1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/of.h> 27 #include <linux/regmap.h> 28 #include <linux/regulator/of_regulator.h> 29 #include <linux/regulator/consumer.h> 30 #include <linux/regulator/driver.h> 31 #include <linux/regulator/machine.h> 32 #include <linux/module.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/regulator.h> 36 37 #include "dummy.h" 38 39 #define rdev_crit(rdev, fmt, ...) \ 40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 41 #define rdev_err(rdev, fmt, ...) \ 42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 43 #define rdev_warn(rdev, fmt, ...) \ 44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 45 #define rdev_info(rdev, fmt, ...) \ 46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 47 #define rdev_dbg(rdev, fmt, ...) \ 48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 49 50 static DEFINE_MUTEX(regulator_list_mutex); 51 static LIST_HEAD(regulator_list); 52 static LIST_HEAD(regulator_map_list); 53 static bool has_full_constraints; 54 static bool board_wants_dummy_regulator; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator 72 * 73 * One for each consumer device. 74 */ 75 struct regulator { 76 struct device *dev; 77 struct list_head list; 78 unsigned int always_on:1; 79 int uA_load; 80 int min_uV; 81 int max_uV; 82 char *supply_name; 83 struct device_attribute dev_attr; 84 struct regulator_dev *rdev; 85 struct dentry *debugfs; 86 }; 87 88 static int _regulator_is_enabled(struct regulator_dev *rdev); 89 static int _regulator_disable(struct regulator_dev *rdev); 90 static int _regulator_get_voltage(struct regulator_dev *rdev); 91 static int _regulator_get_current_limit(struct regulator_dev *rdev); 92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 93 static void _notifier_call_chain(struct regulator_dev *rdev, 94 unsigned long event, void *data); 95 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 96 int min_uV, int max_uV); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 101 static const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 111 /* gets the regulator for a given consumer device */ 112 static struct regulator *get_device_regulator(struct device *dev) 113 { 114 struct regulator *regulator = NULL; 115 struct regulator_dev *rdev; 116 117 mutex_lock(®ulator_list_mutex); 118 list_for_each_entry(rdev, ®ulator_list, list) { 119 mutex_lock(&rdev->mutex); 120 list_for_each_entry(regulator, &rdev->consumer_list, list) { 121 if (regulator->dev == dev) { 122 mutex_unlock(&rdev->mutex); 123 mutex_unlock(®ulator_list_mutex); 124 return regulator; 125 } 126 } 127 mutex_unlock(&rdev->mutex); 128 } 129 mutex_unlock(®ulator_list_mutex); 130 return NULL; 131 } 132 133 /** 134 * of_get_regulator - get a regulator device node based on supply name 135 * @dev: Device pointer for the consumer (of regulator) device 136 * @supply: regulator supply name 137 * 138 * Extract the regulator device node corresponding to the supply name. 139 * retruns the device node corresponding to the regulator if found, else 140 * returns NULL. 141 */ 142 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 143 { 144 struct device_node *regnode = NULL; 145 char prop_name[32]; /* 32 is max size of property name */ 146 147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 148 149 snprintf(prop_name, 32, "%s-supply", supply); 150 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 151 152 if (!regnode) { 153 dev_dbg(dev, "Looking up %s property in node %s failed", 154 prop_name, dev->of_node->full_name); 155 return NULL; 156 } 157 return regnode; 158 } 159 160 static int _regulator_can_change_status(struct regulator_dev *rdev) 161 { 162 if (!rdev->constraints) 163 return 0; 164 165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 166 return 1; 167 else 168 return 0; 169 } 170 171 /* Platform voltage constraint check */ 172 static int regulator_check_voltage(struct regulator_dev *rdev, 173 int *min_uV, int *max_uV) 174 { 175 BUG_ON(*min_uV > *max_uV); 176 177 if (!rdev->constraints) { 178 rdev_err(rdev, "no constraints\n"); 179 return -ENODEV; 180 } 181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 182 rdev_err(rdev, "operation not allowed\n"); 183 return -EPERM; 184 } 185 186 if (*max_uV > rdev->constraints->max_uV) 187 *max_uV = rdev->constraints->max_uV; 188 if (*min_uV < rdev->constraints->min_uV) 189 *min_uV = rdev->constraints->min_uV; 190 191 if (*min_uV > *max_uV) { 192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 193 *min_uV, *max_uV); 194 return -EINVAL; 195 } 196 197 return 0; 198 } 199 200 /* Make sure we select a voltage that suits the needs of all 201 * regulator consumers 202 */ 203 static int regulator_check_consumers(struct regulator_dev *rdev, 204 int *min_uV, int *max_uV) 205 { 206 struct regulator *regulator; 207 208 list_for_each_entry(regulator, &rdev->consumer_list, list) { 209 /* 210 * Assume consumers that didn't say anything are OK 211 * with anything in the constraint range. 212 */ 213 if (!regulator->min_uV && !regulator->max_uV) 214 continue; 215 216 if (*max_uV > regulator->max_uV) 217 *max_uV = regulator->max_uV; 218 if (*min_uV < regulator->min_uV) 219 *min_uV = regulator->min_uV; 220 } 221 222 if (*min_uV > *max_uV) 223 return -EINVAL; 224 225 return 0; 226 } 227 228 /* current constraint check */ 229 static int regulator_check_current_limit(struct regulator_dev *rdev, 230 int *min_uA, int *max_uA) 231 { 232 BUG_ON(*min_uA > *max_uA); 233 234 if (!rdev->constraints) { 235 rdev_err(rdev, "no constraints\n"); 236 return -ENODEV; 237 } 238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 239 rdev_err(rdev, "operation not allowed\n"); 240 return -EPERM; 241 } 242 243 if (*max_uA > rdev->constraints->max_uA) 244 *max_uA = rdev->constraints->max_uA; 245 if (*min_uA < rdev->constraints->min_uA) 246 *min_uA = rdev->constraints->min_uA; 247 248 if (*min_uA > *max_uA) { 249 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 250 *min_uA, *max_uA); 251 return -EINVAL; 252 } 253 254 return 0; 255 } 256 257 /* operating mode constraint check */ 258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 259 { 260 switch (*mode) { 261 case REGULATOR_MODE_FAST: 262 case REGULATOR_MODE_NORMAL: 263 case REGULATOR_MODE_IDLE: 264 case REGULATOR_MODE_STANDBY: 265 break; 266 default: 267 rdev_err(rdev, "invalid mode %x specified\n", *mode); 268 return -EINVAL; 269 } 270 271 if (!rdev->constraints) { 272 rdev_err(rdev, "no constraints\n"); 273 return -ENODEV; 274 } 275 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 276 rdev_err(rdev, "operation not allowed\n"); 277 return -EPERM; 278 } 279 280 /* The modes are bitmasks, the most power hungry modes having 281 * the lowest values. If the requested mode isn't supported 282 * try higher modes. */ 283 while (*mode) { 284 if (rdev->constraints->valid_modes_mask & *mode) 285 return 0; 286 *mode /= 2; 287 } 288 289 return -EINVAL; 290 } 291 292 /* dynamic regulator mode switching constraint check */ 293 static int regulator_check_drms(struct regulator_dev *rdev) 294 { 295 if (!rdev->constraints) { 296 rdev_err(rdev, "no constraints\n"); 297 return -ENODEV; 298 } 299 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 300 rdev_err(rdev, "operation not allowed\n"); 301 return -EPERM; 302 } 303 return 0; 304 } 305 306 static ssize_t device_requested_uA_show(struct device *dev, 307 struct device_attribute *attr, char *buf) 308 { 309 struct regulator *regulator; 310 311 regulator = get_device_regulator(dev); 312 if (regulator == NULL) 313 return 0; 314 315 return sprintf(buf, "%d\n", regulator->uA_load); 316 } 317 318 static ssize_t regulator_uV_show(struct device *dev, 319 struct device_attribute *attr, char *buf) 320 { 321 struct regulator_dev *rdev = dev_get_drvdata(dev); 322 ssize_t ret; 323 324 mutex_lock(&rdev->mutex); 325 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 326 mutex_unlock(&rdev->mutex); 327 328 return ret; 329 } 330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 331 332 static ssize_t regulator_uA_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct regulator_dev *rdev = dev_get_drvdata(dev); 336 337 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 338 } 339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 340 341 static ssize_t regulator_name_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 347 } 348 349 static ssize_t regulator_print_opmode(char *buf, int mode) 350 { 351 switch (mode) { 352 case REGULATOR_MODE_FAST: 353 return sprintf(buf, "fast\n"); 354 case REGULATOR_MODE_NORMAL: 355 return sprintf(buf, "normal\n"); 356 case REGULATOR_MODE_IDLE: 357 return sprintf(buf, "idle\n"); 358 case REGULATOR_MODE_STANDBY: 359 return sprintf(buf, "standby\n"); 360 } 361 return sprintf(buf, "unknown\n"); 362 } 363 364 static ssize_t regulator_opmode_show(struct device *dev, 365 struct device_attribute *attr, char *buf) 366 { 367 struct regulator_dev *rdev = dev_get_drvdata(dev); 368 369 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 370 } 371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 372 373 static ssize_t regulator_print_state(char *buf, int state) 374 { 375 if (state > 0) 376 return sprintf(buf, "enabled\n"); 377 else if (state == 0) 378 return sprintf(buf, "disabled\n"); 379 else 380 return sprintf(buf, "unknown\n"); 381 } 382 383 static ssize_t regulator_state_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct regulator_dev *rdev = dev_get_drvdata(dev); 387 ssize_t ret; 388 389 mutex_lock(&rdev->mutex); 390 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 391 mutex_unlock(&rdev->mutex); 392 393 return ret; 394 } 395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 396 397 static ssize_t regulator_status_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct regulator_dev *rdev = dev_get_drvdata(dev); 401 int status; 402 char *label; 403 404 status = rdev->desc->ops->get_status(rdev); 405 if (status < 0) 406 return status; 407 408 switch (status) { 409 case REGULATOR_STATUS_OFF: 410 label = "off"; 411 break; 412 case REGULATOR_STATUS_ON: 413 label = "on"; 414 break; 415 case REGULATOR_STATUS_ERROR: 416 label = "error"; 417 break; 418 case REGULATOR_STATUS_FAST: 419 label = "fast"; 420 break; 421 case REGULATOR_STATUS_NORMAL: 422 label = "normal"; 423 break; 424 case REGULATOR_STATUS_IDLE: 425 label = "idle"; 426 break; 427 case REGULATOR_STATUS_STANDBY: 428 label = "standby"; 429 break; 430 default: 431 return -ERANGE; 432 } 433 434 return sprintf(buf, "%s\n", label); 435 } 436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 437 438 static ssize_t regulator_min_uA_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct regulator_dev *rdev = dev_get_drvdata(dev); 442 443 if (!rdev->constraints) 444 return sprintf(buf, "constraint not defined\n"); 445 446 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 447 } 448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 449 450 static ssize_t regulator_max_uA_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct regulator_dev *rdev = dev_get_drvdata(dev); 454 455 if (!rdev->constraints) 456 return sprintf(buf, "constraint not defined\n"); 457 458 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 459 } 460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 461 462 static ssize_t regulator_min_uV_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct regulator_dev *rdev = dev_get_drvdata(dev); 466 467 if (!rdev->constraints) 468 return sprintf(buf, "constraint not defined\n"); 469 470 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 471 } 472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 473 474 static ssize_t regulator_max_uV_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct regulator_dev *rdev = dev_get_drvdata(dev); 478 479 if (!rdev->constraints) 480 return sprintf(buf, "constraint not defined\n"); 481 482 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 483 } 484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 485 486 static ssize_t regulator_total_uA_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488 { 489 struct regulator_dev *rdev = dev_get_drvdata(dev); 490 struct regulator *regulator; 491 int uA = 0; 492 493 mutex_lock(&rdev->mutex); 494 list_for_each_entry(regulator, &rdev->consumer_list, list) 495 uA += regulator->uA_load; 496 mutex_unlock(&rdev->mutex); 497 return sprintf(buf, "%d\n", uA); 498 } 499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 500 501 static ssize_t regulator_num_users_show(struct device *dev, 502 struct device_attribute *attr, char *buf) 503 { 504 struct regulator_dev *rdev = dev_get_drvdata(dev); 505 return sprintf(buf, "%d\n", rdev->use_count); 506 } 507 508 static ssize_t regulator_type_show(struct device *dev, 509 struct device_attribute *attr, char *buf) 510 { 511 struct regulator_dev *rdev = dev_get_drvdata(dev); 512 513 switch (rdev->desc->type) { 514 case REGULATOR_VOLTAGE: 515 return sprintf(buf, "voltage\n"); 516 case REGULATOR_CURRENT: 517 return sprintf(buf, "current\n"); 518 } 519 return sprintf(buf, "unknown\n"); 520 } 521 522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct regulator_dev *rdev = dev_get_drvdata(dev); 526 527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 528 } 529 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 530 regulator_suspend_mem_uV_show, NULL); 531 532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 533 struct device_attribute *attr, char *buf) 534 { 535 struct regulator_dev *rdev = dev_get_drvdata(dev); 536 537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 538 } 539 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 540 regulator_suspend_disk_uV_show, NULL); 541 542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct regulator_dev *rdev = dev_get_drvdata(dev); 546 547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 548 } 549 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 550 regulator_suspend_standby_uV_show, NULL); 551 552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 553 struct device_attribute *attr, char *buf) 554 { 555 struct regulator_dev *rdev = dev_get_drvdata(dev); 556 557 return regulator_print_opmode(buf, 558 rdev->constraints->state_mem.mode); 559 } 560 static DEVICE_ATTR(suspend_mem_mode, 0444, 561 regulator_suspend_mem_mode_show, NULL); 562 563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 564 struct device_attribute *attr, char *buf) 565 { 566 struct regulator_dev *rdev = dev_get_drvdata(dev); 567 568 return regulator_print_opmode(buf, 569 rdev->constraints->state_disk.mode); 570 } 571 static DEVICE_ATTR(suspend_disk_mode, 0444, 572 regulator_suspend_disk_mode_show, NULL); 573 574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 575 struct device_attribute *attr, char *buf) 576 { 577 struct regulator_dev *rdev = dev_get_drvdata(dev); 578 579 return regulator_print_opmode(buf, 580 rdev->constraints->state_standby.mode); 581 } 582 static DEVICE_ATTR(suspend_standby_mode, 0444, 583 regulator_suspend_standby_mode_show, NULL); 584 585 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct regulator_dev *rdev = dev_get_drvdata(dev); 589 590 return regulator_print_state(buf, 591 rdev->constraints->state_mem.enabled); 592 } 593 static DEVICE_ATTR(suspend_mem_state, 0444, 594 regulator_suspend_mem_state_show, NULL); 595 596 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 597 struct device_attribute *attr, char *buf) 598 { 599 struct regulator_dev *rdev = dev_get_drvdata(dev); 600 601 return regulator_print_state(buf, 602 rdev->constraints->state_disk.enabled); 603 } 604 static DEVICE_ATTR(suspend_disk_state, 0444, 605 regulator_suspend_disk_state_show, NULL); 606 607 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 608 struct device_attribute *attr, char *buf) 609 { 610 struct regulator_dev *rdev = dev_get_drvdata(dev); 611 612 return regulator_print_state(buf, 613 rdev->constraints->state_standby.enabled); 614 } 615 static DEVICE_ATTR(suspend_standby_state, 0444, 616 regulator_suspend_standby_state_show, NULL); 617 618 619 /* 620 * These are the only attributes are present for all regulators. 621 * Other attributes are a function of regulator functionality. 622 */ 623 static struct device_attribute regulator_dev_attrs[] = { 624 __ATTR(name, 0444, regulator_name_show, NULL), 625 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 626 __ATTR(type, 0444, regulator_type_show, NULL), 627 __ATTR_NULL, 628 }; 629 630 static void regulator_dev_release(struct device *dev) 631 { 632 struct regulator_dev *rdev = dev_get_drvdata(dev); 633 kfree(rdev); 634 } 635 636 static struct class regulator_class = { 637 .name = "regulator", 638 .dev_release = regulator_dev_release, 639 .dev_attrs = regulator_dev_attrs, 640 }; 641 642 /* Calculate the new optimum regulator operating mode based on the new total 643 * consumer load. All locks held by caller */ 644 static void drms_uA_update(struct regulator_dev *rdev) 645 { 646 struct regulator *sibling; 647 int current_uA = 0, output_uV, input_uV, err; 648 unsigned int mode; 649 650 err = regulator_check_drms(rdev); 651 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 652 (!rdev->desc->ops->get_voltage && 653 !rdev->desc->ops->get_voltage_sel) || 654 !rdev->desc->ops->set_mode) 655 return; 656 657 /* get output voltage */ 658 output_uV = _regulator_get_voltage(rdev); 659 if (output_uV <= 0) 660 return; 661 662 /* get input voltage */ 663 input_uV = 0; 664 if (rdev->supply) 665 input_uV = regulator_get_voltage(rdev->supply); 666 if (input_uV <= 0) 667 input_uV = rdev->constraints->input_uV; 668 if (input_uV <= 0) 669 return; 670 671 /* calc total requested load */ 672 list_for_each_entry(sibling, &rdev->consumer_list, list) 673 current_uA += sibling->uA_load; 674 675 /* now get the optimum mode for our new total regulator load */ 676 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 677 output_uV, current_uA); 678 679 /* check the new mode is allowed */ 680 err = regulator_mode_constrain(rdev, &mode); 681 if (err == 0) 682 rdev->desc->ops->set_mode(rdev, mode); 683 } 684 685 static int suspend_set_state(struct regulator_dev *rdev, 686 struct regulator_state *rstate) 687 { 688 int ret = 0; 689 690 /* If we have no suspend mode configration don't set anything; 691 * only warn if the driver implements set_suspend_voltage or 692 * set_suspend_mode callback. 693 */ 694 if (!rstate->enabled && !rstate->disabled) { 695 if (rdev->desc->ops->set_suspend_voltage || 696 rdev->desc->ops->set_suspend_mode) 697 rdev_warn(rdev, "No configuration\n"); 698 return 0; 699 } 700 701 if (rstate->enabled && rstate->disabled) { 702 rdev_err(rdev, "invalid configuration\n"); 703 return -EINVAL; 704 } 705 706 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 707 ret = rdev->desc->ops->set_suspend_enable(rdev); 708 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 709 ret = rdev->desc->ops->set_suspend_disable(rdev); 710 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 711 ret = 0; 712 713 if (ret < 0) { 714 rdev_err(rdev, "failed to enabled/disable\n"); 715 return ret; 716 } 717 718 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 719 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 720 if (ret < 0) { 721 rdev_err(rdev, "failed to set voltage\n"); 722 return ret; 723 } 724 } 725 726 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 727 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 728 if (ret < 0) { 729 rdev_err(rdev, "failed to set mode\n"); 730 return ret; 731 } 732 } 733 return ret; 734 } 735 736 /* locks held by caller */ 737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 738 { 739 if (!rdev->constraints) 740 return -EINVAL; 741 742 switch (state) { 743 case PM_SUSPEND_STANDBY: 744 return suspend_set_state(rdev, 745 &rdev->constraints->state_standby); 746 case PM_SUSPEND_MEM: 747 return suspend_set_state(rdev, 748 &rdev->constraints->state_mem); 749 case PM_SUSPEND_MAX: 750 return suspend_set_state(rdev, 751 &rdev->constraints->state_disk); 752 default: 753 return -EINVAL; 754 } 755 } 756 757 static void print_constraints(struct regulator_dev *rdev) 758 { 759 struct regulation_constraints *constraints = rdev->constraints; 760 char buf[80] = ""; 761 int count = 0; 762 int ret; 763 764 if (constraints->min_uV && constraints->max_uV) { 765 if (constraints->min_uV == constraints->max_uV) 766 count += sprintf(buf + count, "%d mV ", 767 constraints->min_uV / 1000); 768 else 769 count += sprintf(buf + count, "%d <--> %d mV ", 770 constraints->min_uV / 1000, 771 constraints->max_uV / 1000); 772 } 773 774 if (!constraints->min_uV || 775 constraints->min_uV != constraints->max_uV) { 776 ret = _regulator_get_voltage(rdev); 777 if (ret > 0) 778 count += sprintf(buf + count, "at %d mV ", ret / 1000); 779 } 780 781 if (constraints->uV_offset) 782 count += sprintf(buf, "%dmV offset ", 783 constraints->uV_offset / 1000); 784 785 if (constraints->min_uA && constraints->max_uA) { 786 if (constraints->min_uA == constraints->max_uA) 787 count += sprintf(buf + count, "%d mA ", 788 constraints->min_uA / 1000); 789 else 790 count += sprintf(buf + count, "%d <--> %d mA ", 791 constraints->min_uA / 1000, 792 constraints->max_uA / 1000); 793 } 794 795 if (!constraints->min_uA || 796 constraints->min_uA != constraints->max_uA) { 797 ret = _regulator_get_current_limit(rdev); 798 if (ret > 0) 799 count += sprintf(buf + count, "at %d mA ", ret / 1000); 800 } 801 802 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 803 count += sprintf(buf + count, "fast "); 804 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 805 count += sprintf(buf + count, "normal "); 806 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 807 count += sprintf(buf + count, "idle "); 808 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 809 count += sprintf(buf + count, "standby"); 810 811 rdev_info(rdev, "%s\n", buf); 812 813 if ((constraints->min_uV != constraints->max_uV) && 814 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 815 rdev_warn(rdev, 816 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 817 } 818 819 static int machine_constraints_voltage(struct regulator_dev *rdev, 820 struct regulation_constraints *constraints) 821 { 822 struct regulator_ops *ops = rdev->desc->ops; 823 int ret; 824 825 /* do we need to apply the constraint voltage */ 826 if (rdev->constraints->apply_uV && 827 rdev->constraints->min_uV == rdev->constraints->max_uV) { 828 ret = _regulator_do_set_voltage(rdev, 829 rdev->constraints->min_uV, 830 rdev->constraints->max_uV); 831 if (ret < 0) { 832 rdev_err(rdev, "failed to apply %duV constraint\n", 833 rdev->constraints->min_uV); 834 return ret; 835 } 836 } 837 838 /* constrain machine-level voltage specs to fit 839 * the actual range supported by this regulator. 840 */ 841 if (ops->list_voltage && rdev->desc->n_voltages) { 842 int count = rdev->desc->n_voltages; 843 int i; 844 int min_uV = INT_MAX; 845 int max_uV = INT_MIN; 846 int cmin = constraints->min_uV; 847 int cmax = constraints->max_uV; 848 849 /* it's safe to autoconfigure fixed-voltage supplies 850 and the constraints are used by list_voltage. */ 851 if (count == 1 && !cmin) { 852 cmin = 1; 853 cmax = INT_MAX; 854 constraints->min_uV = cmin; 855 constraints->max_uV = cmax; 856 } 857 858 /* voltage constraints are optional */ 859 if ((cmin == 0) && (cmax == 0)) 860 return 0; 861 862 /* else require explicit machine-level constraints */ 863 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 864 rdev_err(rdev, "invalid voltage constraints\n"); 865 return -EINVAL; 866 } 867 868 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 869 for (i = 0; i < count; i++) { 870 int value; 871 872 value = ops->list_voltage(rdev, i); 873 if (value <= 0) 874 continue; 875 876 /* maybe adjust [min_uV..max_uV] */ 877 if (value >= cmin && value < min_uV) 878 min_uV = value; 879 if (value <= cmax && value > max_uV) 880 max_uV = value; 881 } 882 883 /* final: [min_uV..max_uV] valid iff constraints valid */ 884 if (max_uV < min_uV) { 885 rdev_err(rdev, "unsupportable voltage constraints\n"); 886 return -EINVAL; 887 } 888 889 /* use regulator's subset of machine constraints */ 890 if (constraints->min_uV < min_uV) { 891 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 892 constraints->min_uV, min_uV); 893 constraints->min_uV = min_uV; 894 } 895 if (constraints->max_uV > max_uV) { 896 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 897 constraints->max_uV, max_uV); 898 constraints->max_uV = max_uV; 899 } 900 } 901 902 return 0; 903 } 904 905 /** 906 * set_machine_constraints - sets regulator constraints 907 * @rdev: regulator source 908 * @constraints: constraints to apply 909 * 910 * Allows platform initialisation code to define and constrain 911 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 912 * Constraints *must* be set by platform code in order for some 913 * regulator operations to proceed i.e. set_voltage, set_current_limit, 914 * set_mode. 915 */ 916 static int set_machine_constraints(struct regulator_dev *rdev, 917 const struct regulation_constraints *constraints) 918 { 919 int ret = 0; 920 struct regulator_ops *ops = rdev->desc->ops; 921 922 if (constraints) 923 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 924 GFP_KERNEL); 925 else 926 rdev->constraints = kzalloc(sizeof(*constraints), 927 GFP_KERNEL); 928 if (!rdev->constraints) 929 return -ENOMEM; 930 931 ret = machine_constraints_voltage(rdev, rdev->constraints); 932 if (ret != 0) 933 goto out; 934 935 /* do we need to setup our suspend state */ 936 if (rdev->constraints->initial_state) { 937 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 938 if (ret < 0) { 939 rdev_err(rdev, "failed to set suspend state\n"); 940 goto out; 941 } 942 } 943 944 if (rdev->constraints->initial_mode) { 945 if (!ops->set_mode) { 946 rdev_err(rdev, "no set_mode operation\n"); 947 ret = -EINVAL; 948 goto out; 949 } 950 951 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 952 if (ret < 0) { 953 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 954 goto out; 955 } 956 } 957 958 /* If the constraints say the regulator should be on at this point 959 * and we have control then make sure it is enabled. 960 */ 961 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 962 ops->enable) { 963 ret = ops->enable(rdev); 964 if (ret < 0) { 965 rdev_err(rdev, "failed to enable\n"); 966 goto out; 967 } 968 } 969 970 print_constraints(rdev); 971 return 0; 972 out: 973 kfree(rdev->constraints); 974 rdev->constraints = NULL; 975 return ret; 976 } 977 978 /** 979 * set_supply - set regulator supply regulator 980 * @rdev: regulator name 981 * @supply_rdev: supply regulator name 982 * 983 * Called by platform initialisation code to set the supply regulator for this 984 * regulator. This ensures that a regulators supply will also be enabled by the 985 * core if it's child is enabled. 986 */ 987 static int set_supply(struct regulator_dev *rdev, 988 struct regulator_dev *supply_rdev) 989 { 990 int err; 991 992 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 993 994 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 995 if (rdev->supply == NULL) { 996 err = -ENOMEM; 997 return err; 998 } 999 1000 return 0; 1001 } 1002 1003 /** 1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1005 * @rdev: regulator source 1006 * @consumer_dev_name: dev_name() string for device supply applies to 1007 * @supply: symbolic name for supply 1008 * 1009 * Allows platform initialisation code to map physical regulator 1010 * sources to symbolic names for supplies for use by devices. Devices 1011 * should use these symbolic names to request regulators, avoiding the 1012 * need to provide board-specific regulator names as platform data. 1013 */ 1014 static int set_consumer_device_supply(struct regulator_dev *rdev, 1015 const char *consumer_dev_name, 1016 const char *supply) 1017 { 1018 struct regulator_map *node; 1019 int has_dev; 1020 1021 if (supply == NULL) 1022 return -EINVAL; 1023 1024 if (consumer_dev_name != NULL) 1025 has_dev = 1; 1026 else 1027 has_dev = 0; 1028 1029 list_for_each_entry(node, ®ulator_map_list, list) { 1030 if (node->dev_name && consumer_dev_name) { 1031 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1032 continue; 1033 } else if (node->dev_name || consumer_dev_name) { 1034 continue; 1035 } 1036 1037 if (strcmp(node->supply, supply) != 0) 1038 continue; 1039 1040 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1041 consumer_dev_name, 1042 dev_name(&node->regulator->dev), 1043 node->regulator->desc->name, 1044 supply, 1045 dev_name(&rdev->dev), rdev_get_name(rdev)); 1046 return -EBUSY; 1047 } 1048 1049 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1050 if (node == NULL) 1051 return -ENOMEM; 1052 1053 node->regulator = rdev; 1054 node->supply = supply; 1055 1056 if (has_dev) { 1057 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1058 if (node->dev_name == NULL) { 1059 kfree(node); 1060 return -ENOMEM; 1061 } 1062 } 1063 1064 list_add(&node->list, ®ulator_map_list); 1065 return 0; 1066 } 1067 1068 static void unset_regulator_supplies(struct regulator_dev *rdev) 1069 { 1070 struct regulator_map *node, *n; 1071 1072 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1073 if (rdev == node->regulator) { 1074 list_del(&node->list); 1075 kfree(node->dev_name); 1076 kfree(node); 1077 } 1078 } 1079 } 1080 1081 #define REG_STR_SIZE 64 1082 1083 static struct regulator *create_regulator(struct regulator_dev *rdev, 1084 struct device *dev, 1085 const char *supply_name) 1086 { 1087 struct regulator *regulator; 1088 char buf[REG_STR_SIZE]; 1089 int err, size; 1090 1091 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1092 if (regulator == NULL) 1093 return NULL; 1094 1095 mutex_lock(&rdev->mutex); 1096 regulator->rdev = rdev; 1097 list_add(®ulator->list, &rdev->consumer_list); 1098 1099 if (dev) { 1100 /* create a 'requested_microamps_name' sysfs entry */ 1101 size = scnprintf(buf, REG_STR_SIZE, 1102 "microamps_requested_%s-%s", 1103 dev_name(dev), supply_name); 1104 if (size >= REG_STR_SIZE) 1105 goto overflow_err; 1106 1107 regulator->dev = dev; 1108 sysfs_attr_init(®ulator->dev_attr.attr); 1109 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL); 1110 if (regulator->dev_attr.attr.name == NULL) 1111 goto attr_name_err; 1112 1113 regulator->dev_attr.attr.mode = 0444; 1114 regulator->dev_attr.show = device_requested_uA_show; 1115 err = device_create_file(dev, ®ulator->dev_attr); 1116 if (err < 0) { 1117 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n"); 1118 goto attr_name_err; 1119 } 1120 1121 /* also add a link to the device sysfs entry */ 1122 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1123 dev->kobj.name, supply_name); 1124 if (size >= REG_STR_SIZE) 1125 goto attr_err; 1126 1127 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1128 if (regulator->supply_name == NULL) 1129 goto attr_err; 1130 1131 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1132 buf); 1133 if (err) { 1134 rdev_warn(rdev, "could not add device link %s err %d\n", 1135 dev->kobj.name, err); 1136 goto link_name_err; 1137 } 1138 } else { 1139 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1140 if (regulator->supply_name == NULL) 1141 goto attr_err; 1142 } 1143 1144 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1145 rdev->debugfs); 1146 if (!regulator->debugfs) { 1147 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1148 } else { 1149 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1150 ®ulator->uA_load); 1151 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1152 ®ulator->min_uV); 1153 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1154 ®ulator->max_uV); 1155 } 1156 1157 /* 1158 * Check now if the regulator is an always on regulator - if 1159 * it is then we don't need to do nearly so much work for 1160 * enable/disable calls. 1161 */ 1162 if (!_regulator_can_change_status(rdev) && 1163 _regulator_is_enabled(rdev)) 1164 regulator->always_on = true; 1165 1166 mutex_unlock(&rdev->mutex); 1167 return regulator; 1168 link_name_err: 1169 kfree(regulator->supply_name); 1170 attr_err: 1171 device_remove_file(regulator->dev, ®ulator->dev_attr); 1172 attr_name_err: 1173 kfree(regulator->dev_attr.attr.name); 1174 overflow_err: 1175 list_del(®ulator->list); 1176 kfree(regulator); 1177 mutex_unlock(&rdev->mutex); 1178 return NULL; 1179 } 1180 1181 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1182 { 1183 if (!rdev->desc->ops->enable_time) 1184 return 0; 1185 return rdev->desc->ops->enable_time(rdev); 1186 } 1187 1188 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1189 const char *supply, 1190 int *ret) 1191 { 1192 struct regulator_dev *r; 1193 struct device_node *node; 1194 struct regulator_map *map; 1195 const char *devname = NULL; 1196 1197 /* first do a dt based lookup */ 1198 if (dev && dev->of_node) { 1199 node = of_get_regulator(dev, supply); 1200 if (node) { 1201 list_for_each_entry(r, ®ulator_list, list) 1202 if (r->dev.parent && 1203 node == r->dev.of_node) 1204 return r; 1205 } else { 1206 /* 1207 * If we couldn't even get the node then it's 1208 * not just that the device didn't register 1209 * yet, there's no node and we'll never 1210 * succeed. 1211 */ 1212 *ret = -ENODEV; 1213 } 1214 } 1215 1216 /* if not found, try doing it non-dt way */ 1217 if (dev) 1218 devname = dev_name(dev); 1219 1220 list_for_each_entry(r, ®ulator_list, list) 1221 if (strcmp(rdev_get_name(r), supply) == 0) 1222 return r; 1223 1224 list_for_each_entry(map, ®ulator_map_list, list) { 1225 /* If the mapping has a device set up it must match */ 1226 if (map->dev_name && 1227 (!devname || strcmp(map->dev_name, devname))) 1228 continue; 1229 1230 if (strcmp(map->supply, supply) == 0) 1231 return map->regulator; 1232 } 1233 1234 1235 return NULL; 1236 } 1237 1238 /* Internal regulator request function */ 1239 static struct regulator *_regulator_get(struct device *dev, const char *id, 1240 int exclusive) 1241 { 1242 struct regulator_dev *rdev; 1243 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1244 const char *devname = NULL; 1245 int ret; 1246 1247 if (id == NULL) { 1248 pr_err("get() with no identifier\n"); 1249 return regulator; 1250 } 1251 1252 if (dev) 1253 devname = dev_name(dev); 1254 1255 mutex_lock(®ulator_list_mutex); 1256 1257 rdev = regulator_dev_lookup(dev, id, &ret); 1258 if (rdev) 1259 goto found; 1260 1261 if (board_wants_dummy_regulator) { 1262 rdev = dummy_regulator_rdev; 1263 goto found; 1264 } 1265 1266 #ifdef CONFIG_REGULATOR_DUMMY 1267 if (!devname) 1268 devname = "deviceless"; 1269 1270 /* If the board didn't flag that it was fully constrained then 1271 * substitute in a dummy regulator so consumers can continue. 1272 */ 1273 if (!has_full_constraints) { 1274 pr_warn("%s supply %s not found, using dummy regulator\n", 1275 devname, id); 1276 rdev = dummy_regulator_rdev; 1277 goto found; 1278 } 1279 #endif 1280 1281 mutex_unlock(®ulator_list_mutex); 1282 return regulator; 1283 1284 found: 1285 if (rdev->exclusive) { 1286 regulator = ERR_PTR(-EPERM); 1287 goto out; 1288 } 1289 1290 if (exclusive && rdev->open_count) { 1291 regulator = ERR_PTR(-EBUSY); 1292 goto out; 1293 } 1294 1295 if (!try_module_get(rdev->owner)) 1296 goto out; 1297 1298 regulator = create_regulator(rdev, dev, id); 1299 if (regulator == NULL) { 1300 regulator = ERR_PTR(-ENOMEM); 1301 module_put(rdev->owner); 1302 goto out; 1303 } 1304 1305 rdev->open_count++; 1306 if (exclusive) { 1307 rdev->exclusive = 1; 1308 1309 ret = _regulator_is_enabled(rdev); 1310 if (ret > 0) 1311 rdev->use_count = 1; 1312 else 1313 rdev->use_count = 0; 1314 } 1315 1316 out: 1317 mutex_unlock(®ulator_list_mutex); 1318 1319 return regulator; 1320 } 1321 1322 /** 1323 * regulator_get - lookup and obtain a reference to a regulator. 1324 * @dev: device for regulator "consumer" 1325 * @id: Supply name or regulator ID. 1326 * 1327 * Returns a struct regulator corresponding to the regulator producer, 1328 * or IS_ERR() condition containing errno. 1329 * 1330 * Use of supply names configured via regulator_set_device_supply() is 1331 * strongly encouraged. It is recommended that the supply name used 1332 * should match the name used for the supply and/or the relevant 1333 * device pins in the datasheet. 1334 */ 1335 struct regulator *regulator_get(struct device *dev, const char *id) 1336 { 1337 return _regulator_get(dev, id, 0); 1338 } 1339 EXPORT_SYMBOL_GPL(regulator_get); 1340 1341 static void devm_regulator_release(struct device *dev, void *res) 1342 { 1343 regulator_put(*(struct regulator **)res); 1344 } 1345 1346 /** 1347 * devm_regulator_get - Resource managed regulator_get() 1348 * @dev: device for regulator "consumer" 1349 * @id: Supply name or regulator ID. 1350 * 1351 * Managed regulator_get(). Regulators returned from this function are 1352 * automatically regulator_put() on driver detach. See regulator_get() for more 1353 * information. 1354 */ 1355 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1356 { 1357 struct regulator **ptr, *regulator; 1358 1359 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1360 if (!ptr) 1361 return ERR_PTR(-ENOMEM); 1362 1363 regulator = regulator_get(dev, id); 1364 if (!IS_ERR(regulator)) { 1365 *ptr = regulator; 1366 devres_add(dev, ptr); 1367 } else { 1368 devres_free(ptr); 1369 } 1370 1371 return regulator; 1372 } 1373 EXPORT_SYMBOL_GPL(devm_regulator_get); 1374 1375 /** 1376 * regulator_get_exclusive - obtain exclusive access to a regulator. 1377 * @dev: device for regulator "consumer" 1378 * @id: Supply name or regulator ID. 1379 * 1380 * Returns a struct regulator corresponding to the regulator producer, 1381 * or IS_ERR() condition containing errno. Other consumers will be 1382 * unable to obtain this reference is held and the use count for the 1383 * regulator will be initialised to reflect the current state of the 1384 * regulator. 1385 * 1386 * This is intended for use by consumers which cannot tolerate shared 1387 * use of the regulator such as those which need to force the 1388 * regulator off for correct operation of the hardware they are 1389 * controlling. 1390 * 1391 * Use of supply names configured via regulator_set_device_supply() is 1392 * strongly encouraged. It is recommended that the supply name used 1393 * should match the name used for the supply and/or the relevant 1394 * device pins in the datasheet. 1395 */ 1396 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1397 { 1398 return _regulator_get(dev, id, 1); 1399 } 1400 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1401 1402 /** 1403 * regulator_put - "free" the regulator source 1404 * @regulator: regulator source 1405 * 1406 * Note: drivers must ensure that all regulator_enable calls made on this 1407 * regulator source are balanced by regulator_disable calls prior to calling 1408 * this function. 1409 */ 1410 void regulator_put(struct regulator *regulator) 1411 { 1412 struct regulator_dev *rdev; 1413 1414 if (regulator == NULL || IS_ERR(regulator)) 1415 return; 1416 1417 mutex_lock(®ulator_list_mutex); 1418 rdev = regulator->rdev; 1419 1420 debugfs_remove_recursive(regulator->debugfs); 1421 1422 /* remove any sysfs entries */ 1423 if (regulator->dev) { 1424 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1425 device_remove_file(regulator->dev, ®ulator->dev_attr); 1426 kfree(regulator->dev_attr.attr.name); 1427 } 1428 kfree(regulator->supply_name); 1429 list_del(®ulator->list); 1430 kfree(regulator); 1431 1432 rdev->open_count--; 1433 rdev->exclusive = 0; 1434 1435 module_put(rdev->owner); 1436 mutex_unlock(®ulator_list_mutex); 1437 } 1438 EXPORT_SYMBOL_GPL(regulator_put); 1439 1440 static int devm_regulator_match(struct device *dev, void *res, void *data) 1441 { 1442 struct regulator **r = res; 1443 if (!r || !*r) { 1444 WARN_ON(!r || !*r); 1445 return 0; 1446 } 1447 return *r == data; 1448 } 1449 1450 /** 1451 * devm_regulator_put - Resource managed regulator_put() 1452 * @regulator: regulator to free 1453 * 1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1455 * this function will not need to be called and the resource management 1456 * code will ensure that the resource is freed. 1457 */ 1458 void devm_regulator_put(struct regulator *regulator) 1459 { 1460 int rc; 1461 1462 rc = devres_destroy(regulator->dev, devm_regulator_release, 1463 devm_regulator_match, regulator); 1464 if (rc == 0) 1465 regulator_put(regulator); 1466 else 1467 WARN_ON(rc); 1468 } 1469 EXPORT_SYMBOL_GPL(devm_regulator_put); 1470 1471 /* locks held by regulator_enable() */ 1472 static int _regulator_enable(struct regulator_dev *rdev) 1473 { 1474 int ret, delay; 1475 1476 /* check voltage and requested load before enabling */ 1477 if (rdev->constraints && 1478 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1479 drms_uA_update(rdev); 1480 1481 if (rdev->use_count == 0) { 1482 /* The regulator may on if it's not switchable or left on */ 1483 ret = _regulator_is_enabled(rdev); 1484 if (ret == -EINVAL || ret == 0) { 1485 if (!_regulator_can_change_status(rdev)) 1486 return -EPERM; 1487 1488 if (!rdev->desc->ops->enable) 1489 return -EINVAL; 1490 1491 /* Query before enabling in case configuration 1492 * dependent. */ 1493 ret = _regulator_get_enable_time(rdev); 1494 if (ret >= 0) { 1495 delay = ret; 1496 } else { 1497 rdev_warn(rdev, "enable_time() failed: %d\n", 1498 ret); 1499 delay = 0; 1500 } 1501 1502 trace_regulator_enable(rdev_get_name(rdev)); 1503 1504 /* Allow the regulator to ramp; it would be useful 1505 * to extend this for bulk operations so that the 1506 * regulators can ramp together. */ 1507 ret = rdev->desc->ops->enable(rdev); 1508 if (ret < 0) 1509 return ret; 1510 1511 trace_regulator_enable_delay(rdev_get_name(rdev)); 1512 1513 if (delay >= 1000) { 1514 mdelay(delay / 1000); 1515 udelay(delay % 1000); 1516 } else if (delay) { 1517 udelay(delay); 1518 } 1519 1520 trace_regulator_enable_complete(rdev_get_name(rdev)); 1521 1522 } else if (ret < 0) { 1523 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1524 return ret; 1525 } 1526 /* Fallthrough on positive return values - already enabled */ 1527 } 1528 1529 rdev->use_count++; 1530 1531 return 0; 1532 } 1533 1534 /** 1535 * regulator_enable - enable regulator output 1536 * @regulator: regulator source 1537 * 1538 * Request that the regulator be enabled with the regulator output at 1539 * the predefined voltage or current value. Calls to regulator_enable() 1540 * must be balanced with calls to regulator_disable(). 1541 * 1542 * NOTE: the output value can be set by other drivers, boot loader or may be 1543 * hardwired in the regulator. 1544 */ 1545 int regulator_enable(struct regulator *regulator) 1546 { 1547 struct regulator_dev *rdev = regulator->rdev; 1548 int ret = 0; 1549 1550 if (regulator->always_on) 1551 return 0; 1552 1553 if (rdev->supply) { 1554 ret = regulator_enable(rdev->supply); 1555 if (ret != 0) 1556 return ret; 1557 } 1558 1559 mutex_lock(&rdev->mutex); 1560 ret = _regulator_enable(rdev); 1561 mutex_unlock(&rdev->mutex); 1562 1563 if (ret != 0 && rdev->supply) 1564 regulator_disable(rdev->supply); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL_GPL(regulator_enable); 1569 1570 /* locks held by regulator_disable() */ 1571 static int _regulator_disable(struct regulator_dev *rdev) 1572 { 1573 int ret = 0; 1574 1575 if (WARN(rdev->use_count <= 0, 1576 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1577 return -EIO; 1578 1579 /* are we the last user and permitted to disable ? */ 1580 if (rdev->use_count == 1 && 1581 (rdev->constraints && !rdev->constraints->always_on)) { 1582 1583 /* we are last user */ 1584 if (_regulator_can_change_status(rdev) && 1585 rdev->desc->ops->disable) { 1586 trace_regulator_disable(rdev_get_name(rdev)); 1587 1588 ret = rdev->desc->ops->disable(rdev); 1589 if (ret < 0) { 1590 rdev_err(rdev, "failed to disable\n"); 1591 return ret; 1592 } 1593 1594 trace_regulator_disable_complete(rdev_get_name(rdev)); 1595 1596 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1597 NULL); 1598 } 1599 1600 rdev->use_count = 0; 1601 } else if (rdev->use_count > 1) { 1602 1603 if (rdev->constraints && 1604 (rdev->constraints->valid_ops_mask & 1605 REGULATOR_CHANGE_DRMS)) 1606 drms_uA_update(rdev); 1607 1608 rdev->use_count--; 1609 } 1610 1611 return ret; 1612 } 1613 1614 /** 1615 * regulator_disable - disable regulator output 1616 * @regulator: regulator source 1617 * 1618 * Disable the regulator output voltage or current. Calls to 1619 * regulator_enable() must be balanced with calls to 1620 * regulator_disable(). 1621 * 1622 * NOTE: this will only disable the regulator output if no other consumer 1623 * devices have it enabled, the regulator device supports disabling and 1624 * machine constraints permit this operation. 1625 */ 1626 int regulator_disable(struct regulator *regulator) 1627 { 1628 struct regulator_dev *rdev = regulator->rdev; 1629 int ret = 0; 1630 1631 if (regulator->always_on) 1632 return 0; 1633 1634 mutex_lock(&rdev->mutex); 1635 ret = _regulator_disable(rdev); 1636 mutex_unlock(&rdev->mutex); 1637 1638 if (ret == 0 && rdev->supply) 1639 regulator_disable(rdev->supply); 1640 1641 return ret; 1642 } 1643 EXPORT_SYMBOL_GPL(regulator_disable); 1644 1645 /* locks held by regulator_force_disable() */ 1646 static int _regulator_force_disable(struct regulator_dev *rdev) 1647 { 1648 int ret = 0; 1649 1650 /* force disable */ 1651 if (rdev->desc->ops->disable) { 1652 /* ah well, who wants to live forever... */ 1653 ret = rdev->desc->ops->disable(rdev); 1654 if (ret < 0) { 1655 rdev_err(rdev, "failed to force disable\n"); 1656 return ret; 1657 } 1658 /* notify other consumers that power has been forced off */ 1659 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1660 REGULATOR_EVENT_DISABLE, NULL); 1661 } 1662 1663 return ret; 1664 } 1665 1666 /** 1667 * regulator_force_disable - force disable regulator output 1668 * @regulator: regulator source 1669 * 1670 * Forcibly disable the regulator output voltage or current. 1671 * NOTE: this *will* disable the regulator output even if other consumer 1672 * devices have it enabled. This should be used for situations when device 1673 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1674 */ 1675 int regulator_force_disable(struct regulator *regulator) 1676 { 1677 struct regulator_dev *rdev = regulator->rdev; 1678 int ret; 1679 1680 mutex_lock(&rdev->mutex); 1681 regulator->uA_load = 0; 1682 ret = _regulator_force_disable(regulator->rdev); 1683 mutex_unlock(&rdev->mutex); 1684 1685 if (rdev->supply) 1686 while (rdev->open_count--) 1687 regulator_disable(rdev->supply); 1688 1689 return ret; 1690 } 1691 EXPORT_SYMBOL_GPL(regulator_force_disable); 1692 1693 static void regulator_disable_work(struct work_struct *work) 1694 { 1695 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1696 disable_work.work); 1697 int count, i, ret; 1698 1699 mutex_lock(&rdev->mutex); 1700 1701 BUG_ON(!rdev->deferred_disables); 1702 1703 count = rdev->deferred_disables; 1704 rdev->deferred_disables = 0; 1705 1706 for (i = 0; i < count; i++) { 1707 ret = _regulator_disable(rdev); 1708 if (ret != 0) 1709 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1710 } 1711 1712 mutex_unlock(&rdev->mutex); 1713 1714 if (rdev->supply) { 1715 for (i = 0; i < count; i++) { 1716 ret = regulator_disable(rdev->supply); 1717 if (ret != 0) { 1718 rdev_err(rdev, 1719 "Supply disable failed: %d\n", ret); 1720 } 1721 } 1722 } 1723 } 1724 1725 /** 1726 * regulator_disable_deferred - disable regulator output with delay 1727 * @regulator: regulator source 1728 * @ms: miliseconds until the regulator is disabled 1729 * 1730 * Execute regulator_disable() on the regulator after a delay. This 1731 * is intended for use with devices that require some time to quiesce. 1732 * 1733 * NOTE: this will only disable the regulator output if no other consumer 1734 * devices have it enabled, the regulator device supports disabling and 1735 * machine constraints permit this operation. 1736 */ 1737 int regulator_disable_deferred(struct regulator *regulator, int ms) 1738 { 1739 struct regulator_dev *rdev = regulator->rdev; 1740 int ret; 1741 1742 if (regulator->always_on) 1743 return 0; 1744 1745 mutex_lock(&rdev->mutex); 1746 rdev->deferred_disables++; 1747 mutex_unlock(&rdev->mutex); 1748 1749 ret = schedule_delayed_work(&rdev->disable_work, 1750 msecs_to_jiffies(ms)); 1751 if (ret < 0) 1752 return ret; 1753 else 1754 return 0; 1755 } 1756 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1757 1758 /** 1759 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1760 * 1761 * @rdev: regulator to operate on 1762 * 1763 * Regulators that use regmap for their register I/O can set the 1764 * enable_reg and enable_mask fields in their descriptor and then use 1765 * this as their is_enabled operation, saving some code. 1766 */ 1767 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1768 { 1769 unsigned int val; 1770 int ret; 1771 1772 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1773 if (ret != 0) 1774 return ret; 1775 1776 return (val & rdev->desc->enable_mask) != 0; 1777 } 1778 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1779 1780 /** 1781 * regulator_enable_regmap - standard enable() for regmap users 1782 * 1783 * @rdev: regulator to operate on 1784 * 1785 * Regulators that use regmap for their register I/O can set the 1786 * enable_reg and enable_mask fields in their descriptor and then use 1787 * this as their enable() operation, saving some code. 1788 */ 1789 int regulator_enable_regmap(struct regulator_dev *rdev) 1790 { 1791 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1792 rdev->desc->enable_mask, 1793 rdev->desc->enable_mask); 1794 } 1795 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1796 1797 /** 1798 * regulator_disable_regmap - standard disable() for regmap users 1799 * 1800 * @rdev: regulator to operate on 1801 * 1802 * Regulators that use regmap for their register I/O can set the 1803 * enable_reg and enable_mask fields in their descriptor and then use 1804 * this as their disable() operation, saving some code. 1805 */ 1806 int regulator_disable_regmap(struct regulator_dev *rdev) 1807 { 1808 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1809 rdev->desc->enable_mask, 0); 1810 } 1811 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1812 1813 static int _regulator_is_enabled(struct regulator_dev *rdev) 1814 { 1815 /* If we don't know then assume that the regulator is always on */ 1816 if (!rdev->desc->ops->is_enabled) 1817 return 1; 1818 1819 return rdev->desc->ops->is_enabled(rdev); 1820 } 1821 1822 /** 1823 * regulator_is_enabled - is the regulator output enabled 1824 * @regulator: regulator source 1825 * 1826 * Returns positive if the regulator driver backing the source/client 1827 * has requested that the device be enabled, zero if it hasn't, else a 1828 * negative errno code. 1829 * 1830 * Note that the device backing this regulator handle can have multiple 1831 * users, so it might be enabled even if regulator_enable() was never 1832 * called for this particular source. 1833 */ 1834 int regulator_is_enabled(struct regulator *regulator) 1835 { 1836 int ret; 1837 1838 if (regulator->always_on) 1839 return 1; 1840 1841 mutex_lock(®ulator->rdev->mutex); 1842 ret = _regulator_is_enabled(regulator->rdev); 1843 mutex_unlock(®ulator->rdev->mutex); 1844 1845 return ret; 1846 } 1847 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1848 1849 /** 1850 * regulator_count_voltages - count regulator_list_voltage() selectors 1851 * @regulator: regulator source 1852 * 1853 * Returns number of selectors, or negative errno. Selectors are 1854 * numbered starting at zero, and typically correspond to bitfields 1855 * in hardware registers. 1856 */ 1857 int regulator_count_voltages(struct regulator *regulator) 1858 { 1859 struct regulator_dev *rdev = regulator->rdev; 1860 1861 return rdev->desc->n_voltages ? : -EINVAL; 1862 } 1863 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1864 1865 /** 1866 * regulator_list_voltage_linear - List voltages with simple calculation 1867 * 1868 * @rdev: Regulator device 1869 * @selector: Selector to convert into a voltage 1870 * 1871 * Regulators with a simple linear mapping between voltages and 1872 * selectors can set min_uV and uV_step in the regulator descriptor 1873 * and then use this function as their list_voltage() operation, 1874 */ 1875 int regulator_list_voltage_linear(struct regulator_dev *rdev, 1876 unsigned int selector) 1877 { 1878 if (selector >= rdev->desc->n_voltages) 1879 return -EINVAL; 1880 1881 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 1882 } 1883 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 1884 1885 /** 1886 * regulator_list_voltage - enumerate supported voltages 1887 * @regulator: regulator source 1888 * @selector: identify voltage to list 1889 * Context: can sleep 1890 * 1891 * Returns a voltage that can be passed to @regulator_set_voltage(), 1892 * zero if this selector code can't be used on this system, or a 1893 * negative errno. 1894 */ 1895 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1896 { 1897 struct regulator_dev *rdev = regulator->rdev; 1898 struct regulator_ops *ops = rdev->desc->ops; 1899 int ret; 1900 1901 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1902 return -EINVAL; 1903 1904 mutex_lock(&rdev->mutex); 1905 ret = ops->list_voltage(rdev, selector); 1906 mutex_unlock(&rdev->mutex); 1907 1908 if (ret > 0) { 1909 if (ret < rdev->constraints->min_uV) 1910 ret = 0; 1911 else if (ret > rdev->constraints->max_uV) 1912 ret = 0; 1913 } 1914 1915 return ret; 1916 } 1917 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1918 1919 /** 1920 * regulator_is_supported_voltage - check if a voltage range can be supported 1921 * 1922 * @regulator: Regulator to check. 1923 * @min_uV: Minimum required voltage in uV. 1924 * @max_uV: Maximum required voltage in uV. 1925 * 1926 * Returns a boolean or a negative error code. 1927 */ 1928 int regulator_is_supported_voltage(struct regulator *regulator, 1929 int min_uV, int max_uV) 1930 { 1931 int i, voltages, ret; 1932 1933 ret = regulator_count_voltages(regulator); 1934 if (ret < 0) 1935 return ret; 1936 voltages = ret; 1937 1938 for (i = 0; i < voltages; i++) { 1939 ret = regulator_list_voltage(regulator, i); 1940 1941 if (ret >= min_uV && ret <= max_uV) 1942 return 1; 1943 } 1944 1945 return 0; 1946 } 1947 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 1948 1949 /** 1950 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 1951 * 1952 * @rdev: regulator to operate on 1953 * 1954 * Regulators that use regmap for their register I/O can set the 1955 * vsel_reg and vsel_mask fields in their descriptor and then use this 1956 * as their get_voltage_vsel operation, saving some code. 1957 */ 1958 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 1959 { 1960 unsigned int val; 1961 int ret; 1962 1963 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 1964 if (ret != 0) 1965 return ret; 1966 1967 val &= rdev->desc->vsel_mask; 1968 val >>= ffs(rdev->desc->vsel_mask) - 1; 1969 1970 return val; 1971 } 1972 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 1973 1974 /** 1975 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 1976 * 1977 * @rdev: regulator to operate on 1978 * @sel: Selector to set 1979 * 1980 * Regulators that use regmap for their register I/O can set the 1981 * vsel_reg and vsel_mask fields in their descriptor and then use this 1982 * as their set_voltage_vsel operation, saving some code. 1983 */ 1984 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 1985 { 1986 sel <<= ffs(rdev->desc->vsel_mask) - 1; 1987 1988 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 1989 rdev->desc->vsel_mask, sel); 1990 } 1991 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 1992 1993 /** 1994 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 1995 * 1996 * @rdev: Regulator to operate on 1997 * @min_uV: Lower bound for voltage 1998 * @max_uV: Upper bound for voltage 1999 * 2000 * Drivers implementing set_voltage_sel() and list_voltage() can use 2001 * this as their map_voltage() operation. It will find a suitable 2002 * voltage by calling list_voltage() until it gets something in bounds 2003 * for the requested voltages. 2004 */ 2005 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2006 int min_uV, int max_uV) 2007 { 2008 int best_val = INT_MAX; 2009 int selector = 0; 2010 int i, ret; 2011 2012 /* Find the smallest voltage that falls within the specified 2013 * range. 2014 */ 2015 for (i = 0; i < rdev->desc->n_voltages; i++) { 2016 ret = rdev->desc->ops->list_voltage(rdev, i); 2017 if (ret < 0) 2018 continue; 2019 2020 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2021 best_val = ret; 2022 selector = i; 2023 } 2024 } 2025 2026 if (best_val != INT_MAX) 2027 return selector; 2028 else 2029 return -EINVAL; 2030 } 2031 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2032 2033 /** 2034 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2035 * 2036 * @rdev: Regulator to operate on 2037 * @min_uV: Lower bound for voltage 2038 * @max_uV: Upper bound for voltage 2039 * 2040 * Drivers providing min_uV and uV_step in their regulator_desc can 2041 * use this as their map_voltage() operation. 2042 */ 2043 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2044 int min_uV, int max_uV) 2045 { 2046 int ret, voltage; 2047 2048 if (!rdev->desc->uV_step) { 2049 BUG_ON(!rdev->desc->uV_step); 2050 return -EINVAL; 2051 } 2052 2053 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2054 if (ret < 0) 2055 return ret; 2056 2057 /* Map back into a voltage to verify we're still in bounds */ 2058 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2059 if (voltage < min_uV || voltage > max_uV) 2060 return -EINVAL; 2061 2062 return ret; 2063 } 2064 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2065 2066 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2067 int min_uV, int max_uV) 2068 { 2069 int ret; 2070 int delay = 0; 2071 int best_val; 2072 unsigned int selector; 2073 int old_selector = -1; 2074 2075 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2076 2077 min_uV += rdev->constraints->uV_offset; 2078 max_uV += rdev->constraints->uV_offset; 2079 2080 /* 2081 * If we can't obtain the old selector there is not enough 2082 * info to call set_voltage_time_sel(). 2083 */ 2084 if (rdev->desc->ops->set_voltage_time_sel && 2085 rdev->desc->ops->get_voltage_sel) { 2086 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2087 if (old_selector < 0) 2088 return old_selector; 2089 } 2090 2091 if (rdev->desc->ops->set_voltage) { 2092 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2093 &selector); 2094 } else if (rdev->desc->ops->set_voltage_sel) { 2095 if (rdev->desc->ops->map_voltage) 2096 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2097 max_uV); 2098 else 2099 ret = regulator_map_voltage_iterate(rdev, min_uV, 2100 max_uV); 2101 2102 if (ret >= 0) { 2103 selector = ret; 2104 ret = rdev->desc->ops->set_voltage_sel(rdev, ret); 2105 } 2106 } else { 2107 ret = -EINVAL; 2108 } 2109 2110 if (rdev->desc->ops->list_voltage) 2111 best_val = rdev->desc->ops->list_voltage(rdev, selector); 2112 else 2113 best_val = -1; 2114 2115 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2116 if (ret == 0 && old_selector >= 0 && 2117 rdev->desc->ops->set_voltage_time_sel) { 2118 2119 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2120 old_selector, selector); 2121 if (delay < 0) { 2122 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2123 delay); 2124 delay = 0; 2125 } 2126 } 2127 2128 /* Insert any necessary delays */ 2129 if (delay >= 1000) { 2130 mdelay(delay / 1000); 2131 udelay(delay % 1000); 2132 } else if (delay) { 2133 udelay(delay); 2134 } 2135 2136 if (ret == 0) 2137 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2138 NULL); 2139 2140 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2141 2142 return ret; 2143 } 2144 2145 /** 2146 * regulator_set_voltage - set regulator output voltage 2147 * @regulator: regulator source 2148 * @min_uV: Minimum required voltage in uV 2149 * @max_uV: Maximum acceptable voltage in uV 2150 * 2151 * Sets a voltage regulator to the desired output voltage. This can be set 2152 * during any regulator state. IOW, regulator can be disabled or enabled. 2153 * 2154 * If the regulator is enabled then the voltage will change to the new value 2155 * immediately otherwise if the regulator is disabled the regulator will 2156 * output at the new voltage when enabled. 2157 * 2158 * NOTE: If the regulator is shared between several devices then the lowest 2159 * request voltage that meets the system constraints will be used. 2160 * Regulator system constraints must be set for this regulator before 2161 * calling this function otherwise this call will fail. 2162 */ 2163 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2164 { 2165 struct regulator_dev *rdev = regulator->rdev; 2166 int ret = 0; 2167 2168 mutex_lock(&rdev->mutex); 2169 2170 /* If we're setting the same range as last time the change 2171 * should be a noop (some cpufreq implementations use the same 2172 * voltage for multiple frequencies, for example). 2173 */ 2174 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2175 goto out; 2176 2177 /* sanity check */ 2178 if (!rdev->desc->ops->set_voltage && 2179 !rdev->desc->ops->set_voltage_sel) { 2180 ret = -EINVAL; 2181 goto out; 2182 } 2183 2184 /* constraints check */ 2185 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2186 if (ret < 0) 2187 goto out; 2188 regulator->min_uV = min_uV; 2189 regulator->max_uV = max_uV; 2190 2191 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2192 if (ret < 0) 2193 goto out; 2194 2195 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2196 2197 out: 2198 mutex_unlock(&rdev->mutex); 2199 return ret; 2200 } 2201 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2202 2203 /** 2204 * regulator_set_voltage_time - get raise/fall time 2205 * @regulator: regulator source 2206 * @old_uV: starting voltage in microvolts 2207 * @new_uV: target voltage in microvolts 2208 * 2209 * Provided with the starting and ending voltage, this function attempts to 2210 * calculate the time in microseconds required to rise or fall to this new 2211 * voltage. 2212 */ 2213 int regulator_set_voltage_time(struct regulator *regulator, 2214 int old_uV, int new_uV) 2215 { 2216 struct regulator_dev *rdev = regulator->rdev; 2217 struct regulator_ops *ops = rdev->desc->ops; 2218 int old_sel = -1; 2219 int new_sel = -1; 2220 int voltage; 2221 int i; 2222 2223 /* Currently requires operations to do this */ 2224 if (!ops->list_voltage || !ops->set_voltage_time_sel 2225 || !rdev->desc->n_voltages) 2226 return -EINVAL; 2227 2228 for (i = 0; i < rdev->desc->n_voltages; i++) { 2229 /* We only look for exact voltage matches here */ 2230 voltage = regulator_list_voltage(regulator, i); 2231 if (voltage < 0) 2232 return -EINVAL; 2233 if (voltage == 0) 2234 continue; 2235 if (voltage == old_uV) 2236 old_sel = i; 2237 if (voltage == new_uV) 2238 new_sel = i; 2239 } 2240 2241 if (old_sel < 0 || new_sel < 0) 2242 return -EINVAL; 2243 2244 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2245 } 2246 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2247 2248 /** 2249 * regulator_sync_voltage - re-apply last regulator output voltage 2250 * @regulator: regulator source 2251 * 2252 * Re-apply the last configured voltage. This is intended to be used 2253 * where some external control source the consumer is cooperating with 2254 * has caused the configured voltage to change. 2255 */ 2256 int regulator_sync_voltage(struct regulator *regulator) 2257 { 2258 struct regulator_dev *rdev = regulator->rdev; 2259 int ret, min_uV, max_uV; 2260 2261 mutex_lock(&rdev->mutex); 2262 2263 if (!rdev->desc->ops->set_voltage && 2264 !rdev->desc->ops->set_voltage_sel) { 2265 ret = -EINVAL; 2266 goto out; 2267 } 2268 2269 /* This is only going to work if we've had a voltage configured. */ 2270 if (!regulator->min_uV && !regulator->max_uV) { 2271 ret = -EINVAL; 2272 goto out; 2273 } 2274 2275 min_uV = regulator->min_uV; 2276 max_uV = regulator->max_uV; 2277 2278 /* This should be a paranoia check... */ 2279 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2280 if (ret < 0) 2281 goto out; 2282 2283 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2284 if (ret < 0) 2285 goto out; 2286 2287 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2288 2289 out: 2290 mutex_unlock(&rdev->mutex); 2291 return ret; 2292 } 2293 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2294 2295 static int _regulator_get_voltage(struct regulator_dev *rdev) 2296 { 2297 int sel, ret; 2298 2299 if (rdev->desc->ops->get_voltage_sel) { 2300 sel = rdev->desc->ops->get_voltage_sel(rdev); 2301 if (sel < 0) 2302 return sel; 2303 ret = rdev->desc->ops->list_voltage(rdev, sel); 2304 } else if (rdev->desc->ops->get_voltage) { 2305 ret = rdev->desc->ops->get_voltage(rdev); 2306 } else { 2307 return -EINVAL; 2308 } 2309 2310 if (ret < 0) 2311 return ret; 2312 return ret - rdev->constraints->uV_offset; 2313 } 2314 2315 /** 2316 * regulator_get_voltage - get regulator output voltage 2317 * @regulator: regulator source 2318 * 2319 * This returns the current regulator voltage in uV. 2320 * 2321 * NOTE: If the regulator is disabled it will return the voltage value. This 2322 * function should not be used to determine regulator state. 2323 */ 2324 int regulator_get_voltage(struct regulator *regulator) 2325 { 2326 int ret; 2327 2328 mutex_lock(®ulator->rdev->mutex); 2329 2330 ret = _regulator_get_voltage(regulator->rdev); 2331 2332 mutex_unlock(®ulator->rdev->mutex); 2333 2334 return ret; 2335 } 2336 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2337 2338 /** 2339 * regulator_set_current_limit - set regulator output current limit 2340 * @regulator: regulator source 2341 * @min_uA: Minimuum supported current in uA 2342 * @max_uA: Maximum supported current in uA 2343 * 2344 * Sets current sink to the desired output current. This can be set during 2345 * any regulator state. IOW, regulator can be disabled or enabled. 2346 * 2347 * If the regulator is enabled then the current will change to the new value 2348 * immediately otherwise if the regulator is disabled the regulator will 2349 * output at the new current when enabled. 2350 * 2351 * NOTE: Regulator system constraints must be set for this regulator before 2352 * calling this function otherwise this call will fail. 2353 */ 2354 int regulator_set_current_limit(struct regulator *regulator, 2355 int min_uA, int max_uA) 2356 { 2357 struct regulator_dev *rdev = regulator->rdev; 2358 int ret; 2359 2360 mutex_lock(&rdev->mutex); 2361 2362 /* sanity check */ 2363 if (!rdev->desc->ops->set_current_limit) { 2364 ret = -EINVAL; 2365 goto out; 2366 } 2367 2368 /* constraints check */ 2369 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2370 if (ret < 0) 2371 goto out; 2372 2373 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2374 out: 2375 mutex_unlock(&rdev->mutex); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2379 2380 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2381 { 2382 int ret; 2383 2384 mutex_lock(&rdev->mutex); 2385 2386 /* sanity check */ 2387 if (!rdev->desc->ops->get_current_limit) { 2388 ret = -EINVAL; 2389 goto out; 2390 } 2391 2392 ret = rdev->desc->ops->get_current_limit(rdev); 2393 out: 2394 mutex_unlock(&rdev->mutex); 2395 return ret; 2396 } 2397 2398 /** 2399 * regulator_get_current_limit - get regulator output current 2400 * @regulator: regulator source 2401 * 2402 * This returns the current supplied by the specified current sink in uA. 2403 * 2404 * NOTE: If the regulator is disabled it will return the current value. This 2405 * function should not be used to determine regulator state. 2406 */ 2407 int regulator_get_current_limit(struct regulator *regulator) 2408 { 2409 return _regulator_get_current_limit(regulator->rdev); 2410 } 2411 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2412 2413 /** 2414 * regulator_set_mode - set regulator operating mode 2415 * @regulator: regulator source 2416 * @mode: operating mode - one of the REGULATOR_MODE constants 2417 * 2418 * Set regulator operating mode to increase regulator efficiency or improve 2419 * regulation performance. 2420 * 2421 * NOTE: Regulator system constraints must be set for this regulator before 2422 * calling this function otherwise this call will fail. 2423 */ 2424 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2425 { 2426 struct regulator_dev *rdev = regulator->rdev; 2427 int ret; 2428 int regulator_curr_mode; 2429 2430 mutex_lock(&rdev->mutex); 2431 2432 /* sanity check */ 2433 if (!rdev->desc->ops->set_mode) { 2434 ret = -EINVAL; 2435 goto out; 2436 } 2437 2438 /* return if the same mode is requested */ 2439 if (rdev->desc->ops->get_mode) { 2440 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2441 if (regulator_curr_mode == mode) { 2442 ret = 0; 2443 goto out; 2444 } 2445 } 2446 2447 /* constraints check */ 2448 ret = regulator_mode_constrain(rdev, &mode); 2449 if (ret < 0) 2450 goto out; 2451 2452 ret = rdev->desc->ops->set_mode(rdev, mode); 2453 out: 2454 mutex_unlock(&rdev->mutex); 2455 return ret; 2456 } 2457 EXPORT_SYMBOL_GPL(regulator_set_mode); 2458 2459 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2460 { 2461 int ret; 2462 2463 mutex_lock(&rdev->mutex); 2464 2465 /* sanity check */ 2466 if (!rdev->desc->ops->get_mode) { 2467 ret = -EINVAL; 2468 goto out; 2469 } 2470 2471 ret = rdev->desc->ops->get_mode(rdev); 2472 out: 2473 mutex_unlock(&rdev->mutex); 2474 return ret; 2475 } 2476 2477 /** 2478 * regulator_get_mode - get regulator operating mode 2479 * @regulator: regulator source 2480 * 2481 * Get the current regulator operating mode. 2482 */ 2483 unsigned int regulator_get_mode(struct regulator *regulator) 2484 { 2485 return _regulator_get_mode(regulator->rdev); 2486 } 2487 EXPORT_SYMBOL_GPL(regulator_get_mode); 2488 2489 /** 2490 * regulator_set_optimum_mode - set regulator optimum operating mode 2491 * @regulator: regulator source 2492 * @uA_load: load current 2493 * 2494 * Notifies the regulator core of a new device load. This is then used by 2495 * DRMS (if enabled by constraints) to set the most efficient regulator 2496 * operating mode for the new regulator loading. 2497 * 2498 * Consumer devices notify their supply regulator of the maximum power 2499 * they will require (can be taken from device datasheet in the power 2500 * consumption tables) when they change operational status and hence power 2501 * state. Examples of operational state changes that can affect power 2502 * consumption are :- 2503 * 2504 * o Device is opened / closed. 2505 * o Device I/O is about to begin or has just finished. 2506 * o Device is idling in between work. 2507 * 2508 * This information is also exported via sysfs to userspace. 2509 * 2510 * DRMS will sum the total requested load on the regulator and change 2511 * to the most efficient operating mode if platform constraints allow. 2512 * 2513 * Returns the new regulator mode or error. 2514 */ 2515 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2516 { 2517 struct regulator_dev *rdev = regulator->rdev; 2518 struct regulator *consumer; 2519 int ret, output_uV, input_uV, total_uA_load = 0; 2520 unsigned int mode; 2521 2522 mutex_lock(&rdev->mutex); 2523 2524 /* 2525 * first check to see if we can set modes at all, otherwise just 2526 * tell the consumer everything is OK. 2527 */ 2528 regulator->uA_load = uA_load; 2529 ret = regulator_check_drms(rdev); 2530 if (ret < 0) { 2531 ret = 0; 2532 goto out; 2533 } 2534 2535 if (!rdev->desc->ops->get_optimum_mode) 2536 goto out; 2537 2538 /* 2539 * we can actually do this so any errors are indicators of 2540 * potential real failure. 2541 */ 2542 ret = -EINVAL; 2543 2544 if (!rdev->desc->ops->set_mode) 2545 goto out; 2546 2547 /* get output voltage */ 2548 output_uV = _regulator_get_voltage(rdev); 2549 if (output_uV <= 0) { 2550 rdev_err(rdev, "invalid output voltage found\n"); 2551 goto out; 2552 } 2553 2554 /* get input voltage */ 2555 input_uV = 0; 2556 if (rdev->supply) 2557 input_uV = regulator_get_voltage(rdev->supply); 2558 if (input_uV <= 0) 2559 input_uV = rdev->constraints->input_uV; 2560 if (input_uV <= 0) { 2561 rdev_err(rdev, "invalid input voltage found\n"); 2562 goto out; 2563 } 2564 2565 /* calc total requested load for this regulator */ 2566 list_for_each_entry(consumer, &rdev->consumer_list, list) 2567 total_uA_load += consumer->uA_load; 2568 2569 mode = rdev->desc->ops->get_optimum_mode(rdev, 2570 input_uV, output_uV, 2571 total_uA_load); 2572 ret = regulator_mode_constrain(rdev, &mode); 2573 if (ret < 0) { 2574 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2575 total_uA_load, input_uV, output_uV); 2576 goto out; 2577 } 2578 2579 ret = rdev->desc->ops->set_mode(rdev, mode); 2580 if (ret < 0) { 2581 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2582 goto out; 2583 } 2584 ret = mode; 2585 out: 2586 mutex_unlock(&rdev->mutex); 2587 return ret; 2588 } 2589 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2590 2591 /** 2592 * regulator_register_notifier - register regulator event notifier 2593 * @regulator: regulator source 2594 * @nb: notifier block 2595 * 2596 * Register notifier block to receive regulator events. 2597 */ 2598 int regulator_register_notifier(struct regulator *regulator, 2599 struct notifier_block *nb) 2600 { 2601 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2602 nb); 2603 } 2604 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2605 2606 /** 2607 * regulator_unregister_notifier - unregister regulator event notifier 2608 * @regulator: regulator source 2609 * @nb: notifier block 2610 * 2611 * Unregister regulator event notifier block. 2612 */ 2613 int regulator_unregister_notifier(struct regulator *regulator, 2614 struct notifier_block *nb) 2615 { 2616 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2617 nb); 2618 } 2619 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2620 2621 /* notify regulator consumers and downstream regulator consumers. 2622 * Note mutex must be held by caller. 2623 */ 2624 static void _notifier_call_chain(struct regulator_dev *rdev, 2625 unsigned long event, void *data) 2626 { 2627 /* call rdev chain first */ 2628 blocking_notifier_call_chain(&rdev->notifier, event, NULL); 2629 } 2630 2631 /** 2632 * regulator_bulk_get - get multiple regulator consumers 2633 * 2634 * @dev: Device to supply 2635 * @num_consumers: Number of consumers to register 2636 * @consumers: Configuration of consumers; clients are stored here. 2637 * 2638 * @return 0 on success, an errno on failure. 2639 * 2640 * This helper function allows drivers to get several regulator 2641 * consumers in one operation. If any of the regulators cannot be 2642 * acquired then any regulators that were allocated will be freed 2643 * before returning to the caller. 2644 */ 2645 int regulator_bulk_get(struct device *dev, int num_consumers, 2646 struct regulator_bulk_data *consumers) 2647 { 2648 int i; 2649 int ret; 2650 2651 for (i = 0; i < num_consumers; i++) 2652 consumers[i].consumer = NULL; 2653 2654 for (i = 0; i < num_consumers; i++) { 2655 consumers[i].consumer = regulator_get(dev, 2656 consumers[i].supply); 2657 if (IS_ERR(consumers[i].consumer)) { 2658 ret = PTR_ERR(consumers[i].consumer); 2659 dev_err(dev, "Failed to get supply '%s': %d\n", 2660 consumers[i].supply, ret); 2661 consumers[i].consumer = NULL; 2662 goto err; 2663 } 2664 } 2665 2666 return 0; 2667 2668 err: 2669 while (--i >= 0) 2670 regulator_put(consumers[i].consumer); 2671 2672 return ret; 2673 } 2674 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2675 2676 /** 2677 * devm_regulator_bulk_get - managed get multiple regulator consumers 2678 * 2679 * @dev: Device to supply 2680 * @num_consumers: Number of consumers to register 2681 * @consumers: Configuration of consumers; clients are stored here. 2682 * 2683 * @return 0 on success, an errno on failure. 2684 * 2685 * This helper function allows drivers to get several regulator 2686 * consumers in one operation with management, the regulators will 2687 * automatically be freed when the device is unbound. If any of the 2688 * regulators cannot be acquired then any regulators that were 2689 * allocated will be freed before returning to the caller. 2690 */ 2691 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2692 struct regulator_bulk_data *consumers) 2693 { 2694 int i; 2695 int ret; 2696 2697 for (i = 0; i < num_consumers; i++) 2698 consumers[i].consumer = NULL; 2699 2700 for (i = 0; i < num_consumers; i++) { 2701 consumers[i].consumer = devm_regulator_get(dev, 2702 consumers[i].supply); 2703 if (IS_ERR(consumers[i].consumer)) { 2704 ret = PTR_ERR(consumers[i].consumer); 2705 dev_err(dev, "Failed to get supply '%s': %d\n", 2706 consumers[i].supply, ret); 2707 consumers[i].consumer = NULL; 2708 goto err; 2709 } 2710 } 2711 2712 return 0; 2713 2714 err: 2715 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2716 devm_regulator_put(consumers[i].consumer); 2717 2718 return ret; 2719 } 2720 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2721 2722 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2723 { 2724 struct regulator_bulk_data *bulk = data; 2725 2726 bulk->ret = regulator_enable(bulk->consumer); 2727 } 2728 2729 /** 2730 * regulator_bulk_enable - enable multiple regulator consumers 2731 * 2732 * @num_consumers: Number of consumers 2733 * @consumers: Consumer data; clients are stored here. 2734 * @return 0 on success, an errno on failure 2735 * 2736 * This convenience API allows consumers to enable multiple regulator 2737 * clients in a single API call. If any consumers cannot be enabled 2738 * then any others that were enabled will be disabled again prior to 2739 * return. 2740 */ 2741 int regulator_bulk_enable(int num_consumers, 2742 struct regulator_bulk_data *consumers) 2743 { 2744 LIST_HEAD(async_domain); 2745 int i; 2746 int ret = 0; 2747 2748 for (i = 0; i < num_consumers; i++) { 2749 if (consumers[i].consumer->always_on) 2750 consumers[i].ret = 0; 2751 else 2752 async_schedule_domain(regulator_bulk_enable_async, 2753 &consumers[i], &async_domain); 2754 } 2755 2756 async_synchronize_full_domain(&async_domain); 2757 2758 /* If any consumer failed we need to unwind any that succeeded */ 2759 for (i = 0; i < num_consumers; i++) { 2760 if (consumers[i].ret != 0) { 2761 ret = consumers[i].ret; 2762 goto err; 2763 } 2764 } 2765 2766 return 0; 2767 2768 err: 2769 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); 2770 while (--i >= 0) 2771 regulator_disable(consumers[i].consumer); 2772 2773 return ret; 2774 } 2775 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2776 2777 /** 2778 * regulator_bulk_disable - disable multiple regulator consumers 2779 * 2780 * @num_consumers: Number of consumers 2781 * @consumers: Consumer data; clients are stored here. 2782 * @return 0 on success, an errno on failure 2783 * 2784 * This convenience API allows consumers to disable multiple regulator 2785 * clients in a single API call. If any consumers cannot be disabled 2786 * then any others that were disabled will be enabled again prior to 2787 * return. 2788 */ 2789 int regulator_bulk_disable(int num_consumers, 2790 struct regulator_bulk_data *consumers) 2791 { 2792 int i; 2793 int ret, r; 2794 2795 for (i = num_consumers - 1; i >= 0; --i) { 2796 ret = regulator_disable(consumers[i].consumer); 2797 if (ret != 0) 2798 goto err; 2799 } 2800 2801 return 0; 2802 2803 err: 2804 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 2805 for (++i; i < num_consumers; ++i) { 2806 r = regulator_enable(consumers[i].consumer); 2807 if (r != 0) 2808 pr_err("Failed to reename %s: %d\n", 2809 consumers[i].supply, r); 2810 } 2811 2812 return ret; 2813 } 2814 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 2815 2816 /** 2817 * regulator_bulk_force_disable - force disable multiple regulator consumers 2818 * 2819 * @num_consumers: Number of consumers 2820 * @consumers: Consumer data; clients are stored here. 2821 * @return 0 on success, an errno on failure 2822 * 2823 * This convenience API allows consumers to forcibly disable multiple regulator 2824 * clients in a single API call. 2825 * NOTE: This should be used for situations when device damage will 2826 * likely occur if the regulators are not disabled (e.g. over temp). 2827 * Although regulator_force_disable function call for some consumers can 2828 * return error numbers, the function is called for all consumers. 2829 */ 2830 int regulator_bulk_force_disable(int num_consumers, 2831 struct regulator_bulk_data *consumers) 2832 { 2833 int i; 2834 int ret; 2835 2836 for (i = 0; i < num_consumers; i++) 2837 consumers[i].ret = 2838 regulator_force_disable(consumers[i].consumer); 2839 2840 for (i = 0; i < num_consumers; i++) { 2841 if (consumers[i].ret != 0) { 2842 ret = consumers[i].ret; 2843 goto out; 2844 } 2845 } 2846 2847 return 0; 2848 out: 2849 return ret; 2850 } 2851 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 2852 2853 /** 2854 * regulator_bulk_free - free multiple regulator consumers 2855 * 2856 * @num_consumers: Number of consumers 2857 * @consumers: Consumer data; clients are stored here. 2858 * 2859 * This convenience API allows consumers to free multiple regulator 2860 * clients in a single API call. 2861 */ 2862 void regulator_bulk_free(int num_consumers, 2863 struct regulator_bulk_data *consumers) 2864 { 2865 int i; 2866 2867 for (i = 0; i < num_consumers; i++) { 2868 regulator_put(consumers[i].consumer); 2869 consumers[i].consumer = NULL; 2870 } 2871 } 2872 EXPORT_SYMBOL_GPL(regulator_bulk_free); 2873 2874 /** 2875 * regulator_notifier_call_chain - call regulator event notifier 2876 * @rdev: regulator source 2877 * @event: notifier block 2878 * @data: callback-specific data. 2879 * 2880 * Called by regulator drivers to notify clients a regulator event has 2881 * occurred. We also notify regulator clients downstream. 2882 * Note lock must be held by caller. 2883 */ 2884 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2885 unsigned long event, void *data) 2886 { 2887 _notifier_call_chain(rdev, event, data); 2888 return NOTIFY_DONE; 2889 2890 } 2891 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2892 2893 /** 2894 * regulator_mode_to_status - convert a regulator mode into a status 2895 * 2896 * @mode: Mode to convert 2897 * 2898 * Convert a regulator mode into a status. 2899 */ 2900 int regulator_mode_to_status(unsigned int mode) 2901 { 2902 switch (mode) { 2903 case REGULATOR_MODE_FAST: 2904 return REGULATOR_STATUS_FAST; 2905 case REGULATOR_MODE_NORMAL: 2906 return REGULATOR_STATUS_NORMAL; 2907 case REGULATOR_MODE_IDLE: 2908 return REGULATOR_STATUS_IDLE; 2909 case REGULATOR_STATUS_STANDBY: 2910 return REGULATOR_STATUS_STANDBY; 2911 default: 2912 return 0; 2913 } 2914 } 2915 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 2916 2917 /* 2918 * To avoid cluttering sysfs (and memory) with useless state, only 2919 * create attributes that can be meaningfully displayed. 2920 */ 2921 static int add_regulator_attributes(struct regulator_dev *rdev) 2922 { 2923 struct device *dev = &rdev->dev; 2924 struct regulator_ops *ops = rdev->desc->ops; 2925 int status = 0; 2926 2927 /* some attributes need specific methods to be displayed */ 2928 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 2929 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) { 2930 status = device_create_file(dev, &dev_attr_microvolts); 2931 if (status < 0) 2932 return status; 2933 } 2934 if (ops->get_current_limit) { 2935 status = device_create_file(dev, &dev_attr_microamps); 2936 if (status < 0) 2937 return status; 2938 } 2939 if (ops->get_mode) { 2940 status = device_create_file(dev, &dev_attr_opmode); 2941 if (status < 0) 2942 return status; 2943 } 2944 if (ops->is_enabled) { 2945 status = device_create_file(dev, &dev_attr_state); 2946 if (status < 0) 2947 return status; 2948 } 2949 if (ops->get_status) { 2950 status = device_create_file(dev, &dev_attr_status); 2951 if (status < 0) 2952 return status; 2953 } 2954 2955 /* some attributes are type-specific */ 2956 if (rdev->desc->type == REGULATOR_CURRENT) { 2957 status = device_create_file(dev, &dev_attr_requested_microamps); 2958 if (status < 0) 2959 return status; 2960 } 2961 2962 /* all the other attributes exist to support constraints; 2963 * don't show them if there are no constraints, or if the 2964 * relevant supporting methods are missing. 2965 */ 2966 if (!rdev->constraints) 2967 return status; 2968 2969 /* constraints need specific supporting methods */ 2970 if (ops->set_voltage || ops->set_voltage_sel) { 2971 status = device_create_file(dev, &dev_attr_min_microvolts); 2972 if (status < 0) 2973 return status; 2974 status = device_create_file(dev, &dev_attr_max_microvolts); 2975 if (status < 0) 2976 return status; 2977 } 2978 if (ops->set_current_limit) { 2979 status = device_create_file(dev, &dev_attr_min_microamps); 2980 if (status < 0) 2981 return status; 2982 status = device_create_file(dev, &dev_attr_max_microamps); 2983 if (status < 0) 2984 return status; 2985 } 2986 2987 status = device_create_file(dev, &dev_attr_suspend_standby_state); 2988 if (status < 0) 2989 return status; 2990 status = device_create_file(dev, &dev_attr_suspend_mem_state); 2991 if (status < 0) 2992 return status; 2993 status = device_create_file(dev, &dev_attr_suspend_disk_state); 2994 if (status < 0) 2995 return status; 2996 2997 if (ops->set_suspend_voltage) { 2998 status = device_create_file(dev, 2999 &dev_attr_suspend_standby_microvolts); 3000 if (status < 0) 3001 return status; 3002 status = device_create_file(dev, 3003 &dev_attr_suspend_mem_microvolts); 3004 if (status < 0) 3005 return status; 3006 status = device_create_file(dev, 3007 &dev_attr_suspend_disk_microvolts); 3008 if (status < 0) 3009 return status; 3010 } 3011 3012 if (ops->set_suspend_mode) { 3013 status = device_create_file(dev, 3014 &dev_attr_suspend_standby_mode); 3015 if (status < 0) 3016 return status; 3017 status = device_create_file(dev, 3018 &dev_attr_suspend_mem_mode); 3019 if (status < 0) 3020 return status; 3021 status = device_create_file(dev, 3022 &dev_attr_suspend_disk_mode); 3023 if (status < 0) 3024 return status; 3025 } 3026 3027 return status; 3028 } 3029 3030 static void rdev_init_debugfs(struct regulator_dev *rdev) 3031 { 3032 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3033 if (!rdev->debugfs) { 3034 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3035 return; 3036 } 3037 3038 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3039 &rdev->use_count); 3040 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3041 &rdev->open_count); 3042 } 3043 3044 /** 3045 * regulator_register - register regulator 3046 * @regulator_desc: regulator to register 3047 * @config: runtime configuration for regulator 3048 * 3049 * Called by regulator drivers to register a regulator. 3050 * Returns 0 on success. 3051 */ 3052 struct regulator_dev * 3053 regulator_register(const struct regulator_desc *regulator_desc, 3054 const struct regulator_config *config) 3055 { 3056 const struct regulation_constraints *constraints = NULL; 3057 const struct regulator_init_data *init_data; 3058 static atomic_t regulator_no = ATOMIC_INIT(0); 3059 struct regulator_dev *rdev; 3060 struct device *dev; 3061 int ret, i; 3062 const char *supply = NULL; 3063 3064 if (regulator_desc == NULL || config == NULL) 3065 return ERR_PTR(-EINVAL); 3066 3067 dev = config->dev; 3068 WARN_ON(!dev); 3069 3070 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3071 return ERR_PTR(-EINVAL); 3072 3073 if (regulator_desc->type != REGULATOR_VOLTAGE && 3074 regulator_desc->type != REGULATOR_CURRENT) 3075 return ERR_PTR(-EINVAL); 3076 3077 /* Only one of each should be implemented */ 3078 WARN_ON(regulator_desc->ops->get_voltage && 3079 regulator_desc->ops->get_voltage_sel); 3080 WARN_ON(regulator_desc->ops->set_voltage && 3081 regulator_desc->ops->set_voltage_sel); 3082 3083 /* If we're using selectors we must implement list_voltage. */ 3084 if (regulator_desc->ops->get_voltage_sel && 3085 !regulator_desc->ops->list_voltage) { 3086 return ERR_PTR(-EINVAL); 3087 } 3088 if (regulator_desc->ops->set_voltage_sel && 3089 !regulator_desc->ops->list_voltage) { 3090 return ERR_PTR(-EINVAL); 3091 } 3092 3093 init_data = config->init_data; 3094 3095 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3096 if (rdev == NULL) 3097 return ERR_PTR(-ENOMEM); 3098 3099 mutex_lock(®ulator_list_mutex); 3100 3101 mutex_init(&rdev->mutex); 3102 rdev->reg_data = config->driver_data; 3103 rdev->owner = regulator_desc->owner; 3104 rdev->desc = regulator_desc; 3105 rdev->regmap = config->regmap; 3106 INIT_LIST_HEAD(&rdev->consumer_list); 3107 INIT_LIST_HEAD(&rdev->list); 3108 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3109 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3110 3111 /* preform any regulator specific init */ 3112 if (init_data && init_data->regulator_init) { 3113 ret = init_data->regulator_init(rdev->reg_data); 3114 if (ret < 0) 3115 goto clean; 3116 } 3117 3118 /* register with sysfs */ 3119 rdev->dev.class = ®ulator_class; 3120 rdev->dev.of_node = config->of_node; 3121 rdev->dev.parent = dev; 3122 dev_set_name(&rdev->dev, "regulator.%d", 3123 atomic_inc_return(®ulator_no) - 1); 3124 ret = device_register(&rdev->dev); 3125 if (ret != 0) { 3126 put_device(&rdev->dev); 3127 goto clean; 3128 } 3129 3130 dev_set_drvdata(&rdev->dev, rdev); 3131 3132 /* set regulator constraints */ 3133 if (init_data) 3134 constraints = &init_data->constraints; 3135 3136 ret = set_machine_constraints(rdev, constraints); 3137 if (ret < 0) 3138 goto scrub; 3139 3140 /* add attributes supported by this regulator */ 3141 ret = add_regulator_attributes(rdev); 3142 if (ret < 0) 3143 goto scrub; 3144 3145 if (init_data && init_data->supply_regulator) 3146 supply = init_data->supply_regulator; 3147 else if (regulator_desc->supply_name) 3148 supply = regulator_desc->supply_name; 3149 3150 if (supply) { 3151 struct regulator_dev *r; 3152 3153 r = regulator_dev_lookup(dev, supply, &ret); 3154 3155 if (!r) { 3156 dev_err(dev, "Failed to find supply %s\n", supply); 3157 ret = -EPROBE_DEFER; 3158 goto scrub; 3159 } 3160 3161 ret = set_supply(rdev, r); 3162 if (ret < 0) 3163 goto scrub; 3164 3165 /* Enable supply if rail is enabled */ 3166 if (_regulator_is_enabled(rdev)) { 3167 ret = regulator_enable(rdev->supply); 3168 if (ret < 0) 3169 goto scrub; 3170 } 3171 } 3172 3173 /* add consumers devices */ 3174 if (init_data) { 3175 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3176 ret = set_consumer_device_supply(rdev, 3177 init_data->consumer_supplies[i].dev_name, 3178 init_data->consumer_supplies[i].supply); 3179 if (ret < 0) { 3180 dev_err(dev, "Failed to set supply %s\n", 3181 init_data->consumer_supplies[i].supply); 3182 goto unset_supplies; 3183 } 3184 } 3185 } 3186 3187 list_add(&rdev->list, ®ulator_list); 3188 3189 rdev_init_debugfs(rdev); 3190 out: 3191 mutex_unlock(®ulator_list_mutex); 3192 return rdev; 3193 3194 unset_supplies: 3195 unset_regulator_supplies(rdev); 3196 3197 scrub: 3198 if (rdev->supply) 3199 regulator_put(rdev->supply); 3200 kfree(rdev->constraints); 3201 device_unregister(&rdev->dev); 3202 /* device core frees rdev */ 3203 rdev = ERR_PTR(ret); 3204 goto out; 3205 3206 clean: 3207 kfree(rdev); 3208 rdev = ERR_PTR(ret); 3209 goto out; 3210 } 3211 EXPORT_SYMBOL_GPL(regulator_register); 3212 3213 /** 3214 * regulator_unregister - unregister regulator 3215 * @rdev: regulator to unregister 3216 * 3217 * Called by regulator drivers to unregister a regulator. 3218 */ 3219 void regulator_unregister(struct regulator_dev *rdev) 3220 { 3221 if (rdev == NULL) 3222 return; 3223 3224 if (rdev->supply) 3225 regulator_put(rdev->supply); 3226 mutex_lock(®ulator_list_mutex); 3227 debugfs_remove_recursive(rdev->debugfs); 3228 flush_work_sync(&rdev->disable_work.work); 3229 WARN_ON(rdev->open_count); 3230 unset_regulator_supplies(rdev); 3231 list_del(&rdev->list); 3232 kfree(rdev->constraints); 3233 device_unregister(&rdev->dev); 3234 mutex_unlock(®ulator_list_mutex); 3235 } 3236 EXPORT_SYMBOL_GPL(regulator_unregister); 3237 3238 /** 3239 * regulator_suspend_prepare - prepare regulators for system wide suspend 3240 * @state: system suspend state 3241 * 3242 * Configure each regulator with it's suspend operating parameters for state. 3243 * This will usually be called by machine suspend code prior to supending. 3244 */ 3245 int regulator_suspend_prepare(suspend_state_t state) 3246 { 3247 struct regulator_dev *rdev; 3248 int ret = 0; 3249 3250 /* ON is handled by regulator active state */ 3251 if (state == PM_SUSPEND_ON) 3252 return -EINVAL; 3253 3254 mutex_lock(®ulator_list_mutex); 3255 list_for_each_entry(rdev, ®ulator_list, list) { 3256 3257 mutex_lock(&rdev->mutex); 3258 ret = suspend_prepare(rdev, state); 3259 mutex_unlock(&rdev->mutex); 3260 3261 if (ret < 0) { 3262 rdev_err(rdev, "failed to prepare\n"); 3263 goto out; 3264 } 3265 } 3266 out: 3267 mutex_unlock(®ulator_list_mutex); 3268 return ret; 3269 } 3270 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3271 3272 /** 3273 * regulator_suspend_finish - resume regulators from system wide suspend 3274 * 3275 * Turn on regulators that might be turned off by regulator_suspend_prepare 3276 * and that should be turned on according to the regulators properties. 3277 */ 3278 int regulator_suspend_finish(void) 3279 { 3280 struct regulator_dev *rdev; 3281 int ret = 0, error; 3282 3283 mutex_lock(®ulator_list_mutex); 3284 list_for_each_entry(rdev, ®ulator_list, list) { 3285 struct regulator_ops *ops = rdev->desc->ops; 3286 3287 mutex_lock(&rdev->mutex); 3288 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3289 ops->enable) { 3290 error = ops->enable(rdev); 3291 if (error) 3292 ret = error; 3293 } else { 3294 if (!has_full_constraints) 3295 goto unlock; 3296 if (!ops->disable) 3297 goto unlock; 3298 if (!_regulator_is_enabled(rdev)) 3299 goto unlock; 3300 3301 error = ops->disable(rdev); 3302 if (error) 3303 ret = error; 3304 } 3305 unlock: 3306 mutex_unlock(&rdev->mutex); 3307 } 3308 mutex_unlock(®ulator_list_mutex); 3309 return ret; 3310 } 3311 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3312 3313 /** 3314 * regulator_has_full_constraints - the system has fully specified constraints 3315 * 3316 * Calling this function will cause the regulator API to disable all 3317 * regulators which have a zero use count and don't have an always_on 3318 * constraint in a late_initcall. 3319 * 3320 * The intention is that this will become the default behaviour in a 3321 * future kernel release so users are encouraged to use this facility 3322 * now. 3323 */ 3324 void regulator_has_full_constraints(void) 3325 { 3326 has_full_constraints = 1; 3327 } 3328 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3329 3330 /** 3331 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3332 * 3333 * Calling this function will cause the regulator API to provide a 3334 * dummy regulator to consumers if no physical regulator is found, 3335 * allowing most consumers to proceed as though a regulator were 3336 * configured. This allows systems such as those with software 3337 * controllable regulators for the CPU core only to be brought up more 3338 * readily. 3339 */ 3340 void regulator_use_dummy_regulator(void) 3341 { 3342 board_wants_dummy_regulator = true; 3343 } 3344 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3345 3346 /** 3347 * rdev_get_drvdata - get rdev regulator driver data 3348 * @rdev: regulator 3349 * 3350 * Get rdev regulator driver private data. This call can be used in the 3351 * regulator driver context. 3352 */ 3353 void *rdev_get_drvdata(struct regulator_dev *rdev) 3354 { 3355 return rdev->reg_data; 3356 } 3357 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3358 3359 /** 3360 * regulator_get_drvdata - get regulator driver data 3361 * @regulator: regulator 3362 * 3363 * Get regulator driver private data. This call can be used in the consumer 3364 * driver context when non API regulator specific functions need to be called. 3365 */ 3366 void *regulator_get_drvdata(struct regulator *regulator) 3367 { 3368 return regulator->rdev->reg_data; 3369 } 3370 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3371 3372 /** 3373 * regulator_set_drvdata - set regulator driver data 3374 * @regulator: regulator 3375 * @data: data 3376 */ 3377 void regulator_set_drvdata(struct regulator *regulator, void *data) 3378 { 3379 regulator->rdev->reg_data = data; 3380 } 3381 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3382 3383 /** 3384 * regulator_get_id - get regulator ID 3385 * @rdev: regulator 3386 */ 3387 int rdev_get_id(struct regulator_dev *rdev) 3388 { 3389 return rdev->desc->id; 3390 } 3391 EXPORT_SYMBOL_GPL(rdev_get_id); 3392 3393 struct device *rdev_get_dev(struct regulator_dev *rdev) 3394 { 3395 return &rdev->dev; 3396 } 3397 EXPORT_SYMBOL_GPL(rdev_get_dev); 3398 3399 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3400 { 3401 return reg_init_data->driver_data; 3402 } 3403 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3404 3405 #ifdef CONFIG_DEBUG_FS 3406 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3407 size_t count, loff_t *ppos) 3408 { 3409 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3410 ssize_t len, ret = 0; 3411 struct regulator_map *map; 3412 3413 if (!buf) 3414 return -ENOMEM; 3415 3416 list_for_each_entry(map, ®ulator_map_list, list) { 3417 len = snprintf(buf + ret, PAGE_SIZE - ret, 3418 "%s -> %s.%s\n", 3419 rdev_get_name(map->regulator), map->dev_name, 3420 map->supply); 3421 if (len >= 0) 3422 ret += len; 3423 if (ret > PAGE_SIZE) { 3424 ret = PAGE_SIZE; 3425 break; 3426 } 3427 } 3428 3429 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3430 3431 kfree(buf); 3432 3433 return ret; 3434 } 3435 #endif 3436 3437 static const struct file_operations supply_map_fops = { 3438 #ifdef CONFIG_DEBUG_FS 3439 .read = supply_map_read_file, 3440 .llseek = default_llseek, 3441 #endif 3442 }; 3443 3444 static int __init regulator_init(void) 3445 { 3446 int ret; 3447 3448 ret = class_register(®ulator_class); 3449 3450 debugfs_root = debugfs_create_dir("regulator", NULL); 3451 if (!debugfs_root) 3452 pr_warn("regulator: Failed to create debugfs directory\n"); 3453 3454 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3455 &supply_map_fops); 3456 3457 regulator_dummy_init(); 3458 3459 return ret; 3460 } 3461 3462 /* init early to allow our consumers to complete system booting */ 3463 core_initcall(regulator_init); 3464 3465 static int __init regulator_init_complete(void) 3466 { 3467 struct regulator_dev *rdev; 3468 struct regulator_ops *ops; 3469 struct regulation_constraints *c; 3470 int enabled, ret; 3471 3472 mutex_lock(®ulator_list_mutex); 3473 3474 /* If we have a full configuration then disable any regulators 3475 * which are not in use or always_on. This will become the 3476 * default behaviour in the future. 3477 */ 3478 list_for_each_entry(rdev, ®ulator_list, list) { 3479 ops = rdev->desc->ops; 3480 c = rdev->constraints; 3481 3482 if (!ops->disable || (c && c->always_on)) 3483 continue; 3484 3485 mutex_lock(&rdev->mutex); 3486 3487 if (rdev->use_count) 3488 goto unlock; 3489 3490 /* If we can't read the status assume it's on. */ 3491 if (ops->is_enabled) 3492 enabled = ops->is_enabled(rdev); 3493 else 3494 enabled = 1; 3495 3496 if (!enabled) 3497 goto unlock; 3498 3499 if (has_full_constraints) { 3500 /* We log since this may kill the system if it 3501 * goes wrong. */ 3502 rdev_info(rdev, "disabling\n"); 3503 ret = ops->disable(rdev); 3504 if (ret != 0) { 3505 rdev_err(rdev, "couldn't disable: %d\n", ret); 3506 } 3507 } else { 3508 /* The intention is that in future we will 3509 * assume that full constraints are provided 3510 * so warn even if we aren't going to do 3511 * anything here. 3512 */ 3513 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3514 } 3515 3516 unlock: 3517 mutex_unlock(&rdev->mutex); 3518 } 3519 3520 mutex_unlock(®ulator_list_mutex); 3521 3522 return 0; 3523 } 3524 late_initcall(regulator_init_complete); 3525