consumer_supplies[i].supply);
4207 				goto unset_supplies;
4208 			}
4209 		}
4210 		mutex_unlock(&regulator_list_mutex);
4211 	}
4212 
4213 	if (!rdev->desc->ops->get_voltage &&
4214 	    !rdev->desc->ops->list_voltage &&
4215 	    !rdev->desc->fixed_uV)
4216 		rdev->is_switch = true;
4217 
4218 	ret = device_register(&rdev->dev);
4219 	if (ret != 0) {
4220 		put_device(&rdev->dev);
4221 		goto unset_supplies;
4222 	}
4223 
4224 	dev_set_drvdata(&rdev->dev, rdev);
4225 	rdev_init_debugfs(rdev);
4226 
4227 	/* try to resolve regulators supply since a new one was registered */
4228 	class_for_each_device(&regulator_class, NULL, NULL,
4229 			      regulator_register_resolve_supply);
4230 	kfree(config);
4231 	return rdev;
4232 
4233 unset_supplies:
4234 	mutex_lock(&regulator_list_mutex);
4235 	unset_regulator_supplies(rdev);
4236 	mutex_unlock(&regulator_list_mutex);
4237 wash:
4238 	kfree(rdev->constraints);
4239 	mutex_lock(&regulator_list_mutex);
4240 	regulator_ena_gpio_free(rdev);
4241 	mutex_unlock(&regulator_list_mutex);
4242 clean:
4243 	kfree(rdev);
4244 	kfree(config);
4245 	return ERR_PTR(ret);
4246 }
4247 EXPORT_SYMBOL_GPL(regulator_register);
4248 
4249 /**
4250  * regulator_unregister - unregister regulator
4251  * @rdev: regulator to unregister
4252  *
4253  * Called by regulator drivers to unregister a regulator.
4254  */
4255 void regulator_unregister(struct regulator_dev *rdev)
4256 {
4257 	if (rdev == NULL)
4258 		return;
4259 
4260 	if (rdev->supply) {
4261 		while (rdev->use_count--)
4262 			regulator_disable(rdev->supply);
4263 		regulator_put(rdev->supply);
4264 	}
4265 	mutex_lock(&regulator_list_mutex);
4266 	debugfs_remove_recursive(rdev->debugfs);
4267 	flush_work(&rdev->disable_work.work);
4268 	WARN_ON(rdev->open_count);
4269 	unset_regulator_supplies(rdev);
4270 	list_del(&rdev->list);
4271 	regulator_ena_gpio_free(rdev);
4272 	mutex_unlock(&regulator_list_mutex);
4273 	device_unregister(&rdev->dev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_unregister);
4276 
4277 #ifdef CONFIG_SUSPEND
4278 static int _regulator_suspend_late(struct device *dev, void *data)
4279 {
4280 	struct regulator_dev *rdev = dev_to_rdev(dev);
4281 	suspend_state_t *state = data;
4282 	int ret;
4283 
4284 	mutex_lock(&rdev->mutex);
4285 	ret = suspend_set_state(rdev, *state);
4286 	mutex_unlock(&rdev->mutex);
4287 
4288 	return ret;
4289 }
4290 
4291 /**
4292  * regulator_suspend_late - prepare regulators for system wide suspend
4293  * @state: system suspend state
4294  *
4295  * Configure each regulator with it's suspend operating parameters for state.
4296  */
4297 static int regulator_suspend_late(struct device *dev)
4298 {
4299 	suspend_state_t state = pm_suspend_target_state;
4300 
4301 	return class_for_each_device(&regulator_class, NULL, &state,
4302 				     _regulator_suspend_late);
4303 }
4304 static int _regulator_resume_early(struct device *dev, void *data)
4305 {
4306 	int ret = 0;
4307 	struct regulator_dev *rdev = dev_to_rdev(dev);
4308 	suspend_state_t *state = data;
4309 	struct regulator_state *rstate;
4310 
4311 	rstate = regulator_get_suspend_state(rdev, *state);
4312 	if (rstate == NULL)
4313 		return -EINVAL;
4314 
4315 	mutex_lock(&rdev->mutex);
4316 
4317 	if (rdev->desc->ops->resume_early &&
4318 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4319 	     rstate->enabled == DISABLE_IN_SUSPEND))
4320 		ret = rdev->desc->ops->resume_early(rdev);
4321 
4322 	mutex_unlock(&rdev->mutex);
4323 
4324 	return ret;
4325 }
4326 
4327 static int regulator_resume_early(struct device *dev)
4328 {
4329 	suspend_state_t state = pm_suspend_target_state;
4330 
4331 	return class_for_each_device(&regulator_class, NULL, &state,
4332 				     _regulator_resume_early);
4333 }
4334 
4335 #else /* !CONFIG_SUSPEND */
4336 
4337 #define regulator_suspend_late	NULL
4338 #define regulator_resume_early	NULL
4339 
4340 #endif /* !CONFIG_SUSPEND */
4341 
4342 #ifdef CONFIG_PM
4343 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4344 	.suspend_late	= regulator_suspend_late,
4345 	.resume_early	= regulator_resume_early,
4346 };
4347 #endif
4348 
4349 struct class regulator_class = {
4350 	.name = "regulator",
4351 	.dev_release = regulator_dev_release,
4352 	.dev_groups = regulator_dev_groups,
4353 #ifdef CONFIG_PM
4354 	.pm = &regulator_pm_ops,
4355 #endif
4356 };
4357 /**
4358  * regulator_has_full_constraints - the system has fully specified constraints
4359  *
4360  * Calling this function will cause the regulator API to disable all
4361  * regulators which have a zero use count and don't have an always_on
4362  * constraint in a late_initcall.
4363  *
4364  * The intention is that this will become the default behaviour in a
4365  * future kernel release so users are encouraged to use this facility
4366  * now.
4367  */
4368 void regulator_has_full_constraints(void)
4369 {
4370 	has_full_constraints = 1;
4371 }
4372 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4373 
4374 /**
4375  * rdev_get_drvdata - get rdev regulator driver data
4376  * @rdev: regulator
4377  *
4378  * Get rdev regulator driver private data. This call can be used in the
4379  * regulator driver context.
4380  */
4381 void *rdev_get_drvdata(struct regulator_dev *rdev)
4382 {
4383 	return rdev->reg_data;
4384 }
4385 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4386 
4387 /**
4388  * regulator_get_drvdata - get regulator driver data
4389  * @regulator: regulator
4390  *
4391  * Get regulator driver private data. This call can be used in the consumer
4392  * driver context when non API regulator specific functions need to be called.
4393  */
4394 void *regulator_get_drvdata(struct regulator *regulator)
4395 {
4396 	return regulator->rdev->reg_data;
4397 }
4398 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4399 
4400 /**
4401  * regulator_set_drvdata - set regulator driver data
4402  * @regulator: regulator
4403  * @data: data
4404  */
4405 void regulator_set_drvdata(struct regulator *regulator, void *data)
4406 {
4407 	regulator->rdev->reg_data = data;
4408 }
4409 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4410 
4411 /**
4412  * regulator_get_id - get regulator ID
4413  * @rdev: regulator
4414  */
4415 int rdev_get_id(struct regulator_dev *rdev)
4416 {
4417 	return rdev->desc->id;
4418 }
4419 EXPORT_SYMBOL_GPL(rdev_get_id);
4420 
4421 struct device *rdev_get_dev(struct regulator_dev *rdev)
4422 {
4423 	return &rdev->dev;
4424 }
4425 EXPORT_SYMBOL_GPL(rdev_get_dev);
4426 
4427 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4428 {
4429 	return reg_init_data->driver_data;
4430 }
4431 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4432 
4433 #ifdef CONFIG_DEBUG_FS
4434 static int supply_map_show(struct seq_file *sf, void *data)
4435 {
4436 	struct regulator_map *map;
4437 
4438 	list_for_each_entry(map, &regulator_map_list, list) {
4439 		seq_printf(sf, "%s -> %s.%s\n",
4440 				rdev_get_name(map->regulator), map->dev_name,
4441 				map->supply);
4442 	}
4443 
4444 	return 0;
4445 }
4446 
4447 static int supply_map_open(struct inode *inode, struct file *file)
4448 {
4449 	return single_open(file, supply_map_show, inode->i_private);
4450 }
4451 #endif
4452 
4453 static const struct file_operations supply_map_fops = {
4454 #ifdef CONFIG_DEBUG_FS
4455 	.open = supply_map_open,
4456 	.read = seq_read,
4457 	.llseek = seq_lseek,
4458 	.release = single_release,
4459 #endif
4460 };
4461 
4462 #ifdef CONFIG_DEBUG_FS
4463 struct summary_data {
4464 	struct seq_file *s;
4465 	struct regulator_dev *parent;
4466 	int level;
4467 };
4468 
4469 static void regulator_summary_show_subtree(struct seq_file *s,
4470 					   struct regulator_dev *rdev,
4471 					   int level);
4472 
4473 static int regulator_summary_show_children(struct device *dev, void *data)
4474 {
4475 	struct regulator_dev *rdev = dev_to_rdev(dev);
4476 	struct summary_data *summary_data = data;
4477 
4478 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4479 		regulator_summary_show_subtree(summary_data->s, rdev,
4480 					       summary_data->level + 1);
4481 
4482 	return 0;
4483 }
4484 
4485 static void regulator_summary_show_subtree(struct seq_file *s,
4486 					   struct regulator_dev *rdev,
4487 					   int level)
4488 {
4489 	struct regulation_constraints *c;
4490 	struct regulator *consumer;
4491 	struct summary_data summary_data;
4492 
4493 	if (!rdev)
4494 		return;
4495 
4496 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4497 		   level * 3 + 1, "",
4498 		   30 - level * 3, rdev_get_name(rdev),
4499 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4500 
4501 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4502 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4503 
4504 	c = rdev->constraints;
4505 	if (c) {
4506 		switch (rdev->desc->type) {
4507 		case REGULATOR_VOLTAGE:
4508 			seq_printf(s, "%5dmV %5dmV ",
4509 				   c->min_uV / 1000, c->max_uV / 1000);
4510 			break;
4511 		case REGULATOR_CURRENT:
4512 			seq_printf(s, "%5dmA %5dmA ",
4513 				   c->min_uA / 1000, c->max_uA / 1000);
4514 			break;
4515 		}
4516 	}
4517 
4518 	seq_puts(s, "\n");
4519 
4520 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4521 		if (consumer->dev && consumer->dev->class == &regulator_class)
4522 			continue;
4523 
4524 		seq_printf(s, "%*s%-*s ",
4525 			   (level + 1) * 3 + 1, "",
4526 			   30 - (level + 1) * 3,
4527 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4528 
4529 		switch (rdev->desc->type) {
4530 		case REGULATOR_VOLTAGE:
4531 			seq_printf(s, "%37dmV %5dmV",
4532 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4533 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4534 			break;
4535 		case REGULATOR_CURRENT:
4536 			break;
4537 		}
4538 
4539 		seq_puts(s, "\n");
4540 	}
4541 
4542 	summary_data.s = s;
4543 	summary_data.level = level;
4544 	summary_data.parent = rdev;
4545 
4546 	class_for_each_device(&regulator_class, NULL, &summary_data,
4547 			      regulator_summary_show_children);
4548 }
4549 
4550 static int regulator_summary_show_roots(struct device *dev, void *data)
4551 {
4552 	struct regulator_dev *rdev = dev_to_rdev(dev);
4553 	struct seq_file *s = data;
4554 
4555 	if (!rdev->supply)
4556 		regulator_summary_show_subtree(s, rdev, 0);
4557 
4558 	return 0;
4559 }
4560 
4561 static int regulator_summary_show(struct seq_file *s, void *data)
4562 {
4563 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4564 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4565 
4566 	class_for_each_device(&regulator_class, NULL, s,
4567 			      regulator_summary_show_roots);
4568 
4569 	return 0;
4570 }
4571 
4572 static int regulator_summary_open(struct inode *inode, struct file *file)
4573 {
4574 	return single_open(file, regulator_summary_show, inode->i_private);
4575 }
4576 #endif
4577 
4578 static const struct file_operations regulator_summary_fops = {
4579 #ifdef CONFIG_DEBUG_FS
4580 	.open		= regulator_summary_open,
4581 	.read		= seq_read,
4582 	.llseek		= seq_lseek,
4583 	.release	= single_release,
4584 #endif
4585 };
4586 
4587 static int __init regulator_init(void)
4588 {
4589 	int ret;
4590 
4591 	ret = class_register(&regulator_class);
4592 
4593 	debugfs_root = debugfs_create_dir("regulator", NULL);
4594 	if (!debugfs_root)
4595 		pr_warn("regulator: Failed to create debugfs directory\n");
4596 
4597 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4598 			    &supply_map_fops);
4599 
4600 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4601 			    NULL, &regulator_summary_fops);
4602 
4603 	regulator_dummy_init();
4604 
4605 	return ret;
4606 }
4607 
4608 /* init early to allow our consumers to complete system booting */
4609 core_initcall(regulator_init);
4610 
4611 static int __init regulator_late_cleanup(struct device *dev, void *data)
4612 {
4613 	struct regulator_dev *rdev = dev_to_rdev(dev);
4614 	const struct regulator_ops *ops = rdev->desc->ops;
4615 	struct regulation_constraints *c = rdev->constraints;
4616 	int enabled, ret;
4617 
4618 	if (c && c->always_on)
4619 		return 0;
4620 
4621 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4622 		return 0;
4623 
4624 	mutex_lock(&rdev->mutex);
4625 
4626 	if (rdev->use_count)
4627 		goto unlock;
4628 
4629 	/* If we can't read the status assume it's on. */
4630 	if (ops->is_enabled)
4631 		enabled = ops->is_enabled(rdev);
4632 	else
4633 		enabled = 1;
4634 
4635 	if (!enabled)
4636 		goto unlock;
4637 
4638 	if (have_full_constraints()) {
4639 		/* We log since this may kill the system if it goes
4640 		 * wrong. */
4641 		rdev_info(rdev, "disabling\n");
4642 		ret = _regulator_do_disable(rdev);
4643 		if (ret != 0)
4644 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4645 	} else {
4646 		/* The intention is that in future we will
4647 		 * assume that full constraints are provided
4648 		 * so warn even if we aren't going to do
4649 		 * anything here.
4650 		 */
4651 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4652 	}
4653 
4654 unlock:
4655 	mutex_unlock(&rdev->mutex);
4656 
4657 	return 0;
4658 }
4659 
4660 static int __init regulator_init_complete(void)
4661 {
4662 	/*
4663 	 * Since DT doesn't provide an idiomatic mechanism for
4664 	 * enabling full constraints and since it's much more natural
4665 	 * with DT to provide them just assume that a DT enabled
4666 	 * system has full constraints.
4667 	 */
4668 	if (of_have_populated_dt())
4669 		has_full_constraints = true;
4670 
4671 	/*
4672 	 * Regulators may had failed to resolve their input supplies
4673 	 * when were registered, either because the input supply was
4674 	 * not registered yet or because its parent device was not
4675 	 * bound yet. So attempt to resolve the input supplies for
4676 	 * pending regulators before trying to disable unused ones.
4677 	 */
4678 	class_for_each_device(&regulator_class, NULL, NULL,
4679 			      regulator_register_resolve_supply);
4680 
4681 	/* If we have a full configuration then disable any regulators
4682 	 * we have permission to change the status for and which are
4683 	 * not in use or always_on.  This is effectively the default
4684 	 * for DT and ACPI as they have full constraints.
4685 	 */
4686 	class_for_each_device(&regulator_class, NULL, NULL,
4687 			      regulator_late_cleanup);
4688 
4689 	return 0;
4690 }
4691 late_initcall_sync(regulator_init_complete);
4692