xref: /linux/drivers/regulator/core.c (revision c358f53871605a1a8d7ed6e544a05ea00e9c80cb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94 				     suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100 
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111 
112 static bool have_full_constraints(void)
113 {
114 	return has_full_constraints || of_have_populated_dt();
115 }
116 
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119 	if (!rdev->constraints) {
120 		rdev_err(rdev, "no constraints\n");
121 		return false;
122 	}
123 
124 	if (rdev->constraints->valid_ops_mask & ops)
125 		return true;
126 
127 	return false;
128 }
129 
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:		regulator source
133  * @ww_ctx:		w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 					struct ww_acquire_ctx *ww_ctx)
143 {
144 	bool lock = false;
145 	int ret = 0;
146 
147 	mutex_lock(&regulator_nesting_mutex);
148 
149 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 		if (rdev->mutex_owner == current)
151 			rdev->ref_cnt++;
152 		else
153 			lock = true;
154 
155 		if (lock) {
156 			mutex_unlock(&regulator_nesting_mutex);
157 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 			mutex_lock(&regulator_nesting_mutex);
159 		}
160 	} else {
161 		lock = true;
162 	}
163 
164 	if (lock && ret != -EDEADLK) {
165 		rdev->ref_cnt++;
166 		rdev->mutex_owner = current;
167 	}
168 
169 	mutex_unlock(&regulator_nesting_mutex);
170 
171 	return ret;
172 }
173 
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:		regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186 	regulator_lock_nested(rdev, NULL);
187 }
188 
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:		regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198 	mutex_lock(&regulator_nesting_mutex);
199 
200 	if (--rdev->ref_cnt == 0) {
201 		rdev->mutex_owner = NULL;
202 		ww_mutex_unlock(&rdev->mutex);
203 	}
204 
205 	WARN_ON_ONCE(rdev->ref_cnt < 0);
206 
207 	mutex_unlock(&regulator_nesting_mutex);
208 }
209 
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212 	struct regulator_dev *c_rdev;
213 	int i;
214 
215 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217 
218 		if (rdev->supply->rdev == c_rdev)
219 			return true;
220 	}
221 
222 	return false;
223 }
224 
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 				       unsigned int n_coupled)
227 {
228 	struct regulator_dev *c_rdev, *supply_rdev;
229 	int i, supply_n_coupled;
230 
231 	for (i = n_coupled; i > 0; i--) {
232 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233 
234 		if (!c_rdev)
235 			continue;
236 
237 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 			supply_rdev = c_rdev->supply->rdev;
239 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240 
241 			regulator_unlock_recursive(supply_rdev,
242 						   supply_n_coupled);
243 		}
244 
245 		regulator_unlock(c_rdev);
246 	}
247 }
248 
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250 				    struct regulator_dev **new_contended_rdev,
251 				    struct regulator_dev **old_contended_rdev,
252 				    struct ww_acquire_ctx *ww_ctx)
253 {
254 	struct regulator_dev *c_rdev;
255 	int i, err;
256 
257 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259 
260 		if (!c_rdev)
261 			continue;
262 
263 		if (c_rdev != *old_contended_rdev) {
264 			err = regulator_lock_nested(c_rdev, ww_ctx);
265 			if (err) {
266 				if (err == -EDEADLK) {
267 					*new_contended_rdev = c_rdev;
268 					goto err_unlock;
269 				}
270 
271 				/* shouldn't happen */
272 				WARN_ON_ONCE(err != -EALREADY);
273 			}
274 		} else {
275 			*old_contended_rdev = NULL;
276 		}
277 
278 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 			err = regulator_lock_recursive(c_rdev->supply->rdev,
280 						       new_contended_rdev,
281 						       old_contended_rdev,
282 						       ww_ctx);
283 			if (err) {
284 				regulator_unlock(c_rdev);
285 				goto err_unlock;
286 			}
287 		}
288 	}
289 
290 	return 0;
291 
292 err_unlock:
293 	regulator_unlock_recursive(rdev, i);
294 
295 	return err;
296 }
297 
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *				regulators
301  * @rdev:			regulator source
302  * @ww_ctx:			w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 				       struct ww_acquire_ctx *ww_ctx)
308 {
309 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 	ww_acquire_fini(ww_ctx);
311 }
312 
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:			regulator source
316  * @ww_ctx:			w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322 				     struct ww_acquire_ctx *ww_ctx)
323 {
324 	struct regulator_dev *new_contended_rdev = NULL;
325 	struct regulator_dev *old_contended_rdev = NULL;
326 	int err;
327 
328 	mutex_lock(&regulator_list_mutex);
329 
330 	ww_acquire_init(ww_ctx, &regulator_ww_class);
331 
332 	do {
333 		if (new_contended_rdev) {
334 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 			old_contended_rdev = new_contended_rdev;
336 			old_contended_rdev->ref_cnt++;
337 		}
338 
339 		err = regulator_lock_recursive(rdev,
340 					       &new_contended_rdev,
341 					       &old_contended_rdev,
342 					       ww_ctx);
343 
344 		if (old_contended_rdev)
345 			regulator_unlock(old_contended_rdev);
346 
347 	} while (err == -EDEADLK);
348 
349 	ww_acquire_done(ww_ctx);
350 
351 	mutex_unlock(&regulator_list_mutex);
352 }
353 
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366 						  const char *prop_name)
367 {
368 	struct device_node *regnode = NULL;
369 	struct device_node *child = NULL;
370 
371 	for_each_child_of_node(parent, child) {
372 		regnode = of_parse_phandle(child, prop_name, 0);
373 
374 		if (!regnode) {
375 			regnode = of_get_child_regulator(child, prop_name);
376 			if (regnode)
377 				goto err_node_put;
378 		} else {
379 			goto err_node_put;
380 		}
381 	}
382 	return NULL;
383 
384 err_node_put:
385 	of_node_put(child);
386 	return regnode;
387 }
388 
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400 	struct device_node *regnode = NULL;
401 	char prop_name[64]; /* 64 is max size of property name */
402 
403 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404 
405 	snprintf(prop_name, 64, "%s-supply", supply);
406 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407 
408 	if (!regnode) {
409 		regnode = of_get_child_regulator(dev->of_node, prop_name);
410 		if (regnode)
411 			return regnode;
412 
413 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 				prop_name, dev->of_node);
415 		return NULL;
416 	}
417 	return regnode;
418 }
419 
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422 			    int *min_uV, int *max_uV)
423 {
424 	BUG_ON(*min_uV > *max_uV);
425 
426 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 		rdev_err(rdev, "voltage operation not allowed\n");
428 		return -EPERM;
429 	}
430 
431 	if (*max_uV > rdev->constraints->max_uV)
432 		*max_uV = rdev->constraints->max_uV;
433 	if (*min_uV < rdev->constraints->min_uV)
434 		*min_uV = rdev->constraints->min_uV;
435 
436 	if (*min_uV > *max_uV) {
437 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 			 *min_uV, *max_uV);
439 		return -EINVAL;
440 	}
441 
442 	return 0;
443 }
444 
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450 
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455 			      int *min_uV, int *max_uV,
456 			      suspend_state_t state)
457 {
458 	struct regulator *regulator;
459 	struct regulator_voltage *voltage;
460 
461 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 		voltage = &regulator->voltage[state];
463 		/*
464 		 * Assume consumers that didn't say anything are OK
465 		 * with anything in the constraint range.
466 		 */
467 		if (!voltage->min_uV && !voltage->max_uV)
468 			continue;
469 
470 		if (*max_uV > voltage->max_uV)
471 			*max_uV = voltage->max_uV;
472 		if (*min_uV < voltage->min_uV)
473 			*min_uV = voltage->min_uV;
474 	}
475 
476 	if (*min_uV > *max_uV) {
477 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 			*min_uV, *max_uV);
479 		return -EINVAL;
480 	}
481 
482 	return 0;
483 }
484 
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487 					int *min_uA, int *max_uA)
488 {
489 	BUG_ON(*min_uA > *max_uA);
490 
491 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 		rdev_err(rdev, "current operation not allowed\n");
493 		return -EPERM;
494 	}
495 
496 	if (*max_uA > rdev->constraints->max_uA)
497 		*max_uA = rdev->constraints->max_uA;
498 	if (*min_uA < rdev->constraints->min_uA)
499 		*min_uA = rdev->constraints->min_uA;
500 
501 	if (*min_uA > *max_uA) {
502 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 			 *min_uA, *max_uA);
504 		return -EINVAL;
505 	}
506 
507 	return 0;
508 }
509 
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512 				    unsigned int *mode)
513 {
514 	switch (*mode) {
515 	case REGULATOR_MODE_FAST:
516 	case REGULATOR_MODE_NORMAL:
517 	case REGULATOR_MODE_IDLE:
518 	case REGULATOR_MODE_STANDBY:
519 		break;
520 	default:
521 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 		return -EINVAL;
523 	}
524 
525 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 		rdev_err(rdev, "mode operation not allowed\n");
527 		return -EPERM;
528 	}
529 
530 	/* The modes are bitmasks, the most power hungry modes having
531 	 * the lowest values. If the requested mode isn't supported
532 	 * try higher modes.
533 	 */
534 	while (*mode) {
535 		if (rdev->constraints->valid_modes_mask & *mode)
536 			return 0;
537 		*mode /= 2;
538 	}
539 
540 	return -EINVAL;
541 }
542 
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546 	if (rdev->constraints == NULL)
547 		return NULL;
548 
549 	switch (state) {
550 	case PM_SUSPEND_STANDBY:
551 		return &rdev->constraints->state_standby;
552 	case PM_SUSPEND_MEM:
553 		return &rdev->constraints->state_mem;
554 	case PM_SUSPEND_MAX:
555 		return &rdev->constraints->state_disk;
556 	default:
557 		return NULL;
558 	}
559 }
560 
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564 	const struct regulator_state *rstate;
565 
566 	rstate = regulator_get_suspend_state(rdev, state);
567 	if (rstate == NULL)
568 		return NULL;
569 
570 	/* If we have no suspend mode configuration don't set anything;
571 	 * only warn if the driver implements set_suspend_voltage or
572 	 * set_suspend_mode callback.
573 	 */
574 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 	    rstate->enabled != DISABLE_IN_SUSPEND) {
576 		if (rdev->desc->ops->set_suspend_voltage ||
577 		    rdev->desc->ops->set_suspend_mode)
578 			rdev_warn(rdev, "No configuration\n");
579 		return NULL;
580 	}
581 
582 	return rstate;
583 }
584 
585 static ssize_t microvolts_show(struct device *dev,
586 			       struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 	int uV;
590 
591 	regulator_lock(rdev);
592 	uV = regulator_get_voltage_rdev(rdev);
593 	regulator_unlock(rdev);
594 
595 	if (uV < 0)
596 		return uV;
597 	return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600 
601 static ssize_t microamps_show(struct device *dev,
602 			      struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609 
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 			 char *buf)
612 {
613 	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 
615 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618 
619 static const char *regulator_opmode_to_str(int mode)
620 {
621 	switch (mode) {
622 	case REGULATOR_MODE_FAST:
623 		return "fast";
624 	case REGULATOR_MODE_NORMAL:
625 		return "normal";
626 	case REGULATOR_MODE_IDLE:
627 		return "idle";
628 	case REGULATOR_MODE_STANDBY:
629 		return "standby";
630 	}
631 	return "unknown";
632 }
633 
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638 
639 static ssize_t opmode_show(struct device *dev,
640 			   struct device_attribute *attr, char *buf)
641 {
642 	struct regulator_dev *rdev = dev_get_drvdata(dev);
643 
644 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647 
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650 	if (state > 0)
651 		return sprintf(buf, "enabled\n");
652 	else if (state == 0)
653 		return sprintf(buf, "disabled\n");
654 	else
655 		return sprintf(buf, "unknown\n");
656 }
657 
658 static ssize_t state_show(struct device *dev,
659 			  struct device_attribute *attr, char *buf)
660 {
661 	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 	ssize_t ret;
663 
664 	regulator_lock(rdev);
665 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 	regulator_unlock(rdev);
667 
668 	return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671 
672 static ssize_t status_show(struct device *dev,
673 			   struct device_attribute *attr, char *buf)
674 {
675 	struct regulator_dev *rdev = dev_get_drvdata(dev);
676 	int status;
677 	char *label;
678 
679 	status = rdev->desc->ops->get_status(rdev);
680 	if (status < 0)
681 		return status;
682 
683 	switch (status) {
684 	case REGULATOR_STATUS_OFF:
685 		label = "off";
686 		break;
687 	case REGULATOR_STATUS_ON:
688 		label = "on";
689 		break;
690 	case REGULATOR_STATUS_ERROR:
691 		label = "error";
692 		break;
693 	case REGULATOR_STATUS_FAST:
694 		label = "fast";
695 		break;
696 	case REGULATOR_STATUS_NORMAL:
697 		label = "normal";
698 		break;
699 	case REGULATOR_STATUS_IDLE:
700 		label = "idle";
701 		break;
702 	case REGULATOR_STATUS_STANDBY:
703 		label = "standby";
704 		break;
705 	case REGULATOR_STATUS_BYPASS:
706 		label = "bypass";
707 		break;
708 	case REGULATOR_STATUS_UNDEFINED:
709 		label = "undefined";
710 		break;
711 	default:
712 		return -ERANGE;
713 	}
714 
715 	return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718 
719 static ssize_t min_microamps_show(struct device *dev,
720 				  struct device_attribute *attr, char *buf)
721 {
722 	struct regulator_dev *rdev = dev_get_drvdata(dev);
723 
724 	if (!rdev->constraints)
725 		return sprintf(buf, "constraint not defined\n");
726 
727 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730 
731 static ssize_t max_microamps_show(struct device *dev,
732 				  struct device_attribute *attr, char *buf)
733 {
734 	struct regulator_dev *rdev = dev_get_drvdata(dev);
735 
736 	if (!rdev->constraints)
737 		return sprintf(buf, "constraint not defined\n");
738 
739 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742 
743 static ssize_t min_microvolts_show(struct device *dev,
744 				   struct device_attribute *attr, char *buf)
745 {
746 	struct regulator_dev *rdev = dev_get_drvdata(dev);
747 
748 	if (!rdev->constraints)
749 		return sprintf(buf, "constraint not defined\n");
750 
751 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754 
755 static ssize_t max_microvolts_show(struct device *dev,
756 				   struct device_attribute *attr, char *buf)
757 {
758 	struct regulator_dev *rdev = dev_get_drvdata(dev);
759 
760 	if (!rdev->constraints)
761 		return sprintf(buf, "constraint not defined\n");
762 
763 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766 
767 static ssize_t requested_microamps_show(struct device *dev,
768 					struct device_attribute *attr, char *buf)
769 {
770 	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 	struct regulator *regulator;
772 	int uA = 0;
773 
774 	regulator_lock(rdev);
775 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 		if (regulator->enable_count)
777 			uA += regulator->uA_load;
778 	}
779 	regulator_unlock(rdev);
780 	return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783 
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 			      char *buf)
786 {
787 	struct regulator_dev *rdev = dev_get_drvdata(dev);
788 	return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791 
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 			 char *buf)
794 {
795 	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 
797 	switch (rdev->desc->type) {
798 	case REGULATOR_VOLTAGE:
799 		return sprintf(buf, "voltage\n");
800 	case REGULATOR_CURRENT:
801 		return sprintf(buf, "current\n");
802 	}
803 	return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806 
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 					   struct device_attribute *attr, char *buf)
809 {
810 	struct regulator_dev *rdev = dev_get_drvdata(dev);
811 
812 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815 
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 					    struct device_attribute *attr, char *buf)
818 {
819 	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 
821 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824 
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 					       struct device_attribute *attr, char *buf)
827 {
828 	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 
830 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833 
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835 				     struct device_attribute *attr, char *buf)
836 {
837 	struct regulator_dev *rdev = dev_get_drvdata(dev);
838 
839 	return regulator_print_opmode(buf,
840 		rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843 
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845 				      struct device_attribute *attr, char *buf)
846 {
847 	struct regulator_dev *rdev = dev_get_drvdata(dev);
848 
849 	return regulator_print_opmode(buf,
850 		rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853 
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855 					 struct device_attribute *attr, char *buf)
856 {
857 	struct regulator_dev *rdev = dev_get_drvdata(dev);
858 
859 	return regulator_print_opmode(buf,
860 		rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863 
864 static ssize_t suspend_mem_state_show(struct device *dev,
865 				      struct device_attribute *attr, char *buf)
866 {
867 	struct regulator_dev *rdev = dev_get_drvdata(dev);
868 
869 	return regulator_print_state(buf,
870 			rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873 
874 static ssize_t suspend_disk_state_show(struct device *dev,
875 				       struct device_attribute *attr, char *buf)
876 {
877 	struct regulator_dev *rdev = dev_get_drvdata(dev);
878 
879 	return regulator_print_state(buf,
880 			rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883 
884 static ssize_t suspend_standby_state_show(struct device *dev,
885 					  struct device_attribute *attr, char *buf)
886 {
887 	struct regulator_dev *rdev = dev_get_drvdata(dev);
888 
889 	return regulator_print_state(buf,
890 			rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893 
894 static ssize_t bypass_show(struct device *dev,
895 			   struct device_attribute *attr, char *buf)
896 {
897 	struct regulator_dev *rdev = dev_get_drvdata(dev);
898 	const char *report;
899 	bool bypass;
900 	int ret;
901 
902 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903 
904 	if (ret != 0)
905 		report = "unknown";
906 	else if (bypass)
907 		report = "enabled";
908 	else
909 		report = "disabled";
910 
911 	return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914 
915 #define REGULATOR_ERROR_ATTR(name, bit)							\
916 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
917 				   char *buf)						\
918 	{										\
919 		int ret;								\
920 		unsigned int flags;							\
921 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
922 		ret = _regulator_get_error_flags(rdev, &flags);				\
923 		if (ret)								\
924 			return ret;							\
925 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
926 	}										\
927 	static DEVICE_ATTR_RO(name)
928 
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938 
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944 	struct regulator *sibling;
945 	int current_uA = 0, output_uV, input_uV, err;
946 	unsigned int mode;
947 
948 	/*
949 	 * first check to see if we can set modes at all, otherwise just
950 	 * tell the consumer everything is OK.
951 	 */
952 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 		rdev_dbg(rdev, "DRMS operation not allowed\n");
954 		return 0;
955 	}
956 
957 	if (!rdev->desc->ops->get_optimum_mode &&
958 	    !rdev->desc->ops->set_load)
959 		return 0;
960 
961 	if (!rdev->desc->ops->set_mode &&
962 	    !rdev->desc->ops->set_load)
963 		return -EINVAL;
964 
965 	/* calc total requested load */
966 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 		if (sibling->enable_count)
968 			current_uA += sibling->uA_load;
969 	}
970 
971 	current_uA += rdev->constraints->system_load;
972 
973 	if (rdev->desc->ops->set_load) {
974 		/* set the optimum mode for our new total regulator load */
975 		err = rdev->desc->ops->set_load(rdev, current_uA);
976 		if (err < 0)
977 			rdev_err(rdev, "failed to set load %d: %pe\n",
978 				 current_uA, ERR_PTR(err));
979 	} else {
980 		/*
981 		 * Unfortunately in some cases the constraints->valid_ops has
982 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983 		 * That's not really legit but we won't consider it a fatal
984 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985 		 * wasn't set.
986 		 */
987 		if (!rdev->constraints->valid_modes_mask) {
988 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989 			return 0;
990 		}
991 
992 		/* get output voltage */
993 		output_uV = regulator_get_voltage_rdev(rdev);
994 
995 		/*
996 		 * Don't return an error; if regulator driver cares about
997 		 * output_uV then it's up to the driver to validate.
998 		 */
999 		if (output_uV <= 0)
1000 			rdev_dbg(rdev, "invalid output voltage found\n");
1001 
1002 		/* get input voltage */
1003 		input_uV = 0;
1004 		if (rdev->supply)
1005 			input_uV = regulator_get_voltage(rdev->supply);
1006 		if (input_uV <= 0)
1007 			input_uV = rdev->constraints->input_uV;
1008 
1009 		/*
1010 		 * Don't return an error; if regulator driver cares about
1011 		 * input_uV then it's up to the driver to validate.
1012 		 */
1013 		if (input_uV <= 0)
1014 			rdev_dbg(rdev, "invalid input voltage found\n");
1015 
1016 		/* now get the optimum mode for our new total regulator load */
1017 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018 							 output_uV, current_uA);
1019 
1020 		/* check the new mode is allowed */
1021 		err = regulator_mode_constrain(rdev, &mode);
1022 		if (err < 0) {
1023 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 			return err;
1026 		}
1027 
1028 		err = rdev->desc->ops->set_mode(rdev, mode);
1029 		if (err < 0)
1030 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031 				 mode, ERR_PTR(err));
1032 	}
1033 
1034 	return err;
1035 }
1036 
1037 static int __suspend_set_state(struct regulator_dev *rdev,
1038 			       const struct regulator_state *rstate)
1039 {
1040 	int ret = 0;
1041 
1042 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043 		rdev->desc->ops->set_suspend_enable)
1044 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046 		rdev->desc->ops->set_suspend_disable)
1047 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049 		ret = 0;
1050 
1051 	if (ret < 0) {
1052 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 		return ret;
1054 	}
1055 
1056 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058 		if (ret < 0) {
1059 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 			return ret;
1061 		}
1062 	}
1063 
1064 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066 		if (ret < 0) {
1067 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 			return ret;
1069 		}
1070 	}
1071 
1072 	return ret;
1073 }
1074 
1075 static int suspend_set_initial_state(struct regulator_dev *rdev)
1076 {
1077 	const struct regulator_state *rstate;
1078 
1079 	rstate = regulator_get_suspend_state_check(rdev,
1080 			rdev->constraints->initial_state);
1081 	if (!rstate)
1082 		return 0;
1083 
1084 	return __suspend_set_state(rdev, rstate);
1085 }
1086 
1087 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088 static void print_constraints_debug(struct regulator_dev *rdev)
1089 {
1090 	struct regulation_constraints *constraints = rdev->constraints;
1091 	char buf[160] = "";
1092 	size_t len = sizeof(buf) - 1;
1093 	int count = 0;
1094 	int ret;
1095 
1096 	if (constraints->min_uV && constraints->max_uV) {
1097 		if (constraints->min_uV == constraints->max_uV)
1098 			count += scnprintf(buf + count, len - count, "%d mV ",
1099 					   constraints->min_uV / 1000);
1100 		else
1101 			count += scnprintf(buf + count, len - count,
1102 					   "%d <--> %d mV ",
1103 					   constraints->min_uV / 1000,
1104 					   constraints->max_uV / 1000);
1105 	}
1106 
1107 	if (!constraints->min_uV ||
1108 	    constraints->min_uV != constraints->max_uV) {
1109 		ret = regulator_get_voltage_rdev(rdev);
1110 		if (ret > 0)
1111 			count += scnprintf(buf + count, len - count,
1112 					   "at %d mV ", ret / 1000);
1113 	}
1114 
1115 	if (constraints->uV_offset)
1116 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1117 				   constraints->uV_offset / 1000);
1118 
1119 	if (constraints->min_uA && constraints->max_uA) {
1120 		if (constraints->min_uA == constraints->max_uA)
1121 			count += scnprintf(buf + count, len - count, "%d mA ",
1122 					   constraints->min_uA / 1000);
1123 		else
1124 			count += scnprintf(buf + count, len - count,
1125 					   "%d <--> %d mA ",
1126 					   constraints->min_uA / 1000,
1127 					   constraints->max_uA / 1000);
1128 	}
1129 
1130 	if (!constraints->min_uA ||
1131 	    constraints->min_uA != constraints->max_uA) {
1132 		ret = _regulator_get_current_limit(rdev);
1133 		if (ret > 0)
1134 			count += scnprintf(buf + count, len - count,
1135 					   "at %d mA ", ret / 1000);
1136 	}
1137 
1138 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139 		count += scnprintf(buf + count, len - count, "fast ");
1140 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141 		count += scnprintf(buf + count, len - count, "normal ");
1142 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143 		count += scnprintf(buf + count, len - count, "idle ");
1144 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145 		count += scnprintf(buf + count, len - count, "standby ");
1146 
1147 	if (!count)
1148 		count = scnprintf(buf, len, "no parameters");
1149 	else
1150 		--count;
1151 
1152 	count += scnprintf(buf + count, len - count, ", %s",
1153 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154 
1155 	rdev_dbg(rdev, "%s\n", buf);
1156 }
1157 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160 
1161 static void print_constraints(struct regulator_dev *rdev)
1162 {
1163 	struct regulation_constraints *constraints = rdev->constraints;
1164 
1165 	print_constraints_debug(rdev);
1166 
1167 	if ((constraints->min_uV != constraints->max_uV) &&
1168 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 		rdev_warn(rdev,
1170 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 }
1172 
1173 static int machine_constraints_voltage(struct regulator_dev *rdev,
1174 	struct regulation_constraints *constraints)
1175 {
1176 	const struct regulator_ops *ops = rdev->desc->ops;
1177 	int ret;
1178 
1179 	/* do we need to apply the constraint voltage */
1180 	if (rdev->constraints->apply_uV &&
1181 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182 		int target_min, target_max;
1183 		int current_uV = regulator_get_voltage_rdev(rdev);
1184 
1185 		if (current_uV == -ENOTRECOVERABLE) {
1186 			/* This regulator can't be read and must be initialized */
1187 			rdev_info(rdev, "Setting %d-%duV\n",
1188 				  rdev->constraints->min_uV,
1189 				  rdev->constraints->max_uV);
1190 			_regulator_do_set_voltage(rdev,
1191 						  rdev->constraints->min_uV,
1192 						  rdev->constraints->max_uV);
1193 			current_uV = regulator_get_voltage_rdev(rdev);
1194 		}
1195 
1196 		if (current_uV < 0) {
1197 			if (current_uV != -EPROBE_DEFER)
1198 				rdev_err(rdev,
1199 					 "failed to get the current voltage: %pe\n",
1200 					 ERR_PTR(current_uV));
1201 			return current_uV;
1202 		}
1203 
1204 		/*
1205 		 * If we're below the minimum voltage move up to the
1206 		 * minimum voltage, if we're above the maximum voltage
1207 		 * then move down to the maximum.
1208 		 */
1209 		target_min = current_uV;
1210 		target_max = current_uV;
1211 
1212 		if (current_uV < rdev->constraints->min_uV) {
1213 			target_min = rdev->constraints->min_uV;
1214 			target_max = rdev->constraints->min_uV;
1215 		}
1216 
1217 		if (current_uV > rdev->constraints->max_uV) {
1218 			target_min = rdev->constraints->max_uV;
1219 			target_max = rdev->constraints->max_uV;
1220 		}
1221 
1222 		if (target_min != current_uV || target_max != current_uV) {
1223 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224 				  current_uV, target_min, target_max);
1225 			ret = _regulator_do_set_voltage(
1226 				rdev, target_min, target_max);
1227 			if (ret < 0) {
1228 				rdev_err(rdev,
1229 					"failed to apply %d-%duV constraint: %pe\n",
1230 					target_min, target_max, ERR_PTR(ret));
1231 				return ret;
1232 			}
1233 		}
1234 	}
1235 
1236 	/* constrain machine-level voltage specs to fit
1237 	 * the actual range supported by this regulator.
1238 	 */
1239 	if (ops->list_voltage && rdev->desc->n_voltages) {
1240 		int	count = rdev->desc->n_voltages;
1241 		int	i;
1242 		int	min_uV = INT_MAX;
1243 		int	max_uV = INT_MIN;
1244 		int	cmin = constraints->min_uV;
1245 		int	cmax = constraints->max_uV;
1246 
1247 		/* it's safe to autoconfigure fixed-voltage supplies
1248 		 * and the constraints are used by list_voltage.
1249 		 */
1250 		if (count == 1 && !cmin) {
1251 			cmin = 1;
1252 			cmax = INT_MAX;
1253 			constraints->min_uV = cmin;
1254 			constraints->max_uV = cmax;
1255 		}
1256 
1257 		/* voltage constraints are optional */
1258 		if ((cmin == 0) && (cmax == 0))
1259 			return 0;
1260 
1261 		/* else require explicit machine-level constraints */
1262 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263 			rdev_err(rdev, "invalid voltage constraints\n");
1264 			return -EINVAL;
1265 		}
1266 
1267 		/* no need to loop voltages if range is continuous */
1268 		if (rdev->desc->continuous_voltage_range)
1269 			return 0;
1270 
1271 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272 		for (i = 0; i < count; i++) {
1273 			int	value;
1274 
1275 			value = ops->list_voltage(rdev, i);
1276 			if (value <= 0)
1277 				continue;
1278 
1279 			/* maybe adjust [min_uV..max_uV] */
1280 			if (value >= cmin && value < min_uV)
1281 				min_uV = value;
1282 			if (value <= cmax && value > max_uV)
1283 				max_uV = value;
1284 		}
1285 
1286 		/* final: [min_uV..max_uV] valid iff constraints valid */
1287 		if (max_uV < min_uV) {
1288 			rdev_err(rdev,
1289 				 "unsupportable voltage constraints %u-%uuV\n",
1290 				 min_uV, max_uV);
1291 			return -EINVAL;
1292 		}
1293 
1294 		/* use regulator's subset of machine constraints */
1295 		if (constraints->min_uV < min_uV) {
1296 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297 				 constraints->min_uV, min_uV);
1298 			constraints->min_uV = min_uV;
1299 		}
1300 		if (constraints->max_uV > max_uV) {
1301 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302 				 constraints->max_uV, max_uV);
1303 			constraints->max_uV = max_uV;
1304 		}
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static int machine_constraints_current(struct regulator_dev *rdev,
1311 	struct regulation_constraints *constraints)
1312 {
1313 	const struct regulator_ops *ops = rdev->desc->ops;
1314 	int ret;
1315 
1316 	if (!constraints->min_uA && !constraints->max_uA)
1317 		return 0;
1318 
1319 	if (constraints->min_uA > constraints->max_uA) {
1320 		rdev_err(rdev, "Invalid current constraints\n");
1321 		return -EINVAL;
1322 	}
1323 
1324 	if (!ops->set_current_limit || !ops->get_current_limit) {
1325 		rdev_warn(rdev, "Operation of current configuration missing\n");
1326 		return 0;
1327 	}
1328 
1329 	/* Set regulator current in constraints range */
1330 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1331 			constraints->max_uA);
1332 	if (ret < 0) {
1333 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334 		return ret;
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static int _regulator_do_enable(struct regulator_dev *rdev);
1341 
1342 static int notif_set_limit(struct regulator_dev *rdev,
1343 			   int (*set)(struct regulator_dev *, int, int, bool),
1344 			   int limit, int severity)
1345 {
1346 	bool enable;
1347 
1348 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349 		enable = false;
1350 		limit = 0;
1351 	} else {
1352 		enable = true;
1353 	}
1354 
1355 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356 		limit = 0;
1357 
1358 	return set(rdev, limit, severity, enable);
1359 }
1360 
1361 static int handle_notify_limits(struct regulator_dev *rdev,
1362 			int (*set)(struct regulator_dev *, int, int, bool),
1363 			struct notification_limit *limits)
1364 {
1365 	int ret = 0;
1366 
1367 	if (!set)
1368 		return -EOPNOTSUPP;
1369 
1370 	if (limits->prot)
1371 		ret = notif_set_limit(rdev, set, limits->prot,
1372 				      REGULATOR_SEVERITY_PROT);
1373 	if (ret)
1374 		return ret;
1375 
1376 	if (limits->err)
1377 		ret = notif_set_limit(rdev, set, limits->err,
1378 				      REGULATOR_SEVERITY_ERR);
1379 	if (ret)
1380 		return ret;
1381 
1382 	if (limits->warn)
1383 		ret = notif_set_limit(rdev, set, limits->warn,
1384 				      REGULATOR_SEVERITY_WARN);
1385 
1386 	return ret;
1387 }
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400 	int ret = 0;
1401 	const struct regulator_ops *ops = rdev->desc->ops;
1402 
1403 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 	if (ret != 0)
1405 		return ret;
1406 
1407 	ret = machine_constraints_current(rdev, rdev->constraints);
1408 	if (ret != 0)
1409 		return ret;
1410 
1411 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 		ret = ops->set_input_current_limit(rdev,
1413 						   rdev->constraints->ilim_uA);
1414 		if (ret < 0) {
1415 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 			return ret;
1417 		}
1418 	}
1419 
1420 	/* do we need to setup our suspend state */
1421 	if (rdev->constraints->initial_state) {
1422 		ret = suspend_set_initial_state(rdev);
1423 		if (ret < 0) {
1424 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 			return ret;
1426 		}
1427 	}
1428 
1429 	if (rdev->constraints->initial_mode) {
1430 		if (!ops->set_mode) {
1431 			rdev_err(rdev, "no set_mode operation\n");
1432 			return -EINVAL;
1433 		}
1434 
1435 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 		if (ret < 0) {
1437 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 			return ret;
1439 		}
1440 	} else if (rdev->constraints->system_load) {
1441 		/*
1442 		 * We'll only apply the initial system load if an
1443 		 * initial mode wasn't specified.
1444 		 */
1445 		drms_uA_update(rdev);
1446 	}
1447 
1448 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 		&& ops->set_ramp_delay) {
1450 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 		ret = ops->set_pull_down(rdev);
1459 		if (ret < 0) {
1460 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 			return ret;
1462 		}
1463 	}
1464 
1465 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 		ret = ops->set_soft_start(rdev);
1467 		if (ret < 0) {
1468 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 			return ret;
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * Existing logic does not warn if over_current_protection is given as
1475 	 * a constraint but driver does not support that. I think we should
1476 	 * warn about this type of issues as it is possible someone changes
1477 	 * PMIC on board to another type - and the another PMIC's driver does
1478 	 * not support setting protection. Board composer may happily believe
1479 	 * the DT limits are respected - especially if the new PMIC HW also
1480 	 * supports protection but the driver does not. I won't change the logic
1481 	 * without hearing more experienced opinion on this though.
1482 	 *
1483 	 * If warning is seen as a good idea then we can merge handling the
1484 	 * over-curret protection and detection and get rid of this special
1485 	 * handling.
1486 	 */
1487 	if (rdev->constraints->over_current_protection
1488 		&& ops->set_over_current_protection) {
1489 		int lim = rdev->constraints->over_curr_limits.prot;
1490 
1491 		ret = ops->set_over_current_protection(rdev, lim,
1492 						       REGULATOR_SEVERITY_PROT,
1493 						       true);
1494 		if (ret < 0) {
1495 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1496 				 ERR_PTR(ret));
1497 			return ret;
1498 		}
1499 	}
1500 
1501 	if (rdev->constraints->over_current_detection)
1502 		ret = handle_notify_limits(rdev,
1503 					   ops->set_over_current_protection,
1504 					   &rdev->constraints->over_curr_limits);
1505 	if (ret) {
1506 		if (ret != -EOPNOTSUPP) {
1507 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1508 				 ERR_PTR(ret));
1509 			return ret;
1510 		}
1511 		rdev_warn(rdev,
1512 			  "IC does not support requested over-current limits\n");
1513 	}
1514 
1515 	if (rdev->constraints->over_voltage_detection)
1516 		ret = handle_notify_limits(rdev,
1517 					   ops->set_over_voltage_protection,
1518 					   &rdev->constraints->over_voltage_limits);
1519 	if (ret) {
1520 		if (ret != -EOPNOTSUPP) {
1521 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522 				 ERR_PTR(ret));
1523 			return ret;
1524 		}
1525 		rdev_warn(rdev,
1526 			  "IC does not support requested over voltage limits\n");
1527 	}
1528 
1529 	if (rdev->constraints->under_voltage_detection)
1530 		ret = handle_notify_limits(rdev,
1531 					   ops->set_under_voltage_protection,
1532 					   &rdev->constraints->under_voltage_limits);
1533 	if (ret) {
1534 		if (ret != -EOPNOTSUPP) {
1535 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536 				 ERR_PTR(ret));
1537 			return ret;
1538 		}
1539 		rdev_warn(rdev,
1540 			  "IC does not support requested under voltage limits\n");
1541 	}
1542 
1543 	if (rdev->constraints->over_temp_detection)
1544 		ret = handle_notify_limits(rdev,
1545 					   ops->set_thermal_protection,
1546 					   &rdev->constraints->temp_limits);
1547 	if (ret) {
1548 		if (ret != -EOPNOTSUPP) {
1549 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1550 				 ERR_PTR(ret));
1551 			return ret;
1552 		}
1553 		rdev_warn(rdev,
1554 			  "IC does not support requested temperature limits\n");
1555 	}
1556 
1557 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558 		bool ad_state = (rdev->constraints->active_discharge ==
1559 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560 
1561 		ret = ops->set_active_discharge(rdev, ad_state);
1562 		if (ret < 0) {
1563 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 			return ret;
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * If there is no mechanism for controlling the regulator then
1570 	 * flag it as always_on so we don't end up duplicating checks
1571 	 * for this so much.  Note that we could control the state of
1572 	 * a supply to control the output on a regulator that has no
1573 	 * direct control.
1574 	 */
1575 	if (!rdev->ena_pin && !ops->enable) {
1576 		if (rdev->supply_name && !rdev->supply)
1577 			return -EPROBE_DEFER;
1578 
1579 		if (rdev->supply)
1580 			rdev->constraints->always_on =
1581 				rdev->supply->rdev->constraints->always_on;
1582 		else
1583 			rdev->constraints->always_on = true;
1584 	}
1585 
1586 	if (rdev->desc->off_on_delay)
1587 		rdev->last_off = ktime_get();
1588 
1589 	/* If the constraints say the regulator should be on at this point
1590 	 * and we have control then make sure it is enabled.
1591 	 */
1592 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 		/* If we want to enable this regulator, make sure that we know
1594 		 * the supplying regulator.
1595 		 */
1596 		if (rdev->supply_name && !rdev->supply)
1597 			return -EPROBE_DEFER;
1598 
1599 		if (rdev->supply) {
1600 			ret = regulator_enable(rdev->supply);
1601 			if (ret < 0) {
1602 				_regulator_put(rdev->supply);
1603 				rdev->supply = NULL;
1604 				return ret;
1605 			}
1606 		}
1607 
1608 		ret = _regulator_do_enable(rdev);
1609 		if (ret < 0 && ret != -EINVAL) {
1610 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1611 			return ret;
1612 		}
1613 
1614 		if (rdev->constraints->always_on)
1615 			rdev->use_count++;
1616 	}
1617 
1618 	print_constraints(rdev);
1619 	return 0;
1620 }
1621 
1622 /**
1623  * set_supply - set regulator supply regulator
1624  * @rdev: regulator name
1625  * @supply_rdev: supply regulator name
1626  *
1627  * Called by platform initialisation code to set the supply regulator for this
1628  * regulator. This ensures that a regulators supply will also be enabled by the
1629  * core if it's child is enabled.
1630  */
1631 static int set_supply(struct regulator_dev *rdev,
1632 		      struct regulator_dev *supply_rdev)
1633 {
1634 	int err;
1635 
1636 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1637 
1638 	if (!try_module_get(supply_rdev->owner))
1639 		return -ENODEV;
1640 
1641 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1642 	if (rdev->supply == NULL) {
1643 		err = -ENOMEM;
1644 		return err;
1645 	}
1646 	supply_rdev->open_count++;
1647 
1648 	return 0;
1649 }
1650 
1651 /**
1652  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1653  * @rdev:         regulator source
1654  * @consumer_dev_name: dev_name() string for device supply applies to
1655  * @supply:       symbolic name for supply
1656  *
1657  * Allows platform initialisation code to map physical regulator
1658  * sources to symbolic names for supplies for use by devices.  Devices
1659  * should use these symbolic names to request regulators, avoiding the
1660  * need to provide board-specific regulator names as platform data.
1661  */
1662 static int set_consumer_device_supply(struct regulator_dev *rdev,
1663 				      const char *consumer_dev_name,
1664 				      const char *supply)
1665 {
1666 	struct regulator_map *node, *new_node;
1667 	int has_dev;
1668 
1669 	if (supply == NULL)
1670 		return -EINVAL;
1671 
1672 	if (consumer_dev_name != NULL)
1673 		has_dev = 1;
1674 	else
1675 		has_dev = 0;
1676 
1677 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1678 	if (new_node == NULL)
1679 		return -ENOMEM;
1680 
1681 	new_node->regulator = rdev;
1682 	new_node->supply = supply;
1683 
1684 	if (has_dev) {
1685 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1686 		if (new_node->dev_name == NULL) {
1687 			kfree(new_node);
1688 			return -ENOMEM;
1689 		}
1690 	}
1691 
1692 	mutex_lock(&regulator_list_mutex);
1693 	list_for_each_entry(node, &regulator_map_list, list) {
1694 		if (node->dev_name && consumer_dev_name) {
1695 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1696 				continue;
1697 		} else if (node->dev_name || consumer_dev_name) {
1698 			continue;
1699 		}
1700 
1701 		if (strcmp(node->supply, supply) != 0)
1702 			continue;
1703 
1704 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1705 			 consumer_dev_name,
1706 			 dev_name(&node->regulator->dev),
1707 			 node->regulator->desc->name,
1708 			 supply,
1709 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1710 		goto fail;
1711 	}
1712 
1713 	list_add(&new_node->list, &regulator_map_list);
1714 	mutex_unlock(&regulator_list_mutex);
1715 
1716 	return 0;
1717 
1718 fail:
1719 	mutex_unlock(&regulator_list_mutex);
1720 	kfree(new_node->dev_name);
1721 	kfree(new_node);
1722 	return -EBUSY;
1723 }
1724 
1725 static void unset_regulator_supplies(struct regulator_dev *rdev)
1726 {
1727 	struct regulator_map *node, *n;
1728 
1729 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1730 		if (rdev == node->regulator) {
1731 			list_del(&node->list);
1732 			kfree(node->dev_name);
1733 			kfree(node);
1734 		}
1735 	}
1736 }
1737 
1738 #ifdef CONFIG_DEBUG_FS
1739 static ssize_t constraint_flags_read_file(struct file *file,
1740 					  char __user *user_buf,
1741 					  size_t count, loff_t *ppos)
1742 {
1743 	const struct regulator *regulator = file->private_data;
1744 	const struct regulation_constraints *c = regulator->rdev->constraints;
1745 	char *buf;
1746 	ssize_t ret;
1747 
1748 	if (!c)
1749 		return 0;
1750 
1751 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1752 	if (!buf)
1753 		return -ENOMEM;
1754 
1755 	ret = snprintf(buf, PAGE_SIZE,
1756 			"always_on: %u\n"
1757 			"boot_on: %u\n"
1758 			"apply_uV: %u\n"
1759 			"ramp_disable: %u\n"
1760 			"soft_start: %u\n"
1761 			"pull_down: %u\n"
1762 			"over_current_protection: %u\n",
1763 			c->always_on,
1764 			c->boot_on,
1765 			c->apply_uV,
1766 			c->ramp_disable,
1767 			c->soft_start,
1768 			c->pull_down,
1769 			c->over_current_protection);
1770 
1771 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1772 	kfree(buf);
1773 
1774 	return ret;
1775 }
1776 
1777 #endif
1778 
1779 static const struct file_operations constraint_flags_fops = {
1780 #ifdef CONFIG_DEBUG_FS
1781 	.open = simple_open,
1782 	.read = constraint_flags_read_file,
1783 	.llseek = default_llseek,
1784 #endif
1785 };
1786 
1787 #define REG_STR_SIZE	64
1788 
1789 static struct regulator *create_regulator(struct regulator_dev *rdev,
1790 					  struct device *dev,
1791 					  const char *supply_name)
1792 {
1793 	struct regulator *regulator;
1794 	int err = 0;
1795 
1796 	if (dev) {
1797 		char buf[REG_STR_SIZE];
1798 		int size;
1799 
1800 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1801 				dev->kobj.name, supply_name);
1802 		if (size >= REG_STR_SIZE)
1803 			return NULL;
1804 
1805 		supply_name = kstrdup(buf, GFP_KERNEL);
1806 		if (supply_name == NULL)
1807 			return NULL;
1808 	} else {
1809 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1810 		if (supply_name == NULL)
1811 			return NULL;
1812 	}
1813 
1814 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1815 	if (regulator == NULL) {
1816 		kfree(supply_name);
1817 		return NULL;
1818 	}
1819 
1820 	regulator->rdev = rdev;
1821 	regulator->supply_name = supply_name;
1822 
1823 	regulator_lock(rdev);
1824 	list_add(&regulator->list, &rdev->consumer_list);
1825 	regulator_unlock(rdev);
1826 
1827 	if (dev) {
1828 		regulator->dev = dev;
1829 
1830 		/* Add a link to the device sysfs entry */
1831 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1832 					       supply_name);
1833 		if (err) {
1834 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1835 				  dev->kobj.name, ERR_PTR(err));
1836 			/* non-fatal */
1837 		}
1838 	}
1839 
1840 	if (err != -EEXIST)
1841 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1842 	if (!regulator->debugfs) {
1843 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1844 	} else {
1845 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1846 				   &regulator->uA_load);
1847 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1848 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1849 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1850 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1851 		debugfs_create_file("constraint_flags", 0444,
1852 				    regulator->debugfs, regulator,
1853 				    &constraint_flags_fops);
1854 	}
1855 
1856 	/*
1857 	 * Check now if the regulator is an always on regulator - if
1858 	 * it is then we don't need to do nearly so much work for
1859 	 * enable/disable calls.
1860 	 */
1861 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1862 	    _regulator_is_enabled(rdev))
1863 		regulator->always_on = true;
1864 
1865 	return regulator;
1866 }
1867 
1868 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1869 {
1870 	if (rdev->constraints && rdev->constraints->enable_time)
1871 		return rdev->constraints->enable_time;
1872 	if (rdev->desc->ops->enable_time)
1873 		return rdev->desc->ops->enable_time(rdev);
1874 	return rdev->desc->enable_time;
1875 }
1876 
1877 static struct regulator_supply_alias *regulator_find_supply_alias(
1878 		struct device *dev, const char *supply)
1879 {
1880 	struct regulator_supply_alias *map;
1881 
1882 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1883 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1884 			return map;
1885 
1886 	return NULL;
1887 }
1888 
1889 static void regulator_supply_alias(struct device **dev, const char **supply)
1890 {
1891 	struct regulator_supply_alias *map;
1892 
1893 	map = regulator_find_supply_alias(*dev, *supply);
1894 	if (map) {
1895 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1896 				*supply, map->alias_supply,
1897 				dev_name(map->alias_dev));
1898 		*dev = map->alias_dev;
1899 		*supply = map->alias_supply;
1900 	}
1901 }
1902 
1903 static int regulator_match(struct device *dev, const void *data)
1904 {
1905 	struct regulator_dev *r = dev_to_rdev(dev);
1906 
1907 	return strcmp(rdev_get_name(r), data) == 0;
1908 }
1909 
1910 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1911 {
1912 	struct device *dev;
1913 
1914 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1915 
1916 	return dev ? dev_to_rdev(dev) : NULL;
1917 }
1918 
1919 /**
1920  * regulator_dev_lookup - lookup a regulator device.
1921  * @dev: device for regulator "consumer".
1922  * @supply: Supply name or regulator ID.
1923  *
1924  * If successful, returns a struct regulator_dev that corresponds to the name
1925  * @supply and with the embedded struct device refcount incremented by one.
1926  * The refcount must be dropped by calling put_device().
1927  * On failure one of the following ERR-PTR-encoded values is returned:
1928  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1929  * in the future.
1930  */
1931 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1932 						  const char *supply)
1933 {
1934 	struct regulator_dev *r = NULL;
1935 	struct device_node *node;
1936 	struct regulator_map *map;
1937 	const char *devname = NULL;
1938 
1939 	regulator_supply_alias(&dev, &supply);
1940 
1941 	/* first do a dt based lookup */
1942 	if (dev && dev->of_node) {
1943 		node = of_get_regulator(dev, supply);
1944 		if (node) {
1945 			r = of_find_regulator_by_node(node);
1946 			if (r)
1947 				return r;
1948 
1949 			/*
1950 			 * We have a node, but there is no device.
1951 			 * assume it has not registered yet.
1952 			 */
1953 			return ERR_PTR(-EPROBE_DEFER);
1954 		}
1955 	}
1956 
1957 	/* if not found, try doing it non-dt way */
1958 	if (dev)
1959 		devname = dev_name(dev);
1960 
1961 	mutex_lock(&regulator_list_mutex);
1962 	list_for_each_entry(map, &regulator_map_list, list) {
1963 		/* If the mapping has a device set up it must match */
1964 		if (map->dev_name &&
1965 		    (!devname || strcmp(map->dev_name, devname)))
1966 			continue;
1967 
1968 		if (strcmp(map->supply, supply) == 0 &&
1969 		    get_device(&map->regulator->dev)) {
1970 			r = map->regulator;
1971 			break;
1972 		}
1973 	}
1974 	mutex_unlock(&regulator_list_mutex);
1975 
1976 	if (r)
1977 		return r;
1978 
1979 	r = regulator_lookup_by_name(supply);
1980 	if (r)
1981 		return r;
1982 
1983 	return ERR_PTR(-ENODEV);
1984 }
1985 
1986 static int regulator_resolve_supply(struct regulator_dev *rdev)
1987 {
1988 	struct regulator_dev *r;
1989 	struct device *dev = rdev->dev.parent;
1990 	int ret = 0;
1991 
1992 	/* No supply to resolve? */
1993 	if (!rdev->supply_name)
1994 		return 0;
1995 
1996 	/* Supply already resolved? (fast-path without locking contention) */
1997 	if (rdev->supply)
1998 		return 0;
1999 
2000 	r = regulator_dev_lookup(dev, rdev->supply_name);
2001 	if (IS_ERR(r)) {
2002 		ret = PTR_ERR(r);
2003 
2004 		/* Did the lookup explicitly defer for us? */
2005 		if (ret == -EPROBE_DEFER)
2006 			goto out;
2007 
2008 		if (have_full_constraints()) {
2009 			r = dummy_regulator_rdev;
2010 			get_device(&r->dev);
2011 		} else {
2012 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2013 				rdev->supply_name, rdev->desc->name);
2014 			ret = -EPROBE_DEFER;
2015 			goto out;
2016 		}
2017 	}
2018 
2019 	if (r == rdev) {
2020 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2021 			rdev->desc->name, rdev->supply_name);
2022 		if (!have_full_constraints()) {
2023 			ret = -EINVAL;
2024 			goto out;
2025 		}
2026 		r = dummy_regulator_rdev;
2027 		get_device(&r->dev);
2028 	}
2029 
2030 	/*
2031 	 * If the supply's parent device is not the same as the
2032 	 * regulator's parent device, then ensure the parent device
2033 	 * is bound before we resolve the supply, in case the parent
2034 	 * device get probe deferred and unregisters the supply.
2035 	 */
2036 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2037 		if (!device_is_bound(r->dev.parent)) {
2038 			put_device(&r->dev);
2039 			ret = -EPROBE_DEFER;
2040 			goto out;
2041 		}
2042 	}
2043 
2044 	/* Recursively resolve the supply of the supply */
2045 	ret = regulator_resolve_supply(r);
2046 	if (ret < 0) {
2047 		put_device(&r->dev);
2048 		goto out;
2049 	}
2050 
2051 	/*
2052 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2053 	 * between rdev->supply null check and setting rdev->supply in
2054 	 * set_supply() from concurrent tasks.
2055 	 */
2056 	regulator_lock(rdev);
2057 
2058 	/* Supply just resolved by a concurrent task? */
2059 	if (rdev->supply) {
2060 		regulator_unlock(rdev);
2061 		put_device(&r->dev);
2062 		goto out;
2063 	}
2064 
2065 	ret = set_supply(rdev, r);
2066 	if (ret < 0) {
2067 		regulator_unlock(rdev);
2068 		put_device(&r->dev);
2069 		goto out;
2070 	}
2071 
2072 	regulator_unlock(rdev);
2073 
2074 	/*
2075 	 * In set_machine_constraints() we may have turned this regulator on
2076 	 * but we couldn't propagate to the supply if it hadn't been resolved
2077 	 * yet.  Do it now.
2078 	 */
2079 	if (rdev->use_count) {
2080 		ret = regulator_enable(rdev->supply);
2081 		if (ret < 0) {
2082 			_regulator_put(rdev->supply);
2083 			rdev->supply = NULL;
2084 			goto out;
2085 		}
2086 	}
2087 
2088 out:
2089 	return ret;
2090 }
2091 
2092 /* Internal regulator request function */
2093 struct regulator *_regulator_get(struct device *dev, const char *id,
2094 				 enum regulator_get_type get_type)
2095 {
2096 	struct regulator_dev *rdev;
2097 	struct regulator *regulator;
2098 	struct device_link *link;
2099 	int ret;
2100 
2101 	if (get_type >= MAX_GET_TYPE) {
2102 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2103 		return ERR_PTR(-EINVAL);
2104 	}
2105 
2106 	if (id == NULL) {
2107 		pr_err("get() with no identifier\n");
2108 		return ERR_PTR(-EINVAL);
2109 	}
2110 
2111 	rdev = regulator_dev_lookup(dev, id);
2112 	if (IS_ERR(rdev)) {
2113 		ret = PTR_ERR(rdev);
2114 
2115 		/*
2116 		 * If regulator_dev_lookup() fails with error other
2117 		 * than -ENODEV our job here is done, we simply return it.
2118 		 */
2119 		if (ret != -ENODEV)
2120 			return ERR_PTR(ret);
2121 
2122 		if (!have_full_constraints()) {
2123 			dev_warn(dev,
2124 				 "incomplete constraints, dummy supplies not allowed\n");
2125 			return ERR_PTR(-ENODEV);
2126 		}
2127 
2128 		switch (get_type) {
2129 		case NORMAL_GET:
2130 			/*
2131 			 * Assume that a regulator is physically present and
2132 			 * enabled, even if it isn't hooked up, and just
2133 			 * provide a dummy.
2134 			 */
2135 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2136 			rdev = dummy_regulator_rdev;
2137 			get_device(&rdev->dev);
2138 			break;
2139 
2140 		case EXCLUSIVE_GET:
2141 			dev_warn(dev,
2142 				 "dummy supplies not allowed for exclusive requests\n");
2143 			fallthrough;
2144 
2145 		default:
2146 			return ERR_PTR(-ENODEV);
2147 		}
2148 	}
2149 
2150 	if (rdev->exclusive) {
2151 		regulator = ERR_PTR(-EPERM);
2152 		put_device(&rdev->dev);
2153 		return regulator;
2154 	}
2155 
2156 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2157 		regulator = ERR_PTR(-EBUSY);
2158 		put_device(&rdev->dev);
2159 		return regulator;
2160 	}
2161 
2162 	mutex_lock(&regulator_list_mutex);
2163 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2164 	mutex_unlock(&regulator_list_mutex);
2165 
2166 	if (ret != 0) {
2167 		regulator = ERR_PTR(-EPROBE_DEFER);
2168 		put_device(&rdev->dev);
2169 		return regulator;
2170 	}
2171 
2172 	ret = regulator_resolve_supply(rdev);
2173 	if (ret < 0) {
2174 		regulator = ERR_PTR(ret);
2175 		put_device(&rdev->dev);
2176 		return regulator;
2177 	}
2178 
2179 	if (!try_module_get(rdev->owner)) {
2180 		regulator = ERR_PTR(-EPROBE_DEFER);
2181 		put_device(&rdev->dev);
2182 		return regulator;
2183 	}
2184 
2185 	regulator = create_regulator(rdev, dev, id);
2186 	if (regulator == NULL) {
2187 		regulator = ERR_PTR(-ENOMEM);
2188 		module_put(rdev->owner);
2189 		put_device(&rdev->dev);
2190 		return regulator;
2191 	}
2192 
2193 	rdev->open_count++;
2194 	if (get_type == EXCLUSIVE_GET) {
2195 		rdev->exclusive = 1;
2196 
2197 		ret = _regulator_is_enabled(rdev);
2198 		if (ret > 0) {
2199 			rdev->use_count = 1;
2200 			regulator->enable_count = 1;
2201 		} else {
2202 			rdev->use_count = 0;
2203 			regulator->enable_count = 0;
2204 		}
2205 	}
2206 
2207 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2208 	if (!IS_ERR_OR_NULL(link))
2209 		regulator->device_link = true;
2210 
2211 	return regulator;
2212 }
2213 
2214 /**
2215  * regulator_get - lookup and obtain a reference to a regulator.
2216  * @dev: device for regulator "consumer"
2217  * @id: Supply name or regulator ID.
2218  *
2219  * Returns a struct regulator corresponding to the regulator producer,
2220  * or IS_ERR() condition containing errno.
2221  *
2222  * Use of supply names configured via set_consumer_device_supply() is
2223  * strongly encouraged.  It is recommended that the supply name used
2224  * should match the name used for the supply and/or the relevant
2225  * device pins in the datasheet.
2226  */
2227 struct regulator *regulator_get(struct device *dev, const char *id)
2228 {
2229 	return _regulator_get(dev, id, NORMAL_GET);
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_get);
2232 
2233 /**
2234  * regulator_get_exclusive - obtain exclusive access to a regulator.
2235  * @dev: device for regulator "consumer"
2236  * @id: Supply name or regulator ID.
2237  *
2238  * Returns a struct regulator corresponding to the regulator producer,
2239  * or IS_ERR() condition containing errno.  Other consumers will be
2240  * unable to obtain this regulator while this reference is held and the
2241  * use count for the regulator will be initialised to reflect the current
2242  * state of the regulator.
2243  *
2244  * This is intended for use by consumers which cannot tolerate shared
2245  * use of the regulator such as those which need to force the
2246  * regulator off for correct operation of the hardware they are
2247  * controlling.
2248  *
2249  * Use of supply names configured via set_consumer_device_supply() is
2250  * strongly encouraged.  It is recommended that the supply name used
2251  * should match the name used for the supply and/or the relevant
2252  * device pins in the datasheet.
2253  */
2254 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2255 {
2256 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2257 }
2258 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2259 
2260 /**
2261  * regulator_get_optional - obtain optional access to a regulator.
2262  * @dev: device for regulator "consumer"
2263  * @id: Supply name or regulator ID.
2264  *
2265  * Returns a struct regulator corresponding to the regulator producer,
2266  * or IS_ERR() condition containing errno.
2267  *
2268  * This is intended for use by consumers for devices which can have
2269  * some supplies unconnected in normal use, such as some MMC devices.
2270  * It can allow the regulator core to provide stub supplies for other
2271  * supplies requested using normal regulator_get() calls without
2272  * disrupting the operation of drivers that can handle absent
2273  * supplies.
2274  *
2275  * Use of supply names configured via set_consumer_device_supply() is
2276  * strongly encouraged.  It is recommended that the supply name used
2277  * should match the name used for the supply and/or the relevant
2278  * device pins in the datasheet.
2279  */
2280 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2281 {
2282 	return _regulator_get(dev, id, OPTIONAL_GET);
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_get_optional);
2285 
2286 static void destroy_regulator(struct regulator *regulator)
2287 {
2288 	struct regulator_dev *rdev = regulator->rdev;
2289 
2290 	debugfs_remove_recursive(regulator->debugfs);
2291 
2292 	if (regulator->dev) {
2293 		if (regulator->device_link)
2294 			device_link_remove(regulator->dev, &rdev->dev);
2295 
2296 		/* remove any sysfs entries */
2297 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2298 	}
2299 
2300 	regulator_lock(rdev);
2301 	list_del(&regulator->list);
2302 
2303 	rdev->open_count--;
2304 	rdev->exclusive = 0;
2305 	regulator_unlock(rdev);
2306 
2307 	kfree_const(regulator->supply_name);
2308 	kfree(regulator);
2309 }
2310 
2311 /* regulator_list_mutex lock held by regulator_put() */
2312 static void _regulator_put(struct regulator *regulator)
2313 {
2314 	struct regulator_dev *rdev;
2315 
2316 	if (IS_ERR_OR_NULL(regulator))
2317 		return;
2318 
2319 	lockdep_assert_held_once(&regulator_list_mutex);
2320 
2321 	/* Docs say you must disable before calling regulator_put() */
2322 	WARN_ON(regulator->enable_count);
2323 
2324 	rdev = regulator->rdev;
2325 
2326 	destroy_regulator(regulator);
2327 
2328 	module_put(rdev->owner);
2329 	put_device(&rdev->dev);
2330 }
2331 
2332 /**
2333  * regulator_put - "free" the regulator source
2334  * @regulator: regulator source
2335  *
2336  * Note: drivers must ensure that all regulator_enable calls made on this
2337  * regulator source are balanced by regulator_disable calls prior to calling
2338  * this function.
2339  */
2340 void regulator_put(struct regulator *regulator)
2341 {
2342 	mutex_lock(&regulator_list_mutex);
2343 	_regulator_put(regulator);
2344 	mutex_unlock(&regulator_list_mutex);
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_put);
2347 
2348 /**
2349  * regulator_register_supply_alias - Provide device alias for supply lookup
2350  *
2351  * @dev: device that will be given as the regulator "consumer"
2352  * @id: Supply name or regulator ID
2353  * @alias_dev: device that should be used to lookup the supply
2354  * @alias_id: Supply name or regulator ID that should be used to lookup the
2355  * supply
2356  *
2357  * All lookups for id on dev will instead be conducted for alias_id on
2358  * alias_dev.
2359  */
2360 int regulator_register_supply_alias(struct device *dev, const char *id,
2361 				    struct device *alias_dev,
2362 				    const char *alias_id)
2363 {
2364 	struct regulator_supply_alias *map;
2365 
2366 	map = regulator_find_supply_alias(dev, id);
2367 	if (map)
2368 		return -EEXIST;
2369 
2370 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2371 	if (!map)
2372 		return -ENOMEM;
2373 
2374 	map->src_dev = dev;
2375 	map->src_supply = id;
2376 	map->alias_dev = alias_dev;
2377 	map->alias_supply = alias_id;
2378 
2379 	list_add(&map->list, &regulator_supply_alias_list);
2380 
2381 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2382 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2383 
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2387 
2388 /**
2389  * regulator_unregister_supply_alias - Remove device alias
2390  *
2391  * @dev: device that will be given as the regulator "consumer"
2392  * @id: Supply name or regulator ID
2393  *
2394  * Remove a lookup alias if one exists for id on dev.
2395  */
2396 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2397 {
2398 	struct regulator_supply_alias *map;
2399 
2400 	map = regulator_find_supply_alias(dev, id);
2401 	if (map) {
2402 		list_del(&map->list);
2403 		kfree(map);
2404 	}
2405 }
2406 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2407 
2408 /**
2409  * regulator_bulk_register_supply_alias - register multiple aliases
2410  *
2411  * @dev: device that will be given as the regulator "consumer"
2412  * @id: List of supply names or regulator IDs
2413  * @alias_dev: device that should be used to lookup the supply
2414  * @alias_id: List of supply names or regulator IDs that should be used to
2415  * lookup the supply
2416  * @num_id: Number of aliases to register
2417  *
2418  * @return 0 on success, an errno on failure.
2419  *
2420  * This helper function allows drivers to register several supply
2421  * aliases in one operation.  If any of the aliases cannot be
2422  * registered any aliases that were registered will be removed
2423  * before returning to the caller.
2424  */
2425 int regulator_bulk_register_supply_alias(struct device *dev,
2426 					 const char *const *id,
2427 					 struct device *alias_dev,
2428 					 const char *const *alias_id,
2429 					 int num_id)
2430 {
2431 	int i;
2432 	int ret;
2433 
2434 	for (i = 0; i < num_id; ++i) {
2435 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2436 						      alias_id[i]);
2437 		if (ret < 0)
2438 			goto err;
2439 	}
2440 
2441 	return 0;
2442 
2443 err:
2444 	dev_err(dev,
2445 		"Failed to create supply alias %s,%s -> %s,%s\n",
2446 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2447 
2448 	while (--i >= 0)
2449 		regulator_unregister_supply_alias(dev, id[i]);
2450 
2451 	return ret;
2452 }
2453 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2454 
2455 /**
2456  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2457  *
2458  * @dev: device that will be given as the regulator "consumer"
2459  * @id: List of supply names or regulator IDs
2460  * @num_id: Number of aliases to unregister
2461  *
2462  * This helper function allows drivers to unregister several supply
2463  * aliases in one operation.
2464  */
2465 void regulator_bulk_unregister_supply_alias(struct device *dev,
2466 					    const char *const *id,
2467 					    int num_id)
2468 {
2469 	int i;
2470 
2471 	for (i = 0; i < num_id; ++i)
2472 		regulator_unregister_supply_alias(dev, id[i]);
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2475 
2476 
2477 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2478 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2479 				const struct regulator_config *config)
2480 {
2481 	struct regulator_enable_gpio *pin, *new_pin;
2482 	struct gpio_desc *gpiod;
2483 
2484 	gpiod = config->ena_gpiod;
2485 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2486 
2487 	mutex_lock(&regulator_list_mutex);
2488 
2489 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2490 		if (pin->gpiod == gpiod) {
2491 			rdev_dbg(rdev, "GPIO is already used\n");
2492 			goto update_ena_gpio_to_rdev;
2493 		}
2494 	}
2495 
2496 	if (new_pin == NULL) {
2497 		mutex_unlock(&regulator_list_mutex);
2498 		return -ENOMEM;
2499 	}
2500 
2501 	pin = new_pin;
2502 	new_pin = NULL;
2503 
2504 	pin->gpiod = gpiod;
2505 	list_add(&pin->list, &regulator_ena_gpio_list);
2506 
2507 update_ena_gpio_to_rdev:
2508 	pin->request_count++;
2509 	rdev->ena_pin = pin;
2510 
2511 	mutex_unlock(&regulator_list_mutex);
2512 	kfree(new_pin);
2513 
2514 	return 0;
2515 }
2516 
2517 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2518 {
2519 	struct regulator_enable_gpio *pin, *n;
2520 
2521 	if (!rdev->ena_pin)
2522 		return;
2523 
2524 	/* Free the GPIO only in case of no use */
2525 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2526 		if (pin != rdev->ena_pin)
2527 			continue;
2528 
2529 		if (--pin->request_count)
2530 			break;
2531 
2532 		gpiod_put(pin->gpiod);
2533 		list_del(&pin->list);
2534 		kfree(pin);
2535 		break;
2536 	}
2537 
2538 	rdev->ena_pin = NULL;
2539 }
2540 
2541 /**
2542  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2543  * @rdev: regulator_dev structure
2544  * @enable: enable GPIO at initial use?
2545  *
2546  * GPIO is enabled in case of initial use. (enable_count is 0)
2547  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2548  */
2549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2550 {
2551 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2552 
2553 	if (!pin)
2554 		return -EINVAL;
2555 
2556 	if (enable) {
2557 		/* Enable GPIO at initial use */
2558 		if (pin->enable_count == 0)
2559 			gpiod_set_value_cansleep(pin->gpiod, 1);
2560 
2561 		pin->enable_count++;
2562 	} else {
2563 		if (pin->enable_count > 1) {
2564 			pin->enable_count--;
2565 			return 0;
2566 		}
2567 
2568 		/* Disable GPIO if not used */
2569 		if (pin->enable_count <= 1) {
2570 			gpiod_set_value_cansleep(pin->gpiod, 0);
2571 			pin->enable_count = 0;
2572 		}
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * _regulator_delay_helper - a delay helper function
2580  * @delay: time to delay in microseconds
2581  *
2582  * Delay for the requested amount of time as per the guidelines in:
2583  *
2584  *     Documentation/timers/timers-howto.rst
2585  *
2586  * The assumption here is that these regulator operations will never used in
2587  * atomic context and therefore sleeping functions can be used.
2588  */
2589 static void _regulator_delay_helper(unsigned int delay)
2590 {
2591 	unsigned int ms = delay / 1000;
2592 	unsigned int us = delay % 1000;
2593 
2594 	if (ms > 0) {
2595 		/*
2596 		 * For small enough values, handle super-millisecond
2597 		 * delays in the usleep_range() call below.
2598 		 */
2599 		if (ms < 20)
2600 			us += ms * 1000;
2601 		else
2602 			msleep(ms);
2603 	}
2604 
2605 	/*
2606 	 * Give the scheduler some room to coalesce with any other
2607 	 * wakeup sources. For delays shorter than 10 us, don't even
2608 	 * bother setting up high-resolution timers and just busy-
2609 	 * loop.
2610 	 */
2611 	if (us >= 10)
2612 		usleep_range(us, us + 100);
2613 	else
2614 		udelay(us);
2615 }
2616 
2617 /**
2618  * _regulator_check_status_enabled
2619  *
2620  * A helper function to check if the regulator status can be interpreted
2621  * as 'regulator is enabled'.
2622  * @rdev: the regulator device to check
2623  *
2624  * Return:
2625  * * 1			- if status shows regulator is in enabled state
2626  * * 0			- if not enabled state
2627  * * Error Value	- as received from ops->get_status()
2628  */
2629 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2630 {
2631 	int ret = rdev->desc->ops->get_status(rdev);
2632 
2633 	if (ret < 0) {
2634 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2635 		return ret;
2636 	}
2637 
2638 	switch (ret) {
2639 	case REGULATOR_STATUS_OFF:
2640 	case REGULATOR_STATUS_ERROR:
2641 	case REGULATOR_STATUS_UNDEFINED:
2642 		return 0;
2643 	default:
2644 		return 1;
2645 	}
2646 }
2647 
2648 static int _regulator_do_enable(struct regulator_dev *rdev)
2649 {
2650 	int ret, delay;
2651 
2652 	/* Query before enabling in case configuration dependent.  */
2653 	ret = _regulator_get_enable_time(rdev);
2654 	if (ret >= 0) {
2655 		delay = ret;
2656 	} else {
2657 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2658 		delay = 0;
2659 	}
2660 
2661 	trace_regulator_enable(rdev_get_name(rdev));
2662 
2663 	if (rdev->desc->off_on_delay && rdev->last_off) {
2664 		/* if needed, keep a distance of off_on_delay from last time
2665 		 * this regulator was disabled.
2666 		 */
2667 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2668 		s64 remaining = ktime_us_delta(end, ktime_get());
2669 
2670 		if (remaining > 0)
2671 			_regulator_delay_helper(remaining);
2672 	}
2673 
2674 	if (rdev->ena_pin) {
2675 		if (!rdev->ena_gpio_state) {
2676 			ret = regulator_ena_gpio_ctrl(rdev, true);
2677 			if (ret < 0)
2678 				return ret;
2679 			rdev->ena_gpio_state = 1;
2680 		}
2681 	} else if (rdev->desc->ops->enable) {
2682 		ret = rdev->desc->ops->enable(rdev);
2683 		if (ret < 0)
2684 			return ret;
2685 	} else {
2686 		return -EINVAL;
2687 	}
2688 
2689 	/* Allow the regulator to ramp; it would be useful to extend
2690 	 * this for bulk operations so that the regulators can ramp
2691 	 * together.
2692 	 */
2693 	trace_regulator_enable_delay(rdev_get_name(rdev));
2694 
2695 	/* If poll_enabled_time is set, poll upto the delay calculated
2696 	 * above, delaying poll_enabled_time uS to check if the regulator
2697 	 * actually got enabled.
2698 	 * If the regulator isn't enabled after our delay helper has expired,
2699 	 * return -ETIMEDOUT.
2700 	 */
2701 	if (rdev->desc->poll_enabled_time) {
2702 		int time_remaining = delay;
2703 
2704 		while (time_remaining > 0) {
2705 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2706 
2707 			if (rdev->desc->ops->get_status) {
2708 				ret = _regulator_check_status_enabled(rdev);
2709 				if (ret < 0)
2710 					return ret;
2711 				else if (ret)
2712 					break;
2713 			} else if (rdev->desc->ops->is_enabled(rdev))
2714 				break;
2715 
2716 			time_remaining -= rdev->desc->poll_enabled_time;
2717 		}
2718 
2719 		if (time_remaining <= 0) {
2720 			rdev_err(rdev, "Enabled check timed out\n");
2721 			return -ETIMEDOUT;
2722 		}
2723 	} else {
2724 		_regulator_delay_helper(delay);
2725 	}
2726 
2727 	trace_regulator_enable_complete(rdev_get_name(rdev));
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  * _regulator_handle_consumer_enable - handle that a consumer enabled
2734  * @regulator: regulator source
2735  *
2736  * Some things on a regulator consumer (like the contribution towards total
2737  * load on the regulator) only have an effect when the consumer wants the
2738  * regulator enabled.  Explained in example with two consumers of the same
2739  * regulator:
2740  *   consumer A: set_load(100);       => total load = 0
2741  *   consumer A: regulator_enable();  => total load = 100
2742  *   consumer B: set_load(1000);      => total load = 100
2743  *   consumer B: regulator_enable();  => total load = 1100
2744  *   consumer A: regulator_disable(); => total_load = 1000
2745  *
2746  * This function (together with _regulator_handle_consumer_disable) is
2747  * responsible for keeping track of the refcount for a given regulator consumer
2748  * and applying / unapplying these things.
2749  *
2750  * Returns 0 upon no error; -error upon error.
2751  */
2752 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2753 {
2754 	int ret;
2755 	struct regulator_dev *rdev = regulator->rdev;
2756 
2757 	lockdep_assert_held_once(&rdev->mutex.base);
2758 
2759 	regulator->enable_count++;
2760 	if (regulator->uA_load && regulator->enable_count == 1) {
2761 		ret = drms_uA_update(rdev);
2762 		if (ret)
2763 			regulator->enable_count--;
2764 		return ret;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 /**
2771  * _regulator_handle_consumer_disable - handle that a consumer disabled
2772  * @regulator: regulator source
2773  *
2774  * The opposite of _regulator_handle_consumer_enable().
2775  *
2776  * Returns 0 upon no error; -error upon error.
2777  */
2778 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2779 {
2780 	struct regulator_dev *rdev = regulator->rdev;
2781 
2782 	lockdep_assert_held_once(&rdev->mutex.base);
2783 
2784 	if (!regulator->enable_count) {
2785 		rdev_err(rdev, "Underflow of regulator enable count\n");
2786 		return -EINVAL;
2787 	}
2788 
2789 	regulator->enable_count--;
2790 	if (regulator->uA_load && regulator->enable_count == 0)
2791 		return drms_uA_update(rdev);
2792 
2793 	return 0;
2794 }
2795 
2796 /* locks held by regulator_enable() */
2797 static int _regulator_enable(struct regulator *regulator)
2798 {
2799 	struct regulator_dev *rdev = regulator->rdev;
2800 	int ret;
2801 
2802 	lockdep_assert_held_once(&rdev->mutex.base);
2803 
2804 	if (rdev->use_count == 0 && rdev->supply) {
2805 		ret = _regulator_enable(rdev->supply);
2806 		if (ret < 0)
2807 			return ret;
2808 	}
2809 
2810 	/* balance only if there are regulators coupled */
2811 	if (rdev->coupling_desc.n_coupled > 1) {
2812 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2813 		if (ret < 0)
2814 			goto err_disable_supply;
2815 	}
2816 
2817 	ret = _regulator_handle_consumer_enable(regulator);
2818 	if (ret < 0)
2819 		goto err_disable_supply;
2820 
2821 	if (rdev->use_count == 0) {
2822 		/*
2823 		 * The regulator may already be enabled if it's not switchable
2824 		 * or was left on
2825 		 */
2826 		ret = _regulator_is_enabled(rdev);
2827 		if (ret == -EINVAL || ret == 0) {
2828 			if (!regulator_ops_is_valid(rdev,
2829 					REGULATOR_CHANGE_STATUS)) {
2830 				ret = -EPERM;
2831 				goto err_consumer_disable;
2832 			}
2833 
2834 			ret = _regulator_do_enable(rdev);
2835 			if (ret < 0)
2836 				goto err_consumer_disable;
2837 
2838 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2839 					     NULL);
2840 		} else if (ret < 0) {
2841 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2842 			goto err_consumer_disable;
2843 		}
2844 		/* Fallthrough on positive return values - already enabled */
2845 	}
2846 
2847 	rdev->use_count++;
2848 
2849 	return 0;
2850 
2851 err_consumer_disable:
2852 	_regulator_handle_consumer_disable(regulator);
2853 
2854 err_disable_supply:
2855 	if (rdev->use_count == 0 && rdev->supply)
2856 		_regulator_disable(rdev->supply);
2857 
2858 	return ret;
2859 }
2860 
2861 /**
2862  * regulator_enable - enable regulator output
2863  * @regulator: regulator source
2864  *
2865  * Request that the regulator be enabled with the regulator output at
2866  * the predefined voltage or current value.  Calls to regulator_enable()
2867  * must be balanced with calls to regulator_disable().
2868  *
2869  * NOTE: the output value can be set by other drivers, boot loader or may be
2870  * hardwired in the regulator.
2871  */
2872 int regulator_enable(struct regulator *regulator)
2873 {
2874 	struct regulator_dev *rdev = regulator->rdev;
2875 	struct ww_acquire_ctx ww_ctx;
2876 	int ret;
2877 
2878 	regulator_lock_dependent(rdev, &ww_ctx);
2879 	ret = _regulator_enable(regulator);
2880 	regulator_unlock_dependent(rdev, &ww_ctx);
2881 
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_enable);
2885 
2886 static int _regulator_do_disable(struct regulator_dev *rdev)
2887 {
2888 	int ret;
2889 
2890 	trace_regulator_disable(rdev_get_name(rdev));
2891 
2892 	if (rdev->ena_pin) {
2893 		if (rdev->ena_gpio_state) {
2894 			ret = regulator_ena_gpio_ctrl(rdev, false);
2895 			if (ret < 0)
2896 				return ret;
2897 			rdev->ena_gpio_state = 0;
2898 		}
2899 
2900 	} else if (rdev->desc->ops->disable) {
2901 		ret = rdev->desc->ops->disable(rdev);
2902 		if (ret != 0)
2903 			return ret;
2904 	}
2905 
2906 	if (rdev->desc->off_on_delay)
2907 		rdev->last_off = ktime_get();
2908 
2909 	trace_regulator_disable_complete(rdev_get_name(rdev));
2910 
2911 	return 0;
2912 }
2913 
2914 /* locks held by regulator_disable() */
2915 static int _regulator_disable(struct regulator *regulator)
2916 {
2917 	struct regulator_dev *rdev = regulator->rdev;
2918 	int ret = 0;
2919 
2920 	lockdep_assert_held_once(&rdev->mutex.base);
2921 
2922 	if (WARN(rdev->use_count <= 0,
2923 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2924 		return -EIO;
2925 
2926 	/* are we the last user and permitted to disable ? */
2927 	if (rdev->use_count == 1 &&
2928 	    (rdev->constraints && !rdev->constraints->always_on)) {
2929 
2930 		/* we are last user */
2931 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2932 			ret = _notifier_call_chain(rdev,
2933 						   REGULATOR_EVENT_PRE_DISABLE,
2934 						   NULL);
2935 			if (ret & NOTIFY_STOP_MASK)
2936 				return -EINVAL;
2937 
2938 			ret = _regulator_do_disable(rdev);
2939 			if (ret < 0) {
2940 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2941 				_notifier_call_chain(rdev,
2942 						REGULATOR_EVENT_ABORT_DISABLE,
2943 						NULL);
2944 				return ret;
2945 			}
2946 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2947 					NULL);
2948 		}
2949 
2950 		rdev->use_count = 0;
2951 	} else if (rdev->use_count > 1) {
2952 		rdev->use_count--;
2953 	}
2954 
2955 	if (ret == 0)
2956 		ret = _regulator_handle_consumer_disable(regulator);
2957 
2958 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2959 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2960 
2961 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2962 		ret = _regulator_disable(rdev->supply);
2963 
2964 	return ret;
2965 }
2966 
2967 /**
2968  * regulator_disable - disable regulator output
2969  * @regulator: regulator source
2970  *
2971  * Disable the regulator output voltage or current.  Calls to
2972  * regulator_enable() must be balanced with calls to
2973  * regulator_disable().
2974  *
2975  * NOTE: this will only disable the regulator output if no other consumer
2976  * devices have it enabled, the regulator device supports disabling and
2977  * machine constraints permit this operation.
2978  */
2979 int regulator_disable(struct regulator *regulator)
2980 {
2981 	struct regulator_dev *rdev = regulator->rdev;
2982 	struct ww_acquire_ctx ww_ctx;
2983 	int ret;
2984 
2985 	regulator_lock_dependent(rdev, &ww_ctx);
2986 	ret = _regulator_disable(regulator);
2987 	regulator_unlock_dependent(rdev, &ww_ctx);
2988 
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_disable);
2992 
2993 /* locks held by regulator_force_disable() */
2994 static int _regulator_force_disable(struct regulator_dev *rdev)
2995 {
2996 	int ret = 0;
2997 
2998 	lockdep_assert_held_once(&rdev->mutex.base);
2999 
3000 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3001 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3002 	if (ret & NOTIFY_STOP_MASK)
3003 		return -EINVAL;
3004 
3005 	ret = _regulator_do_disable(rdev);
3006 	if (ret < 0) {
3007 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3008 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3010 		return ret;
3011 	}
3012 
3013 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3014 			REGULATOR_EVENT_DISABLE, NULL);
3015 
3016 	return 0;
3017 }
3018 
3019 /**
3020  * regulator_force_disable - force disable regulator output
3021  * @regulator: regulator source
3022  *
3023  * Forcibly disable the regulator output voltage or current.
3024  * NOTE: this *will* disable the regulator output even if other consumer
3025  * devices have it enabled. This should be used for situations when device
3026  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3027  */
3028 int regulator_force_disable(struct regulator *regulator)
3029 {
3030 	struct regulator_dev *rdev = regulator->rdev;
3031 	struct ww_acquire_ctx ww_ctx;
3032 	int ret;
3033 
3034 	regulator_lock_dependent(rdev, &ww_ctx);
3035 
3036 	ret = _regulator_force_disable(regulator->rdev);
3037 
3038 	if (rdev->coupling_desc.n_coupled > 1)
3039 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040 
3041 	if (regulator->uA_load) {
3042 		regulator->uA_load = 0;
3043 		ret = drms_uA_update(rdev);
3044 	}
3045 
3046 	if (rdev->use_count != 0 && rdev->supply)
3047 		_regulator_disable(rdev->supply);
3048 
3049 	regulator_unlock_dependent(rdev, &ww_ctx);
3050 
3051 	return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_force_disable);
3054 
3055 static void regulator_disable_work(struct work_struct *work)
3056 {
3057 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3058 						  disable_work.work);
3059 	struct ww_acquire_ctx ww_ctx;
3060 	int count, i, ret;
3061 	struct regulator *regulator;
3062 	int total_count = 0;
3063 
3064 	regulator_lock_dependent(rdev, &ww_ctx);
3065 
3066 	/*
3067 	 * Workqueue functions queue the new work instance while the previous
3068 	 * work instance is being processed. Cancel the queued work instance
3069 	 * as the work instance under processing does the job of the queued
3070 	 * work instance.
3071 	 */
3072 	cancel_delayed_work(&rdev->disable_work);
3073 
3074 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3075 		count = regulator->deferred_disables;
3076 
3077 		if (!count)
3078 			continue;
3079 
3080 		total_count += count;
3081 		regulator->deferred_disables = 0;
3082 
3083 		for (i = 0; i < count; i++) {
3084 			ret = _regulator_disable(regulator);
3085 			if (ret != 0)
3086 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3087 					 ERR_PTR(ret));
3088 		}
3089 	}
3090 	WARN_ON(!total_count);
3091 
3092 	if (rdev->coupling_desc.n_coupled > 1)
3093 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3094 
3095 	regulator_unlock_dependent(rdev, &ww_ctx);
3096 }
3097 
3098 /**
3099  * regulator_disable_deferred - disable regulator output with delay
3100  * @regulator: regulator source
3101  * @ms: milliseconds until the regulator is disabled
3102  *
3103  * Execute regulator_disable() on the regulator after a delay.  This
3104  * is intended for use with devices that require some time to quiesce.
3105  *
3106  * NOTE: this will only disable the regulator output if no other consumer
3107  * devices have it enabled, the regulator device supports disabling and
3108  * machine constraints permit this operation.
3109  */
3110 int regulator_disable_deferred(struct regulator *regulator, int ms)
3111 {
3112 	struct regulator_dev *rdev = regulator->rdev;
3113 
3114 	if (!ms)
3115 		return regulator_disable(regulator);
3116 
3117 	regulator_lock(rdev);
3118 	regulator->deferred_disables++;
3119 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3120 			 msecs_to_jiffies(ms));
3121 	regulator_unlock(rdev);
3122 
3123 	return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3126 
3127 static int _regulator_is_enabled(struct regulator_dev *rdev)
3128 {
3129 	/* A GPIO control always takes precedence */
3130 	if (rdev->ena_pin)
3131 		return rdev->ena_gpio_state;
3132 
3133 	/* If we don't know then assume that the regulator is always on */
3134 	if (!rdev->desc->ops->is_enabled)
3135 		return 1;
3136 
3137 	return rdev->desc->ops->is_enabled(rdev);
3138 }
3139 
3140 static int _regulator_list_voltage(struct regulator_dev *rdev,
3141 				   unsigned selector, int lock)
3142 {
3143 	const struct regulator_ops *ops = rdev->desc->ops;
3144 	int ret;
3145 
3146 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3147 		return rdev->desc->fixed_uV;
3148 
3149 	if (ops->list_voltage) {
3150 		if (selector >= rdev->desc->n_voltages)
3151 			return -EINVAL;
3152 		if (selector < rdev->desc->linear_min_sel)
3153 			return 0;
3154 		if (lock)
3155 			regulator_lock(rdev);
3156 		ret = ops->list_voltage(rdev, selector);
3157 		if (lock)
3158 			regulator_unlock(rdev);
3159 	} else if (rdev->is_switch && rdev->supply) {
3160 		ret = _regulator_list_voltage(rdev->supply->rdev,
3161 					      selector, lock);
3162 	} else {
3163 		return -EINVAL;
3164 	}
3165 
3166 	if (ret > 0) {
3167 		if (ret < rdev->constraints->min_uV)
3168 			ret = 0;
3169 		else if (ret > rdev->constraints->max_uV)
3170 			ret = 0;
3171 	}
3172 
3173 	return ret;
3174 }
3175 
3176 /**
3177  * regulator_is_enabled - is the regulator output enabled
3178  * @regulator: regulator source
3179  *
3180  * Returns positive if the regulator driver backing the source/client
3181  * has requested that the device be enabled, zero if it hasn't, else a
3182  * negative errno code.
3183  *
3184  * Note that the device backing this regulator handle can have multiple
3185  * users, so it might be enabled even if regulator_enable() was never
3186  * called for this particular source.
3187  */
3188 int regulator_is_enabled(struct regulator *regulator)
3189 {
3190 	int ret;
3191 
3192 	if (regulator->always_on)
3193 		return 1;
3194 
3195 	regulator_lock(regulator->rdev);
3196 	ret = _regulator_is_enabled(regulator->rdev);
3197 	regulator_unlock(regulator->rdev);
3198 
3199 	return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3202 
3203 /**
3204  * regulator_count_voltages - count regulator_list_voltage() selectors
3205  * @regulator: regulator source
3206  *
3207  * Returns number of selectors, or negative errno.  Selectors are
3208  * numbered starting at zero, and typically correspond to bitfields
3209  * in hardware registers.
3210  */
3211 int regulator_count_voltages(struct regulator *regulator)
3212 {
3213 	struct regulator_dev	*rdev = regulator->rdev;
3214 
3215 	if (rdev->desc->n_voltages)
3216 		return rdev->desc->n_voltages;
3217 
3218 	if (!rdev->is_switch || !rdev->supply)
3219 		return -EINVAL;
3220 
3221 	return regulator_count_voltages(rdev->supply);
3222 }
3223 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3224 
3225 /**
3226  * regulator_list_voltage - enumerate supported voltages
3227  * @regulator: regulator source
3228  * @selector: identify voltage to list
3229  * Context: can sleep
3230  *
3231  * Returns a voltage that can be passed to @regulator_set_voltage(),
3232  * zero if this selector code can't be used on this system, or a
3233  * negative errno.
3234  */
3235 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3236 {
3237 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3240 
3241 /**
3242  * regulator_get_regmap - get the regulator's register map
3243  * @regulator: regulator source
3244  *
3245  * Returns the register map for the given regulator, or an ERR_PTR value
3246  * if the regulator doesn't use regmap.
3247  */
3248 struct regmap *regulator_get_regmap(struct regulator *regulator)
3249 {
3250 	struct regmap *map = regulator->rdev->regmap;
3251 
3252 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3253 }
3254 
3255 /**
3256  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3257  * @regulator: regulator source
3258  * @vsel_reg: voltage selector register, output parameter
3259  * @vsel_mask: mask for voltage selector bitfield, output parameter
3260  *
3261  * Returns the hardware register offset and bitmask used for setting the
3262  * regulator voltage. This might be useful when configuring voltage-scaling
3263  * hardware or firmware that can make I2C requests behind the kernel's back,
3264  * for example.
3265  *
3266  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3267  * and 0 is returned, otherwise a negative errno is returned.
3268  */
3269 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3270 					 unsigned *vsel_reg,
3271 					 unsigned *vsel_mask)
3272 {
3273 	struct regulator_dev *rdev = regulator->rdev;
3274 	const struct regulator_ops *ops = rdev->desc->ops;
3275 
3276 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3277 		return -EOPNOTSUPP;
3278 
3279 	*vsel_reg = rdev->desc->vsel_reg;
3280 	*vsel_mask = rdev->desc->vsel_mask;
3281 
3282 	return 0;
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3285 
3286 /**
3287  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3288  * @regulator: regulator source
3289  * @selector: identify voltage to list
3290  *
3291  * Converts the selector to a hardware-specific voltage selector that can be
3292  * directly written to the regulator registers. The address of the voltage
3293  * register can be determined by calling @regulator_get_hardware_vsel_register.
3294  *
3295  * On error a negative errno is returned.
3296  */
3297 int regulator_list_hardware_vsel(struct regulator *regulator,
3298 				 unsigned selector)
3299 {
3300 	struct regulator_dev *rdev = regulator->rdev;
3301 	const struct regulator_ops *ops = rdev->desc->ops;
3302 
3303 	if (selector >= rdev->desc->n_voltages)
3304 		return -EINVAL;
3305 	if (selector < rdev->desc->linear_min_sel)
3306 		return 0;
3307 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3308 		return -EOPNOTSUPP;
3309 
3310 	return selector;
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3313 
3314 /**
3315  * regulator_get_linear_step - return the voltage step size between VSEL values
3316  * @regulator: regulator source
3317  *
3318  * Returns the voltage step size between VSEL values for linear
3319  * regulators, or return 0 if the regulator isn't a linear regulator.
3320  */
3321 unsigned int regulator_get_linear_step(struct regulator *regulator)
3322 {
3323 	struct regulator_dev *rdev = regulator->rdev;
3324 
3325 	return rdev->desc->uV_step;
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3328 
3329 /**
3330  * regulator_is_supported_voltage - check if a voltage range can be supported
3331  *
3332  * @regulator: Regulator to check.
3333  * @min_uV: Minimum required voltage in uV.
3334  * @max_uV: Maximum required voltage in uV.
3335  *
3336  * Returns a boolean.
3337  */
3338 int regulator_is_supported_voltage(struct regulator *regulator,
3339 				   int min_uV, int max_uV)
3340 {
3341 	struct regulator_dev *rdev = regulator->rdev;
3342 	int i, voltages, ret;
3343 
3344 	/* If we can't change voltage check the current voltage */
3345 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3346 		ret = regulator_get_voltage(regulator);
3347 		if (ret >= 0)
3348 			return min_uV <= ret && ret <= max_uV;
3349 		else
3350 			return ret;
3351 	}
3352 
3353 	/* Any voltage within constrains range is fine? */
3354 	if (rdev->desc->continuous_voltage_range)
3355 		return min_uV >= rdev->constraints->min_uV &&
3356 				max_uV <= rdev->constraints->max_uV;
3357 
3358 	ret = regulator_count_voltages(regulator);
3359 	if (ret < 0)
3360 		return 0;
3361 	voltages = ret;
3362 
3363 	for (i = 0; i < voltages; i++) {
3364 		ret = regulator_list_voltage(regulator, i);
3365 
3366 		if (ret >= min_uV && ret <= max_uV)
3367 			return 1;
3368 	}
3369 
3370 	return 0;
3371 }
3372 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3373 
3374 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3375 				 int max_uV)
3376 {
3377 	const struct regulator_desc *desc = rdev->desc;
3378 
3379 	if (desc->ops->map_voltage)
3380 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3381 
3382 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3383 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3384 
3385 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3386 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3387 
3388 	if (desc->ops->list_voltage ==
3389 		regulator_list_voltage_pickable_linear_range)
3390 		return regulator_map_voltage_pickable_linear_range(rdev,
3391 							min_uV, max_uV);
3392 
3393 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3394 }
3395 
3396 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3397 				       int min_uV, int max_uV,
3398 				       unsigned *selector)
3399 {
3400 	struct pre_voltage_change_data data;
3401 	int ret;
3402 
3403 	data.old_uV = regulator_get_voltage_rdev(rdev);
3404 	data.min_uV = min_uV;
3405 	data.max_uV = max_uV;
3406 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3407 				   &data);
3408 	if (ret & NOTIFY_STOP_MASK)
3409 		return -EINVAL;
3410 
3411 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3412 	if (ret >= 0)
3413 		return ret;
3414 
3415 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3416 			     (void *)data.old_uV);
3417 
3418 	return ret;
3419 }
3420 
3421 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3422 					   int uV, unsigned selector)
3423 {
3424 	struct pre_voltage_change_data data;
3425 	int ret;
3426 
3427 	data.old_uV = regulator_get_voltage_rdev(rdev);
3428 	data.min_uV = uV;
3429 	data.max_uV = uV;
3430 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3431 				   &data);
3432 	if (ret & NOTIFY_STOP_MASK)
3433 		return -EINVAL;
3434 
3435 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3436 	if (ret >= 0)
3437 		return ret;
3438 
3439 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3440 			     (void *)data.old_uV);
3441 
3442 	return ret;
3443 }
3444 
3445 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3446 					   int uV, int new_selector)
3447 {
3448 	const struct regulator_ops *ops = rdev->desc->ops;
3449 	int diff, old_sel, curr_sel, ret;
3450 
3451 	/* Stepping is only needed if the regulator is enabled. */
3452 	if (!_regulator_is_enabled(rdev))
3453 		goto final_set;
3454 
3455 	if (!ops->get_voltage_sel)
3456 		return -EINVAL;
3457 
3458 	old_sel = ops->get_voltage_sel(rdev);
3459 	if (old_sel < 0)
3460 		return old_sel;
3461 
3462 	diff = new_selector - old_sel;
3463 	if (diff == 0)
3464 		return 0; /* No change needed. */
3465 
3466 	if (diff > 0) {
3467 		/* Stepping up. */
3468 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3469 		     curr_sel < new_selector;
3470 		     curr_sel += rdev->desc->vsel_step) {
3471 			/*
3472 			 * Call the callback directly instead of using
3473 			 * _regulator_call_set_voltage_sel() as we don't
3474 			 * want to notify anyone yet. Same in the branch
3475 			 * below.
3476 			 */
3477 			ret = ops->set_voltage_sel(rdev, curr_sel);
3478 			if (ret)
3479 				goto try_revert;
3480 		}
3481 	} else {
3482 		/* Stepping down. */
3483 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3484 		     curr_sel > new_selector;
3485 		     curr_sel -= rdev->desc->vsel_step) {
3486 			ret = ops->set_voltage_sel(rdev, curr_sel);
3487 			if (ret)
3488 				goto try_revert;
3489 		}
3490 	}
3491 
3492 final_set:
3493 	/* The final selector will trigger the notifiers. */
3494 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3495 
3496 try_revert:
3497 	/*
3498 	 * At least try to return to the previous voltage if setting a new
3499 	 * one failed.
3500 	 */
3501 	(void)ops->set_voltage_sel(rdev, old_sel);
3502 	return ret;
3503 }
3504 
3505 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3506 				       int old_uV, int new_uV)
3507 {
3508 	unsigned int ramp_delay = 0;
3509 
3510 	if (rdev->constraints->ramp_delay)
3511 		ramp_delay = rdev->constraints->ramp_delay;
3512 	else if (rdev->desc->ramp_delay)
3513 		ramp_delay = rdev->desc->ramp_delay;
3514 	else if (rdev->constraints->settling_time)
3515 		return rdev->constraints->settling_time;
3516 	else if (rdev->constraints->settling_time_up &&
3517 		 (new_uV > old_uV))
3518 		return rdev->constraints->settling_time_up;
3519 	else if (rdev->constraints->settling_time_down &&
3520 		 (new_uV < old_uV))
3521 		return rdev->constraints->settling_time_down;
3522 
3523 	if (ramp_delay == 0)
3524 		return 0;
3525 
3526 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3527 }
3528 
3529 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3530 				     int min_uV, int max_uV)
3531 {
3532 	int ret;
3533 	int delay = 0;
3534 	int best_val = 0;
3535 	unsigned int selector;
3536 	int old_selector = -1;
3537 	const struct regulator_ops *ops = rdev->desc->ops;
3538 	int old_uV = regulator_get_voltage_rdev(rdev);
3539 
3540 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3541 
3542 	min_uV += rdev->constraints->uV_offset;
3543 	max_uV += rdev->constraints->uV_offset;
3544 
3545 	/*
3546 	 * If we can't obtain the old selector there is not enough
3547 	 * info to call set_voltage_time_sel().
3548 	 */
3549 	if (_regulator_is_enabled(rdev) &&
3550 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3551 		old_selector = ops->get_voltage_sel(rdev);
3552 		if (old_selector < 0)
3553 			return old_selector;
3554 	}
3555 
3556 	if (ops->set_voltage) {
3557 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3558 						  &selector);
3559 
3560 		if (ret >= 0) {
3561 			if (ops->list_voltage)
3562 				best_val = ops->list_voltage(rdev,
3563 							     selector);
3564 			else
3565 				best_val = regulator_get_voltage_rdev(rdev);
3566 		}
3567 
3568 	} else if (ops->set_voltage_sel) {
3569 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3570 		if (ret >= 0) {
3571 			best_val = ops->list_voltage(rdev, ret);
3572 			if (min_uV <= best_val && max_uV >= best_val) {
3573 				selector = ret;
3574 				if (old_selector == selector)
3575 					ret = 0;
3576 				else if (rdev->desc->vsel_step)
3577 					ret = _regulator_set_voltage_sel_step(
3578 						rdev, best_val, selector);
3579 				else
3580 					ret = _regulator_call_set_voltage_sel(
3581 						rdev, best_val, selector);
3582 			} else {
3583 				ret = -EINVAL;
3584 			}
3585 		}
3586 	} else {
3587 		ret = -EINVAL;
3588 	}
3589 
3590 	if (ret)
3591 		goto out;
3592 
3593 	if (ops->set_voltage_time_sel) {
3594 		/*
3595 		 * Call set_voltage_time_sel if successfully obtained
3596 		 * old_selector
3597 		 */
3598 		if (old_selector >= 0 && old_selector != selector)
3599 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3600 							  selector);
3601 	} else {
3602 		if (old_uV != best_val) {
3603 			if (ops->set_voltage_time)
3604 				delay = ops->set_voltage_time(rdev, old_uV,
3605 							      best_val);
3606 			else
3607 				delay = _regulator_set_voltage_time(rdev,
3608 								    old_uV,
3609 								    best_val);
3610 		}
3611 	}
3612 
3613 	if (delay < 0) {
3614 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3615 		delay = 0;
3616 	}
3617 
3618 	/* Insert any necessary delays */
3619 	_regulator_delay_helper(delay);
3620 
3621 	if (best_val >= 0) {
3622 		unsigned long data = best_val;
3623 
3624 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3625 				     (void *)data);
3626 	}
3627 
3628 out:
3629 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3630 
3631 	return ret;
3632 }
3633 
3634 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3635 				  int min_uV, int max_uV, suspend_state_t state)
3636 {
3637 	struct regulator_state *rstate;
3638 	int uV, sel;
3639 
3640 	rstate = regulator_get_suspend_state(rdev, state);
3641 	if (rstate == NULL)
3642 		return -EINVAL;
3643 
3644 	if (min_uV < rstate->min_uV)
3645 		min_uV = rstate->min_uV;
3646 	if (max_uV > rstate->max_uV)
3647 		max_uV = rstate->max_uV;
3648 
3649 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3650 	if (sel < 0)
3651 		return sel;
3652 
3653 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3654 	if (uV >= min_uV && uV <= max_uV)
3655 		rstate->uV = uV;
3656 
3657 	return 0;
3658 }
3659 
3660 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3661 					  int min_uV, int max_uV,
3662 					  suspend_state_t state)
3663 {
3664 	struct regulator_dev *rdev = regulator->rdev;
3665 	struct regulator_voltage *voltage = &regulator->voltage[state];
3666 	int ret = 0;
3667 	int old_min_uV, old_max_uV;
3668 	int current_uV;
3669 
3670 	/* If we're setting the same range as last time the change
3671 	 * should be a noop (some cpufreq implementations use the same
3672 	 * voltage for multiple frequencies, for example).
3673 	 */
3674 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3675 		goto out;
3676 
3677 	/* If we're trying to set a range that overlaps the current voltage,
3678 	 * return successfully even though the regulator does not support
3679 	 * changing the voltage.
3680 	 */
3681 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3682 		current_uV = regulator_get_voltage_rdev(rdev);
3683 		if (min_uV <= current_uV && current_uV <= max_uV) {
3684 			voltage->min_uV = min_uV;
3685 			voltage->max_uV = max_uV;
3686 			goto out;
3687 		}
3688 	}
3689 
3690 	/* sanity check */
3691 	if (!rdev->desc->ops->set_voltage &&
3692 	    !rdev->desc->ops->set_voltage_sel) {
3693 		ret = -EINVAL;
3694 		goto out;
3695 	}
3696 
3697 	/* constraints check */
3698 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3699 	if (ret < 0)
3700 		goto out;
3701 
3702 	/* restore original values in case of error */
3703 	old_min_uV = voltage->min_uV;
3704 	old_max_uV = voltage->max_uV;
3705 	voltage->min_uV = min_uV;
3706 	voltage->max_uV = max_uV;
3707 
3708 	/* for not coupled regulators this will just set the voltage */
3709 	ret = regulator_balance_voltage(rdev, state);
3710 	if (ret < 0) {
3711 		voltage->min_uV = old_min_uV;
3712 		voltage->max_uV = old_max_uV;
3713 	}
3714 
3715 out:
3716 	return ret;
3717 }
3718 
3719 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3720 			       int max_uV, suspend_state_t state)
3721 {
3722 	int best_supply_uV = 0;
3723 	int supply_change_uV = 0;
3724 	int ret;
3725 
3726 	if (rdev->supply &&
3727 	    regulator_ops_is_valid(rdev->supply->rdev,
3728 				   REGULATOR_CHANGE_VOLTAGE) &&
3729 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3730 					   rdev->desc->ops->get_voltage_sel))) {
3731 		int current_supply_uV;
3732 		int selector;
3733 
3734 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3735 		if (selector < 0) {
3736 			ret = selector;
3737 			goto out;
3738 		}
3739 
3740 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3741 		if (best_supply_uV < 0) {
3742 			ret = best_supply_uV;
3743 			goto out;
3744 		}
3745 
3746 		best_supply_uV += rdev->desc->min_dropout_uV;
3747 
3748 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3749 		if (current_supply_uV < 0) {
3750 			ret = current_supply_uV;
3751 			goto out;
3752 		}
3753 
3754 		supply_change_uV = best_supply_uV - current_supply_uV;
3755 	}
3756 
3757 	if (supply_change_uV > 0) {
3758 		ret = regulator_set_voltage_unlocked(rdev->supply,
3759 				best_supply_uV, INT_MAX, state);
3760 		if (ret) {
3761 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3762 				ERR_PTR(ret));
3763 			goto out;
3764 		}
3765 	}
3766 
3767 	if (state == PM_SUSPEND_ON)
3768 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3769 	else
3770 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3771 							max_uV, state);
3772 	if (ret < 0)
3773 		goto out;
3774 
3775 	if (supply_change_uV < 0) {
3776 		ret = regulator_set_voltage_unlocked(rdev->supply,
3777 				best_supply_uV, INT_MAX, state);
3778 		if (ret)
3779 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3780 				 ERR_PTR(ret));
3781 		/* No need to fail here */
3782 		ret = 0;
3783 	}
3784 
3785 out:
3786 	return ret;
3787 }
3788 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3789 
3790 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3791 					int *current_uV, int *min_uV)
3792 {
3793 	struct regulation_constraints *constraints = rdev->constraints;
3794 
3795 	/* Limit voltage change only if necessary */
3796 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3797 		return 1;
3798 
3799 	if (*current_uV < 0) {
3800 		*current_uV = regulator_get_voltage_rdev(rdev);
3801 
3802 		if (*current_uV < 0)
3803 			return *current_uV;
3804 	}
3805 
3806 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3807 		return 1;
3808 
3809 	/* Clamp target voltage within the given step */
3810 	if (*current_uV < *min_uV)
3811 		*min_uV = min(*current_uV + constraints->max_uV_step,
3812 			      *min_uV);
3813 	else
3814 		*min_uV = max(*current_uV - constraints->max_uV_step,
3815 			      *min_uV);
3816 
3817 	return 0;
3818 }
3819 
3820 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3821 					 int *current_uV,
3822 					 int *min_uV, int *max_uV,
3823 					 suspend_state_t state,
3824 					 int n_coupled)
3825 {
3826 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3828 	struct regulation_constraints *constraints = rdev->constraints;
3829 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3830 	int max_current_uV = 0, min_current_uV = INT_MAX;
3831 	int highest_min_uV = 0, target_uV, possible_uV;
3832 	int i, ret, max_spread;
3833 	bool done;
3834 
3835 	*current_uV = -1;
3836 
3837 	/*
3838 	 * If there are no coupled regulators, simply set the voltage
3839 	 * demanded by consumers.
3840 	 */
3841 	if (n_coupled == 1) {
3842 		/*
3843 		 * If consumers don't provide any demands, set voltage
3844 		 * to min_uV
3845 		 */
3846 		desired_min_uV = constraints->min_uV;
3847 		desired_max_uV = constraints->max_uV;
3848 
3849 		ret = regulator_check_consumers(rdev,
3850 						&desired_min_uV,
3851 						&desired_max_uV, state);
3852 		if (ret < 0)
3853 			return ret;
3854 
3855 		possible_uV = desired_min_uV;
3856 		done = true;
3857 
3858 		goto finish;
3859 	}
3860 
3861 	/* Find highest min desired voltage */
3862 	for (i = 0; i < n_coupled; i++) {
3863 		int tmp_min = 0;
3864 		int tmp_max = INT_MAX;
3865 
3866 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3867 
3868 		ret = regulator_check_consumers(c_rdevs[i],
3869 						&tmp_min,
3870 						&tmp_max, state);
3871 		if (ret < 0)
3872 			return ret;
3873 
3874 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3875 		if (ret < 0)
3876 			return ret;
3877 
3878 		highest_min_uV = max(highest_min_uV, tmp_min);
3879 
3880 		if (i == 0) {
3881 			desired_min_uV = tmp_min;
3882 			desired_max_uV = tmp_max;
3883 		}
3884 	}
3885 
3886 	max_spread = constraints->max_spread[0];
3887 
3888 	/*
3889 	 * Let target_uV be equal to the desired one if possible.
3890 	 * If not, set it to minimum voltage, allowed by other coupled
3891 	 * regulators.
3892 	 */
3893 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3894 
3895 	/*
3896 	 * Find min and max voltages, which currently aren't violating
3897 	 * max_spread.
3898 	 */
3899 	for (i = 1; i < n_coupled; i++) {
3900 		int tmp_act;
3901 
3902 		if (!_regulator_is_enabled(c_rdevs[i]))
3903 			continue;
3904 
3905 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3906 		if (tmp_act < 0)
3907 			return tmp_act;
3908 
3909 		min_current_uV = min(tmp_act, min_current_uV);
3910 		max_current_uV = max(tmp_act, max_current_uV);
3911 	}
3912 
3913 	/* There aren't any other regulators enabled */
3914 	if (max_current_uV == 0) {
3915 		possible_uV = target_uV;
3916 	} else {
3917 		/*
3918 		 * Correct target voltage, so as it currently isn't
3919 		 * violating max_spread
3920 		 */
3921 		possible_uV = max(target_uV, max_current_uV - max_spread);
3922 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3923 	}
3924 
3925 	if (possible_uV > desired_max_uV)
3926 		return -EINVAL;
3927 
3928 	done = (possible_uV == target_uV);
3929 	desired_min_uV = possible_uV;
3930 
3931 finish:
3932 	/* Apply max_uV_step constraint if necessary */
3933 	if (state == PM_SUSPEND_ON) {
3934 		ret = regulator_limit_voltage_step(rdev, current_uV,
3935 						   &desired_min_uV);
3936 		if (ret < 0)
3937 			return ret;
3938 
3939 		if (ret == 0)
3940 			done = false;
3941 	}
3942 
3943 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3944 	if (n_coupled > 1 && *current_uV == -1) {
3945 
3946 		if (_regulator_is_enabled(rdev)) {
3947 			ret = regulator_get_voltage_rdev(rdev);
3948 			if (ret < 0)
3949 				return ret;
3950 
3951 			*current_uV = ret;
3952 		} else {
3953 			*current_uV = desired_min_uV;
3954 		}
3955 	}
3956 
3957 	*min_uV = desired_min_uV;
3958 	*max_uV = desired_max_uV;
3959 
3960 	return done;
3961 }
3962 
3963 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3964 				 suspend_state_t state, bool skip_coupled)
3965 {
3966 	struct regulator_dev **c_rdevs;
3967 	struct regulator_dev *best_rdev;
3968 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3969 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3970 	unsigned int delta, best_delta;
3971 	unsigned long c_rdev_done = 0;
3972 	bool best_c_rdev_done;
3973 
3974 	c_rdevs = c_desc->coupled_rdevs;
3975 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3976 
3977 	/*
3978 	 * Find the best possible voltage change on each loop. Leave the loop
3979 	 * if there isn't any possible change.
3980 	 */
3981 	do {
3982 		best_c_rdev_done = false;
3983 		best_delta = 0;
3984 		best_min_uV = 0;
3985 		best_max_uV = 0;
3986 		best_c_rdev = 0;
3987 		best_rdev = NULL;
3988 
3989 		/*
3990 		 * Find highest difference between optimal voltage
3991 		 * and current voltage.
3992 		 */
3993 		for (i = 0; i < n_coupled; i++) {
3994 			/*
3995 			 * optimal_uV is the best voltage that can be set for
3996 			 * i-th regulator at the moment without violating
3997 			 * max_spread constraint in order to balance
3998 			 * the coupled voltages.
3999 			 */
4000 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4001 
4002 			if (test_bit(i, &c_rdev_done))
4003 				continue;
4004 
4005 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4006 							    &current_uV,
4007 							    &optimal_uV,
4008 							    &optimal_max_uV,
4009 							    state, n_coupled);
4010 			if (ret < 0)
4011 				goto out;
4012 
4013 			delta = abs(optimal_uV - current_uV);
4014 
4015 			if (delta && best_delta <= delta) {
4016 				best_c_rdev_done = ret;
4017 				best_delta = delta;
4018 				best_rdev = c_rdevs[i];
4019 				best_min_uV = optimal_uV;
4020 				best_max_uV = optimal_max_uV;
4021 				best_c_rdev = i;
4022 			}
4023 		}
4024 
4025 		/* Nothing to change, return successfully */
4026 		if (!best_rdev) {
4027 			ret = 0;
4028 			goto out;
4029 		}
4030 
4031 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4032 						 best_max_uV, state);
4033 
4034 		if (ret < 0)
4035 			goto out;
4036 
4037 		if (best_c_rdev_done)
4038 			set_bit(best_c_rdev, &c_rdev_done);
4039 
4040 	} while (n_coupled > 1);
4041 
4042 out:
4043 	return ret;
4044 }
4045 
4046 static int regulator_balance_voltage(struct regulator_dev *rdev,
4047 				     suspend_state_t state)
4048 {
4049 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4050 	struct regulator_coupler *coupler = c_desc->coupler;
4051 	bool skip_coupled = false;
4052 
4053 	/*
4054 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4055 	 * other coupled regulators.
4056 	 */
4057 	if (state != PM_SUSPEND_ON)
4058 		skip_coupled = true;
4059 
4060 	if (c_desc->n_resolved < c_desc->n_coupled) {
4061 		rdev_err(rdev, "Not all coupled regulators registered\n");
4062 		return -EPERM;
4063 	}
4064 
4065 	/* Invoke custom balancer for customized couplers */
4066 	if (coupler && coupler->balance_voltage)
4067 		return coupler->balance_voltage(coupler, rdev, state);
4068 
4069 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4070 }
4071 
4072 /**
4073  * regulator_set_voltage - set regulator output voltage
4074  * @regulator: regulator source
4075  * @min_uV: Minimum required voltage in uV
4076  * @max_uV: Maximum acceptable voltage in uV
4077  *
4078  * Sets a voltage regulator to the desired output voltage. This can be set
4079  * during any regulator state. IOW, regulator can be disabled or enabled.
4080  *
4081  * If the regulator is enabled then the voltage will change to the new value
4082  * immediately otherwise if the regulator is disabled the regulator will
4083  * output at the new voltage when enabled.
4084  *
4085  * NOTE: If the regulator is shared between several devices then the lowest
4086  * request voltage that meets the system constraints will be used.
4087  * Regulator system constraints must be set for this regulator before
4088  * calling this function otherwise this call will fail.
4089  */
4090 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4091 {
4092 	struct ww_acquire_ctx ww_ctx;
4093 	int ret;
4094 
4095 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4096 
4097 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4098 					     PM_SUSPEND_ON);
4099 
4100 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4101 
4102 	return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4105 
4106 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4107 					   suspend_state_t state, bool en)
4108 {
4109 	struct regulator_state *rstate;
4110 
4111 	rstate = regulator_get_suspend_state(rdev, state);
4112 	if (rstate == NULL)
4113 		return -EINVAL;
4114 
4115 	if (!rstate->changeable)
4116 		return -EPERM;
4117 
4118 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4119 
4120 	return 0;
4121 }
4122 
4123 int regulator_suspend_enable(struct regulator_dev *rdev,
4124 				    suspend_state_t state)
4125 {
4126 	return regulator_suspend_toggle(rdev, state, true);
4127 }
4128 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4129 
4130 int regulator_suspend_disable(struct regulator_dev *rdev,
4131 				     suspend_state_t state)
4132 {
4133 	struct regulator *regulator;
4134 	struct regulator_voltage *voltage;
4135 
4136 	/*
4137 	 * if any consumer wants this regulator device keeping on in
4138 	 * suspend states, don't set it as disabled.
4139 	 */
4140 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4141 		voltage = &regulator->voltage[state];
4142 		if (voltage->min_uV || voltage->max_uV)
4143 			return 0;
4144 	}
4145 
4146 	return regulator_suspend_toggle(rdev, state, false);
4147 }
4148 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4149 
4150 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4151 					  int min_uV, int max_uV,
4152 					  suspend_state_t state)
4153 {
4154 	struct regulator_dev *rdev = regulator->rdev;
4155 	struct regulator_state *rstate;
4156 
4157 	rstate = regulator_get_suspend_state(rdev, state);
4158 	if (rstate == NULL)
4159 		return -EINVAL;
4160 
4161 	if (rstate->min_uV == rstate->max_uV) {
4162 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4163 		return -EPERM;
4164 	}
4165 
4166 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4167 }
4168 
4169 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4170 				  int max_uV, suspend_state_t state)
4171 {
4172 	struct ww_acquire_ctx ww_ctx;
4173 	int ret;
4174 
4175 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4176 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4177 		return -EINVAL;
4178 
4179 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4180 
4181 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4182 					     max_uV, state);
4183 
4184 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4185 
4186 	return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4189 
4190 /**
4191  * regulator_set_voltage_time - get raise/fall time
4192  * @regulator: regulator source
4193  * @old_uV: starting voltage in microvolts
4194  * @new_uV: target voltage in microvolts
4195  *
4196  * Provided with the starting and ending voltage, this function attempts to
4197  * calculate the time in microseconds required to rise or fall to this new
4198  * voltage.
4199  */
4200 int regulator_set_voltage_time(struct regulator *regulator,
4201 			       int old_uV, int new_uV)
4202 {
4203 	struct regulator_dev *rdev = regulator->rdev;
4204 	const struct regulator_ops *ops = rdev->desc->ops;
4205 	int old_sel = -1;
4206 	int new_sel = -1;
4207 	int voltage;
4208 	int i;
4209 
4210 	if (ops->set_voltage_time)
4211 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4212 	else if (!ops->set_voltage_time_sel)
4213 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4214 
4215 	/* Currently requires operations to do this */
4216 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4217 		return -EINVAL;
4218 
4219 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4220 		/* We only look for exact voltage matches here */
4221 		if (i < rdev->desc->linear_min_sel)
4222 			continue;
4223 
4224 		if (old_sel >= 0 && new_sel >= 0)
4225 			break;
4226 
4227 		voltage = regulator_list_voltage(regulator, i);
4228 		if (voltage < 0)
4229 			return -EINVAL;
4230 		if (voltage == 0)
4231 			continue;
4232 		if (voltage == old_uV)
4233 			old_sel = i;
4234 		if (voltage == new_uV)
4235 			new_sel = i;
4236 	}
4237 
4238 	if (old_sel < 0 || new_sel < 0)
4239 		return -EINVAL;
4240 
4241 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4242 }
4243 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4244 
4245 /**
4246  * regulator_set_voltage_time_sel - get raise/fall time
4247  * @rdev: regulator source device
4248  * @old_selector: selector for starting voltage
4249  * @new_selector: selector for target voltage
4250  *
4251  * Provided with the starting and target voltage selectors, this function
4252  * returns time in microseconds required to rise or fall to this new voltage
4253  *
4254  * Drivers providing ramp_delay in regulation_constraints can use this as their
4255  * set_voltage_time_sel() operation.
4256  */
4257 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4258 				   unsigned int old_selector,
4259 				   unsigned int new_selector)
4260 {
4261 	int old_volt, new_volt;
4262 
4263 	/* sanity check */
4264 	if (!rdev->desc->ops->list_voltage)
4265 		return -EINVAL;
4266 
4267 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4268 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4269 
4270 	if (rdev->desc->ops->set_voltage_time)
4271 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4272 							 new_volt);
4273 	else
4274 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4275 }
4276 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4277 
4278 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4279 {
4280 	int ret;
4281 
4282 	regulator_lock(rdev);
4283 
4284 	if (!rdev->desc->ops->set_voltage &&
4285 	    !rdev->desc->ops->set_voltage_sel) {
4286 		ret = -EINVAL;
4287 		goto out;
4288 	}
4289 
4290 	/* balance only, if regulator is coupled */
4291 	if (rdev->coupling_desc.n_coupled > 1)
4292 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4293 	else
4294 		ret = -EOPNOTSUPP;
4295 
4296 out:
4297 	regulator_unlock(rdev);
4298 	return ret;
4299 }
4300 
4301 /**
4302  * regulator_sync_voltage - re-apply last regulator output voltage
4303  * @regulator: regulator source
4304  *
4305  * Re-apply the last configured voltage.  This is intended to be used
4306  * where some external control source the consumer is cooperating with
4307  * has caused the configured voltage to change.
4308  */
4309 int regulator_sync_voltage(struct regulator *regulator)
4310 {
4311 	struct regulator_dev *rdev = regulator->rdev;
4312 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4313 	int ret, min_uV, max_uV;
4314 
4315 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4316 		return 0;
4317 
4318 	regulator_lock(rdev);
4319 
4320 	if (!rdev->desc->ops->set_voltage &&
4321 	    !rdev->desc->ops->set_voltage_sel) {
4322 		ret = -EINVAL;
4323 		goto out;
4324 	}
4325 
4326 	/* This is only going to work if we've had a voltage configured. */
4327 	if (!voltage->min_uV && !voltage->max_uV) {
4328 		ret = -EINVAL;
4329 		goto out;
4330 	}
4331 
4332 	min_uV = voltage->min_uV;
4333 	max_uV = voltage->max_uV;
4334 
4335 	/* This should be a paranoia check... */
4336 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4337 	if (ret < 0)
4338 		goto out;
4339 
4340 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4341 	if (ret < 0)
4342 		goto out;
4343 
4344 	/* balance only, if regulator is coupled */
4345 	if (rdev->coupling_desc.n_coupled > 1)
4346 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4347 	else
4348 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4349 
4350 out:
4351 	regulator_unlock(rdev);
4352 	return ret;
4353 }
4354 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4355 
4356 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4357 {
4358 	int sel, ret;
4359 	bool bypassed;
4360 
4361 	if (rdev->desc->ops->get_bypass) {
4362 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4363 		if (ret < 0)
4364 			return ret;
4365 		if (bypassed) {
4366 			/* if bypassed the regulator must have a supply */
4367 			if (!rdev->supply) {
4368 				rdev_err(rdev,
4369 					 "bypassed regulator has no supply!\n");
4370 				return -EPROBE_DEFER;
4371 			}
4372 
4373 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4374 		}
4375 	}
4376 
4377 	if (rdev->desc->ops->get_voltage_sel) {
4378 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4379 		if (sel < 0)
4380 			return sel;
4381 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4382 	} else if (rdev->desc->ops->get_voltage) {
4383 		ret = rdev->desc->ops->get_voltage(rdev);
4384 	} else if (rdev->desc->ops->list_voltage) {
4385 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4386 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4387 		ret = rdev->desc->fixed_uV;
4388 	} else if (rdev->supply) {
4389 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4390 	} else if (rdev->supply_name) {
4391 		return -EPROBE_DEFER;
4392 	} else {
4393 		return -EINVAL;
4394 	}
4395 
4396 	if (ret < 0)
4397 		return ret;
4398 	return ret - rdev->constraints->uV_offset;
4399 }
4400 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4401 
4402 /**
4403  * regulator_get_voltage - get regulator output voltage
4404  * @regulator: regulator source
4405  *
4406  * This returns the current regulator voltage in uV.
4407  *
4408  * NOTE: If the regulator is disabled it will return the voltage value. This
4409  * function should not be used to determine regulator state.
4410  */
4411 int regulator_get_voltage(struct regulator *regulator)
4412 {
4413 	struct ww_acquire_ctx ww_ctx;
4414 	int ret;
4415 
4416 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4417 	ret = regulator_get_voltage_rdev(regulator->rdev);
4418 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4419 
4420 	return ret;
4421 }
4422 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4423 
4424 /**
4425  * regulator_set_current_limit - set regulator output current limit
4426  * @regulator: regulator source
4427  * @min_uA: Minimum supported current in uA
4428  * @max_uA: Maximum supported current in uA
4429  *
4430  * Sets current sink to the desired output current. This can be set during
4431  * any regulator state. IOW, regulator can be disabled or enabled.
4432  *
4433  * If the regulator is enabled then the current will change to the new value
4434  * immediately otherwise if the regulator is disabled the regulator will
4435  * output at the new current when enabled.
4436  *
4437  * NOTE: Regulator system constraints must be set for this regulator before
4438  * calling this function otherwise this call will fail.
4439  */
4440 int regulator_set_current_limit(struct regulator *regulator,
4441 			       int min_uA, int max_uA)
4442 {
4443 	struct regulator_dev *rdev = regulator->rdev;
4444 	int ret;
4445 
4446 	regulator_lock(rdev);
4447 
4448 	/* sanity check */
4449 	if (!rdev->desc->ops->set_current_limit) {
4450 		ret = -EINVAL;
4451 		goto out;
4452 	}
4453 
4454 	/* constraints check */
4455 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4456 	if (ret < 0)
4457 		goto out;
4458 
4459 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4460 out:
4461 	regulator_unlock(rdev);
4462 	return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4465 
4466 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4467 {
4468 	/* sanity check */
4469 	if (!rdev->desc->ops->get_current_limit)
4470 		return -EINVAL;
4471 
4472 	return rdev->desc->ops->get_current_limit(rdev);
4473 }
4474 
4475 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4476 {
4477 	int ret;
4478 
4479 	regulator_lock(rdev);
4480 	ret = _regulator_get_current_limit_unlocked(rdev);
4481 	regulator_unlock(rdev);
4482 
4483 	return ret;
4484 }
4485 
4486 /**
4487  * regulator_get_current_limit - get regulator output current
4488  * @regulator: regulator source
4489  *
4490  * This returns the current supplied by the specified current sink in uA.
4491  *
4492  * NOTE: If the regulator is disabled it will return the current value. This
4493  * function should not be used to determine regulator state.
4494  */
4495 int regulator_get_current_limit(struct regulator *regulator)
4496 {
4497 	return _regulator_get_current_limit(regulator->rdev);
4498 }
4499 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4500 
4501 /**
4502  * regulator_set_mode - set regulator operating mode
4503  * @regulator: regulator source
4504  * @mode: operating mode - one of the REGULATOR_MODE constants
4505  *
4506  * Set regulator operating mode to increase regulator efficiency or improve
4507  * regulation performance.
4508  *
4509  * NOTE: Regulator system constraints must be set for this regulator before
4510  * calling this function otherwise this call will fail.
4511  */
4512 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4513 {
4514 	struct regulator_dev *rdev = regulator->rdev;
4515 	int ret;
4516 	int regulator_curr_mode;
4517 
4518 	regulator_lock(rdev);
4519 
4520 	/* sanity check */
4521 	if (!rdev->desc->ops->set_mode) {
4522 		ret = -EINVAL;
4523 		goto out;
4524 	}
4525 
4526 	/* return if the same mode is requested */
4527 	if (rdev->desc->ops->get_mode) {
4528 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4529 		if (regulator_curr_mode == mode) {
4530 			ret = 0;
4531 			goto out;
4532 		}
4533 	}
4534 
4535 	/* constraints check */
4536 	ret = regulator_mode_constrain(rdev, &mode);
4537 	if (ret < 0)
4538 		goto out;
4539 
4540 	ret = rdev->desc->ops->set_mode(rdev, mode);
4541 out:
4542 	regulator_unlock(rdev);
4543 	return ret;
4544 }
4545 EXPORT_SYMBOL_GPL(regulator_set_mode);
4546 
4547 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4548 {
4549 	/* sanity check */
4550 	if (!rdev->desc->ops->get_mode)
4551 		return -EINVAL;
4552 
4553 	return rdev->desc->ops->get_mode(rdev);
4554 }
4555 
4556 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4557 {
4558 	int ret;
4559 
4560 	regulator_lock(rdev);
4561 	ret = _regulator_get_mode_unlocked(rdev);
4562 	regulator_unlock(rdev);
4563 
4564 	return ret;
4565 }
4566 
4567 /**
4568  * regulator_get_mode - get regulator operating mode
4569  * @regulator: regulator source
4570  *
4571  * Get the current regulator operating mode.
4572  */
4573 unsigned int regulator_get_mode(struct regulator *regulator)
4574 {
4575 	return _regulator_get_mode(regulator->rdev);
4576 }
4577 EXPORT_SYMBOL_GPL(regulator_get_mode);
4578 
4579 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4580 {
4581 	int ret = 0;
4582 
4583 	if (rdev->use_cached_err) {
4584 		spin_lock(&rdev->err_lock);
4585 		ret = rdev->cached_err;
4586 		spin_unlock(&rdev->err_lock);
4587 	}
4588 	return ret;
4589 }
4590 
4591 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4592 					unsigned int *flags)
4593 {
4594 	int cached_flags, ret = 0;
4595 
4596 	regulator_lock(rdev);
4597 
4598 	cached_flags = rdev_get_cached_err_flags(rdev);
4599 
4600 	if (rdev->desc->ops->get_error_flags)
4601 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4602 	else if (!rdev->use_cached_err)
4603 		ret = -EINVAL;
4604 
4605 	*flags |= cached_flags;
4606 
4607 	regulator_unlock(rdev);
4608 
4609 	return ret;
4610 }
4611 
4612 /**
4613  * regulator_get_error_flags - get regulator error information
4614  * @regulator: regulator source
4615  * @flags: pointer to store error flags
4616  *
4617  * Get the current regulator error information.
4618  */
4619 int regulator_get_error_flags(struct regulator *regulator,
4620 				unsigned int *flags)
4621 {
4622 	return _regulator_get_error_flags(regulator->rdev, flags);
4623 }
4624 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4625 
4626 /**
4627  * regulator_set_load - set regulator load
4628  * @regulator: regulator source
4629  * @uA_load: load current
4630  *
4631  * Notifies the regulator core of a new device load. This is then used by
4632  * DRMS (if enabled by constraints) to set the most efficient regulator
4633  * operating mode for the new regulator loading.
4634  *
4635  * Consumer devices notify their supply regulator of the maximum power
4636  * they will require (can be taken from device datasheet in the power
4637  * consumption tables) when they change operational status and hence power
4638  * state. Examples of operational state changes that can affect power
4639  * consumption are :-
4640  *
4641  *    o Device is opened / closed.
4642  *    o Device I/O is about to begin or has just finished.
4643  *    o Device is idling in between work.
4644  *
4645  * This information is also exported via sysfs to userspace.
4646  *
4647  * DRMS will sum the total requested load on the regulator and change
4648  * to the most efficient operating mode if platform constraints allow.
4649  *
4650  * NOTE: when a regulator consumer requests to have a regulator
4651  * disabled then any load that consumer requested no longer counts
4652  * toward the total requested load.  If the regulator is re-enabled
4653  * then the previously requested load will start counting again.
4654  *
4655  * If a regulator is an always-on regulator then an individual consumer's
4656  * load will still be removed if that consumer is fully disabled.
4657  *
4658  * On error a negative errno is returned.
4659  */
4660 int regulator_set_load(struct regulator *regulator, int uA_load)
4661 {
4662 	struct regulator_dev *rdev = regulator->rdev;
4663 	int old_uA_load;
4664 	int ret = 0;
4665 
4666 	regulator_lock(rdev);
4667 	old_uA_load = regulator->uA_load;
4668 	regulator->uA_load = uA_load;
4669 	if (regulator->enable_count && old_uA_load != uA_load) {
4670 		ret = drms_uA_update(rdev);
4671 		if (ret < 0)
4672 			regulator->uA_load = old_uA_load;
4673 	}
4674 	regulator_unlock(rdev);
4675 
4676 	return ret;
4677 }
4678 EXPORT_SYMBOL_GPL(regulator_set_load);
4679 
4680 /**
4681  * regulator_allow_bypass - allow the regulator to go into bypass mode
4682  *
4683  * @regulator: Regulator to configure
4684  * @enable: enable or disable bypass mode
4685  *
4686  * Allow the regulator to go into bypass mode if all other consumers
4687  * for the regulator also enable bypass mode and the machine
4688  * constraints allow this.  Bypass mode means that the regulator is
4689  * simply passing the input directly to the output with no regulation.
4690  */
4691 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4692 {
4693 	struct regulator_dev *rdev = regulator->rdev;
4694 	const char *name = rdev_get_name(rdev);
4695 	int ret = 0;
4696 
4697 	if (!rdev->desc->ops->set_bypass)
4698 		return 0;
4699 
4700 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4701 		return 0;
4702 
4703 	regulator_lock(rdev);
4704 
4705 	if (enable && !regulator->bypass) {
4706 		rdev->bypass_count++;
4707 
4708 		if (rdev->bypass_count == rdev->open_count) {
4709 			trace_regulator_bypass_enable(name);
4710 
4711 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4712 			if (ret != 0)
4713 				rdev->bypass_count--;
4714 			else
4715 				trace_regulator_bypass_enable_complete(name);
4716 		}
4717 
4718 	} else if (!enable && regulator->bypass) {
4719 		rdev->bypass_count--;
4720 
4721 		if (rdev->bypass_count != rdev->open_count) {
4722 			trace_regulator_bypass_disable(name);
4723 
4724 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4725 			if (ret != 0)
4726 				rdev->bypass_count++;
4727 			else
4728 				trace_regulator_bypass_disable_complete(name);
4729 		}
4730 	}
4731 
4732 	if (ret == 0)
4733 		regulator->bypass = enable;
4734 
4735 	regulator_unlock(rdev);
4736 
4737 	return ret;
4738 }
4739 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4740 
4741 /**
4742  * regulator_register_notifier - register regulator event notifier
4743  * @regulator: regulator source
4744  * @nb: notifier block
4745  *
4746  * Register notifier block to receive regulator events.
4747  */
4748 int regulator_register_notifier(struct regulator *regulator,
4749 			      struct notifier_block *nb)
4750 {
4751 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4752 						nb);
4753 }
4754 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4755 
4756 /**
4757  * regulator_unregister_notifier - unregister regulator event notifier
4758  * @regulator: regulator source
4759  * @nb: notifier block
4760  *
4761  * Unregister regulator event notifier block.
4762  */
4763 int regulator_unregister_notifier(struct regulator *regulator,
4764 				struct notifier_block *nb)
4765 {
4766 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4767 						  nb);
4768 }
4769 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4770 
4771 /* notify regulator consumers and downstream regulator consumers.
4772  * Note mutex must be held by caller.
4773  */
4774 static int _notifier_call_chain(struct regulator_dev *rdev,
4775 				  unsigned long event, void *data)
4776 {
4777 	/* call rdev chain first */
4778 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4779 }
4780 
4781 /**
4782  * regulator_bulk_get - get multiple regulator consumers
4783  *
4784  * @dev:           Device to supply
4785  * @num_consumers: Number of consumers to register
4786  * @consumers:     Configuration of consumers; clients are stored here.
4787  *
4788  * @return 0 on success, an errno on failure.
4789  *
4790  * This helper function allows drivers to get several regulator
4791  * consumers in one operation.  If any of the regulators cannot be
4792  * acquired then any regulators that were allocated will be freed
4793  * before returning to the caller.
4794  */
4795 int regulator_bulk_get(struct device *dev, int num_consumers,
4796 		       struct regulator_bulk_data *consumers)
4797 {
4798 	int i;
4799 	int ret;
4800 
4801 	for (i = 0; i < num_consumers; i++)
4802 		consumers[i].consumer = NULL;
4803 
4804 	for (i = 0; i < num_consumers; i++) {
4805 		consumers[i].consumer = regulator_get(dev,
4806 						      consumers[i].supply);
4807 		if (IS_ERR(consumers[i].consumer)) {
4808 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4809 					    "Failed to get supply '%s'",
4810 					    consumers[i].supply);
4811 			consumers[i].consumer = NULL;
4812 			goto err;
4813 		}
4814 
4815 		if (consumers[i].init_load_uA > 0) {
4816 			ret = regulator_set_load(consumers[i].consumer,
4817 						 consumers[i].init_load_uA);
4818 			if (ret) {
4819 				i++;
4820 				goto err;
4821 			}
4822 		}
4823 	}
4824 
4825 	return 0;
4826 
4827 err:
4828 	while (--i >= 0)
4829 		regulator_put(consumers[i].consumer);
4830 
4831 	return ret;
4832 }
4833 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4834 
4835 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4836 {
4837 	struct regulator_bulk_data *bulk = data;
4838 
4839 	bulk->ret = regulator_enable(bulk->consumer);
4840 }
4841 
4842 /**
4843  * regulator_bulk_enable - enable multiple regulator consumers
4844  *
4845  * @num_consumers: Number of consumers
4846  * @consumers:     Consumer data; clients are stored here.
4847  * @return         0 on success, an errno on failure
4848  *
4849  * This convenience API allows consumers to enable multiple regulator
4850  * clients in a single API call.  If any consumers cannot be enabled
4851  * then any others that were enabled will be disabled again prior to
4852  * return.
4853  */
4854 int regulator_bulk_enable(int num_consumers,
4855 			  struct regulator_bulk_data *consumers)
4856 {
4857 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4858 	int i;
4859 	int ret = 0;
4860 
4861 	for (i = 0; i < num_consumers; i++) {
4862 		async_schedule_domain(regulator_bulk_enable_async,
4863 				      &consumers[i], &async_domain);
4864 	}
4865 
4866 	async_synchronize_full_domain(&async_domain);
4867 
4868 	/* If any consumer failed we need to unwind any that succeeded */
4869 	for (i = 0; i < num_consumers; i++) {
4870 		if (consumers[i].ret != 0) {
4871 			ret = consumers[i].ret;
4872 			goto err;
4873 		}
4874 	}
4875 
4876 	return 0;
4877 
4878 err:
4879 	for (i = 0; i < num_consumers; i++) {
4880 		if (consumers[i].ret < 0)
4881 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4882 			       ERR_PTR(consumers[i].ret));
4883 		else
4884 			regulator_disable(consumers[i].consumer);
4885 	}
4886 
4887 	return ret;
4888 }
4889 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4890 
4891 /**
4892  * regulator_bulk_disable - disable multiple regulator consumers
4893  *
4894  * @num_consumers: Number of consumers
4895  * @consumers:     Consumer data; clients are stored here.
4896  * @return         0 on success, an errno on failure
4897  *
4898  * This convenience API allows consumers to disable multiple regulator
4899  * clients in a single API call.  If any consumers cannot be disabled
4900  * then any others that were disabled will be enabled again prior to
4901  * return.
4902  */
4903 int regulator_bulk_disable(int num_consumers,
4904 			   struct regulator_bulk_data *consumers)
4905 {
4906 	int i;
4907 	int ret, r;
4908 
4909 	for (i = num_consumers - 1; i >= 0; --i) {
4910 		ret = regulator_disable(consumers[i].consumer);
4911 		if (ret != 0)
4912 			goto err;
4913 	}
4914 
4915 	return 0;
4916 
4917 err:
4918 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4919 	for (++i; i < num_consumers; ++i) {
4920 		r = regulator_enable(consumers[i].consumer);
4921 		if (r != 0)
4922 			pr_err("Failed to re-enable %s: %pe\n",
4923 			       consumers[i].supply, ERR_PTR(r));
4924 	}
4925 
4926 	return ret;
4927 }
4928 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4929 
4930 /**
4931  * regulator_bulk_force_disable - force disable multiple regulator consumers
4932  *
4933  * @num_consumers: Number of consumers
4934  * @consumers:     Consumer data; clients are stored here.
4935  * @return         0 on success, an errno on failure
4936  *
4937  * This convenience API allows consumers to forcibly disable multiple regulator
4938  * clients in a single API call.
4939  * NOTE: This should be used for situations when device damage will
4940  * likely occur if the regulators are not disabled (e.g. over temp).
4941  * Although regulator_force_disable function call for some consumers can
4942  * return error numbers, the function is called for all consumers.
4943  */
4944 int regulator_bulk_force_disable(int num_consumers,
4945 			   struct regulator_bulk_data *consumers)
4946 {
4947 	int i;
4948 	int ret = 0;
4949 
4950 	for (i = 0; i < num_consumers; i++) {
4951 		consumers[i].ret =
4952 			    regulator_force_disable(consumers[i].consumer);
4953 
4954 		/* Store first error for reporting */
4955 		if (consumers[i].ret && !ret)
4956 			ret = consumers[i].ret;
4957 	}
4958 
4959 	return ret;
4960 }
4961 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4962 
4963 /**
4964  * regulator_bulk_free - free multiple regulator consumers
4965  *
4966  * @num_consumers: Number of consumers
4967  * @consumers:     Consumer data; clients are stored here.
4968  *
4969  * This convenience API allows consumers to free multiple regulator
4970  * clients in a single API call.
4971  */
4972 void regulator_bulk_free(int num_consumers,
4973 			 struct regulator_bulk_data *consumers)
4974 {
4975 	int i;
4976 
4977 	for (i = 0; i < num_consumers; i++) {
4978 		regulator_put(consumers[i].consumer);
4979 		consumers[i].consumer = NULL;
4980 	}
4981 }
4982 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4983 
4984 /**
4985  * regulator_notifier_call_chain - call regulator event notifier
4986  * @rdev: regulator source
4987  * @event: notifier block
4988  * @data: callback-specific data.
4989  *
4990  * Called by regulator drivers to notify clients a regulator event has
4991  * occurred.
4992  */
4993 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4994 				  unsigned long event, void *data)
4995 {
4996 	_notifier_call_chain(rdev, event, data);
4997 	return NOTIFY_DONE;
4998 
4999 }
5000 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5001 
5002 /**
5003  * regulator_mode_to_status - convert a regulator mode into a status
5004  *
5005  * @mode: Mode to convert
5006  *
5007  * Convert a regulator mode into a status.
5008  */
5009 int regulator_mode_to_status(unsigned int mode)
5010 {
5011 	switch (mode) {
5012 	case REGULATOR_MODE_FAST:
5013 		return REGULATOR_STATUS_FAST;
5014 	case REGULATOR_MODE_NORMAL:
5015 		return REGULATOR_STATUS_NORMAL;
5016 	case REGULATOR_MODE_IDLE:
5017 		return REGULATOR_STATUS_IDLE;
5018 	case REGULATOR_MODE_STANDBY:
5019 		return REGULATOR_STATUS_STANDBY;
5020 	default:
5021 		return REGULATOR_STATUS_UNDEFINED;
5022 	}
5023 }
5024 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5025 
5026 static struct attribute *regulator_dev_attrs[] = {
5027 	&dev_attr_name.attr,
5028 	&dev_attr_num_users.attr,
5029 	&dev_attr_type.attr,
5030 	&dev_attr_microvolts.attr,
5031 	&dev_attr_microamps.attr,
5032 	&dev_attr_opmode.attr,
5033 	&dev_attr_state.attr,
5034 	&dev_attr_status.attr,
5035 	&dev_attr_bypass.attr,
5036 	&dev_attr_requested_microamps.attr,
5037 	&dev_attr_min_microvolts.attr,
5038 	&dev_attr_max_microvolts.attr,
5039 	&dev_attr_min_microamps.attr,
5040 	&dev_attr_max_microamps.attr,
5041 	&dev_attr_under_voltage.attr,
5042 	&dev_attr_over_current.attr,
5043 	&dev_attr_regulation_out.attr,
5044 	&dev_attr_fail.attr,
5045 	&dev_attr_over_temp.attr,
5046 	&dev_attr_under_voltage_warn.attr,
5047 	&dev_attr_over_current_warn.attr,
5048 	&dev_attr_over_voltage_warn.attr,
5049 	&dev_attr_over_temp_warn.attr,
5050 	&dev_attr_suspend_standby_state.attr,
5051 	&dev_attr_suspend_mem_state.attr,
5052 	&dev_attr_suspend_disk_state.attr,
5053 	&dev_attr_suspend_standby_microvolts.attr,
5054 	&dev_attr_suspend_mem_microvolts.attr,
5055 	&dev_attr_suspend_disk_microvolts.attr,
5056 	&dev_attr_suspend_standby_mode.attr,
5057 	&dev_attr_suspend_mem_mode.attr,
5058 	&dev_attr_suspend_disk_mode.attr,
5059 	NULL
5060 };
5061 
5062 /*
5063  * To avoid cluttering sysfs (and memory) with useless state, only
5064  * create attributes that can be meaningfully displayed.
5065  */
5066 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5067 					 struct attribute *attr, int idx)
5068 {
5069 	struct device *dev = kobj_to_dev(kobj);
5070 	struct regulator_dev *rdev = dev_to_rdev(dev);
5071 	const struct regulator_ops *ops = rdev->desc->ops;
5072 	umode_t mode = attr->mode;
5073 
5074 	/* these three are always present */
5075 	if (attr == &dev_attr_name.attr ||
5076 	    attr == &dev_attr_num_users.attr ||
5077 	    attr == &dev_attr_type.attr)
5078 		return mode;
5079 
5080 	/* some attributes need specific methods to be displayed */
5081 	if (attr == &dev_attr_microvolts.attr) {
5082 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5083 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5084 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5085 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5086 			return mode;
5087 		return 0;
5088 	}
5089 
5090 	if (attr == &dev_attr_microamps.attr)
5091 		return ops->get_current_limit ? mode : 0;
5092 
5093 	if (attr == &dev_attr_opmode.attr)
5094 		return ops->get_mode ? mode : 0;
5095 
5096 	if (attr == &dev_attr_state.attr)
5097 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5098 
5099 	if (attr == &dev_attr_status.attr)
5100 		return ops->get_status ? mode : 0;
5101 
5102 	if (attr == &dev_attr_bypass.attr)
5103 		return ops->get_bypass ? mode : 0;
5104 
5105 	if (attr == &dev_attr_under_voltage.attr ||
5106 	    attr == &dev_attr_over_current.attr ||
5107 	    attr == &dev_attr_regulation_out.attr ||
5108 	    attr == &dev_attr_fail.attr ||
5109 	    attr == &dev_attr_over_temp.attr ||
5110 	    attr == &dev_attr_under_voltage_warn.attr ||
5111 	    attr == &dev_attr_over_current_warn.attr ||
5112 	    attr == &dev_attr_over_voltage_warn.attr ||
5113 	    attr == &dev_attr_over_temp_warn.attr)
5114 		return ops->get_error_flags ? mode : 0;
5115 
5116 	/* constraints need specific supporting methods */
5117 	if (attr == &dev_attr_min_microvolts.attr ||
5118 	    attr == &dev_attr_max_microvolts.attr)
5119 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5120 
5121 	if (attr == &dev_attr_min_microamps.attr ||
5122 	    attr == &dev_attr_max_microamps.attr)
5123 		return ops->set_current_limit ? mode : 0;
5124 
5125 	if (attr == &dev_attr_suspend_standby_state.attr ||
5126 	    attr == &dev_attr_suspend_mem_state.attr ||
5127 	    attr == &dev_attr_suspend_disk_state.attr)
5128 		return mode;
5129 
5130 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5131 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5132 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5133 		return ops->set_suspend_voltage ? mode : 0;
5134 
5135 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5136 	    attr == &dev_attr_suspend_mem_mode.attr ||
5137 	    attr == &dev_attr_suspend_disk_mode.attr)
5138 		return ops->set_suspend_mode ? mode : 0;
5139 
5140 	return mode;
5141 }
5142 
5143 static const struct attribute_group regulator_dev_group = {
5144 	.attrs = regulator_dev_attrs,
5145 	.is_visible = regulator_attr_is_visible,
5146 };
5147 
5148 static const struct attribute_group *regulator_dev_groups[] = {
5149 	&regulator_dev_group,
5150 	NULL
5151 };
5152 
5153 static void regulator_dev_release(struct device *dev)
5154 {
5155 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5156 
5157 	kfree(rdev->constraints);
5158 	of_node_put(rdev->dev.of_node);
5159 	kfree(rdev);
5160 }
5161 
5162 static void rdev_init_debugfs(struct regulator_dev *rdev)
5163 {
5164 	struct device *parent = rdev->dev.parent;
5165 	const char *rname = rdev_get_name(rdev);
5166 	char name[NAME_MAX];
5167 
5168 	/* Avoid duplicate debugfs directory names */
5169 	if (parent && rname == rdev->desc->name) {
5170 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5171 			 rname);
5172 		rname = name;
5173 	}
5174 
5175 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5176 	if (!rdev->debugfs) {
5177 		rdev_warn(rdev, "Failed to create debugfs directory\n");
5178 		return;
5179 	}
5180 
5181 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5182 			   &rdev->use_count);
5183 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5184 			   &rdev->open_count);
5185 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5186 			   &rdev->bypass_count);
5187 }
5188 
5189 static int regulator_register_resolve_supply(struct device *dev, void *data)
5190 {
5191 	struct regulator_dev *rdev = dev_to_rdev(dev);
5192 
5193 	if (regulator_resolve_supply(rdev))
5194 		rdev_dbg(rdev, "unable to resolve supply\n");
5195 
5196 	return 0;
5197 }
5198 
5199 int regulator_coupler_register(struct regulator_coupler *coupler)
5200 {
5201 	mutex_lock(&regulator_list_mutex);
5202 	list_add_tail(&coupler->list, &regulator_coupler_list);
5203 	mutex_unlock(&regulator_list_mutex);
5204 
5205 	return 0;
5206 }
5207 
5208 static struct regulator_coupler *
5209 regulator_find_coupler(struct regulator_dev *rdev)
5210 {
5211 	struct regulator_coupler *coupler;
5212 	int err;
5213 
5214 	/*
5215 	 * Note that regulators are appended to the list and the generic
5216 	 * coupler is registered first, hence it will be attached at last
5217 	 * if nobody cared.
5218 	 */
5219 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5220 		err = coupler->attach_regulator(coupler, rdev);
5221 		if (!err) {
5222 			if (!coupler->balance_voltage &&
5223 			    rdev->coupling_desc.n_coupled > 2)
5224 				goto err_unsupported;
5225 
5226 			return coupler;
5227 		}
5228 
5229 		if (err < 0)
5230 			return ERR_PTR(err);
5231 
5232 		if (err == 1)
5233 			continue;
5234 
5235 		break;
5236 	}
5237 
5238 	return ERR_PTR(-EINVAL);
5239 
5240 err_unsupported:
5241 	if (coupler->detach_regulator)
5242 		coupler->detach_regulator(coupler, rdev);
5243 
5244 	rdev_err(rdev,
5245 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5246 
5247 	return ERR_PTR(-EPERM);
5248 }
5249 
5250 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5251 {
5252 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5253 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5254 	int n_coupled = c_desc->n_coupled;
5255 	struct regulator_dev *c_rdev;
5256 	int i;
5257 
5258 	for (i = 1; i < n_coupled; i++) {
5259 		/* already resolved */
5260 		if (c_desc->coupled_rdevs[i])
5261 			continue;
5262 
5263 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5264 
5265 		if (!c_rdev)
5266 			continue;
5267 
5268 		if (c_rdev->coupling_desc.coupler != coupler) {
5269 			rdev_err(rdev, "coupler mismatch with %s\n",
5270 				 rdev_get_name(c_rdev));
5271 			return;
5272 		}
5273 
5274 		c_desc->coupled_rdevs[i] = c_rdev;
5275 		c_desc->n_resolved++;
5276 
5277 		regulator_resolve_coupling(c_rdev);
5278 	}
5279 }
5280 
5281 static void regulator_remove_coupling(struct regulator_dev *rdev)
5282 {
5283 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5284 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5285 	struct regulator_dev *__c_rdev, *c_rdev;
5286 	unsigned int __n_coupled, n_coupled;
5287 	int i, k;
5288 	int err;
5289 
5290 	n_coupled = c_desc->n_coupled;
5291 
5292 	for (i = 1; i < n_coupled; i++) {
5293 		c_rdev = c_desc->coupled_rdevs[i];
5294 
5295 		if (!c_rdev)
5296 			continue;
5297 
5298 		regulator_lock(c_rdev);
5299 
5300 		__c_desc = &c_rdev->coupling_desc;
5301 		__n_coupled = __c_desc->n_coupled;
5302 
5303 		for (k = 1; k < __n_coupled; k++) {
5304 			__c_rdev = __c_desc->coupled_rdevs[k];
5305 
5306 			if (__c_rdev == rdev) {
5307 				__c_desc->coupled_rdevs[k] = NULL;
5308 				__c_desc->n_resolved--;
5309 				break;
5310 			}
5311 		}
5312 
5313 		regulator_unlock(c_rdev);
5314 
5315 		c_desc->coupled_rdevs[i] = NULL;
5316 		c_desc->n_resolved--;
5317 	}
5318 
5319 	if (coupler && coupler->detach_regulator) {
5320 		err = coupler->detach_regulator(coupler, rdev);
5321 		if (err)
5322 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5323 				 ERR_PTR(err));
5324 	}
5325 
5326 	kfree(rdev->coupling_desc.coupled_rdevs);
5327 	rdev->coupling_desc.coupled_rdevs = NULL;
5328 }
5329 
5330 static int regulator_init_coupling(struct regulator_dev *rdev)
5331 {
5332 	struct regulator_dev **coupled;
5333 	int err, n_phandles;
5334 
5335 	if (!IS_ENABLED(CONFIG_OF))
5336 		n_phandles = 0;
5337 	else
5338 		n_phandles = of_get_n_coupled(rdev);
5339 
5340 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5341 	if (!coupled)
5342 		return -ENOMEM;
5343 
5344 	rdev->coupling_desc.coupled_rdevs = coupled;
5345 
5346 	/*
5347 	 * Every regulator should always have coupling descriptor filled with
5348 	 * at least pointer to itself.
5349 	 */
5350 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5351 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5352 	rdev->coupling_desc.n_resolved++;
5353 
5354 	/* regulator isn't coupled */
5355 	if (n_phandles == 0)
5356 		return 0;
5357 
5358 	if (!of_check_coupling_data(rdev))
5359 		return -EPERM;
5360 
5361 	mutex_lock(&regulator_list_mutex);
5362 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5363 	mutex_unlock(&regulator_list_mutex);
5364 
5365 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5366 		err = PTR_ERR(rdev->coupling_desc.coupler);
5367 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5368 		return err;
5369 	}
5370 
5371 	return 0;
5372 }
5373 
5374 static int generic_coupler_attach(struct regulator_coupler *coupler,
5375 				  struct regulator_dev *rdev)
5376 {
5377 	if (rdev->coupling_desc.n_coupled > 2) {
5378 		rdev_err(rdev,
5379 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5380 		return -EPERM;
5381 	}
5382 
5383 	if (!rdev->constraints->always_on) {
5384 		rdev_err(rdev,
5385 			 "Coupling of a non always-on regulator is unimplemented\n");
5386 		return -ENOTSUPP;
5387 	}
5388 
5389 	return 0;
5390 }
5391 
5392 static struct regulator_coupler generic_regulator_coupler = {
5393 	.attach_regulator = generic_coupler_attach,
5394 };
5395 
5396 /**
5397  * regulator_register - register regulator
5398  * @regulator_desc: regulator to register
5399  * @cfg: runtime configuration for regulator
5400  *
5401  * Called by regulator drivers to register a regulator.
5402  * Returns a valid pointer to struct regulator_dev on success
5403  * or an ERR_PTR() on error.
5404  */
5405 struct regulator_dev *
5406 regulator_register(const struct regulator_desc *regulator_desc,
5407 		   const struct regulator_config *cfg)
5408 {
5409 	const struct regulator_init_data *init_data;
5410 	struct regulator_config *config = NULL;
5411 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5412 	struct regulator_dev *rdev;
5413 	bool dangling_cfg_gpiod = false;
5414 	bool dangling_of_gpiod = false;
5415 	struct device *dev;
5416 	int ret, i;
5417 	bool resolved_early = false;
5418 
5419 	if (cfg == NULL)
5420 		return ERR_PTR(-EINVAL);
5421 	if (cfg->ena_gpiod)
5422 		dangling_cfg_gpiod = true;
5423 	if (regulator_desc == NULL) {
5424 		ret = -EINVAL;
5425 		goto rinse;
5426 	}
5427 
5428 	dev = cfg->dev;
5429 	WARN_ON(!dev);
5430 
5431 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5432 		ret = -EINVAL;
5433 		goto rinse;
5434 	}
5435 
5436 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5437 	    regulator_desc->type != REGULATOR_CURRENT) {
5438 		ret = -EINVAL;
5439 		goto rinse;
5440 	}
5441 
5442 	/* Only one of each should be implemented */
5443 	WARN_ON(regulator_desc->ops->get_voltage &&
5444 		regulator_desc->ops->get_voltage_sel);
5445 	WARN_ON(regulator_desc->ops->set_voltage &&
5446 		regulator_desc->ops->set_voltage_sel);
5447 
5448 	/* If we're using selectors we must implement list_voltage. */
5449 	if (regulator_desc->ops->get_voltage_sel &&
5450 	    !regulator_desc->ops->list_voltage) {
5451 		ret = -EINVAL;
5452 		goto rinse;
5453 	}
5454 	if (regulator_desc->ops->set_voltage_sel &&
5455 	    !regulator_desc->ops->list_voltage) {
5456 		ret = -EINVAL;
5457 		goto rinse;
5458 	}
5459 
5460 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5461 	if (rdev == NULL) {
5462 		ret = -ENOMEM;
5463 		goto rinse;
5464 	}
5465 	device_initialize(&rdev->dev);
5466 	spin_lock_init(&rdev->err_lock);
5467 
5468 	/*
5469 	 * Duplicate the config so the driver could override it after
5470 	 * parsing init data.
5471 	 */
5472 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5473 	if (config == NULL) {
5474 		ret = -ENOMEM;
5475 		goto clean;
5476 	}
5477 
5478 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5479 					       &rdev->dev.of_node);
5480 
5481 	/*
5482 	 * Sometimes not all resources are probed already so we need to take
5483 	 * that into account. This happens most the time if the ena_gpiod comes
5484 	 * from a gpio extender or something else.
5485 	 */
5486 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5487 		ret = -EPROBE_DEFER;
5488 		goto clean;
5489 	}
5490 
5491 	/*
5492 	 * We need to keep track of any GPIO descriptor coming from the
5493 	 * device tree until we have handled it over to the core. If the
5494 	 * config that was passed in to this function DOES NOT contain
5495 	 * a descriptor, and the config after this call DOES contain
5496 	 * a descriptor, we definitely got one from parsing the device
5497 	 * tree.
5498 	 */
5499 	if (!cfg->ena_gpiod && config->ena_gpiod)
5500 		dangling_of_gpiod = true;
5501 	if (!init_data) {
5502 		init_data = config->init_data;
5503 		rdev->dev.of_node = of_node_get(config->of_node);
5504 	}
5505 
5506 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5507 	rdev->reg_data = config->driver_data;
5508 	rdev->owner = regulator_desc->owner;
5509 	rdev->desc = regulator_desc;
5510 	if (config->regmap)
5511 		rdev->regmap = config->regmap;
5512 	else if (dev_get_regmap(dev, NULL))
5513 		rdev->regmap = dev_get_regmap(dev, NULL);
5514 	else if (dev->parent)
5515 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5516 	INIT_LIST_HEAD(&rdev->consumer_list);
5517 	INIT_LIST_HEAD(&rdev->list);
5518 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5519 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5520 
5521 	if (init_data && init_data->supply_regulator)
5522 		rdev->supply_name = init_data->supply_regulator;
5523 	else if (regulator_desc->supply_name)
5524 		rdev->supply_name = regulator_desc->supply_name;
5525 
5526 	/* register with sysfs */
5527 	rdev->dev.class = &regulator_class;
5528 	rdev->dev.parent = dev;
5529 	dev_set_name(&rdev->dev, "regulator.%lu",
5530 		    (unsigned long) atomic_inc_return(&regulator_no));
5531 	dev_set_drvdata(&rdev->dev, rdev);
5532 
5533 	/* set regulator constraints */
5534 	if (init_data)
5535 		rdev->constraints = kmemdup(&init_data->constraints,
5536 					    sizeof(*rdev->constraints),
5537 					    GFP_KERNEL);
5538 	else
5539 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5540 					    GFP_KERNEL);
5541 	if (!rdev->constraints) {
5542 		ret = -ENOMEM;
5543 		goto wash;
5544 	}
5545 
5546 	if ((rdev->supply_name && !rdev->supply) &&
5547 		(rdev->constraints->always_on ||
5548 		 rdev->constraints->boot_on)) {
5549 		ret = regulator_resolve_supply(rdev);
5550 		if (ret)
5551 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5552 					 ERR_PTR(ret));
5553 
5554 		resolved_early = true;
5555 	}
5556 
5557 	/* perform any regulator specific init */
5558 	if (init_data && init_data->regulator_init) {
5559 		ret = init_data->regulator_init(rdev->reg_data);
5560 		if (ret < 0)
5561 			goto wash;
5562 	}
5563 
5564 	if (config->ena_gpiod) {
5565 		ret = regulator_ena_gpio_request(rdev, config);
5566 		if (ret != 0) {
5567 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5568 				 ERR_PTR(ret));
5569 			goto wash;
5570 		}
5571 		/* The regulator core took over the GPIO descriptor */
5572 		dangling_cfg_gpiod = false;
5573 		dangling_of_gpiod = false;
5574 	}
5575 
5576 	ret = set_machine_constraints(rdev);
5577 	if (ret == -EPROBE_DEFER && !resolved_early) {
5578 		/* Regulator might be in bypass mode and so needs its supply
5579 		 * to set the constraints
5580 		 */
5581 		/* FIXME: this currently triggers a chicken-and-egg problem
5582 		 * when creating -SUPPLY symlink in sysfs to a regulator
5583 		 * that is just being created
5584 		 */
5585 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5586 			 rdev->supply_name);
5587 		ret = regulator_resolve_supply(rdev);
5588 		if (!ret)
5589 			ret = set_machine_constraints(rdev);
5590 		else
5591 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5592 				 ERR_PTR(ret));
5593 	}
5594 	if (ret < 0)
5595 		goto wash;
5596 
5597 	ret = regulator_init_coupling(rdev);
5598 	if (ret < 0)
5599 		goto wash;
5600 
5601 	/* add consumers devices */
5602 	if (init_data) {
5603 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5604 			ret = set_consumer_device_supply(rdev,
5605 				init_data->consumer_supplies[i].dev_name,
5606 				init_data->consumer_supplies[i].supply);
5607 			if (ret < 0) {
5608 				dev_err(dev, "Failed to set supply %s\n",
5609 					init_data->consumer_supplies[i].supply);
5610 				goto unset_supplies;
5611 			}
5612 		}
5613 	}
5614 
5615 	if (!rdev->desc->ops->get_voltage &&
5616 	    !rdev->desc->ops->list_voltage &&
5617 	    !rdev->desc->fixed_uV)
5618 		rdev->is_switch = true;
5619 
5620 	ret = device_add(&rdev->dev);
5621 	if (ret != 0)
5622 		goto unset_supplies;
5623 
5624 	rdev_init_debugfs(rdev);
5625 
5626 	/* try to resolve regulators coupling since a new one was registered */
5627 	mutex_lock(&regulator_list_mutex);
5628 	regulator_resolve_coupling(rdev);
5629 	mutex_unlock(&regulator_list_mutex);
5630 
5631 	/* try to resolve regulators supply since a new one was registered */
5632 	class_for_each_device(&regulator_class, NULL, NULL,
5633 			      regulator_register_resolve_supply);
5634 	kfree(config);
5635 	return rdev;
5636 
5637 unset_supplies:
5638 	mutex_lock(&regulator_list_mutex);
5639 	unset_regulator_supplies(rdev);
5640 	regulator_remove_coupling(rdev);
5641 	mutex_unlock(&regulator_list_mutex);
5642 wash:
5643 	kfree(rdev->coupling_desc.coupled_rdevs);
5644 	mutex_lock(&regulator_list_mutex);
5645 	regulator_ena_gpio_free(rdev);
5646 	mutex_unlock(&regulator_list_mutex);
5647 clean:
5648 	if (dangling_of_gpiod)
5649 		gpiod_put(config->ena_gpiod);
5650 	kfree(config);
5651 	put_device(&rdev->dev);
5652 rinse:
5653 	if (dangling_cfg_gpiod)
5654 		gpiod_put(cfg->ena_gpiod);
5655 	return ERR_PTR(ret);
5656 }
5657 EXPORT_SYMBOL_GPL(regulator_register);
5658 
5659 /**
5660  * regulator_unregister - unregister regulator
5661  * @rdev: regulator to unregister
5662  *
5663  * Called by regulator drivers to unregister a regulator.
5664  */
5665 void regulator_unregister(struct regulator_dev *rdev)
5666 {
5667 	if (rdev == NULL)
5668 		return;
5669 
5670 	if (rdev->supply) {
5671 		while (rdev->use_count--)
5672 			regulator_disable(rdev->supply);
5673 		regulator_put(rdev->supply);
5674 	}
5675 
5676 	flush_work(&rdev->disable_work.work);
5677 
5678 	mutex_lock(&regulator_list_mutex);
5679 
5680 	debugfs_remove_recursive(rdev->debugfs);
5681 	WARN_ON(rdev->open_count);
5682 	regulator_remove_coupling(rdev);
5683 	unset_regulator_supplies(rdev);
5684 	list_del(&rdev->list);
5685 	regulator_ena_gpio_free(rdev);
5686 	device_unregister(&rdev->dev);
5687 
5688 	mutex_unlock(&regulator_list_mutex);
5689 }
5690 EXPORT_SYMBOL_GPL(regulator_unregister);
5691 
5692 #ifdef CONFIG_SUSPEND
5693 /**
5694  * regulator_suspend - prepare regulators for system wide suspend
5695  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5696  *
5697  * Configure each regulator with it's suspend operating parameters for state.
5698  */
5699 static int regulator_suspend(struct device *dev)
5700 {
5701 	struct regulator_dev *rdev = dev_to_rdev(dev);
5702 	suspend_state_t state = pm_suspend_target_state;
5703 	int ret;
5704 	const struct regulator_state *rstate;
5705 
5706 	rstate = regulator_get_suspend_state_check(rdev, state);
5707 	if (!rstate)
5708 		return 0;
5709 
5710 	regulator_lock(rdev);
5711 	ret = __suspend_set_state(rdev, rstate);
5712 	regulator_unlock(rdev);
5713 
5714 	return ret;
5715 }
5716 
5717 static int regulator_resume(struct device *dev)
5718 {
5719 	suspend_state_t state = pm_suspend_target_state;
5720 	struct regulator_dev *rdev = dev_to_rdev(dev);
5721 	struct regulator_state *rstate;
5722 	int ret = 0;
5723 
5724 	rstate = regulator_get_suspend_state(rdev, state);
5725 	if (rstate == NULL)
5726 		return 0;
5727 
5728 	/* Avoid grabbing the lock if we don't need to */
5729 	if (!rdev->desc->ops->resume)
5730 		return 0;
5731 
5732 	regulator_lock(rdev);
5733 
5734 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5735 	    rstate->enabled == DISABLE_IN_SUSPEND)
5736 		ret = rdev->desc->ops->resume(rdev);
5737 
5738 	regulator_unlock(rdev);
5739 
5740 	return ret;
5741 }
5742 #else /* !CONFIG_SUSPEND */
5743 
5744 #define regulator_suspend	NULL
5745 #define regulator_resume	NULL
5746 
5747 #endif /* !CONFIG_SUSPEND */
5748 
5749 #ifdef CONFIG_PM
5750 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5751 	.suspend	= regulator_suspend,
5752 	.resume		= regulator_resume,
5753 };
5754 #endif
5755 
5756 struct class regulator_class = {
5757 	.name = "regulator",
5758 	.dev_release = regulator_dev_release,
5759 	.dev_groups = regulator_dev_groups,
5760 #ifdef CONFIG_PM
5761 	.pm = &regulator_pm_ops,
5762 #endif
5763 };
5764 /**
5765  * regulator_has_full_constraints - the system has fully specified constraints
5766  *
5767  * Calling this function will cause the regulator API to disable all
5768  * regulators which have a zero use count and don't have an always_on
5769  * constraint in a late_initcall.
5770  *
5771  * The intention is that this will become the default behaviour in a
5772  * future kernel release so users are encouraged to use this facility
5773  * now.
5774  */
5775 void regulator_has_full_constraints(void)
5776 {
5777 	has_full_constraints = 1;
5778 }
5779 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5780 
5781 /**
5782  * rdev_get_drvdata - get rdev regulator driver data
5783  * @rdev: regulator
5784  *
5785  * Get rdev regulator driver private data. This call can be used in the
5786  * regulator driver context.
5787  */
5788 void *rdev_get_drvdata(struct regulator_dev *rdev)
5789 {
5790 	return rdev->reg_data;
5791 }
5792 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5793 
5794 /**
5795  * regulator_get_drvdata - get regulator driver data
5796  * @regulator: regulator
5797  *
5798  * Get regulator driver private data. This call can be used in the consumer
5799  * driver context when non API regulator specific functions need to be called.
5800  */
5801 void *regulator_get_drvdata(struct regulator *regulator)
5802 {
5803 	return regulator->rdev->reg_data;
5804 }
5805 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5806 
5807 /**
5808  * regulator_set_drvdata - set regulator driver data
5809  * @regulator: regulator
5810  * @data: data
5811  */
5812 void regulator_set_drvdata(struct regulator *regulator, void *data)
5813 {
5814 	regulator->rdev->reg_data = data;
5815 }
5816 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5817 
5818 /**
5819  * rdev_get_id - get regulator ID
5820  * @rdev: regulator
5821  */
5822 int rdev_get_id(struct regulator_dev *rdev)
5823 {
5824 	return rdev->desc->id;
5825 }
5826 EXPORT_SYMBOL_GPL(rdev_get_id);
5827 
5828 struct device *rdev_get_dev(struct regulator_dev *rdev)
5829 {
5830 	return &rdev->dev;
5831 }
5832 EXPORT_SYMBOL_GPL(rdev_get_dev);
5833 
5834 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5835 {
5836 	return rdev->regmap;
5837 }
5838 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5839 
5840 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5841 {
5842 	return reg_init_data->driver_data;
5843 }
5844 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5845 
5846 #ifdef CONFIG_DEBUG_FS
5847 static int supply_map_show(struct seq_file *sf, void *data)
5848 {
5849 	struct regulator_map *map;
5850 
5851 	list_for_each_entry(map, &regulator_map_list, list) {
5852 		seq_printf(sf, "%s -> %s.%s\n",
5853 				rdev_get_name(map->regulator), map->dev_name,
5854 				map->supply);
5855 	}
5856 
5857 	return 0;
5858 }
5859 DEFINE_SHOW_ATTRIBUTE(supply_map);
5860 
5861 struct summary_data {
5862 	struct seq_file *s;
5863 	struct regulator_dev *parent;
5864 	int level;
5865 };
5866 
5867 static void regulator_summary_show_subtree(struct seq_file *s,
5868 					   struct regulator_dev *rdev,
5869 					   int level);
5870 
5871 static int regulator_summary_show_children(struct device *dev, void *data)
5872 {
5873 	struct regulator_dev *rdev = dev_to_rdev(dev);
5874 	struct summary_data *summary_data = data;
5875 
5876 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5877 		regulator_summary_show_subtree(summary_data->s, rdev,
5878 					       summary_data->level + 1);
5879 
5880 	return 0;
5881 }
5882 
5883 static void regulator_summary_show_subtree(struct seq_file *s,
5884 					   struct regulator_dev *rdev,
5885 					   int level)
5886 {
5887 	struct regulation_constraints *c;
5888 	struct regulator *consumer;
5889 	struct summary_data summary_data;
5890 	unsigned int opmode;
5891 
5892 	if (!rdev)
5893 		return;
5894 
5895 	opmode = _regulator_get_mode_unlocked(rdev);
5896 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5897 		   level * 3 + 1, "",
5898 		   30 - level * 3, rdev_get_name(rdev),
5899 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5900 		   regulator_opmode_to_str(opmode));
5901 
5902 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5903 	seq_printf(s, "%5dmA ",
5904 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5905 
5906 	c = rdev->constraints;
5907 	if (c) {
5908 		switch (rdev->desc->type) {
5909 		case REGULATOR_VOLTAGE:
5910 			seq_printf(s, "%5dmV %5dmV ",
5911 				   c->min_uV / 1000, c->max_uV / 1000);
5912 			break;
5913 		case REGULATOR_CURRENT:
5914 			seq_printf(s, "%5dmA %5dmA ",
5915 				   c->min_uA / 1000, c->max_uA / 1000);
5916 			break;
5917 		}
5918 	}
5919 
5920 	seq_puts(s, "\n");
5921 
5922 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5923 		if (consumer->dev && consumer->dev->class == &regulator_class)
5924 			continue;
5925 
5926 		seq_printf(s, "%*s%-*s ",
5927 			   (level + 1) * 3 + 1, "",
5928 			   30 - (level + 1) * 3,
5929 			   consumer->supply_name ? consumer->supply_name :
5930 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5931 
5932 		switch (rdev->desc->type) {
5933 		case REGULATOR_VOLTAGE:
5934 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5935 				   consumer->enable_count,
5936 				   consumer->uA_load / 1000,
5937 				   consumer->uA_load && !consumer->enable_count ?
5938 				   '*' : ' ',
5939 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5940 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5941 			break;
5942 		case REGULATOR_CURRENT:
5943 			break;
5944 		}
5945 
5946 		seq_puts(s, "\n");
5947 	}
5948 
5949 	summary_data.s = s;
5950 	summary_data.level = level;
5951 	summary_data.parent = rdev;
5952 
5953 	class_for_each_device(&regulator_class, NULL, &summary_data,
5954 			      regulator_summary_show_children);
5955 }
5956 
5957 struct summary_lock_data {
5958 	struct ww_acquire_ctx *ww_ctx;
5959 	struct regulator_dev **new_contended_rdev;
5960 	struct regulator_dev **old_contended_rdev;
5961 };
5962 
5963 static int regulator_summary_lock_one(struct device *dev, void *data)
5964 {
5965 	struct regulator_dev *rdev = dev_to_rdev(dev);
5966 	struct summary_lock_data *lock_data = data;
5967 	int ret = 0;
5968 
5969 	if (rdev != *lock_data->old_contended_rdev) {
5970 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5971 
5972 		if (ret == -EDEADLK)
5973 			*lock_data->new_contended_rdev = rdev;
5974 		else
5975 			WARN_ON_ONCE(ret);
5976 	} else {
5977 		*lock_data->old_contended_rdev = NULL;
5978 	}
5979 
5980 	return ret;
5981 }
5982 
5983 static int regulator_summary_unlock_one(struct device *dev, void *data)
5984 {
5985 	struct regulator_dev *rdev = dev_to_rdev(dev);
5986 	struct summary_lock_data *lock_data = data;
5987 
5988 	if (lock_data) {
5989 		if (rdev == *lock_data->new_contended_rdev)
5990 			return -EDEADLK;
5991 	}
5992 
5993 	regulator_unlock(rdev);
5994 
5995 	return 0;
5996 }
5997 
5998 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5999 				      struct regulator_dev **new_contended_rdev,
6000 				      struct regulator_dev **old_contended_rdev)
6001 {
6002 	struct summary_lock_data lock_data;
6003 	int ret;
6004 
6005 	lock_data.ww_ctx = ww_ctx;
6006 	lock_data.new_contended_rdev = new_contended_rdev;
6007 	lock_data.old_contended_rdev = old_contended_rdev;
6008 
6009 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6010 				    regulator_summary_lock_one);
6011 	if (ret)
6012 		class_for_each_device(&regulator_class, NULL, &lock_data,
6013 				      regulator_summary_unlock_one);
6014 
6015 	return ret;
6016 }
6017 
6018 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6019 {
6020 	struct regulator_dev *new_contended_rdev = NULL;
6021 	struct regulator_dev *old_contended_rdev = NULL;
6022 	int err;
6023 
6024 	mutex_lock(&regulator_list_mutex);
6025 
6026 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6027 
6028 	do {
6029 		if (new_contended_rdev) {
6030 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6031 			old_contended_rdev = new_contended_rdev;
6032 			old_contended_rdev->ref_cnt++;
6033 		}
6034 
6035 		err = regulator_summary_lock_all(ww_ctx,
6036 						 &new_contended_rdev,
6037 						 &old_contended_rdev);
6038 
6039 		if (old_contended_rdev)
6040 			regulator_unlock(old_contended_rdev);
6041 
6042 	} while (err == -EDEADLK);
6043 
6044 	ww_acquire_done(ww_ctx);
6045 }
6046 
6047 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6048 {
6049 	class_for_each_device(&regulator_class, NULL, NULL,
6050 			      regulator_summary_unlock_one);
6051 	ww_acquire_fini(ww_ctx);
6052 
6053 	mutex_unlock(&regulator_list_mutex);
6054 }
6055 
6056 static int regulator_summary_show_roots(struct device *dev, void *data)
6057 {
6058 	struct regulator_dev *rdev = dev_to_rdev(dev);
6059 	struct seq_file *s = data;
6060 
6061 	if (!rdev->supply)
6062 		regulator_summary_show_subtree(s, rdev, 0);
6063 
6064 	return 0;
6065 }
6066 
6067 static int regulator_summary_show(struct seq_file *s, void *data)
6068 {
6069 	struct ww_acquire_ctx ww_ctx;
6070 
6071 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6072 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6073 
6074 	regulator_summary_lock(&ww_ctx);
6075 
6076 	class_for_each_device(&regulator_class, NULL, s,
6077 			      regulator_summary_show_roots);
6078 
6079 	regulator_summary_unlock(&ww_ctx);
6080 
6081 	return 0;
6082 }
6083 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6084 #endif /* CONFIG_DEBUG_FS */
6085 
6086 static int __init regulator_init(void)
6087 {
6088 	int ret;
6089 
6090 	ret = class_register(&regulator_class);
6091 
6092 	debugfs_root = debugfs_create_dir("regulator", NULL);
6093 	if (!debugfs_root)
6094 		pr_warn("regulator: Failed to create debugfs directory\n");
6095 
6096 #ifdef CONFIG_DEBUG_FS
6097 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6098 			    &supply_map_fops);
6099 
6100 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6101 			    NULL, &regulator_summary_fops);
6102 #endif
6103 	regulator_dummy_init();
6104 
6105 	regulator_coupler_register(&generic_regulator_coupler);
6106 
6107 	return ret;
6108 }
6109 
6110 /* init early to allow our consumers to complete system booting */
6111 core_initcall(regulator_init);
6112 
6113 static int regulator_late_cleanup(struct device *dev, void *data)
6114 {
6115 	struct regulator_dev *rdev = dev_to_rdev(dev);
6116 	struct regulation_constraints *c = rdev->constraints;
6117 	int ret;
6118 
6119 	if (c && c->always_on)
6120 		return 0;
6121 
6122 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6123 		return 0;
6124 
6125 	regulator_lock(rdev);
6126 
6127 	if (rdev->use_count)
6128 		goto unlock;
6129 
6130 	/* If reading the status failed, assume that it's off. */
6131 	if (_regulator_is_enabled(rdev) <= 0)
6132 		goto unlock;
6133 
6134 	if (have_full_constraints()) {
6135 		/* We log since this may kill the system if it goes
6136 		 * wrong.
6137 		 */
6138 		rdev_info(rdev, "disabling\n");
6139 		ret = _regulator_do_disable(rdev);
6140 		if (ret != 0)
6141 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6142 	} else {
6143 		/* The intention is that in future we will
6144 		 * assume that full constraints are provided
6145 		 * so warn even if we aren't going to do
6146 		 * anything here.
6147 		 */
6148 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6149 	}
6150 
6151 unlock:
6152 	regulator_unlock(rdev);
6153 
6154 	return 0;
6155 }
6156 
6157 static void regulator_init_complete_work_function(struct work_struct *work)
6158 {
6159 	/*
6160 	 * Regulators may had failed to resolve their input supplies
6161 	 * when were registered, either because the input supply was
6162 	 * not registered yet or because its parent device was not
6163 	 * bound yet. So attempt to resolve the input supplies for
6164 	 * pending regulators before trying to disable unused ones.
6165 	 */
6166 	class_for_each_device(&regulator_class, NULL, NULL,
6167 			      regulator_register_resolve_supply);
6168 
6169 	/* If we have a full configuration then disable any regulators
6170 	 * we have permission to change the status for and which are
6171 	 * not in use or always_on.  This is effectively the default
6172 	 * for DT and ACPI as they have full constraints.
6173 	 */
6174 	class_for_each_device(&regulator_class, NULL, NULL,
6175 			      regulator_late_cleanup);
6176 }
6177 
6178 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6179 			    regulator_init_complete_work_function);
6180 
6181 static int __init regulator_init_complete(void)
6182 {
6183 	/*
6184 	 * Since DT doesn't provide an idiomatic mechanism for
6185 	 * enabling full constraints and since it's much more natural
6186 	 * with DT to provide them just assume that a DT enabled
6187 	 * system has full constraints.
6188 	 */
6189 	if (of_have_populated_dt())
6190 		has_full_constraints = true;
6191 
6192 	/*
6193 	 * We punt completion for an arbitrary amount of time since
6194 	 * systems like distros will load many drivers from userspace
6195 	 * so consumers might not always be ready yet, this is
6196 	 * particularly an issue with laptops where this might bounce
6197 	 * the display off then on.  Ideally we'd get a notification
6198 	 * from userspace when this happens but we don't so just wait
6199 	 * a bit and hope we waited long enough.  It'd be better if
6200 	 * we'd only do this on systems that need it, and a kernel
6201 	 * command line option might be useful.
6202 	 */
6203 	schedule_delayed_work(&regulator_init_complete_work,
6204 			      msecs_to_jiffies(30000));
6205 
6206 	return 0;
6207 }
6208 late_initcall_sync(regulator_init_complete);
6209