1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 * 143 * Return: 0 on success or a negative error number on failure. 144 */ 145 static inline int regulator_lock_nested(struct regulator_dev *rdev, 146 struct ww_acquire_ctx *ww_ctx) 147 { 148 bool lock = false; 149 int ret = 0; 150 151 mutex_lock(®ulator_nesting_mutex); 152 153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 154 if (rdev->mutex_owner == current) 155 rdev->ref_cnt++; 156 else 157 lock = true; 158 159 if (lock) { 160 mutex_unlock(®ulator_nesting_mutex); 161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 162 mutex_lock(®ulator_nesting_mutex); 163 } 164 } else { 165 lock = true; 166 } 167 168 if (lock && ret != -EDEADLK) { 169 rdev->ref_cnt++; 170 rdev->mutex_owner = current; 171 } 172 173 mutex_unlock(®ulator_nesting_mutex); 174 175 return ret; 176 } 177 178 /** 179 * regulator_lock - lock a single regulator 180 * @rdev: regulator source 181 * 182 * This function can be called many times by one task on 183 * a single regulator and its mutex will be locked only 184 * once. If a task, which is calling this function is other 185 * than the one, which initially locked the mutex, it will 186 * wait on mutex. 187 */ 188 static void regulator_lock(struct regulator_dev *rdev) 189 { 190 regulator_lock_nested(rdev, NULL); 191 } 192 193 /** 194 * regulator_unlock - unlock a single regulator 195 * @rdev: regulator_source 196 * 197 * This function unlocks the mutex when the 198 * reference counter reaches 0. 199 */ 200 static void regulator_unlock(struct regulator_dev *rdev) 201 { 202 mutex_lock(®ulator_nesting_mutex); 203 204 if (--rdev->ref_cnt == 0) { 205 rdev->mutex_owner = NULL; 206 ww_mutex_unlock(&rdev->mutex); 207 } 208 209 WARN_ON_ONCE(rdev->ref_cnt < 0); 210 211 mutex_unlock(®ulator_nesting_mutex); 212 } 213 214 /** 215 * regulator_lock_two - lock two regulators 216 * @rdev1: first regulator 217 * @rdev2: second regulator 218 * @ww_ctx: w/w mutex acquire context 219 * 220 * Locks both rdevs using the regulator_ww_class. 221 */ 222 static void regulator_lock_two(struct regulator_dev *rdev1, 223 struct regulator_dev *rdev2, 224 struct ww_acquire_ctx *ww_ctx) 225 { 226 struct regulator_dev *held, *contended; 227 int ret; 228 229 ww_acquire_init(ww_ctx, ®ulator_ww_class); 230 231 /* Try to just grab both of them */ 232 ret = regulator_lock_nested(rdev1, ww_ctx); 233 WARN_ON(ret); 234 ret = regulator_lock_nested(rdev2, ww_ctx); 235 if (ret != -EDEADLOCK) { 236 WARN_ON(ret); 237 goto exit; 238 } 239 240 held = rdev1; 241 contended = rdev2; 242 while (true) { 243 regulator_unlock(held); 244 245 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 246 contended->ref_cnt++; 247 contended->mutex_owner = current; 248 swap(held, contended); 249 ret = regulator_lock_nested(contended, ww_ctx); 250 251 if (ret != -EDEADLOCK) { 252 WARN_ON(ret); 253 break; 254 } 255 } 256 257 exit: 258 ww_acquire_done(ww_ctx); 259 } 260 261 /** 262 * regulator_unlock_two - unlock two regulators 263 * @rdev1: first regulator 264 * @rdev2: second regulator 265 * @ww_ctx: w/w mutex acquire context 266 * 267 * The inverse of regulator_lock_two(). 268 */ 269 270 static void regulator_unlock_two(struct regulator_dev *rdev1, 271 struct regulator_dev *rdev2, 272 struct ww_acquire_ctx *ww_ctx) 273 { 274 regulator_unlock(rdev2); 275 regulator_unlock(rdev1); 276 ww_acquire_fini(ww_ctx); 277 } 278 279 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 280 { 281 struct regulator_dev *c_rdev; 282 int i; 283 284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 285 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 286 287 if (rdev->supply->rdev == c_rdev) 288 return true; 289 } 290 291 return false; 292 } 293 294 static void regulator_unlock_recursive(struct regulator_dev *rdev, 295 unsigned int n_coupled) 296 { 297 struct regulator_dev *c_rdev, *supply_rdev; 298 int i, supply_n_coupled; 299 300 for (i = n_coupled; i > 0; i--) { 301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 302 303 if (!c_rdev) 304 continue; 305 306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 307 supply_rdev = c_rdev->supply->rdev; 308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 309 310 regulator_unlock_recursive(supply_rdev, 311 supply_n_coupled); 312 } 313 314 regulator_unlock(c_rdev); 315 } 316 } 317 318 static int regulator_lock_recursive(struct regulator_dev *rdev, 319 struct regulator_dev **new_contended_rdev, 320 struct regulator_dev **old_contended_rdev, 321 struct ww_acquire_ctx *ww_ctx) 322 { 323 struct regulator_dev *c_rdev; 324 int i, err; 325 326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 327 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 328 329 if (!c_rdev) 330 continue; 331 332 if (c_rdev != *old_contended_rdev) { 333 err = regulator_lock_nested(c_rdev, ww_ctx); 334 if (err) { 335 if (err == -EDEADLK) { 336 *new_contended_rdev = c_rdev; 337 goto err_unlock; 338 } 339 340 /* shouldn't happen */ 341 WARN_ON_ONCE(err != -EALREADY); 342 } 343 } else { 344 *old_contended_rdev = NULL; 345 } 346 347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 348 err = regulator_lock_recursive(c_rdev->supply->rdev, 349 new_contended_rdev, 350 old_contended_rdev, 351 ww_ctx); 352 if (err) { 353 regulator_unlock(c_rdev); 354 goto err_unlock; 355 } 356 } 357 } 358 359 return 0; 360 361 err_unlock: 362 regulator_unlock_recursive(rdev, i); 363 364 return err; 365 } 366 367 /** 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 369 * regulators 370 * @rdev: regulator source 371 * @ww_ctx: w/w mutex acquire context 372 * 373 * Unlock all regulators related with rdev by coupling or supplying. 374 */ 375 static void regulator_unlock_dependent(struct regulator_dev *rdev, 376 struct ww_acquire_ctx *ww_ctx) 377 { 378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 379 ww_acquire_fini(ww_ctx); 380 } 381 382 /** 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 384 * @rdev: regulator source 385 * @ww_ctx: w/w mutex acquire context 386 * 387 * This function as a wrapper on regulator_lock_recursive(), which locks 388 * all regulators related with rdev by coupling or supplying. 389 */ 390 static void regulator_lock_dependent(struct regulator_dev *rdev, 391 struct ww_acquire_ctx *ww_ctx) 392 { 393 struct regulator_dev *new_contended_rdev = NULL; 394 struct regulator_dev *old_contended_rdev = NULL; 395 int err; 396 397 mutex_lock(®ulator_list_mutex); 398 399 ww_acquire_init(ww_ctx, ®ulator_ww_class); 400 401 do { 402 if (new_contended_rdev) { 403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 404 old_contended_rdev = new_contended_rdev; 405 old_contended_rdev->ref_cnt++; 406 old_contended_rdev->mutex_owner = current; 407 } 408 409 err = regulator_lock_recursive(rdev, 410 &new_contended_rdev, 411 &old_contended_rdev, 412 ww_ctx); 413 414 if (old_contended_rdev) 415 regulator_unlock(old_contended_rdev); 416 417 } while (err == -EDEADLK); 418 419 ww_acquire_done(ww_ctx); 420 421 mutex_unlock(®ulator_list_mutex); 422 } 423 424 /* Platform voltage constraint check */ 425 int regulator_check_voltage(struct regulator_dev *rdev, 426 int *min_uV, int *max_uV) 427 { 428 BUG_ON(*min_uV > *max_uV); 429 430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 431 rdev_err(rdev, "voltage operation not allowed\n"); 432 return -EPERM; 433 } 434 435 if (*max_uV > rdev->constraints->max_uV) 436 *max_uV = rdev->constraints->max_uV; 437 if (*min_uV < rdev->constraints->min_uV) 438 *min_uV = rdev->constraints->min_uV; 439 440 if (*min_uV > *max_uV) { 441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 442 *min_uV, *max_uV); 443 return -EINVAL; 444 } 445 446 return 0; 447 } 448 449 /* return 0 if the state is valid */ 450 static int regulator_check_states(suspend_state_t state) 451 { 452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 453 } 454 455 /* Make sure we select a voltage that suits the needs of all 456 * regulator consumers 457 */ 458 int regulator_check_consumers(struct regulator_dev *rdev, 459 int *min_uV, int *max_uV, 460 suspend_state_t state) 461 { 462 struct regulator *regulator; 463 struct regulator_voltage *voltage; 464 465 list_for_each_entry(regulator, &rdev->consumer_list, list) { 466 voltage = ®ulator->voltage[state]; 467 /* 468 * Assume consumers that didn't say anything are OK 469 * with anything in the constraint range. 470 */ 471 if (!voltage->min_uV && !voltage->max_uV) 472 continue; 473 474 if (*max_uV > voltage->max_uV) 475 *max_uV = voltage->max_uV; 476 if (*min_uV < voltage->min_uV) 477 *min_uV = voltage->min_uV; 478 } 479 480 if (*min_uV > *max_uV) { 481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 482 *min_uV, *max_uV); 483 return -EINVAL; 484 } 485 486 return 0; 487 } 488 489 /* current constraint check */ 490 static int regulator_check_current_limit(struct regulator_dev *rdev, 491 int *min_uA, int *max_uA) 492 { 493 BUG_ON(*min_uA > *max_uA); 494 495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 496 rdev_err(rdev, "current operation not allowed\n"); 497 return -EPERM; 498 } 499 500 if (*max_uA > rdev->constraints->max_uA) 501 *max_uA = rdev->constraints->max_uA; 502 if (*min_uA < rdev->constraints->min_uA) 503 *min_uA = rdev->constraints->min_uA; 504 505 if (*min_uA > *max_uA) { 506 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 507 *min_uA, *max_uA); 508 return -EINVAL; 509 } 510 511 return 0; 512 } 513 514 /* operating mode constraint check */ 515 static int regulator_mode_constrain(struct regulator_dev *rdev, 516 unsigned int *mode) 517 { 518 switch (*mode) { 519 case REGULATOR_MODE_FAST: 520 case REGULATOR_MODE_NORMAL: 521 case REGULATOR_MODE_IDLE: 522 case REGULATOR_MODE_STANDBY: 523 break; 524 default: 525 rdev_err(rdev, "invalid mode %x specified\n", *mode); 526 return -EINVAL; 527 } 528 529 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 530 rdev_err(rdev, "mode operation not allowed\n"); 531 return -EPERM; 532 } 533 534 /* The modes are bitmasks, the most power hungry modes having 535 * the lowest values. If the requested mode isn't supported 536 * try higher modes. 537 */ 538 while (*mode) { 539 if (rdev->constraints->valid_modes_mask & *mode) 540 return 0; 541 *mode /= 2; 542 } 543 544 return -EINVAL; 545 } 546 547 static inline struct regulator_state * 548 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 549 { 550 if (rdev->constraints == NULL) 551 return NULL; 552 553 switch (state) { 554 case PM_SUSPEND_STANDBY: 555 return &rdev->constraints->state_standby; 556 case PM_SUSPEND_MEM: 557 return &rdev->constraints->state_mem; 558 case PM_SUSPEND_MAX: 559 return &rdev->constraints->state_disk; 560 default: 561 return NULL; 562 } 563 } 564 565 static const struct regulator_state * 566 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 567 { 568 const struct regulator_state *rstate; 569 570 rstate = regulator_get_suspend_state(rdev, state); 571 if (rstate == NULL) 572 return NULL; 573 574 /* If we have no suspend mode configuration don't set anything; 575 * only warn if the driver implements set_suspend_voltage or 576 * set_suspend_mode callback. 577 */ 578 if (rstate->enabled != ENABLE_IN_SUSPEND && 579 rstate->enabled != DISABLE_IN_SUSPEND) { 580 if (rdev->desc->ops->set_suspend_voltage || 581 rdev->desc->ops->set_suspend_mode) 582 rdev_warn(rdev, "No configuration\n"); 583 return NULL; 584 } 585 586 return rstate; 587 } 588 589 static ssize_t microvolts_show(struct device *dev, 590 struct device_attribute *attr, char *buf) 591 { 592 struct regulator_dev *rdev = dev_get_drvdata(dev); 593 int uV; 594 595 regulator_lock(rdev); 596 uV = regulator_get_voltage_rdev(rdev); 597 regulator_unlock(rdev); 598 599 if (uV < 0) 600 return uV; 601 return sprintf(buf, "%d\n", uV); 602 } 603 static DEVICE_ATTR_RO(microvolts); 604 605 static ssize_t microamps_show(struct device *dev, 606 struct device_attribute *attr, char *buf) 607 { 608 struct regulator_dev *rdev = dev_get_drvdata(dev); 609 610 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 611 } 612 static DEVICE_ATTR_RO(microamps); 613 614 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 615 char *buf) 616 { 617 struct regulator_dev *rdev = dev_get_drvdata(dev); 618 619 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 620 } 621 static DEVICE_ATTR_RO(name); 622 623 static const char *regulator_opmode_to_str(int mode) 624 { 625 switch (mode) { 626 case REGULATOR_MODE_FAST: 627 return "fast"; 628 case REGULATOR_MODE_NORMAL: 629 return "normal"; 630 case REGULATOR_MODE_IDLE: 631 return "idle"; 632 case REGULATOR_MODE_STANDBY: 633 return "standby"; 634 } 635 return "unknown"; 636 } 637 638 static ssize_t regulator_print_opmode(char *buf, int mode) 639 { 640 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 641 } 642 643 static ssize_t opmode_show(struct device *dev, 644 struct device_attribute *attr, char *buf) 645 { 646 struct regulator_dev *rdev = dev_get_drvdata(dev); 647 648 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 649 } 650 static DEVICE_ATTR_RO(opmode); 651 652 static ssize_t regulator_print_state(char *buf, int state) 653 { 654 if (state > 0) 655 return sprintf(buf, "enabled\n"); 656 else if (state == 0) 657 return sprintf(buf, "disabled\n"); 658 else 659 return sprintf(buf, "unknown\n"); 660 } 661 662 static ssize_t state_show(struct device *dev, 663 struct device_attribute *attr, char *buf) 664 { 665 struct regulator_dev *rdev = dev_get_drvdata(dev); 666 ssize_t ret; 667 668 regulator_lock(rdev); 669 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 670 regulator_unlock(rdev); 671 672 return ret; 673 } 674 static DEVICE_ATTR_RO(state); 675 676 static ssize_t status_show(struct device *dev, 677 struct device_attribute *attr, char *buf) 678 { 679 struct regulator_dev *rdev = dev_get_drvdata(dev); 680 int status; 681 char *label; 682 683 status = rdev->desc->ops->get_status(rdev); 684 if (status < 0) 685 return status; 686 687 switch (status) { 688 case REGULATOR_STATUS_OFF: 689 label = "off"; 690 break; 691 case REGULATOR_STATUS_ON: 692 label = "on"; 693 break; 694 case REGULATOR_STATUS_ERROR: 695 label = "error"; 696 break; 697 case REGULATOR_STATUS_FAST: 698 label = "fast"; 699 break; 700 case REGULATOR_STATUS_NORMAL: 701 label = "normal"; 702 break; 703 case REGULATOR_STATUS_IDLE: 704 label = "idle"; 705 break; 706 case REGULATOR_STATUS_STANDBY: 707 label = "standby"; 708 break; 709 case REGULATOR_STATUS_BYPASS: 710 label = "bypass"; 711 break; 712 case REGULATOR_STATUS_UNDEFINED: 713 label = "undefined"; 714 break; 715 default: 716 return -ERANGE; 717 } 718 719 return sprintf(buf, "%s\n", label); 720 } 721 static DEVICE_ATTR_RO(status); 722 723 static ssize_t min_microamps_show(struct device *dev, 724 struct device_attribute *attr, char *buf) 725 { 726 struct regulator_dev *rdev = dev_get_drvdata(dev); 727 728 if (!rdev->constraints) 729 return sprintf(buf, "constraint not defined\n"); 730 731 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 732 } 733 static DEVICE_ATTR_RO(min_microamps); 734 735 static ssize_t max_microamps_show(struct device *dev, 736 struct device_attribute *attr, char *buf) 737 { 738 struct regulator_dev *rdev = dev_get_drvdata(dev); 739 740 if (!rdev->constraints) 741 return sprintf(buf, "constraint not defined\n"); 742 743 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 744 } 745 static DEVICE_ATTR_RO(max_microamps); 746 747 static ssize_t min_microvolts_show(struct device *dev, 748 struct device_attribute *attr, char *buf) 749 { 750 struct regulator_dev *rdev = dev_get_drvdata(dev); 751 752 if (!rdev->constraints) 753 return sprintf(buf, "constraint not defined\n"); 754 755 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 756 } 757 static DEVICE_ATTR_RO(min_microvolts); 758 759 static ssize_t max_microvolts_show(struct device *dev, 760 struct device_attribute *attr, char *buf) 761 { 762 struct regulator_dev *rdev = dev_get_drvdata(dev); 763 764 if (!rdev->constraints) 765 return sprintf(buf, "constraint not defined\n"); 766 767 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 768 } 769 static DEVICE_ATTR_RO(max_microvolts); 770 771 static ssize_t requested_microamps_show(struct device *dev, 772 struct device_attribute *attr, char *buf) 773 { 774 struct regulator_dev *rdev = dev_get_drvdata(dev); 775 struct regulator *regulator; 776 int uA = 0; 777 778 regulator_lock(rdev); 779 list_for_each_entry(regulator, &rdev->consumer_list, list) { 780 if (regulator->enable_count) 781 uA += regulator->uA_load; 782 } 783 regulator_unlock(rdev); 784 return sprintf(buf, "%d\n", uA); 785 } 786 static DEVICE_ATTR_RO(requested_microamps); 787 788 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 789 char *buf) 790 { 791 struct regulator_dev *rdev = dev_get_drvdata(dev); 792 return sprintf(buf, "%d\n", rdev->use_count); 793 } 794 static DEVICE_ATTR_RO(num_users); 795 796 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 797 char *buf) 798 { 799 struct regulator_dev *rdev = dev_get_drvdata(dev); 800 801 switch (rdev->desc->type) { 802 case REGULATOR_VOLTAGE: 803 return sprintf(buf, "voltage\n"); 804 case REGULATOR_CURRENT: 805 return sprintf(buf, "current\n"); 806 } 807 return sprintf(buf, "unknown\n"); 808 } 809 static DEVICE_ATTR_RO(type); 810 811 static ssize_t suspend_mem_microvolts_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 817 } 818 static DEVICE_ATTR_RO(suspend_mem_microvolts); 819 820 static ssize_t suspend_disk_microvolts_show(struct device *dev, 821 struct device_attribute *attr, char *buf) 822 { 823 struct regulator_dev *rdev = dev_get_drvdata(dev); 824 825 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 826 } 827 static DEVICE_ATTR_RO(suspend_disk_microvolts); 828 829 static ssize_t suspend_standby_microvolts_show(struct device *dev, 830 struct device_attribute *attr, char *buf) 831 { 832 struct regulator_dev *rdev = dev_get_drvdata(dev); 833 834 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 835 } 836 static DEVICE_ATTR_RO(suspend_standby_microvolts); 837 838 static ssize_t suspend_mem_mode_show(struct device *dev, 839 struct device_attribute *attr, char *buf) 840 { 841 struct regulator_dev *rdev = dev_get_drvdata(dev); 842 843 return regulator_print_opmode(buf, 844 rdev->constraints->state_mem.mode); 845 } 846 static DEVICE_ATTR_RO(suspend_mem_mode); 847 848 static ssize_t suspend_disk_mode_show(struct device *dev, 849 struct device_attribute *attr, char *buf) 850 { 851 struct regulator_dev *rdev = dev_get_drvdata(dev); 852 853 return regulator_print_opmode(buf, 854 rdev->constraints->state_disk.mode); 855 } 856 static DEVICE_ATTR_RO(suspend_disk_mode); 857 858 static ssize_t suspend_standby_mode_show(struct device *dev, 859 struct device_attribute *attr, char *buf) 860 { 861 struct regulator_dev *rdev = dev_get_drvdata(dev); 862 863 return regulator_print_opmode(buf, 864 rdev->constraints->state_standby.mode); 865 } 866 static DEVICE_ATTR_RO(suspend_standby_mode); 867 868 static ssize_t suspend_mem_state_show(struct device *dev, 869 struct device_attribute *attr, char *buf) 870 { 871 struct regulator_dev *rdev = dev_get_drvdata(dev); 872 873 return regulator_print_state(buf, 874 rdev->constraints->state_mem.enabled); 875 } 876 static DEVICE_ATTR_RO(suspend_mem_state); 877 878 static ssize_t suspend_disk_state_show(struct device *dev, 879 struct device_attribute *attr, char *buf) 880 { 881 struct regulator_dev *rdev = dev_get_drvdata(dev); 882 883 return regulator_print_state(buf, 884 rdev->constraints->state_disk.enabled); 885 } 886 static DEVICE_ATTR_RO(suspend_disk_state); 887 888 static ssize_t suspend_standby_state_show(struct device *dev, 889 struct device_attribute *attr, char *buf) 890 { 891 struct regulator_dev *rdev = dev_get_drvdata(dev); 892 893 return regulator_print_state(buf, 894 rdev->constraints->state_standby.enabled); 895 } 896 static DEVICE_ATTR_RO(suspend_standby_state); 897 898 static ssize_t bypass_show(struct device *dev, 899 struct device_attribute *attr, char *buf) 900 { 901 struct regulator_dev *rdev = dev_get_drvdata(dev); 902 const char *report; 903 bool bypass; 904 int ret; 905 906 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 907 908 if (ret != 0) 909 report = "unknown"; 910 else if (bypass) 911 report = "enabled"; 912 else 913 report = "disabled"; 914 915 return sprintf(buf, "%s\n", report); 916 } 917 static DEVICE_ATTR_RO(bypass); 918 919 #define REGULATOR_ERROR_ATTR(name, bit) \ 920 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 921 char *buf) \ 922 { \ 923 int ret; \ 924 unsigned int flags; \ 925 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 926 ret = _regulator_get_error_flags(rdev, &flags); \ 927 if (ret) \ 928 return ret; \ 929 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 930 } \ 931 static DEVICE_ATTR_RO(name) 932 933 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 934 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 935 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 936 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 937 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 938 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 939 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 940 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 941 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 942 943 /* Calculate the new optimum regulator operating mode based on the new total 944 * consumer load. All locks held by caller 945 */ 946 static int drms_uA_update(struct regulator_dev *rdev) 947 { 948 struct regulator *sibling; 949 int current_uA = 0, output_uV, input_uV, err; 950 unsigned int mode; 951 952 /* 953 * first check to see if we can set modes at all, otherwise just 954 * tell the consumer everything is OK. 955 */ 956 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 957 rdev_dbg(rdev, "DRMS operation not allowed\n"); 958 return 0; 959 } 960 961 if (!rdev->desc->ops->get_optimum_mode && 962 !rdev->desc->ops->set_load) 963 return 0; 964 965 if (!rdev->desc->ops->set_mode && 966 !rdev->desc->ops->set_load) 967 return -EINVAL; 968 969 /* calc total requested load */ 970 list_for_each_entry(sibling, &rdev->consumer_list, list) { 971 if (sibling->enable_count) 972 current_uA += sibling->uA_load; 973 } 974 975 current_uA += rdev->constraints->system_load; 976 977 if (rdev->desc->ops->set_load) { 978 /* set the optimum mode for our new total regulator load */ 979 err = rdev->desc->ops->set_load(rdev, current_uA); 980 if (err < 0) 981 rdev_err(rdev, "failed to set load %d: %pe\n", 982 current_uA, ERR_PTR(err)); 983 } else { 984 /* 985 * Unfortunately in some cases the constraints->valid_ops has 986 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 987 * That's not really legit but we won't consider it a fatal 988 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 989 * wasn't set. 990 */ 991 if (!rdev->constraints->valid_modes_mask) { 992 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 993 return 0; 994 } 995 996 /* get output voltage */ 997 output_uV = regulator_get_voltage_rdev(rdev); 998 999 /* 1000 * Don't return an error; if regulator driver cares about 1001 * output_uV then it's up to the driver to validate. 1002 */ 1003 if (output_uV <= 0) 1004 rdev_dbg(rdev, "invalid output voltage found\n"); 1005 1006 /* get input voltage */ 1007 input_uV = 0; 1008 if (rdev->supply) 1009 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1010 if (input_uV <= 0) 1011 input_uV = rdev->constraints->input_uV; 1012 1013 /* 1014 * Don't return an error; if regulator driver cares about 1015 * input_uV then it's up to the driver to validate. 1016 */ 1017 if (input_uV <= 0) 1018 rdev_dbg(rdev, "invalid input voltage found\n"); 1019 1020 /* now get the optimum mode for our new total regulator load */ 1021 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1022 output_uV, current_uA); 1023 1024 /* check the new mode is allowed */ 1025 err = regulator_mode_constrain(rdev, &mode); 1026 if (err < 0) { 1027 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1028 current_uA, input_uV, output_uV, ERR_PTR(err)); 1029 return err; 1030 } 1031 1032 err = rdev->desc->ops->set_mode(rdev, mode); 1033 if (err < 0) 1034 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1035 mode, ERR_PTR(err)); 1036 } 1037 1038 return err; 1039 } 1040 1041 static int __suspend_set_state(struct regulator_dev *rdev, 1042 const struct regulator_state *rstate) 1043 { 1044 int ret = 0; 1045 1046 if (rstate->enabled == ENABLE_IN_SUSPEND && 1047 rdev->desc->ops->set_suspend_enable) 1048 ret = rdev->desc->ops->set_suspend_enable(rdev); 1049 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1050 rdev->desc->ops->set_suspend_disable) 1051 ret = rdev->desc->ops->set_suspend_disable(rdev); 1052 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1053 ret = 0; 1054 1055 if (ret < 0) { 1056 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1057 return ret; 1058 } 1059 1060 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1061 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1062 if (ret < 0) { 1063 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1064 return ret; 1065 } 1066 } 1067 1068 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1069 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1070 if (ret < 0) { 1071 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1072 return ret; 1073 } 1074 } 1075 1076 return ret; 1077 } 1078 1079 static int suspend_set_initial_state(struct regulator_dev *rdev) 1080 { 1081 const struct regulator_state *rstate; 1082 1083 rstate = regulator_get_suspend_state_check(rdev, 1084 rdev->constraints->initial_state); 1085 if (!rstate) 1086 return 0; 1087 1088 return __suspend_set_state(rdev, rstate); 1089 } 1090 1091 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1092 static void print_constraints_debug(struct regulator_dev *rdev) 1093 { 1094 struct regulation_constraints *constraints = rdev->constraints; 1095 char buf[160] = ""; 1096 size_t len = sizeof(buf) - 1; 1097 int count = 0; 1098 int ret; 1099 1100 if (constraints->min_uV && constraints->max_uV) { 1101 if (constraints->min_uV == constraints->max_uV) 1102 count += scnprintf(buf + count, len - count, "%d mV ", 1103 constraints->min_uV / 1000); 1104 else 1105 count += scnprintf(buf + count, len - count, 1106 "%d <--> %d mV ", 1107 constraints->min_uV / 1000, 1108 constraints->max_uV / 1000); 1109 } 1110 1111 if (!constraints->min_uV || 1112 constraints->min_uV != constraints->max_uV) { 1113 ret = regulator_get_voltage_rdev(rdev); 1114 if (ret > 0) 1115 count += scnprintf(buf + count, len - count, 1116 "at %d mV ", ret / 1000); 1117 } 1118 1119 if (constraints->uV_offset) 1120 count += scnprintf(buf + count, len - count, "%dmV offset ", 1121 constraints->uV_offset / 1000); 1122 1123 if (constraints->min_uA && constraints->max_uA) { 1124 if (constraints->min_uA == constraints->max_uA) 1125 count += scnprintf(buf + count, len - count, "%d mA ", 1126 constraints->min_uA / 1000); 1127 else 1128 count += scnprintf(buf + count, len - count, 1129 "%d <--> %d mA ", 1130 constraints->min_uA / 1000, 1131 constraints->max_uA / 1000); 1132 } 1133 1134 if (!constraints->min_uA || 1135 constraints->min_uA != constraints->max_uA) { 1136 ret = _regulator_get_current_limit(rdev); 1137 if (ret > 0) 1138 count += scnprintf(buf + count, len - count, 1139 "at %d mA ", ret / 1000); 1140 } 1141 1142 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1143 count += scnprintf(buf + count, len - count, "fast "); 1144 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1145 count += scnprintf(buf + count, len - count, "normal "); 1146 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1147 count += scnprintf(buf + count, len - count, "idle "); 1148 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1149 count += scnprintf(buf + count, len - count, "standby "); 1150 1151 if (!count) 1152 count = scnprintf(buf, len, "no parameters"); 1153 else 1154 --count; 1155 1156 count += scnprintf(buf + count, len - count, ", %s", 1157 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1158 1159 rdev_dbg(rdev, "%s\n", buf); 1160 } 1161 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1162 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1163 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1164 1165 static void print_constraints(struct regulator_dev *rdev) 1166 { 1167 struct regulation_constraints *constraints = rdev->constraints; 1168 1169 print_constraints_debug(rdev); 1170 1171 if ((constraints->min_uV != constraints->max_uV) && 1172 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1173 rdev_warn(rdev, 1174 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1175 } 1176 1177 static int machine_constraints_voltage(struct regulator_dev *rdev, 1178 struct regulation_constraints *constraints) 1179 { 1180 const struct regulator_ops *ops = rdev->desc->ops; 1181 int ret; 1182 1183 /* do we need to apply the constraint voltage */ 1184 if (rdev->constraints->apply_uV && 1185 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1186 int target_min, target_max; 1187 int current_uV = regulator_get_voltage_rdev(rdev); 1188 1189 if (current_uV == -ENOTRECOVERABLE) { 1190 /* This regulator can't be read and must be initialized */ 1191 rdev_info(rdev, "Setting %d-%duV\n", 1192 rdev->constraints->min_uV, 1193 rdev->constraints->max_uV); 1194 _regulator_do_set_voltage(rdev, 1195 rdev->constraints->min_uV, 1196 rdev->constraints->max_uV); 1197 current_uV = regulator_get_voltage_rdev(rdev); 1198 } 1199 1200 if (current_uV < 0) { 1201 if (current_uV != -EPROBE_DEFER) 1202 rdev_err(rdev, 1203 "failed to get the current voltage: %pe\n", 1204 ERR_PTR(current_uV)); 1205 return current_uV; 1206 } 1207 1208 /* 1209 * If we're below the minimum voltage move up to the 1210 * minimum voltage, if we're above the maximum voltage 1211 * then move down to the maximum. 1212 */ 1213 target_min = current_uV; 1214 target_max = current_uV; 1215 1216 if (current_uV < rdev->constraints->min_uV) { 1217 target_min = rdev->constraints->min_uV; 1218 target_max = rdev->constraints->min_uV; 1219 } 1220 1221 if (current_uV > rdev->constraints->max_uV) { 1222 target_min = rdev->constraints->max_uV; 1223 target_max = rdev->constraints->max_uV; 1224 } 1225 1226 if (target_min != current_uV || target_max != current_uV) { 1227 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1228 current_uV, target_min, target_max); 1229 ret = _regulator_do_set_voltage( 1230 rdev, target_min, target_max); 1231 if (ret < 0) { 1232 rdev_err(rdev, 1233 "failed to apply %d-%duV constraint: %pe\n", 1234 target_min, target_max, ERR_PTR(ret)); 1235 return ret; 1236 } 1237 } 1238 } 1239 1240 /* constrain machine-level voltage specs to fit 1241 * the actual range supported by this regulator. 1242 */ 1243 if (ops->list_voltage && rdev->desc->n_voltages) { 1244 int count = rdev->desc->n_voltages; 1245 int i; 1246 int min_uV = INT_MAX; 1247 int max_uV = INT_MIN; 1248 int cmin = constraints->min_uV; 1249 int cmax = constraints->max_uV; 1250 1251 /* it's safe to autoconfigure fixed-voltage supplies 1252 * and the constraints are used by list_voltage. 1253 */ 1254 if (count == 1 && !cmin) { 1255 cmin = 1; 1256 cmax = INT_MAX; 1257 constraints->min_uV = cmin; 1258 constraints->max_uV = cmax; 1259 } 1260 1261 /* voltage constraints are optional */ 1262 if ((cmin == 0) && (cmax == 0)) 1263 return 0; 1264 1265 /* else require explicit machine-level constraints */ 1266 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1267 rdev_err(rdev, "invalid voltage constraints\n"); 1268 return -EINVAL; 1269 } 1270 1271 /* no need to loop voltages if range is continuous */ 1272 if (rdev->desc->continuous_voltage_range) 1273 return 0; 1274 1275 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1276 for (i = 0; i < count; i++) { 1277 int value; 1278 1279 value = ops->list_voltage(rdev, i); 1280 if (value <= 0) 1281 continue; 1282 1283 /* maybe adjust [min_uV..max_uV] */ 1284 if (value >= cmin && value < min_uV) 1285 min_uV = value; 1286 if (value <= cmax && value > max_uV) 1287 max_uV = value; 1288 } 1289 1290 /* final: [min_uV..max_uV] valid iff constraints valid */ 1291 if (max_uV < min_uV) { 1292 rdev_err(rdev, 1293 "unsupportable voltage constraints %u-%uuV\n", 1294 min_uV, max_uV); 1295 return -EINVAL; 1296 } 1297 1298 /* use regulator's subset of machine constraints */ 1299 if (constraints->min_uV < min_uV) { 1300 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1301 constraints->min_uV, min_uV); 1302 constraints->min_uV = min_uV; 1303 } 1304 if (constraints->max_uV > max_uV) { 1305 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1306 constraints->max_uV, max_uV); 1307 constraints->max_uV = max_uV; 1308 } 1309 } 1310 1311 return 0; 1312 } 1313 1314 static int machine_constraints_current(struct regulator_dev *rdev, 1315 struct regulation_constraints *constraints) 1316 { 1317 const struct regulator_ops *ops = rdev->desc->ops; 1318 int ret; 1319 1320 if (!constraints->min_uA && !constraints->max_uA) 1321 return 0; 1322 1323 if (constraints->min_uA > constraints->max_uA) { 1324 rdev_err(rdev, "Invalid current constraints\n"); 1325 return -EINVAL; 1326 } 1327 1328 if (!ops->set_current_limit || !ops->get_current_limit) { 1329 rdev_warn(rdev, "Operation of current configuration missing\n"); 1330 return 0; 1331 } 1332 1333 /* Set regulator current in constraints range */ 1334 ret = ops->set_current_limit(rdev, constraints->min_uA, 1335 constraints->max_uA); 1336 if (ret < 0) { 1337 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1338 return ret; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static int _regulator_do_enable(struct regulator_dev *rdev); 1345 1346 static int notif_set_limit(struct regulator_dev *rdev, 1347 int (*set)(struct regulator_dev *, int, int, bool), 1348 int limit, int severity) 1349 { 1350 bool enable; 1351 1352 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1353 enable = false; 1354 limit = 0; 1355 } else { 1356 enable = true; 1357 } 1358 1359 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1360 limit = 0; 1361 1362 return set(rdev, limit, severity, enable); 1363 } 1364 1365 static int handle_notify_limits(struct regulator_dev *rdev, 1366 int (*set)(struct regulator_dev *, int, int, bool), 1367 struct notification_limit *limits) 1368 { 1369 int ret = 0; 1370 1371 if (!set) 1372 return -EOPNOTSUPP; 1373 1374 if (limits->prot) 1375 ret = notif_set_limit(rdev, set, limits->prot, 1376 REGULATOR_SEVERITY_PROT); 1377 if (ret) 1378 return ret; 1379 1380 if (limits->err) 1381 ret = notif_set_limit(rdev, set, limits->err, 1382 REGULATOR_SEVERITY_ERR); 1383 if (ret) 1384 return ret; 1385 1386 if (limits->warn) 1387 ret = notif_set_limit(rdev, set, limits->warn, 1388 REGULATOR_SEVERITY_WARN); 1389 1390 return ret; 1391 } 1392 /** 1393 * set_machine_constraints - sets regulator constraints 1394 * @rdev: regulator source 1395 * 1396 * Allows platform initialisation code to define and constrain 1397 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1398 * Constraints *must* be set by platform code in order for some 1399 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1400 * set_mode. 1401 * 1402 * Return: 0 on success or a negative error number on failure. 1403 */ 1404 static int set_machine_constraints(struct regulator_dev *rdev) 1405 { 1406 int ret = 0; 1407 const struct regulator_ops *ops = rdev->desc->ops; 1408 1409 ret = machine_constraints_voltage(rdev, rdev->constraints); 1410 if (ret != 0) 1411 return ret; 1412 1413 ret = machine_constraints_current(rdev, rdev->constraints); 1414 if (ret != 0) 1415 return ret; 1416 1417 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1418 ret = ops->set_input_current_limit(rdev, 1419 rdev->constraints->ilim_uA); 1420 if (ret < 0) { 1421 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1422 return ret; 1423 } 1424 } 1425 1426 /* do we need to setup our suspend state */ 1427 if (rdev->constraints->initial_state) { 1428 ret = suspend_set_initial_state(rdev); 1429 if (ret < 0) { 1430 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1431 return ret; 1432 } 1433 } 1434 1435 if (rdev->constraints->initial_mode) { 1436 if (!ops->set_mode) { 1437 rdev_err(rdev, "no set_mode operation\n"); 1438 return -EINVAL; 1439 } 1440 1441 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1442 if (ret < 0) { 1443 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1444 return ret; 1445 } 1446 } else if (rdev->constraints->system_load) { 1447 /* 1448 * We'll only apply the initial system load if an 1449 * initial mode wasn't specified. 1450 */ 1451 drms_uA_update(rdev); 1452 } 1453 1454 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1455 && ops->set_ramp_delay) { 1456 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1457 if (ret < 0) { 1458 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1459 return ret; 1460 } 1461 } 1462 1463 if (rdev->constraints->pull_down && ops->set_pull_down) { 1464 ret = ops->set_pull_down(rdev); 1465 if (ret < 0) { 1466 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1467 return ret; 1468 } 1469 } 1470 1471 if (rdev->constraints->soft_start && ops->set_soft_start) { 1472 ret = ops->set_soft_start(rdev); 1473 if (ret < 0) { 1474 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1475 return ret; 1476 } 1477 } 1478 1479 /* 1480 * Existing logic does not warn if over_current_protection is given as 1481 * a constraint but driver does not support that. I think we should 1482 * warn about this type of issues as it is possible someone changes 1483 * PMIC on board to another type - and the another PMIC's driver does 1484 * not support setting protection. Board composer may happily believe 1485 * the DT limits are respected - especially if the new PMIC HW also 1486 * supports protection but the driver does not. I won't change the logic 1487 * without hearing more experienced opinion on this though. 1488 * 1489 * If warning is seen as a good idea then we can merge handling the 1490 * over-curret protection and detection and get rid of this special 1491 * handling. 1492 */ 1493 if (rdev->constraints->over_current_protection 1494 && ops->set_over_current_protection) { 1495 int lim = rdev->constraints->over_curr_limits.prot; 1496 1497 ret = ops->set_over_current_protection(rdev, lim, 1498 REGULATOR_SEVERITY_PROT, 1499 true); 1500 if (ret < 0) { 1501 rdev_err(rdev, "failed to set over current protection: %pe\n", 1502 ERR_PTR(ret)); 1503 return ret; 1504 } 1505 } 1506 1507 if (rdev->constraints->over_current_detection) 1508 ret = handle_notify_limits(rdev, 1509 ops->set_over_current_protection, 1510 &rdev->constraints->over_curr_limits); 1511 if (ret) { 1512 if (ret != -EOPNOTSUPP) { 1513 rdev_err(rdev, "failed to set over current limits: %pe\n", 1514 ERR_PTR(ret)); 1515 return ret; 1516 } 1517 rdev_warn(rdev, 1518 "IC does not support requested over-current limits\n"); 1519 } 1520 1521 if (rdev->constraints->over_voltage_detection) 1522 ret = handle_notify_limits(rdev, 1523 ops->set_over_voltage_protection, 1524 &rdev->constraints->over_voltage_limits); 1525 if (ret) { 1526 if (ret != -EOPNOTSUPP) { 1527 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1528 ERR_PTR(ret)); 1529 return ret; 1530 } 1531 rdev_warn(rdev, 1532 "IC does not support requested over voltage limits\n"); 1533 } 1534 1535 if (rdev->constraints->under_voltage_detection) 1536 ret = handle_notify_limits(rdev, 1537 ops->set_under_voltage_protection, 1538 &rdev->constraints->under_voltage_limits); 1539 if (ret) { 1540 if (ret != -EOPNOTSUPP) { 1541 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1542 ERR_PTR(ret)); 1543 return ret; 1544 } 1545 rdev_warn(rdev, 1546 "IC does not support requested under voltage limits\n"); 1547 } 1548 1549 if (rdev->constraints->over_temp_detection) 1550 ret = handle_notify_limits(rdev, 1551 ops->set_thermal_protection, 1552 &rdev->constraints->temp_limits); 1553 if (ret) { 1554 if (ret != -EOPNOTSUPP) { 1555 rdev_err(rdev, "failed to set temperature limits %pe\n", 1556 ERR_PTR(ret)); 1557 return ret; 1558 } 1559 rdev_warn(rdev, 1560 "IC does not support requested temperature limits\n"); 1561 } 1562 1563 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1564 bool ad_state = (rdev->constraints->active_discharge == 1565 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1566 1567 ret = ops->set_active_discharge(rdev, ad_state); 1568 if (ret < 0) { 1569 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1570 return ret; 1571 } 1572 } 1573 1574 /* 1575 * If there is no mechanism for controlling the regulator then 1576 * flag it as always_on so we don't end up duplicating checks 1577 * for this so much. Note that we could control the state of 1578 * a supply to control the output on a regulator that has no 1579 * direct control. 1580 */ 1581 if (!rdev->ena_pin && !ops->enable) { 1582 if (rdev->supply_name && !rdev->supply) 1583 return -EPROBE_DEFER; 1584 1585 if (rdev->supply) 1586 rdev->constraints->always_on = 1587 rdev->supply->rdev->constraints->always_on; 1588 else 1589 rdev->constraints->always_on = true; 1590 } 1591 1592 /* If the constraints say the regulator should be on at this point 1593 * and we have control then make sure it is enabled. 1594 */ 1595 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1596 /* If we want to enable this regulator, make sure that we know 1597 * the supplying regulator. 1598 */ 1599 if (rdev->supply_name && !rdev->supply) 1600 return -EPROBE_DEFER; 1601 1602 /* If supplying regulator has already been enabled, 1603 * it's not intended to have use_count increment 1604 * when rdev is only boot-on. 1605 */ 1606 if (rdev->supply && 1607 (rdev->constraints->always_on || 1608 !regulator_is_enabled(rdev->supply))) { 1609 ret = regulator_enable(rdev->supply); 1610 if (ret < 0) { 1611 _regulator_put(rdev->supply); 1612 rdev->supply = NULL; 1613 return ret; 1614 } 1615 } 1616 1617 ret = _regulator_do_enable(rdev); 1618 if (ret < 0 && ret != -EINVAL) { 1619 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1620 return ret; 1621 } 1622 1623 if (rdev->constraints->always_on) 1624 rdev->use_count++; 1625 } else if (rdev->desc->off_on_delay) { 1626 rdev->last_off = ktime_get(); 1627 } 1628 1629 print_constraints(rdev); 1630 return 0; 1631 } 1632 1633 /** 1634 * set_supply - set regulator supply regulator 1635 * @rdev: regulator (locked) 1636 * @supply_rdev: supply regulator (locked)) 1637 * 1638 * Called by platform initialisation code to set the supply regulator for this 1639 * regulator. This ensures that a regulators supply will also be enabled by the 1640 * core if it's child is enabled. 1641 * 1642 * Return: 0 on success or a negative error number on failure. 1643 */ 1644 static int set_supply(struct regulator_dev *rdev, 1645 struct regulator_dev *supply_rdev) 1646 { 1647 int err; 1648 1649 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1650 1651 if (!try_module_get(supply_rdev->owner)) 1652 return -ENODEV; 1653 1654 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1655 if (rdev->supply == NULL) { 1656 module_put(supply_rdev->owner); 1657 err = -ENOMEM; 1658 return err; 1659 } 1660 supply_rdev->open_count++; 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1667 * @rdev: regulator source 1668 * @consumer_dev_name: dev_name() string for device supply applies to 1669 * @supply: symbolic name for supply 1670 * 1671 * Allows platform initialisation code to map physical regulator 1672 * sources to symbolic names for supplies for use by devices. Devices 1673 * should use these symbolic names to request regulators, avoiding the 1674 * need to provide board-specific regulator names as platform data. 1675 * 1676 * Return: 0 on success or a negative error number on failure. 1677 */ 1678 static int set_consumer_device_supply(struct regulator_dev *rdev, 1679 const char *consumer_dev_name, 1680 const char *supply) 1681 { 1682 struct regulator_map *node, *new_node; 1683 int has_dev; 1684 1685 if (supply == NULL) 1686 return -EINVAL; 1687 1688 if (consumer_dev_name != NULL) 1689 has_dev = 1; 1690 else 1691 has_dev = 0; 1692 1693 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1694 if (new_node == NULL) 1695 return -ENOMEM; 1696 1697 new_node->regulator = rdev; 1698 new_node->supply = supply; 1699 1700 if (has_dev) { 1701 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1702 if (new_node->dev_name == NULL) { 1703 kfree(new_node); 1704 return -ENOMEM; 1705 } 1706 } 1707 1708 mutex_lock(®ulator_list_mutex); 1709 list_for_each_entry(node, ®ulator_map_list, list) { 1710 if (node->dev_name && consumer_dev_name) { 1711 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1712 continue; 1713 } else if (node->dev_name || consumer_dev_name) { 1714 continue; 1715 } 1716 1717 if (strcmp(node->supply, supply) != 0) 1718 continue; 1719 1720 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1721 consumer_dev_name, 1722 dev_name(&node->regulator->dev), 1723 node->regulator->desc->name, 1724 supply, 1725 dev_name(&rdev->dev), rdev_get_name(rdev)); 1726 goto fail; 1727 } 1728 1729 list_add(&new_node->list, ®ulator_map_list); 1730 mutex_unlock(®ulator_list_mutex); 1731 1732 return 0; 1733 1734 fail: 1735 mutex_unlock(®ulator_list_mutex); 1736 kfree(new_node->dev_name); 1737 kfree(new_node); 1738 return -EBUSY; 1739 } 1740 1741 static void unset_regulator_supplies(struct regulator_dev *rdev) 1742 { 1743 struct regulator_map *node, *n; 1744 1745 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1746 if (rdev == node->regulator) { 1747 list_del(&node->list); 1748 kfree(node->dev_name); 1749 kfree(node); 1750 } 1751 } 1752 } 1753 1754 #ifdef CONFIG_DEBUG_FS 1755 static ssize_t constraint_flags_read_file(struct file *file, 1756 char __user *user_buf, 1757 size_t count, loff_t *ppos) 1758 { 1759 const struct regulator *regulator = file->private_data; 1760 const struct regulation_constraints *c = regulator->rdev->constraints; 1761 char *buf; 1762 ssize_t ret; 1763 1764 if (!c) 1765 return 0; 1766 1767 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1768 if (!buf) 1769 return -ENOMEM; 1770 1771 ret = snprintf(buf, PAGE_SIZE, 1772 "always_on: %u\n" 1773 "boot_on: %u\n" 1774 "apply_uV: %u\n" 1775 "ramp_disable: %u\n" 1776 "soft_start: %u\n" 1777 "pull_down: %u\n" 1778 "over_current_protection: %u\n", 1779 c->always_on, 1780 c->boot_on, 1781 c->apply_uV, 1782 c->ramp_disable, 1783 c->soft_start, 1784 c->pull_down, 1785 c->over_current_protection); 1786 1787 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1788 kfree(buf); 1789 1790 return ret; 1791 } 1792 1793 #endif 1794 1795 static const struct file_operations constraint_flags_fops = { 1796 #ifdef CONFIG_DEBUG_FS 1797 .open = simple_open, 1798 .read = constraint_flags_read_file, 1799 .llseek = default_llseek, 1800 #endif 1801 }; 1802 1803 #define REG_STR_SIZE 64 1804 1805 static struct regulator *create_regulator(struct regulator_dev *rdev, 1806 struct device *dev, 1807 const char *supply_name) 1808 { 1809 struct regulator *regulator; 1810 int err = 0; 1811 1812 lockdep_assert_held_once(&rdev->mutex.base); 1813 1814 if (dev) { 1815 char buf[REG_STR_SIZE]; 1816 int size; 1817 1818 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1819 dev->kobj.name, supply_name); 1820 if (size >= REG_STR_SIZE) 1821 return NULL; 1822 1823 supply_name = kstrdup(buf, GFP_KERNEL); 1824 if (supply_name == NULL) 1825 return NULL; 1826 } else { 1827 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1828 if (supply_name == NULL) 1829 return NULL; 1830 } 1831 1832 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1833 if (regulator == NULL) { 1834 kfree_const(supply_name); 1835 return NULL; 1836 } 1837 1838 regulator->rdev = rdev; 1839 regulator->supply_name = supply_name; 1840 1841 list_add(®ulator->list, &rdev->consumer_list); 1842 1843 if (dev) { 1844 regulator->dev = dev; 1845 1846 /* Add a link to the device sysfs entry */ 1847 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1848 supply_name); 1849 if (err) { 1850 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1851 dev->kobj.name, ERR_PTR(err)); 1852 /* non-fatal */ 1853 } 1854 } 1855 1856 if (err != -EEXIST) { 1857 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1858 if (IS_ERR(regulator->debugfs)) { 1859 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1860 regulator->debugfs = NULL; 1861 } 1862 } 1863 1864 if (regulator->debugfs) { 1865 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1866 ®ulator->uA_load); 1867 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1868 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1869 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1870 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1871 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1872 regulator, &constraint_flags_fops); 1873 } 1874 1875 /* 1876 * Check now if the regulator is an always on regulator - if 1877 * it is then we don't need to do nearly so much work for 1878 * enable/disable calls. 1879 */ 1880 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1881 _regulator_is_enabled(rdev)) 1882 regulator->always_on = true; 1883 1884 return regulator; 1885 } 1886 1887 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1888 { 1889 if (rdev->constraints && rdev->constraints->enable_time) 1890 return rdev->constraints->enable_time; 1891 if (rdev->desc->ops->enable_time) 1892 return rdev->desc->ops->enable_time(rdev); 1893 return rdev->desc->enable_time; 1894 } 1895 1896 static struct regulator_supply_alias *regulator_find_supply_alias( 1897 struct device *dev, const char *supply) 1898 { 1899 struct regulator_supply_alias *map; 1900 1901 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1902 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1903 return map; 1904 1905 return NULL; 1906 } 1907 1908 static void regulator_supply_alias(struct device **dev, const char **supply) 1909 { 1910 struct regulator_supply_alias *map; 1911 1912 map = regulator_find_supply_alias(*dev, *supply); 1913 if (map) { 1914 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1915 *supply, map->alias_supply, 1916 dev_name(map->alias_dev)); 1917 *dev = map->alias_dev; 1918 *supply = map->alias_supply; 1919 } 1920 } 1921 1922 static int regulator_match(struct device *dev, const void *data) 1923 { 1924 struct regulator_dev *r = dev_to_rdev(dev); 1925 1926 return strcmp(rdev_get_name(r), data) == 0; 1927 } 1928 1929 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1930 { 1931 struct device *dev; 1932 1933 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1934 1935 return dev ? dev_to_rdev(dev) : NULL; 1936 } 1937 1938 /** 1939 * regulator_dev_lookup - lookup a regulator device. 1940 * @dev: device for regulator "consumer". 1941 * @supply: Supply name or regulator ID. 1942 * 1943 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number. 1944 * 1945 * If successful, returns a struct regulator_dev that corresponds to the name 1946 * @supply and with the embedded struct device refcount incremented by one. 1947 * The refcount must be dropped by calling put_device(). 1948 * On failure one of the following ERR_PTR() encoded values is returned: 1949 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed 1950 * in the future. 1951 */ 1952 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1953 const char *supply) 1954 { 1955 struct regulator_dev *r = NULL; 1956 struct regulator_map *map; 1957 const char *devname = NULL; 1958 1959 regulator_supply_alias(&dev, &supply); 1960 1961 /* first do a dt based lookup */ 1962 if (dev && dev->of_node) { 1963 r = of_regulator_dev_lookup(dev, supply); 1964 if (!IS_ERR(r)) 1965 return r; 1966 if (PTR_ERR(r) == -EPROBE_DEFER) 1967 return r; 1968 1969 if (PTR_ERR(r) == -ENODEV) 1970 r = NULL; 1971 } 1972 1973 /* if not found, try doing it non-dt way */ 1974 if (dev) 1975 devname = dev_name(dev); 1976 1977 mutex_lock(®ulator_list_mutex); 1978 list_for_each_entry(map, ®ulator_map_list, list) { 1979 /* If the mapping has a device set up it must match */ 1980 if (map->dev_name && 1981 (!devname || strcmp(map->dev_name, devname))) 1982 continue; 1983 1984 if (strcmp(map->supply, supply) == 0 && 1985 get_device(&map->regulator->dev)) { 1986 r = map->regulator; 1987 break; 1988 } 1989 } 1990 mutex_unlock(®ulator_list_mutex); 1991 1992 if (r) 1993 return r; 1994 1995 r = regulator_lookup_by_name(supply); 1996 if (r) 1997 return r; 1998 1999 return ERR_PTR(-ENODEV); 2000 } 2001 2002 static int regulator_resolve_supply(struct regulator_dev *rdev) 2003 { 2004 struct regulator_dev *r; 2005 struct device *dev = rdev->dev.parent; 2006 struct ww_acquire_ctx ww_ctx; 2007 int ret = 0; 2008 2009 /* No supply to resolve? */ 2010 if (!rdev->supply_name) 2011 return 0; 2012 2013 /* Supply already resolved? (fast-path without locking contention) */ 2014 if (rdev->supply) 2015 return 0; 2016 2017 r = regulator_dev_lookup(dev, rdev->supply_name); 2018 if (IS_ERR(r)) { 2019 ret = PTR_ERR(r); 2020 2021 /* Did the lookup explicitly defer for us? */ 2022 if (ret == -EPROBE_DEFER) 2023 goto out; 2024 2025 if (have_full_constraints()) { 2026 r = dummy_regulator_rdev; 2027 get_device(&r->dev); 2028 } else { 2029 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2030 rdev->supply_name, rdev->desc->name); 2031 ret = -EPROBE_DEFER; 2032 goto out; 2033 } 2034 } 2035 2036 if (r == rdev) { 2037 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2038 rdev->desc->name, rdev->supply_name); 2039 if (!have_full_constraints()) { 2040 ret = -EINVAL; 2041 goto out; 2042 } 2043 r = dummy_regulator_rdev; 2044 get_device(&r->dev); 2045 } 2046 2047 /* 2048 * If the supply's parent device is not the same as the 2049 * regulator's parent device, then ensure the parent device 2050 * is bound before we resolve the supply, in case the parent 2051 * device get probe deferred and unregisters the supply. 2052 */ 2053 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2054 if (!device_is_bound(r->dev.parent)) { 2055 put_device(&r->dev); 2056 ret = -EPROBE_DEFER; 2057 goto out; 2058 } 2059 } 2060 2061 /* Recursively resolve the supply of the supply */ 2062 ret = regulator_resolve_supply(r); 2063 if (ret < 0) { 2064 put_device(&r->dev); 2065 goto out; 2066 } 2067 2068 /* 2069 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2070 * between rdev->supply null check and setting rdev->supply in 2071 * set_supply() from concurrent tasks. 2072 */ 2073 regulator_lock_two(rdev, r, &ww_ctx); 2074 2075 /* Supply just resolved by a concurrent task? */ 2076 if (rdev->supply) { 2077 regulator_unlock_two(rdev, r, &ww_ctx); 2078 put_device(&r->dev); 2079 goto out; 2080 } 2081 2082 ret = set_supply(rdev, r); 2083 if (ret < 0) { 2084 regulator_unlock_two(rdev, r, &ww_ctx); 2085 put_device(&r->dev); 2086 goto out; 2087 } 2088 2089 regulator_unlock_two(rdev, r, &ww_ctx); 2090 2091 /* 2092 * In set_machine_constraints() we may have turned this regulator on 2093 * but we couldn't propagate to the supply if it hadn't been resolved 2094 * yet. Do it now. 2095 */ 2096 if (rdev->use_count) { 2097 ret = regulator_enable(rdev->supply); 2098 if (ret < 0) { 2099 _regulator_put(rdev->supply); 2100 rdev->supply = NULL; 2101 goto out; 2102 } 2103 } 2104 2105 out: 2106 return ret; 2107 } 2108 2109 /* common pre-checks for regulator requests */ 2110 int _regulator_get_common_check(struct device *dev, const char *id, 2111 enum regulator_get_type get_type) 2112 { 2113 if (get_type >= MAX_GET_TYPE) { 2114 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2115 return -EINVAL; 2116 } 2117 2118 if (id == NULL) { 2119 dev_err(dev, "regulator request with no identifier\n"); 2120 return -EINVAL; 2121 } 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * _regulator_get_common - Common code for regulator requests 2128 * @rdev: regulator device pointer as returned by *regulator_dev_lookup() 2129 * Its reference count is expected to have been incremented. 2130 * @dev: device used for dev_printk messages 2131 * @id: Supply name or regulator ID 2132 * @get_type: enum regulator_get_type value corresponding to type of request 2133 * 2134 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR() 2135 * encoded error. 2136 * 2137 * This function should be chained with *regulator_dev_lookup() functions. 2138 */ 2139 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev, 2140 const char *id, enum regulator_get_type get_type) 2141 { 2142 struct regulator *regulator; 2143 struct device_link *link; 2144 int ret; 2145 2146 if (IS_ERR(rdev)) { 2147 ret = PTR_ERR(rdev); 2148 2149 /* 2150 * If regulator_dev_lookup() fails with error other 2151 * than -ENODEV our job here is done, we simply return it. 2152 */ 2153 if (ret != -ENODEV) 2154 return ERR_PTR(ret); 2155 2156 if (!have_full_constraints()) { 2157 dev_warn(dev, 2158 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); 2159 return ERR_PTR(-ENODEV); 2160 } 2161 2162 switch (get_type) { 2163 case NORMAL_GET: 2164 /* 2165 * Assume that a regulator is physically present and 2166 * enabled, even if it isn't hooked up, and just 2167 * provide a dummy. 2168 */ 2169 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2170 rdev = dummy_regulator_rdev; 2171 get_device(&rdev->dev); 2172 break; 2173 2174 case EXCLUSIVE_GET: 2175 dev_warn(dev, 2176 "dummy supplies not allowed for exclusive requests (id=%s)\n", id); 2177 fallthrough; 2178 2179 default: 2180 return ERR_PTR(-ENODEV); 2181 } 2182 } 2183 2184 if (rdev->exclusive) { 2185 regulator = ERR_PTR(-EPERM); 2186 put_device(&rdev->dev); 2187 return regulator; 2188 } 2189 2190 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2191 regulator = ERR_PTR(-EBUSY); 2192 put_device(&rdev->dev); 2193 return regulator; 2194 } 2195 2196 mutex_lock(®ulator_list_mutex); 2197 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2198 mutex_unlock(®ulator_list_mutex); 2199 2200 if (ret != 0) { 2201 regulator = ERR_PTR(-EPROBE_DEFER); 2202 put_device(&rdev->dev); 2203 return regulator; 2204 } 2205 2206 ret = regulator_resolve_supply(rdev); 2207 if (ret < 0) { 2208 regulator = ERR_PTR(ret); 2209 put_device(&rdev->dev); 2210 return regulator; 2211 } 2212 2213 if (!try_module_get(rdev->owner)) { 2214 regulator = ERR_PTR(-EPROBE_DEFER); 2215 put_device(&rdev->dev); 2216 return regulator; 2217 } 2218 2219 regulator_lock(rdev); 2220 regulator = create_regulator(rdev, dev, id); 2221 regulator_unlock(rdev); 2222 if (regulator == NULL) { 2223 regulator = ERR_PTR(-ENOMEM); 2224 module_put(rdev->owner); 2225 put_device(&rdev->dev); 2226 return regulator; 2227 } 2228 2229 rdev->open_count++; 2230 if (get_type == EXCLUSIVE_GET) { 2231 rdev->exclusive = 1; 2232 2233 ret = _regulator_is_enabled(rdev); 2234 if (ret > 0) { 2235 rdev->use_count = 1; 2236 regulator->enable_count = 1; 2237 2238 /* Propagate the regulator state to its supply */ 2239 if (rdev->supply) { 2240 ret = regulator_enable(rdev->supply); 2241 if (ret < 0) { 2242 destroy_regulator(regulator); 2243 module_put(rdev->owner); 2244 put_device(&rdev->dev); 2245 return ERR_PTR(ret); 2246 } 2247 } 2248 } else { 2249 rdev->use_count = 0; 2250 regulator->enable_count = 0; 2251 } 2252 } 2253 2254 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2255 if (!IS_ERR_OR_NULL(link)) 2256 regulator->device_link = true; 2257 2258 return regulator; 2259 } 2260 2261 /* Internal regulator request function */ 2262 struct regulator *_regulator_get(struct device *dev, const char *id, 2263 enum regulator_get_type get_type) 2264 { 2265 struct regulator_dev *rdev; 2266 int ret; 2267 2268 ret = _regulator_get_common_check(dev, id, get_type); 2269 if (ret) 2270 return ERR_PTR(ret); 2271 2272 rdev = regulator_dev_lookup(dev, id); 2273 return _regulator_get_common(rdev, dev, id, get_type); 2274 } 2275 2276 /** 2277 * regulator_get - lookup and obtain a reference to a regulator. 2278 * @dev: device for regulator "consumer" 2279 * @id: Supply name or regulator ID. 2280 * 2281 * Use of supply names configured via set_consumer_device_supply() is 2282 * strongly encouraged. It is recommended that the supply name used 2283 * should match the name used for the supply and/or the relevant 2284 * device pins in the datasheet. 2285 * 2286 * Return: Pointer to a &struct regulator corresponding to the regulator 2287 * producer, or an ERR_PTR() encoded negative error number. 2288 */ 2289 struct regulator *regulator_get(struct device *dev, const char *id) 2290 { 2291 return _regulator_get(dev, id, NORMAL_GET); 2292 } 2293 EXPORT_SYMBOL_GPL(regulator_get); 2294 2295 /** 2296 * regulator_get_exclusive - obtain exclusive access to a regulator. 2297 * @dev: device for regulator "consumer" 2298 * @id: Supply name or regulator ID. 2299 * 2300 * Other consumers will be unable to obtain this regulator while this 2301 * reference is held and the use count for the regulator will be 2302 * initialised to reflect the current state of the regulator. 2303 * 2304 * This is intended for use by consumers which cannot tolerate shared 2305 * use of the regulator such as those which need to force the 2306 * regulator off for correct operation of the hardware they are 2307 * controlling. 2308 * 2309 * Use of supply names configured via set_consumer_device_supply() is 2310 * strongly encouraged. It is recommended that the supply name used 2311 * should match the name used for the supply and/or the relevant 2312 * device pins in the datasheet. 2313 * 2314 * Return: Pointer to a &struct regulator corresponding to the regulator 2315 * producer, or an ERR_PTR() encoded negative error number. 2316 */ 2317 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2318 { 2319 return _regulator_get(dev, id, EXCLUSIVE_GET); 2320 } 2321 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2322 2323 /** 2324 * regulator_get_optional - obtain optional access to a regulator. 2325 * @dev: device for regulator "consumer" 2326 * @id: Supply name or regulator ID. 2327 * 2328 * This is intended for use by consumers for devices which can have 2329 * some supplies unconnected in normal use, such as some MMC devices. 2330 * It can allow the regulator core to provide stub supplies for other 2331 * supplies requested using normal regulator_get() calls without 2332 * disrupting the operation of drivers that can handle absent 2333 * supplies. 2334 * 2335 * Use of supply names configured via set_consumer_device_supply() is 2336 * strongly encouraged. It is recommended that the supply name used 2337 * should match the name used for the supply and/or the relevant 2338 * device pins in the datasheet. 2339 * 2340 * Return: Pointer to a &struct regulator corresponding to the regulator 2341 * producer, or an ERR_PTR() encoded negative error number. 2342 */ 2343 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2344 { 2345 return _regulator_get(dev, id, OPTIONAL_GET); 2346 } 2347 EXPORT_SYMBOL_GPL(regulator_get_optional); 2348 2349 static void destroy_regulator(struct regulator *regulator) 2350 { 2351 struct regulator_dev *rdev = regulator->rdev; 2352 2353 debugfs_remove_recursive(regulator->debugfs); 2354 2355 if (regulator->dev) { 2356 if (regulator->device_link) 2357 device_link_remove(regulator->dev, &rdev->dev); 2358 2359 /* remove any sysfs entries */ 2360 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2361 } 2362 2363 regulator_lock(rdev); 2364 list_del(®ulator->list); 2365 2366 rdev->open_count--; 2367 rdev->exclusive = 0; 2368 regulator_unlock(rdev); 2369 2370 kfree_const(regulator->supply_name); 2371 kfree(regulator); 2372 } 2373 2374 /* regulator_list_mutex lock held by regulator_put() */ 2375 static void _regulator_put(struct regulator *regulator) 2376 { 2377 struct regulator_dev *rdev; 2378 2379 if (IS_ERR_OR_NULL(regulator)) 2380 return; 2381 2382 lockdep_assert_held_once(®ulator_list_mutex); 2383 2384 /* Docs say you must disable before calling regulator_put() */ 2385 WARN_ON(regulator->enable_count); 2386 2387 rdev = regulator->rdev; 2388 2389 destroy_regulator(regulator); 2390 2391 module_put(rdev->owner); 2392 put_device(&rdev->dev); 2393 } 2394 2395 /** 2396 * regulator_put - "free" the regulator source 2397 * @regulator: regulator source 2398 * 2399 * Note: drivers must ensure that all regulator_enable calls made on this 2400 * regulator source are balanced by regulator_disable calls prior to calling 2401 * this function. 2402 */ 2403 void regulator_put(struct regulator *regulator) 2404 { 2405 mutex_lock(®ulator_list_mutex); 2406 _regulator_put(regulator); 2407 mutex_unlock(®ulator_list_mutex); 2408 } 2409 EXPORT_SYMBOL_GPL(regulator_put); 2410 2411 /** 2412 * regulator_register_supply_alias - Provide device alias for supply lookup 2413 * 2414 * @dev: device that will be given as the regulator "consumer" 2415 * @id: Supply name or regulator ID 2416 * @alias_dev: device that should be used to lookup the supply 2417 * @alias_id: Supply name or regulator ID that should be used to lookup the 2418 * supply 2419 * 2420 * All lookups for id on dev will instead be conducted for alias_id on 2421 * alias_dev. 2422 * 2423 * Return: 0 on success or a negative error number on failure. 2424 */ 2425 int regulator_register_supply_alias(struct device *dev, const char *id, 2426 struct device *alias_dev, 2427 const char *alias_id) 2428 { 2429 struct regulator_supply_alias *map; 2430 2431 map = regulator_find_supply_alias(dev, id); 2432 if (map) 2433 return -EEXIST; 2434 2435 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2436 if (!map) 2437 return -ENOMEM; 2438 2439 map->src_dev = dev; 2440 map->src_supply = id; 2441 map->alias_dev = alias_dev; 2442 map->alias_supply = alias_id; 2443 2444 list_add(&map->list, ®ulator_supply_alias_list); 2445 2446 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2447 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2448 2449 return 0; 2450 } 2451 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2452 2453 /** 2454 * regulator_unregister_supply_alias - Remove device alias 2455 * 2456 * @dev: device that will be given as the regulator "consumer" 2457 * @id: Supply name or regulator ID 2458 * 2459 * Remove a lookup alias if one exists for id on dev. 2460 */ 2461 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2462 { 2463 struct regulator_supply_alias *map; 2464 2465 map = regulator_find_supply_alias(dev, id); 2466 if (map) { 2467 list_del(&map->list); 2468 kfree(map); 2469 } 2470 } 2471 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2472 2473 /** 2474 * regulator_bulk_register_supply_alias - register multiple aliases 2475 * 2476 * @dev: device that will be given as the regulator "consumer" 2477 * @id: List of supply names or regulator IDs 2478 * @alias_dev: device that should be used to lookup the supply 2479 * @alias_id: List of supply names or regulator IDs that should be used to 2480 * lookup the supply 2481 * @num_id: Number of aliases to register 2482 * 2483 * This helper function allows drivers to register several supply 2484 * aliases in one operation. If any of the aliases cannot be 2485 * registered any aliases that were registered will be removed 2486 * before returning to the caller. 2487 * 2488 * Return: 0 on success or a negative error number on failure. 2489 */ 2490 int regulator_bulk_register_supply_alias(struct device *dev, 2491 const char *const *id, 2492 struct device *alias_dev, 2493 const char *const *alias_id, 2494 int num_id) 2495 { 2496 int i; 2497 int ret; 2498 2499 for (i = 0; i < num_id; ++i) { 2500 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2501 alias_id[i]); 2502 if (ret < 0) 2503 goto err; 2504 } 2505 2506 return 0; 2507 2508 err: 2509 dev_err(dev, 2510 "Failed to create supply alias %s,%s -> %s,%s\n", 2511 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2512 2513 while (--i >= 0) 2514 regulator_unregister_supply_alias(dev, id[i]); 2515 2516 return ret; 2517 } 2518 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2519 2520 /** 2521 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2522 * 2523 * @dev: device that will be given as the regulator "consumer" 2524 * @id: List of supply names or regulator IDs 2525 * @num_id: Number of aliases to unregister 2526 * 2527 * This helper function allows drivers to unregister several supply 2528 * aliases in one operation. 2529 */ 2530 void regulator_bulk_unregister_supply_alias(struct device *dev, 2531 const char *const *id, 2532 int num_id) 2533 { 2534 int i; 2535 2536 for (i = 0; i < num_id; ++i) 2537 regulator_unregister_supply_alias(dev, id[i]); 2538 } 2539 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2540 2541 2542 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2543 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2544 const struct regulator_config *config) 2545 { 2546 struct regulator_enable_gpio *pin, *new_pin; 2547 struct gpio_desc *gpiod; 2548 2549 gpiod = config->ena_gpiod; 2550 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2551 2552 mutex_lock(®ulator_list_mutex); 2553 2554 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2555 if (pin->gpiod == gpiod) { 2556 rdev_dbg(rdev, "GPIO is already used\n"); 2557 goto update_ena_gpio_to_rdev; 2558 } 2559 } 2560 2561 if (new_pin == NULL) { 2562 mutex_unlock(®ulator_list_mutex); 2563 return -ENOMEM; 2564 } 2565 2566 pin = new_pin; 2567 new_pin = NULL; 2568 2569 pin->gpiod = gpiod; 2570 list_add(&pin->list, ®ulator_ena_gpio_list); 2571 2572 update_ena_gpio_to_rdev: 2573 pin->request_count++; 2574 rdev->ena_pin = pin; 2575 2576 mutex_unlock(®ulator_list_mutex); 2577 kfree(new_pin); 2578 2579 return 0; 2580 } 2581 2582 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2583 { 2584 struct regulator_enable_gpio *pin, *n; 2585 2586 if (!rdev->ena_pin) 2587 return; 2588 2589 /* Free the GPIO only in case of no use */ 2590 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2591 if (pin != rdev->ena_pin) 2592 continue; 2593 2594 if (--pin->request_count) 2595 break; 2596 2597 gpiod_put(pin->gpiod); 2598 list_del(&pin->list); 2599 kfree(pin); 2600 break; 2601 } 2602 2603 rdev->ena_pin = NULL; 2604 } 2605 2606 /** 2607 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2608 * @rdev: regulator_dev structure 2609 * @enable: enable GPIO at initial use? 2610 * 2611 * GPIO is enabled in case of initial use. (enable_count is 0) 2612 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2613 * 2614 * Return: 0 on success or a negative error number on failure. 2615 */ 2616 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2617 { 2618 struct regulator_enable_gpio *pin = rdev->ena_pin; 2619 2620 if (!pin) 2621 return -EINVAL; 2622 2623 if (enable) { 2624 /* Enable GPIO at initial use */ 2625 if (pin->enable_count == 0) 2626 gpiod_set_value_cansleep(pin->gpiod, 1); 2627 2628 pin->enable_count++; 2629 } else { 2630 if (pin->enable_count > 1) { 2631 pin->enable_count--; 2632 return 0; 2633 } 2634 2635 /* Disable GPIO if not used */ 2636 if (pin->enable_count <= 1) { 2637 gpiod_set_value_cansleep(pin->gpiod, 0); 2638 pin->enable_count = 0; 2639 } 2640 } 2641 2642 return 0; 2643 } 2644 2645 /** 2646 * _regulator_delay_helper - a delay helper function 2647 * @delay: time to delay in microseconds 2648 * 2649 * Delay for the requested amount of time as per the guidelines in: 2650 * 2651 * Documentation/timers/timers-howto.rst 2652 * 2653 * The assumption here is that these regulator operations will never used in 2654 * atomic context and therefore sleeping functions can be used. 2655 */ 2656 static void _regulator_delay_helper(unsigned int delay) 2657 { 2658 unsigned int ms = delay / 1000; 2659 unsigned int us = delay % 1000; 2660 2661 if (ms > 0) { 2662 /* 2663 * For small enough values, handle super-millisecond 2664 * delays in the usleep_range() call below. 2665 */ 2666 if (ms < 20) 2667 us += ms * 1000; 2668 else 2669 msleep(ms); 2670 } 2671 2672 /* 2673 * Give the scheduler some room to coalesce with any other 2674 * wakeup sources. For delays shorter than 10 us, don't even 2675 * bother setting up high-resolution timers and just busy- 2676 * loop. 2677 */ 2678 if (us >= 10) 2679 usleep_range(us, us + 100); 2680 else 2681 udelay(us); 2682 } 2683 2684 /** 2685 * _regulator_check_status_enabled - check if regulator status can be 2686 * interpreted as "regulator is enabled" 2687 * @rdev: the regulator device to check 2688 * 2689 * Return: 2690 * * 1 - if status shows regulator is in enabled state 2691 * * 0 - if not enabled state 2692 * * Error Value - as received from ops->get_status() 2693 */ 2694 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2695 { 2696 int ret = rdev->desc->ops->get_status(rdev); 2697 2698 if (ret < 0) { 2699 rdev_info(rdev, "get_status returned error: %d\n", ret); 2700 return ret; 2701 } 2702 2703 switch (ret) { 2704 case REGULATOR_STATUS_OFF: 2705 case REGULATOR_STATUS_ERROR: 2706 case REGULATOR_STATUS_UNDEFINED: 2707 return 0; 2708 default: 2709 return 1; 2710 } 2711 } 2712 2713 static int _regulator_do_enable(struct regulator_dev *rdev) 2714 { 2715 int ret, delay; 2716 2717 /* Query before enabling in case configuration dependent. */ 2718 ret = _regulator_get_enable_time(rdev); 2719 if (ret >= 0) { 2720 delay = ret; 2721 } else { 2722 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2723 delay = 0; 2724 } 2725 2726 trace_regulator_enable(rdev_get_name(rdev)); 2727 2728 if (rdev->desc->off_on_delay) { 2729 /* if needed, keep a distance of off_on_delay from last time 2730 * this regulator was disabled. 2731 */ 2732 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2733 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2734 2735 if (remaining > 0) 2736 _regulator_delay_helper(remaining); 2737 } 2738 2739 if (rdev->ena_pin) { 2740 if (!rdev->ena_gpio_state) { 2741 ret = regulator_ena_gpio_ctrl(rdev, true); 2742 if (ret < 0) 2743 return ret; 2744 rdev->ena_gpio_state = 1; 2745 } 2746 } else if (rdev->desc->ops->enable) { 2747 ret = rdev->desc->ops->enable(rdev); 2748 if (ret < 0) 2749 return ret; 2750 } else { 2751 return -EINVAL; 2752 } 2753 2754 /* Allow the regulator to ramp; it would be useful to extend 2755 * this for bulk operations so that the regulators can ramp 2756 * together. 2757 */ 2758 trace_regulator_enable_delay(rdev_get_name(rdev)); 2759 2760 /* If poll_enabled_time is set, poll upto the delay calculated 2761 * above, delaying poll_enabled_time uS to check if the regulator 2762 * actually got enabled. 2763 * If the regulator isn't enabled after our delay helper has expired, 2764 * return -ETIMEDOUT. 2765 */ 2766 if (rdev->desc->poll_enabled_time) { 2767 int time_remaining = delay; 2768 2769 while (time_remaining > 0) { 2770 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2771 2772 if (rdev->desc->ops->get_status) { 2773 ret = _regulator_check_status_enabled(rdev); 2774 if (ret < 0) 2775 return ret; 2776 else if (ret) 2777 break; 2778 } else if (rdev->desc->ops->is_enabled(rdev)) 2779 break; 2780 2781 time_remaining -= rdev->desc->poll_enabled_time; 2782 } 2783 2784 if (time_remaining <= 0) { 2785 rdev_err(rdev, "Enabled check timed out\n"); 2786 return -ETIMEDOUT; 2787 } 2788 } else { 2789 _regulator_delay_helper(delay); 2790 } 2791 2792 trace_regulator_enable_complete(rdev_get_name(rdev)); 2793 2794 return 0; 2795 } 2796 2797 /** 2798 * _regulator_handle_consumer_enable - handle that a consumer enabled 2799 * @regulator: regulator source 2800 * 2801 * Some things on a regulator consumer (like the contribution towards total 2802 * load on the regulator) only have an effect when the consumer wants the 2803 * regulator enabled. Explained in example with two consumers of the same 2804 * regulator: 2805 * consumer A: set_load(100); => total load = 0 2806 * consumer A: regulator_enable(); => total load = 100 2807 * consumer B: set_load(1000); => total load = 100 2808 * consumer B: regulator_enable(); => total load = 1100 2809 * consumer A: regulator_disable(); => total_load = 1000 2810 * 2811 * This function (together with _regulator_handle_consumer_disable) is 2812 * responsible for keeping track of the refcount for a given regulator consumer 2813 * and applying / unapplying these things. 2814 * 2815 * Return: 0 on success or negative error number on failure. 2816 */ 2817 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2818 { 2819 int ret; 2820 struct regulator_dev *rdev = regulator->rdev; 2821 2822 lockdep_assert_held_once(&rdev->mutex.base); 2823 2824 regulator->enable_count++; 2825 if (regulator->uA_load && regulator->enable_count == 1) { 2826 ret = drms_uA_update(rdev); 2827 if (ret) 2828 regulator->enable_count--; 2829 return ret; 2830 } 2831 2832 return 0; 2833 } 2834 2835 /** 2836 * _regulator_handle_consumer_disable - handle that a consumer disabled 2837 * @regulator: regulator source 2838 * 2839 * The opposite of _regulator_handle_consumer_enable(). 2840 * 2841 * Return: 0 on success or a negative error number on failure. 2842 */ 2843 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2844 { 2845 struct regulator_dev *rdev = regulator->rdev; 2846 2847 lockdep_assert_held_once(&rdev->mutex.base); 2848 2849 if (!regulator->enable_count) { 2850 rdev_err(rdev, "Underflow of regulator enable count\n"); 2851 return -EINVAL; 2852 } 2853 2854 regulator->enable_count--; 2855 if (regulator->uA_load && regulator->enable_count == 0) 2856 return drms_uA_update(rdev); 2857 2858 return 0; 2859 } 2860 2861 /* locks held by regulator_enable() */ 2862 static int _regulator_enable(struct regulator *regulator) 2863 { 2864 struct regulator_dev *rdev = regulator->rdev; 2865 int ret; 2866 2867 lockdep_assert_held_once(&rdev->mutex.base); 2868 2869 if (rdev->use_count == 0 && rdev->supply) { 2870 ret = _regulator_enable(rdev->supply); 2871 if (ret < 0) 2872 return ret; 2873 } 2874 2875 /* balance only if there are regulators coupled */ 2876 if (rdev->coupling_desc.n_coupled > 1) { 2877 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2878 if (ret < 0) 2879 goto err_disable_supply; 2880 } 2881 2882 ret = _regulator_handle_consumer_enable(regulator); 2883 if (ret < 0) 2884 goto err_disable_supply; 2885 2886 if (rdev->use_count == 0) { 2887 /* 2888 * The regulator may already be enabled if it's not switchable 2889 * or was left on 2890 */ 2891 ret = _regulator_is_enabled(rdev); 2892 if (ret == -EINVAL || ret == 0) { 2893 if (!regulator_ops_is_valid(rdev, 2894 REGULATOR_CHANGE_STATUS)) { 2895 ret = -EPERM; 2896 goto err_consumer_disable; 2897 } 2898 2899 ret = _regulator_do_enable(rdev); 2900 if (ret < 0) 2901 goto err_consumer_disable; 2902 2903 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2904 NULL); 2905 } else if (ret < 0) { 2906 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2907 goto err_consumer_disable; 2908 } 2909 /* Fallthrough on positive return values - already enabled */ 2910 } 2911 2912 if (regulator->enable_count == 1) 2913 rdev->use_count++; 2914 2915 return 0; 2916 2917 err_consumer_disable: 2918 _regulator_handle_consumer_disable(regulator); 2919 2920 err_disable_supply: 2921 if (rdev->use_count == 0 && rdev->supply) 2922 _regulator_disable(rdev->supply); 2923 2924 return ret; 2925 } 2926 2927 /** 2928 * regulator_enable - enable regulator output 2929 * @regulator: regulator source 2930 * 2931 * Request that the regulator be enabled with the regulator output at 2932 * the predefined voltage or current value. Calls to regulator_enable() 2933 * must be balanced with calls to regulator_disable(). 2934 * 2935 * NOTE: the output value can be set by other drivers, boot loader or may be 2936 * hardwired in the regulator. 2937 * 2938 * Return: 0 on success or a negative error number on failure. 2939 */ 2940 int regulator_enable(struct regulator *regulator) 2941 { 2942 struct regulator_dev *rdev = regulator->rdev; 2943 struct ww_acquire_ctx ww_ctx; 2944 int ret; 2945 2946 regulator_lock_dependent(rdev, &ww_ctx); 2947 ret = _regulator_enable(regulator); 2948 regulator_unlock_dependent(rdev, &ww_ctx); 2949 2950 return ret; 2951 } 2952 EXPORT_SYMBOL_GPL(regulator_enable); 2953 2954 static int _regulator_do_disable(struct regulator_dev *rdev) 2955 { 2956 int ret; 2957 2958 trace_regulator_disable(rdev_get_name(rdev)); 2959 2960 if (rdev->ena_pin) { 2961 if (rdev->ena_gpio_state) { 2962 ret = regulator_ena_gpio_ctrl(rdev, false); 2963 if (ret < 0) 2964 return ret; 2965 rdev->ena_gpio_state = 0; 2966 } 2967 2968 } else if (rdev->desc->ops->disable) { 2969 ret = rdev->desc->ops->disable(rdev); 2970 if (ret != 0) 2971 return ret; 2972 } 2973 2974 if (rdev->desc->off_on_delay) 2975 rdev->last_off = ktime_get_boottime(); 2976 2977 trace_regulator_disable_complete(rdev_get_name(rdev)); 2978 2979 return 0; 2980 } 2981 2982 /* locks held by regulator_disable() */ 2983 static int _regulator_disable(struct regulator *regulator) 2984 { 2985 struct regulator_dev *rdev = regulator->rdev; 2986 int ret = 0; 2987 2988 lockdep_assert_held_once(&rdev->mutex.base); 2989 2990 if (WARN(regulator->enable_count == 0, 2991 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2992 return -EIO; 2993 2994 if (regulator->enable_count == 1) { 2995 /* disabling last enable_count from this regulator */ 2996 /* are we the last user and permitted to disable ? */ 2997 if (rdev->use_count == 1 && 2998 (rdev->constraints && !rdev->constraints->always_on)) { 2999 3000 /* we are last user */ 3001 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3002 ret = _notifier_call_chain(rdev, 3003 REGULATOR_EVENT_PRE_DISABLE, 3004 NULL); 3005 if (ret & NOTIFY_STOP_MASK) 3006 return -EINVAL; 3007 3008 ret = _regulator_do_disable(rdev); 3009 if (ret < 0) { 3010 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3011 _notifier_call_chain(rdev, 3012 REGULATOR_EVENT_ABORT_DISABLE, 3013 NULL); 3014 return ret; 3015 } 3016 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3017 NULL); 3018 } 3019 3020 rdev->use_count = 0; 3021 } else if (rdev->use_count > 1) { 3022 rdev->use_count--; 3023 } 3024 } 3025 3026 if (ret == 0) 3027 ret = _regulator_handle_consumer_disable(regulator); 3028 3029 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3030 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3031 3032 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3033 ret = _regulator_disable(rdev->supply); 3034 3035 return ret; 3036 } 3037 3038 /** 3039 * regulator_disable - disable regulator output 3040 * @regulator: regulator source 3041 * 3042 * Disable the regulator output voltage or current. Calls to 3043 * regulator_enable() must be balanced with calls to 3044 * regulator_disable(). 3045 * 3046 * NOTE: this will only disable the regulator output if no other consumer 3047 * devices have it enabled, the regulator device supports disabling and 3048 * machine constraints permit this operation. 3049 * 3050 * Return: 0 on success or a negative error number on failure. 3051 */ 3052 int regulator_disable(struct regulator *regulator) 3053 { 3054 struct regulator_dev *rdev = regulator->rdev; 3055 struct ww_acquire_ctx ww_ctx; 3056 int ret; 3057 3058 regulator_lock_dependent(rdev, &ww_ctx); 3059 ret = _regulator_disable(regulator); 3060 regulator_unlock_dependent(rdev, &ww_ctx); 3061 3062 return ret; 3063 } 3064 EXPORT_SYMBOL_GPL(regulator_disable); 3065 3066 /* locks held by regulator_force_disable() */ 3067 static int _regulator_force_disable(struct regulator_dev *rdev) 3068 { 3069 int ret = 0; 3070 3071 lockdep_assert_held_once(&rdev->mutex.base); 3072 3073 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3074 REGULATOR_EVENT_PRE_DISABLE, NULL); 3075 if (ret & NOTIFY_STOP_MASK) 3076 return -EINVAL; 3077 3078 ret = _regulator_do_disable(rdev); 3079 if (ret < 0) { 3080 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3081 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3082 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3083 return ret; 3084 } 3085 3086 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3087 REGULATOR_EVENT_DISABLE, NULL); 3088 3089 return 0; 3090 } 3091 3092 /** 3093 * regulator_force_disable - force disable regulator output 3094 * @regulator: regulator source 3095 * 3096 * Forcibly disable the regulator output voltage or current. 3097 * NOTE: this *will* disable the regulator output even if other consumer 3098 * devices have it enabled. This should be used for situations when device 3099 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3100 * 3101 * Return: 0 on success or a negative error number on failure. 3102 */ 3103 int regulator_force_disable(struct regulator *regulator) 3104 { 3105 struct regulator_dev *rdev = regulator->rdev; 3106 struct ww_acquire_ctx ww_ctx; 3107 int ret; 3108 3109 regulator_lock_dependent(rdev, &ww_ctx); 3110 3111 ret = _regulator_force_disable(regulator->rdev); 3112 3113 if (rdev->coupling_desc.n_coupled > 1) 3114 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3115 3116 if (regulator->uA_load) { 3117 regulator->uA_load = 0; 3118 ret = drms_uA_update(rdev); 3119 } 3120 3121 if (rdev->use_count != 0 && rdev->supply) 3122 _regulator_disable(rdev->supply); 3123 3124 regulator_unlock_dependent(rdev, &ww_ctx); 3125 3126 return ret; 3127 } 3128 EXPORT_SYMBOL_GPL(regulator_force_disable); 3129 3130 static void regulator_disable_work(struct work_struct *work) 3131 { 3132 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3133 disable_work.work); 3134 struct ww_acquire_ctx ww_ctx; 3135 int count, i, ret; 3136 struct regulator *regulator; 3137 int total_count = 0; 3138 3139 regulator_lock_dependent(rdev, &ww_ctx); 3140 3141 /* 3142 * Workqueue functions queue the new work instance while the previous 3143 * work instance is being processed. Cancel the queued work instance 3144 * as the work instance under processing does the job of the queued 3145 * work instance. 3146 */ 3147 cancel_delayed_work(&rdev->disable_work); 3148 3149 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3150 count = regulator->deferred_disables; 3151 3152 if (!count) 3153 continue; 3154 3155 total_count += count; 3156 regulator->deferred_disables = 0; 3157 3158 for (i = 0; i < count; i++) { 3159 ret = _regulator_disable(regulator); 3160 if (ret != 0) 3161 rdev_err(rdev, "Deferred disable failed: %pe\n", 3162 ERR_PTR(ret)); 3163 } 3164 } 3165 WARN_ON(!total_count); 3166 3167 if (rdev->coupling_desc.n_coupled > 1) 3168 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3169 3170 regulator_unlock_dependent(rdev, &ww_ctx); 3171 } 3172 3173 /** 3174 * regulator_disable_deferred - disable regulator output with delay 3175 * @regulator: regulator source 3176 * @ms: milliseconds until the regulator is disabled 3177 * 3178 * Execute regulator_disable() on the regulator after a delay. This 3179 * is intended for use with devices that require some time to quiesce. 3180 * 3181 * NOTE: this will only disable the regulator output if no other consumer 3182 * devices have it enabled, the regulator device supports disabling and 3183 * machine constraints permit this operation. 3184 * 3185 * Return: 0 on success or a negative error number on failure. 3186 */ 3187 int regulator_disable_deferred(struct regulator *regulator, int ms) 3188 { 3189 struct regulator_dev *rdev = regulator->rdev; 3190 3191 if (!ms) 3192 return regulator_disable(regulator); 3193 3194 regulator_lock(rdev); 3195 regulator->deferred_disables++; 3196 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3197 msecs_to_jiffies(ms)); 3198 regulator_unlock(rdev); 3199 3200 return 0; 3201 } 3202 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3203 3204 static int _regulator_is_enabled(struct regulator_dev *rdev) 3205 { 3206 /* A GPIO control always takes precedence */ 3207 if (rdev->ena_pin) 3208 return rdev->ena_gpio_state; 3209 3210 /* If we don't know then assume that the regulator is always on */ 3211 if (!rdev->desc->ops->is_enabled) 3212 return 1; 3213 3214 return rdev->desc->ops->is_enabled(rdev); 3215 } 3216 3217 static int _regulator_list_voltage(struct regulator_dev *rdev, 3218 unsigned selector, int lock) 3219 { 3220 const struct regulator_ops *ops = rdev->desc->ops; 3221 int ret; 3222 3223 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3224 return rdev->desc->fixed_uV; 3225 3226 if (ops->list_voltage) { 3227 if (selector >= rdev->desc->n_voltages) 3228 return -EINVAL; 3229 if (selector < rdev->desc->linear_min_sel) 3230 return 0; 3231 if (lock) 3232 regulator_lock(rdev); 3233 ret = ops->list_voltage(rdev, selector); 3234 if (lock) 3235 regulator_unlock(rdev); 3236 } else if (rdev->is_switch && rdev->supply) { 3237 ret = _regulator_list_voltage(rdev->supply->rdev, 3238 selector, lock); 3239 } else { 3240 return -EINVAL; 3241 } 3242 3243 if (ret > 0) { 3244 if (ret < rdev->constraints->min_uV) 3245 ret = 0; 3246 else if (ret > rdev->constraints->max_uV) 3247 ret = 0; 3248 } 3249 3250 return ret; 3251 } 3252 3253 /** 3254 * regulator_is_enabled - is the regulator output enabled 3255 * @regulator: regulator source 3256 * 3257 * Note that the device backing this regulator handle can have multiple 3258 * users, so it might be enabled even if regulator_enable() was never 3259 * called for this particular source. 3260 * 3261 * Return: Positive if the regulator driver backing the source/client 3262 * has requested that the device be enabled, zero if it hasn't, 3263 * else a negative error number. 3264 */ 3265 int regulator_is_enabled(struct regulator *regulator) 3266 { 3267 int ret; 3268 3269 if (regulator->always_on) 3270 return 1; 3271 3272 regulator_lock(regulator->rdev); 3273 ret = _regulator_is_enabled(regulator->rdev); 3274 regulator_unlock(regulator->rdev); 3275 3276 return ret; 3277 } 3278 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3279 3280 /** 3281 * regulator_count_voltages - count regulator_list_voltage() selectors 3282 * @regulator: regulator source 3283 * 3284 * Return: Number of selectors for @regulator, or negative error number. 3285 * 3286 * Selectors are numbered starting at zero, and typically correspond to 3287 * bitfields in hardware registers. 3288 */ 3289 int regulator_count_voltages(struct regulator *regulator) 3290 { 3291 struct regulator_dev *rdev = regulator->rdev; 3292 3293 if (rdev->desc->n_voltages) 3294 return rdev->desc->n_voltages; 3295 3296 if (!rdev->is_switch || !rdev->supply) 3297 return -EINVAL; 3298 3299 return regulator_count_voltages(rdev->supply); 3300 } 3301 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3302 3303 /** 3304 * regulator_list_voltage - enumerate supported voltages 3305 * @regulator: regulator source 3306 * @selector: identify voltage to list 3307 * Context: can sleep 3308 * 3309 * Return: Voltage for @selector that can be passed to regulator_set_voltage(), 3310 * 0 if @selector can't be used on this system, or a negative error 3311 * number on failure. 3312 */ 3313 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3314 { 3315 return _regulator_list_voltage(regulator->rdev, selector, 1); 3316 } 3317 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3318 3319 /** 3320 * regulator_get_regmap - get the regulator's register map 3321 * @regulator: regulator source 3322 * 3323 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR() 3324 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap. 3325 */ 3326 struct regmap *regulator_get_regmap(struct regulator *regulator) 3327 { 3328 struct regmap *map = regulator->rdev->regmap; 3329 3330 return map ? map : ERR_PTR(-EOPNOTSUPP); 3331 } 3332 EXPORT_SYMBOL_GPL(regulator_get_regmap); 3333 3334 /** 3335 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3336 * @regulator: regulator source 3337 * @vsel_reg: voltage selector register, output parameter 3338 * @vsel_mask: mask for voltage selector bitfield, output parameter 3339 * 3340 * Returns the hardware register offset and bitmask used for setting the 3341 * regulator voltage. This might be useful when configuring voltage-scaling 3342 * hardware or firmware that can make I2C requests behind the kernel's back, 3343 * for example. 3344 * 3345 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support 3346 * voltage selectors. 3347 * 3348 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3349 * and 0 is returned, otherwise a negative error number is returned. 3350 */ 3351 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3352 unsigned *vsel_reg, 3353 unsigned *vsel_mask) 3354 { 3355 struct regulator_dev *rdev = regulator->rdev; 3356 const struct regulator_ops *ops = rdev->desc->ops; 3357 3358 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3359 return -EOPNOTSUPP; 3360 3361 *vsel_reg = rdev->desc->vsel_reg; 3362 *vsel_mask = rdev->desc->vsel_mask; 3363 3364 return 0; 3365 } 3366 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3367 3368 /** 3369 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3370 * @regulator: regulator source 3371 * @selector: identify voltage to list 3372 * 3373 * Converts the selector to a hardware-specific voltage selector that can be 3374 * directly written to the regulator registers. The address of the voltage 3375 * register can be determined by calling @regulator_get_hardware_vsel_register. 3376 * 3377 * Return: 0 on success, -%EINVAL if the selector is outside the supported 3378 * range, or -%EOPNOTSUPP if the regulator does not support voltage 3379 * selectors. 3380 */ 3381 int regulator_list_hardware_vsel(struct regulator *regulator, 3382 unsigned selector) 3383 { 3384 struct regulator_dev *rdev = regulator->rdev; 3385 const struct regulator_ops *ops = rdev->desc->ops; 3386 3387 if (selector >= rdev->desc->n_voltages) 3388 return -EINVAL; 3389 if (selector < rdev->desc->linear_min_sel) 3390 return 0; 3391 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3392 return -EOPNOTSUPP; 3393 3394 return selector; 3395 } 3396 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3397 3398 /** 3399 * regulator_hardware_enable - access the HW for enable/disable regulator 3400 * @regulator: regulator source 3401 * @enable: true for enable, false for disable 3402 * 3403 * Request that the regulator be enabled/disabled with the regulator output at 3404 * the predefined voltage or current value. 3405 * 3406 * Return: 0 on success or a negative error number on failure. 3407 */ 3408 int regulator_hardware_enable(struct regulator *regulator, bool enable) 3409 { 3410 struct regulator_dev *rdev = regulator->rdev; 3411 const struct regulator_ops *ops = rdev->desc->ops; 3412 int ret = -EOPNOTSUPP; 3413 3414 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable) 3415 return ret; 3416 3417 if (enable) 3418 ret = ops->enable(rdev); 3419 else 3420 ret = ops->disable(rdev); 3421 3422 return ret; 3423 } 3424 EXPORT_SYMBOL_GPL(regulator_hardware_enable); 3425 3426 /** 3427 * regulator_get_linear_step - return the voltage step size between VSEL values 3428 * @regulator: regulator source 3429 * 3430 * Return: The voltage step size between VSEL values for linear regulators, 3431 * or 0 if the regulator isn't a linear regulator. 3432 */ 3433 unsigned int regulator_get_linear_step(struct regulator *regulator) 3434 { 3435 struct regulator_dev *rdev = regulator->rdev; 3436 3437 return rdev->desc->uV_step; 3438 } 3439 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3440 3441 /** 3442 * regulator_is_supported_voltage - check if a voltage range can be supported 3443 * 3444 * @regulator: Regulator to check. 3445 * @min_uV: Minimum required voltage in uV. 3446 * @max_uV: Maximum required voltage in uV. 3447 * 3448 * Return: 1 if the voltage range is supported, 0 if not, or a negative error 3449 * number if @regulator's voltage can't be changed and voltage readback 3450 * failed. 3451 */ 3452 int regulator_is_supported_voltage(struct regulator *regulator, 3453 int min_uV, int max_uV) 3454 { 3455 struct regulator_dev *rdev = regulator->rdev; 3456 int i, voltages, ret; 3457 3458 /* If we can't change voltage check the current voltage */ 3459 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3460 ret = regulator_get_voltage(regulator); 3461 if (ret >= 0) 3462 return min_uV <= ret && ret <= max_uV; 3463 else 3464 return ret; 3465 } 3466 3467 /* Any voltage within constrains range is fine? */ 3468 if (rdev->desc->continuous_voltage_range) 3469 return min_uV >= rdev->constraints->min_uV && 3470 max_uV <= rdev->constraints->max_uV; 3471 3472 ret = regulator_count_voltages(regulator); 3473 if (ret < 0) 3474 return 0; 3475 voltages = ret; 3476 3477 for (i = 0; i < voltages; i++) { 3478 ret = regulator_list_voltage(regulator, i); 3479 3480 if (ret >= min_uV && ret <= max_uV) 3481 return 1; 3482 } 3483 3484 return 0; 3485 } 3486 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3487 3488 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3489 int max_uV) 3490 { 3491 const struct regulator_desc *desc = rdev->desc; 3492 3493 if (desc->ops->map_voltage) 3494 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3495 3496 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3497 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3498 3499 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3500 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3501 3502 if (desc->ops->list_voltage == 3503 regulator_list_voltage_pickable_linear_range) 3504 return regulator_map_voltage_pickable_linear_range(rdev, 3505 min_uV, max_uV); 3506 3507 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3508 } 3509 3510 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3511 int min_uV, int max_uV, 3512 unsigned *selector) 3513 { 3514 struct pre_voltage_change_data data; 3515 int ret; 3516 3517 data.old_uV = regulator_get_voltage_rdev(rdev); 3518 data.min_uV = min_uV; 3519 data.max_uV = max_uV; 3520 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3521 &data); 3522 if (ret & NOTIFY_STOP_MASK) 3523 return -EINVAL; 3524 3525 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3526 if (ret >= 0) 3527 return ret; 3528 3529 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3530 (void *)data.old_uV); 3531 3532 return ret; 3533 } 3534 3535 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3536 int uV, unsigned selector) 3537 { 3538 struct pre_voltage_change_data data; 3539 int ret; 3540 3541 data.old_uV = regulator_get_voltage_rdev(rdev); 3542 data.min_uV = uV; 3543 data.max_uV = uV; 3544 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3545 &data); 3546 if (ret & NOTIFY_STOP_MASK) 3547 return -EINVAL; 3548 3549 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3550 if (ret >= 0) 3551 return ret; 3552 3553 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3554 (void *)data.old_uV); 3555 3556 return ret; 3557 } 3558 3559 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3560 int uV, int new_selector) 3561 { 3562 const struct regulator_ops *ops = rdev->desc->ops; 3563 int diff, old_sel, curr_sel, ret; 3564 3565 /* Stepping is only needed if the regulator is enabled. */ 3566 if (!_regulator_is_enabled(rdev)) 3567 goto final_set; 3568 3569 if (!ops->get_voltage_sel) 3570 return -EINVAL; 3571 3572 old_sel = ops->get_voltage_sel(rdev); 3573 if (old_sel < 0) 3574 return old_sel; 3575 3576 diff = new_selector - old_sel; 3577 if (diff == 0) 3578 return 0; /* No change needed. */ 3579 3580 if (diff > 0) { 3581 /* Stepping up. */ 3582 for (curr_sel = old_sel + rdev->desc->vsel_step; 3583 curr_sel < new_selector; 3584 curr_sel += rdev->desc->vsel_step) { 3585 /* 3586 * Call the callback directly instead of using 3587 * _regulator_call_set_voltage_sel() as we don't 3588 * want to notify anyone yet. Same in the branch 3589 * below. 3590 */ 3591 ret = ops->set_voltage_sel(rdev, curr_sel); 3592 if (ret) 3593 goto try_revert; 3594 } 3595 } else { 3596 /* Stepping down. */ 3597 for (curr_sel = old_sel - rdev->desc->vsel_step; 3598 curr_sel > new_selector; 3599 curr_sel -= rdev->desc->vsel_step) { 3600 ret = ops->set_voltage_sel(rdev, curr_sel); 3601 if (ret) 3602 goto try_revert; 3603 } 3604 } 3605 3606 final_set: 3607 /* The final selector will trigger the notifiers. */ 3608 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3609 3610 try_revert: 3611 /* 3612 * At least try to return to the previous voltage if setting a new 3613 * one failed. 3614 */ 3615 (void)ops->set_voltage_sel(rdev, old_sel); 3616 return ret; 3617 } 3618 3619 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3620 int old_uV, int new_uV) 3621 { 3622 unsigned int ramp_delay = 0; 3623 3624 if (rdev->constraints->ramp_delay) 3625 ramp_delay = rdev->constraints->ramp_delay; 3626 else if (rdev->desc->ramp_delay) 3627 ramp_delay = rdev->desc->ramp_delay; 3628 else if (rdev->constraints->settling_time) 3629 return rdev->constraints->settling_time; 3630 else if (rdev->constraints->settling_time_up && 3631 (new_uV > old_uV)) 3632 return rdev->constraints->settling_time_up; 3633 else if (rdev->constraints->settling_time_down && 3634 (new_uV < old_uV)) 3635 return rdev->constraints->settling_time_down; 3636 3637 if (ramp_delay == 0) 3638 return 0; 3639 3640 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3641 } 3642 3643 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3644 int min_uV, int max_uV) 3645 { 3646 int ret; 3647 int delay = 0; 3648 int best_val = 0; 3649 unsigned int selector; 3650 int old_selector = -1; 3651 const struct regulator_ops *ops = rdev->desc->ops; 3652 int old_uV = regulator_get_voltage_rdev(rdev); 3653 3654 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3655 3656 min_uV += rdev->constraints->uV_offset; 3657 max_uV += rdev->constraints->uV_offset; 3658 3659 /* 3660 * If we can't obtain the old selector there is not enough 3661 * info to call set_voltage_time_sel(). 3662 */ 3663 if (_regulator_is_enabled(rdev) && 3664 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3665 old_selector = ops->get_voltage_sel(rdev); 3666 if (old_selector < 0) 3667 return old_selector; 3668 } 3669 3670 if (ops->set_voltage) { 3671 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3672 &selector); 3673 3674 if (ret >= 0) { 3675 if (ops->list_voltage) 3676 best_val = ops->list_voltage(rdev, 3677 selector); 3678 else 3679 best_val = regulator_get_voltage_rdev(rdev); 3680 } 3681 3682 } else if (ops->set_voltage_sel) { 3683 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3684 if (ret >= 0) { 3685 best_val = ops->list_voltage(rdev, ret); 3686 if (min_uV <= best_val && max_uV >= best_val) { 3687 selector = ret; 3688 if (old_selector == selector) 3689 ret = 0; 3690 else if (rdev->desc->vsel_step) 3691 ret = _regulator_set_voltage_sel_step( 3692 rdev, best_val, selector); 3693 else 3694 ret = _regulator_call_set_voltage_sel( 3695 rdev, best_val, selector); 3696 } else { 3697 ret = -EINVAL; 3698 } 3699 } 3700 } else { 3701 ret = -EINVAL; 3702 } 3703 3704 if (ret) 3705 goto out; 3706 3707 if (ops->set_voltage_time_sel) { 3708 /* 3709 * Call set_voltage_time_sel if successfully obtained 3710 * old_selector 3711 */ 3712 if (old_selector >= 0 && old_selector != selector) 3713 delay = ops->set_voltage_time_sel(rdev, old_selector, 3714 selector); 3715 } else { 3716 if (old_uV != best_val) { 3717 if (ops->set_voltage_time) 3718 delay = ops->set_voltage_time(rdev, old_uV, 3719 best_val); 3720 else 3721 delay = _regulator_set_voltage_time(rdev, 3722 old_uV, 3723 best_val); 3724 } 3725 } 3726 3727 if (delay < 0) { 3728 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3729 delay = 0; 3730 } 3731 3732 /* Insert any necessary delays */ 3733 _regulator_delay_helper(delay); 3734 3735 if (best_val >= 0) { 3736 unsigned long data = best_val; 3737 3738 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3739 (void *)data); 3740 } 3741 3742 out: 3743 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3744 3745 return ret; 3746 } 3747 3748 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3749 int min_uV, int max_uV, suspend_state_t state) 3750 { 3751 struct regulator_state *rstate; 3752 int uV, sel; 3753 3754 rstate = regulator_get_suspend_state(rdev, state); 3755 if (rstate == NULL) 3756 return -EINVAL; 3757 3758 if (min_uV < rstate->min_uV) 3759 min_uV = rstate->min_uV; 3760 if (max_uV > rstate->max_uV) 3761 max_uV = rstate->max_uV; 3762 3763 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3764 if (sel < 0) 3765 return sel; 3766 3767 uV = rdev->desc->ops->list_voltage(rdev, sel); 3768 if (uV >= min_uV && uV <= max_uV) 3769 rstate->uV = uV; 3770 3771 return 0; 3772 } 3773 3774 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3775 int min_uV, int max_uV, 3776 suspend_state_t state) 3777 { 3778 struct regulator_dev *rdev = regulator->rdev; 3779 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3780 int ret = 0; 3781 int old_min_uV, old_max_uV; 3782 int current_uV; 3783 3784 /* If we're setting the same range as last time the change 3785 * should be a noop (some cpufreq implementations use the same 3786 * voltage for multiple frequencies, for example). 3787 */ 3788 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3789 goto out; 3790 3791 /* If we're trying to set a range that overlaps the current voltage, 3792 * return successfully even though the regulator does not support 3793 * changing the voltage. 3794 */ 3795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3796 current_uV = regulator_get_voltage_rdev(rdev); 3797 if (min_uV <= current_uV && current_uV <= max_uV) { 3798 voltage->min_uV = min_uV; 3799 voltage->max_uV = max_uV; 3800 goto out; 3801 } 3802 } 3803 3804 /* sanity check */ 3805 if (!rdev->desc->ops->set_voltage && 3806 !rdev->desc->ops->set_voltage_sel) { 3807 ret = -EINVAL; 3808 goto out; 3809 } 3810 3811 /* constraints check */ 3812 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3813 if (ret < 0) 3814 goto out; 3815 3816 /* restore original values in case of error */ 3817 old_min_uV = voltage->min_uV; 3818 old_max_uV = voltage->max_uV; 3819 voltage->min_uV = min_uV; 3820 voltage->max_uV = max_uV; 3821 3822 /* for not coupled regulators this will just set the voltage */ 3823 ret = regulator_balance_voltage(rdev, state); 3824 if (ret < 0) { 3825 voltage->min_uV = old_min_uV; 3826 voltage->max_uV = old_max_uV; 3827 } 3828 3829 out: 3830 return ret; 3831 } 3832 3833 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3834 int max_uV, suspend_state_t state) 3835 { 3836 int best_supply_uV = 0; 3837 int supply_change_uV = 0; 3838 int ret; 3839 3840 if (rdev->supply && 3841 regulator_ops_is_valid(rdev->supply->rdev, 3842 REGULATOR_CHANGE_VOLTAGE) && 3843 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3844 rdev->desc->ops->get_voltage_sel))) { 3845 int current_supply_uV; 3846 int selector; 3847 3848 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3849 if (selector < 0) { 3850 ret = selector; 3851 goto out; 3852 } 3853 3854 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3855 if (best_supply_uV < 0) { 3856 ret = best_supply_uV; 3857 goto out; 3858 } 3859 3860 best_supply_uV += rdev->desc->min_dropout_uV; 3861 3862 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3863 if (current_supply_uV < 0) { 3864 ret = current_supply_uV; 3865 goto out; 3866 } 3867 3868 supply_change_uV = best_supply_uV - current_supply_uV; 3869 } 3870 3871 if (supply_change_uV > 0) { 3872 ret = regulator_set_voltage_unlocked(rdev->supply, 3873 best_supply_uV, INT_MAX, state); 3874 if (ret) { 3875 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3876 ERR_PTR(ret)); 3877 goto out; 3878 } 3879 } 3880 3881 if (state == PM_SUSPEND_ON) 3882 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3883 else 3884 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3885 max_uV, state); 3886 if (ret < 0) 3887 goto out; 3888 3889 if (supply_change_uV < 0) { 3890 ret = regulator_set_voltage_unlocked(rdev->supply, 3891 best_supply_uV, INT_MAX, state); 3892 if (ret) 3893 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3894 ERR_PTR(ret)); 3895 /* No need to fail here */ 3896 ret = 0; 3897 } 3898 3899 out: 3900 return ret; 3901 } 3902 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3903 3904 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3905 int *current_uV, int *min_uV) 3906 { 3907 struct regulation_constraints *constraints = rdev->constraints; 3908 3909 /* Limit voltage change only if necessary */ 3910 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3911 return 1; 3912 3913 if (*current_uV < 0) { 3914 *current_uV = regulator_get_voltage_rdev(rdev); 3915 3916 if (*current_uV < 0) 3917 return *current_uV; 3918 } 3919 3920 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3921 return 1; 3922 3923 /* Clamp target voltage within the given step */ 3924 if (*current_uV < *min_uV) 3925 *min_uV = min(*current_uV + constraints->max_uV_step, 3926 *min_uV); 3927 else 3928 *min_uV = max(*current_uV - constraints->max_uV_step, 3929 *min_uV); 3930 3931 return 0; 3932 } 3933 3934 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3935 int *current_uV, 3936 int *min_uV, int *max_uV, 3937 suspend_state_t state, 3938 int n_coupled) 3939 { 3940 struct coupling_desc *c_desc = &rdev->coupling_desc; 3941 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3942 struct regulation_constraints *constraints = rdev->constraints; 3943 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3944 int max_current_uV = 0, min_current_uV = INT_MAX; 3945 int highest_min_uV = 0, target_uV, possible_uV; 3946 int i, ret, max_spread; 3947 bool done; 3948 3949 *current_uV = -1; 3950 3951 /* 3952 * If there are no coupled regulators, simply set the voltage 3953 * demanded by consumers. 3954 */ 3955 if (n_coupled == 1) { 3956 /* 3957 * If consumers don't provide any demands, set voltage 3958 * to min_uV 3959 */ 3960 desired_min_uV = constraints->min_uV; 3961 desired_max_uV = constraints->max_uV; 3962 3963 ret = regulator_check_consumers(rdev, 3964 &desired_min_uV, 3965 &desired_max_uV, state); 3966 if (ret < 0) 3967 return ret; 3968 3969 done = true; 3970 3971 goto finish; 3972 } 3973 3974 /* Find highest min desired voltage */ 3975 for (i = 0; i < n_coupled; i++) { 3976 int tmp_min = 0; 3977 int tmp_max = INT_MAX; 3978 3979 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3980 3981 ret = regulator_check_consumers(c_rdevs[i], 3982 &tmp_min, 3983 &tmp_max, state); 3984 if (ret < 0) 3985 return ret; 3986 3987 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3988 if (ret < 0) 3989 return ret; 3990 3991 highest_min_uV = max(highest_min_uV, tmp_min); 3992 3993 if (i == 0) { 3994 desired_min_uV = tmp_min; 3995 desired_max_uV = tmp_max; 3996 } 3997 } 3998 3999 max_spread = constraints->max_spread[0]; 4000 4001 /* 4002 * Let target_uV be equal to the desired one if possible. 4003 * If not, set it to minimum voltage, allowed by other coupled 4004 * regulators. 4005 */ 4006 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 4007 4008 /* 4009 * Find min and max voltages, which currently aren't violating 4010 * max_spread. 4011 */ 4012 for (i = 1; i < n_coupled; i++) { 4013 int tmp_act; 4014 4015 if (!_regulator_is_enabled(c_rdevs[i])) 4016 continue; 4017 4018 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 4019 if (tmp_act < 0) 4020 return tmp_act; 4021 4022 min_current_uV = min(tmp_act, min_current_uV); 4023 max_current_uV = max(tmp_act, max_current_uV); 4024 } 4025 4026 /* There aren't any other regulators enabled */ 4027 if (max_current_uV == 0) { 4028 possible_uV = target_uV; 4029 } else { 4030 /* 4031 * Correct target voltage, so as it currently isn't 4032 * violating max_spread 4033 */ 4034 possible_uV = max(target_uV, max_current_uV - max_spread); 4035 possible_uV = min(possible_uV, min_current_uV + max_spread); 4036 } 4037 4038 if (possible_uV > desired_max_uV) 4039 return -EINVAL; 4040 4041 done = (possible_uV == target_uV); 4042 desired_min_uV = possible_uV; 4043 4044 finish: 4045 /* Apply max_uV_step constraint if necessary */ 4046 if (state == PM_SUSPEND_ON) { 4047 ret = regulator_limit_voltage_step(rdev, current_uV, 4048 &desired_min_uV); 4049 if (ret < 0) 4050 return ret; 4051 4052 if (ret == 0) 4053 done = false; 4054 } 4055 4056 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4057 if (n_coupled > 1 && *current_uV == -1) { 4058 4059 if (_regulator_is_enabled(rdev)) { 4060 ret = regulator_get_voltage_rdev(rdev); 4061 if (ret < 0) 4062 return ret; 4063 4064 *current_uV = ret; 4065 } else { 4066 *current_uV = desired_min_uV; 4067 } 4068 } 4069 4070 *min_uV = desired_min_uV; 4071 *max_uV = desired_max_uV; 4072 4073 return done; 4074 } 4075 4076 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4077 suspend_state_t state, bool skip_coupled) 4078 { 4079 struct regulator_dev **c_rdevs; 4080 struct regulator_dev *best_rdev; 4081 struct coupling_desc *c_desc = &rdev->coupling_desc; 4082 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4083 unsigned int delta, best_delta; 4084 unsigned long c_rdev_done = 0; 4085 bool best_c_rdev_done; 4086 4087 c_rdevs = c_desc->coupled_rdevs; 4088 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4089 4090 /* 4091 * Find the best possible voltage change on each loop. Leave the loop 4092 * if there isn't any possible change. 4093 */ 4094 do { 4095 best_c_rdev_done = false; 4096 best_delta = 0; 4097 best_min_uV = 0; 4098 best_max_uV = 0; 4099 best_c_rdev = 0; 4100 best_rdev = NULL; 4101 4102 /* 4103 * Find highest difference between optimal voltage 4104 * and current voltage. 4105 */ 4106 for (i = 0; i < n_coupled; i++) { 4107 /* 4108 * optimal_uV is the best voltage that can be set for 4109 * i-th regulator at the moment without violating 4110 * max_spread constraint in order to balance 4111 * the coupled voltages. 4112 */ 4113 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4114 4115 if (test_bit(i, &c_rdev_done)) 4116 continue; 4117 4118 ret = regulator_get_optimal_voltage(c_rdevs[i], 4119 ¤t_uV, 4120 &optimal_uV, 4121 &optimal_max_uV, 4122 state, n_coupled); 4123 if (ret < 0) 4124 goto out; 4125 4126 delta = abs(optimal_uV - current_uV); 4127 4128 if (delta && best_delta <= delta) { 4129 best_c_rdev_done = ret; 4130 best_delta = delta; 4131 best_rdev = c_rdevs[i]; 4132 best_min_uV = optimal_uV; 4133 best_max_uV = optimal_max_uV; 4134 best_c_rdev = i; 4135 } 4136 } 4137 4138 /* Nothing to change, return successfully */ 4139 if (!best_rdev) { 4140 ret = 0; 4141 goto out; 4142 } 4143 4144 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4145 best_max_uV, state); 4146 4147 if (ret < 0) 4148 goto out; 4149 4150 if (best_c_rdev_done) 4151 set_bit(best_c_rdev, &c_rdev_done); 4152 4153 } while (n_coupled > 1); 4154 4155 out: 4156 return ret; 4157 } 4158 4159 static int regulator_balance_voltage(struct regulator_dev *rdev, 4160 suspend_state_t state) 4161 { 4162 struct coupling_desc *c_desc = &rdev->coupling_desc; 4163 struct regulator_coupler *coupler = c_desc->coupler; 4164 bool skip_coupled = false; 4165 4166 /* 4167 * If system is in a state other than PM_SUSPEND_ON, don't check 4168 * other coupled regulators. 4169 */ 4170 if (state != PM_SUSPEND_ON) 4171 skip_coupled = true; 4172 4173 if (c_desc->n_resolved < c_desc->n_coupled) { 4174 rdev_err(rdev, "Not all coupled regulators registered\n"); 4175 return -EPERM; 4176 } 4177 4178 /* Invoke custom balancer for customized couplers */ 4179 if (coupler && coupler->balance_voltage) 4180 return coupler->balance_voltage(coupler, rdev, state); 4181 4182 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4183 } 4184 4185 /** 4186 * regulator_set_voltage - set regulator output voltage 4187 * @regulator: regulator source 4188 * @min_uV: Minimum required voltage in uV 4189 * @max_uV: Maximum acceptable voltage in uV 4190 * 4191 * Sets a voltage regulator to the desired output voltage. This can be set 4192 * during any regulator state. IOW, regulator can be disabled or enabled. 4193 * 4194 * If the regulator is enabled then the voltage will change to the new value 4195 * immediately otherwise if the regulator is disabled the regulator will 4196 * output at the new voltage when enabled. 4197 * 4198 * NOTE: If the regulator is shared between several devices then the lowest 4199 * request voltage that meets the system constraints will be used. 4200 * Regulator system constraints must be set for this regulator before 4201 * calling this function otherwise this call will fail. 4202 * 4203 * Return: 0 on success or a negative error number on failure. 4204 */ 4205 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4206 { 4207 struct ww_acquire_ctx ww_ctx; 4208 int ret; 4209 4210 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4211 4212 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4213 PM_SUSPEND_ON); 4214 4215 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4216 4217 return ret; 4218 } 4219 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4220 4221 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4222 suspend_state_t state, bool en) 4223 { 4224 struct regulator_state *rstate; 4225 4226 rstate = regulator_get_suspend_state(rdev, state); 4227 if (rstate == NULL) 4228 return -EINVAL; 4229 4230 if (!rstate->changeable) 4231 return -EPERM; 4232 4233 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4234 4235 return 0; 4236 } 4237 4238 int regulator_suspend_enable(struct regulator_dev *rdev, 4239 suspend_state_t state) 4240 { 4241 return regulator_suspend_toggle(rdev, state, true); 4242 } 4243 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4244 4245 int regulator_suspend_disable(struct regulator_dev *rdev, 4246 suspend_state_t state) 4247 { 4248 struct regulator *regulator; 4249 struct regulator_voltage *voltage; 4250 4251 /* 4252 * if any consumer wants this regulator device keeping on in 4253 * suspend states, don't set it as disabled. 4254 */ 4255 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4256 voltage = ®ulator->voltage[state]; 4257 if (voltage->min_uV || voltage->max_uV) 4258 return 0; 4259 } 4260 4261 return regulator_suspend_toggle(rdev, state, false); 4262 } 4263 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4264 4265 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4266 int min_uV, int max_uV, 4267 suspend_state_t state) 4268 { 4269 struct regulator_dev *rdev = regulator->rdev; 4270 struct regulator_state *rstate; 4271 4272 rstate = regulator_get_suspend_state(rdev, state); 4273 if (rstate == NULL) 4274 return -EINVAL; 4275 4276 if (rstate->min_uV == rstate->max_uV) { 4277 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4278 return -EPERM; 4279 } 4280 4281 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4282 } 4283 4284 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4285 int max_uV, suspend_state_t state) 4286 { 4287 struct ww_acquire_ctx ww_ctx; 4288 int ret; 4289 4290 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4291 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4292 return -EINVAL; 4293 4294 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4295 4296 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4297 max_uV, state); 4298 4299 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4300 4301 return ret; 4302 } 4303 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4304 4305 /** 4306 * regulator_set_voltage_time - get raise/fall time 4307 * @regulator: regulator source 4308 * @old_uV: starting voltage in microvolts 4309 * @new_uV: target voltage in microvolts 4310 * 4311 * Provided with the starting and ending voltage, this function attempts to 4312 * calculate the time in microseconds required to rise or fall to this new 4313 * voltage. 4314 * 4315 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4316 */ 4317 int regulator_set_voltage_time(struct regulator *regulator, 4318 int old_uV, int new_uV) 4319 { 4320 struct regulator_dev *rdev = regulator->rdev; 4321 const struct regulator_ops *ops = rdev->desc->ops; 4322 int old_sel = -1; 4323 int new_sel = -1; 4324 int voltage; 4325 int i; 4326 4327 if (ops->set_voltage_time) 4328 return ops->set_voltage_time(rdev, old_uV, new_uV); 4329 else if (!ops->set_voltage_time_sel) 4330 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4331 4332 /* Currently requires operations to do this */ 4333 if (!ops->list_voltage || !rdev->desc->n_voltages) 4334 return -EINVAL; 4335 4336 for (i = 0; i < rdev->desc->n_voltages; i++) { 4337 /* We only look for exact voltage matches here */ 4338 if (i < rdev->desc->linear_min_sel) 4339 continue; 4340 4341 if (old_sel >= 0 && new_sel >= 0) 4342 break; 4343 4344 voltage = regulator_list_voltage(regulator, i); 4345 if (voltage < 0) 4346 return -EINVAL; 4347 if (voltage == 0) 4348 continue; 4349 if (voltage == old_uV) 4350 old_sel = i; 4351 if (voltage == new_uV) 4352 new_sel = i; 4353 } 4354 4355 if (old_sel < 0 || new_sel < 0) 4356 return -EINVAL; 4357 4358 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4359 } 4360 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4361 4362 /** 4363 * regulator_set_voltage_time_sel - get raise/fall time 4364 * @rdev: regulator source device 4365 * @old_selector: selector for starting voltage 4366 * @new_selector: selector for target voltage 4367 * 4368 * Provided with the starting and target voltage selectors, this function 4369 * returns time in microseconds required to rise or fall to this new voltage 4370 * 4371 * Drivers providing ramp_delay in regulation_constraints can use this as their 4372 * set_voltage_time_sel() operation. 4373 * 4374 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4375 */ 4376 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4377 unsigned int old_selector, 4378 unsigned int new_selector) 4379 { 4380 int old_volt, new_volt; 4381 4382 /* sanity check */ 4383 if (!rdev->desc->ops->list_voltage) 4384 return -EINVAL; 4385 4386 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4387 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4388 4389 if (rdev->desc->ops->set_voltage_time) 4390 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4391 new_volt); 4392 else 4393 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4394 } 4395 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4396 4397 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4398 { 4399 int ret; 4400 4401 regulator_lock(rdev); 4402 4403 if (!rdev->desc->ops->set_voltage && 4404 !rdev->desc->ops->set_voltage_sel) { 4405 ret = -EINVAL; 4406 goto out; 4407 } 4408 4409 /* balance only, if regulator is coupled */ 4410 if (rdev->coupling_desc.n_coupled > 1) 4411 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4412 else 4413 ret = -EOPNOTSUPP; 4414 4415 out: 4416 regulator_unlock(rdev); 4417 return ret; 4418 } 4419 4420 /** 4421 * regulator_sync_voltage - re-apply last regulator output voltage 4422 * @regulator: regulator source 4423 * 4424 * Re-apply the last configured voltage. This is intended to be used 4425 * where some external control source the consumer is cooperating with 4426 * has caused the configured voltage to change. 4427 * 4428 * Return: 0 on success or a negative error number on failure. 4429 */ 4430 int regulator_sync_voltage(struct regulator *regulator) 4431 { 4432 struct regulator_dev *rdev = regulator->rdev; 4433 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4434 int ret, min_uV, max_uV; 4435 4436 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4437 return 0; 4438 4439 regulator_lock(rdev); 4440 4441 if (!rdev->desc->ops->set_voltage && 4442 !rdev->desc->ops->set_voltage_sel) { 4443 ret = -EINVAL; 4444 goto out; 4445 } 4446 4447 /* This is only going to work if we've had a voltage configured. */ 4448 if (!voltage->min_uV && !voltage->max_uV) { 4449 ret = -EINVAL; 4450 goto out; 4451 } 4452 4453 min_uV = voltage->min_uV; 4454 max_uV = voltage->max_uV; 4455 4456 /* This should be a paranoia check... */ 4457 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4458 if (ret < 0) 4459 goto out; 4460 4461 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4462 if (ret < 0) 4463 goto out; 4464 4465 /* balance only, if regulator is coupled */ 4466 if (rdev->coupling_desc.n_coupled > 1) 4467 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4468 else 4469 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4470 4471 out: 4472 regulator_unlock(rdev); 4473 return ret; 4474 } 4475 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4476 4477 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4478 { 4479 int sel, ret; 4480 bool bypassed; 4481 4482 if (rdev->desc->ops->get_bypass) { 4483 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4484 if (ret < 0) 4485 return ret; 4486 if (bypassed) { 4487 /* if bypassed the regulator must have a supply */ 4488 if (!rdev->supply) { 4489 rdev_err(rdev, 4490 "bypassed regulator has no supply!\n"); 4491 return -EPROBE_DEFER; 4492 } 4493 4494 return regulator_get_voltage_rdev(rdev->supply->rdev); 4495 } 4496 } 4497 4498 if (rdev->desc->ops->get_voltage_sel) { 4499 sel = rdev->desc->ops->get_voltage_sel(rdev); 4500 if (sel < 0) 4501 return sel; 4502 ret = rdev->desc->ops->list_voltage(rdev, sel); 4503 } else if (rdev->desc->ops->get_voltage) { 4504 ret = rdev->desc->ops->get_voltage(rdev); 4505 } else if (rdev->desc->ops->list_voltage) { 4506 ret = rdev->desc->ops->list_voltage(rdev, 0); 4507 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4508 ret = rdev->desc->fixed_uV; 4509 } else if (rdev->supply) { 4510 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4511 } else if (rdev->supply_name) { 4512 return -EPROBE_DEFER; 4513 } else { 4514 return -EINVAL; 4515 } 4516 4517 if (ret < 0) 4518 return ret; 4519 return ret - rdev->constraints->uV_offset; 4520 } 4521 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4522 4523 /** 4524 * regulator_get_voltage - get regulator output voltage 4525 * @regulator: regulator source 4526 * 4527 * Return: Current regulator voltage in uV, or a negative error number on failure. 4528 * 4529 * NOTE: If the regulator is disabled it will return the voltage value. This 4530 * function should not be used to determine regulator state. 4531 */ 4532 int regulator_get_voltage(struct regulator *regulator) 4533 { 4534 struct ww_acquire_ctx ww_ctx; 4535 int ret; 4536 4537 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4538 ret = regulator_get_voltage_rdev(regulator->rdev); 4539 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4540 4541 return ret; 4542 } 4543 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4544 4545 /** 4546 * regulator_set_current_limit - set regulator output current limit 4547 * @regulator: regulator source 4548 * @min_uA: Minimum supported current in uA 4549 * @max_uA: Maximum supported current in uA 4550 * 4551 * Sets current sink to the desired output current. This can be set during 4552 * any regulator state. IOW, regulator can be disabled or enabled. 4553 * 4554 * If the regulator is enabled then the current will change to the new value 4555 * immediately otherwise if the regulator is disabled the regulator will 4556 * output at the new current when enabled. 4557 * 4558 * NOTE: Regulator system constraints must be set for this regulator before 4559 * calling this function otherwise this call will fail. 4560 * 4561 * Return: 0 on success or a negative error number on failure. 4562 */ 4563 int regulator_set_current_limit(struct regulator *regulator, 4564 int min_uA, int max_uA) 4565 { 4566 struct regulator_dev *rdev = regulator->rdev; 4567 int ret; 4568 4569 regulator_lock(rdev); 4570 4571 /* sanity check */ 4572 if (!rdev->desc->ops->set_current_limit) { 4573 ret = -EINVAL; 4574 goto out; 4575 } 4576 4577 /* constraints check */ 4578 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4579 if (ret < 0) 4580 goto out; 4581 4582 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4583 out: 4584 regulator_unlock(rdev); 4585 return ret; 4586 } 4587 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4588 4589 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4590 { 4591 /* sanity check */ 4592 if (!rdev->desc->ops->get_current_limit) 4593 return -EINVAL; 4594 4595 return rdev->desc->ops->get_current_limit(rdev); 4596 } 4597 4598 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4599 { 4600 int ret; 4601 4602 regulator_lock(rdev); 4603 ret = _regulator_get_current_limit_unlocked(rdev); 4604 regulator_unlock(rdev); 4605 4606 return ret; 4607 } 4608 4609 /** 4610 * regulator_get_current_limit - get regulator output current 4611 * @regulator: regulator source 4612 * 4613 * Return: Current supplied by the specified current sink in uA, 4614 * or a negative error number on failure. 4615 * 4616 * NOTE: If the regulator is disabled it will return the current value. This 4617 * function should not be used to determine regulator state. 4618 */ 4619 int regulator_get_current_limit(struct regulator *regulator) 4620 { 4621 return _regulator_get_current_limit(regulator->rdev); 4622 } 4623 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4624 4625 /** 4626 * regulator_set_mode - set regulator operating mode 4627 * @regulator: regulator source 4628 * @mode: operating mode - one of the REGULATOR_MODE constants 4629 * 4630 * Set regulator operating mode to increase regulator efficiency or improve 4631 * regulation performance. 4632 * 4633 * NOTE: Regulator system constraints must be set for this regulator before 4634 * calling this function otherwise this call will fail. 4635 * 4636 * Return: 0 on success or a negative error number on failure. 4637 */ 4638 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4639 { 4640 struct regulator_dev *rdev = regulator->rdev; 4641 int ret; 4642 int regulator_curr_mode; 4643 4644 regulator_lock(rdev); 4645 4646 /* sanity check */ 4647 if (!rdev->desc->ops->set_mode) { 4648 ret = -EINVAL; 4649 goto out; 4650 } 4651 4652 /* return if the same mode is requested */ 4653 if (rdev->desc->ops->get_mode) { 4654 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4655 if (regulator_curr_mode == mode) { 4656 ret = 0; 4657 goto out; 4658 } 4659 } 4660 4661 /* constraints check */ 4662 ret = regulator_mode_constrain(rdev, &mode); 4663 if (ret < 0) 4664 goto out; 4665 4666 ret = rdev->desc->ops->set_mode(rdev, mode); 4667 out: 4668 regulator_unlock(rdev); 4669 return ret; 4670 } 4671 EXPORT_SYMBOL_GPL(regulator_set_mode); 4672 4673 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4674 { 4675 /* sanity check */ 4676 if (!rdev->desc->ops->get_mode) 4677 return -EINVAL; 4678 4679 return rdev->desc->ops->get_mode(rdev); 4680 } 4681 4682 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4683 { 4684 int ret; 4685 4686 regulator_lock(rdev); 4687 ret = _regulator_get_mode_unlocked(rdev); 4688 regulator_unlock(rdev); 4689 4690 return ret; 4691 } 4692 4693 /** 4694 * regulator_get_mode - get regulator operating mode 4695 * @regulator: regulator source 4696 * 4697 * Get the current regulator operating mode. 4698 * 4699 * Return: Current operating mode as %REGULATOR_MODE_* values, 4700 * or a negative error number on failure. 4701 */ 4702 unsigned int regulator_get_mode(struct regulator *regulator) 4703 { 4704 return _regulator_get_mode(regulator->rdev); 4705 } 4706 EXPORT_SYMBOL_GPL(regulator_get_mode); 4707 4708 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4709 { 4710 int ret = 0; 4711 4712 if (rdev->use_cached_err) { 4713 spin_lock(&rdev->err_lock); 4714 ret = rdev->cached_err; 4715 spin_unlock(&rdev->err_lock); 4716 } 4717 return ret; 4718 } 4719 4720 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4721 unsigned int *flags) 4722 { 4723 int cached_flags, ret = 0; 4724 4725 regulator_lock(rdev); 4726 4727 cached_flags = rdev_get_cached_err_flags(rdev); 4728 4729 if (rdev->desc->ops->get_error_flags) 4730 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4731 else if (!rdev->use_cached_err) 4732 ret = -EINVAL; 4733 4734 *flags |= cached_flags; 4735 4736 regulator_unlock(rdev); 4737 4738 return ret; 4739 } 4740 4741 /** 4742 * regulator_get_error_flags - get regulator error information 4743 * @regulator: regulator source 4744 * @flags: pointer to store error flags 4745 * 4746 * Get the current regulator error information. 4747 * 4748 * Return: 0 on success or a negative error number on failure. 4749 */ 4750 int regulator_get_error_flags(struct regulator *regulator, 4751 unsigned int *flags) 4752 { 4753 return _regulator_get_error_flags(regulator->rdev, flags); 4754 } 4755 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4756 4757 /** 4758 * regulator_set_load - set regulator load 4759 * @regulator: regulator source 4760 * @uA_load: load current 4761 * 4762 * Notifies the regulator core of a new device load. This is then used by 4763 * DRMS (if enabled by constraints) to set the most efficient regulator 4764 * operating mode for the new regulator loading. 4765 * 4766 * Consumer devices notify their supply regulator of the maximum power 4767 * they will require (can be taken from device datasheet in the power 4768 * consumption tables) when they change operational status and hence power 4769 * state. Examples of operational state changes that can affect power 4770 * consumption are :- 4771 * 4772 * o Device is opened / closed. 4773 * o Device I/O is about to begin or has just finished. 4774 * o Device is idling in between work. 4775 * 4776 * This information is also exported via sysfs to userspace. 4777 * 4778 * DRMS will sum the total requested load on the regulator and change 4779 * to the most efficient operating mode if platform constraints allow. 4780 * 4781 * NOTE: when a regulator consumer requests to have a regulator 4782 * disabled then any load that consumer requested no longer counts 4783 * toward the total requested load. If the regulator is re-enabled 4784 * then the previously requested load will start counting again. 4785 * 4786 * If a regulator is an always-on regulator then an individual consumer's 4787 * load will still be removed if that consumer is fully disabled. 4788 * 4789 * Return: 0 on success or a negative error number on failure. 4790 */ 4791 int regulator_set_load(struct regulator *regulator, int uA_load) 4792 { 4793 struct regulator_dev *rdev = regulator->rdev; 4794 int old_uA_load; 4795 int ret = 0; 4796 4797 regulator_lock(rdev); 4798 old_uA_load = regulator->uA_load; 4799 regulator->uA_load = uA_load; 4800 if (regulator->enable_count && old_uA_load != uA_load) { 4801 ret = drms_uA_update(rdev); 4802 if (ret < 0) 4803 regulator->uA_load = old_uA_load; 4804 } 4805 regulator_unlock(rdev); 4806 4807 return ret; 4808 } 4809 EXPORT_SYMBOL_GPL(regulator_set_load); 4810 4811 /** 4812 * regulator_allow_bypass - allow the regulator to go into bypass mode 4813 * 4814 * @regulator: Regulator to configure 4815 * @enable: enable or disable bypass mode 4816 * 4817 * Allow the regulator to go into bypass mode if all other consumers 4818 * for the regulator also enable bypass mode and the machine 4819 * constraints allow this. Bypass mode means that the regulator is 4820 * simply passing the input directly to the output with no regulation. 4821 * 4822 * Return: 0 on success or if changing bypass is not possible, or 4823 * a negative error number on failure. 4824 */ 4825 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4826 { 4827 struct regulator_dev *rdev = regulator->rdev; 4828 const char *name = rdev_get_name(rdev); 4829 int ret = 0; 4830 4831 if (!rdev->desc->ops->set_bypass) 4832 return 0; 4833 4834 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4835 return 0; 4836 4837 regulator_lock(rdev); 4838 4839 if (enable && !regulator->bypass) { 4840 rdev->bypass_count++; 4841 4842 if (rdev->bypass_count == rdev->open_count) { 4843 trace_regulator_bypass_enable(name); 4844 4845 ret = rdev->desc->ops->set_bypass(rdev, enable); 4846 if (ret != 0) 4847 rdev->bypass_count--; 4848 else 4849 trace_regulator_bypass_enable_complete(name); 4850 } 4851 4852 } else if (!enable && regulator->bypass) { 4853 rdev->bypass_count--; 4854 4855 if (rdev->bypass_count != rdev->open_count) { 4856 trace_regulator_bypass_disable(name); 4857 4858 ret = rdev->desc->ops->set_bypass(rdev, enable); 4859 if (ret != 0) 4860 rdev->bypass_count++; 4861 else 4862 trace_regulator_bypass_disable_complete(name); 4863 } 4864 } 4865 4866 if (ret == 0) 4867 regulator->bypass = enable; 4868 4869 regulator_unlock(rdev); 4870 4871 return ret; 4872 } 4873 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4874 4875 /** 4876 * regulator_register_notifier - register regulator event notifier 4877 * @regulator: regulator source 4878 * @nb: notifier block 4879 * 4880 * Register notifier block to receive regulator events. 4881 * 4882 * Return: 0 on success or a negative error number on failure. 4883 */ 4884 int regulator_register_notifier(struct regulator *regulator, 4885 struct notifier_block *nb) 4886 { 4887 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4888 nb); 4889 } 4890 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4891 4892 /** 4893 * regulator_unregister_notifier - unregister regulator event notifier 4894 * @regulator: regulator source 4895 * @nb: notifier block 4896 * 4897 * Unregister regulator event notifier block. 4898 * 4899 * Return: 0 on success or a negative error number on failure. 4900 */ 4901 int regulator_unregister_notifier(struct regulator *regulator, 4902 struct notifier_block *nb) 4903 { 4904 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4905 nb); 4906 } 4907 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4908 4909 /* notify regulator consumers and downstream regulator consumers. 4910 * Note mutex must be held by caller. 4911 */ 4912 static int _notifier_call_chain(struct regulator_dev *rdev, 4913 unsigned long event, void *data) 4914 { 4915 /* call rdev chain first */ 4916 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 4917 4918 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 4919 struct device *parent = rdev->dev.parent; 4920 const char *rname = rdev_get_name(rdev); 4921 char name[32]; 4922 4923 /* Avoid duplicate debugfs directory names */ 4924 if (parent && rname == rdev->desc->name) { 4925 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4926 rname); 4927 rname = name; 4928 } 4929 reg_generate_netlink_event(rname, event); 4930 } 4931 4932 return ret; 4933 } 4934 4935 int _regulator_bulk_get(struct device *dev, int num_consumers, 4936 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4937 { 4938 int i; 4939 int ret; 4940 4941 for (i = 0; i < num_consumers; i++) 4942 consumers[i].consumer = NULL; 4943 4944 for (i = 0; i < num_consumers; i++) { 4945 consumers[i].consumer = _regulator_get(dev, 4946 consumers[i].supply, get_type); 4947 if (IS_ERR(consumers[i].consumer)) { 4948 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4949 "Failed to get supply '%s'", 4950 consumers[i].supply); 4951 consumers[i].consumer = NULL; 4952 goto err; 4953 } 4954 4955 if (consumers[i].init_load_uA > 0) { 4956 ret = regulator_set_load(consumers[i].consumer, 4957 consumers[i].init_load_uA); 4958 if (ret) { 4959 i++; 4960 goto err; 4961 } 4962 } 4963 } 4964 4965 return 0; 4966 4967 err: 4968 while (--i >= 0) 4969 regulator_put(consumers[i].consumer); 4970 4971 return ret; 4972 } 4973 4974 /** 4975 * regulator_bulk_get - get multiple regulator consumers 4976 * 4977 * @dev: Device to supply 4978 * @num_consumers: Number of consumers to register 4979 * @consumers: Configuration of consumers; clients are stored here. 4980 * 4981 * This helper function allows drivers to get several regulator 4982 * consumers in one operation. If any of the regulators cannot be 4983 * acquired then any regulators that were allocated will be freed 4984 * before returning to the caller. 4985 * 4986 * Return: 0 on success or a negative error number on failure. 4987 */ 4988 int regulator_bulk_get(struct device *dev, int num_consumers, 4989 struct regulator_bulk_data *consumers) 4990 { 4991 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4992 } 4993 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4994 4995 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4996 { 4997 struct regulator_bulk_data *bulk = data; 4998 4999 bulk->ret = regulator_enable(bulk->consumer); 5000 } 5001 5002 /** 5003 * regulator_bulk_enable - enable multiple regulator consumers 5004 * 5005 * @num_consumers: Number of consumers 5006 * @consumers: Consumer data; clients are stored here. 5007 * 5008 * This convenience API allows consumers to enable multiple regulator 5009 * clients in a single API call. If any consumers cannot be enabled 5010 * then any others that were enabled will be disabled again prior to 5011 * return. 5012 * 5013 * Return: 0 on success or a negative error number on failure. 5014 */ 5015 int regulator_bulk_enable(int num_consumers, 5016 struct regulator_bulk_data *consumers) 5017 { 5018 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 5019 int i; 5020 int ret = 0; 5021 5022 for (i = 0; i < num_consumers; i++) { 5023 async_schedule_domain(regulator_bulk_enable_async, 5024 &consumers[i], &async_domain); 5025 } 5026 5027 async_synchronize_full_domain(&async_domain); 5028 5029 /* If any consumer failed we need to unwind any that succeeded */ 5030 for (i = 0; i < num_consumers; i++) { 5031 if (consumers[i].ret != 0) { 5032 ret = consumers[i].ret; 5033 goto err; 5034 } 5035 } 5036 5037 return 0; 5038 5039 err: 5040 for (i = 0; i < num_consumers; i++) { 5041 if (consumers[i].ret < 0) 5042 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 5043 ERR_PTR(consumers[i].ret)); 5044 else 5045 regulator_disable(consumers[i].consumer); 5046 } 5047 5048 return ret; 5049 } 5050 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 5051 5052 /** 5053 * regulator_bulk_disable - disable multiple regulator consumers 5054 * 5055 * @num_consumers: Number of consumers 5056 * @consumers: Consumer data; clients are stored here. 5057 * 5058 * This convenience API allows consumers to disable multiple regulator 5059 * clients in a single API call. If any consumers cannot be disabled 5060 * then any others that were disabled will be enabled again prior to 5061 * return. 5062 * 5063 * Return: 0 on success or a negative error number on failure. 5064 */ 5065 int regulator_bulk_disable(int num_consumers, 5066 struct regulator_bulk_data *consumers) 5067 { 5068 int i; 5069 int ret, r; 5070 5071 for (i = num_consumers - 1; i >= 0; --i) { 5072 ret = regulator_disable(consumers[i].consumer); 5073 if (ret != 0) 5074 goto err; 5075 } 5076 5077 return 0; 5078 5079 err: 5080 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5081 for (++i; i < num_consumers; ++i) { 5082 r = regulator_enable(consumers[i].consumer); 5083 if (r != 0) 5084 pr_err("Failed to re-enable %s: %pe\n", 5085 consumers[i].supply, ERR_PTR(r)); 5086 } 5087 5088 return ret; 5089 } 5090 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5091 5092 /** 5093 * regulator_bulk_force_disable - force disable multiple regulator consumers 5094 * 5095 * @num_consumers: Number of consumers 5096 * @consumers: Consumer data; clients are stored here. 5097 * 5098 * This convenience API allows consumers to forcibly disable multiple regulator 5099 * clients in a single API call. 5100 * NOTE: This should be used for situations when device damage will 5101 * likely occur if the regulators are not disabled (e.g. over temp). 5102 * Although regulator_force_disable function call for some consumers can 5103 * return error numbers, the function is called for all consumers. 5104 * 5105 * Return: 0 on success or a negative error number on failure. 5106 */ 5107 int regulator_bulk_force_disable(int num_consumers, 5108 struct regulator_bulk_data *consumers) 5109 { 5110 int i; 5111 int ret = 0; 5112 5113 for (i = 0; i < num_consumers; i++) { 5114 consumers[i].ret = 5115 regulator_force_disable(consumers[i].consumer); 5116 5117 /* Store first error for reporting */ 5118 if (consumers[i].ret && !ret) 5119 ret = consumers[i].ret; 5120 } 5121 5122 return ret; 5123 } 5124 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5125 5126 /** 5127 * regulator_bulk_free - free multiple regulator consumers 5128 * 5129 * @num_consumers: Number of consumers 5130 * @consumers: Consumer data; clients are stored here. 5131 * 5132 * This convenience API allows consumers to free multiple regulator 5133 * clients in a single API call. 5134 */ 5135 void regulator_bulk_free(int num_consumers, 5136 struct regulator_bulk_data *consumers) 5137 { 5138 int i; 5139 5140 for (i = 0; i < num_consumers; i++) { 5141 regulator_put(consumers[i].consumer); 5142 consumers[i].consumer = NULL; 5143 } 5144 } 5145 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5146 5147 /** 5148 * regulator_handle_critical - Handle events for system-critical regulators. 5149 * @rdev: The regulator device. 5150 * @event: The event being handled. 5151 * 5152 * This function handles critical events such as under-voltage, over-current, 5153 * and unknown errors for regulators deemed system-critical. On detecting such 5154 * events, it triggers a hardware protection shutdown with a defined timeout. 5155 */ 5156 static void regulator_handle_critical(struct regulator_dev *rdev, 5157 unsigned long event) 5158 { 5159 const char *reason = NULL; 5160 5161 if (!rdev->constraints->system_critical) 5162 return; 5163 5164 switch (event) { 5165 case REGULATOR_EVENT_UNDER_VOLTAGE: 5166 reason = "System critical regulator: voltage drop detected"; 5167 break; 5168 case REGULATOR_EVENT_OVER_CURRENT: 5169 reason = "System critical regulator: over-current detected"; 5170 break; 5171 case REGULATOR_EVENT_FAIL: 5172 reason = "System critical regulator: unknown error"; 5173 } 5174 5175 if (!reason) 5176 return; 5177 5178 hw_protection_shutdown(reason, 5179 rdev->constraints->uv_less_critical_window_ms); 5180 } 5181 5182 /** 5183 * regulator_notifier_call_chain - call regulator event notifier 5184 * @rdev: regulator source 5185 * @event: notifier block 5186 * @data: callback-specific data. 5187 * 5188 * Called by regulator drivers to notify clients a regulator event has 5189 * occurred. 5190 * 5191 * Return: %NOTIFY_DONE. 5192 */ 5193 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5194 unsigned long event, void *data) 5195 { 5196 regulator_handle_critical(rdev, event); 5197 5198 _notifier_call_chain(rdev, event, data); 5199 return NOTIFY_DONE; 5200 5201 } 5202 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5203 5204 /** 5205 * regulator_mode_to_status - convert a regulator mode into a status 5206 * 5207 * @mode: Mode to convert 5208 * 5209 * Convert a regulator mode into a status. 5210 * 5211 * Return: %REGULATOR_STATUS_* value corresponding to given mode. 5212 */ 5213 int regulator_mode_to_status(unsigned int mode) 5214 { 5215 switch (mode) { 5216 case REGULATOR_MODE_FAST: 5217 return REGULATOR_STATUS_FAST; 5218 case REGULATOR_MODE_NORMAL: 5219 return REGULATOR_STATUS_NORMAL; 5220 case REGULATOR_MODE_IDLE: 5221 return REGULATOR_STATUS_IDLE; 5222 case REGULATOR_MODE_STANDBY: 5223 return REGULATOR_STATUS_STANDBY; 5224 default: 5225 return REGULATOR_STATUS_UNDEFINED; 5226 } 5227 } 5228 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5229 5230 static struct attribute *regulator_dev_attrs[] = { 5231 &dev_attr_name.attr, 5232 &dev_attr_num_users.attr, 5233 &dev_attr_type.attr, 5234 &dev_attr_microvolts.attr, 5235 &dev_attr_microamps.attr, 5236 &dev_attr_opmode.attr, 5237 &dev_attr_state.attr, 5238 &dev_attr_status.attr, 5239 &dev_attr_bypass.attr, 5240 &dev_attr_requested_microamps.attr, 5241 &dev_attr_min_microvolts.attr, 5242 &dev_attr_max_microvolts.attr, 5243 &dev_attr_min_microamps.attr, 5244 &dev_attr_max_microamps.attr, 5245 &dev_attr_under_voltage.attr, 5246 &dev_attr_over_current.attr, 5247 &dev_attr_regulation_out.attr, 5248 &dev_attr_fail.attr, 5249 &dev_attr_over_temp.attr, 5250 &dev_attr_under_voltage_warn.attr, 5251 &dev_attr_over_current_warn.attr, 5252 &dev_attr_over_voltage_warn.attr, 5253 &dev_attr_over_temp_warn.attr, 5254 &dev_attr_suspend_standby_state.attr, 5255 &dev_attr_suspend_mem_state.attr, 5256 &dev_attr_suspend_disk_state.attr, 5257 &dev_attr_suspend_standby_microvolts.attr, 5258 &dev_attr_suspend_mem_microvolts.attr, 5259 &dev_attr_suspend_disk_microvolts.attr, 5260 &dev_attr_suspend_standby_mode.attr, 5261 &dev_attr_suspend_mem_mode.attr, 5262 &dev_attr_suspend_disk_mode.attr, 5263 NULL 5264 }; 5265 5266 /* 5267 * To avoid cluttering sysfs (and memory) with useless state, only 5268 * create attributes that can be meaningfully displayed. 5269 */ 5270 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5271 struct attribute *attr, int idx) 5272 { 5273 struct device *dev = kobj_to_dev(kobj); 5274 struct regulator_dev *rdev = dev_to_rdev(dev); 5275 const struct regulator_ops *ops = rdev->desc->ops; 5276 umode_t mode = attr->mode; 5277 5278 /* these three are always present */ 5279 if (attr == &dev_attr_name.attr || 5280 attr == &dev_attr_num_users.attr || 5281 attr == &dev_attr_type.attr) 5282 return mode; 5283 5284 /* some attributes need specific methods to be displayed */ 5285 if (attr == &dev_attr_microvolts.attr) { 5286 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5287 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5288 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5289 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5290 return mode; 5291 return 0; 5292 } 5293 5294 if (attr == &dev_attr_microamps.attr) 5295 return ops->get_current_limit ? mode : 0; 5296 5297 if (attr == &dev_attr_opmode.attr) 5298 return ops->get_mode ? mode : 0; 5299 5300 if (attr == &dev_attr_state.attr) 5301 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5302 5303 if (attr == &dev_attr_status.attr) 5304 return ops->get_status ? mode : 0; 5305 5306 if (attr == &dev_attr_bypass.attr) 5307 return ops->get_bypass ? mode : 0; 5308 5309 if (attr == &dev_attr_under_voltage.attr || 5310 attr == &dev_attr_over_current.attr || 5311 attr == &dev_attr_regulation_out.attr || 5312 attr == &dev_attr_fail.attr || 5313 attr == &dev_attr_over_temp.attr || 5314 attr == &dev_attr_under_voltage_warn.attr || 5315 attr == &dev_attr_over_current_warn.attr || 5316 attr == &dev_attr_over_voltage_warn.attr || 5317 attr == &dev_attr_over_temp_warn.attr) 5318 return ops->get_error_flags ? mode : 0; 5319 5320 /* constraints need specific supporting methods */ 5321 if (attr == &dev_attr_min_microvolts.attr || 5322 attr == &dev_attr_max_microvolts.attr) 5323 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5324 5325 if (attr == &dev_attr_min_microamps.attr || 5326 attr == &dev_attr_max_microamps.attr) 5327 return ops->set_current_limit ? mode : 0; 5328 5329 if (attr == &dev_attr_suspend_standby_state.attr || 5330 attr == &dev_attr_suspend_mem_state.attr || 5331 attr == &dev_attr_suspend_disk_state.attr) 5332 return mode; 5333 5334 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5335 attr == &dev_attr_suspend_mem_microvolts.attr || 5336 attr == &dev_attr_suspend_disk_microvolts.attr) 5337 return ops->set_suspend_voltage ? mode : 0; 5338 5339 if (attr == &dev_attr_suspend_standby_mode.attr || 5340 attr == &dev_attr_suspend_mem_mode.attr || 5341 attr == &dev_attr_suspend_disk_mode.attr) 5342 return ops->set_suspend_mode ? mode : 0; 5343 5344 return mode; 5345 } 5346 5347 static const struct attribute_group regulator_dev_group = { 5348 .attrs = regulator_dev_attrs, 5349 .is_visible = regulator_attr_is_visible, 5350 }; 5351 5352 static const struct attribute_group *regulator_dev_groups[] = { 5353 ®ulator_dev_group, 5354 NULL 5355 }; 5356 5357 static void regulator_dev_release(struct device *dev) 5358 { 5359 struct regulator_dev *rdev = dev_get_drvdata(dev); 5360 5361 debugfs_remove_recursive(rdev->debugfs); 5362 kfree(rdev->constraints); 5363 of_node_put(rdev->dev.of_node); 5364 kfree(rdev); 5365 } 5366 5367 static void rdev_init_debugfs(struct regulator_dev *rdev) 5368 { 5369 struct device *parent = rdev->dev.parent; 5370 const char *rname = rdev_get_name(rdev); 5371 char name[NAME_MAX]; 5372 5373 /* Avoid duplicate debugfs directory names */ 5374 if (parent && rname == rdev->desc->name) { 5375 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5376 rname); 5377 rname = name; 5378 } 5379 5380 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5381 if (IS_ERR(rdev->debugfs)) 5382 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5383 5384 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5385 &rdev->use_count); 5386 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5387 &rdev->open_count); 5388 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5389 &rdev->bypass_count); 5390 } 5391 5392 static int regulator_register_resolve_supply(struct device *dev, void *data) 5393 { 5394 struct regulator_dev *rdev = dev_to_rdev(dev); 5395 5396 if (regulator_resolve_supply(rdev)) 5397 rdev_dbg(rdev, "unable to resolve supply\n"); 5398 5399 return 0; 5400 } 5401 5402 int regulator_coupler_register(struct regulator_coupler *coupler) 5403 { 5404 mutex_lock(®ulator_list_mutex); 5405 list_add_tail(&coupler->list, ®ulator_coupler_list); 5406 mutex_unlock(®ulator_list_mutex); 5407 5408 return 0; 5409 } 5410 5411 static struct regulator_coupler * 5412 regulator_find_coupler(struct regulator_dev *rdev) 5413 { 5414 struct regulator_coupler *coupler; 5415 int err; 5416 5417 /* 5418 * Note that regulators are appended to the list and the generic 5419 * coupler is registered first, hence it will be attached at last 5420 * if nobody cared. 5421 */ 5422 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5423 err = coupler->attach_regulator(coupler, rdev); 5424 if (!err) { 5425 if (!coupler->balance_voltage && 5426 rdev->coupling_desc.n_coupled > 2) 5427 goto err_unsupported; 5428 5429 return coupler; 5430 } 5431 5432 if (err < 0) 5433 return ERR_PTR(err); 5434 5435 if (err == 1) 5436 continue; 5437 5438 break; 5439 } 5440 5441 return ERR_PTR(-EINVAL); 5442 5443 err_unsupported: 5444 if (coupler->detach_regulator) 5445 coupler->detach_regulator(coupler, rdev); 5446 5447 rdev_err(rdev, 5448 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5449 5450 return ERR_PTR(-EPERM); 5451 } 5452 5453 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5454 { 5455 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5456 struct coupling_desc *c_desc = &rdev->coupling_desc; 5457 int n_coupled = c_desc->n_coupled; 5458 struct regulator_dev *c_rdev; 5459 int i; 5460 5461 for (i = 1; i < n_coupled; i++) { 5462 /* already resolved */ 5463 if (c_desc->coupled_rdevs[i]) 5464 continue; 5465 5466 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5467 5468 if (!c_rdev) 5469 continue; 5470 5471 if (c_rdev->coupling_desc.coupler != coupler) { 5472 rdev_err(rdev, "coupler mismatch with %s\n", 5473 rdev_get_name(c_rdev)); 5474 return; 5475 } 5476 5477 c_desc->coupled_rdevs[i] = c_rdev; 5478 c_desc->n_resolved++; 5479 5480 regulator_resolve_coupling(c_rdev); 5481 } 5482 } 5483 5484 static void regulator_remove_coupling(struct regulator_dev *rdev) 5485 { 5486 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5487 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5488 struct regulator_dev *__c_rdev, *c_rdev; 5489 unsigned int __n_coupled, n_coupled; 5490 int i, k; 5491 int err; 5492 5493 n_coupled = c_desc->n_coupled; 5494 5495 for (i = 1; i < n_coupled; i++) { 5496 c_rdev = c_desc->coupled_rdevs[i]; 5497 5498 if (!c_rdev) 5499 continue; 5500 5501 regulator_lock(c_rdev); 5502 5503 __c_desc = &c_rdev->coupling_desc; 5504 __n_coupled = __c_desc->n_coupled; 5505 5506 for (k = 1; k < __n_coupled; k++) { 5507 __c_rdev = __c_desc->coupled_rdevs[k]; 5508 5509 if (__c_rdev == rdev) { 5510 __c_desc->coupled_rdevs[k] = NULL; 5511 __c_desc->n_resolved--; 5512 break; 5513 } 5514 } 5515 5516 regulator_unlock(c_rdev); 5517 5518 c_desc->coupled_rdevs[i] = NULL; 5519 c_desc->n_resolved--; 5520 } 5521 5522 if (coupler && coupler->detach_regulator) { 5523 err = coupler->detach_regulator(coupler, rdev); 5524 if (err) 5525 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5526 ERR_PTR(err)); 5527 } 5528 5529 kfree(rdev->coupling_desc.coupled_rdevs); 5530 rdev->coupling_desc.coupled_rdevs = NULL; 5531 } 5532 5533 static int regulator_init_coupling(struct regulator_dev *rdev) 5534 { 5535 struct regulator_dev **coupled; 5536 int err, n_phandles; 5537 5538 if (!IS_ENABLED(CONFIG_OF)) 5539 n_phandles = 0; 5540 else 5541 n_phandles = of_get_n_coupled(rdev); 5542 5543 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5544 if (!coupled) 5545 return -ENOMEM; 5546 5547 rdev->coupling_desc.coupled_rdevs = coupled; 5548 5549 /* 5550 * Every regulator should always have coupling descriptor filled with 5551 * at least pointer to itself. 5552 */ 5553 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5554 rdev->coupling_desc.n_coupled = n_phandles + 1; 5555 rdev->coupling_desc.n_resolved++; 5556 5557 /* regulator isn't coupled */ 5558 if (n_phandles == 0) 5559 return 0; 5560 5561 if (!of_check_coupling_data(rdev)) 5562 return -EPERM; 5563 5564 mutex_lock(®ulator_list_mutex); 5565 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5566 mutex_unlock(®ulator_list_mutex); 5567 5568 if (IS_ERR(rdev->coupling_desc.coupler)) { 5569 err = PTR_ERR(rdev->coupling_desc.coupler); 5570 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5571 return err; 5572 } 5573 5574 return 0; 5575 } 5576 5577 static int generic_coupler_attach(struct regulator_coupler *coupler, 5578 struct regulator_dev *rdev) 5579 { 5580 if (rdev->coupling_desc.n_coupled > 2) { 5581 rdev_err(rdev, 5582 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5583 return -EPERM; 5584 } 5585 5586 if (!rdev->constraints->always_on) { 5587 rdev_err(rdev, 5588 "Coupling of a non always-on regulator is unimplemented\n"); 5589 return -ENOTSUPP; 5590 } 5591 5592 return 0; 5593 } 5594 5595 static struct regulator_coupler generic_regulator_coupler = { 5596 .attach_regulator = generic_coupler_attach, 5597 }; 5598 5599 /** 5600 * regulator_register - register regulator 5601 * @dev: the device that drive the regulator 5602 * @regulator_desc: regulator to register 5603 * @cfg: runtime configuration for regulator 5604 * 5605 * Called by regulator drivers to register a regulator. 5606 * 5607 * Return: Pointer to a valid &struct regulator_dev on success or 5608 * an ERR_PTR() encoded negative error number on failure. 5609 */ 5610 struct regulator_dev * 5611 regulator_register(struct device *dev, 5612 const struct regulator_desc *regulator_desc, 5613 const struct regulator_config *cfg) 5614 { 5615 const struct regulator_init_data *init_data; 5616 struct regulator_config *config = NULL; 5617 static atomic_t regulator_no = ATOMIC_INIT(-1); 5618 struct regulator_dev *rdev; 5619 bool dangling_cfg_gpiod = false; 5620 bool dangling_of_gpiod = false; 5621 int ret, i; 5622 bool resolved_early = false; 5623 5624 if (cfg == NULL) 5625 return ERR_PTR(-EINVAL); 5626 if (cfg->ena_gpiod) 5627 dangling_cfg_gpiod = true; 5628 if (regulator_desc == NULL) { 5629 ret = -EINVAL; 5630 goto rinse; 5631 } 5632 5633 WARN_ON(!dev || !cfg->dev); 5634 5635 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5636 ret = -EINVAL; 5637 goto rinse; 5638 } 5639 5640 if (regulator_desc->type != REGULATOR_VOLTAGE && 5641 regulator_desc->type != REGULATOR_CURRENT) { 5642 ret = -EINVAL; 5643 goto rinse; 5644 } 5645 5646 /* Only one of each should be implemented */ 5647 WARN_ON(regulator_desc->ops->get_voltage && 5648 regulator_desc->ops->get_voltage_sel); 5649 WARN_ON(regulator_desc->ops->set_voltage && 5650 regulator_desc->ops->set_voltage_sel); 5651 5652 /* If we're using selectors we must implement list_voltage. */ 5653 if (regulator_desc->ops->get_voltage_sel && 5654 !regulator_desc->ops->list_voltage) { 5655 ret = -EINVAL; 5656 goto rinse; 5657 } 5658 if (regulator_desc->ops->set_voltage_sel && 5659 !regulator_desc->ops->list_voltage) { 5660 ret = -EINVAL; 5661 goto rinse; 5662 } 5663 5664 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5665 if (rdev == NULL) { 5666 ret = -ENOMEM; 5667 goto rinse; 5668 } 5669 device_initialize(&rdev->dev); 5670 dev_set_drvdata(&rdev->dev, rdev); 5671 rdev->dev.class = ®ulator_class; 5672 spin_lock_init(&rdev->err_lock); 5673 5674 /* 5675 * Duplicate the config so the driver could override it after 5676 * parsing init data. 5677 */ 5678 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5679 if (config == NULL) { 5680 ret = -ENOMEM; 5681 goto clean; 5682 } 5683 5684 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5685 &rdev->dev.of_node); 5686 5687 /* 5688 * Sometimes not all resources are probed already so we need to take 5689 * that into account. This happens most the time if the ena_gpiod comes 5690 * from a gpio extender or something else. 5691 */ 5692 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5693 ret = -EPROBE_DEFER; 5694 goto clean; 5695 } 5696 5697 /* 5698 * We need to keep track of any GPIO descriptor coming from the 5699 * device tree until we have handled it over to the core. If the 5700 * config that was passed in to this function DOES NOT contain 5701 * a descriptor, and the config after this call DOES contain 5702 * a descriptor, we definitely got one from parsing the device 5703 * tree. 5704 */ 5705 if (!cfg->ena_gpiod && config->ena_gpiod) 5706 dangling_of_gpiod = true; 5707 if (!init_data) { 5708 init_data = config->init_data; 5709 rdev->dev.of_node = of_node_get(config->of_node); 5710 } 5711 5712 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5713 rdev->reg_data = config->driver_data; 5714 rdev->owner = regulator_desc->owner; 5715 rdev->desc = regulator_desc; 5716 if (config->regmap) 5717 rdev->regmap = config->regmap; 5718 else if (dev_get_regmap(dev, NULL)) 5719 rdev->regmap = dev_get_regmap(dev, NULL); 5720 else if (dev->parent) 5721 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5722 INIT_LIST_HEAD(&rdev->consumer_list); 5723 INIT_LIST_HEAD(&rdev->list); 5724 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5725 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5726 5727 if (init_data && init_data->supply_regulator) 5728 rdev->supply_name = init_data->supply_regulator; 5729 else if (regulator_desc->supply_name) 5730 rdev->supply_name = regulator_desc->supply_name; 5731 5732 /* register with sysfs */ 5733 rdev->dev.parent = config->dev; 5734 dev_set_name(&rdev->dev, "regulator.%lu", 5735 (unsigned long) atomic_inc_return(®ulator_no)); 5736 5737 /* set regulator constraints */ 5738 if (init_data) 5739 rdev->constraints = kmemdup(&init_data->constraints, 5740 sizeof(*rdev->constraints), 5741 GFP_KERNEL); 5742 else 5743 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5744 GFP_KERNEL); 5745 if (!rdev->constraints) { 5746 ret = -ENOMEM; 5747 goto wash; 5748 } 5749 5750 if ((rdev->supply_name && !rdev->supply) && 5751 (rdev->constraints->always_on || 5752 rdev->constraints->boot_on)) { 5753 ret = regulator_resolve_supply(rdev); 5754 if (ret) 5755 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5756 ERR_PTR(ret)); 5757 5758 resolved_early = true; 5759 } 5760 5761 /* perform any regulator specific init */ 5762 if (init_data && init_data->regulator_init) { 5763 ret = init_data->regulator_init(rdev->reg_data); 5764 if (ret < 0) 5765 goto wash; 5766 } 5767 5768 if (config->ena_gpiod) { 5769 ret = regulator_ena_gpio_request(rdev, config); 5770 if (ret != 0) { 5771 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5772 ERR_PTR(ret)); 5773 goto wash; 5774 } 5775 /* The regulator core took over the GPIO descriptor */ 5776 dangling_cfg_gpiod = false; 5777 dangling_of_gpiod = false; 5778 } 5779 5780 ret = set_machine_constraints(rdev); 5781 if (ret == -EPROBE_DEFER && !resolved_early) { 5782 /* Regulator might be in bypass mode and so needs its supply 5783 * to set the constraints 5784 */ 5785 /* FIXME: this currently triggers a chicken-and-egg problem 5786 * when creating -SUPPLY symlink in sysfs to a regulator 5787 * that is just being created 5788 */ 5789 rdev_dbg(rdev, "will resolve supply early: %s\n", 5790 rdev->supply_name); 5791 ret = regulator_resolve_supply(rdev); 5792 if (!ret) 5793 ret = set_machine_constraints(rdev); 5794 else 5795 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5796 ERR_PTR(ret)); 5797 } 5798 if (ret < 0) 5799 goto wash; 5800 5801 ret = regulator_init_coupling(rdev); 5802 if (ret < 0) 5803 goto wash; 5804 5805 /* add consumers devices */ 5806 if (init_data) { 5807 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5808 ret = set_consumer_device_supply(rdev, 5809 init_data->consumer_supplies[i].dev_name, 5810 init_data->consumer_supplies[i].supply); 5811 if (ret < 0) { 5812 dev_err(dev, "Failed to set supply %s\n", 5813 init_data->consumer_supplies[i].supply); 5814 goto unset_supplies; 5815 } 5816 } 5817 } 5818 5819 if (!rdev->desc->ops->get_voltage && 5820 !rdev->desc->ops->list_voltage && 5821 !rdev->desc->fixed_uV) 5822 rdev->is_switch = true; 5823 5824 ret = device_add(&rdev->dev); 5825 if (ret != 0) 5826 goto unset_supplies; 5827 5828 rdev_init_debugfs(rdev); 5829 5830 /* try to resolve regulators coupling since a new one was registered */ 5831 mutex_lock(®ulator_list_mutex); 5832 regulator_resolve_coupling(rdev); 5833 mutex_unlock(®ulator_list_mutex); 5834 5835 /* try to resolve regulators supply since a new one was registered */ 5836 class_for_each_device(®ulator_class, NULL, NULL, 5837 regulator_register_resolve_supply); 5838 kfree(config); 5839 return rdev; 5840 5841 unset_supplies: 5842 mutex_lock(®ulator_list_mutex); 5843 unset_regulator_supplies(rdev); 5844 regulator_remove_coupling(rdev); 5845 mutex_unlock(®ulator_list_mutex); 5846 wash: 5847 regulator_put(rdev->supply); 5848 kfree(rdev->coupling_desc.coupled_rdevs); 5849 mutex_lock(®ulator_list_mutex); 5850 regulator_ena_gpio_free(rdev); 5851 mutex_unlock(®ulator_list_mutex); 5852 clean: 5853 if (dangling_of_gpiod) 5854 gpiod_put(config->ena_gpiod); 5855 kfree(config); 5856 put_device(&rdev->dev); 5857 rinse: 5858 if (dangling_cfg_gpiod) 5859 gpiod_put(cfg->ena_gpiod); 5860 return ERR_PTR(ret); 5861 } 5862 EXPORT_SYMBOL_GPL(regulator_register); 5863 5864 /** 5865 * regulator_unregister - unregister regulator 5866 * @rdev: regulator to unregister 5867 * 5868 * Called by regulator drivers to unregister a regulator. 5869 */ 5870 void regulator_unregister(struct regulator_dev *rdev) 5871 { 5872 if (rdev == NULL) 5873 return; 5874 5875 if (rdev->supply) { 5876 while (rdev->use_count--) 5877 regulator_disable(rdev->supply); 5878 regulator_put(rdev->supply); 5879 } 5880 5881 flush_work(&rdev->disable_work.work); 5882 5883 mutex_lock(®ulator_list_mutex); 5884 5885 WARN_ON(rdev->open_count); 5886 regulator_remove_coupling(rdev); 5887 unset_regulator_supplies(rdev); 5888 list_del(&rdev->list); 5889 regulator_ena_gpio_free(rdev); 5890 device_unregister(&rdev->dev); 5891 5892 mutex_unlock(®ulator_list_mutex); 5893 } 5894 EXPORT_SYMBOL_GPL(regulator_unregister); 5895 5896 #ifdef CONFIG_SUSPEND 5897 /** 5898 * regulator_suspend - prepare regulators for system wide suspend 5899 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5900 * 5901 * Configure each regulator with it's suspend operating parameters for state. 5902 * 5903 * Return: 0 on success or a negative error number on failure. 5904 */ 5905 static int regulator_suspend(struct device *dev) 5906 { 5907 struct regulator_dev *rdev = dev_to_rdev(dev); 5908 suspend_state_t state = pm_suspend_target_state; 5909 int ret; 5910 const struct regulator_state *rstate; 5911 5912 rstate = regulator_get_suspend_state_check(rdev, state); 5913 if (!rstate) 5914 return 0; 5915 5916 regulator_lock(rdev); 5917 ret = __suspend_set_state(rdev, rstate); 5918 regulator_unlock(rdev); 5919 5920 return ret; 5921 } 5922 5923 static int regulator_resume(struct device *dev) 5924 { 5925 suspend_state_t state = pm_suspend_target_state; 5926 struct regulator_dev *rdev = dev_to_rdev(dev); 5927 struct regulator_state *rstate; 5928 int ret = 0; 5929 5930 rstate = regulator_get_suspend_state(rdev, state); 5931 if (rstate == NULL) 5932 return 0; 5933 5934 /* Avoid grabbing the lock if we don't need to */ 5935 if (!rdev->desc->ops->resume) 5936 return 0; 5937 5938 regulator_lock(rdev); 5939 5940 if (rstate->enabled == ENABLE_IN_SUSPEND || 5941 rstate->enabled == DISABLE_IN_SUSPEND) 5942 ret = rdev->desc->ops->resume(rdev); 5943 5944 regulator_unlock(rdev); 5945 5946 return ret; 5947 } 5948 #else /* !CONFIG_SUSPEND */ 5949 5950 #define regulator_suspend NULL 5951 #define regulator_resume NULL 5952 5953 #endif /* !CONFIG_SUSPEND */ 5954 5955 #ifdef CONFIG_PM 5956 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5957 .suspend = regulator_suspend, 5958 .resume = regulator_resume, 5959 }; 5960 #endif 5961 5962 const struct class regulator_class = { 5963 .name = "regulator", 5964 .dev_release = regulator_dev_release, 5965 .dev_groups = regulator_dev_groups, 5966 #ifdef CONFIG_PM 5967 .pm = ®ulator_pm_ops, 5968 #endif 5969 }; 5970 /** 5971 * regulator_has_full_constraints - the system has fully specified constraints 5972 * 5973 * Calling this function will cause the regulator API to disable all 5974 * regulators which have a zero use count and don't have an always_on 5975 * constraint in a late_initcall. 5976 * 5977 * The intention is that this will become the default behaviour in a 5978 * future kernel release so users are encouraged to use this facility 5979 * now. 5980 */ 5981 void regulator_has_full_constraints(void) 5982 { 5983 has_full_constraints = 1; 5984 } 5985 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5986 5987 /** 5988 * rdev_get_drvdata - get rdev regulator driver data 5989 * @rdev: regulator 5990 * 5991 * Get rdev regulator driver private data. This call can be used in the 5992 * regulator driver context. 5993 * 5994 * Return: Pointer to regulator driver private data. 5995 */ 5996 void *rdev_get_drvdata(struct regulator_dev *rdev) 5997 { 5998 return rdev->reg_data; 5999 } 6000 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 6001 6002 /** 6003 * regulator_get_drvdata - get regulator driver data 6004 * @regulator: regulator 6005 * 6006 * Get regulator driver private data. This call can be used in the consumer 6007 * driver context when non API regulator specific functions need to be called. 6008 * 6009 * Return: Pointer to regulator driver private data. 6010 */ 6011 void *regulator_get_drvdata(struct regulator *regulator) 6012 { 6013 return regulator->rdev->reg_data; 6014 } 6015 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 6016 6017 /** 6018 * regulator_set_drvdata - set regulator driver data 6019 * @regulator: regulator 6020 * @data: data 6021 */ 6022 void regulator_set_drvdata(struct regulator *regulator, void *data) 6023 { 6024 regulator->rdev->reg_data = data; 6025 } 6026 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 6027 6028 /** 6029 * rdev_get_id - get regulator ID 6030 * @rdev: regulator 6031 * 6032 * Return: Regulator ID for @rdev. 6033 */ 6034 int rdev_get_id(struct regulator_dev *rdev) 6035 { 6036 return rdev->desc->id; 6037 } 6038 EXPORT_SYMBOL_GPL(rdev_get_id); 6039 6040 struct device *rdev_get_dev(struct regulator_dev *rdev) 6041 { 6042 return &rdev->dev; 6043 } 6044 EXPORT_SYMBOL_GPL(rdev_get_dev); 6045 6046 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 6047 { 6048 return rdev->regmap; 6049 } 6050 EXPORT_SYMBOL_GPL(rdev_get_regmap); 6051 6052 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 6053 { 6054 return reg_init_data->driver_data; 6055 } 6056 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 6057 6058 #ifdef CONFIG_DEBUG_FS 6059 static int supply_map_show(struct seq_file *sf, void *data) 6060 { 6061 struct regulator_map *map; 6062 6063 list_for_each_entry(map, ®ulator_map_list, list) { 6064 seq_printf(sf, "%s -> %s.%s\n", 6065 rdev_get_name(map->regulator), map->dev_name, 6066 map->supply); 6067 } 6068 6069 return 0; 6070 } 6071 DEFINE_SHOW_ATTRIBUTE(supply_map); 6072 6073 struct summary_data { 6074 struct seq_file *s; 6075 struct regulator_dev *parent; 6076 int level; 6077 }; 6078 6079 static void regulator_summary_show_subtree(struct seq_file *s, 6080 struct regulator_dev *rdev, 6081 int level); 6082 6083 static int regulator_summary_show_children(struct device *dev, void *data) 6084 { 6085 struct regulator_dev *rdev = dev_to_rdev(dev); 6086 struct summary_data *summary_data = data; 6087 6088 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6089 regulator_summary_show_subtree(summary_data->s, rdev, 6090 summary_data->level + 1); 6091 6092 return 0; 6093 } 6094 6095 static void regulator_summary_show_subtree(struct seq_file *s, 6096 struct regulator_dev *rdev, 6097 int level) 6098 { 6099 struct regulation_constraints *c; 6100 struct regulator *consumer; 6101 struct summary_data summary_data; 6102 unsigned int opmode; 6103 6104 if (!rdev) 6105 return; 6106 6107 opmode = _regulator_get_mode_unlocked(rdev); 6108 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6109 level * 3 + 1, "", 6110 30 - level * 3, rdev_get_name(rdev), 6111 rdev->use_count, rdev->open_count, rdev->bypass_count, 6112 regulator_opmode_to_str(opmode)); 6113 6114 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6115 seq_printf(s, "%5dmA ", 6116 _regulator_get_current_limit_unlocked(rdev) / 1000); 6117 6118 c = rdev->constraints; 6119 if (c) { 6120 switch (rdev->desc->type) { 6121 case REGULATOR_VOLTAGE: 6122 seq_printf(s, "%5dmV %5dmV ", 6123 c->min_uV / 1000, c->max_uV / 1000); 6124 break; 6125 case REGULATOR_CURRENT: 6126 seq_printf(s, "%5dmA %5dmA ", 6127 c->min_uA / 1000, c->max_uA / 1000); 6128 break; 6129 } 6130 } 6131 6132 seq_puts(s, "\n"); 6133 6134 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6135 if (consumer->dev && consumer->dev->class == ®ulator_class) 6136 continue; 6137 6138 seq_printf(s, "%*s%-*s ", 6139 (level + 1) * 3 + 1, "", 6140 30 - (level + 1) * 3, 6141 consumer->supply_name ? consumer->supply_name : 6142 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6143 6144 switch (rdev->desc->type) { 6145 case REGULATOR_VOLTAGE: 6146 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6147 consumer->enable_count, 6148 consumer->uA_load / 1000, 6149 consumer->uA_load && !consumer->enable_count ? 6150 '*' : ' ', 6151 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6152 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6153 break; 6154 case REGULATOR_CURRENT: 6155 break; 6156 } 6157 6158 seq_puts(s, "\n"); 6159 } 6160 6161 summary_data.s = s; 6162 summary_data.level = level; 6163 summary_data.parent = rdev; 6164 6165 class_for_each_device(®ulator_class, NULL, &summary_data, 6166 regulator_summary_show_children); 6167 } 6168 6169 struct summary_lock_data { 6170 struct ww_acquire_ctx *ww_ctx; 6171 struct regulator_dev **new_contended_rdev; 6172 struct regulator_dev **old_contended_rdev; 6173 }; 6174 6175 static int regulator_summary_lock_one(struct device *dev, void *data) 6176 { 6177 struct regulator_dev *rdev = dev_to_rdev(dev); 6178 struct summary_lock_data *lock_data = data; 6179 int ret = 0; 6180 6181 if (rdev != *lock_data->old_contended_rdev) { 6182 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6183 6184 if (ret == -EDEADLK) 6185 *lock_data->new_contended_rdev = rdev; 6186 else 6187 WARN_ON_ONCE(ret); 6188 } else { 6189 *lock_data->old_contended_rdev = NULL; 6190 } 6191 6192 return ret; 6193 } 6194 6195 static int regulator_summary_unlock_one(struct device *dev, void *data) 6196 { 6197 struct regulator_dev *rdev = dev_to_rdev(dev); 6198 struct summary_lock_data *lock_data = data; 6199 6200 if (lock_data) { 6201 if (rdev == *lock_data->new_contended_rdev) 6202 return -EDEADLK; 6203 } 6204 6205 regulator_unlock(rdev); 6206 6207 return 0; 6208 } 6209 6210 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6211 struct regulator_dev **new_contended_rdev, 6212 struct regulator_dev **old_contended_rdev) 6213 { 6214 struct summary_lock_data lock_data; 6215 int ret; 6216 6217 lock_data.ww_ctx = ww_ctx; 6218 lock_data.new_contended_rdev = new_contended_rdev; 6219 lock_data.old_contended_rdev = old_contended_rdev; 6220 6221 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6222 regulator_summary_lock_one); 6223 if (ret) 6224 class_for_each_device(®ulator_class, NULL, &lock_data, 6225 regulator_summary_unlock_one); 6226 6227 return ret; 6228 } 6229 6230 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6231 { 6232 struct regulator_dev *new_contended_rdev = NULL; 6233 struct regulator_dev *old_contended_rdev = NULL; 6234 int err; 6235 6236 mutex_lock(®ulator_list_mutex); 6237 6238 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6239 6240 do { 6241 if (new_contended_rdev) { 6242 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6243 old_contended_rdev = new_contended_rdev; 6244 old_contended_rdev->ref_cnt++; 6245 old_contended_rdev->mutex_owner = current; 6246 } 6247 6248 err = regulator_summary_lock_all(ww_ctx, 6249 &new_contended_rdev, 6250 &old_contended_rdev); 6251 6252 if (old_contended_rdev) 6253 regulator_unlock(old_contended_rdev); 6254 6255 } while (err == -EDEADLK); 6256 6257 ww_acquire_done(ww_ctx); 6258 } 6259 6260 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6261 { 6262 class_for_each_device(®ulator_class, NULL, NULL, 6263 regulator_summary_unlock_one); 6264 ww_acquire_fini(ww_ctx); 6265 6266 mutex_unlock(®ulator_list_mutex); 6267 } 6268 6269 static int regulator_summary_show_roots(struct device *dev, void *data) 6270 { 6271 struct regulator_dev *rdev = dev_to_rdev(dev); 6272 struct seq_file *s = data; 6273 6274 if (!rdev->supply) 6275 regulator_summary_show_subtree(s, rdev, 0); 6276 6277 return 0; 6278 } 6279 6280 static int regulator_summary_show(struct seq_file *s, void *data) 6281 { 6282 struct ww_acquire_ctx ww_ctx; 6283 6284 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6285 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6286 6287 regulator_summary_lock(&ww_ctx); 6288 6289 class_for_each_device(®ulator_class, NULL, s, 6290 regulator_summary_show_roots); 6291 6292 regulator_summary_unlock(&ww_ctx); 6293 6294 return 0; 6295 } 6296 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6297 #endif /* CONFIG_DEBUG_FS */ 6298 6299 static int __init regulator_init(void) 6300 { 6301 int ret; 6302 6303 ret = class_register(®ulator_class); 6304 6305 debugfs_root = debugfs_create_dir("regulator", NULL); 6306 if (IS_ERR(debugfs_root)) 6307 pr_debug("regulator: Failed to create debugfs directory\n"); 6308 6309 #ifdef CONFIG_DEBUG_FS 6310 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6311 &supply_map_fops); 6312 6313 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6314 NULL, ®ulator_summary_fops); 6315 #endif 6316 regulator_dummy_init(); 6317 6318 regulator_coupler_register(&generic_regulator_coupler); 6319 6320 return ret; 6321 } 6322 6323 /* init early to allow our consumers to complete system booting */ 6324 core_initcall(regulator_init); 6325 6326 static int regulator_late_cleanup(struct device *dev, void *data) 6327 { 6328 struct regulator_dev *rdev = dev_to_rdev(dev); 6329 struct regulation_constraints *c = rdev->constraints; 6330 int ret; 6331 6332 if (c && c->always_on) 6333 return 0; 6334 6335 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6336 return 0; 6337 6338 regulator_lock(rdev); 6339 6340 if (rdev->use_count) 6341 goto unlock; 6342 6343 /* If reading the status failed, assume that it's off. */ 6344 if (_regulator_is_enabled(rdev) <= 0) 6345 goto unlock; 6346 6347 if (have_full_constraints()) { 6348 /* We log since this may kill the system if it goes 6349 * wrong. 6350 */ 6351 rdev_info(rdev, "disabling\n"); 6352 ret = _regulator_do_disable(rdev); 6353 if (ret != 0) 6354 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6355 } else { 6356 /* The intention is that in future we will 6357 * assume that full constraints are provided 6358 * so warn even if we aren't going to do 6359 * anything here. 6360 */ 6361 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6362 } 6363 6364 unlock: 6365 regulator_unlock(rdev); 6366 6367 return 0; 6368 } 6369 6370 static bool regulator_ignore_unused; 6371 static int __init regulator_ignore_unused_setup(char *__unused) 6372 { 6373 regulator_ignore_unused = true; 6374 return 1; 6375 } 6376 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6377 6378 static void regulator_init_complete_work_function(struct work_struct *work) 6379 { 6380 /* 6381 * Regulators may had failed to resolve their input supplies 6382 * when were registered, either because the input supply was 6383 * not registered yet or because its parent device was not 6384 * bound yet. So attempt to resolve the input supplies for 6385 * pending regulators before trying to disable unused ones. 6386 */ 6387 class_for_each_device(®ulator_class, NULL, NULL, 6388 regulator_register_resolve_supply); 6389 6390 /* 6391 * For debugging purposes, it may be useful to prevent unused 6392 * regulators from being disabled. 6393 */ 6394 if (regulator_ignore_unused) { 6395 pr_warn("regulator: Not disabling unused regulators\n"); 6396 return; 6397 } 6398 6399 /* If we have a full configuration then disable any regulators 6400 * we have permission to change the status for and which are 6401 * not in use or always_on. This is effectively the default 6402 * for DT and ACPI as they have full constraints. 6403 */ 6404 class_for_each_device(®ulator_class, NULL, NULL, 6405 regulator_late_cleanup); 6406 } 6407 6408 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6409 regulator_init_complete_work_function); 6410 6411 static int __init regulator_init_complete(void) 6412 { 6413 /* 6414 * Since DT doesn't provide an idiomatic mechanism for 6415 * enabling full constraints and since it's much more natural 6416 * with DT to provide them just assume that a DT enabled 6417 * system has full constraints. 6418 */ 6419 if (of_have_populated_dt()) 6420 has_full_constraints = true; 6421 6422 /* 6423 * We punt completion for an arbitrary amount of time since 6424 * systems like distros will load many drivers from userspace 6425 * so consumers might not always be ready yet, this is 6426 * particularly an issue with laptops where this might bounce 6427 * the display off then on. Ideally we'd get a notification 6428 * from userspace when this happens but we don't so just wait 6429 * a bit and hope we waited long enough. It'd be better if 6430 * we'd only do this on systems that need it, and a kernel 6431 * command line option might be useful. 6432 */ 6433 schedule_delayed_work(®ulator_init_complete_work, 6434 msecs_to_jiffies(30000)); 6435 6436 return 0; 6437 } 6438 late_initcall_sync(regulator_init_complete); 6439