1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 static void _regulator_put(struct regulator *regulator); 113 114 static struct regulator_dev *dev_to_rdev(struct device *dev) 115 { 116 return container_of(dev, struct regulator_dev, dev); 117 } 118 119 static const char *rdev_get_name(struct regulator_dev *rdev) 120 { 121 if (rdev->constraints && rdev->constraints->name) 122 return rdev->constraints->name; 123 else if (rdev->desc->name) 124 return rdev->desc->name; 125 else 126 return ""; 127 } 128 129 static bool have_full_constraints(void) 130 { 131 return has_full_constraints || of_have_populated_dt(); 132 } 133 134 /** 135 * of_get_regulator - get a regulator device node based on supply name 136 * @dev: Device pointer for the consumer (of regulator) device 137 * @supply: regulator supply name 138 * 139 * Extract the regulator device node corresponding to the supply name. 140 * returns the device node corresponding to the regulator if found, else 141 * returns NULL. 142 */ 143 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 144 { 145 struct device_node *regnode = NULL; 146 char prop_name[32]; /* 32 is max size of property name */ 147 148 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 149 150 snprintf(prop_name, 32, "%s-supply", supply); 151 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 152 153 if (!regnode) { 154 dev_dbg(dev, "Looking up %s property in node %s failed", 155 prop_name, dev->of_node->full_name); 156 return NULL; 157 } 158 return regnode; 159 } 160 161 static int _regulator_can_change_status(struct regulator_dev *rdev) 162 { 163 if (!rdev->constraints) 164 return 0; 165 166 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 167 return 1; 168 else 169 return 0; 170 } 171 172 /* Platform voltage constraint check */ 173 static int regulator_check_voltage(struct regulator_dev *rdev, 174 int *min_uV, int *max_uV) 175 { 176 BUG_ON(*min_uV > *max_uV); 177 178 if (!rdev->constraints) { 179 rdev_err(rdev, "no constraints\n"); 180 return -ENODEV; 181 } 182 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 183 rdev_err(rdev, "operation not allowed\n"); 184 return -EPERM; 185 } 186 187 if (*max_uV > rdev->constraints->max_uV) 188 *max_uV = rdev->constraints->max_uV; 189 if (*min_uV < rdev->constraints->min_uV) 190 *min_uV = rdev->constraints->min_uV; 191 192 if (*min_uV > *max_uV) { 193 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 194 *min_uV, *max_uV); 195 return -EINVAL; 196 } 197 198 return 0; 199 } 200 201 /* Make sure we select a voltage that suits the needs of all 202 * regulator consumers 203 */ 204 static int regulator_check_consumers(struct regulator_dev *rdev, 205 int *min_uV, int *max_uV) 206 { 207 struct regulator *regulator; 208 209 list_for_each_entry(regulator, &rdev->consumer_list, list) { 210 /* 211 * Assume consumers that didn't say anything are OK 212 * with anything in the constraint range. 213 */ 214 if (!regulator->min_uV && !regulator->max_uV) 215 continue; 216 217 if (*max_uV > regulator->max_uV) 218 *max_uV = regulator->max_uV; 219 if (*min_uV < regulator->min_uV) 220 *min_uV = regulator->min_uV; 221 } 222 223 if (*min_uV > *max_uV) { 224 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 225 *min_uV, *max_uV); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 232 /* current constraint check */ 233 static int regulator_check_current_limit(struct regulator_dev *rdev, 234 int *min_uA, int *max_uA) 235 { 236 BUG_ON(*min_uA > *max_uA); 237 238 if (!rdev->constraints) { 239 rdev_err(rdev, "no constraints\n"); 240 return -ENODEV; 241 } 242 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 243 rdev_err(rdev, "operation not allowed\n"); 244 return -EPERM; 245 } 246 247 if (*max_uA > rdev->constraints->max_uA) 248 *max_uA = rdev->constraints->max_uA; 249 if (*min_uA < rdev->constraints->min_uA) 250 *min_uA = rdev->constraints->min_uA; 251 252 if (*min_uA > *max_uA) { 253 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 254 *min_uA, *max_uA); 255 return -EINVAL; 256 } 257 258 return 0; 259 } 260 261 /* operating mode constraint check */ 262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 263 { 264 switch (*mode) { 265 case REGULATOR_MODE_FAST: 266 case REGULATOR_MODE_NORMAL: 267 case REGULATOR_MODE_IDLE: 268 case REGULATOR_MODE_STANDBY: 269 break; 270 default: 271 rdev_err(rdev, "invalid mode %x specified\n", *mode); 272 return -EINVAL; 273 } 274 275 if (!rdev->constraints) { 276 rdev_err(rdev, "no constraints\n"); 277 return -ENODEV; 278 } 279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 280 rdev_err(rdev, "operation not allowed\n"); 281 return -EPERM; 282 } 283 284 /* The modes are bitmasks, the most power hungry modes having 285 * the lowest values. If the requested mode isn't supported 286 * try higher modes. */ 287 while (*mode) { 288 if (rdev->constraints->valid_modes_mask & *mode) 289 return 0; 290 *mode /= 2; 291 } 292 293 return -EINVAL; 294 } 295 296 /* dynamic regulator mode switching constraint check */ 297 static int regulator_check_drms(struct regulator_dev *rdev) 298 { 299 if (!rdev->constraints) { 300 rdev_err(rdev, "no constraints\n"); 301 return -ENODEV; 302 } 303 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 304 rdev_dbg(rdev, "operation not allowed\n"); 305 return -EPERM; 306 } 307 return 0; 308 } 309 310 static ssize_t regulator_uV_show(struct device *dev, 311 struct device_attribute *attr, char *buf) 312 { 313 struct regulator_dev *rdev = dev_get_drvdata(dev); 314 ssize_t ret; 315 316 mutex_lock(&rdev->mutex); 317 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 318 mutex_unlock(&rdev->mutex); 319 320 return ret; 321 } 322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 323 324 static ssize_t regulator_uA_show(struct device *dev, 325 struct device_attribute *attr, char *buf) 326 { 327 struct regulator_dev *rdev = dev_get_drvdata(dev); 328 329 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 330 } 331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 332 333 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 334 char *buf) 335 { 336 struct regulator_dev *rdev = dev_get_drvdata(dev); 337 338 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 339 } 340 static DEVICE_ATTR_RO(name); 341 342 static ssize_t regulator_print_opmode(char *buf, int mode) 343 { 344 switch (mode) { 345 case REGULATOR_MODE_FAST: 346 return sprintf(buf, "fast\n"); 347 case REGULATOR_MODE_NORMAL: 348 return sprintf(buf, "normal\n"); 349 case REGULATOR_MODE_IDLE: 350 return sprintf(buf, "idle\n"); 351 case REGULATOR_MODE_STANDBY: 352 return sprintf(buf, "standby\n"); 353 } 354 return sprintf(buf, "unknown\n"); 355 } 356 357 static ssize_t regulator_opmode_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct regulator_dev *rdev = dev_get_drvdata(dev); 361 362 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 363 } 364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 365 366 static ssize_t regulator_print_state(char *buf, int state) 367 { 368 if (state > 0) 369 return sprintf(buf, "enabled\n"); 370 else if (state == 0) 371 return sprintf(buf, "disabled\n"); 372 else 373 return sprintf(buf, "unknown\n"); 374 } 375 376 static ssize_t regulator_state_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 struct regulator_dev *rdev = dev_get_drvdata(dev); 380 ssize_t ret; 381 382 mutex_lock(&rdev->mutex); 383 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 384 mutex_unlock(&rdev->mutex); 385 386 return ret; 387 } 388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 389 390 static ssize_t regulator_status_show(struct device *dev, 391 struct device_attribute *attr, char *buf) 392 { 393 struct regulator_dev *rdev = dev_get_drvdata(dev); 394 int status; 395 char *label; 396 397 status = rdev->desc->ops->get_status(rdev); 398 if (status < 0) 399 return status; 400 401 switch (status) { 402 case REGULATOR_STATUS_OFF: 403 label = "off"; 404 break; 405 case REGULATOR_STATUS_ON: 406 label = "on"; 407 break; 408 case REGULATOR_STATUS_ERROR: 409 label = "error"; 410 break; 411 case REGULATOR_STATUS_FAST: 412 label = "fast"; 413 break; 414 case REGULATOR_STATUS_NORMAL: 415 label = "normal"; 416 break; 417 case REGULATOR_STATUS_IDLE: 418 label = "idle"; 419 break; 420 case REGULATOR_STATUS_STANDBY: 421 label = "standby"; 422 break; 423 case REGULATOR_STATUS_BYPASS: 424 label = "bypass"; 425 break; 426 case REGULATOR_STATUS_UNDEFINED: 427 label = "undefined"; 428 break; 429 default: 430 return -ERANGE; 431 } 432 433 return sprintf(buf, "%s\n", label); 434 } 435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 436 437 static ssize_t regulator_min_uA_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct regulator_dev *rdev = dev_get_drvdata(dev); 441 442 if (!rdev->constraints) 443 return sprintf(buf, "constraint not defined\n"); 444 445 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 446 } 447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 448 449 static ssize_t regulator_max_uA_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct regulator_dev *rdev = dev_get_drvdata(dev); 453 454 if (!rdev->constraints) 455 return sprintf(buf, "constraint not defined\n"); 456 457 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 458 } 459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 460 461 static ssize_t regulator_min_uV_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct regulator_dev *rdev = dev_get_drvdata(dev); 465 466 if (!rdev->constraints) 467 return sprintf(buf, "constraint not defined\n"); 468 469 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 470 } 471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 472 473 static ssize_t regulator_max_uV_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct regulator_dev *rdev = dev_get_drvdata(dev); 477 478 if (!rdev->constraints) 479 return sprintf(buf, "constraint not defined\n"); 480 481 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 482 } 483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 484 485 static ssize_t regulator_total_uA_show(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct regulator_dev *rdev = dev_get_drvdata(dev); 489 struct regulator *regulator; 490 int uA = 0; 491 492 mutex_lock(&rdev->mutex); 493 list_for_each_entry(regulator, &rdev->consumer_list, list) 494 uA += regulator->uA_load; 495 mutex_unlock(&rdev->mutex); 496 return sprintf(buf, "%d\n", uA); 497 } 498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 499 500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 501 char *buf) 502 { 503 struct regulator_dev *rdev = dev_get_drvdata(dev); 504 return sprintf(buf, "%d\n", rdev->use_count); 505 } 506 static DEVICE_ATTR_RO(num_users); 507 508 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 509 char *buf) 510 { 511 struct regulator_dev *rdev = dev_get_drvdata(dev); 512 513 switch (rdev->desc->type) { 514 case REGULATOR_VOLTAGE: 515 return sprintf(buf, "voltage\n"); 516 case REGULATOR_CURRENT: 517 return sprintf(buf, "current\n"); 518 } 519 return sprintf(buf, "unknown\n"); 520 } 521 static DEVICE_ATTR_RO(type); 522 523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 529 } 530 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 531 regulator_suspend_mem_uV_show, NULL); 532 533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 539 } 540 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 541 regulator_suspend_disk_uV_show, NULL); 542 543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 549 } 550 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 551 regulator_suspend_standby_uV_show, NULL); 552 553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct regulator_dev *rdev = dev_get_drvdata(dev); 557 558 return regulator_print_opmode(buf, 559 rdev->constraints->state_mem.mode); 560 } 561 static DEVICE_ATTR(suspend_mem_mode, 0444, 562 regulator_suspend_mem_mode_show, NULL); 563 564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566 { 567 struct regulator_dev *rdev = dev_get_drvdata(dev); 568 569 return regulator_print_opmode(buf, 570 rdev->constraints->state_disk.mode); 571 } 572 static DEVICE_ATTR(suspend_disk_mode, 0444, 573 regulator_suspend_disk_mode_show, NULL); 574 575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 576 struct device_attribute *attr, char *buf) 577 { 578 struct regulator_dev *rdev = dev_get_drvdata(dev); 579 580 return regulator_print_opmode(buf, 581 rdev->constraints->state_standby.mode); 582 } 583 static DEVICE_ATTR(suspend_standby_mode, 0444, 584 regulator_suspend_standby_mode_show, NULL); 585 586 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct regulator_dev *rdev = dev_get_drvdata(dev); 590 591 return regulator_print_state(buf, 592 rdev->constraints->state_mem.enabled); 593 } 594 static DEVICE_ATTR(suspend_mem_state, 0444, 595 regulator_suspend_mem_state_show, NULL); 596 597 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 598 struct device_attribute *attr, char *buf) 599 { 600 struct regulator_dev *rdev = dev_get_drvdata(dev); 601 602 return regulator_print_state(buf, 603 rdev->constraints->state_disk.enabled); 604 } 605 static DEVICE_ATTR(suspend_disk_state, 0444, 606 regulator_suspend_disk_state_show, NULL); 607 608 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct regulator_dev *rdev = dev_get_drvdata(dev); 612 613 return regulator_print_state(buf, 614 rdev->constraints->state_standby.enabled); 615 } 616 static DEVICE_ATTR(suspend_standby_state, 0444, 617 regulator_suspend_standby_state_show, NULL); 618 619 static ssize_t regulator_bypass_show(struct device *dev, 620 struct device_attribute *attr, char *buf) 621 { 622 struct regulator_dev *rdev = dev_get_drvdata(dev); 623 const char *report; 624 bool bypass; 625 int ret; 626 627 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 628 629 if (ret != 0) 630 report = "unknown"; 631 else if (bypass) 632 report = "enabled"; 633 else 634 report = "disabled"; 635 636 return sprintf(buf, "%s\n", report); 637 } 638 static DEVICE_ATTR(bypass, 0444, 639 regulator_bypass_show, NULL); 640 641 /* Calculate the new optimum regulator operating mode based on the new total 642 * consumer load. All locks held by caller */ 643 static int drms_uA_update(struct regulator_dev *rdev) 644 { 645 struct regulator *sibling; 646 int current_uA = 0, output_uV, input_uV, err; 647 unsigned int mode; 648 649 lockdep_assert_held_once(&rdev->mutex); 650 651 /* 652 * first check to see if we can set modes at all, otherwise just 653 * tell the consumer everything is OK. 654 */ 655 err = regulator_check_drms(rdev); 656 if (err < 0) 657 return 0; 658 659 if (!rdev->desc->ops->get_optimum_mode && 660 !rdev->desc->ops->set_load) 661 return 0; 662 663 if (!rdev->desc->ops->set_mode && 664 !rdev->desc->ops->set_load) 665 return -EINVAL; 666 667 /* get output voltage */ 668 output_uV = _regulator_get_voltage(rdev); 669 if (output_uV <= 0) { 670 rdev_err(rdev, "invalid output voltage found\n"); 671 return -EINVAL; 672 } 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) { 681 rdev_err(rdev, "invalid input voltage found\n"); 682 return -EINVAL; 683 } 684 685 /* calc total requested load */ 686 list_for_each_entry(sibling, &rdev->consumer_list, list) 687 current_uA += sibling->uA_load; 688 689 current_uA += rdev->constraints->system_load; 690 691 if (rdev->desc->ops->set_load) { 692 /* set the optimum mode for our new total regulator load */ 693 err = rdev->desc->ops->set_load(rdev, current_uA); 694 if (err < 0) 695 rdev_err(rdev, "failed to set load %d\n", current_uA); 696 } else { 697 /* now get the optimum mode for our new total regulator load */ 698 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 699 output_uV, current_uA); 700 701 /* check the new mode is allowed */ 702 err = regulator_mode_constrain(rdev, &mode); 703 if (err < 0) { 704 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 705 current_uA, input_uV, output_uV); 706 return err; 707 } 708 709 err = rdev->desc->ops->set_mode(rdev, mode); 710 if (err < 0) 711 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 712 } 713 714 return err; 715 } 716 717 static int suspend_set_state(struct regulator_dev *rdev, 718 struct regulator_state *rstate) 719 { 720 int ret = 0; 721 722 /* If we have no suspend mode configration don't set anything; 723 * only warn if the driver implements set_suspend_voltage or 724 * set_suspend_mode callback. 725 */ 726 if (!rstate->enabled && !rstate->disabled) { 727 if (rdev->desc->ops->set_suspend_voltage || 728 rdev->desc->ops->set_suspend_mode) 729 rdev_warn(rdev, "No configuration\n"); 730 return 0; 731 } 732 733 if (rstate->enabled && rstate->disabled) { 734 rdev_err(rdev, "invalid configuration\n"); 735 return -EINVAL; 736 } 737 738 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 739 ret = rdev->desc->ops->set_suspend_enable(rdev); 740 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 741 ret = rdev->desc->ops->set_suspend_disable(rdev); 742 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 743 ret = 0; 744 745 if (ret < 0) { 746 rdev_err(rdev, "failed to enabled/disable\n"); 747 return ret; 748 } 749 750 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 751 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 752 if (ret < 0) { 753 rdev_err(rdev, "failed to set voltage\n"); 754 return ret; 755 } 756 } 757 758 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 759 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 760 if (ret < 0) { 761 rdev_err(rdev, "failed to set mode\n"); 762 return ret; 763 } 764 } 765 return ret; 766 } 767 768 /* locks held by caller */ 769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 770 { 771 lockdep_assert_held_once(&rdev->mutex); 772 773 if (!rdev->constraints) 774 return -EINVAL; 775 776 switch (state) { 777 case PM_SUSPEND_STANDBY: 778 return suspend_set_state(rdev, 779 &rdev->constraints->state_standby); 780 case PM_SUSPEND_MEM: 781 return suspend_set_state(rdev, 782 &rdev->constraints->state_mem); 783 case PM_SUSPEND_MAX: 784 return suspend_set_state(rdev, 785 &rdev->constraints->state_disk); 786 default: 787 return -EINVAL; 788 } 789 } 790 791 static void print_constraints(struct regulator_dev *rdev) 792 { 793 struct regulation_constraints *constraints = rdev->constraints; 794 char buf[160] = ""; 795 size_t len = sizeof(buf) - 1; 796 int count = 0; 797 int ret; 798 799 if (constraints->min_uV && constraints->max_uV) { 800 if (constraints->min_uV == constraints->max_uV) 801 count += scnprintf(buf + count, len - count, "%d mV ", 802 constraints->min_uV / 1000); 803 else 804 count += scnprintf(buf + count, len - count, 805 "%d <--> %d mV ", 806 constraints->min_uV / 1000, 807 constraints->max_uV / 1000); 808 } 809 810 if (!constraints->min_uV || 811 constraints->min_uV != constraints->max_uV) { 812 ret = _regulator_get_voltage(rdev); 813 if (ret > 0) 814 count += scnprintf(buf + count, len - count, 815 "at %d mV ", ret / 1000); 816 } 817 818 if (constraints->uV_offset) 819 count += scnprintf(buf + count, len - count, "%dmV offset ", 820 constraints->uV_offset / 1000); 821 822 if (constraints->min_uA && constraints->max_uA) { 823 if (constraints->min_uA == constraints->max_uA) 824 count += scnprintf(buf + count, len - count, "%d mA ", 825 constraints->min_uA / 1000); 826 else 827 count += scnprintf(buf + count, len - count, 828 "%d <--> %d mA ", 829 constraints->min_uA / 1000, 830 constraints->max_uA / 1000); 831 } 832 833 if (!constraints->min_uA || 834 constraints->min_uA != constraints->max_uA) { 835 ret = _regulator_get_current_limit(rdev); 836 if (ret > 0) 837 count += scnprintf(buf + count, len - count, 838 "at %d mA ", ret / 1000); 839 } 840 841 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 842 count += scnprintf(buf + count, len - count, "fast "); 843 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 844 count += scnprintf(buf + count, len - count, "normal "); 845 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 846 count += scnprintf(buf + count, len - count, "idle "); 847 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 848 count += scnprintf(buf + count, len - count, "standby"); 849 850 if (!count) 851 scnprintf(buf, len, "no parameters"); 852 853 rdev_dbg(rdev, "%s\n", buf); 854 855 if ((constraints->min_uV != constraints->max_uV) && 856 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 857 rdev_warn(rdev, 858 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 859 } 860 861 static int machine_constraints_voltage(struct regulator_dev *rdev, 862 struct regulation_constraints *constraints) 863 { 864 const struct regulator_ops *ops = rdev->desc->ops; 865 int ret; 866 867 /* do we need to apply the constraint voltage */ 868 if (rdev->constraints->apply_uV && 869 rdev->constraints->min_uV == rdev->constraints->max_uV) { 870 int current_uV = _regulator_get_voltage(rdev); 871 if (current_uV < 0) { 872 rdev_err(rdev, 873 "failed to get the current voltage(%d)\n", 874 current_uV); 875 return current_uV; 876 } 877 if (current_uV < rdev->constraints->min_uV || 878 current_uV > rdev->constraints->max_uV) { 879 ret = _regulator_do_set_voltage( 880 rdev, rdev->constraints->min_uV, 881 rdev->constraints->max_uV); 882 if (ret < 0) { 883 rdev_err(rdev, 884 "failed to apply %duV constraint(%d)\n", 885 rdev->constraints->min_uV, ret); 886 return ret; 887 } 888 } 889 } 890 891 /* constrain machine-level voltage specs to fit 892 * the actual range supported by this regulator. 893 */ 894 if (ops->list_voltage && rdev->desc->n_voltages) { 895 int count = rdev->desc->n_voltages; 896 int i; 897 int min_uV = INT_MAX; 898 int max_uV = INT_MIN; 899 int cmin = constraints->min_uV; 900 int cmax = constraints->max_uV; 901 902 /* it's safe to autoconfigure fixed-voltage supplies 903 and the constraints are used by list_voltage. */ 904 if (count == 1 && !cmin) { 905 cmin = 1; 906 cmax = INT_MAX; 907 constraints->min_uV = cmin; 908 constraints->max_uV = cmax; 909 } 910 911 /* voltage constraints are optional */ 912 if ((cmin == 0) && (cmax == 0)) 913 return 0; 914 915 /* else require explicit machine-level constraints */ 916 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 917 rdev_err(rdev, "invalid voltage constraints\n"); 918 return -EINVAL; 919 } 920 921 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 922 for (i = 0; i < count; i++) { 923 int value; 924 925 value = ops->list_voltage(rdev, i); 926 if (value <= 0) 927 continue; 928 929 /* maybe adjust [min_uV..max_uV] */ 930 if (value >= cmin && value < min_uV) 931 min_uV = value; 932 if (value <= cmax && value > max_uV) 933 max_uV = value; 934 } 935 936 /* final: [min_uV..max_uV] valid iff constraints valid */ 937 if (max_uV < min_uV) { 938 rdev_err(rdev, 939 "unsupportable voltage constraints %u-%uuV\n", 940 min_uV, max_uV); 941 return -EINVAL; 942 } 943 944 /* use regulator's subset of machine constraints */ 945 if (constraints->min_uV < min_uV) { 946 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 947 constraints->min_uV, min_uV); 948 constraints->min_uV = min_uV; 949 } 950 if (constraints->max_uV > max_uV) { 951 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 952 constraints->max_uV, max_uV); 953 constraints->max_uV = max_uV; 954 } 955 } 956 957 return 0; 958 } 959 960 static int machine_constraints_current(struct regulator_dev *rdev, 961 struct regulation_constraints *constraints) 962 { 963 const struct regulator_ops *ops = rdev->desc->ops; 964 int ret; 965 966 if (!constraints->min_uA && !constraints->max_uA) 967 return 0; 968 969 if (constraints->min_uA > constraints->max_uA) { 970 rdev_err(rdev, "Invalid current constraints\n"); 971 return -EINVAL; 972 } 973 974 if (!ops->set_current_limit || !ops->get_current_limit) { 975 rdev_warn(rdev, "Operation of current configuration missing\n"); 976 return 0; 977 } 978 979 /* Set regulator current in constraints range */ 980 ret = ops->set_current_limit(rdev, constraints->min_uA, 981 constraints->max_uA); 982 if (ret < 0) { 983 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 984 return ret; 985 } 986 987 return 0; 988 } 989 990 static int _regulator_do_enable(struct regulator_dev *rdev); 991 992 /** 993 * set_machine_constraints - sets regulator constraints 994 * @rdev: regulator source 995 * @constraints: constraints to apply 996 * 997 * Allows platform initialisation code to define and constrain 998 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 999 * Constraints *must* be set by platform code in order for some 1000 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1001 * set_mode. 1002 */ 1003 static int set_machine_constraints(struct regulator_dev *rdev, 1004 const struct regulation_constraints *constraints) 1005 { 1006 int ret = 0; 1007 const struct regulator_ops *ops = rdev->desc->ops; 1008 1009 if (constraints) 1010 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1011 GFP_KERNEL); 1012 else 1013 rdev->constraints = kzalloc(sizeof(*constraints), 1014 GFP_KERNEL); 1015 if (!rdev->constraints) 1016 return -ENOMEM; 1017 1018 ret = machine_constraints_voltage(rdev, rdev->constraints); 1019 if (ret != 0) 1020 goto out; 1021 1022 ret = machine_constraints_current(rdev, rdev->constraints); 1023 if (ret != 0) 1024 goto out; 1025 1026 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1027 ret = ops->set_input_current_limit(rdev, 1028 rdev->constraints->ilim_uA); 1029 if (ret < 0) { 1030 rdev_err(rdev, "failed to set input limit\n"); 1031 goto out; 1032 } 1033 } 1034 1035 /* do we need to setup our suspend state */ 1036 if (rdev->constraints->initial_state) { 1037 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1038 if (ret < 0) { 1039 rdev_err(rdev, "failed to set suspend state\n"); 1040 goto out; 1041 } 1042 } 1043 1044 if (rdev->constraints->initial_mode) { 1045 if (!ops->set_mode) { 1046 rdev_err(rdev, "no set_mode operation\n"); 1047 ret = -EINVAL; 1048 goto out; 1049 } 1050 1051 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1052 if (ret < 0) { 1053 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1054 goto out; 1055 } 1056 } 1057 1058 /* If the constraints say the regulator should be on at this point 1059 * and we have control then make sure it is enabled. 1060 */ 1061 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1062 ret = _regulator_do_enable(rdev); 1063 if (ret < 0 && ret != -EINVAL) { 1064 rdev_err(rdev, "failed to enable\n"); 1065 goto out; 1066 } 1067 } 1068 1069 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1070 && ops->set_ramp_delay) { 1071 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set ramp_delay\n"); 1074 goto out; 1075 } 1076 } 1077 1078 if (rdev->constraints->pull_down && ops->set_pull_down) { 1079 ret = ops->set_pull_down(rdev); 1080 if (ret < 0) { 1081 rdev_err(rdev, "failed to set pull down\n"); 1082 goto out; 1083 } 1084 } 1085 1086 if (rdev->constraints->soft_start && ops->set_soft_start) { 1087 ret = ops->set_soft_start(rdev); 1088 if (ret < 0) { 1089 rdev_err(rdev, "failed to set soft start\n"); 1090 goto out; 1091 } 1092 } 1093 1094 if (rdev->constraints->over_current_protection 1095 && ops->set_over_current_protection) { 1096 ret = ops->set_over_current_protection(rdev); 1097 if (ret < 0) { 1098 rdev_err(rdev, "failed to set over current protection\n"); 1099 goto out; 1100 } 1101 } 1102 1103 print_constraints(rdev); 1104 return 0; 1105 out: 1106 kfree(rdev->constraints); 1107 rdev->constraints = NULL; 1108 return ret; 1109 } 1110 1111 /** 1112 * set_supply - set regulator supply regulator 1113 * @rdev: regulator name 1114 * @supply_rdev: supply regulator name 1115 * 1116 * Called by platform initialisation code to set the supply regulator for this 1117 * regulator. This ensures that a regulators supply will also be enabled by the 1118 * core if it's child is enabled. 1119 */ 1120 static int set_supply(struct regulator_dev *rdev, 1121 struct regulator_dev *supply_rdev) 1122 { 1123 int err; 1124 1125 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1126 1127 if (!try_module_get(supply_rdev->owner)) 1128 return -ENODEV; 1129 1130 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1131 if (rdev->supply == NULL) { 1132 err = -ENOMEM; 1133 return err; 1134 } 1135 supply_rdev->open_count++; 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1142 * @rdev: regulator source 1143 * @consumer_dev_name: dev_name() string for device supply applies to 1144 * @supply: symbolic name for supply 1145 * 1146 * Allows platform initialisation code to map physical regulator 1147 * sources to symbolic names for supplies for use by devices. Devices 1148 * should use these symbolic names to request regulators, avoiding the 1149 * need to provide board-specific regulator names as platform data. 1150 */ 1151 static int set_consumer_device_supply(struct regulator_dev *rdev, 1152 const char *consumer_dev_name, 1153 const char *supply) 1154 { 1155 struct regulator_map *node; 1156 int has_dev; 1157 1158 if (supply == NULL) 1159 return -EINVAL; 1160 1161 if (consumer_dev_name != NULL) 1162 has_dev = 1; 1163 else 1164 has_dev = 0; 1165 1166 list_for_each_entry(node, ®ulator_map_list, list) { 1167 if (node->dev_name && consumer_dev_name) { 1168 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1169 continue; 1170 } else if (node->dev_name || consumer_dev_name) { 1171 continue; 1172 } 1173 1174 if (strcmp(node->supply, supply) != 0) 1175 continue; 1176 1177 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1178 consumer_dev_name, 1179 dev_name(&node->regulator->dev), 1180 node->regulator->desc->name, 1181 supply, 1182 dev_name(&rdev->dev), rdev_get_name(rdev)); 1183 return -EBUSY; 1184 } 1185 1186 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1187 if (node == NULL) 1188 return -ENOMEM; 1189 1190 node->regulator = rdev; 1191 node->supply = supply; 1192 1193 if (has_dev) { 1194 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1195 if (node->dev_name == NULL) { 1196 kfree(node); 1197 return -ENOMEM; 1198 } 1199 } 1200 1201 list_add(&node->list, ®ulator_map_list); 1202 return 0; 1203 } 1204 1205 static void unset_regulator_supplies(struct regulator_dev *rdev) 1206 { 1207 struct regulator_map *node, *n; 1208 1209 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1210 if (rdev == node->regulator) { 1211 list_del(&node->list); 1212 kfree(node->dev_name); 1213 kfree(node); 1214 } 1215 } 1216 } 1217 1218 #define REG_STR_SIZE 64 1219 1220 static struct regulator *create_regulator(struct regulator_dev *rdev, 1221 struct device *dev, 1222 const char *supply_name) 1223 { 1224 struct regulator *regulator; 1225 char buf[REG_STR_SIZE]; 1226 int err, size; 1227 1228 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1229 if (regulator == NULL) 1230 return NULL; 1231 1232 mutex_lock(&rdev->mutex); 1233 regulator->rdev = rdev; 1234 list_add(®ulator->list, &rdev->consumer_list); 1235 1236 if (dev) { 1237 regulator->dev = dev; 1238 1239 /* Add a link to the device sysfs entry */ 1240 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1241 dev->kobj.name, supply_name); 1242 if (size >= REG_STR_SIZE) 1243 goto overflow_err; 1244 1245 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1246 if (regulator->supply_name == NULL) 1247 goto overflow_err; 1248 1249 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1250 buf); 1251 if (err) { 1252 rdev_dbg(rdev, "could not add device link %s err %d\n", 1253 dev->kobj.name, err); 1254 /* non-fatal */ 1255 } 1256 } else { 1257 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1258 if (regulator->supply_name == NULL) 1259 goto overflow_err; 1260 } 1261 1262 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1263 rdev->debugfs); 1264 if (!regulator->debugfs) { 1265 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1266 } else { 1267 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1268 ®ulator->uA_load); 1269 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1270 ®ulator->min_uV); 1271 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1272 ®ulator->max_uV); 1273 } 1274 1275 /* 1276 * Check now if the regulator is an always on regulator - if 1277 * it is then we don't need to do nearly so much work for 1278 * enable/disable calls. 1279 */ 1280 if (!_regulator_can_change_status(rdev) && 1281 _regulator_is_enabled(rdev)) 1282 regulator->always_on = true; 1283 1284 mutex_unlock(&rdev->mutex); 1285 return regulator; 1286 overflow_err: 1287 list_del(®ulator->list); 1288 kfree(regulator); 1289 mutex_unlock(&rdev->mutex); 1290 return NULL; 1291 } 1292 1293 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1294 { 1295 if (rdev->constraints && rdev->constraints->enable_time) 1296 return rdev->constraints->enable_time; 1297 if (!rdev->desc->ops->enable_time) 1298 return rdev->desc->enable_time; 1299 return rdev->desc->ops->enable_time(rdev); 1300 } 1301 1302 static struct regulator_supply_alias *regulator_find_supply_alias( 1303 struct device *dev, const char *supply) 1304 { 1305 struct regulator_supply_alias *map; 1306 1307 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1308 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1309 return map; 1310 1311 return NULL; 1312 } 1313 1314 static void regulator_supply_alias(struct device **dev, const char **supply) 1315 { 1316 struct regulator_supply_alias *map; 1317 1318 map = regulator_find_supply_alias(*dev, *supply); 1319 if (map) { 1320 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1321 *supply, map->alias_supply, 1322 dev_name(map->alias_dev)); 1323 *dev = map->alias_dev; 1324 *supply = map->alias_supply; 1325 } 1326 } 1327 1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1329 const char *supply, 1330 int *ret) 1331 { 1332 struct regulator_dev *r; 1333 struct device_node *node; 1334 struct regulator_map *map; 1335 const char *devname = NULL; 1336 1337 regulator_supply_alias(&dev, &supply); 1338 1339 /* first do a dt based lookup */ 1340 if (dev && dev->of_node) { 1341 node = of_get_regulator(dev, supply); 1342 if (node) { 1343 list_for_each_entry(r, ®ulator_list, list) 1344 if (r->dev.parent && 1345 node == r->dev.of_node) 1346 return r; 1347 *ret = -EPROBE_DEFER; 1348 return NULL; 1349 } else { 1350 /* 1351 * If we couldn't even get the node then it's 1352 * not just that the device didn't register 1353 * yet, there's no node and we'll never 1354 * succeed. 1355 */ 1356 *ret = -ENODEV; 1357 } 1358 } 1359 1360 /* if not found, try doing it non-dt way */ 1361 if (dev) 1362 devname = dev_name(dev); 1363 1364 list_for_each_entry(r, ®ulator_list, list) 1365 if (strcmp(rdev_get_name(r), supply) == 0) 1366 return r; 1367 1368 list_for_each_entry(map, ®ulator_map_list, list) { 1369 /* If the mapping has a device set up it must match */ 1370 if (map->dev_name && 1371 (!devname || strcmp(map->dev_name, devname))) 1372 continue; 1373 1374 if (strcmp(map->supply, supply) == 0) 1375 return map->regulator; 1376 } 1377 1378 1379 return NULL; 1380 } 1381 1382 static int regulator_resolve_supply(struct regulator_dev *rdev) 1383 { 1384 struct regulator_dev *r; 1385 struct device *dev = rdev->dev.parent; 1386 int ret; 1387 1388 /* No supply to resovle? */ 1389 if (!rdev->supply_name) 1390 return 0; 1391 1392 /* Supply already resolved? */ 1393 if (rdev->supply) 1394 return 0; 1395 1396 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1397 if (!r) { 1398 if (ret == -ENODEV) { 1399 /* 1400 * No supply was specified for this regulator and 1401 * there will never be one. 1402 */ 1403 return 0; 1404 } 1405 1406 /* Did the lookup explicitly defer for us? */ 1407 if (ret == -EPROBE_DEFER) 1408 return ret; 1409 1410 if (have_full_constraints()) { 1411 r = dummy_regulator_rdev; 1412 } else { 1413 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1414 rdev->supply_name, rdev->desc->name); 1415 return -EPROBE_DEFER; 1416 } 1417 } 1418 1419 /* Recursively resolve the supply of the supply */ 1420 ret = regulator_resolve_supply(r); 1421 if (ret < 0) 1422 return ret; 1423 1424 ret = set_supply(rdev, r); 1425 if (ret < 0) 1426 return ret; 1427 1428 /* Cascade always-on state to supply */ 1429 if (_regulator_is_enabled(rdev) && rdev->supply) { 1430 ret = regulator_enable(rdev->supply); 1431 if (ret < 0) { 1432 _regulator_put(rdev->supply); 1433 return ret; 1434 } 1435 } 1436 1437 return 0; 1438 } 1439 1440 /* Internal regulator request function */ 1441 static struct regulator *_regulator_get(struct device *dev, const char *id, 1442 bool exclusive, bool allow_dummy) 1443 { 1444 struct regulator_dev *rdev; 1445 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1446 const char *devname = NULL; 1447 int ret; 1448 1449 if (id == NULL) { 1450 pr_err("get() with no identifier\n"); 1451 return ERR_PTR(-EINVAL); 1452 } 1453 1454 if (dev) 1455 devname = dev_name(dev); 1456 1457 if (have_full_constraints()) 1458 ret = -ENODEV; 1459 else 1460 ret = -EPROBE_DEFER; 1461 1462 mutex_lock(®ulator_list_mutex); 1463 1464 rdev = regulator_dev_lookup(dev, id, &ret); 1465 if (rdev) 1466 goto found; 1467 1468 regulator = ERR_PTR(ret); 1469 1470 /* 1471 * If we have return value from dev_lookup fail, we do not expect to 1472 * succeed, so, quit with appropriate error value 1473 */ 1474 if (ret && ret != -ENODEV) 1475 goto out; 1476 1477 if (!devname) 1478 devname = "deviceless"; 1479 1480 /* 1481 * Assume that a regulator is physically present and enabled 1482 * even if it isn't hooked up and just provide a dummy. 1483 */ 1484 if (have_full_constraints() && allow_dummy) { 1485 pr_warn("%s supply %s not found, using dummy regulator\n", 1486 devname, id); 1487 1488 rdev = dummy_regulator_rdev; 1489 goto found; 1490 /* Don't log an error when called from regulator_get_optional() */ 1491 } else if (!have_full_constraints() || exclusive) { 1492 dev_warn(dev, "dummy supplies not allowed\n"); 1493 } 1494 1495 mutex_unlock(®ulator_list_mutex); 1496 return regulator; 1497 1498 found: 1499 if (rdev->exclusive) { 1500 regulator = ERR_PTR(-EPERM); 1501 goto out; 1502 } 1503 1504 if (exclusive && rdev->open_count) { 1505 regulator = ERR_PTR(-EBUSY); 1506 goto out; 1507 } 1508 1509 ret = regulator_resolve_supply(rdev); 1510 if (ret < 0) { 1511 regulator = ERR_PTR(ret); 1512 goto out; 1513 } 1514 1515 if (!try_module_get(rdev->owner)) 1516 goto out; 1517 1518 regulator = create_regulator(rdev, dev, id); 1519 if (regulator == NULL) { 1520 regulator = ERR_PTR(-ENOMEM); 1521 module_put(rdev->owner); 1522 goto out; 1523 } 1524 1525 rdev->open_count++; 1526 if (exclusive) { 1527 rdev->exclusive = 1; 1528 1529 ret = _regulator_is_enabled(rdev); 1530 if (ret > 0) 1531 rdev->use_count = 1; 1532 else 1533 rdev->use_count = 0; 1534 } 1535 1536 out: 1537 mutex_unlock(®ulator_list_mutex); 1538 1539 return regulator; 1540 } 1541 1542 /** 1543 * regulator_get - lookup and obtain a reference to a regulator. 1544 * @dev: device for regulator "consumer" 1545 * @id: Supply name or regulator ID. 1546 * 1547 * Returns a struct regulator corresponding to the regulator producer, 1548 * or IS_ERR() condition containing errno. 1549 * 1550 * Use of supply names configured via regulator_set_device_supply() is 1551 * strongly encouraged. It is recommended that the supply name used 1552 * should match the name used for the supply and/or the relevant 1553 * device pins in the datasheet. 1554 */ 1555 struct regulator *regulator_get(struct device *dev, const char *id) 1556 { 1557 return _regulator_get(dev, id, false, true); 1558 } 1559 EXPORT_SYMBOL_GPL(regulator_get); 1560 1561 /** 1562 * regulator_get_exclusive - obtain exclusive access to a regulator. 1563 * @dev: device for regulator "consumer" 1564 * @id: Supply name or regulator ID. 1565 * 1566 * Returns a struct regulator corresponding to the regulator producer, 1567 * or IS_ERR() condition containing errno. Other consumers will be 1568 * unable to obtain this regulator while this reference is held and the 1569 * use count for the regulator will be initialised to reflect the current 1570 * state of the regulator. 1571 * 1572 * This is intended for use by consumers which cannot tolerate shared 1573 * use of the regulator such as those which need to force the 1574 * regulator off for correct operation of the hardware they are 1575 * controlling. 1576 * 1577 * Use of supply names configured via regulator_set_device_supply() is 1578 * strongly encouraged. It is recommended that the supply name used 1579 * should match the name used for the supply and/or the relevant 1580 * device pins in the datasheet. 1581 */ 1582 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1583 { 1584 return _regulator_get(dev, id, true, false); 1585 } 1586 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1587 1588 /** 1589 * regulator_get_optional - obtain optional access to a regulator. 1590 * @dev: device for regulator "consumer" 1591 * @id: Supply name or regulator ID. 1592 * 1593 * Returns a struct regulator corresponding to the regulator producer, 1594 * or IS_ERR() condition containing errno. 1595 * 1596 * This is intended for use by consumers for devices which can have 1597 * some supplies unconnected in normal use, such as some MMC devices. 1598 * It can allow the regulator core to provide stub supplies for other 1599 * supplies requested using normal regulator_get() calls without 1600 * disrupting the operation of drivers that can handle absent 1601 * supplies. 1602 * 1603 * Use of supply names configured via regulator_set_device_supply() is 1604 * strongly encouraged. It is recommended that the supply name used 1605 * should match the name used for the supply and/or the relevant 1606 * device pins in the datasheet. 1607 */ 1608 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1609 { 1610 return _regulator_get(dev, id, false, false); 1611 } 1612 EXPORT_SYMBOL_GPL(regulator_get_optional); 1613 1614 /* regulator_list_mutex lock held by regulator_put() */ 1615 static void _regulator_put(struct regulator *regulator) 1616 { 1617 struct regulator_dev *rdev; 1618 1619 if (IS_ERR_OR_NULL(regulator)) 1620 return; 1621 1622 lockdep_assert_held_once(®ulator_list_mutex); 1623 1624 rdev = regulator->rdev; 1625 1626 debugfs_remove_recursive(regulator->debugfs); 1627 1628 /* remove any sysfs entries */ 1629 if (regulator->dev) 1630 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1631 mutex_lock(&rdev->mutex); 1632 list_del(®ulator->list); 1633 1634 rdev->open_count--; 1635 rdev->exclusive = 0; 1636 mutex_unlock(&rdev->mutex); 1637 1638 kfree(regulator->supply_name); 1639 kfree(regulator); 1640 1641 module_put(rdev->owner); 1642 } 1643 1644 /** 1645 * regulator_put - "free" the regulator source 1646 * @regulator: regulator source 1647 * 1648 * Note: drivers must ensure that all regulator_enable calls made on this 1649 * regulator source are balanced by regulator_disable calls prior to calling 1650 * this function. 1651 */ 1652 void regulator_put(struct regulator *regulator) 1653 { 1654 mutex_lock(®ulator_list_mutex); 1655 _regulator_put(regulator); 1656 mutex_unlock(®ulator_list_mutex); 1657 } 1658 EXPORT_SYMBOL_GPL(regulator_put); 1659 1660 /** 1661 * regulator_register_supply_alias - Provide device alias for supply lookup 1662 * 1663 * @dev: device that will be given as the regulator "consumer" 1664 * @id: Supply name or regulator ID 1665 * @alias_dev: device that should be used to lookup the supply 1666 * @alias_id: Supply name or regulator ID that should be used to lookup the 1667 * supply 1668 * 1669 * All lookups for id on dev will instead be conducted for alias_id on 1670 * alias_dev. 1671 */ 1672 int regulator_register_supply_alias(struct device *dev, const char *id, 1673 struct device *alias_dev, 1674 const char *alias_id) 1675 { 1676 struct regulator_supply_alias *map; 1677 1678 map = regulator_find_supply_alias(dev, id); 1679 if (map) 1680 return -EEXIST; 1681 1682 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1683 if (!map) 1684 return -ENOMEM; 1685 1686 map->src_dev = dev; 1687 map->src_supply = id; 1688 map->alias_dev = alias_dev; 1689 map->alias_supply = alias_id; 1690 1691 list_add(&map->list, ®ulator_supply_alias_list); 1692 1693 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1694 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1695 1696 return 0; 1697 } 1698 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1699 1700 /** 1701 * regulator_unregister_supply_alias - Remove device alias 1702 * 1703 * @dev: device that will be given as the regulator "consumer" 1704 * @id: Supply name or regulator ID 1705 * 1706 * Remove a lookup alias if one exists for id on dev. 1707 */ 1708 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1709 { 1710 struct regulator_supply_alias *map; 1711 1712 map = regulator_find_supply_alias(dev, id); 1713 if (map) { 1714 list_del(&map->list); 1715 kfree(map); 1716 } 1717 } 1718 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1719 1720 /** 1721 * regulator_bulk_register_supply_alias - register multiple aliases 1722 * 1723 * @dev: device that will be given as the regulator "consumer" 1724 * @id: List of supply names or regulator IDs 1725 * @alias_dev: device that should be used to lookup the supply 1726 * @alias_id: List of supply names or regulator IDs that should be used to 1727 * lookup the supply 1728 * @num_id: Number of aliases to register 1729 * 1730 * @return 0 on success, an errno on failure. 1731 * 1732 * This helper function allows drivers to register several supply 1733 * aliases in one operation. If any of the aliases cannot be 1734 * registered any aliases that were registered will be removed 1735 * before returning to the caller. 1736 */ 1737 int regulator_bulk_register_supply_alias(struct device *dev, 1738 const char *const *id, 1739 struct device *alias_dev, 1740 const char *const *alias_id, 1741 int num_id) 1742 { 1743 int i; 1744 int ret; 1745 1746 for (i = 0; i < num_id; ++i) { 1747 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1748 alias_id[i]); 1749 if (ret < 0) 1750 goto err; 1751 } 1752 1753 return 0; 1754 1755 err: 1756 dev_err(dev, 1757 "Failed to create supply alias %s,%s -> %s,%s\n", 1758 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1759 1760 while (--i >= 0) 1761 regulator_unregister_supply_alias(dev, id[i]); 1762 1763 return ret; 1764 } 1765 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1766 1767 /** 1768 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1769 * 1770 * @dev: device that will be given as the regulator "consumer" 1771 * @id: List of supply names or regulator IDs 1772 * @num_id: Number of aliases to unregister 1773 * 1774 * This helper function allows drivers to unregister several supply 1775 * aliases in one operation. 1776 */ 1777 void regulator_bulk_unregister_supply_alias(struct device *dev, 1778 const char *const *id, 1779 int num_id) 1780 { 1781 int i; 1782 1783 for (i = 0; i < num_id; ++i) 1784 regulator_unregister_supply_alias(dev, id[i]); 1785 } 1786 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1787 1788 1789 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1790 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1791 const struct regulator_config *config) 1792 { 1793 struct regulator_enable_gpio *pin; 1794 struct gpio_desc *gpiod; 1795 int ret; 1796 1797 gpiod = gpio_to_desc(config->ena_gpio); 1798 1799 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1800 if (pin->gpiod == gpiod) { 1801 rdev_dbg(rdev, "GPIO %d is already used\n", 1802 config->ena_gpio); 1803 goto update_ena_gpio_to_rdev; 1804 } 1805 } 1806 1807 ret = gpio_request_one(config->ena_gpio, 1808 GPIOF_DIR_OUT | config->ena_gpio_flags, 1809 rdev_get_name(rdev)); 1810 if (ret) 1811 return ret; 1812 1813 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1814 if (pin == NULL) { 1815 gpio_free(config->ena_gpio); 1816 return -ENOMEM; 1817 } 1818 1819 pin->gpiod = gpiod; 1820 pin->ena_gpio_invert = config->ena_gpio_invert; 1821 list_add(&pin->list, ®ulator_ena_gpio_list); 1822 1823 update_ena_gpio_to_rdev: 1824 pin->request_count++; 1825 rdev->ena_pin = pin; 1826 return 0; 1827 } 1828 1829 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1830 { 1831 struct regulator_enable_gpio *pin, *n; 1832 1833 if (!rdev->ena_pin) 1834 return; 1835 1836 /* Free the GPIO only in case of no use */ 1837 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1838 if (pin->gpiod == rdev->ena_pin->gpiod) { 1839 if (pin->request_count <= 1) { 1840 pin->request_count = 0; 1841 gpiod_put(pin->gpiod); 1842 list_del(&pin->list); 1843 kfree(pin); 1844 rdev->ena_pin = NULL; 1845 return; 1846 } else { 1847 pin->request_count--; 1848 } 1849 } 1850 } 1851 } 1852 1853 /** 1854 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1855 * @rdev: regulator_dev structure 1856 * @enable: enable GPIO at initial use? 1857 * 1858 * GPIO is enabled in case of initial use. (enable_count is 0) 1859 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1860 */ 1861 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1862 { 1863 struct regulator_enable_gpio *pin = rdev->ena_pin; 1864 1865 if (!pin) 1866 return -EINVAL; 1867 1868 if (enable) { 1869 /* Enable GPIO at initial use */ 1870 if (pin->enable_count == 0) 1871 gpiod_set_value_cansleep(pin->gpiod, 1872 !pin->ena_gpio_invert); 1873 1874 pin->enable_count++; 1875 } else { 1876 if (pin->enable_count > 1) { 1877 pin->enable_count--; 1878 return 0; 1879 } 1880 1881 /* Disable GPIO if not used */ 1882 if (pin->enable_count <= 1) { 1883 gpiod_set_value_cansleep(pin->gpiod, 1884 pin->ena_gpio_invert); 1885 pin->enable_count = 0; 1886 } 1887 } 1888 1889 return 0; 1890 } 1891 1892 /** 1893 * _regulator_enable_delay - a delay helper function 1894 * @delay: time to delay in microseconds 1895 * 1896 * Delay for the requested amount of time as per the guidelines in: 1897 * 1898 * Documentation/timers/timers-howto.txt 1899 * 1900 * The assumption here is that regulators will never be enabled in 1901 * atomic context and therefore sleeping functions can be used. 1902 */ 1903 static void _regulator_enable_delay(unsigned int delay) 1904 { 1905 unsigned int ms = delay / 1000; 1906 unsigned int us = delay % 1000; 1907 1908 if (ms > 0) { 1909 /* 1910 * For small enough values, handle super-millisecond 1911 * delays in the usleep_range() call below. 1912 */ 1913 if (ms < 20) 1914 us += ms * 1000; 1915 else 1916 msleep(ms); 1917 } 1918 1919 /* 1920 * Give the scheduler some room to coalesce with any other 1921 * wakeup sources. For delays shorter than 10 us, don't even 1922 * bother setting up high-resolution timers and just busy- 1923 * loop. 1924 */ 1925 if (us >= 10) 1926 usleep_range(us, us + 100); 1927 else 1928 udelay(us); 1929 } 1930 1931 static int _regulator_do_enable(struct regulator_dev *rdev) 1932 { 1933 int ret, delay; 1934 1935 /* Query before enabling in case configuration dependent. */ 1936 ret = _regulator_get_enable_time(rdev); 1937 if (ret >= 0) { 1938 delay = ret; 1939 } else { 1940 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1941 delay = 0; 1942 } 1943 1944 trace_regulator_enable(rdev_get_name(rdev)); 1945 1946 if (rdev->desc->off_on_delay) { 1947 /* if needed, keep a distance of off_on_delay from last time 1948 * this regulator was disabled. 1949 */ 1950 unsigned long start_jiffy = jiffies; 1951 unsigned long intended, max_delay, remaining; 1952 1953 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1954 intended = rdev->last_off_jiffy + max_delay; 1955 1956 if (time_before(start_jiffy, intended)) { 1957 /* calc remaining jiffies to deal with one-time 1958 * timer wrapping. 1959 * in case of multiple timer wrapping, either it can be 1960 * detected by out-of-range remaining, or it cannot be 1961 * detected and we gets a panelty of 1962 * _regulator_enable_delay(). 1963 */ 1964 remaining = intended - start_jiffy; 1965 if (remaining <= max_delay) 1966 _regulator_enable_delay( 1967 jiffies_to_usecs(remaining)); 1968 } 1969 } 1970 1971 if (rdev->ena_pin) { 1972 if (!rdev->ena_gpio_state) { 1973 ret = regulator_ena_gpio_ctrl(rdev, true); 1974 if (ret < 0) 1975 return ret; 1976 rdev->ena_gpio_state = 1; 1977 } 1978 } else if (rdev->desc->ops->enable) { 1979 ret = rdev->desc->ops->enable(rdev); 1980 if (ret < 0) 1981 return ret; 1982 } else { 1983 return -EINVAL; 1984 } 1985 1986 /* Allow the regulator to ramp; it would be useful to extend 1987 * this for bulk operations so that the regulators can ramp 1988 * together. */ 1989 trace_regulator_enable_delay(rdev_get_name(rdev)); 1990 1991 _regulator_enable_delay(delay); 1992 1993 trace_regulator_enable_complete(rdev_get_name(rdev)); 1994 1995 return 0; 1996 } 1997 1998 /* locks held by regulator_enable() */ 1999 static int _regulator_enable(struct regulator_dev *rdev) 2000 { 2001 int ret; 2002 2003 lockdep_assert_held_once(&rdev->mutex); 2004 2005 /* check voltage and requested load before enabling */ 2006 if (rdev->constraints && 2007 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 2008 drms_uA_update(rdev); 2009 2010 if (rdev->use_count == 0) { 2011 /* The regulator may on if it's not switchable or left on */ 2012 ret = _regulator_is_enabled(rdev); 2013 if (ret == -EINVAL || ret == 0) { 2014 if (!_regulator_can_change_status(rdev)) 2015 return -EPERM; 2016 2017 ret = _regulator_do_enable(rdev); 2018 if (ret < 0) 2019 return ret; 2020 2021 } else if (ret < 0) { 2022 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2023 return ret; 2024 } 2025 /* Fallthrough on positive return values - already enabled */ 2026 } 2027 2028 rdev->use_count++; 2029 2030 return 0; 2031 } 2032 2033 /** 2034 * regulator_enable - enable regulator output 2035 * @regulator: regulator source 2036 * 2037 * Request that the regulator be enabled with the regulator output at 2038 * the predefined voltage or current value. Calls to regulator_enable() 2039 * must be balanced with calls to regulator_disable(). 2040 * 2041 * NOTE: the output value can be set by other drivers, boot loader or may be 2042 * hardwired in the regulator. 2043 */ 2044 int regulator_enable(struct regulator *regulator) 2045 { 2046 struct regulator_dev *rdev = regulator->rdev; 2047 int ret = 0; 2048 2049 if (regulator->always_on) 2050 return 0; 2051 2052 if (rdev->supply) { 2053 ret = regulator_enable(rdev->supply); 2054 if (ret != 0) 2055 return ret; 2056 } 2057 2058 mutex_lock(&rdev->mutex); 2059 ret = _regulator_enable(rdev); 2060 mutex_unlock(&rdev->mutex); 2061 2062 if (ret != 0 && rdev->supply) 2063 regulator_disable(rdev->supply); 2064 2065 return ret; 2066 } 2067 EXPORT_SYMBOL_GPL(regulator_enable); 2068 2069 static int _regulator_do_disable(struct regulator_dev *rdev) 2070 { 2071 int ret; 2072 2073 trace_regulator_disable(rdev_get_name(rdev)); 2074 2075 if (rdev->ena_pin) { 2076 if (rdev->ena_gpio_state) { 2077 ret = regulator_ena_gpio_ctrl(rdev, false); 2078 if (ret < 0) 2079 return ret; 2080 rdev->ena_gpio_state = 0; 2081 } 2082 2083 } else if (rdev->desc->ops->disable) { 2084 ret = rdev->desc->ops->disable(rdev); 2085 if (ret != 0) 2086 return ret; 2087 } 2088 2089 /* cares about last_off_jiffy only if off_on_delay is required by 2090 * device. 2091 */ 2092 if (rdev->desc->off_on_delay) 2093 rdev->last_off_jiffy = jiffies; 2094 2095 trace_regulator_disable_complete(rdev_get_name(rdev)); 2096 2097 return 0; 2098 } 2099 2100 /* locks held by regulator_disable() */ 2101 static int _regulator_disable(struct regulator_dev *rdev) 2102 { 2103 int ret = 0; 2104 2105 lockdep_assert_held_once(&rdev->mutex); 2106 2107 if (WARN(rdev->use_count <= 0, 2108 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2109 return -EIO; 2110 2111 /* are we the last user and permitted to disable ? */ 2112 if (rdev->use_count == 1 && 2113 (rdev->constraints && !rdev->constraints->always_on)) { 2114 2115 /* we are last user */ 2116 if (_regulator_can_change_status(rdev)) { 2117 ret = _notifier_call_chain(rdev, 2118 REGULATOR_EVENT_PRE_DISABLE, 2119 NULL); 2120 if (ret & NOTIFY_STOP_MASK) 2121 return -EINVAL; 2122 2123 ret = _regulator_do_disable(rdev); 2124 if (ret < 0) { 2125 rdev_err(rdev, "failed to disable\n"); 2126 _notifier_call_chain(rdev, 2127 REGULATOR_EVENT_ABORT_DISABLE, 2128 NULL); 2129 return ret; 2130 } 2131 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2132 NULL); 2133 } 2134 2135 rdev->use_count = 0; 2136 } else if (rdev->use_count > 1) { 2137 2138 if (rdev->constraints && 2139 (rdev->constraints->valid_ops_mask & 2140 REGULATOR_CHANGE_DRMS)) 2141 drms_uA_update(rdev); 2142 2143 rdev->use_count--; 2144 } 2145 2146 return ret; 2147 } 2148 2149 /** 2150 * regulator_disable - disable regulator output 2151 * @regulator: regulator source 2152 * 2153 * Disable the regulator output voltage or current. Calls to 2154 * regulator_enable() must be balanced with calls to 2155 * regulator_disable(). 2156 * 2157 * NOTE: this will only disable the regulator output if no other consumer 2158 * devices have it enabled, the regulator device supports disabling and 2159 * machine constraints permit this operation. 2160 */ 2161 int regulator_disable(struct regulator *regulator) 2162 { 2163 struct regulator_dev *rdev = regulator->rdev; 2164 int ret = 0; 2165 2166 if (regulator->always_on) 2167 return 0; 2168 2169 mutex_lock(&rdev->mutex); 2170 ret = _regulator_disable(rdev); 2171 mutex_unlock(&rdev->mutex); 2172 2173 if (ret == 0 && rdev->supply) 2174 regulator_disable(rdev->supply); 2175 2176 return ret; 2177 } 2178 EXPORT_SYMBOL_GPL(regulator_disable); 2179 2180 /* locks held by regulator_force_disable() */ 2181 static int _regulator_force_disable(struct regulator_dev *rdev) 2182 { 2183 int ret = 0; 2184 2185 lockdep_assert_held_once(&rdev->mutex); 2186 2187 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2188 REGULATOR_EVENT_PRE_DISABLE, NULL); 2189 if (ret & NOTIFY_STOP_MASK) 2190 return -EINVAL; 2191 2192 ret = _regulator_do_disable(rdev); 2193 if (ret < 0) { 2194 rdev_err(rdev, "failed to force disable\n"); 2195 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2196 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2197 return ret; 2198 } 2199 2200 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2201 REGULATOR_EVENT_DISABLE, NULL); 2202 2203 return 0; 2204 } 2205 2206 /** 2207 * regulator_force_disable - force disable regulator output 2208 * @regulator: regulator source 2209 * 2210 * Forcibly disable the regulator output voltage or current. 2211 * NOTE: this *will* disable the regulator output even if other consumer 2212 * devices have it enabled. This should be used for situations when device 2213 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2214 */ 2215 int regulator_force_disable(struct regulator *regulator) 2216 { 2217 struct regulator_dev *rdev = regulator->rdev; 2218 int ret; 2219 2220 mutex_lock(&rdev->mutex); 2221 regulator->uA_load = 0; 2222 ret = _regulator_force_disable(regulator->rdev); 2223 mutex_unlock(&rdev->mutex); 2224 2225 if (rdev->supply) 2226 while (rdev->open_count--) 2227 regulator_disable(rdev->supply); 2228 2229 return ret; 2230 } 2231 EXPORT_SYMBOL_GPL(regulator_force_disable); 2232 2233 static void regulator_disable_work(struct work_struct *work) 2234 { 2235 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2236 disable_work.work); 2237 int count, i, ret; 2238 2239 mutex_lock(&rdev->mutex); 2240 2241 BUG_ON(!rdev->deferred_disables); 2242 2243 count = rdev->deferred_disables; 2244 rdev->deferred_disables = 0; 2245 2246 for (i = 0; i < count; i++) { 2247 ret = _regulator_disable(rdev); 2248 if (ret != 0) 2249 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2250 } 2251 2252 mutex_unlock(&rdev->mutex); 2253 2254 if (rdev->supply) { 2255 for (i = 0; i < count; i++) { 2256 ret = regulator_disable(rdev->supply); 2257 if (ret != 0) { 2258 rdev_err(rdev, 2259 "Supply disable failed: %d\n", ret); 2260 } 2261 } 2262 } 2263 } 2264 2265 /** 2266 * regulator_disable_deferred - disable regulator output with delay 2267 * @regulator: regulator source 2268 * @ms: miliseconds until the regulator is disabled 2269 * 2270 * Execute regulator_disable() on the regulator after a delay. This 2271 * is intended for use with devices that require some time to quiesce. 2272 * 2273 * NOTE: this will only disable the regulator output if no other consumer 2274 * devices have it enabled, the regulator device supports disabling and 2275 * machine constraints permit this operation. 2276 */ 2277 int regulator_disable_deferred(struct regulator *regulator, int ms) 2278 { 2279 struct regulator_dev *rdev = regulator->rdev; 2280 int ret; 2281 2282 if (regulator->always_on) 2283 return 0; 2284 2285 if (!ms) 2286 return regulator_disable(regulator); 2287 2288 mutex_lock(&rdev->mutex); 2289 rdev->deferred_disables++; 2290 mutex_unlock(&rdev->mutex); 2291 2292 ret = queue_delayed_work(system_power_efficient_wq, 2293 &rdev->disable_work, 2294 msecs_to_jiffies(ms)); 2295 if (ret < 0) 2296 return ret; 2297 else 2298 return 0; 2299 } 2300 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2301 2302 static int _regulator_is_enabled(struct regulator_dev *rdev) 2303 { 2304 /* A GPIO control always takes precedence */ 2305 if (rdev->ena_pin) 2306 return rdev->ena_gpio_state; 2307 2308 /* If we don't know then assume that the regulator is always on */ 2309 if (!rdev->desc->ops->is_enabled) 2310 return 1; 2311 2312 return rdev->desc->ops->is_enabled(rdev); 2313 } 2314 2315 /** 2316 * regulator_is_enabled - is the regulator output enabled 2317 * @regulator: regulator source 2318 * 2319 * Returns positive if the regulator driver backing the source/client 2320 * has requested that the device be enabled, zero if it hasn't, else a 2321 * negative errno code. 2322 * 2323 * Note that the device backing this regulator handle can have multiple 2324 * users, so it might be enabled even if regulator_enable() was never 2325 * called for this particular source. 2326 */ 2327 int regulator_is_enabled(struct regulator *regulator) 2328 { 2329 int ret; 2330 2331 if (regulator->always_on) 2332 return 1; 2333 2334 mutex_lock(®ulator->rdev->mutex); 2335 ret = _regulator_is_enabled(regulator->rdev); 2336 mutex_unlock(®ulator->rdev->mutex); 2337 2338 return ret; 2339 } 2340 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2341 2342 /** 2343 * regulator_can_change_voltage - check if regulator can change voltage 2344 * @regulator: regulator source 2345 * 2346 * Returns positive if the regulator driver backing the source/client 2347 * can change its voltage, false otherwise. Useful for detecting fixed 2348 * or dummy regulators and disabling voltage change logic in the client 2349 * driver. 2350 */ 2351 int regulator_can_change_voltage(struct regulator *regulator) 2352 { 2353 struct regulator_dev *rdev = regulator->rdev; 2354 2355 if (rdev->constraints && 2356 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2357 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2358 return 1; 2359 2360 if (rdev->desc->continuous_voltage_range && 2361 rdev->constraints->min_uV && rdev->constraints->max_uV && 2362 rdev->constraints->min_uV != rdev->constraints->max_uV) 2363 return 1; 2364 } 2365 2366 return 0; 2367 } 2368 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2369 2370 /** 2371 * regulator_count_voltages - count regulator_list_voltage() selectors 2372 * @regulator: regulator source 2373 * 2374 * Returns number of selectors, or negative errno. Selectors are 2375 * numbered starting at zero, and typically correspond to bitfields 2376 * in hardware registers. 2377 */ 2378 int regulator_count_voltages(struct regulator *regulator) 2379 { 2380 struct regulator_dev *rdev = regulator->rdev; 2381 2382 if (rdev->desc->n_voltages) 2383 return rdev->desc->n_voltages; 2384 2385 if (!rdev->supply) 2386 return -EINVAL; 2387 2388 return regulator_count_voltages(rdev->supply); 2389 } 2390 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2391 2392 /** 2393 * regulator_list_voltage - enumerate supported voltages 2394 * @regulator: regulator source 2395 * @selector: identify voltage to list 2396 * Context: can sleep 2397 * 2398 * Returns a voltage that can be passed to @regulator_set_voltage(), 2399 * zero if this selector code can't be used on this system, or a 2400 * negative errno. 2401 */ 2402 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2403 { 2404 struct regulator_dev *rdev = regulator->rdev; 2405 const struct regulator_ops *ops = rdev->desc->ops; 2406 int ret; 2407 2408 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2409 return rdev->desc->fixed_uV; 2410 2411 if (ops->list_voltage) { 2412 if (selector >= rdev->desc->n_voltages) 2413 return -EINVAL; 2414 mutex_lock(&rdev->mutex); 2415 ret = ops->list_voltage(rdev, selector); 2416 mutex_unlock(&rdev->mutex); 2417 } else if (rdev->supply) { 2418 ret = regulator_list_voltage(rdev->supply, selector); 2419 } else { 2420 return -EINVAL; 2421 } 2422 2423 if (ret > 0) { 2424 if (ret < rdev->constraints->min_uV) 2425 ret = 0; 2426 else if (ret > rdev->constraints->max_uV) 2427 ret = 0; 2428 } 2429 2430 return ret; 2431 } 2432 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2433 2434 /** 2435 * regulator_get_regmap - get the regulator's register map 2436 * @regulator: regulator source 2437 * 2438 * Returns the register map for the given regulator, or an ERR_PTR value 2439 * if the regulator doesn't use regmap. 2440 */ 2441 struct regmap *regulator_get_regmap(struct regulator *regulator) 2442 { 2443 struct regmap *map = regulator->rdev->regmap; 2444 2445 return map ? map : ERR_PTR(-EOPNOTSUPP); 2446 } 2447 2448 /** 2449 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2450 * @regulator: regulator source 2451 * @vsel_reg: voltage selector register, output parameter 2452 * @vsel_mask: mask for voltage selector bitfield, output parameter 2453 * 2454 * Returns the hardware register offset and bitmask used for setting the 2455 * regulator voltage. This might be useful when configuring voltage-scaling 2456 * hardware or firmware that can make I2C requests behind the kernel's back, 2457 * for example. 2458 * 2459 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2460 * and 0 is returned, otherwise a negative errno is returned. 2461 */ 2462 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2463 unsigned *vsel_reg, 2464 unsigned *vsel_mask) 2465 { 2466 struct regulator_dev *rdev = regulator->rdev; 2467 const struct regulator_ops *ops = rdev->desc->ops; 2468 2469 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2470 return -EOPNOTSUPP; 2471 2472 *vsel_reg = rdev->desc->vsel_reg; 2473 *vsel_mask = rdev->desc->vsel_mask; 2474 2475 return 0; 2476 } 2477 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2478 2479 /** 2480 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2481 * @regulator: regulator source 2482 * @selector: identify voltage to list 2483 * 2484 * Converts the selector to a hardware-specific voltage selector that can be 2485 * directly written to the regulator registers. The address of the voltage 2486 * register can be determined by calling @regulator_get_hardware_vsel_register. 2487 * 2488 * On error a negative errno is returned. 2489 */ 2490 int regulator_list_hardware_vsel(struct regulator *regulator, 2491 unsigned selector) 2492 { 2493 struct regulator_dev *rdev = regulator->rdev; 2494 const struct regulator_ops *ops = rdev->desc->ops; 2495 2496 if (selector >= rdev->desc->n_voltages) 2497 return -EINVAL; 2498 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2499 return -EOPNOTSUPP; 2500 2501 return selector; 2502 } 2503 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2504 2505 /** 2506 * regulator_get_linear_step - return the voltage step size between VSEL values 2507 * @regulator: regulator source 2508 * 2509 * Returns the voltage step size between VSEL values for linear 2510 * regulators, or return 0 if the regulator isn't a linear regulator. 2511 */ 2512 unsigned int regulator_get_linear_step(struct regulator *regulator) 2513 { 2514 struct regulator_dev *rdev = regulator->rdev; 2515 2516 return rdev->desc->uV_step; 2517 } 2518 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2519 2520 /** 2521 * regulator_is_supported_voltage - check if a voltage range can be supported 2522 * 2523 * @regulator: Regulator to check. 2524 * @min_uV: Minimum required voltage in uV. 2525 * @max_uV: Maximum required voltage in uV. 2526 * 2527 * Returns a boolean or a negative error code. 2528 */ 2529 int regulator_is_supported_voltage(struct regulator *regulator, 2530 int min_uV, int max_uV) 2531 { 2532 struct regulator_dev *rdev = regulator->rdev; 2533 int i, voltages, ret; 2534 2535 /* If we can't change voltage check the current voltage */ 2536 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2537 ret = regulator_get_voltage(regulator); 2538 if (ret >= 0) 2539 return min_uV <= ret && ret <= max_uV; 2540 else 2541 return ret; 2542 } 2543 2544 /* Any voltage within constrains range is fine? */ 2545 if (rdev->desc->continuous_voltage_range) 2546 return min_uV >= rdev->constraints->min_uV && 2547 max_uV <= rdev->constraints->max_uV; 2548 2549 ret = regulator_count_voltages(regulator); 2550 if (ret < 0) 2551 return ret; 2552 voltages = ret; 2553 2554 for (i = 0; i < voltages; i++) { 2555 ret = regulator_list_voltage(regulator, i); 2556 2557 if (ret >= min_uV && ret <= max_uV) 2558 return 1; 2559 } 2560 2561 return 0; 2562 } 2563 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2564 2565 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2566 int min_uV, int max_uV, 2567 unsigned *selector) 2568 { 2569 struct pre_voltage_change_data data; 2570 int ret; 2571 2572 data.old_uV = _regulator_get_voltage(rdev); 2573 data.min_uV = min_uV; 2574 data.max_uV = max_uV; 2575 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2576 &data); 2577 if (ret & NOTIFY_STOP_MASK) 2578 return -EINVAL; 2579 2580 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2581 if (ret >= 0) 2582 return ret; 2583 2584 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2585 (void *)data.old_uV); 2586 2587 return ret; 2588 } 2589 2590 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2591 int uV, unsigned selector) 2592 { 2593 struct pre_voltage_change_data data; 2594 int ret; 2595 2596 data.old_uV = _regulator_get_voltage(rdev); 2597 data.min_uV = uV; 2598 data.max_uV = uV; 2599 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2600 &data); 2601 if (ret & NOTIFY_STOP_MASK) 2602 return -EINVAL; 2603 2604 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2605 if (ret >= 0) 2606 return ret; 2607 2608 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2609 (void *)data.old_uV); 2610 2611 return ret; 2612 } 2613 2614 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2615 int min_uV, int max_uV) 2616 { 2617 int ret; 2618 int delay = 0; 2619 int best_val = 0; 2620 unsigned int selector; 2621 int old_selector = -1; 2622 2623 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2624 2625 min_uV += rdev->constraints->uV_offset; 2626 max_uV += rdev->constraints->uV_offset; 2627 2628 /* 2629 * If we can't obtain the old selector there is not enough 2630 * info to call set_voltage_time_sel(). 2631 */ 2632 if (_regulator_is_enabled(rdev) && 2633 rdev->desc->ops->set_voltage_time_sel && 2634 rdev->desc->ops->get_voltage_sel) { 2635 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2636 if (old_selector < 0) 2637 return old_selector; 2638 } 2639 2640 if (rdev->desc->ops->set_voltage) { 2641 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2642 &selector); 2643 2644 if (ret >= 0) { 2645 if (rdev->desc->ops->list_voltage) 2646 best_val = rdev->desc->ops->list_voltage(rdev, 2647 selector); 2648 else 2649 best_val = _regulator_get_voltage(rdev); 2650 } 2651 2652 } else if (rdev->desc->ops->set_voltage_sel) { 2653 if (rdev->desc->ops->map_voltage) { 2654 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2655 max_uV); 2656 } else { 2657 if (rdev->desc->ops->list_voltage == 2658 regulator_list_voltage_linear) 2659 ret = regulator_map_voltage_linear(rdev, 2660 min_uV, max_uV); 2661 else if (rdev->desc->ops->list_voltage == 2662 regulator_list_voltage_linear_range) 2663 ret = regulator_map_voltage_linear_range(rdev, 2664 min_uV, max_uV); 2665 else 2666 ret = regulator_map_voltage_iterate(rdev, 2667 min_uV, max_uV); 2668 } 2669 2670 if (ret >= 0) { 2671 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2672 if (min_uV <= best_val && max_uV >= best_val) { 2673 selector = ret; 2674 if (old_selector == selector) 2675 ret = 0; 2676 else 2677 ret = _regulator_call_set_voltage_sel( 2678 rdev, best_val, selector); 2679 } else { 2680 ret = -EINVAL; 2681 } 2682 } 2683 } else { 2684 ret = -EINVAL; 2685 } 2686 2687 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2688 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2689 && old_selector != selector) { 2690 2691 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2692 old_selector, selector); 2693 if (delay < 0) { 2694 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2695 delay); 2696 delay = 0; 2697 } 2698 2699 /* Insert any necessary delays */ 2700 if (delay >= 1000) { 2701 mdelay(delay / 1000); 2702 udelay(delay % 1000); 2703 } else if (delay) { 2704 udelay(delay); 2705 } 2706 } 2707 2708 if (ret == 0 && best_val >= 0) { 2709 unsigned long data = best_val; 2710 2711 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2712 (void *)data); 2713 } 2714 2715 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2716 2717 return ret; 2718 } 2719 2720 /** 2721 * regulator_set_voltage - set regulator output voltage 2722 * @regulator: regulator source 2723 * @min_uV: Minimum required voltage in uV 2724 * @max_uV: Maximum acceptable voltage in uV 2725 * 2726 * Sets a voltage regulator to the desired output voltage. This can be set 2727 * during any regulator state. IOW, regulator can be disabled or enabled. 2728 * 2729 * If the regulator is enabled then the voltage will change to the new value 2730 * immediately otherwise if the regulator is disabled the regulator will 2731 * output at the new voltage when enabled. 2732 * 2733 * NOTE: If the regulator is shared between several devices then the lowest 2734 * request voltage that meets the system constraints will be used. 2735 * Regulator system constraints must be set for this regulator before 2736 * calling this function otherwise this call will fail. 2737 */ 2738 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2739 { 2740 struct regulator_dev *rdev = regulator->rdev; 2741 int ret = 0; 2742 int old_min_uV, old_max_uV; 2743 int current_uV; 2744 2745 mutex_lock(&rdev->mutex); 2746 2747 /* If we're setting the same range as last time the change 2748 * should be a noop (some cpufreq implementations use the same 2749 * voltage for multiple frequencies, for example). 2750 */ 2751 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2752 goto out; 2753 2754 /* If we're trying to set a range that overlaps the current voltage, 2755 * return successfully even though the regulator does not support 2756 * changing the voltage. 2757 */ 2758 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2759 current_uV = _regulator_get_voltage(rdev); 2760 if (min_uV <= current_uV && current_uV <= max_uV) { 2761 regulator->min_uV = min_uV; 2762 regulator->max_uV = max_uV; 2763 goto out; 2764 } 2765 } 2766 2767 /* sanity check */ 2768 if (!rdev->desc->ops->set_voltage && 2769 !rdev->desc->ops->set_voltage_sel) { 2770 ret = -EINVAL; 2771 goto out; 2772 } 2773 2774 /* constraints check */ 2775 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2776 if (ret < 0) 2777 goto out; 2778 2779 /* restore original values in case of error */ 2780 old_min_uV = regulator->min_uV; 2781 old_max_uV = regulator->max_uV; 2782 regulator->min_uV = min_uV; 2783 regulator->max_uV = max_uV; 2784 2785 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2786 if (ret < 0) 2787 goto out2; 2788 2789 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2790 if (ret < 0) 2791 goto out2; 2792 2793 out: 2794 mutex_unlock(&rdev->mutex); 2795 return ret; 2796 out2: 2797 regulator->min_uV = old_min_uV; 2798 regulator->max_uV = old_max_uV; 2799 mutex_unlock(&rdev->mutex); 2800 return ret; 2801 } 2802 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2803 2804 /** 2805 * regulator_set_voltage_time - get raise/fall time 2806 * @regulator: regulator source 2807 * @old_uV: starting voltage in microvolts 2808 * @new_uV: target voltage in microvolts 2809 * 2810 * Provided with the starting and ending voltage, this function attempts to 2811 * calculate the time in microseconds required to rise or fall to this new 2812 * voltage. 2813 */ 2814 int regulator_set_voltage_time(struct regulator *regulator, 2815 int old_uV, int new_uV) 2816 { 2817 struct regulator_dev *rdev = regulator->rdev; 2818 const struct regulator_ops *ops = rdev->desc->ops; 2819 int old_sel = -1; 2820 int new_sel = -1; 2821 int voltage; 2822 int i; 2823 2824 /* Currently requires operations to do this */ 2825 if (!ops->list_voltage || !ops->set_voltage_time_sel 2826 || !rdev->desc->n_voltages) 2827 return -EINVAL; 2828 2829 for (i = 0; i < rdev->desc->n_voltages; i++) { 2830 /* We only look for exact voltage matches here */ 2831 voltage = regulator_list_voltage(regulator, i); 2832 if (voltage < 0) 2833 return -EINVAL; 2834 if (voltage == 0) 2835 continue; 2836 if (voltage == old_uV) 2837 old_sel = i; 2838 if (voltage == new_uV) 2839 new_sel = i; 2840 } 2841 2842 if (old_sel < 0 || new_sel < 0) 2843 return -EINVAL; 2844 2845 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2846 } 2847 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2848 2849 /** 2850 * regulator_set_voltage_time_sel - get raise/fall time 2851 * @rdev: regulator source device 2852 * @old_selector: selector for starting voltage 2853 * @new_selector: selector for target voltage 2854 * 2855 * Provided with the starting and target voltage selectors, this function 2856 * returns time in microseconds required to rise or fall to this new voltage 2857 * 2858 * Drivers providing ramp_delay in regulation_constraints can use this as their 2859 * set_voltage_time_sel() operation. 2860 */ 2861 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2862 unsigned int old_selector, 2863 unsigned int new_selector) 2864 { 2865 unsigned int ramp_delay = 0; 2866 int old_volt, new_volt; 2867 2868 if (rdev->constraints->ramp_delay) 2869 ramp_delay = rdev->constraints->ramp_delay; 2870 else if (rdev->desc->ramp_delay) 2871 ramp_delay = rdev->desc->ramp_delay; 2872 2873 if (ramp_delay == 0) { 2874 rdev_warn(rdev, "ramp_delay not set\n"); 2875 return 0; 2876 } 2877 2878 /* sanity check */ 2879 if (!rdev->desc->ops->list_voltage) 2880 return -EINVAL; 2881 2882 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2883 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2884 2885 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2886 } 2887 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2888 2889 /** 2890 * regulator_sync_voltage - re-apply last regulator output voltage 2891 * @regulator: regulator source 2892 * 2893 * Re-apply the last configured voltage. This is intended to be used 2894 * where some external control source the consumer is cooperating with 2895 * has caused the configured voltage to change. 2896 */ 2897 int regulator_sync_voltage(struct regulator *regulator) 2898 { 2899 struct regulator_dev *rdev = regulator->rdev; 2900 int ret, min_uV, max_uV; 2901 2902 mutex_lock(&rdev->mutex); 2903 2904 if (!rdev->desc->ops->set_voltage && 2905 !rdev->desc->ops->set_voltage_sel) { 2906 ret = -EINVAL; 2907 goto out; 2908 } 2909 2910 /* This is only going to work if we've had a voltage configured. */ 2911 if (!regulator->min_uV && !regulator->max_uV) { 2912 ret = -EINVAL; 2913 goto out; 2914 } 2915 2916 min_uV = regulator->min_uV; 2917 max_uV = regulator->max_uV; 2918 2919 /* This should be a paranoia check... */ 2920 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2921 if (ret < 0) 2922 goto out; 2923 2924 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2925 if (ret < 0) 2926 goto out; 2927 2928 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2929 2930 out: 2931 mutex_unlock(&rdev->mutex); 2932 return ret; 2933 } 2934 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2935 2936 static int _regulator_get_voltage(struct regulator_dev *rdev) 2937 { 2938 int sel, ret; 2939 2940 if (rdev->desc->ops->get_voltage_sel) { 2941 sel = rdev->desc->ops->get_voltage_sel(rdev); 2942 if (sel < 0) 2943 return sel; 2944 ret = rdev->desc->ops->list_voltage(rdev, sel); 2945 } else if (rdev->desc->ops->get_voltage) { 2946 ret = rdev->desc->ops->get_voltage(rdev); 2947 } else if (rdev->desc->ops->list_voltage) { 2948 ret = rdev->desc->ops->list_voltage(rdev, 0); 2949 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2950 ret = rdev->desc->fixed_uV; 2951 } else if (rdev->supply) { 2952 ret = regulator_get_voltage(rdev->supply); 2953 } else { 2954 return -EINVAL; 2955 } 2956 2957 if (ret < 0) 2958 return ret; 2959 return ret - rdev->constraints->uV_offset; 2960 } 2961 2962 /** 2963 * regulator_get_voltage - get regulator output voltage 2964 * @regulator: regulator source 2965 * 2966 * This returns the current regulator voltage in uV. 2967 * 2968 * NOTE: If the regulator is disabled it will return the voltage value. This 2969 * function should not be used to determine regulator state. 2970 */ 2971 int regulator_get_voltage(struct regulator *regulator) 2972 { 2973 int ret; 2974 2975 mutex_lock(®ulator->rdev->mutex); 2976 2977 ret = _regulator_get_voltage(regulator->rdev); 2978 2979 mutex_unlock(®ulator->rdev->mutex); 2980 2981 return ret; 2982 } 2983 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2984 2985 /** 2986 * regulator_set_current_limit - set regulator output current limit 2987 * @regulator: regulator source 2988 * @min_uA: Minimum supported current in uA 2989 * @max_uA: Maximum supported current in uA 2990 * 2991 * Sets current sink to the desired output current. This can be set during 2992 * any regulator state. IOW, regulator can be disabled or enabled. 2993 * 2994 * If the regulator is enabled then the current will change to the new value 2995 * immediately otherwise if the regulator is disabled the regulator will 2996 * output at the new current when enabled. 2997 * 2998 * NOTE: Regulator system constraints must be set for this regulator before 2999 * calling this function otherwise this call will fail. 3000 */ 3001 int regulator_set_current_limit(struct regulator *regulator, 3002 int min_uA, int max_uA) 3003 { 3004 struct regulator_dev *rdev = regulator->rdev; 3005 int ret; 3006 3007 mutex_lock(&rdev->mutex); 3008 3009 /* sanity check */ 3010 if (!rdev->desc->ops->set_current_limit) { 3011 ret = -EINVAL; 3012 goto out; 3013 } 3014 3015 /* constraints check */ 3016 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3017 if (ret < 0) 3018 goto out; 3019 3020 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3021 out: 3022 mutex_unlock(&rdev->mutex); 3023 return ret; 3024 } 3025 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3026 3027 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3028 { 3029 int ret; 3030 3031 mutex_lock(&rdev->mutex); 3032 3033 /* sanity check */ 3034 if (!rdev->desc->ops->get_current_limit) { 3035 ret = -EINVAL; 3036 goto out; 3037 } 3038 3039 ret = rdev->desc->ops->get_current_limit(rdev); 3040 out: 3041 mutex_unlock(&rdev->mutex); 3042 return ret; 3043 } 3044 3045 /** 3046 * regulator_get_current_limit - get regulator output current 3047 * @regulator: regulator source 3048 * 3049 * This returns the current supplied by the specified current sink in uA. 3050 * 3051 * NOTE: If the regulator is disabled it will return the current value. This 3052 * function should not be used to determine regulator state. 3053 */ 3054 int regulator_get_current_limit(struct regulator *regulator) 3055 { 3056 return _regulator_get_current_limit(regulator->rdev); 3057 } 3058 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3059 3060 /** 3061 * regulator_set_mode - set regulator operating mode 3062 * @regulator: regulator source 3063 * @mode: operating mode - one of the REGULATOR_MODE constants 3064 * 3065 * Set regulator operating mode to increase regulator efficiency or improve 3066 * regulation performance. 3067 * 3068 * NOTE: Regulator system constraints must be set for this regulator before 3069 * calling this function otherwise this call will fail. 3070 */ 3071 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3072 { 3073 struct regulator_dev *rdev = regulator->rdev; 3074 int ret; 3075 int regulator_curr_mode; 3076 3077 mutex_lock(&rdev->mutex); 3078 3079 /* sanity check */ 3080 if (!rdev->desc->ops->set_mode) { 3081 ret = -EINVAL; 3082 goto out; 3083 } 3084 3085 /* return if the same mode is requested */ 3086 if (rdev->desc->ops->get_mode) { 3087 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3088 if (regulator_curr_mode == mode) { 3089 ret = 0; 3090 goto out; 3091 } 3092 } 3093 3094 /* constraints check */ 3095 ret = regulator_mode_constrain(rdev, &mode); 3096 if (ret < 0) 3097 goto out; 3098 3099 ret = rdev->desc->ops->set_mode(rdev, mode); 3100 out: 3101 mutex_unlock(&rdev->mutex); 3102 return ret; 3103 } 3104 EXPORT_SYMBOL_GPL(regulator_set_mode); 3105 3106 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3107 { 3108 int ret; 3109 3110 mutex_lock(&rdev->mutex); 3111 3112 /* sanity check */ 3113 if (!rdev->desc->ops->get_mode) { 3114 ret = -EINVAL; 3115 goto out; 3116 } 3117 3118 ret = rdev->desc->ops->get_mode(rdev); 3119 out: 3120 mutex_unlock(&rdev->mutex); 3121 return ret; 3122 } 3123 3124 /** 3125 * regulator_get_mode - get regulator operating mode 3126 * @regulator: regulator source 3127 * 3128 * Get the current regulator operating mode. 3129 */ 3130 unsigned int regulator_get_mode(struct regulator *regulator) 3131 { 3132 return _regulator_get_mode(regulator->rdev); 3133 } 3134 EXPORT_SYMBOL_GPL(regulator_get_mode); 3135 3136 /** 3137 * regulator_set_load - set regulator load 3138 * @regulator: regulator source 3139 * @uA_load: load current 3140 * 3141 * Notifies the regulator core of a new device load. This is then used by 3142 * DRMS (if enabled by constraints) to set the most efficient regulator 3143 * operating mode for the new regulator loading. 3144 * 3145 * Consumer devices notify their supply regulator of the maximum power 3146 * they will require (can be taken from device datasheet in the power 3147 * consumption tables) when they change operational status and hence power 3148 * state. Examples of operational state changes that can affect power 3149 * consumption are :- 3150 * 3151 * o Device is opened / closed. 3152 * o Device I/O is about to begin or has just finished. 3153 * o Device is idling in between work. 3154 * 3155 * This information is also exported via sysfs to userspace. 3156 * 3157 * DRMS will sum the total requested load on the regulator and change 3158 * to the most efficient operating mode if platform constraints allow. 3159 * 3160 * On error a negative errno is returned. 3161 */ 3162 int regulator_set_load(struct regulator *regulator, int uA_load) 3163 { 3164 struct regulator_dev *rdev = regulator->rdev; 3165 int ret; 3166 3167 mutex_lock(&rdev->mutex); 3168 regulator->uA_load = uA_load; 3169 ret = drms_uA_update(rdev); 3170 mutex_unlock(&rdev->mutex); 3171 3172 return ret; 3173 } 3174 EXPORT_SYMBOL_GPL(regulator_set_load); 3175 3176 /** 3177 * regulator_allow_bypass - allow the regulator to go into bypass mode 3178 * 3179 * @regulator: Regulator to configure 3180 * @enable: enable or disable bypass mode 3181 * 3182 * Allow the regulator to go into bypass mode if all other consumers 3183 * for the regulator also enable bypass mode and the machine 3184 * constraints allow this. Bypass mode means that the regulator is 3185 * simply passing the input directly to the output with no regulation. 3186 */ 3187 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3188 { 3189 struct regulator_dev *rdev = regulator->rdev; 3190 int ret = 0; 3191 3192 if (!rdev->desc->ops->set_bypass) 3193 return 0; 3194 3195 if (rdev->constraints && 3196 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3197 return 0; 3198 3199 mutex_lock(&rdev->mutex); 3200 3201 if (enable && !regulator->bypass) { 3202 rdev->bypass_count++; 3203 3204 if (rdev->bypass_count == rdev->open_count) { 3205 ret = rdev->desc->ops->set_bypass(rdev, enable); 3206 if (ret != 0) 3207 rdev->bypass_count--; 3208 } 3209 3210 } else if (!enable && regulator->bypass) { 3211 rdev->bypass_count--; 3212 3213 if (rdev->bypass_count != rdev->open_count) { 3214 ret = rdev->desc->ops->set_bypass(rdev, enable); 3215 if (ret != 0) 3216 rdev->bypass_count++; 3217 } 3218 } 3219 3220 if (ret == 0) 3221 regulator->bypass = enable; 3222 3223 mutex_unlock(&rdev->mutex); 3224 3225 return ret; 3226 } 3227 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3228 3229 /** 3230 * regulator_register_notifier - register regulator event notifier 3231 * @regulator: regulator source 3232 * @nb: notifier block 3233 * 3234 * Register notifier block to receive regulator events. 3235 */ 3236 int regulator_register_notifier(struct regulator *regulator, 3237 struct notifier_block *nb) 3238 { 3239 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3240 nb); 3241 } 3242 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3243 3244 /** 3245 * regulator_unregister_notifier - unregister regulator event notifier 3246 * @regulator: regulator source 3247 * @nb: notifier block 3248 * 3249 * Unregister regulator event notifier block. 3250 */ 3251 int regulator_unregister_notifier(struct regulator *regulator, 3252 struct notifier_block *nb) 3253 { 3254 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3255 nb); 3256 } 3257 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3258 3259 /* notify regulator consumers and downstream regulator consumers. 3260 * Note mutex must be held by caller. 3261 */ 3262 static int _notifier_call_chain(struct regulator_dev *rdev, 3263 unsigned long event, void *data) 3264 { 3265 /* call rdev chain first */ 3266 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3267 } 3268 3269 /** 3270 * regulator_bulk_get - get multiple regulator consumers 3271 * 3272 * @dev: Device to supply 3273 * @num_consumers: Number of consumers to register 3274 * @consumers: Configuration of consumers; clients are stored here. 3275 * 3276 * @return 0 on success, an errno on failure. 3277 * 3278 * This helper function allows drivers to get several regulator 3279 * consumers in one operation. If any of the regulators cannot be 3280 * acquired then any regulators that were allocated will be freed 3281 * before returning to the caller. 3282 */ 3283 int regulator_bulk_get(struct device *dev, int num_consumers, 3284 struct regulator_bulk_data *consumers) 3285 { 3286 int i; 3287 int ret; 3288 3289 for (i = 0; i < num_consumers; i++) 3290 consumers[i].consumer = NULL; 3291 3292 for (i = 0; i < num_consumers; i++) { 3293 consumers[i].consumer = regulator_get(dev, 3294 consumers[i].supply); 3295 if (IS_ERR(consumers[i].consumer)) { 3296 ret = PTR_ERR(consumers[i].consumer); 3297 dev_err(dev, "Failed to get supply '%s': %d\n", 3298 consumers[i].supply, ret); 3299 consumers[i].consumer = NULL; 3300 goto err; 3301 } 3302 } 3303 3304 return 0; 3305 3306 err: 3307 while (--i >= 0) 3308 regulator_put(consumers[i].consumer); 3309 3310 return ret; 3311 } 3312 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3313 3314 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3315 { 3316 struct regulator_bulk_data *bulk = data; 3317 3318 bulk->ret = regulator_enable(bulk->consumer); 3319 } 3320 3321 /** 3322 * regulator_bulk_enable - enable multiple regulator consumers 3323 * 3324 * @num_consumers: Number of consumers 3325 * @consumers: Consumer data; clients are stored here. 3326 * @return 0 on success, an errno on failure 3327 * 3328 * This convenience API allows consumers to enable multiple regulator 3329 * clients in a single API call. If any consumers cannot be enabled 3330 * then any others that were enabled will be disabled again prior to 3331 * return. 3332 */ 3333 int regulator_bulk_enable(int num_consumers, 3334 struct regulator_bulk_data *consumers) 3335 { 3336 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3337 int i; 3338 int ret = 0; 3339 3340 for (i = 0; i < num_consumers; i++) { 3341 if (consumers[i].consumer->always_on) 3342 consumers[i].ret = 0; 3343 else 3344 async_schedule_domain(regulator_bulk_enable_async, 3345 &consumers[i], &async_domain); 3346 } 3347 3348 async_synchronize_full_domain(&async_domain); 3349 3350 /* If any consumer failed we need to unwind any that succeeded */ 3351 for (i = 0; i < num_consumers; i++) { 3352 if (consumers[i].ret != 0) { 3353 ret = consumers[i].ret; 3354 goto err; 3355 } 3356 } 3357 3358 return 0; 3359 3360 err: 3361 for (i = 0; i < num_consumers; i++) { 3362 if (consumers[i].ret < 0) 3363 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3364 consumers[i].ret); 3365 else 3366 regulator_disable(consumers[i].consumer); 3367 } 3368 3369 return ret; 3370 } 3371 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3372 3373 /** 3374 * regulator_bulk_disable - disable multiple regulator consumers 3375 * 3376 * @num_consumers: Number of consumers 3377 * @consumers: Consumer data; clients are stored here. 3378 * @return 0 on success, an errno on failure 3379 * 3380 * This convenience API allows consumers to disable multiple regulator 3381 * clients in a single API call. If any consumers cannot be disabled 3382 * then any others that were disabled will be enabled again prior to 3383 * return. 3384 */ 3385 int regulator_bulk_disable(int num_consumers, 3386 struct regulator_bulk_data *consumers) 3387 { 3388 int i; 3389 int ret, r; 3390 3391 for (i = num_consumers - 1; i >= 0; --i) { 3392 ret = regulator_disable(consumers[i].consumer); 3393 if (ret != 0) 3394 goto err; 3395 } 3396 3397 return 0; 3398 3399 err: 3400 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3401 for (++i; i < num_consumers; ++i) { 3402 r = regulator_enable(consumers[i].consumer); 3403 if (r != 0) 3404 pr_err("Failed to reename %s: %d\n", 3405 consumers[i].supply, r); 3406 } 3407 3408 return ret; 3409 } 3410 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3411 3412 /** 3413 * regulator_bulk_force_disable - force disable multiple regulator consumers 3414 * 3415 * @num_consumers: Number of consumers 3416 * @consumers: Consumer data; clients are stored here. 3417 * @return 0 on success, an errno on failure 3418 * 3419 * This convenience API allows consumers to forcibly disable multiple regulator 3420 * clients in a single API call. 3421 * NOTE: This should be used for situations when device damage will 3422 * likely occur if the regulators are not disabled (e.g. over temp). 3423 * Although regulator_force_disable function call for some consumers can 3424 * return error numbers, the function is called for all consumers. 3425 */ 3426 int regulator_bulk_force_disable(int num_consumers, 3427 struct regulator_bulk_data *consumers) 3428 { 3429 int i; 3430 int ret; 3431 3432 for (i = 0; i < num_consumers; i++) 3433 consumers[i].ret = 3434 regulator_force_disable(consumers[i].consumer); 3435 3436 for (i = 0; i < num_consumers; i++) { 3437 if (consumers[i].ret != 0) { 3438 ret = consumers[i].ret; 3439 goto out; 3440 } 3441 } 3442 3443 return 0; 3444 out: 3445 return ret; 3446 } 3447 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3448 3449 /** 3450 * regulator_bulk_free - free multiple regulator consumers 3451 * 3452 * @num_consumers: Number of consumers 3453 * @consumers: Consumer data; clients are stored here. 3454 * 3455 * This convenience API allows consumers to free multiple regulator 3456 * clients in a single API call. 3457 */ 3458 void regulator_bulk_free(int num_consumers, 3459 struct regulator_bulk_data *consumers) 3460 { 3461 int i; 3462 3463 for (i = 0; i < num_consumers; i++) { 3464 regulator_put(consumers[i].consumer); 3465 consumers[i].consumer = NULL; 3466 } 3467 } 3468 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3469 3470 /** 3471 * regulator_notifier_call_chain - call regulator event notifier 3472 * @rdev: regulator source 3473 * @event: notifier block 3474 * @data: callback-specific data. 3475 * 3476 * Called by regulator drivers to notify clients a regulator event has 3477 * occurred. We also notify regulator clients downstream. 3478 * Note lock must be held by caller. 3479 */ 3480 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3481 unsigned long event, void *data) 3482 { 3483 lockdep_assert_held_once(&rdev->mutex); 3484 3485 _notifier_call_chain(rdev, event, data); 3486 return NOTIFY_DONE; 3487 3488 } 3489 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3490 3491 /** 3492 * regulator_mode_to_status - convert a regulator mode into a status 3493 * 3494 * @mode: Mode to convert 3495 * 3496 * Convert a regulator mode into a status. 3497 */ 3498 int regulator_mode_to_status(unsigned int mode) 3499 { 3500 switch (mode) { 3501 case REGULATOR_MODE_FAST: 3502 return REGULATOR_STATUS_FAST; 3503 case REGULATOR_MODE_NORMAL: 3504 return REGULATOR_STATUS_NORMAL; 3505 case REGULATOR_MODE_IDLE: 3506 return REGULATOR_STATUS_IDLE; 3507 case REGULATOR_MODE_STANDBY: 3508 return REGULATOR_STATUS_STANDBY; 3509 default: 3510 return REGULATOR_STATUS_UNDEFINED; 3511 } 3512 } 3513 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3514 3515 static struct attribute *regulator_dev_attrs[] = { 3516 &dev_attr_name.attr, 3517 &dev_attr_num_users.attr, 3518 &dev_attr_type.attr, 3519 &dev_attr_microvolts.attr, 3520 &dev_attr_microamps.attr, 3521 &dev_attr_opmode.attr, 3522 &dev_attr_state.attr, 3523 &dev_attr_status.attr, 3524 &dev_attr_bypass.attr, 3525 &dev_attr_requested_microamps.attr, 3526 &dev_attr_min_microvolts.attr, 3527 &dev_attr_max_microvolts.attr, 3528 &dev_attr_min_microamps.attr, 3529 &dev_attr_max_microamps.attr, 3530 &dev_attr_suspend_standby_state.attr, 3531 &dev_attr_suspend_mem_state.attr, 3532 &dev_attr_suspend_disk_state.attr, 3533 &dev_attr_suspend_standby_microvolts.attr, 3534 &dev_attr_suspend_mem_microvolts.attr, 3535 &dev_attr_suspend_disk_microvolts.attr, 3536 &dev_attr_suspend_standby_mode.attr, 3537 &dev_attr_suspend_mem_mode.attr, 3538 &dev_attr_suspend_disk_mode.attr, 3539 NULL 3540 }; 3541 3542 /* 3543 * To avoid cluttering sysfs (and memory) with useless state, only 3544 * create attributes that can be meaningfully displayed. 3545 */ 3546 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3547 struct attribute *attr, int idx) 3548 { 3549 struct device *dev = kobj_to_dev(kobj); 3550 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3551 const struct regulator_ops *ops = rdev->desc->ops; 3552 umode_t mode = attr->mode; 3553 3554 /* these three are always present */ 3555 if (attr == &dev_attr_name.attr || 3556 attr == &dev_attr_num_users.attr || 3557 attr == &dev_attr_type.attr) 3558 return mode; 3559 3560 /* some attributes need specific methods to be displayed */ 3561 if (attr == &dev_attr_microvolts.attr) { 3562 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3563 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3564 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3565 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3566 return mode; 3567 return 0; 3568 } 3569 3570 if (attr == &dev_attr_microamps.attr) 3571 return ops->get_current_limit ? mode : 0; 3572 3573 if (attr == &dev_attr_opmode.attr) 3574 return ops->get_mode ? mode : 0; 3575 3576 if (attr == &dev_attr_state.attr) 3577 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3578 3579 if (attr == &dev_attr_status.attr) 3580 return ops->get_status ? mode : 0; 3581 3582 if (attr == &dev_attr_bypass.attr) 3583 return ops->get_bypass ? mode : 0; 3584 3585 /* some attributes are type-specific */ 3586 if (attr == &dev_attr_requested_microamps.attr) 3587 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3588 3589 /* constraints need specific supporting methods */ 3590 if (attr == &dev_attr_min_microvolts.attr || 3591 attr == &dev_attr_max_microvolts.attr) 3592 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3593 3594 if (attr == &dev_attr_min_microamps.attr || 3595 attr == &dev_attr_max_microamps.attr) 3596 return ops->set_current_limit ? mode : 0; 3597 3598 if (attr == &dev_attr_suspend_standby_state.attr || 3599 attr == &dev_attr_suspend_mem_state.attr || 3600 attr == &dev_attr_suspend_disk_state.attr) 3601 return mode; 3602 3603 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3604 attr == &dev_attr_suspend_mem_microvolts.attr || 3605 attr == &dev_attr_suspend_disk_microvolts.attr) 3606 return ops->set_suspend_voltage ? mode : 0; 3607 3608 if (attr == &dev_attr_suspend_standby_mode.attr || 3609 attr == &dev_attr_suspend_mem_mode.attr || 3610 attr == &dev_attr_suspend_disk_mode.attr) 3611 return ops->set_suspend_mode ? mode : 0; 3612 3613 return mode; 3614 } 3615 3616 static const struct attribute_group regulator_dev_group = { 3617 .attrs = regulator_dev_attrs, 3618 .is_visible = regulator_attr_is_visible, 3619 }; 3620 3621 static const struct attribute_group *regulator_dev_groups[] = { 3622 ®ulator_dev_group, 3623 NULL 3624 }; 3625 3626 static void regulator_dev_release(struct device *dev) 3627 { 3628 struct regulator_dev *rdev = dev_get_drvdata(dev); 3629 3630 kfree(rdev->constraints); 3631 of_node_put(rdev->dev.of_node); 3632 kfree(rdev); 3633 } 3634 3635 static struct class regulator_class = { 3636 .name = "regulator", 3637 .dev_release = regulator_dev_release, 3638 .dev_groups = regulator_dev_groups, 3639 }; 3640 3641 static void rdev_init_debugfs(struct regulator_dev *rdev) 3642 { 3643 struct device *parent = rdev->dev.parent; 3644 const char *rname = rdev_get_name(rdev); 3645 char name[NAME_MAX]; 3646 3647 /* Avoid duplicate debugfs directory names */ 3648 if (parent && rname == rdev->desc->name) { 3649 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3650 rname); 3651 rname = name; 3652 } 3653 3654 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3655 if (!rdev->debugfs) { 3656 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3657 return; 3658 } 3659 3660 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3661 &rdev->use_count); 3662 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3663 &rdev->open_count); 3664 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3665 &rdev->bypass_count); 3666 } 3667 3668 /** 3669 * regulator_register - register regulator 3670 * @regulator_desc: regulator to register 3671 * @cfg: runtime configuration for regulator 3672 * 3673 * Called by regulator drivers to register a regulator. 3674 * Returns a valid pointer to struct regulator_dev on success 3675 * or an ERR_PTR() on error. 3676 */ 3677 struct regulator_dev * 3678 regulator_register(const struct regulator_desc *regulator_desc, 3679 const struct regulator_config *cfg) 3680 { 3681 const struct regulation_constraints *constraints = NULL; 3682 const struct regulator_init_data *init_data; 3683 struct regulator_config *config = NULL; 3684 static atomic_t regulator_no = ATOMIC_INIT(-1); 3685 struct regulator_dev *rdev; 3686 struct device *dev; 3687 int ret, i; 3688 3689 if (regulator_desc == NULL || cfg == NULL) 3690 return ERR_PTR(-EINVAL); 3691 3692 dev = cfg->dev; 3693 WARN_ON(!dev); 3694 3695 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3696 return ERR_PTR(-EINVAL); 3697 3698 if (regulator_desc->type != REGULATOR_VOLTAGE && 3699 regulator_desc->type != REGULATOR_CURRENT) 3700 return ERR_PTR(-EINVAL); 3701 3702 /* Only one of each should be implemented */ 3703 WARN_ON(regulator_desc->ops->get_voltage && 3704 regulator_desc->ops->get_voltage_sel); 3705 WARN_ON(regulator_desc->ops->set_voltage && 3706 regulator_desc->ops->set_voltage_sel); 3707 3708 /* If we're using selectors we must implement list_voltage. */ 3709 if (regulator_desc->ops->get_voltage_sel && 3710 !regulator_desc->ops->list_voltage) { 3711 return ERR_PTR(-EINVAL); 3712 } 3713 if (regulator_desc->ops->set_voltage_sel && 3714 !regulator_desc->ops->list_voltage) { 3715 return ERR_PTR(-EINVAL); 3716 } 3717 3718 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3719 if (rdev == NULL) 3720 return ERR_PTR(-ENOMEM); 3721 3722 /* 3723 * Duplicate the config so the driver could override it after 3724 * parsing init data. 3725 */ 3726 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3727 if (config == NULL) { 3728 kfree(rdev); 3729 return ERR_PTR(-ENOMEM); 3730 } 3731 3732 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3733 &rdev->dev.of_node); 3734 if (!init_data) { 3735 init_data = config->init_data; 3736 rdev->dev.of_node = of_node_get(config->of_node); 3737 } 3738 3739 mutex_lock(®ulator_list_mutex); 3740 3741 mutex_init(&rdev->mutex); 3742 rdev->reg_data = config->driver_data; 3743 rdev->owner = regulator_desc->owner; 3744 rdev->desc = regulator_desc; 3745 if (config->regmap) 3746 rdev->regmap = config->regmap; 3747 else if (dev_get_regmap(dev, NULL)) 3748 rdev->regmap = dev_get_regmap(dev, NULL); 3749 else if (dev->parent) 3750 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3751 INIT_LIST_HEAD(&rdev->consumer_list); 3752 INIT_LIST_HEAD(&rdev->list); 3753 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3754 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3755 3756 /* preform any regulator specific init */ 3757 if (init_data && init_data->regulator_init) { 3758 ret = init_data->regulator_init(rdev->reg_data); 3759 if (ret < 0) 3760 goto clean; 3761 } 3762 3763 /* register with sysfs */ 3764 rdev->dev.class = ®ulator_class; 3765 rdev->dev.parent = dev; 3766 dev_set_name(&rdev->dev, "regulator.%lu", 3767 (unsigned long) atomic_inc_return(®ulator_no)); 3768 ret = device_register(&rdev->dev); 3769 if (ret != 0) { 3770 put_device(&rdev->dev); 3771 goto clean; 3772 } 3773 3774 dev_set_drvdata(&rdev->dev, rdev); 3775 3776 if ((config->ena_gpio || config->ena_gpio_initialized) && 3777 gpio_is_valid(config->ena_gpio)) { 3778 ret = regulator_ena_gpio_request(rdev, config); 3779 if (ret != 0) { 3780 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3781 config->ena_gpio, ret); 3782 goto wash; 3783 } 3784 } 3785 3786 /* set regulator constraints */ 3787 if (init_data) 3788 constraints = &init_data->constraints; 3789 3790 ret = set_machine_constraints(rdev, constraints); 3791 if (ret < 0) 3792 goto scrub; 3793 3794 if (init_data && init_data->supply_regulator) 3795 rdev->supply_name = init_data->supply_regulator; 3796 else if (regulator_desc->supply_name) 3797 rdev->supply_name = regulator_desc->supply_name; 3798 3799 /* add consumers devices */ 3800 if (init_data) { 3801 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3802 ret = set_consumer_device_supply(rdev, 3803 init_data->consumer_supplies[i].dev_name, 3804 init_data->consumer_supplies[i].supply); 3805 if (ret < 0) { 3806 dev_err(dev, "Failed to set supply %s\n", 3807 init_data->consumer_supplies[i].supply); 3808 goto unset_supplies; 3809 } 3810 } 3811 } 3812 3813 list_add(&rdev->list, ®ulator_list); 3814 3815 rdev_init_debugfs(rdev); 3816 out: 3817 mutex_unlock(®ulator_list_mutex); 3818 kfree(config); 3819 return rdev; 3820 3821 unset_supplies: 3822 unset_regulator_supplies(rdev); 3823 3824 scrub: 3825 regulator_ena_gpio_free(rdev); 3826 kfree(rdev->constraints); 3827 wash: 3828 device_unregister(&rdev->dev); 3829 /* device core frees rdev */ 3830 rdev = ERR_PTR(ret); 3831 goto out; 3832 3833 clean: 3834 kfree(rdev); 3835 rdev = ERR_PTR(ret); 3836 goto out; 3837 } 3838 EXPORT_SYMBOL_GPL(regulator_register); 3839 3840 /** 3841 * regulator_unregister - unregister regulator 3842 * @rdev: regulator to unregister 3843 * 3844 * Called by regulator drivers to unregister a regulator. 3845 */ 3846 void regulator_unregister(struct regulator_dev *rdev) 3847 { 3848 if (rdev == NULL) 3849 return; 3850 3851 if (rdev->supply) { 3852 while (rdev->use_count--) 3853 regulator_disable(rdev->supply); 3854 regulator_put(rdev->supply); 3855 } 3856 mutex_lock(®ulator_list_mutex); 3857 debugfs_remove_recursive(rdev->debugfs); 3858 flush_work(&rdev->disable_work.work); 3859 WARN_ON(rdev->open_count); 3860 unset_regulator_supplies(rdev); 3861 list_del(&rdev->list); 3862 mutex_unlock(®ulator_list_mutex); 3863 regulator_ena_gpio_free(rdev); 3864 device_unregister(&rdev->dev); 3865 } 3866 EXPORT_SYMBOL_GPL(regulator_unregister); 3867 3868 /** 3869 * regulator_suspend_prepare - prepare regulators for system wide suspend 3870 * @state: system suspend state 3871 * 3872 * Configure each regulator with it's suspend operating parameters for state. 3873 * This will usually be called by machine suspend code prior to supending. 3874 */ 3875 int regulator_suspend_prepare(suspend_state_t state) 3876 { 3877 struct regulator_dev *rdev; 3878 int ret = 0; 3879 3880 /* ON is handled by regulator active state */ 3881 if (state == PM_SUSPEND_ON) 3882 return -EINVAL; 3883 3884 mutex_lock(®ulator_list_mutex); 3885 list_for_each_entry(rdev, ®ulator_list, list) { 3886 3887 mutex_lock(&rdev->mutex); 3888 ret = suspend_prepare(rdev, state); 3889 mutex_unlock(&rdev->mutex); 3890 3891 if (ret < 0) { 3892 rdev_err(rdev, "failed to prepare\n"); 3893 goto out; 3894 } 3895 } 3896 out: 3897 mutex_unlock(®ulator_list_mutex); 3898 return ret; 3899 } 3900 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3901 3902 /** 3903 * regulator_suspend_finish - resume regulators from system wide suspend 3904 * 3905 * Turn on regulators that might be turned off by regulator_suspend_prepare 3906 * and that should be turned on according to the regulators properties. 3907 */ 3908 int regulator_suspend_finish(void) 3909 { 3910 struct regulator_dev *rdev; 3911 int ret = 0, error; 3912 3913 mutex_lock(®ulator_list_mutex); 3914 list_for_each_entry(rdev, ®ulator_list, list) { 3915 mutex_lock(&rdev->mutex); 3916 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3917 if (!_regulator_is_enabled(rdev)) { 3918 error = _regulator_do_enable(rdev); 3919 if (error) 3920 ret = error; 3921 } 3922 } else { 3923 if (!have_full_constraints()) 3924 goto unlock; 3925 if (!_regulator_is_enabled(rdev)) 3926 goto unlock; 3927 3928 error = _regulator_do_disable(rdev); 3929 if (error) 3930 ret = error; 3931 } 3932 unlock: 3933 mutex_unlock(&rdev->mutex); 3934 } 3935 mutex_unlock(®ulator_list_mutex); 3936 return ret; 3937 } 3938 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3939 3940 /** 3941 * regulator_has_full_constraints - the system has fully specified constraints 3942 * 3943 * Calling this function will cause the regulator API to disable all 3944 * regulators which have a zero use count and don't have an always_on 3945 * constraint in a late_initcall. 3946 * 3947 * The intention is that this will become the default behaviour in a 3948 * future kernel release so users are encouraged to use this facility 3949 * now. 3950 */ 3951 void regulator_has_full_constraints(void) 3952 { 3953 has_full_constraints = 1; 3954 } 3955 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3956 3957 /** 3958 * rdev_get_drvdata - get rdev regulator driver data 3959 * @rdev: regulator 3960 * 3961 * Get rdev regulator driver private data. This call can be used in the 3962 * regulator driver context. 3963 */ 3964 void *rdev_get_drvdata(struct regulator_dev *rdev) 3965 { 3966 return rdev->reg_data; 3967 } 3968 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3969 3970 /** 3971 * regulator_get_drvdata - get regulator driver data 3972 * @regulator: regulator 3973 * 3974 * Get regulator driver private data. This call can be used in the consumer 3975 * driver context when non API regulator specific functions need to be called. 3976 */ 3977 void *regulator_get_drvdata(struct regulator *regulator) 3978 { 3979 return regulator->rdev->reg_data; 3980 } 3981 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3982 3983 /** 3984 * regulator_set_drvdata - set regulator driver data 3985 * @regulator: regulator 3986 * @data: data 3987 */ 3988 void regulator_set_drvdata(struct regulator *regulator, void *data) 3989 { 3990 regulator->rdev->reg_data = data; 3991 } 3992 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3993 3994 /** 3995 * regulator_get_id - get regulator ID 3996 * @rdev: regulator 3997 */ 3998 int rdev_get_id(struct regulator_dev *rdev) 3999 { 4000 return rdev->desc->id; 4001 } 4002 EXPORT_SYMBOL_GPL(rdev_get_id); 4003 4004 struct device *rdev_get_dev(struct regulator_dev *rdev) 4005 { 4006 return &rdev->dev; 4007 } 4008 EXPORT_SYMBOL_GPL(rdev_get_dev); 4009 4010 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4011 { 4012 return reg_init_data->driver_data; 4013 } 4014 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4015 4016 #ifdef CONFIG_DEBUG_FS 4017 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4018 size_t count, loff_t *ppos) 4019 { 4020 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4021 ssize_t len, ret = 0; 4022 struct regulator_map *map; 4023 4024 if (!buf) 4025 return -ENOMEM; 4026 4027 list_for_each_entry(map, ®ulator_map_list, list) { 4028 len = snprintf(buf + ret, PAGE_SIZE - ret, 4029 "%s -> %s.%s\n", 4030 rdev_get_name(map->regulator), map->dev_name, 4031 map->supply); 4032 if (len >= 0) 4033 ret += len; 4034 if (ret > PAGE_SIZE) { 4035 ret = PAGE_SIZE; 4036 break; 4037 } 4038 } 4039 4040 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4041 4042 kfree(buf); 4043 4044 return ret; 4045 } 4046 #endif 4047 4048 static const struct file_operations supply_map_fops = { 4049 #ifdef CONFIG_DEBUG_FS 4050 .read = supply_map_read_file, 4051 .llseek = default_llseek, 4052 #endif 4053 }; 4054 4055 #ifdef CONFIG_DEBUG_FS 4056 static void regulator_summary_show_subtree(struct seq_file *s, 4057 struct regulator_dev *rdev, 4058 int level) 4059 { 4060 struct list_head *list = s->private; 4061 struct regulator_dev *child; 4062 struct regulation_constraints *c; 4063 struct regulator *consumer; 4064 4065 if (!rdev) 4066 return; 4067 4068 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4069 level * 3 + 1, "", 4070 30 - level * 3, rdev_get_name(rdev), 4071 rdev->use_count, rdev->open_count, rdev->bypass_count); 4072 4073 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4074 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4075 4076 c = rdev->constraints; 4077 if (c) { 4078 switch (rdev->desc->type) { 4079 case REGULATOR_VOLTAGE: 4080 seq_printf(s, "%5dmV %5dmV ", 4081 c->min_uV / 1000, c->max_uV / 1000); 4082 break; 4083 case REGULATOR_CURRENT: 4084 seq_printf(s, "%5dmA %5dmA ", 4085 c->min_uA / 1000, c->max_uA / 1000); 4086 break; 4087 } 4088 } 4089 4090 seq_puts(s, "\n"); 4091 4092 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4093 if (consumer->dev->class == ®ulator_class) 4094 continue; 4095 4096 seq_printf(s, "%*s%-*s ", 4097 (level + 1) * 3 + 1, "", 4098 30 - (level + 1) * 3, dev_name(consumer->dev)); 4099 4100 switch (rdev->desc->type) { 4101 case REGULATOR_VOLTAGE: 4102 seq_printf(s, "%37dmV %5dmV", 4103 consumer->min_uV / 1000, 4104 consumer->max_uV / 1000); 4105 break; 4106 case REGULATOR_CURRENT: 4107 break; 4108 } 4109 4110 seq_puts(s, "\n"); 4111 } 4112 4113 list_for_each_entry(child, list, list) { 4114 /* handle only non-root regulators supplied by current rdev */ 4115 if (!child->supply || child->supply->rdev != rdev) 4116 continue; 4117 4118 regulator_summary_show_subtree(s, child, level + 1); 4119 } 4120 } 4121 4122 static int regulator_summary_show(struct seq_file *s, void *data) 4123 { 4124 struct list_head *list = s->private; 4125 struct regulator_dev *rdev; 4126 4127 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4128 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4129 4130 mutex_lock(®ulator_list_mutex); 4131 4132 list_for_each_entry(rdev, list, list) { 4133 if (rdev->supply) 4134 continue; 4135 4136 regulator_summary_show_subtree(s, rdev, 0); 4137 } 4138 4139 mutex_unlock(®ulator_list_mutex); 4140 4141 return 0; 4142 } 4143 4144 static int regulator_summary_open(struct inode *inode, struct file *file) 4145 { 4146 return single_open(file, regulator_summary_show, inode->i_private); 4147 } 4148 #endif 4149 4150 static const struct file_operations regulator_summary_fops = { 4151 #ifdef CONFIG_DEBUG_FS 4152 .open = regulator_summary_open, 4153 .read = seq_read, 4154 .llseek = seq_lseek, 4155 .release = single_release, 4156 #endif 4157 }; 4158 4159 static int __init regulator_init(void) 4160 { 4161 int ret; 4162 4163 ret = class_register(®ulator_class); 4164 4165 debugfs_root = debugfs_create_dir("regulator", NULL); 4166 if (!debugfs_root) 4167 pr_warn("regulator: Failed to create debugfs directory\n"); 4168 4169 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4170 &supply_map_fops); 4171 4172 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4173 ®ulator_list, ®ulator_summary_fops); 4174 4175 regulator_dummy_init(); 4176 4177 return ret; 4178 } 4179 4180 /* init early to allow our consumers to complete system booting */ 4181 core_initcall(regulator_init); 4182 4183 static int __init regulator_late_cleanup(struct device *dev, void *data) 4184 { 4185 struct regulator_dev *rdev = dev_to_rdev(dev); 4186 const struct regulator_ops *ops = rdev->desc->ops; 4187 struct regulation_constraints *c = rdev->constraints; 4188 int enabled, ret; 4189 4190 if (c && c->always_on) 4191 return 0; 4192 4193 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 4194 return 0; 4195 4196 mutex_lock(&rdev->mutex); 4197 4198 if (rdev->use_count) 4199 goto unlock; 4200 4201 /* If we can't read the status assume it's on. */ 4202 if (ops->is_enabled) 4203 enabled = ops->is_enabled(rdev); 4204 else 4205 enabled = 1; 4206 4207 if (!enabled) 4208 goto unlock; 4209 4210 if (have_full_constraints()) { 4211 /* We log since this may kill the system if it goes 4212 * wrong. */ 4213 rdev_info(rdev, "disabling\n"); 4214 ret = _regulator_do_disable(rdev); 4215 if (ret != 0) 4216 rdev_err(rdev, "couldn't disable: %d\n", ret); 4217 } else { 4218 /* The intention is that in future we will 4219 * assume that full constraints are provided 4220 * so warn even if we aren't going to do 4221 * anything here. 4222 */ 4223 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4224 } 4225 4226 unlock: 4227 mutex_unlock(&rdev->mutex); 4228 4229 return 0; 4230 } 4231 4232 static int __init regulator_init_complete(void) 4233 { 4234 /* 4235 * Since DT doesn't provide an idiomatic mechanism for 4236 * enabling full constraints and since it's much more natural 4237 * with DT to provide them just assume that a DT enabled 4238 * system has full constraints. 4239 */ 4240 if (of_have_populated_dt()) 4241 has_full_constraints = true; 4242 4243 /* If we have a full configuration then disable any regulators 4244 * we have permission to change the status for and which are 4245 * not in use or always_on. This is effectively the default 4246 * for DT and ACPI as they have full constraints. 4247 */ 4248 class_for_each_device(®ulator_class, NULL, NULL, 4249 regulator_late_cleanup); 4250 4251 return 0; 4252 } 4253 late_initcall_sync(regulator_init_complete); 4254