1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 static DEFINE_WW_CLASS(regulator_ww_class); 37 static DEFINE_MUTEX(regulator_nesting_mutex); 38 static DEFINE_MUTEX(regulator_list_mutex); 39 static LIST_HEAD(regulator_map_list); 40 static LIST_HEAD(regulator_ena_gpio_list); 41 static LIST_HEAD(regulator_supply_alias_list); 42 static LIST_HEAD(regulator_coupler_list); 43 static bool has_full_constraints; 44 45 static struct dentry *debugfs_root; 46 47 /* 48 * struct regulator_map 49 * 50 * Used to provide symbolic supply names to devices. 51 */ 52 struct regulator_map { 53 struct list_head list; 54 const char *dev_name; /* The dev_name() for the consumer */ 55 const char *supply; 56 struct regulator_dev *regulator; 57 }; 58 59 /* 60 * struct regulator_enable_gpio 61 * 62 * Management for shared enable GPIO pin 63 */ 64 struct regulator_enable_gpio { 65 struct list_head list; 66 struct gpio_desc *gpiod; 67 u32 enable_count; /* a number of enabled shared GPIO */ 68 u32 request_count; /* a number of requested shared GPIO */ 69 }; 70 71 /* 72 * struct regulator_supply_alias 73 * 74 * Used to map lookups for a supply onto an alternative device. 75 */ 76 struct regulator_supply_alias { 77 struct list_head list; 78 struct device *src_dev; 79 const char *src_supply; 80 struct device *alias_dev; 81 const char *alias_supply; 82 }; 83 84 static int _regulator_is_enabled(struct regulator_dev *rdev); 85 static int _regulator_disable(struct regulator *regulator); 86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 87 static int _regulator_get_current_limit(struct regulator_dev *rdev); 88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 89 static int _notifier_call_chain(struct regulator_dev *rdev, 90 unsigned long event, void *data); 91 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 92 int min_uV, int max_uV); 93 static int regulator_balance_voltage(struct regulator_dev *rdev, 94 suspend_state_t state); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 static void destroy_regulator(struct regulator *regulator); 99 static void _regulator_put(struct regulator *regulator); 100 101 const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 EXPORT_SYMBOL_GPL(rdev_get_name); 111 112 static bool have_full_constraints(void) 113 { 114 return has_full_constraints || of_have_populated_dt(); 115 } 116 117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 118 { 119 if (!rdev->constraints) { 120 rdev_err(rdev, "no constraints\n"); 121 return false; 122 } 123 124 if (rdev->constraints->valid_ops_mask & ops) 125 return true; 126 127 return false; 128 } 129 130 /** 131 * regulator_lock_nested - lock a single regulator 132 * @rdev: regulator source 133 * @ww_ctx: w/w mutex acquire context 134 * 135 * This function can be called many times by one task on 136 * a single regulator and its mutex will be locked only 137 * once. If a task, which is calling this function is other 138 * than the one, which initially locked the mutex, it will 139 * wait on mutex. 140 */ 141 static inline int regulator_lock_nested(struct regulator_dev *rdev, 142 struct ww_acquire_ctx *ww_ctx) 143 { 144 bool lock = false; 145 int ret = 0; 146 147 mutex_lock(®ulator_nesting_mutex); 148 149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 150 if (rdev->mutex_owner == current) 151 rdev->ref_cnt++; 152 else 153 lock = true; 154 155 if (lock) { 156 mutex_unlock(®ulator_nesting_mutex); 157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 158 mutex_lock(®ulator_nesting_mutex); 159 } 160 } else { 161 lock = true; 162 } 163 164 if (lock && ret != -EDEADLK) { 165 rdev->ref_cnt++; 166 rdev->mutex_owner = current; 167 } 168 169 mutex_unlock(®ulator_nesting_mutex); 170 171 return ret; 172 } 173 174 /** 175 * regulator_lock - lock a single regulator 176 * @rdev: regulator source 177 * 178 * This function can be called many times by one task on 179 * a single regulator and its mutex will be locked only 180 * once. If a task, which is calling this function is other 181 * than the one, which initially locked the mutex, it will 182 * wait on mutex. 183 */ 184 static void regulator_lock(struct regulator_dev *rdev) 185 { 186 regulator_lock_nested(rdev, NULL); 187 } 188 189 /** 190 * regulator_unlock - unlock a single regulator 191 * @rdev: regulator_source 192 * 193 * This function unlocks the mutex when the 194 * reference counter reaches 0. 195 */ 196 static void regulator_unlock(struct regulator_dev *rdev) 197 { 198 mutex_lock(®ulator_nesting_mutex); 199 200 if (--rdev->ref_cnt == 0) { 201 rdev->mutex_owner = NULL; 202 ww_mutex_unlock(&rdev->mutex); 203 } 204 205 WARN_ON_ONCE(rdev->ref_cnt < 0); 206 207 mutex_unlock(®ulator_nesting_mutex); 208 } 209 210 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 211 { 212 struct regulator_dev *c_rdev; 213 int i; 214 215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 216 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 217 218 if (rdev->supply->rdev == c_rdev) 219 return true; 220 } 221 222 return false; 223 } 224 225 static void regulator_unlock_recursive(struct regulator_dev *rdev, 226 unsigned int n_coupled) 227 { 228 struct regulator_dev *c_rdev, *supply_rdev; 229 int i, supply_n_coupled; 230 231 for (i = n_coupled; i > 0; i--) { 232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 233 234 if (!c_rdev) 235 continue; 236 237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 238 supply_rdev = c_rdev->supply->rdev; 239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 240 241 regulator_unlock_recursive(supply_rdev, 242 supply_n_coupled); 243 } 244 245 regulator_unlock(c_rdev); 246 } 247 } 248 249 static int regulator_lock_recursive(struct regulator_dev *rdev, 250 struct regulator_dev **new_contended_rdev, 251 struct regulator_dev **old_contended_rdev, 252 struct ww_acquire_ctx *ww_ctx) 253 { 254 struct regulator_dev *c_rdev; 255 int i, err; 256 257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 258 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 259 260 if (!c_rdev) 261 continue; 262 263 if (c_rdev != *old_contended_rdev) { 264 err = regulator_lock_nested(c_rdev, ww_ctx); 265 if (err) { 266 if (err == -EDEADLK) { 267 *new_contended_rdev = c_rdev; 268 goto err_unlock; 269 } 270 271 /* shouldn't happen */ 272 WARN_ON_ONCE(err != -EALREADY); 273 } 274 } else { 275 *old_contended_rdev = NULL; 276 } 277 278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 279 err = regulator_lock_recursive(c_rdev->supply->rdev, 280 new_contended_rdev, 281 old_contended_rdev, 282 ww_ctx); 283 if (err) { 284 regulator_unlock(c_rdev); 285 goto err_unlock; 286 } 287 } 288 } 289 290 return 0; 291 292 err_unlock: 293 regulator_unlock_recursive(rdev, i); 294 295 return err; 296 } 297 298 /** 299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 300 * regulators 301 * @rdev: regulator source 302 * @ww_ctx: w/w mutex acquire context 303 * 304 * Unlock all regulators related with rdev by coupling or supplying. 305 */ 306 static void regulator_unlock_dependent(struct regulator_dev *rdev, 307 struct ww_acquire_ctx *ww_ctx) 308 { 309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 310 ww_acquire_fini(ww_ctx); 311 } 312 313 /** 314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 315 * @rdev: regulator source 316 * @ww_ctx: w/w mutex acquire context 317 * 318 * This function as a wrapper on regulator_lock_recursive(), which locks 319 * all regulators related with rdev by coupling or supplying. 320 */ 321 static void regulator_lock_dependent(struct regulator_dev *rdev, 322 struct ww_acquire_ctx *ww_ctx) 323 { 324 struct regulator_dev *new_contended_rdev = NULL; 325 struct regulator_dev *old_contended_rdev = NULL; 326 int err; 327 328 mutex_lock(®ulator_list_mutex); 329 330 ww_acquire_init(ww_ctx, ®ulator_ww_class); 331 332 do { 333 if (new_contended_rdev) { 334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 335 old_contended_rdev = new_contended_rdev; 336 old_contended_rdev->ref_cnt++; 337 } 338 339 err = regulator_lock_recursive(rdev, 340 &new_contended_rdev, 341 &old_contended_rdev, 342 ww_ctx); 343 344 if (old_contended_rdev) 345 regulator_unlock(old_contended_rdev); 346 347 } while (err == -EDEADLK); 348 349 ww_acquire_done(ww_ctx); 350 351 mutex_unlock(®ulator_list_mutex); 352 } 353 354 /** 355 * of_get_child_regulator - get a child regulator device node 356 * based on supply name 357 * @parent: Parent device node 358 * @prop_name: Combination regulator supply name and "-supply" 359 * 360 * Traverse all child nodes. 361 * Extract the child regulator device node corresponding to the supply name. 362 * returns the device node corresponding to the regulator if found, else 363 * returns NULL. 364 */ 365 static struct device_node *of_get_child_regulator(struct device_node *parent, 366 const char *prop_name) 367 { 368 struct device_node *regnode = NULL; 369 struct device_node *child = NULL; 370 371 for_each_child_of_node(parent, child) { 372 regnode = of_parse_phandle(child, prop_name, 0); 373 374 if (!regnode) { 375 regnode = of_get_child_regulator(child, prop_name); 376 if (regnode) 377 goto err_node_put; 378 } else { 379 goto err_node_put; 380 } 381 } 382 return NULL; 383 384 err_node_put: 385 of_node_put(child); 386 return regnode; 387 } 388 389 /** 390 * of_get_regulator - get a regulator device node based on supply name 391 * @dev: Device pointer for the consumer (of regulator) device 392 * @supply: regulator supply name 393 * 394 * Extract the regulator device node corresponding to the supply name. 395 * returns the device node corresponding to the regulator if found, else 396 * returns NULL. 397 */ 398 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 399 { 400 struct device_node *regnode = NULL; 401 char prop_name[64]; /* 64 is max size of property name */ 402 403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 404 405 snprintf(prop_name, 64, "%s-supply", supply); 406 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 407 408 if (!regnode) { 409 regnode = of_get_child_regulator(dev->of_node, prop_name); 410 if (regnode) 411 return regnode; 412 413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 414 prop_name, dev->of_node); 415 return NULL; 416 } 417 return regnode; 418 } 419 420 /* Platform voltage constraint check */ 421 int regulator_check_voltage(struct regulator_dev *rdev, 422 int *min_uV, int *max_uV) 423 { 424 BUG_ON(*min_uV > *max_uV); 425 426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 427 rdev_err(rdev, "voltage operation not allowed\n"); 428 return -EPERM; 429 } 430 431 if (*max_uV > rdev->constraints->max_uV) 432 *max_uV = rdev->constraints->max_uV; 433 if (*min_uV < rdev->constraints->min_uV) 434 *min_uV = rdev->constraints->min_uV; 435 436 if (*min_uV > *max_uV) { 437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 438 *min_uV, *max_uV); 439 return -EINVAL; 440 } 441 442 return 0; 443 } 444 445 /* return 0 if the state is valid */ 446 static int regulator_check_states(suspend_state_t state) 447 { 448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 449 } 450 451 /* Make sure we select a voltage that suits the needs of all 452 * regulator consumers 453 */ 454 int regulator_check_consumers(struct regulator_dev *rdev, 455 int *min_uV, int *max_uV, 456 suspend_state_t state) 457 { 458 struct regulator *regulator; 459 struct regulator_voltage *voltage; 460 461 list_for_each_entry(regulator, &rdev->consumer_list, list) { 462 voltage = ®ulator->voltage[state]; 463 /* 464 * Assume consumers that didn't say anything are OK 465 * with anything in the constraint range. 466 */ 467 if (!voltage->min_uV && !voltage->max_uV) 468 continue; 469 470 if (*max_uV > voltage->max_uV) 471 *max_uV = voltage->max_uV; 472 if (*min_uV < voltage->min_uV) 473 *min_uV = voltage->min_uV; 474 } 475 476 if (*min_uV > *max_uV) { 477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 478 *min_uV, *max_uV); 479 return -EINVAL; 480 } 481 482 return 0; 483 } 484 485 /* current constraint check */ 486 static int regulator_check_current_limit(struct regulator_dev *rdev, 487 int *min_uA, int *max_uA) 488 { 489 BUG_ON(*min_uA > *max_uA); 490 491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 492 rdev_err(rdev, "current operation not allowed\n"); 493 return -EPERM; 494 } 495 496 if (*max_uA > rdev->constraints->max_uA) 497 *max_uA = rdev->constraints->max_uA; 498 if (*min_uA < rdev->constraints->min_uA) 499 *min_uA = rdev->constraints->min_uA; 500 501 if (*min_uA > *max_uA) { 502 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 503 *min_uA, *max_uA); 504 return -EINVAL; 505 } 506 507 return 0; 508 } 509 510 /* operating mode constraint check */ 511 static int regulator_mode_constrain(struct regulator_dev *rdev, 512 unsigned int *mode) 513 { 514 switch (*mode) { 515 case REGULATOR_MODE_FAST: 516 case REGULATOR_MODE_NORMAL: 517 case REGULATOR_MODE_IDLE: 518 case REGULATOR_MODE_STANDBY: 519 break; 520 default: 521 rdev_err(rdev, "invalid mode %x specified\n", *mode); 522 return -EINVAL; 523 } 524 525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 526 rdev_err(rdev, "mode operation not allowed\n"); 527 return -EPERM; 528 } 529 530 /* The modes are bitmasks, the most power hungry modes having 531 * the lowest values. If the requested mode isn't supported 532 * try higher modes. 533 */ 534 while (*mode) { 535 if (rdev->constraints->valid_modes_mask & *mode) 536 return 0; 537 *mode /= 2; 538 } 539 540 return -EINVAL; 541 } 542 543 static inline struct regulator_state * 544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 545 { 546 if (rdev->constraints == NULL) 547 return NULL; 548 549 switch (state) { 550 case PM_SUSPEND_STANDBY: 551 return &rdev->constraints->state_standby; 552 case PM_SUSPEND_MEM: 553 return &rdev->constraints->state_mem; 554 case PM_SUSPEND_MAX: 555 return &rdev->constraints->state_disk; 556 default: 557 return NULL; 558 } 559 } 560 561 static const struct regulator_state * 562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 563 { 564 const struct regulator_state *rstate; 565 566 rstate = regulator_get_suspend_state(rdev, state); 567 if (rstate == NULL) 568 return NULL; 569 570 /* If we have no suspend mode configuration don't set anything; 571 * only warn if the driver implements set_suspend_voltage or 572 * set_suspend_mode callback. 573 */ 574 if (rstate->enabled != ENABLE_IN_SUSPEND && 575 rstate->enabled != DISABLE_IN_SUSPEND) { 576 if (rdev->desc->ops->set_suspend_voltage || 577 rdev->desc->ops->set_suspend_mode) 578 rdev_warn(rdev, "No configuration\n"); 579 return NULL; 580 } 581 582 return rstate; 583 } 584 585 static ssize_t microvolts_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct regulator_dev *rdev = dev_get_drvdata(dev); 589 int uV; 590 591 regulator_lock(rdev); 592 uV = regulator_get_voltage_rdev(rdev); 593 regulator_unlock(rdev); 594 595 if (uV < 0) 596 return uV; 597 return sprintf(buf, "%d\n", uV); 598 } 599 static DEVICE_ATTR_RO(microvolts); 600 601 static ssize_t microamps_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 607 } 608 static DEVICE_ATTR_RO(microamps); 609 610 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 611 char *buf) 612 { 613 struct regulator_dev *rdev = dev_get_drvdata(dev); 614 615 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 616 } 617 static DEVICE_ATTR_RO(name); 618 619 static const char *regulator_opmode_to_str(int mode) 620 { 621 switch (mode) { 622 case REGULATOR_MODE_FAST: 623 return "fast"; 624 case REGULATOR_MODE_NORMAL: 625 return "normal"; 626 case REGULATOR_MODE_IDLE: 627 return "idle"; 628 case REGULATOR_MODE_STANDBY: 629 return "standby"; 630 } 631 return "unknown"; 632 } 633 634 static ssize_t regulator_print_opmode(char *buf, int mode) 635 { 636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 637 } 638 639 static ssize_t opmode_show(struct device *dev, 640 struct device_attribute *attr, char *buf) 641 { 642 struct regulator_dev *rdev = dev_get_drvdata(dev); 643 644 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 645 } 646 static DEVICE_ATTR_RO(opmode); 647 648 static ssize_t regulator_print_state(char *buf, int state) 649 { 650 if (state > 0) 651 return sprintf(buf, "enabled\n"); 652 else if (state == 0) 653 return sprintf(buf, "disabled\n"); 654 else 655 return sprintf(buf, "unknown\n"); 656 } 657 658 static ssize_t state_show(struct device *dev, 659 struct device_attribute *attr, char *buf) 660 { 661 struct regulator_dev *rdev = dev_get_drvdata(dev); 662 ssize_t ret; 663 664 regulator_lock(rdev); 665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 666 regulator_unlock(rdev); 667 668 return ret; 669 } 670 static DEVICE_ATTR_RO(state); 671 672 static ssize_t status_show(struct device *dev, 673 struct device_attribute *attr, char *buf) 674 { 675 struct regulator_dev *rdev = dev_get_drvdata(dev); 676 int status; 677 char *label; 678 679 status = rdev->desc->ops->get_status(rdev); 680 if (status < 0) 681 return status; 682 683 switch (status) { 684 case REGULATOR_STATUS_OFF: 685 label = "off"; 686 break; 687 case REGULATOR_STATUS_ON: 688 label = "on"; 689 break; 690 case REGULATOR_STATUS_ERROR: 691 label = "error"; 692 break; 693 case REGULATOR_STATUS_FAST: 694 label = "fast"; 695 break; 696 case REGULATOR_STATUS_NORMAL: 697 label = "normal"; 698 break; 699 case REGULATOR_STATUS_IDLE: 700 label = "idle"; 701 break; 702 case REGULATOR_STATUS_STANDBY: 703 label = "standby"; 704 break; 705 case REGULATOR_STATUS_BYPASS: 706 label = "bypass"; 707 break; 708 case REGULATOR_STATUS_UNDEFINED: 709 label = "undefined"; 710 break; 711 default: 712 return -ERANGE; 713 } 714 715 return sprintf(buf, "%s\n", label); 716 } 717 static DEVICE_ATTR_RO(status); 718 719 static ssize_t min_microamps_show(struct device *dev, 720 struct device_attribute *attr, char *buf) 721 { 722 struct regulator_dev *rdev = dev_get_drvdata(dev); 723 724 if (!rdev->constraints) 725 return sprintf(buf, "constraint not defined\n"); 726 727 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 728 } 729 static DEVICE_ATTR_RO(min_microamps); 730 731 static ssize_t max_microamps_show(struct device *dev, 732 struct device_attribute *attr, char *buf) 733 { 734 struct regulator_dev *rdev = dev_get_drvdata(dev); 735 736 if (!rdev->constraints) 737 return sprintf(buf, "constraint not defined\n"); 738 739 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 740 } 741 static DEVICE_ATTR_RO(max_microamps); 742 743 static ssize_t min_microvolts_show(struct device *dev, 744 struct device_attribute *attr, char *buf) 745 { 746 struct regulator_dev *rdev = dev_get_drvdata(dev); 747 748 if (!rdev->constraints) 749 return sprintf(buf, "constraint not defined\n"); 750 751 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 752 } 753 static DEVICE_ATTR_RO(min_microvolts); 754 755 static ssize_t max_microvolts_show(struct device *dev, 756 struct device_attribute *attr, char *buf) 757 { 758 struct regulator_dev *rdev = dev_get_drvdata(dev); 759 760 if (!rdev->constraints) 761 return sprintf(buf, "constraint not defined\n"); 762 763 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 764 } 765 static DEVICE_ATTR_RO(max_microvolts); 766 767 static ssize_t requested_microamps_show(struct device *dev, 768 struct device_attribute *attr, char *buf) 769 { 770 struct regulator_dev *rdev = dev_get_drvdata(dev); 771 struct regulator *regulator; 772 int uA = 0; 773 774 regulator_lock(rdev); 775 list_for_each_entry(regulator, &rdev->consumer_list, list) { 776 if (regulator->enable_count) 777 uA += regulator->uA_load; 778 } 779 regulator_unlock(rdev); 780 return sprintf(buf, "%d\n", uA); 781 } 782 static DEVICE_ATTR_RO(requested_microamps); 783 784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 785 char *buf) 786 { 787 struct regulator_dev *rdev = dev_get_drvdata(dev); 788 return sprintf(buf, "%d\n", rdev->use_count); 789 } 790 static DEVICE_ATTR_RO(num_users); 791 792 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 793 char *buf) 794 { 795 struct regulator_dev *rdev = dev_get_drvdata(dev); 796 797 switch (rdev->desc->type) { 798 case REGULATOR_VOLTAGE: 799 return sprintf(buf, "voltage\n"); 800 case REGULATOR_CURRENT: 801 return sprintf(buf, "current\n"); 802 } 803 return sprintf(buf, "unknown\n"); 804 } 805 static DEVICE_ATTR_RO(type); 806 807 static ssize_t suspend_mem_microvolts_show(struct device *dev, 808 struct device_attribute *attr, char *buf) 809 { 810 struct regulator_dev *rdev = dev_get_drvdata(dev); 811 812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 813 } 814 static DEVICE_ATTR_RO(suspend_mem_microvolts); 815 816 static ssize_t suspend_disk_microvolts_show(struct device *dev, 817 struct device_attribute *attr, char *buf) 818 { 819 struct regulator_dev *rdev = dev_get_drvdata(dev); 820 821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 822 } 823 static DEVICE_ATTR_RO(suspend_disk_microvolts); 824 825 static ssize_t suspend_standby_microvolts_show(struct device *dev, 826 struct device_attribute *attr, char *buf) 827 { 828 struct regulator_dev *rdev = dev_get_drvdata(dev); 829 830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 831 } 832 static DEVICE_ATTR_RO(suspend_standby_microvolts); 833 834 static ssize_t suspend_mem_mode_show(struct device *dev, 835 struct device_attribute *attr, char *buf) 836 { 837 struct regulator_dev *rdev = dev_get_drvdata(dev); 838 839 return regulator_print_opmode(buf, 840 rdev->constraints->state_mem.mode); 841 } 842 static DEVICE_ATTR_RO(suspend_mem_mode); 843 844 static ssize_t suspend_disk_mode_show(struct device *dev, 845 struct device_attribute *attr, char *buf) 846 { 847 struct regulator_dev *rdev = dev_get_drvdata(dev); 848 849 return regulator_print_opmode(buf, 850 rdev->constraints->state_disk.mode); 851 } 852 static DEVICE_ATTR_RO(suspend_disk_mode); 853 854 static ssize_t suspend_standby_mode_show(struct device *dev, 855 struct device_attribute *attr, char *buf) 856 { 857 struct regulator_dev *rdev = dev_get_drvdata(dev); 858 859 return regulator_print_opmode(buf, 860 rdev->constraints->state_standby.mode); 861 } 862 static DEVICE_ATTR_RO(suspend_standby_mode); 863 864 static ssize_t suspend_mem_state_show(struct device *dev, 865 struct device_attribute *attr, char *buf) 866 { 867 struct regulator_dev *rdev = dev_get_drvdata(dev); 868 869 return regulator_print_state(buf, 870 rdev->constraints->state_mem.enabled); 871 } 872 static DEVICE_ATTR_RO(suspend_mem_state); 873 874 static ssize_t suspend_disk_state_show(struct device *dev, 875 struct device_attribute *attr, char *buf) 876 { 877 struct regulator_dev *rdev = dev_get_drvdata(dev); 878 879 return regulator_print_state(buf, 880 rdev->constraints->state_disk.enabled); 881 } 882 static DEVICE_ATTR_RO(suspend_disk_state); 883 884 static ssize_t suspend_standby_state_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct regulator_dev *rdev = dev_get_drvdata(dev); 888 889 return regulator_print_state(buf, 890 rdev->constraints->state_standby.enabled); 891 } 892 static DEVICE_ATTR_RO(suspend_standby_state); 893 894 static ssize_t bypass_show(struct device *dev, 895 struct device_attribute *attr, char *buf) 896 { 897 struct regulator_dev *rdev = dev_get_drvdata(dev); 898 const char *report; 899 bool bypass; 900 int ret; 901 902 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 903 904 if (ret != 0) 905 report = "unknown"; 906 else if (bypass) 907 report = "enabled"; 908 else 909 report = "disabled"; 910 911 return sprintf(buf, "%s\n", report); 912 } 913 static DEVICE_ATTR_RO(bypass); 914 915 #define REGULATOR_ERROR_ATTR(name, bit) \ 916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 917 char *buf) \ 918 { \ 919 int ret; \ 920 unsigned int flags; \ 921 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 922 ret = _regulator_get_error_flags(rdev, &flags); \ 923 if (ret) \ 924 return ret; \ 925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 926 } \ 927 static DEVICE_ATTR_RO(name) 928 929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 938 939 /* Calculate the new optimum regulator operating mode based on the new total 940 * consumer load. All locks held by caller 941 */ 942 static int drms_uA_update(struct regulator_dev *rdev) 943 { 944 struct regulator *sibling; 945 int current_uA = 0, output_uV, input_uV, err; 946 unsigned int mode; 947 948 /* 949 * first check to see if we can set modes at all, otherwise just 950 * tell the consumer everything is OK. 951 */ 952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 953 rdev_dbg(rdev, "DRMS operation not allowed\n"); 954 return 0; 955 } 956 957 if (!rdev->desc->ops->get_optimum_mode && 958 !rdev->desc->ops->set_load) 959 return 0; 960 961 if (!rdev->desc->ops->set_mode && 962 !rdev->desc->ops->set_load) 963 return -EINVAL; 964 965 /* calc total requested load */ 966 list_for_each_entry(sibling, &rdev->consumer_list, list) { 967 if (sibling->enable_count) 968 current_uA += sibling->uA_load; 969 } 970 971 current_uA += rdev->constraints->system_load; 972 973 if (rdev->desc->ops->set_load) { 974 /* set the optimum mode for our new total regulator load */ 975 err = rdev->desc->ops->set_load(rdev, current_uA); 976 if (err < 0) 977 rdev_err(rdev, "failed to set load %d: %pe\n", 978 current_uA, ERR_PTR(err)); 979 } else { 980 /* 981 * Unfortunately in some cases the constraints->valid_ops has 982 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 983 * That's not really legit but we won't consider it a fatal 984 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 985 * wasn't set. 986 */ 987 if (!rdev->constraints->valid_modes_mask) { 988 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 989 return 0; 990 } 991 992 /* get output voltage */ 993 output_uV = regulator_get_voltage_rdev(rdev); 994 995 /* 996 * Don't return an error; if regulator driver cares about 997 * output_uV then it's up to the driver to validate. 998 */ 999 if (output_uV <= 0) 1000 rdev_dbg(rdev, "invalid output voltage found\n"); 1001 1002 /* get input voltage */ 1003 input_uV = 0; 1004 if (rdev->supply) 1005 input_uV = regulator_get_voltage(rdev->supply); 1006 if (input_uV <= 0) 1007 input_uV = rdev->constraints->input_uV; 1008 1009 /* 1010 * Don't return an error; if regulator driver cares about 1011 * input_uV then it's up to the driver to validate. 1012 */ 1013 if (input_uV <= 0) 1014 rdev_dbg(rdev, "invalid input voltage found\n"); 1015 1016 /* now get the optimum mode for our new total regulator load */ 1017 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1018 output_uV, current_uA); 1019 1020 /* check the new mode is allowed */ 1021 err = regulator_mode_constrain(rdev, &mode); 1022 if (err < 0) { 1023 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1024 current_uA, input_uV, output_uV, ERR_PTR(err)); 1025 return err; 1026 } 1027 1028 err = rdev->desc->ops->set_mode(rdev, mode); 1029 if (err < 0) 1030 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1031 mode, ERR_PTR(err)); 1032 } 1033 1034 return err; 1035 } 1036 1037 static int __suspend_set_state(struct regulator_dev *rdev, 1038 const struct regulator_state *rstate) 1039 { 1040 int ret = 0; 1041 1042 if (rstate->enabled == ENABLE_IN_SUSPEND && 1043 rdev->desc->ops->set_suspend_enable) 1044 ret = rdev->desc->ops->set_suspend_enable(rdev); 1045 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1046 rdev->desc->ops->set_suspend_disable) 1047 ret = rdev->desc->ops->set_suspend_disable(rdev); 1048 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1049 ret = 0; 1050 1051 if (ret < 0) { 1052 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1053 return ret; 1054 } 1055 1056 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1057 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1058 if (ret < 0) { 1059 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1060 return ret; 1061 } 1062 } 1063 1064 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1065 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1066 if (ret < 0) { 1067 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1068 return ret; 1069 } 1070 } 1071 1072 return ret; 1073 } 1074 1075 static int suspend_set_initial_state(struct regulator_dev *rdev) 1076 { 1077 const struct regulator_state *rstate; 1078 1079 rstate = regulator_get_suspend_state_check(rdev, 1080 rdev->constraints->initial_state); 1081 if (!rstate) 1082 return 0; 1083 1084 return __suspend_set_state(rdev, rstate); 1085 } 1086 1087 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1088 static void print_constraints_debug(struct regulator_dev *rdev) 1089 { 1090 struct regulation_constraints *constraints = rdev->constraints; 1091 char buf[160] = ""; 1092 size_t len = sizeof(buf) - 1; 1093 int count = 0; 1094 int ret; 1095 1096 if (constraints->min_uV && constraints->max_uV) { 1097 if (constraints->min_uV == constraints->max_uV) 1098 count += scnprintf(buf + count, len - count, "%d mV ", 1099 constraints->min_uV / 1000); 1100 else 1101 count += scnprintf(buf + count, len - count, 1102 "%d <--> %d mV ", 1103 constraints->min_uV / 1000, 1104 constraints->max_uV / 1000); 1105 } 1106 1107 if (!constraints->min_uV || 1108 constraints->min_uV != constraints->max_uV) { 1109 ret = regulator_get_voltage_rdev(rdev); 1110 if (ret > 0) 1111 count += scnprintf(buf + count, len - count, 1112 "at %d mV ", ret / 1000); 1113 } 1114 1115 if (constraints->uV_offset) 1116 count += scnprintf(buf + count, len - count, "%dmV offset ", 1117 constraints->uV_offset / 1000); 1118 1119 if (constraints->min_uA && constraints->max_uA) { 1120 if (constraints->min_uA == constraints->max_uA) 1121 count += scnprintf(buf + count, len - count, "%d mA ", 1122 constraints->min_uA / 1000); 1123 else 1124 count += scnprintf(buf + count, len - count, 1125 "%d <--> %d mA ", 1126 constraints->min_uA / 1000, 1127 constraints->max_uA / 1000); 1128 } 1129 1130 if (!constraints->min_uA || 1131 constraints->min_uA != constraints->max_uA) { 1132 ret = _regulator_get_current_limit(rdev); 1133 if (ret > 0) 1134 count += scnprintf(buf + count, len - count, 1135 "at %d mA ", ret / 1000); 1136 } 1137 1138 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1139 count += scnprintf(buf + count, len - count, "fast "); 1140 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1141 count += scnprintf(buf + count, len - count, "normal "); 1142 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1143 count += scnprintf(buf + count, len - count, "idle "); 1144 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1145 count += scnprintf(buf + count, len - count, "standby "); 1146 1147 if (!count) 1148 count = scnprintf(buf, len, "no parameters"); 1149 else 1150 --count; 1151 1152 count += scnprintf(buf + count, len - count, ", %s", 1153 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1154 1155 rdev_dbg(rdev, "%s\n", buf); 1156 } 1157 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1158 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1159 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1160 1161 static void print_constraints(struct regulator_dev *rdev) 1162 { 1163 struct regulation_constraints *constraints = rdev->constraints; 1164 1165 print_constraints_debug(rdev); 1166 1167 if ((constraints->min_uV != constraints->max_uV) && 1168 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1169 rdev_warn(rdev, 1170 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1171 } 1172 1173 static int machine_constraints_voltage(struct regulator_dev *rdev, 1174 struct regulation_constraints *constraints) 1175 { 1176 const struct regulator_ops *ops = rdev->desc->ops; 1177 int ret; 1178 1179 /* do we need to apply the constraint voltage */ 1180 if (rdev->constraints->apply_uV && 1181 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1182 int target_min, target_max; 1183 int current_uV = regulator_get_voltage_rdev(rdev); 1184 1185 if (current_uV == -ENOTRECOVERABLE) { 1186 /* This regulator can't be read and must be initialized */ 1187 rdev_info(rdev, "Setting %d-%duV\n", 1188 rdev->constraints->min_uV, 1189 rdev->constraints->max_uV); 1190 _regulator_do_set_voltage(rdev, 1191 rdev->constraints->min_uV, 1192 rdev->constraints->max_uV); 1193 current_uV = regulator_get_voltage_rdev(rdev); 1194 } 1195 1196 if (current_uV < 0) { 1197 if (current_uV != -EPROBE_DEFER) 1198 rdev_err(rdev, 1199 "failed to get the current voltage: %pe\n", 1200 ERR_PTR(current_uV)); 1201 return current_uV; 1202 } 1203 1204 /* 1205 * If we're below the minimum voltage move up to the 1206 * minimum voltage, if we're above the maximum voltage 1207 * then move down to the maximum. 1208 */ 1209 target_min = current_uV; 1210 target_max = current_uV; 1211 1212 if (current_uV < rdev->constraints->min_uV) { 1213 target_min = rdev->constraints->min_uV; 1214 target_max = rdev->constraints->min_uV; 1215 } 1216 1217 if (current_uV > rdev->constraints->max_uV) { 1218 target_min = rdev->constraints->max_uV; 1219 target_max = rdev->constraints->max_uV; 1220 } 1221 1222 if (target_min != current_uV || target_max != current_uV) { 1223 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1224 current_uV, target_min, target_max); 1225 ret = _regulator_do_set_voltage( 1226 rdev, target_min, target_max); 1227 if (ret < 0) { 1228 rdev_err(rdev, 1229 "failed to apply %d-%duV constraint: %pe\n", 1230 target_min, target_max, ERR_PTR(ret)); 1231 return ret; 1232 } 1233 } 1234 } 1235 1236 /* constrain machine-level voltage specs to fit 1237 * the actual range supported by this regulator. 1238 */ 1239 if (ops->list_voltage && rdev->desc->n_voltages) { 1240 int count = rdev->desc->n_voltages; 1241 int i; 1242 int min_uV = INT_MAX; 1243 int max_uV = INT_MIN; 1244 int cmin = constraints->min_uV; 1245 int cmax = constraints->max_uV; 1246 1247 /* it's safe to autoconfigure fixed-voltage supplies 1248 * and the constraints are used by list_voltage. 1249 */ 1250 if (count == 1 && !cmin) { 1251 cmin = 1; 1252 cmax = INT_MAX; 1253 constraints->min_uV = cmin; 1254 constraints->max_uV = cmax; 1255 } 1256 1257 /* voltage constraints are optional */ 1258 if ((cmin == 0) && (cmax == 0)) 1259 return 0; 1260 1261 /* else require explicit machine-level constraints */ 1262 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1263 rdev_err(rdev, "invalid voltage constraints\n"); 1264 return -EINVAL; 1265 } 1266 1267 /* no need to loop voltages if range is continuous */ 1268 if (rdev->desc->continuous_voltage_range) 1269 return 0; 1270 1271 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1272 for (i = 0; i < count; i++) { 1273 int value; 1274 1275 value = ops->list_voltage(rdev, i); 1276 if (value <= 0) 1277 continue; 1278 1279 /* maybe adjust [min_uV..max_uV] */ 1280 if (value >= cmin && value < min_uV) 1281 min_uV = value; 1282 if (value <= cmax && value > max_uV) 1283 max_uV = value; 1284 } 1285 1286 /* final: [min_uV..max_uV] valid iff constraints valid */ 1287 if (max_uV < min_uV) { 1288 rdev_err(rdev, 1289 "unsupportable voltage constraints %u-%uuV\n", 1290 min_uV, max_uV); 1291 return -EINVAL; 1292 } 1293 1294 /* use regulator's subset of machine constraints */ 1295 if (constraints->min_uV < min_uV) { 1296 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1297 constraints->min_uV, min_uV); 1298 constraints->min_uV = min_uV; 1299 } 1300 if (constraints->max_uV > max_uV) { 1301 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1302 constraints->max_uV, max_uV); 1303 constraints->max_uV = max_uV; 1304 } 1305 } 1306 1307 return 0; 1308 } 1309 1310 static int machine_constraints_current(struct regulator_dev *rdev, 1311 struct regulation_constraints *constraints) 1312 { 1313 const struct regulator_ops *ops = rdev->desc->ops; 1314 int ret; 1315 1316 if (!constraints->min_uA && !constraints->max_uA) 1317 return 0; 1318 1319 if (constraints->min_uA > constraints->max_uA) { 1320 rdev_err(rdev, "Invalid current constraints\n"); 1321 return -EINVAL; 1322 } 1323 1324 if (!ops->set_current_limit || !ops->get_current_limit) { 1325 rdev_warn(rdev, "Operation of current configuration missing\n"); 1326 return 0; 1327 } 1328 1329 /* Set regulator current in constraints range */ 1330 ret = ops->set_current_limit(rdev, constraints->min_uA, 1331 constraints->max_uA); 1332 if (ret < 0) { 1333 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1334 return ret; 1335 } 1336 1337 return 0; 1338 } 1339 1340 static int _regulator_do_enable(struct regulator_dev *rdev); 1341 1342 static int notif_set_limit(struct regulator_dev *rdev, 1343 int (*set)(struct regulator_dev *, int, int, bool), 1344 int limit, int severity) 1345 { 1346 bool enable; 1347 1348 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1349 enable = false; 1350 limit = 0; 1351 } else { 1352 enable = true; 1353 } 1354 1355 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1356 limit = 0; 1357 1358 return set(rdev, limit, severity, enable); 1359 } 1360 1361 static int handle_notify_limits(struct regulator_dev *rdev, 1362 int (*set)(struct regulator_dev *, int, int, bool), 1363 struct notification_limit *limits) 1364 { 1365 int ret = 0; 1366 1367 if (!set) 1368 return -EOPNOTSUPP; 1369 1370 if (limits->prot) 1371 ret = notif_set_limit(rdev, set, limits->prot, 1372 REGULATOR_SEVERITY_PROT); 1373 if (ret) 1374 return ret; 1375 1376 if (limits->err) 1377 ret = notif_set_limit(rdev, set, limits->err, 1378 REGULATOR_SEVERITY_ERR); 1379 if (ret) 1380 return ret; 1381 1382 if (limits->warn) 1383 ret = notif_set_limit(rdev, set, limits->warn, 1384 REGULATOR_SEVERITY_WARN); 1385 1386 return ret; 1387 } 1388 /** 1389 * set_machine_constraints - sets regulator constraints 1390 * @rdev: regulator source 1391 * 1392 * Allows platform initialisation code to define and constrain 1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1394 * Constraints *must* be set by platform code in order for some 1395 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1396 * set_mode. 1397 */ 1398 static int set_machine_constraints(struct regulator_dev *rdev) 1399 { 1400 int ret = 0; 1401 const struct regulator_ops *ops = rdev->desc->ops; 1402 1403 ret = machine_constraints_voltage(rdev, rdev->constraints); 1404 if (ret != 0) 1405 return ret; 1406 1407 ret = machine_constraints_current(rdev, rdev->constraints); 1408 if (ret != 0) 1409 return ret; 1410 1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1412 ret = ops->set_input_current_limit(rdev, 1413 rdev->constraints->ilim_uA); 1414 if (ret < 0) { 1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1416 return ret; 1417 } 1418 } 1419 1420 /* do we need to setup our suspend state */ 1421 if (rdev->constraints->initial_state) { 1422 ret = suspend_set_initial_state(rdev); 1423 if (ret < 0) { 1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1425 return ret; 1426 } 1427 } 1428 1429 if (rdev->constraints->initial_mode) { 1430 if (!ops->set_mode) { 1431 rdev_err(rdev, "no set_mode operation\n"); 1432 return -EINVAL; 1433 } 1434 1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1436 if (ret < 0) { 1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1438 return ret; 1439 } 1440 } else if (rdev->constraints->system_load) { 1441 /* 1442 * We'll only apply the initial system load if an 1443 * initial mode wasn't specified. 1444 */ 1445 drms_uA_update(rdev); 1446 } 1447 1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1449 && ops->set_ramp_delay) { 1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1451 if (ret < 0) { 1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1453 return ret; 1454 } 1455 } 1456 1457 if (rdev->constraints->pull_down && ops->set_pull_down) { 1458 ret = ops->set_pull_down(rdev); 1459 if (ret < 0) { 1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1461 return ret; 1462 } 1463 } 1464 1465 if (rdev->constraints->soft_start && ops->set_soft_start) { 1466 ret = ops->set_soft_start(rdev); 1467 if (ret < 0) { 1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1469 return ret; 1470 } 1471 } 1472 1473 /* 1474 * Existing logic does not warn if over_current_protection is given as 1475 * a constraint but driver does not support that. I think we should 1476 * warn about this type of issues as it is possible someone changes 1477 * PMIC on board to another type - and the another PMIC's driver does 1478 * not support setting protection. Board composer may happily believe 1479 * the DT limits are respected - especially if the new PMIC HW also 1480 * supports protection but the driver does not. I won't change the logic 1481 * without hearing more experienced opinion on this though. 1482 * 1483 * If warning is seen as a good idea then we can merge handling the 1484 * over-curret protection and detection and get rid of this special 1485 * handling. 1486 */ 1487 if (rdev->constraints->over_current_protection 1488 && ops->set_over_current_protection) { 1489 int lim = rdev->constraints->over_curr_limits.prot; 1490 1491 ret = ops->set_over_current_protection(rdev, lim, 1492 REGULATOR_SEVERITY_PROT, 1493 true); 1494 if (ret < 0) { 1495 rdev_err(rdev, "failed to set over current protection: %pe\n", 1496 ERR_PTR(ret)); 1497 return ret; 1498 } 1499 } 1500 1501 if (rdev->constraints->over_current_detection) 1502 ret = handle_notify_limits(rdev, 1503 ops->set_over_current_protection, 1504 &rdev->constraints->over_curr_limits); 1505 if (ret) { 1506 if (ret != -EOPNOTSUPP) { 1507 rdev_err(rdev, "failed to set over current limits: %pe\n", 1508 ERR_PTR(ret)); 1509 return ret; 1510 } 1511 rdev_warn(rdev, 1512 "IC does not support requested over-current limits\n"); 1513 } 1514 1515 if (rdev->constraints->over_voltage_detection) 1516 ret = handle_notify_limits(rdev, 1517 ops->set_over_voltage_protection, 1518 &rdev->constraints->over_voltage_limits); 1519 if (ret) { 1520 if (ret != -EOPNOTSUPP) { 1521 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1522 ERR_PTR(ret)); 1523 return ret; 1524 } 1525 rdev_warn(rdev, 1526 "IC does not support requested over voltage limits\n"); 1527 } 1528 1529 if (rdev->constraints->under_voltage_detection) 1530 ret = handle_notify_limits(rdev, 1531 ops->set_under_voltage_protection, 1532 &rdev->constraints->under_voltage_limits); 1533 if (ret) { 1534 if (ret != -EOPNOTSUPP) { 1535 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1536 ERR_PTR(ret)); 1537 return ret; 1538 } 1539 rdev_warn(rdev, 1540 "IC does not support requested under voltage limits\n"); 1541 } 1542 1543 if (rdev->constraints->over_temp_detection) 1544 ret = handle_notify_limits(rdev, 1545 ops->set_thermal_protection, 1546 &rdev->constraints->temp_limits); 1547 if (ret) { 1548 if (ret != -EOPNOTSUPP) { 1549 rdev_err(rdev, "failed to set temperature limits %pe\n", 1550 ERR_PTR(ret)); 1551 return ret; 1552 } 1553 rdev_warn(rdev, 1554 "IC does not support requested temperature limits\n"); 1555 } 1556 1557 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1558 bool ad_state = (rdev->constraints->active_discharge == 1559 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1560 1561 ret = ops->set_active_discharge(rdev, ad_state); 1562 if (ret < 0) { 1563 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1564 return ret; 1565 } 1566 } 1567 1568 /* 1569 * If there is no mechanism for controlling the regulator then 1570 * flag it as always_on so we don't end up duplicating checks 1571 * for this so much. Note that we could control the state of 1572 * a supply to control the output on a regulator that has no 1573 * direct control. 1574 */ 1575 if (!rdev->ena_pin && !ops->enable) { 1576 if (rdev->supply_name && !rdev->supply) 1577 return -EPROBE_DEFER; 1578 1579 if (rdev->supply) 1580 rdev->constraints->always_on = 1581 rdev->supply->rdev->constraints->always_on; 1582 else 1583 rdev->constraints->always_on = true; 1584 } 1585 1586 if (rdev->desc->off_on_delay) 1587 rdev->last_off = ktime_get(); 1588 1589 /* If the constraints say the regulator should be on at this point 1590 * and we have control then make sure it is enabled. 1591 */ 1592 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1593 /* If we want to enable this regulator, make sure that we know 1594 * the supplying regulator. 1595 */ 1596 if (rdev->supply_name && !rdev->supply) 1597 return -EPROBE_DEFER; 1598 1599 if (rdev->supply) { 1600 ret = regulator_enable(rdev->supply); 1601 if (ret < 0) { 1602 _regulator_put(rdev->supply); 1603 rdev->supply = NULL; 1604 return ret; 1605 } 1606 } 1607 1608 ret = _regulator_do_enable(rdev); 1609 if (ret < 0 && ret != -EINVAL) { 1610 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1611 return ret; 1612 } 1613 1614 if (rdev->constraints->always_on) 1615 rdev->use_count++; 1616 } 1617 1618 print_constraints(rdev); 1619 return 0; 1620 } 1621 1622 /** 1623 * set_supply - set regulator supply regulator 1624 * @rdev: regulator name 1625 * @supply_rdev: supply regulator name 1626 * 1627 * Called by platform initialisation code to set the supply regulator for this 1628 * regulator. This ensures that a regulators supply will also be enabled by the 1629 * core if it's child is enabled. 1630 */ 1631 static int set_supply(struct regulator_dev *rdev, 1632 struct regulator_dev *supply_rdev) 1633 { 1634 int err; 1635 1636 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1637 1638 if (!try_module_get(supply_rdev->owner)) 1639 return -ENODEV; 1640 1641 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1642 if (rdev->supply == NULL) { 1643 err = -ENOMEM; 1644 return err; 1645 } 1646 supply_rdev->open_count++; 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1653 * @rdev: regulator source 1654 * @consumer_dev_name: dev_name() string for device supply applies to 1655 * @supply: symbolic name for supply 1656 * 1657 * Allows platform initialisation code to map physical regulator 1658 * sources to symbolic names for supplies for use by devices. Devices 1659 * should use these symbolic names to request regulators, avoiding the 1660 * need to provide board-specific regulator names as platform data. 1661 */ 1662 static int set_consumer_device_supply(struct regulator_dev *rdev, 1663 const char *consumer_dev_name, 1664 const char *supply) 1665 { 1666 struct regulator_map *node, *new_node; 1667 int has_dev; 1668 1669 if (supply == NULL) 1670 return -EINVAL; 1671 1672 if (consumer_dev_name != NULL) 1673 has_dev = 1; 1674 else 1675 has_dev = 0; 1676 1677 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1678 if (new_node == NULL) 1679 return -ENOMEM; 1680 1681 new_node->regulator = rdev; 1682 new_node->supply = supply; 1683 1684 if (has_dev) { 1685 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1686 if (new_node->dev_name == NULL) { 1687 kfree(new_node); 1688 return -ENOMEM; 1689 } 1690 } 1691 1692 mutex_lock(®ulator_list_mutex); 1693 list_for_each_entry(node, ®ulator_map_list, list) { 1694 if (node->dev_name && consumer_dev_name) { 1695 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1696 continue; 1697 } else if (node->dev_name || consumer_dev_name) { 1698 continue; 1699 } 1700 1701 if (strcmp(node->supply, supply) != 0) 1702 continue; 1703 1704 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1705 consumer_dev_name, 1706 dev_name(&node->regulator->dev), 1707 node->regulator->desc->name, 1708 supply, 1709 dev_name(&rdev->dev), rdev_get_name(rdev)); 1710 goto fail; 1711 } 1712 1713 list_add(&new_node->list, ®ulator_map_list); 1714 mutex_unlock(®ulator_list_mutex); 1715 1716 return 0; 1717 1718 fail: 1719 mutex_unlock(®ulator_list_mutex); 1720 kfree(new_node->dev_name); 1721 kfree(new_node); 1722 return -EBUSY; 1723 } 1724 1725 static void unset_regulator_supplies(struct regulator_dev *rdev) 1726 { 1727 struct regulator_map *node, *n; 1728 1729 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1730 if (rdev == node->regulator) { 1731 list_del(&node->list); 1732 kfree(node->dev_name); 1733 kfree(node); 1734 } 1735 } 1736 } 1737 1738 #ifdef CONFIG_DEBUG_FS 1739 static ssize_t constraint_flags_read_file(struct file *file, 1740 char __user *user_buf, 1741 size_t count, loff_t *ppos) 1742 { 1743 const struct regulator *regulator = file->private_data; 1744 const struct regulation_constraints *c = regulator->rdev->constraints; 1745 char *buf; 1746 ssize_t ret; 1747 1748 if (!c) 1749 return 0; 1750 1751 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1752 if (!buf) 1753 return -ENOMEM; 1754 1755 ret = snprintf(buf, PAGE_SIZE, 1756 "always_on: %u\n" 1757 "boot_on: %u\n" 1758 "apply_uV: %u\n" 1759 "ramp_disable: %u\n" 1760 "soft_start: %u\n" 1761 "pull_down: %u\n" 1762 "over_current_protection: %u\n", 1763 c->always_on, 1764 c->boot_on, 1765 c->apply_uV, 1766 c->ramp_disable, 1767 c->soft_start, 1768 c->pull_down, 1769 c->over_current_protection); 1770 1771 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1772 kfree(buf); 1773 1774 return ret; 1775 } 1776 1777 #endif 1778 1779 static const struct file_operations constraint_flags_fops = { 1780 #ifdef CONFIG_DEBUG_FS 1781 .open = simple_open, 1782 .read = constraint_flags_read_file, 1783 .llseek = default_llseek, 1784 #endif 1785 }; 1786 1787 #define REG_STR_SIZE 64 1788 1789 static struct regulator *create_regulator(struct regulator_dev *rdev, 1790 struct device *dev, 1791 const char *supply_name) 1792 { 1793 struct regulator *regulator; 1794 int err = 0; 1795 1796 if (dev) { 1797 char buf[REG_STR_SIZE]; 1798 int size; 1799 1800 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1801 dev->kobj.name, supply_name); 1802 if (size >= REG_STR_SIZE) 1803 return NULL; 1804 1805 supply_name = kstrdup(buf, GFP_KERNEL); 1806 if (supply_name == NULL) 1807 return NULL; 1808 } else { 1809 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1810 if (supply_name == NULL) 1811 return NULL; 1812 } 1813 1814 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1815 if (regulator == NULL) { 1816 kfree(supply_name); 1817 return NULL; 1818 } 1819 1820 regulator->rdev = rdev; 1821 regulator->supply_name = supply_name; 1822 1823 regulator_lock(rdev); 1824 list_add(®ulator->list, &rdev->consumer_list); 1825 regulator_unlock(rdev); 1826 1827 if (dev) { 1828 regulator->dev = dev; 1829 1830 /* Add a link to the device sysfs entry */ 1831 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1832 supply_name); 1833 if (err) { 1834 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1835 dev->kobj.name, ERR_PTR(err)); 1836 /* non-fatal */ 1837 } 1838 } 1839 1840 if (err != -EEXIST) 1841 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1842 if (!regulator->debugfs) { 1843 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1844 } else { 1845 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1846 ®ulator->uA_load); 1847 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1848 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1849 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1850 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1851 debugfs_create_file("constraint_flags", 0444, 1852 regulator->debugfs, regulator, 1853 &constraint_flags_fops); 1854 } 1855 1856 /* 1857 * Check now if the regulator is an always on regulator - if 1858 * it is then we don't need to do nearly so much work for 1859 * enable/disable calls. 1860 */ 1861 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1862 _regulator_is_enabled(rdev)) 1863 regulator->always_on = true; 1864 1865 return regulator; 1866 } 1867 1868 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1869 { 1870 if (rdev->constraints && rdev->constraints->enable_time) 1871 return rdev->constraints->enable_time; 1872 if (rdev->desc->ops->enable_time) 1873 return rdev->desc->ops->enable_time(rdev); 1874 return rdev->desc->enable_time; 1875 } 1876 1877 static struct regulator_supply_alias *regulator_find_supply_alias( 1878 struct device *dev, const char *supply) 1879 { 1880 struct regulator_supply_alias *map; 1881 1882 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1883 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1884 return map; 1885 1886 return NULL; 1887 } 1888 1889 static void regulator_supply_alias(struct device **dev, const char **supply) 1890 { 1891 struct regulator_supply_alias *map; 1892 1893 map = regulator_find_supply_alias(*dev, *supply); 1894 if (map) { 1895 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1896 *supply, map->alias_supply, 1897 dev_name(map->alias_dev)); 1898 *dev = map->alias_dev; 1899 *supply = map->alias_supply; 1900 } 1901 } 1902 1903 static int regulator_match(struct device *dev, const void *data) 1904 { 1905 struct regulator_dev *r = dev_to_rdev(dev); 1906 1907 return strcmp(rdev_get_name(r), data) == 0; 1908 } 1909 1910 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1911 { 1912 struct device *dev; 1913 1914 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1915 1916 return dev ? dev_to_rdev(dev) : NULL; 1917 } 1918 1919 /** 1920 * regulator_dev_lookup - lookup a regulator device. 1921 * @dev: device for regulator "consumer". 1922 * @supply: Supply name or regulator ID. 1923 * 1924 * If successful, returns a struct regulator_dev that corresponds to the name 1925 * @supply and with the embedded struct device refcount incremented by one. 1926 * The refcount must be dropped by calling put_device(). 1927 * On failure one of the following ERR-PTR-encoded values is returned: 1928 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1929 * in the future. 1930 */ 1931 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1932 const char *supply) 1933 { 1934 struct regulator_dev *r = NULL; 1935 struct device_node *node; 1936 struct regulator_map *map; 1937 const char *devname = NULL; 1938 1939 regulator_supply_alias(&dev, &supply); 1940 1941 /* first do a dt based lookup */ 1942 if (dev && dev->of_node) { 1943 node = of_get_regulator(dev, supply); 1944 if (node) { 1945 r = of_find_regulator_by_node(node); 1946 if (r) 1947 return r; 1948 1949 /* 1950 * We have a node, but there is no device. 1951 * assume it has not registered yet. 1952 */ 1953 return ERR_PTR(-EPROBE_DEFER); 1954 } 1955 } 1956 1957 /* if not found, try doing it non-dt way */ 1958 if (dev) 1959 devname = dev_name(dev); 1960 1961 mutex_lock(®ulator_list_mutex); 1962 list_for_each_entry(map, ®ulator_map_list, list) { 1963 /* If the mapping has a device set up it must match */ 1964 if (map->dev_name && 1965 (!devname || strcmp(map->dev_name, devname))) 1966 continue; 1967 1968 if (strcmp(map->supply, supply) == 0 && 1969 get_device(&map->regulator->dev)) { 1970 r = map->regulator; 1971 break; 1972 } 1973 } 1974 mutex_unlock(®ulator_list_mutex); 1975 1976 if (r) 1977 return r; 1978 1979 r = regulator_lookup_by_name(supply); 1980 if (r) 1981 return r; 1982 1983 return ERR_PTR(-ENODEV); 1984 } 1985 1986 static int regulator_resolve_supply(struct regulator_dev *rdev) 1987 { 1988 struct regulator_dev *r; 1989 struct device *dev = rdev->dev.parent; 1990 int ret = 0; 1991 1992 /* No supply to resolve? */ 1993 if (!rdev->supply_name) 1994 return 0; 1995 1996 /* Supply already resolved? (fast-path without locking contention) */ 1997 if (rdev->supply) 1998 return 0; 1999 2000 r = regulator_dev_lookup(dev, rdev->supply_name); 2001 if (IS_ERR(r)) { 2002 ret = PTR_ERR(r); 2003 2004 /* Did the lookup explicitly defer for us? */ 2005 if (ret == -EPROBE_DEFER) 2006 goto out; 2007 2008 if (have_full_constraints()) { 2009 r = dummy_regulator_rdev; 2010 get_device(&r->dev); 2011 } else { 2012 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2013 rdev->supply_name, rdev->desc->name); 2014 ret = -EPROBE_DEFER; 2015 goto out; 2016 } 2017 } 2018 2019 if (r == rdev) { 2020 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2021 rdev->desc->name, rdev->supply_name); 2022 if (!have_full_constraints()) { 2023 ret = -EINVAL; 2024 goto out; 2025 } 2026 r = dummy_regulator_rdev; 2027 get_device(&r->dev); 2028 } 2029 2030 /* 2031 * If the supply's parent device is not the same as the 2032 * regulator's parent device, then ensure the parent device 2033 * is bound before we resolve the supply, in case the parent 2034 * device get probe deferred and unregisters the supply. 2035 */ 2036 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2037 if (!device_is_bound(r->dev.parent)) { 2038 put_device(&r->dev); 2039 ret = -EPROBE_DEFER; 2040 goto out; 2041 } 2042 } 2043 2044 /* Recursively resolve the supply of the supply */ 2045 ret = regulator_resolve_supply(r); 2046 if (ret < 0) { 2047 put_device(&r->dev); 2048 goto out; 2049 } 2050 2051 /* 2052 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2053 * between rdev->supply null check and setting rdev->supply in 2054 * set_supply() from concurrent tasks. 2055 */ 2056 regulator_lock(rdev); 2057 2058 /* Supply just resolved by a concurrent task? */ 2059 if (rdev->supply) { 2060 regulator_unlock(rdev); 2061 put_device(&r->dev); 2062 goto out; 2063 } 2064 2065 ret = set_supply(rdev, r); 2066 if (ret < 0) { 2067 regulator_unlock(rdev); 2068 put_device(&r->dev); 2069 goto out; 2070 } 2071 2072 regulator_unlock(rdev); 2073 2074 /* 2075 * In set_machine_constraints() we may have turned this regulator on 2076 * but we couldn't propagate to the supply if it hadn't been resolved 2077 * yet. Do it now. 2078 */ 2079 if (rdev->use_count) { 2080 ret = regulator_enable(rdev->supply); 2081 if (ret < 0) { 2082 _regulator_put(rdev->supply); 2083 rdev->supply = NULL; 2084 goto out; 2085 } 2086 } 2087 2088 out: 2089 return ret; 2090 } 2091 2092 /* Internal regulator request function */ 2093 struct regulator *_regulator_get(struct device *dev, const char *id, 2094 enum regulator_get_type get_type) 2095 { 2096 struct regulator_dev *rdev; 2097 struct regulator *regulator; 2098 struct device_link *link; 2099 int ret; 2100 2101 if (get_type >= MAX_GET_TYPE) { 2102 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2103 return ERR_PTR(-EINVAL); 2104 } 2105 2106 if (id == NULL) { 2107 pr_err("get() with no identifier\n"); 2108 return ERR_PTR(-EINVAL); 2109 } 2110 2111 rdev = regulator_dev_lookup(dev, id); 2112 if (IS_ERR(rdev)) { 2113 ret = PTR_ERR(rdev); 2114 2115 /* 2116 * If regulator_dev_lookup() fails with error other 2117 * than -ENODEV our job here is done, we simply return it. 2118 */ 2119 if (ret != -ENODEV) 2120 return ERR_PTR(ret); 2121 2122 if (!have_full_constraints()) { 2123 dev_warn(dev, 2124 "incomplete constraints, dummy supplies not allowed\n"); 2125 return ERR_PTR(-ENODEV); 2126 } 2127 2128 switch (get_type) { 2129 case NORMAL_GET: 2130 /* 2131 * Assume that a regulator is physically present and 2132 * enabled, even if it isn't hooked up, and just 2133 * provide a dummy. 2134 */ 2135 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2136 rdev = dummy_regulator_rdev; 2137 get_device(&rdev->dev); 2138 break; 2139 2140 case EXCLUSIVE_GET: 2141 dev_warn(dev, 2142 "dummy supplies not allowed for exclusive requests\n"); 2143 fallthrough; 2144 2145 default: 2146 return ERR_PTR(-ENODEV); 2147 } 2148 } 2149 2150 if (rdev->exclusive) { 2151 regulator = ERR_PTR(-EPERM); 2152 put_device(&rdev->dev); 2153 return regulator; 2154 } 2155 2156 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2157 regulator = ERR_PTR(-EBUSY); 2158 put_device(&rdev->dev); 2159 return regulator; 2160 } 2161 2162 mutex_lock(®ulator_list_mutex); 2163 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2164 mutex_unlock(®ulator_list_mutex); 2165 2166 if (ret != 0) { 2167 regulator = ERR_PTR(-EPROBE_DEFER); 2168 put_device(&rdev->dev); 2169 return regulator; 2170 } 2171 2172 ret = regulator_resolve_supply(rdev); 2173 if (ret < 0) { 2174 regulator = ERR_PTR(ret); 2175 put_device(&rdev->dev); 2176 return regulator; 2177 } 2178 2179 if (!try_module_get(rdev->owner)) { 2180 regulator = ERR_PTR(-EPROBE_DEFER); 2181 put_device(&rdev->dev); 2182 return regulator; 2183 } 2184 2185 regulator = create_regulator(rdev, dev, id); 2186 if (regulator == NULL) { 2187 regulator = ERR_PTR(-ENOMEM); 2188 module_put(rdev->owner); 2189 put_device(&rdev->dev); 2190 return regulator; 2191 } 2192 2193 rdev->open_count++; 2194 if (get_type == EXCLUSIVE_GET) { 2195 rdev->exclusive = 1; 2196 2197 ret = _regulator_is_enabled(rdev); 2198 if (ret > 0) { 2199 rdev->use_count = 1; 2200 regulator->enable_count = 1; 2201 } else { 2202 rdev->use_count = 0; 2203 regulator->enable_count = 0; 2204 } 2205 } 2206 2207 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2208 if (!IS_ERR_OR_NULL(link)) 2209 regulator->device_link = true; 2210 2211 return regulator; 2212 } 2213 2214 /** 2215 * regulator_get - lookup and obtain a reference to a regulator. 2216 * @dev: device for regulator "consumer" 2217 * @id: Supply name or regulator ID. 2218 * 2219 * Returns a struct regulator corresponding to the regulator producer, 2220 * or IS_ERR() condition containing errno. 2221 * 2222 * Use of supply names configured via set_consumer_device_supply() is 2223 * strongly encouraged. It is recommended that the supply name used 2224 * should match the name used for the supply and/or the relevant 2225 * device pins in the datasheet. 2226 */ 2227 struct regulator *regulator_get(struct device *dev, const char *id) 2228 { 2229 return _regulator_get(dev, id, NORMAL_GET); 2230 } 2231 EXPORT_SYMBOL_GPL(regulator_get); 2232 2233 /** 2234 * regulator_get_exclusive - obtain exclusive access to a regulator. 2235 * @dev: device for regulator "consumer" 2236 * @id: Supply name or regulator ID. 2237 * 2238 * Returns a struct regulator corresponding to the regulator producer, 2239 * or IS_ERR() condition containing errno. Other consumers will be 2240 * unable to obtain this regulator while this reference is held and the 2241 * use count for the regulator will be initialised to reflect the current 2242 * state of the regulator. 2243 * 2244 * This is intended for use by consumers which cannot tolerate shared 2245 * use of the regulator such as those which need to force the 2246 * regulator off for correct operation of the hardware they are 2247 * controlling. 2248 * 2249 * Use of supply names configured via set_consumer_device_supply() is 2250 * strongly encouraged. It is recommended that the supply name used 2251 * should match the name used for the supply and/or the relevant 2252 * device pins in the datasheet. 2253 */ 2254 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2255 { 2256 return _regulator_get(dev, id, EXCLUSIVE_GET); 2257 } 2258 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2259 2260 /** 2261 * regulator_get_optional - obtain optional access to a regulator. 2262 * @dev: device for regulator "consumer" 2263 * @id: Supply name or regulator ID. 2264 * 2265 * Returns a struct regulator corresponding to the regulator producer, 2266 * or IS_ERR() condition containing errno. 2267 * 2268 * This is intended for use by consumers for devices which can have 2269 * some supplies unconnected in normal use, such as some MMC devices. 2270 * It can allow the regulator core to provide stub supplies for other 2271 * supplies requested using normal regulator_get() calls without 2272 * disrupting the operation of drivers that can handle absent 2273 * supplies. 2274 * 2275 * Use of supply names configured via set_consumer_device_supply() is 2276 * strongly encouraged. It is recommended that the supply name used 2277 * should match the name used for the supply and/or the relevant 2278 * device pins in the datasheet. 2279 */ 2280 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2281 { 2282 return _regulator_get(dev, id, OPTIONAL_GET); 2283 } 2284 EXPORT_SYMBOL_GPL(regulator_get_optional); 2285 2286 static void destroy_regulator(struct regulator *regulator) 2287 { 2288 struct regulator_dev *rdev = regulator->rdev; 2289 2290 debugfs_remove_recursive(regulator->debugfs); 2291 2292 if (regulator->dev) { 2293 if (regulator->device_link) 2294 device_link_remove(regulator->dev, &rdev->dev); 2295 2296 /* remove any sysfs entries */ 2297 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2298 } 2299 2300 regulator_lock(rdev); 2301 list_del(®ulator->list); 2302 2303 rdev->open_count--; 2304 rdev->exclusive = 0; 2305 regulator_unlock(rdev); 2306 2307 kfree_const(regulator->supply_name); 2308 kfree(regulator); 2309 } 2310 2311 /* regulator_list_mutex lock held by regulator_put() */ 2312 static void _regulator_put(struct regulator *regulator) 2313 { 2314 struct regulator_dev *rdev; 2315 2316 if (IS_ERR_OR_NULL(regulator)) 2317 return; 2318 2319 lockdep_assert_held_once(®ulator_list_mutex); 2320 2321 /* Docs say you must disable before calling regulator_put() */ 2322 WARN_ON(regulator->enable_count); 2323 2324 rdev = regulator->rdev; 2325 2326 destroy_regulator(regulator); 2327 2328 module_put(rdev->owner); 2329 put_device(&rdev->dev); 2330 } 2331 2332 /** 2333 * regulator_put - "free" the regulator source 2334 * @regulator: regulator source 2335 * 2336 * Note: drivers must ensure that all regulator_enable calls made on this 2337 * regulator source are balanced by regulator_disable calls prior to calling 2338 * this function. 2339 */ 2340 void regulator_put(struct regulator *regulator) 2341 { 2342 mutex_lock(®ulator_list_mutex); 2343 _regulator_put(regulator); 2344 mutex_unlock(®ulator_list_mutex); 2345 } 2346 EXPORT_SYMBOL_GPL(regulator_put); 2347 2348 /** 2349 * regulator_register_supply_alias - Provide device alias for supply lookup 2350 * 2351 * @dev: device that will be given as the regulator "consumer" 2352 * @id: Supply name or regulator ID 2353 * @alias_dev: device that should be used to lookup the supply 2354 * @alias_id: Supply name or regulator ID that should be used to lookup the 2355 * supply 2356 * 2357 * All lookups for id on dev will instead be conducted for alias_id on 2358 * alias_dev. 2359 */ 2360 int regulator_register_supply_alias(struct device *dev, const char *id, 2361 struct device *alias_dev, 2362 const char *alias_id) 2363 { 2364 struct regulator_supply_alias *map; 2365 2366 map = regulator_find_supply_alias(dev, id); 2367 if (map) 2368 return -EEXIST; 2369 2370 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2371 if (!map) 2372 return -ENOMEM; 2373 2374 map->src_dev = dev; 2375 map->src_supply = id; 2376 map->alias_dev = alias_dev; 2377 map->alias_supply = alias_id; 2378 2379 list_add(&map->list, ®ulator_supply_alias_list); 2380 2381 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2382 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2387 2388 /** 2389 * regulator_unregister_supply_alias - Remove device alias 2390 * 2391 * @dev: device that will be given as the regulator "consumer" 2392 * @id: Supply name or regulator ID 2393 * 2394 * Remove a lookup alias if one exists for id on dev. 2395 */ 2396 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2397 { 2398 struct regulator_supply_alias *map; 2399 2400 map = regulator_find_supply_alias(dev, id); 2401 if (map) { 2402 list_del(&map->list); 2403 kfree(map); 2404 } 2405 } 2406 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2407 2408 /** 2409 * regulator_bulk_register_supply_alias - register multiple aliases 2410 * 2411 * @dev: device that will be given as the regulator "consumer" 2412 * @id: List of supply names or regulator IDs 2413 * @alias_dev: device that should be used to lookup the supply 2414 * @alias_id: List of supply names or regulator IDs that should be used to 2415 * lookup the supply 2416 * @num_id: Number of aliases to register 2417 * 2418 * @return 0 on success, an errno on failure. 2419 * 2420 * This helper function allows drivers to register several supply 2421 * aliases in one operation. If any of the aliases cannot be 2422 * registered any aliases that were registered will be removed 2423 * before returning to the caller. 2424 */ 2425 int regulator_bulk_register_supply_alias(struct device *dev, 2426 const char *const *id, 2427 struct device *alias_dev, 2428 const char *const *alias_id, 2429 int num_id) 2430 { 2431 int i; 2432 int ret; 2433 2434 for (i = 0; i < num_id; ++i) { 2435 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2436 alias_id[i]); 2437 if (ret < 0) 2438 goto err; 2439 } 2440 2441 return 0; 2442 2443 err: 2444 dev_err(dev, 2445 "Failed to create supply alias %s,%s -> %s,%s\n", 2446 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2447 2448 while (--i >= 0) 2449 regulator_unregister_supply_alias(dev, id[i]); 2450 2451 return ret; 2452 } 2453 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2454 2455 /** 2456 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2457 * 2458 * @dev: device that will be given as the regulator "consumer" 2459 * @id: List of supply names or regulator IDs 2460 * @num_id: Number of aliases to unregister 2461 * 2462 * This helper function allows drivers to unregister several supply 2463 * aliases in one operation. 2464 */ 2465 void regulator_bulk_unregister_supply_alias(struct device *dev, 2466 const char *const *id, 2467 int num_id) 2468 { 2469 int i; 2470 2471 for (i = 0; i < num_id; ++i) 2472 regulator_unregister_supply_alias(dev, id[i]); 2473 } 2474 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2475 2476 2477 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2478 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2479 const struct regulator_config *config) 2480 { 2481 struct regulator_enable_gpio *pin, *new_pin; 2482 struct gpio_desc *gpiod; 2483 2484 gpiod = config->ena_gpiod; 2485 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2486 2487 mutex_lock(®ulator_list_mutex); 2488 2489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2490 if (pin->gpiod == gpiod) { 2491 rdev_dbg(rdev, "GPIO is already used\n"); 2492 goto update_ena_gpio_to_rdev; 2493 } 2494 } 2495 2496 if (new_pin == NULL) { 2497 mutex_unlock(®ulator_list_mutex); 2498 return -ENOMEM; 2499 } 2500 2501 pin = new_pin; 2502 new_pin = NULL; 2503 2504 pin->gpiod = gpiod; 2505 list_add(&pin->list, ®ulator_ena_gpio_list); 2506 2507 update_ena_gpio_to_rdev: 2508 pin->request_count++; 2509 rdev->ena_pin = pin; 2510 2511 mutex_unlock(®ulator_list_mutex); 2512 kfree(new_pin); 2513 2514 return 0; 2515 } 2516 2517 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2518 { 2519 struct regulator_enable_gpio *pin, *n; 2520 2521 if (!rdev->ena_pin) 2522 return; 2523 2524 /* Free the GPIO only in case of no use */ 2525 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2526 if (pin != rdev->ena_pin) 2527 continue; 2528 2529 if (--pin->request_count) 2530 break; 2531 2532 gpiod_put(pin->gpiod); 2533 list_del(&pin->list); 2534 kfree(pin); 2535 break; 2536 } 2537 2538 rdev->ena_pin = NULL; 2539 } 2540 2541 /** 2542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2543 * @rdev: regulator_dev structure 2544 * @enable: enable GPIO at initial use? 2545 * 2546 * GPIO is enabled in case of initial use. (enable_count is 0) 2547 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2548 */ 2549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2550 { 2551 struct regulator_enable_gpio *pin = rdev->ena_pin; 2552 2553 if (!pin) 2554 return -EINVAL; 2555 2556 if (enable) { 2557 /* Enable GPIO at initial use */ 2558 if (pin->enable_count == 0) 2559 gpiod_set_value_cansleep(pin->gpiod, 1); 2560 2561 pin->enable_count++; 2562 } else { 2563 if (pin->enable_count > 1) { 2564 pin->enable_count--; 2565 return 0; 2566 } 2567 2568 /* Disable GPIO if not used */ 2569 if (pin->enable_count <= 1) { 2570 gpiod_set_value_cansleep(pin->gpiod, 0); 2571 pin->enable_count = 0; 2572 } 2573 } 2574 2575 return 0; 2576 } 2577 2578 /** 2579 * _regulator_delay_helper - a delay helper function 2580 * @delay: time to delay in microseconds 2581 * 2582 * Delay for the requested amount of time as per the guidelines in: 2583 * 2584 * Documentation/timers/timers-howto.rst 2585 * 2586 * The assumption here is that these regulator operations will never used in 2587 * atomic context and therefore sleeping functions can be used. 2588 */ 2589 static void _regulator_delay_helper(unsigned int delay) 2590 { 2591 unsigned int ms = delay / 1000; 2592 unsigned int us = delay % 1000; 2593 2594 if (ms > 0) { 2595 /* 2596 * For small enough values, handle super-millisecond 2597 * delays in the usleep_range() call below. 2598 */ 2599 if (ms < 20) 2600 us += ms * 1000; 2601 else 2602 msleep(ms); 2603 } 2604 2605 /* 2606 * Give the scheduler some room to coalesce with any other 2607 * wakeup sources. For delays shorter than 10 us, don't even 2608 * bother setting up high-resolution timers and just busy- 2609 * loop. 2610 */ 2611 if (us >= 10) 2612 usleep_range(us, us + 100); 2613 else 2614 udelay(us); 2615 } 2616 2617 /** 2618 * _regulator_check_status_enabled 2619 * 2620 * A helper function to check if the regulator status can be interpreted 2621 * as 'regulator is enabled'. 2622 * @rdev: the regulator device to check 2623 * 2624 * Return: 2625 * * 1 - if status shows regulator is in enabled state 2626 * * 0 - if not enabled state 2627 * * Error Value - as received from ops->get_status() 2628 */ 2629 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2630 { 2631 int ret = rdev->desc->ops->get_status(rdev); 2632 2633 if (ret < 0) { 2634 rdev_info(rdev, "get_status returned error: %d\n", ret); 2635 return ret; 2636 } 2637 2638 switch (ret) { 2639 case REGULATOR_STATUS_OFF: 2640 case REGULATOR_STATUS_ERROR: 2641 case REGULATOR_STATUS_UNDEFINED: 2642 return 0; 2643 default: 2644 return 1; 2645 } 2646 } 2647 2648 static int _regulator_do_enable(struct regulator_dev *rdev) 2649 { 2650 int ret, delay; 2651 2652 /* Query before enabling in case configuration dependent. */ 2653 ret = _regulator_get_enable_time(rdev); 2654 if (ret >= 0) { 2655 delay = ret; 2656 } else { 2657 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2658 delay = 0; 2659 } 2660 2661 trace_regulator_enable(rdev_get_name(rdev)); 2662 2663 if (rdev->desc->off_on_delay && rdev->last_off) { 2664 /* if needed, keep a distance of off_on_delay from last time 2665 * this regulator was disabled. 2666 */ 2667 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2668 s64 remaining = ktime_us_delta(end, ktime_get()); 2669 2670 if (remaining > 0) 2671 _regulator_delay_helper(remaining); 2672 } 2673 2674 if (rdev->ena_pin) { 2675 if (!rdev->ena_gpio_state) { 2676 ret = regulator_ena_gpio_ctrl(rdev, true); 2677 if (ret < 0) 2678 return ret; 2679 rdev->ena_gpio_state = 1; 2680 } 2681 } else if (rdev->desc->ops->enable) { 2682 ret = rdev->desc->ops->enable(rdev); 2683 if (ret < 0) 2684 return ret; 2685 } else { 2686 return -EINVAL; 2687 } 2688 2689 /* Allow the regulator to ramp; it would be useful to extend 2690 * this for bulk operations so that the regulators can ramp 2691 * together. 2692 */ 2693 trace_regulator_enable_delay(rdev_get_name(rdev)); 2694 2695 /* If poll_enabled_time is set, poll upto the delay calculated 2696 * above, delaying poll_enabled_time uS to check if the regulator 2697 * actually got enabled. 2698 * If the regulator isn't enabled after our delay helper has expired, 2699 * return -ETIMEDOUT. 2700 */ 2701 if (rdev->desc->poll_enabled_time) { 2702 int time_remaining = delay; 2703 2704 while (time_remaining > 0) { 2705 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2706 2707 if (rdev->desc->ops->get_status) { 2708 ret = _regulator_check_status_enabled(rdev); 2709 if (ret < 0) 2710 return ret; 2711 else if (ret) 2712 break; 2713 } else if (rdev->desc->ops->is_enabled(rdev)) 2714 break; 2715 2716 time_remaining -= rdev->desc->poll_enabled_time; 2717 } 2718 2719 if (time_remaining <= 0) { 2720 rdev_err(rdev, "Enabled check timed out\n"); 2721 return -ETIMEDOUT; 2722 } 2723 } else { 2724 _regulator_delay_helper(delay); 2725 } 2726 2727 trace_regulator_enable_complete(rdev_get_name(rdev)); 2728 2729 return 0; 2730 } 2731 2732 /** 2733 * _regulator_handle_consumer_enable - handle that a consumer enabled 2734 * @regulator: regulator source 2735 * 2736 * Some things on a regulator consumer (like the contribution towards total 2737 * load on the regulator) only have an effect when the consumer wants the 2738 * regulator enabled. Explained in example with two consumers of the same 2739 * regulator: 2740 * consumer A: set_load(100); => total load = 0 2741 * consumer A: regulator_enable(); => total load = 100 2742 * consumer B: set_load(1000); => total load = 100 2743 * consumer B: regulator_enable(); => total load = 1100 2744 * consumer A: regulator_disable(); => total_load = 1000 2745 * 2746 * This function (together with _regulator_handle_consumer_disable) is 2747 * responsible for keeping track of the refcount for a given regulator consumer 2748 * and applying / unapplying these things. 2749 * 2750 * Returns 0 upon no error; -error upon error. 2751 */ 2752 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2753 { 2754 int ret; 2755 struct regulator_dev *rdev = regulator->rdev; 2756 2757 lockdep_assert_held_once(&rdev->mutex.base); 2758 2759 regulator->enable_count++; 2760 if (regulator->uA_load && regulator->enable_count == 1) { 2761 ret = drms_uA_update(rdev); 2762 if (ret) 2763 regulator->enable_count--; 2764 return ret; 2765 } 2766 2767 return 0; 2768 } 2769 2770 /** 2771 * _regulator_handle_consumer_disable - handle that a consumer disabled 2772 * @regulator: regulator source 2773 * 2774 * The opposite of _regulator_handle_consumer_enable(). 2775 * 2776 * Returns 0 upon no error; -error upon error. 2777 */ 2778 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2779 { 2780 struct regulator_dev *rdev = regulator->rdev; 2781 2782 lockdep_assert_held_once(&rdev->mutex.base); 2783 2784 if (!regulator->enable_count) { 2785 rdev_err(rdev, "Underflow of regulator enable count\n"); 2786 return -EINVAL; 2787 } 2788 2789 regulator->enable_count--; 2790 if (regulator->uA_load && regulator->enable_count == 0) 2791 return drms_uA_update(rdev); 2792 2793 return 0; 2794 } 2795 2796 /* locks held by regulator_enable() */ 2797 static int _regulator_enable(struct regulator *regulator) 2798 { 2799 struct regulator_dev *rdev = regulator->rdev; 2800 int ret; 2801 2802 lockdep_assert_held_once(&rdev->mutex.base); 2803 2804 if (rdev->use_count == 0 && rdev->supply) { 2805 ret = _regulator_enable(rdev->supply); 2806 if (ret < 0) 2807 return ret; 2808 } 2809 2810 /* balance only if there are regulators coupled */ 2811 if (rdev->coupling_desc.n_coupled > 1) { 2812 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2813 if (ret < 0) 2814 goto err_disable_supply; 2815 } 2816 2817 ret = _regulator_handle_consumer_enable(regulator); 2818 if (ret < 0) 2819 goto err_disable_supply; 2820 2821 if (rdev->use_count == 0) { 2822 /* 2823 * The regulator may already be enabled if it's not switchable 2824 * or was left on 2825 */ 2826 ret = _regulator_is_enabled(rdev); 2827 if (ret == -EINVAL || ret == 0) { 2828 if (!regulator_ops_is_valid(rdev, 2829 REGULATOR_CHANGE_STATUS)) { 2830 ret = -EPERM; 2831 goto err_consumer_disable; 2832 } 2833 2834 ret = _regulator_do_enable(rdev); 2835 if (ret < 0) 2836 goto err_consumer_disable; 2837 2838 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2839 NULL); 2840 } else if (ret < 0) { 2841 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2842 goto err_consumer_disable; 2843 } 2844 /* Fallthrough on positive return values - already enabled */ 2845 } 2846 2847 rdev->use_count++; 2848 2849 return 0; 2850 2851 err_consumer_disable: 2852 _regulator_handle_consumer_disable(regulator); 2853 2854 err_disable_supply: 2855 if (rdev->use_count == 0 && rdev->supply) 2856 _regulator_disable(rdev->supply); 2857 2858 return ret; 2859 } 2860 2861 /** 2862 * regulator_enable - enable regulator output 2863 * @regulator: regulator source 2864 * 2865 * Request that the regulator be enabled with the regulator output at 2866 * the predefined voltage or current value. Calls to regulator_enable() 2867 * must be balanced with calls to regulator_disable(). 2868 * 2869 * NOTE: the output value can be set by other drivers, boot loader or may be 2870 * hardwired in the regulator. 2871 */ 2872 int regulator_enable(struct regulator *regulator) 2873 { 2874 struct regulator_dev *rdev = regulator->rdev; 2875 struct ww_acquire_ctx ww_ctx; 2876 int ret; 2877 2878 regulator_lock_dependent(rdev, &ww_ctx); 2879 ret = _regulator_enable(regulator); 2880 regulator_unlock_dependent(rdev, &ww_ctx); 2881 2882 return ret; 2883 } 2884 EXPORT_SYMBOL_GPL(regulator_enable); 2885 2886 static int _regulator_do_disable(struct regulator_dev *rdev) 2887 { 2888 int ret; 2889 2890 trace_regulator_disable(rdev_get_name(rdev)); 2891 2892 if (rdev->ena_pin) { 2893 if (rdev->ena_gpio_state) { 2894 ret = regulator_ena_gpio_ctrl(rdev, false); 2895 if (ret < 0) 2896 return ret; 2897 rdev->ena_gpio_state = 0; 2898 } 2899 2900 } else if (rdev->desc->ops->disable) { 2901 ret = rdev->desc->ops->disable(rdev); 2902 if (ret != 0) 2903 return ret; 2904 } 2905 2906 if (rdev->desc->off_on_delay) 2907 rdev->last_off = ktime_get(); 2908 2909 trace_regulator_disable_complete(rdev_get_name(rdev)); 2910 2911 return 0; 2912 } 2913 2914 /* locks held by regulator_disable() */ 2915 static int _regulator_disable(struct regulator *regulator) 2916 { 2917 struct regulator_dev *rdev = regulator->rdev; 2918 int ret = 0; 2919 2920 lockdep_assert_held_once(&rdev->mutex.base); 2921 2922 if (WARN(rdev->use_count <= 0, 2923 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2924 return -EIO; 2925 2926 /* are we the last user and permitted to disable ? */ 2927 if (rdev->use_count == 1 && 2928 (rdev->constraints && !rdev->constraints->always_on)) { 2929 2930 /* we are last user */ 2931 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2932 ret = _notifier_call_chain(rdev, 2933 REGULATOR_EVENT_PRE_DISABLE, 2934 NULL); 2935 if (ret & NOTIFY_STOP_MASK) 2936 return -EINVAL; 2937 2938 ret = _regulator_do_disable(rdev); 2939 if (ret < 0) { 2940 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 2941 _notifier_call_chain(rdev, 2942 REGULATOR_EVENT_ABORT_DISABLE, 2943 NULL); 2944 return ret; 2945 } 2946 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2947 NULL); 2948 } 2949 2950 rdev->use_count = 0; 2951 } else if (rdev->use_count > 1) { 2952 rdev->use_count--; 2953 } 2954 2955 if (ret == 0) 2956 ret = _regulator_handle_consumer_disable(regulator); 2957 2958 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2959 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2960 2961 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2962 ret = _regulator_disable(rdev->supply); 2963 2964 return ret; 2965 } 2966 2967 /** 2968 * regulator_disable - disable regulator output 2969 * @regulator: regulator source 2970 * 2971 * Disable the regulator output voltage or current. Calls to 2972 * regulator_enable() must be balanced with calls to 2973 * regulator_disable(). 2974 * 2975 * NOTE: this will only disable the regulator output if no other consumer 2976 * devices have it enabled, the regulator device supports disabling and 2977 * machine constraints permit this operation. 2978 */ 2979 int regulator_disable(struct regulator *regulator) 2980 { 2981 struct regulator_dev *rdev = regulator->rdev; 2982 struct ww_acquire_ctx ww_ctx; 2983 int ret; 2984 2985 regulator_lock_dependent(rdev, &ww_ctx); 2986 ret = _regulator_disable(regulator); 2987 regulator_unlock_dependent(rdev, &ww_ctx); 2988 2989 return ret; 2990 } 2991 EXPORT_SYMBOL_GPL(regulator_disable); 2992 2993 /* locks held by regulator_force_disable() */ 2994 static int _regulator_force_disable(struct regulator_dev *rdev) 2995 { 2996 int ret = 0; 2997 2998 lockdep_assert_held_once(&rdev->mutex.base); 2999 3000 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3001 REGULATOR_EVENT_PRE_DISABLE, NULL); 3002 if (ret & NOTIFY_STOP_MASK) 3003 return -EINVAL; 3004 3005 ret = _regulator_do_disable(rdev); 3006 if (ret < 0) { 3007 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3008 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3009 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3010 return ret; 3011 } 3012 3013 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3014 REGULATOR_EVENT_DISABLE, NULL); 3015 3016 return 0; 3017 } 3018 3019 /** 3020 * regulator_force_disable - force disable regulator output 3021 * @regulator: regulator source 3022 * 3023 * Forcibly disable the regulator output voltage or current. 3024 * NOTE: this *will* disable the regulator output even if other consumer 3025 * devices have it enabled. This should be used for situations when device 3026 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3027 */ 3028 int regulator_force_disable(struct regulator *regulator) 3029 { 3030 struct regulator_dev *rdev = regulator->rdev; 3031 struct ww_acquire_ctx ww_ctx; 3032 int ret; 3033 3034 regulator_lock_dependent(rdev, &ww_ctx); 3035 3036 ret = _regulator_force_disable(regulator->rdev); 3037 3038 if (rdev->coupling_desc.n_coupled > 1) 3039 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3040 3041 if (regulator->uA_load) { 3042 regulator->uA_load = 0; 3043 ret = drms_uA_update(rdev); 3044 } 3045 3046 if (rdev->use_count != 0 && rdev->supply) 3047 _regulator_disable(rdev->supply); 3048 3049 regulator_unlock_dependent(rdev, &ww_ctx); 3050 3051 return ret; 3052 } 3053 EXPORT_SYMBOL_GPL(regulator_force_disable); 3054 3055 static void regulator_disable_work(struct work_struct *work) 3056 { 3057 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3058 disable_work.work); 3059 struct ww_acquire_ctx ww_ctx; 3060 int count, i, ret; 3061 struct regulator *regulator; 3062 int total_count = 0; 3063 3064 regulator_lock_dependent(rdev, &ww_ctx); 3065 3066 /* 3067 * Workqueue functions queue the new work instance while the previous 3068 * work instance is being processed. Cancel the queued work instance 3069 * as the work instance under processing does the job of the queued 3070 * work instance. 3071 */ 3072 cancel_delayed_work(&rdev->disable_work); 3073 3074 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3075 count = regulator->deferred_disables; 3076 3077 if (!count) 3078 continue; 3079 3080 total_count += count; 3081 regulator->deferred_disables = 0; 3082 3083 for (i = 0; i < count; i++) { 3084 ret = _regulator_disable(regulator); 3085 if (ret != 0) 3086 rdev_err(rdev, "Deferred disable failed: %pe\n", 3087 ERR_PTR(ret)); 3088 } 3089 } 3090 WARN_ON(!total_count); 3091 3092 if (rdev->coupling_desc.n_coupled > 1) 3093 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3094 3095 regulator_unlock_dependent(rdev, &ww_ctx); 3096 } 3097 3098 /** 3099 * regulator_disable_deferred - disable regulator output with delay 3100 * @regulator: regulator source 3101 * @ms: milliseconds until the regulator is disabled 3102 * 3103 * Execute regulator_disable() on the regulator after a delay. This 3104 * is intended for use with devices that require some time to quiesce. 3105 * 3106 * NOTE: this will only disable the regulator output if no other consumer 3107 * devices have it enabled, the regulator device supports disabling and 3108 * machine constraints permit this operation. 3109 */ 3110 int regulator_disable_deferred(struct regulator *regulator, int ms) 3111 { 3112 struct regulator_dev *rdev = regulator->rdev; 3113 3114 if (!ms) 3115 return regulator_disable(regulator); 3116 3117 regulator_lock(rdev); 3118 regulator->deferred_disables++; 3119 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3120 msecs_to_jiffies(ms)); 3121 regulator_unlock(rdev); 3122 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3126 3127 static int _regulator_is_enabled(struct regulator_dev *rdev) 3128 { 3129 /* A GPIO control always takes precedence */ 3130 if (rdev->ena_pin) 3131 return rdev->ena_gpio_state; 3132 3133 /* If we don't know then assume that the regulator is always on */ 3134 if (!rdev->desc->ops->is_enabled) 3135 return 1; 3136 3137 return rdev->desc->ops->is_enabled(rdev); 3138 } 3139 3140 static int _regulator_list_voltage(struct regulator_dev *rdev, 3141 unsigned selector, int lock) 3142 { 3143 const struct regulator_ops *ops = rdev->desc->ops; 3144 int ret; 3145 3146 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3147 return rdev->desc->fixed_uV; 3148 3149 if (ops->list_voltage) { 3150 if (selector >= rdev->desc->n_voltages) 3151 return -EINVAL; 3152 if (selector < rdev->desc->linear_min_sel) 3153 return 0; 3154 if (lock) 3155 regulator_lock(rdev); 3156 ret = ops->list_voltage(rdev, selector); 3157 if (lock) 3158 regulator_unlock(rdev); 3159 } else if (rdev->is_switch && rdev->supply) { 3160 ret = _regulator_list_voltage(rdev->supply->rdev, 3161 selector, lock); 3162 } else { 3163 return -EINVAL; 3164 } 3165 3166 if (ret > 0) { 3167 if (ret < rdev->constraints->min_uV) 3168 ret = 0; 3169 else if (ret > rdev->constraints->max_uV) 3170 ret = 0; 3171 } 3172 3173 return ret; 3174 } 3175 3176 /** 3177 * regulator_is_enabled - is the regulator output enabled 3178 * @regulator: regulator source 3179 * 3180 * Returns positive if the regulator driver backing the source/client 3181 * has requested that the device be enabled, zero if it hasn't, else a 3182 * negative errno code. 3183 * 3184 * Note that the device backing this regulator handle can have multiple 3185 * users, so it might be enabled even if regulator_enable() was never 3186 * called for this particular source. 3187 */ 3188 int regulator_is_enabled(struct regulator *regulator) 3189 { 3190 int ret; 3191 3192 if (regulator->always_on) 3193 return 1; 3194 3195 regulator_lock(regulator->rdev); 3196 ret = _regulator_is_enabled(regulator->rdev); 3197 regulator_unlock(regulator->rdev); 3198 3199 return ret; 3200 } 3201 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3202 3203 /** 3204 * regulator_count_voltages - count regulator_list_voltage() selectors 3205 * @regulator: regulator source 3206 * 3207 * Returns number of selectors, or negative errno. Selectors are 3208 * numbered starting at zero, and typically correspond to bitfields 3209 * in hardware registers. 3210 */ 3211 int regulator_count_voltages(struct regulator *regulator) 3212 { 3213 struct regulator_dev *rdev = regulator->rdev; 3214 3215 if (rdev->desc->n_voltages) 3216 return rdev->desc->n_voltages; 3217 3218 if (!rdev->is_switch || !rdev->supply) 3219 return -EINVAL; 3220 3221 return regulator_count_voltages(rdev->supply); 3222 } 3223 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3224 3225 /** 3226 * regulator_list_voltage - enumerate supported voltages 3227 * @regulator: regulator source 3228 * @selector: identify voltage to list 3229 * Context: can sleep 3230 * 3231 * Returns a voltage that can be passed to @regulator_set_voltage(), 3232 * zero if this selector code can't be used on this system, or a 3233 * negative errno. 3234 */ 3235 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3236 { 3237 return _regulator_list_voltage(regulator->rdev, selector, 1); 3238 } 3239 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3240 3241 /** 3242 * regulator_get_regmap - get the regulator's register map 3243 * @regulator: regulator source 3244 * 3245 * Returns the register map for the given regulator, or an ERR_PTR value 3246 * if the regulator doesn't use regmap. 3247 */ 3248 struct regmap *regulator_get_regmap(struct regulator *regulator) 3249 { 3250 struct regmap *map = regulator->rdev->regmap; 3251 3252 return map ? map : ERR_PTR(-EOPNOTSUPP); 3253 } 3254 3255 /** 3256 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3257 * @regulator: regulator source 3258 * @vsel_reg: voltage selector register, output parameter 3259 * @vsel_mask: mask for voltage selector bitfield, output parameter 3260 * 3261 * Returns the hardware register offset and bitmask used for setting the 3262 * regulator voltage. This might be useful when configuring voltage-scaling 3263 * hardware or firmware that can make I2C requests behind the kernel's back, 3264 * for example. 3265 * 3266 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3267 * and 0 is returned, otherwise a negative errno is returned. 3268 */ 3269 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3270 unsigned *vsel_reg, 3271 unsigned *vsel_mask) 3272 { 3273 struct regulator_dev *rdev = regulator->rdev; 3274 const struct regulator_ops *ops = rdev->desc->ops; 3275 3276 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3277 return -EOPNOTSUPP; 3278 3279 *vsel_reg = rdev->desc->vsel_reg; 3280 *vsel_mask = rdev->desc->vsel_mask; 3281 3282 return 0; 3283 } 3284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3285 3286 /** 3287 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3288 * @regulator: regulator source 3289 * @selector: identify voltage to list 3290 * 3291 * Converts the selector to a hardware-specific voltage selector that can be 3292 * directly written to the regulator registers. The address of the voltage 3293 * register can be determined by calling @regulator_get_hardware_vsel_register. 3294 * 3295 * On error a negative errno is returned. 3296 */ 3297 int regulator_list_hardware_vsel(struct regulator *regulator, 3298 unsigned selector) 3299 { 3300 struct regulator_dev *rdev = regulator->rdev; 3301 const struct regulator_ops *ops = rdev->desc->ops; 3302 3303 if (selector >= rdev->desc->n_voltages) 3304 return -EINVAL; 3305 if (selector < rdev->desc->linear_min_sel) 3306 return 0; 3307 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3308 return -EOPNOTSUPP; 3309 3310 return selector; 3311 } 3312 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3313 3314 /** 3315 * regulator_get_linear_step - return the voltage step size between VSEL values 3316 * @regulator: regulator source 3317 * 3318 * Returns the voltage step size between VSEL values for linear 3319 * regulators, or return 0 if the regulator isn't a linear regulator. 3320 */ 3321 unsigned int regulator_get_linear_step(struct regulator *regulator) 3322 { 3323 struct regulator_dev *rdev = regulator->rdev; 3324 3325 return rdev->desc->uV_step; 3326 } 3327 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3328 3329 /** 3330 * regulator_is_supported_voltage - check if a voltage range can be supported 3331 * 3332 * @regulator: Regulator to check. 3333 * @min_uV: Minimum required voltage in uV. 3334 * @max_uV: Maximum required voltage in uV. 3335 * 3336 * Returns a boolean. 3337 */ 3338 int regulator_is_supported_voltage(struct regulator *regulator, 3339 int min_uV, int max_uV) 3340 { 3341 struct regulator_dev *rdev = regulator->rdev; 3342 int i, voltages, ret; 3343 3344 /* If we can't change voltage check the current voltage */ 3345 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3346 ret = regulator_get_voltage(regulator); 3347 if (ret >= 0) 3348 return min_uV <= ret && ret <= max_uV; 3349 else 3350 return ret; 3351 } 3352 3353 /* Any voltage within constrains range is fine? */ 3354 if (rdev->desc->continuous_voltage_range) 3355 return min_uV >= rdev->constraints->min_uV && 3356 max_uV <= rdev->constraints->max_uV; 3357 3358 ret = regulator_count_voltages(regulator); 3359 if (ret < 0) 3360 return 0; 3361 voltages = ret; 3362 3363 for (i = 0; i < voltages; i++) { 3364 ret = regulator_list_voltage(regulator, i); 3365 3366 if (ret >= min_uV && ret <= max_uV) 3367 return 1; 3368 } 3369 3370 return 0; 3371 } 3372 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3373 3374 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3375 int max_uV) 3376 { 3377 const struct regulator_desc *desc = rdev->desc; 3378 3379 if (desc->ops->map_voltage) 3380 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3381 3382 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3383 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3384 3385 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3386 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3387 3388 if (desc->ops->list_voltage == 3389 regulator_list_voltage_pickable_linear_range) 3390 return regulator_map_voltage_pickable_linear_range(rdev, 3391 min_uV, max_uV); 3392 3393 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3394 } 3395 3396 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3397 int min_uV, int max_uV, 3398 unsigned *selector) 3399 { 3400 struct pre_voltage_change_data data; 3401 int ret; 3402 3403 data.old_uV = regulator_get_voltage_rdev(rdev); 3404 data.min_uV = min_uV; 3405 data.max_uV = max_uV; 3406 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3407 &data); 3408 if (ret & NOTIFY_STOP_MASK) 3409 return -EINVAL; 3410 3411 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3412 if (ret >= 0) 3413 return ret; 3414 3415 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3416 (void *)data.old_uV); 3417 3418 return ret; 3419 } 3420 3421 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3422 int uV, unsigned selector) 3423 { 3424 struct pre_voltage_change_data data; 3425 int ret; 3426 3427 data.old_uV = regulator_get_voltage_rdev(rdev); 3428 data.min_uV = uV; 3429 data.max_uV = uV; 3430 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3431 &data); 3432 if (ret & NOTIFY_STOP_MASK) 3433 return -EINVAL; 3434 3435 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3436 if (ret >= 0) 3437 return ret; 3438 3439 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3440 (void *)data.old_uV); 3441 3442 return ret; 3443 } 3444 3445 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3446 int uV, int new_selector) 3447 { 3448 const struct regulator_ops *ops = rdev->desc->ops; 3449 int diff, old_sel, curr_sel, ret; 3450 3451 /* Stepping is only needed if the regulator is enabled. */ 3452 if (!_regulator_is_enabled(rdev)) 3453 goto final_set; 3454 3455 if (!ops->get_voltage_sel) 3456 return -EINVAL; 3457 3458 old_sel = ops->get_voltage_sel(rdev); 3459 if (old_sel < 0) 3460 return old_sel; 3461 3462 diff = new_selector - old_sel; 3463 if (diff == 0) 3464 return 0; /* No change needed. */ 3465 3466 if (diff > 0) { 3467 /* Stepping up. */ 3468 for (curr_sel = old_sel + rdev->desc->vsel_step; 3469 curr_sel < new_selector; 3470 curr_sel += rdev->desc->vsel_step) { 3471 /* 3472 * Call the callback directly instead of using 3473 * _regulator_call_set_voltage_sel() as we don't 3474 * want to notify anyone yet. Same in the branch 3475 * below. 3476 */ 3477 ret = ops->set_voltage_sel(rdev, curr_sel); 3478 if (ret) 3479 goto try_revert; 3480 } 3481 } else { 3482 /* Stepping down. */ 3483 for (curr_sel = old_sel - rdev->desc->vsel_step; 3484 curr_sel > new_selector; 3485 curr_sel -= rdev->desc->vsel_step) { 3486 ret = ops->set_voltage_sel(rdev, curr_sel); 3487 if (ret) 3488 goto try_revert; 3489 } 3490 } 3491 3492 final_set: 3493 /* The final selector will trigger the notifiers. */ 3494 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3495 3496 try_revert: 3497 /* 3498 * At least try to return to the previous voltage if setting a new 3499 * one failed. 3500 */ 3501 (void)ops->set_voltage_sel(rdev, old_sel); 3502 return ret; 3503 } 3504 3505 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3506 int old_uV, int new_uV) 3507 { 3508 unsigned int ramp_delay = 0; 3509 3510 if (rdev->constraints->ramp_delay) 3511 ramp_delay = rdev->constraints->ramp_delay; 3512 else if (rdev->desc->ramp_delay) 3513 ramp_delay = rdev->desc->ramp_delay; 3514 else if (rdev->constraints->settling_time) 3515 return rdev->constraints->settling_time; 3516 else if (rdev->constraints->settling_time_up && 3517 (new_uV > old_uV)) 3518 return rdev->constraints->settling_time_up; 3519 else if (rdev->constraints->settling_time_down && 3520 (new_uV < old_uV)) 3521 return rdev->constraints->settling_time_down; 3522 3523 if (ramp_delay == 0) 3524 return 0; 3525 3526 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3527 } 3528 3529 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3530 int min_uV, int max_uV) 3531 { 3532 int ret; 3533 int delay = 0; 3534 int best_val = 0; 3535 unsigned int selector; 3536 int old_selector = -1; 3537 const struct regulator_ops *ops = rdev->desc->ops; 3538 int old_uV = regulator_get_voltage_rdev(rdev); 3539 3540 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3541 3542 min_uV += rdev->constraints->uV_offset; 3543 max_uV += rdev->constraints->uV_offset; 3544 3545 /* 3546 * If we can't obtain the old selector there is not enough 3547 * info to call set_voltage_time_sel(). 3548 */ 3549 if (_regulator_is_enabled(rdev) && 3550 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3551 old_selector = ops->get_voltage_sel(rdev); 3552 if (old_selector < 0) 3553 return old_selector; 3554 } 3555 3556 if (ops->set_voltage) { 3557 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3558 &selector); 3559 3560 if (ret >= 0) { 3561 if (ops->list_voltage) 3562 best_val = ops->list_voltage(rdev, 3563 selector); 3564 else 3565 best_val = regulator_get_voltage_rdev(rdev); 3566 } 3567 3568 } else if (ops->set_voltage_sel) { 3569 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3570 if (ret >= 0) { 3571 best_val = ops->list_voltage(rdev, ret); 3572 if (min_uV <= best_val && max_uV >= best_val) { 3573 selector = ret; 3574 if (old_selector == selector) 3575 ret = 0; 3576 else if (rdev->desc->vsel_step) 3577 ret = _regulator_set_voltage_sel_step( 3578 rdev, best_val, selector); 3579 else 3580 ret = _regulator_call_set_voltage_sel( 3581 rdev, best_val, selector); 3582 } else { 3583 ret = -EINVAL; 3584 } 3585 } 3586 } else { 3587 ret = -EINVAL; 3588 } 3589 3590 if (ret) 3591 goto out; 3592 3593 if (ops->set_voltage_time_sel) { 3594 /* 3595 * Call set_voltage_time_sel if successfully obtained 3596 * old_selector 3597 */ 3598 if (old_selector >= 0 && old_selector != selector) 3599 delay = ops->set_voltage_time_sel(rdev, old_selector, 3600 selector); 3601 } else { 3602 if (old_uV != best_val) { 3603 if (ops->set_voltage_time) 3604 delay = ops->set_voltage_time(rdev, old_uV, 3605 best_val); 3606 else 3607 delay = _regulator_set_voltage_time(rdev, 3608 old_uV, 3609 best_val); 3610 } 3611 } 3612 3613 if (delay < 0) { 3614 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3615 delay = 0; 3616 } 3617 3618 /* Insert any necessary delays */ 3619 _regulator_delay_helper(delay); 3620 3621 if (best_val >= 0) { 3622 unsigned long data = best_val; 3623 3624 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3625 (void *)data); 3626 } 3627 3628 out: 3629 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3630 3631 return ret; 3632 } 3633 3634 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3635 int min_uV, int max_uV, suspend_state_t state) 3636 { 3637 struct regulator_state *rstate; 3638 int uV, sel; 3639 3640 rstate = regulator_get_suspend_state(rdev, state); 3641 if (rstate == NULL) 3642 return -EINVAL; 3643 3644 if (min_uV < rstate->min_uV) 3645 min_uV = rstate->min_uV; 3646 if (max_uV > rstate->max_uV) 3647 max_uV = rstate->max_uV; 3648 3649 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3650 if (sel < 0) 3651 return sel; 3652 3653 uV = rdev->desc->ops->list_voltage(rdev, sel); 3654 if (uV >= min_uV && uV <= max_uV) 3655 rstate->uV = uV; 3656 3657 return 0; 3658 } 3659 3660 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3661 int min_uV, int max_uV, 3662 suspend_state_t state) 3663 { 3664 struct regulator_dev *rdev = regulator->rdev; 3665 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3666 int ret = 0; 3667 int old_min_uV, old_max_uV; 3668 int current_uV; 3669 3670 /* If we're setting the same range as last time the change 3671 * should be a noop (some cpufreq implementations use the same 3672 * voltage for multiple frequencies, for example). 3673 */ 3674 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3675 goto out; 3676 3677 /* If we're trying to set a range that overlaps the current voltage, 3678 * return successfully even though the regulator does not support 3679 * changing the voltage. 3680 */ 3681 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3682 current_uV = regulator_get_voltage_rdev(rdev); 3683 if (min_uV <= current_uV && current_uV <= max_uV) { 3684 voltage->min_uV = min_uV; 3685 voltage->max_uV = max_uV; 3686 goto out; 3687 } 3688 } 3689 3690 /* sanity check */ 3691 if (!rdev->desc->ops->set_voltage && 3692 !rdev->desc->ops->set_voltage_sel) { 3693 ret = -EINVAL; 3694 goto out; 3695 } 3696 3697 /* constraints check */ 3698 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3699 if (ret < 0) 3700 goto out; 3701 3702 /* restore original values in case of error */ 3703 old_min_uV = voltage->min_uV; 3704 old_max_uV = voltage->max_uV; 3705 voltage->min_uV = min_uV; 3706 voltage->max_uV = max_uV; 3707 3708 /* for not coupled regulators this will just set the voltage */ 3709 ret = regulator_balance_voltage(rdev, state); 3710 if (ret < 0) { 3711 voltage->min_uV = old_min_uV; 3712 voltage->max_uV = old_max_uV; 3713 } 3714 3715 out: 3716 return ret; 3717 } 3718 3719 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3720 int max_uV, suspend_state_t state) 3721 { 3722 int best_supply_uV = 0; 3723 int supply_change_uV = 0; 3724 int ret; 3725 3726 if (rdev->supply && 3727 regulator_ops_is_valid(rdev->supply->rdev, 3728 REGULATOR_CHANGE_VOLTAGE) && 3729 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3730 rdev->desc->ops->get_voltage_sel))) { 3731 int current_supply_uV; 3732 int selector; 3733 3734 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3735 if (selector < 0) { 3736 ret = selector; 3737 goto out; 3738 } 3739 3740 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3741 if (best_supply_uV < 0) { 3742 ret = best_supply_uV; 3743 goto out; 3744 } 3745 3746 best_supply_uV += rdev->desc->min_dropout_uV; 3747 3748 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3749 if (current_supply_uV < 0) { 3750 ret = current_supply_uV; 3751 goto out; 3752 } 3753 3754 supply_change_uV = best_supply_uV - current_supply_uV; 3755 } 3756 3757 if (supply_change_uV > 0) { 3758 ret = regulator_set_voltage_unlocked(rdev->supply, 3759 best_supply_uV, INT_MAX, state); 3760 if (ret) { 3761 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3762 ERR_PTR(ret)); 3763 goto out; 3764 } 3765 } 3766 3767 if (state == PM_SUSPEND_ON) 3768 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3769 else 3770 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3771 max_uV, state); 3772 if (ret < 0) 3773 goto out; 3774 3775 if (supply_change_uV < 0) { 3776 ret = regulator_set_voltage_unlocked(rdev->supply, 3777 best_supply_uV, INT_MAX, state); 3778 if (ret) 3779 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3780 ERR_PTR(ret)); 3781 /* No need to fail here */ 3782 ret = 0; 3783 } 3784 3785 out: 3786 return ret; 3787 } 3788 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3789 3790 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3791 int *current_uV, int *min_uV) 3792 { 3793 struct regulation_constraints *constraints = rdev->constraints; 3794 3795 /* Limit voltage change only if necessary */ 3796 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3797 return 1; 3798 3799 if (*current_uV < 0) { 3800 *current_uV = regulator_get_voltage_rdev(rdev); 3801 3802 if (*current_uV < 0) 3803 return *current_uV; 3804 } 3805 3806 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3807 return 1; 3808 3809 /* Clamp target voltage within the given step */ 3810 if (*current_uV < *min_uV) 3811 *min_uV = min(*current_uV + constraints->max_uV_step, 3812 *min_uV); 3813 else 3814 *min_uV = max(*current_uV - constraints->max_uV_step, 3815 *min_uV); 3816 3817 return 0; 3818 } 3819 3820 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3821 int *current_uV, 3822 int *min_uV, int *max_uV, 3823 suspend_state_t state, 3824 int n_coupled) 3825 { 3826 struct coupling_desc *c_desc = &rdev->coupling_desc; 3827 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3828 struct regulation_constraints *constraints = rdev->constraints; 3829 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3830 int max_current_uV = 0, min_current_uV = INT_MAX; 3831 int highest_min_uV = 0, target_uV, possible_uV; 3832 int i, ret, max_spread; 3833 bool done; 3834 3835 *current_uV = -1; 3836 3837 /* 3838 * If there are no coupled regulators, simply set the voltage 3839 * demanded by consumers. 3840 */ 3841 if (n_coupled == 1) { 3842 /* 3843 * If consumers don't provide any demands, set voltage 3844 * to min_uV 3845 */ 3846 desired_min_uV = constraints->min_uV; 3847 desired_max_uV = constraints->max_uV; 3848 3849 ret = regulator_check_consumers(rdev, 3850 &desired_min_uV, 3851 &desired_max_uV, state); 3852 if (ret < 0) 3853 return ret; 3854 3855 possible_uV = desired_min_uV; 3856 done = true; 3857 3858 goto finish; 3859 } 3860 3861 /* Find highest min desired voltage */ 3862 for (i = 0; i < n_coupled; i++) { 3863 int tmp_min = 0; 3864 int tmp_max = INT_MAX; 3865 3866 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3867 3868 ret = regulator_check_consumers(c_rdevs[i], 3869 &tmp_min, 3870 &tmp_max, state); 3871 if (ret < 0) 3872 return ret; 3873 3874 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3875 if (ret < 0) 3876 return ret; 3877 3878 highest_min_uV = max(highest_min_uV, tmp_min); 3879 3880 if (i == 0) { 3881 desired_min_uV = tmp_min; 3882 desired_max_uV = tmp_max; 3883 } 3884 } 3885 3886 max_spread = constraints->max_spread[0]; 3887 3888 /* 3889 * Let target_uV be equal to the desired one if possible. 3890 * If not, set it to minimum voltage, allowed by other coupled 3891 * regulators. 3892 */ 3893 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3894 3895 /* 3896 * Find min and max voltages, which currently aren't violating 3897 * max_spread. 3898 */ 3899 for (i = 1; i < n_coupled; i++) { 3900 int tmp_act; 3901 3902 if (!_regulator_is_enabled(c_rdevs[i])) 3903 continue; 3904 3905 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3906 if (tmp_act < 0) 3907 return tmp_act; 3908 3909 min_current_uV = min(tmp_act, min_current_uV); 3910 max_current_uV = max(tmp_act, max_current_uV); 3911 } 3912 3913 /* There aren't any other regulators enabled */ 3914 if (max_current_uV == 0) { 3915 possible_uV = target_uV; 3916 } else { 3917 /* 3918 * Correct target voltage, so as it currently isn't 3919 * violating max_spread 3920 */ 3921 possible_uV = max(target_uV, max_current_uV - max_spread); 3922 possible_uV = min(possible_uV, min_current_uV + max_spread); 3923 } 3924 3925 if (possible_uV > desired_max_uV) 3926 return -EINVAL; 3927 3928 done = (possible_uV == target_uV); 3929 desired_min_uV = possible_uV; 3930 3931 finish: 3932 /* Apply max_uV_step constraint if necessary */ 3933 if (state == PM_SUSPEND_ON) { 3934 ret = regulator_limit_voltage_step(rdev, current_uV, 3935 &desired_min_uV); 3936 if (ret < 0) 3937 return ret; 3938 3939 if (ret == 0) 3940 done = false; 3941 } 3942 3943 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3944 if (n_coupled > 1 && *current_uV == -1) { 3945 3946 if (_regulator_is_enabled(rdev)) { 3947 ret = regulator_get_voltage_rdev(rdev); 3948 if (ret < 0) 3949 return ret; 3950 3951 *current_uV = ret; 3952 } else { 3953 *current_uV = desired_min_uV; 3954 } 3955 } 3956 3957 *min_uV = desired_min_uV; 3958 *max_uV = desired_max_uV; 3959 3960 return done; 3961 } 3962 3963 int regulator_do_balance_voltage(struct regulator_dev *rdev, 3964 suspend_state_t state, bool skip_coupled) 3965 { 3966 struct regulator_dev **c_rdevs; 3967 struct regulator_dev *best_rdev; 3968 struct coupling_desc *c_desc = &rdev->coupling_desc; 3969 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3970 unsigned int delta, best_delta; 3971 unsigned long c_rdev_done = 0; 3972 bool best_c_rdev_done; 3973 3974 c_rdevs = c_desc->coupled_rdevs; 3975 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 3976 3977 /* 3978 * Find the best possible voltage change on each loop. Leave the loop 3979 * if there isn't any possible change. 3980 */ 3981 do { 3982 best_c_rdev_done = false; 3983 best_delta = 0; 3984 best_min_uV = 0; 3985 best_max_uV = 0; 3986 best_c_rdev = 0; 3987 best_rdev = NULL; 3988 3989 /* 3990 * Find highest difference between optimal voltage 3991 * and current voltage. 3992 */ 3993 for (i = 0; i < n_coupled; i++) { 3994 /* 3995 * optimal_uV is the best voltage that can be set for 3996 * i-th regulator at the moment without violating 3997 * max_spread constraint in order to balance 3998 * the coupled voltages. 3999 */ 4000 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4001 4002 if (test_bit(i, &c_rdev_done)) 4003 continue; 4004 4005 ret = regulator_get_optimal_voltage(c_rdevs[i], 4006 ¤t_uV, 4007 &optimal_uV, 4008 &optimal_max_uV, 4009 state, n_coupled); 4010 if (ret < 0) 4011 goto out; 4012 4013 delta = abs(optimal_uV - current_uV); 4014 4015 if (delta && best_delta <= delta) { 4016 best_c_rdev_done = ret; 4017 best_delta = delta; 4018 best_rdev = c_rdevs[i]; 4019 best_min_uV = optimal_uV; 4020 best_max_uV = optimal_max_uV; 4021 best_c_rdev = i; 4022 } 4023 } 4024 4025 /* Nothing to change, return successfully */ 4026 if (!best_rdev) { 4027 ret = 0; 4028 goto out; 4029 } 4030 4031 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4032 best_max_uV, state); 4033 4034 if (ret < 0) 4035 goto out; 4036 4037 if (best_c_rdev_done) 4038 set_bit(best_c_rdev, &c_rdev_done); 4039 4040 } while (n_coupled > 1); 4041 4042 out: 4043 return ret; 4044 } 4045 4046 static int regulator_balance_voltage(struct regulator_dev *rdev, 4047 suspend_state_t state) 4048 { 4049 struct coupling_desc *c_desc = &rdev->coupling_desc; 4050 struct regulator_coupler *coupler = c_desc->coupler; 4051 bool skip_coupled = false; 4052 4053 /* 4054 * If system is in a state other than PM_SUSPEND_ON, don't check 4055 * other coupled regulators. 4056 */ 4057 if (state != PM_SUSPEND_ON) 4058 skip_coupled = true; 4059 4060 if (c_desc->n_resolved < c_desc->n_coupled) { 4061 rdev_err(rdev, "Not all coupled regulators registered\n"); 4062 return -EPERM; 4063 } 4064 4065 /* Invoke custom balancer for customized couplers */ 4066 if (coupler && coupler->balance_voltage) 4067 return coupler->balance_voltage(coupler, rdev, state); 4068 4069 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4070 } 4071 4072 /** 4073 * regulator_set_voltage - set regulator output voltage 4074 * @regulator: regulator source 4075 * @min_uV: Minimum required voltage in uV 4076 * @max_uV: Maximum acceptable voltage in uV 4077 * 4078 * Sets a voltage regulator to the desired output voltage. This can be set 4079 * during any regulator state. IOW, regulator can be disabled or enabled. 4080 * 4081 * If the regulator is enabled then the voltage will change to the new value 4082 * immediately otherwise if the regulator is disabled the regulator will 4083 * output at the new voltage when enabled. 4084 * 4085 * NOTE: If the regulator is shared between several devices then the lowest 4086 * request voltage that meets the system constraints will be used. 4087 * Regulator system constraints must be set for this regulator before 4088 * calling this function otherwise this call will fail. 4089 */ 4090 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4091 { 4092 struct ww_acquire_ctx ww_ctx; 4093 int ret; 4094 4095 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4096 4097 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4098 PM_SUSPEND_ON); 4099 4100 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4101 4102 return ret; 4103 } 4104 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4105 4106 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4107 suspend_state_t state, bool en) 4108 { 4109 struct regulator_state *rstate; 4110 4111 rstate = regulator_get_suspend_state(rdev, state); 4112 if (rstate == NULL) 4113 return -EINVAL; 4114 4115 if (!rstate->changeable) 4116 return -EPERM; 4117 4118 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4119 4120 return 0; 4121 } 4122 4123 int regulator_suspend_enable(struct regulator_dev *rdev, 4124 suspend_state_t state) 4125 { 4126 return regulator_suspend_toggle(rdev, state, true); 4127 } 4128 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4129 4130 int regulator_suspend_disable(struct regulator_dev *rdev, 4131 suspend_state_t state) 4132 { 4133 struct regulator *regulator; 4134 struct regulator_voltage *voltage; 4135 4136 /* 4137 * if any consumer wants this regulator device keeping on in 4138 * suspend states, don't set it as disabled. 4139 */ 4140 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4141 voltage = ®ulator->voltage[state]; 4142 if (voltage->min_uV || voltage->max_uV) 4143 return 0; 4144 } 4145 4146 return regulator_suspend_toggle(rdev, state, false); 4147 } 4148 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4149 4150 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4151 int min_uV, int max_uV, 4152 suspend_state_t state) 4153 { 4154 struct regulator_dev *rdev = regulator->rdev; 4155 struct regulator_state *rstate; 4156 4157 rstate = regulator_get_suspend_state(rdev, state); 4158 if (rstate == NULL) 4159 return -EINVAL; 4160 4161 if (rstate->min_uV == rstate->max_uV) { 4162 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4163 return -EPERM; 4164 } 4165 4166 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4167 } 4168 4169 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4170 int max_uV, suspend_state_t state) 4171 { 4172 struct ww_acquire_ctx ww_ctx; 4173 int ret; 4174 4175 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4176 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4177 return -EINVAL; 4178 4179 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4180 4181 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4182 max_uV, state); 4183 4184 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4185 4186 return ret; 4187 } 4188 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4189 4190 /** 4191 * regulator_set_voltage_time - get raise/fall time 4192 * @regulator: regulator source 4193 * @old_uV: starting voltage in microvolts 4194 * @new_uV: target voltage in microvolts 4195 * 4196 * Provided with the starting and ending voltage, this function attempts to 4197 * calculate the time in microseconds required to rise or fall to this new 4198 * voltage. 4199 */ 4200 int regulator_set_voltage_time(struct regulator *regulator, 4201 int old_uV, int new_uV) 4202 { 4203 struct regulator_dev *rdev = regulator->rdev; 4204 const struct regulator_ops *ops = rdev->desc->ops; 4205 int old_sel = -1; 4206 int new_sel = -1; 4207 int voltage; 4208 int i; 4209 4210 if (ops->set_voltage_time) 4211 return ops->set_voltage_time(rdev, old_uV, new_uV); 4212 else if (!ops->set_voltage_time_sel) 4213 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4214 4215 /* Currently requires operations to do this */ 4216 if (!ops->list_voltage || !rdev->desc->n_voltages) 4217 return -EINVAL; 4218 4219 for (i = 0; i < rdev->desc->n_voltages; i++) { 4220 /* We only look for exact voltage matches here */ 4221 if (i < rdev->desc->linear_min_sel) 4222 continue; 4223 4224 if (old_sel >= 0 && new_sel >= 0) 4225 break; 4226 4227 voltage = regulator_list_voltage(regulator, i); 4228 if (voltage < 0) 4229 return -EINVAL; 4230 if (voltage == 0) 4231 continue; 4232 if (voltage == old_uV) 4233 old_sel = i; 4234 if (voltage == new_uV) 4235 new_sel = i; 4236 } 4237 4238 if (old_sel < 0 || new_sel < 0) 4239 return -EINVAL; 4240 4241 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4242 } 4243 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4244 4245 /** 4246 * regulator_set_voltage_time_sel - get raise/fall time 4247 * @rdev: regulator source device 4248 * @old_selector: selector for starting voltage 4249 * @new_selector: selector for target voltage 4250 * 4251 * Provided with the starting and target voltage selectors, this function 4252 * returns time in microseconds required to rise or fall to this new voltage 4253 * 4254 * Drivers providing ramp_delay in regulation_constraints can use this as their 4255 * set_voltage_time_sel() operation. 4256 */ 4257 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4258 unsigned int old_selector, 4259 unsigned int new_selector) 4260 { 4261 int old_volt, new_volt; 4262 4263 /* sanity check */ 4264 if (!rdev->desc->ops->list_voltage) 4265 return -EINVAL; 4266 4267 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4268 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4269 4270 if (rdev->desc->ops->set_voltage_time) 4271 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4272 new_volt); 4273 else 4274 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4275 } 4276 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4277 4278 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4279 { 4280 int ret; 4281 4282 regulator_lock(rdev); 4283 4284 if (!rdev->desc->ops->set_voltage && 4285 !rdev->desc->ops->set_voltage_sel) { 4286 ret = -EINVAL; 4287 goto out; 4288 } 4289 4290 /* balance only, if regulator is coupled */ 4291 if (rdev->coupling_desc.n_coupled > 1) 4292 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4293 else 4294 ret = -EOPNOTSUPP; 4295 4296 out: 4297 regulator_unlock(rdev); 4298 return ret; 4299 } 4300 4301 /** 4302 * regulator_sync_voltage - re-apply last regulator output voltage 4303 * @regulator: regulator source 4304 * 4305 * Re-apply the last configured voltage. This is intended to be used 4306 * where some external control source the consumer is cooperating with 4307 * has caused the configured voltage to change. 4308 */ 4309 int regulator_sync_voltage(struct regulator *regulator) 4310 { 4311 struct regulator_dev *rdev = regulator->rdev; 4312 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4313 int ret, min_uV, max_uV; 4314 4315 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4316 return 0; 4317 4318 regulator_lock(rdev); 4319 4320 if (!rdev->desc->ops->set_voltage && 4321 !rdev->desc->ops->set_voltage_sel) { 4322 ret = -EINVAL; 4323 goto out; 4324 } 4325 4326 /* This is only going to work if we've had a voltage configured. */ 4327 if (!voltage->min_uV && !voltage->max_uV) { 4328 ret = -EINVAL; 4329 goto out; 4330 } 4331 4332 min_uV = voltage->min_uV; 4333 max_uV = voltage->max_uV; 4334 4335 /* This should be a paranoia check... */ 4336 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4337 if (ret < 0) 4338 goto out; 4339 4340 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4341 if (ret < 0) 4342 goto out; 4343 4344 /* balance only, if regulator is coupled */ 4345 if (rdev->coupling_desc.n_coupled > 1) 4346 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4347 else 4348 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4349 4350 out: 4351 regulator_unlock(rdev); 4352 return ret; 4353 } 4354 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4355 4356 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4357 { 4358 int sel, ret; 4359 bool bypassed; 4360 4361 if (rdev->desc->ops->get_bypass) { 4362 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4363 if (ret < 0) 4364 return ret; 4365 if (bypassed) { 4366 /* if bypassed the regulator must have a supply */ 4367 if (!rdev->supply) { 4368 rdev_err(rdev, 4369 "bypassed regulator has no supply!\n"); 4370 return -EPROBE_DEFER; 4371 } 4372 4373 return regulator_get_voltage_rdev(rdev->supply->rdev); 4374 } 4375 } 4376 4377 if (rdev->desc->ops->get_voltage_sel) { 4378 sel = rdev->desc->ops->get_voltage_sel(rdev); 4379 if (sel < 0) 4380 return sel; 4381 ret = rdev->desc->ops->list_voltage(rdev, sel); 4382 } else if (rdev->desc->ops->get_voltage) { 4383 ret = rdev->desc->ops->get_voltage(rdev); 4384 } else if (rdev->desc->ops->list_voltage) { 4385 ret = rdev->desc->ops->list_voltage(rdev, 0); 4386 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4387 ret = rdev->desc->fixed_uV; 4388 } else if (rdev->supply) { 4389 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4390 } else if (rdev->supply_name) { 4391 return -EPROBE_DEFER; 4392 } else { 4393 return -EINVAL; 4394 } 4395 4396 if (ret < 0) 4397 return ret; 4398 return ret - rdev->constraints->uV_offset; 4399 } 4400 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4401 4402 /** 4403 * regulator_get_voltage - get regulator output voltage 4404 * @regulator: regulator source 4405 * 4406 * This returns the current regulator voltage in uV. 4407 * 4408 * NOTE: If the regulator is disabled it will return the voltage value. This 4409 * function should not be used to determine regulator state. 4410 */ 4411 int regulator_get_voltage(struct regulator *regulator) 4412 { 4413 struct ww_acquire_ctx ww_ctx; 4414 int ret; 4415 4416 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4417 ret = regulator_get_voltage_rdev(regulator->rdev); 4418 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4419 4420 return ret; 4421 } 4422 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4423 4424 /** 4425 * regulator_set_current_limit - set regulator output current limit 4426 * @regulator: regulator source 4427 * @min_uA: Minimum supported current in uA 4428 * @max_uA: Maximum supported current in uA 4429 * 4430 * Sets current sink to the desired output current. This can be set during 4431 * any regulator state. IOW, regulator can be disabled or enabled. 4432 * 4433 * If the regulator is enabled then the current will change to the new value 4434 * immediately otherwise if the regulator is disabled the regulator will 4435 * output at the new current when enabled. 4436 * 4437 * NOTE: Regulator system constraints must be set for this regulator before 4438 * calling this function otherwise this call will fail. 4439 */ 4440 int regulator_set_current_limit(struct regulator *regulator, 4441 int min_uA, int max_uA) 4442 { 4443 struct regulator_dev *rdev = regulator->rdev; 4444 int ret; 4445 4446 regulator_lock(rdev); 4447 4448 /* sanity check */ 4449 if (!rdev->desc->ops->set_current_limit) { 4450 ret = -EINVAL; 4451 goto out; 4452 } 4453 4454 /* constraints check */ 4455 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4456 if (ret < 0) 4457 goto out; 4458 4459 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4460 out: 4461 regulator_unlock(rdev); 4462 return ret; 4463 } 4464 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4465 4466 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4467 { 4468 /* sanity check */ 4469 if (!rdev->desc->ops->get_current_limit) 4470 return -EINVAL; 4471 4472 return rdev->desc->ops->get_current_limit(rdev); 4473 } 4474 4475 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4476 { 4477 int ret; 4478 4479 regulator_lock(rdev); 4480 ret = _regulator_get_current_limit_unlocked(rdev); 4481 regulator_unlock(rdev); 4482 4483 return ret; 4484 } 4485 4486 /** 4487 * regulator_get_current_limit - get regulator output current 4488 * @regulator: regulator source 4489 * 4490 * This returns the current supplied by the specified current sink in uA. 4491 * 4492 * NOTE: If the regulator is disabled it will return the current value. This 4493 * function should not be used to determine regulator state. 4494 */ 4495 int regulator_get_current_limit(struct regulator *regulator) 4496 { 4497 return _regulator_get_current_limit(regulator->rdev); 4498 } 4499 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4500 4501 /** 4502 * regulator_set_mode - set regulator operating mode 4503 * @regulator: regulator source 4504 * @mode: operating mode - one of the REGULATOR_MODE constants 4505 * 4506 * Set regulator operating mode to increase regulator efficiency or improve 4507 * regulation performance. 4508 * 4509 * NOTE: Regulator system constraints must be set for this regulator before 4510 * calling this function otherwise this call will fail. 4511 */ 4512 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4513 { 4514 struct regulator_dev *rdev = regulator->rdev; 4515 int ret; 4516 int regulator_curr_mode; 4517 4518 regulator_lock(rdev); 4519 4520 /* sanity check */ 4521 if (!rdev->desc->ops->set_mode) { 4522 ret = -EINVAL; 4523 goto out; 4524 } 4525 4526 /* return if the same mode is requested */ 4527 if (rdev->desc->ops->get_mode) { 4528 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4529 if (regulator_curr_mode == mode) { 4530 ret = 0; 4531 goto out; 4532 } 4533 } 4534 4535 /* constraints check */ 4536 ret = regulator_mode_constrain(rdev, &mode); 4537 if (ret < 0) 4538 goto out; 4539 4540 ret = rdev->desc->ops->set_mode(rdev, mode); 4541 out: 4542 regulator_unlock(rdev); 4543 return ret; 4544 } 4545 EXPORT_SYMBOL_GPL(regulator_set_mode); 4546 4547 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4548 { 4549 /* sanity check */ 4550 if (!rdev->desc->ops->get_mode) 4551 return -EINVAL; 4552 4553 return rdev->desc->ops->get_mode(rdev); 4554 } 4555 4556 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4557 { 4558 int ret; 4559 4560 regulator_lock(rdev); 4561 ret = _regulator_get_mode_unlocked(rdev); 4562 regulator_unlock(rdev); 4563 4564 return ret; 4565 } 4566 4567 /** 4568 * regulator_get_mode - get regulator operating mode 4569 * @regulator: regulator source 4570 * 4571 * Get the current regulator operating mode. 4572 */ 4573 unsigned int regulator_get_mode(struct regulator *regulator) 4574 { 4575 return _regulator_get_mode(regulator->rdev); 4576 } 4577 EXPORT_SYMBOL_GPL(regulator_get_mode); 4578 4579 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4580 { 4581 int ret = 0; 4582 4583 if (rdev->use_cached_err) { 4584 spin_lock(&rdev->err_lock); 4585 ret = rdev->cached_err; 4586 spin_unlock(&rdev->err_lock); 4587 } 4588 return ret; 4589 } 4590 4591 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4592 unsigned int *flags) 4593 { 4594 int cached_flags, ret = 0; 4595 4596 regulator_lock(rdev); 4597 4598 cached_flags = rdev_get_cached_err_flags(rdev); 4599 4600 if (rdev->desc->ops->get_error_flags) 4601 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4602 else if (!rdev->use_cached_err) 4603 ret = -EINVAL; 4604 4605 *flags |= cached_flags; 4606 4607 regulator_unlock(rdev); 4608 4609 return ret; 4610 } 4611 4612 /** 4613 * regulator_get_error_flags - get regulator error information 4614 * @regulator: regulator source 4615 * @flags: pointer to store error flags 4616 * 4617 * Get the current regulator error information. 4618 */ 4619 int regulator_get_error_flags(struct regulator *regulator, 4620 unsigned int *flags) 4621 { 4622 return _regulator_get_error_flags(regulator->rdev, flags); 4623 } 4624 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4625 4626 /** 4627 * regulator_set_load - set regulator load 4628 * @regulator: regulator source 4629 * @uA_load: load current 4630 * 4631 * Notifies the regulator core of a new device load. This is then used by 4632 * DRMS (if enabled by constraints) to set the most efficient regulator 4633 * operating mode for the new regulator loading. 4634 * 4635 * Consumer devices notify their supply regulator of the maximum power 4636 * they will require (can be taken from device datasheet in the power 4637 * consumption tables) when they change operational status and hence power 4638 * state. Examples of operational state changes that can affect power 4639 * consumption are :- 4640 * 4641 * o Device is opened / closed. 4642 * o Device I/O is about to begin or has just finished. 4643 * o Device is idling in between work. 4644 * 4645 * This information is also exported via sysfs to userspace. 4646 * 4647 * DRMS will sum the total requested load on the regulator and change 4648 * to the most efficient operating mode if platform constraints allow. 4649 * 4650 * NOTE: when a regulator consumer requests to have a regulator 4651 * disabled then any load that consumer requested no longer counts 4652 * toward the total requested load. If the regulator is re-enabled 4653 * then the previously requested load will start counting again. 4654 * 4655 * If a regulator is an always-on regulator then an individual consumer's 4656 * load will still be removed if that consumer is fully disabled. 4657 * 4658 * On error a negative errno is returned. 4659 */ 4660 int regulator_set_load(struct regulator *regulator, int uA_load) 4661 { 4662 struct regulator_dev *rdev = regulator->rdev; 4663 int old_uA_load; 4664 int ret = 0; 4665 4666 regulator_lock(rdev); 4667 old_uA_load = regulator->uA_load; 4668 regulator->uA_load = uA_load; 4669 if (regulator->enable_count && old_uA_load != uA_load) { 4670 ret = drms_uA_update(rdev); 4671 if (ret < 0) 4672 regulator->uA_load = old_uA_load; 4673 } 4674 regulator_unlock(rdev); 4675 4676 return ret; 4677 } 4678 EXPORT_SYMBOL_GPL(regulator_set_load); 4679 4680 /** 4681 * regulator_allow_bypass - allow the regulator to go into bypass mode 4682 * 4683 * @regulator: Regulator to configure 4684 * @enable: enable or disable bypass mode 4685 * 4686 * Allow the regulator to go into bypass mode if all other consumers 4687 * for the regulator also enable bypass mode and the machine 4688 * constraints allow this. Bypass mode means that the regulator is 4689 * simply passing the input directly to the output with no regulation. 4690 */ 4691 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4692 { 4693 struct regulator_dev *rdev = regulator->rdev; 4694 const char *name = rdev_get_name(rdev); 4695 int ret = 0; 4696 4697 if (!rdev->desc->ops->set_bypass) 4698 return 0; 4699 4700 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4701 return 0; 4702 4703 regulator_lock(rdev); 4704 4705 if (enable && !regulator->bypass) { 4706 rdev->bypass_count++; 4707 4708 if (rdev->bypass_count == rdev->open_count) { 4709 trace_regulator_bypass_enable(name); 4710 4711 ret = rdev->desc->ops->set_bypass(rdev, enable); 4712 if (ret != 0) 4713 rdev->bypass_count--; 4714 else 4715 trace_regulator_bypass_enable_complete(name); 4716 } 4717 4718 } else if (!enable && regulator->bypass) { 4719 rdev->bypass_count--; 4720 4721 if (rdev->bypass_count != rdev->open_count) { 4722 trace_regulator_bypass_disable(name); 4723 4724 ret = rdev->desc->ops->set_bypass(rdev, enable); 4725 if (ret != 0) 4726 rdev->bypass_count++; 4727 else 4728 trace_regulator_bypass_disable_complete(name); 4729 } 4730 } 4731 4732 if (ret == 0) 4733 regulator->bypass = enable; 4734 4735 regulator_unlock(rdev); 4736 4737 return ret; 4738 } 4739 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4740 4741 /** 4742 * regulator_register_notifier - register regulator event notifier 4743 * @regulator: regulator source 4744 * @nb: notifier block 4745 * 4746 * Register notifier block to receive regulator events. 4747 */ 4748 int regulator_register_notifier(struct regulator *regulator, 4749 struct notifier_block *nb) 4750 { 4751 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4752 nb); 4753 } 4754 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4755 4756 /** 4757 * regulator_unregister_notifier - unregister regulator event notifier 4758 * @regulator: regulator source 4759 * @nb: notifier block 4760 * 4761 * Unregister regulator event notifier block. 4762 */ 4763 int regulator_unregister_notifier(struct regulator *regulator, 4764 struct notifier_block *nb) 4765 { 4766 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4767 nb); 4768 } 4769 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4770 4771 /* notify regulator consumers and downstream regulator consumers. 4772 * Note mutex must be held by caller. 4773 */ 4774 static int _notifier_call_chain(struct regulator_dev *rdev, 4775 unsigned long event, void *data) 4776 { 4777 /* call rdev chain first */ 4778 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4779 } 4780 4781 /** 4782 * regulator_bulk_get - get multiple regulator consumers 4783 * 4784 * @dev: Device to supply 4785 * @num_consumers: Number of consumers to register 4786 * @consumers: Configuration of consumers; clients are stored here. 4787 * 4788 * @return 0 on success, an errno on failure. 4789 * 4790 * This helper function allows drivers to get several regulator 4791 * consumers in one operation. If any of the regulators cannot be 4792 * acquired then any regulators that were allocated will be freed 4793 * before returning to the caller. 4794 */ 4795 int regulator_bulk_get(struct device *dev, int num_consumers, 4796 struct regulator_bulk_data *consumers) 4797 { 4798 int i; 4799 int ret; 4800 4801 for (i = 0; i < num_consumers; i++) 4802 consumers[i].consumer = NULL; 4803 4804 for (i = 0; i < num_consumers; i++) { 4805 consumers[i].consumer = regulator_get(dev, 4806 consumers[i].supply); 4807 if (IS_ERR(consumers[i].consumer)) { 4808 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4809 "Failed to get supply '%s'", 4810 consumers[i].supply); 4811 consumers[i].consumer = NULL; 4812 goto err; 4813 } 4814 4815 if (consumers[i].init_load_uA > 0) { 4816 ret = regulator_set_load(consumers[i].consumer, 4817 consumers[i].init_load_uA); 4818 if (ret) { 4819 i++; 4820 goto err; 4821 } 4822 } 4823 } 4824 4825 return 0; 4826 4827 err: 4828 while (--i >= 0) 4829 regulator_put(consumers[i].consumer); 4830 4831 return ret; 4832 } 4833 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4834 4835 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4836 { 4837 struct regulator_bulk_data *bulk = data; 4838 4839 bulk->ret = regulator_enable(bulk->consumer); 4840 } 4841 4842 /** 4843 * regulator_bulk_enable - enable multiple regulator consumers 4844 * 4845 * @num_consumers: Number of consumers 4846 * @consumers: Consumer data; clients are stored here. 4847 * @return 0 on success, an errno on failure 4848 * 4849 * This convenience API allows consumers to enable multiple regulator 4850 * clients in a single API call. If any consumers cannot be enabled 4851 * then any others that were enabled will be disabled again prior to 4852 * return. 4853 */ 4854 int regulator_bulk_enable(int num_consumers, 4855 struct regulator_bulk_data *consumers) 4856 { 4857 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4858 int i; 4859 int ret = 0; 4860 4861 for (i = 0; i < num_consumers; i++) { 4862 async_schedule_domain(regulator_bulk_enable_async, 4863 &consumers[i], &async_domain); 4864 } 4865 4866 async_synchronize_full_domain(&async_domain); 4867 4868 /* If any consumer failed we need to unwind any that succeeded */ 4869 for (i = 0; i < num_consumers; i++) { 4870 if (consumers[i].ret != 0) { 4871 ret = consumers[i].ret; 4872 goto err; 4873 } 4874 } 4875 4876 return 0; 4877 4878 err: 4879 for (i = 0; i < num_consumers; i++) { 4880 if (consumers[i].ret < 0) 4881 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4882 ERR_PTR(consumers[i].ret)); 4883 else 4884 regulator_disable(consumers[i].consumer); 4885 } 4886 4887 return ret; 4888 } 4889 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4890 4891 /** 4892 * regulator_bulk_disable - disable multiple regulator consumers 4893 * 4894 * @num_consumers: Number of consumers 4895 * @consumers: Consumer data; clients are stored here. 4896 * @return 0 on success, an errno on failure 4897 * 4898 * This convenience API allows consumers to disable multiple regulator 4899 * clients in a single API call. If any consumers cannot be disabled 4900 * then any others that were disabled will be enabled again prior to 4901 * return. 4902 */ 4903 int regulator_bulk_disable(int num_consumers, 4904 struct regulator_bulk_data *consumers) 4905 { 4906 int i; 4907 int ret, r; 4908 4909 for (i = num_consumers - 1; i >= 0; --i) { 4910 ret = regulator_disable(consumers[i].consumer); 4911 if (ret != 0) 4912 goto err; 4913 } 4914 4915 return 0; 4916 4917 err: 4918 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 4919 for (++i; i < num_consumers; ++i) { 4920 r = regulator_enable(consumers[i].consumer); 4921 if (r != 0) 4922 pr_err("Failed to re-enable %s: %pe\n", 4923 consumers[i].supply, ERR_PTR(r)); 4924 } 4925 4926 return ret; 4927 } 4928 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4929 4930 /** 4931 * regulator_bulk_force_disable - force disable multiple regulator consumers 4932 * 4933 * @num_consumers: Number of consumers 4934 * @consumers: Consumer data; clients are stored here. 4935 * @return 0 on success, an errno on failure 4936 * 4937 * This convenience API allows consumers to forcibly disable multiple regulator 4938 * clients in a single API call. 4939 * NOTE: This should be used for situations when device damage will 4940 * likely occur if the regulators are not disabled (e.g. over temp). 4941 * Although regulator_force_disable function call for some consumers can 4942 * return error numbers, the function is called for all consumers. 4943 */ 4944 int regulator_bulk_force_disable(int num_consumers, 4945 struct regulator_bulk_data *consumers) 4946 { 4947 int i; 4948 int ret = 0; 4949 4950 for (i = 0; i < num_consumers; i++) { 4951 consumers[i].ret = 4952 regulator_force_disable(consumers[i].consumer); 4953 4954 /* Store first error for reporting */ 4955 if (consumers[i].ret && !ret) 4956 ret = consumers[i].ret; 4957 } 4958 4959 return ret; 4960 } 4961 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4962 4963 /** 4964 * regulator_bulk_free - free multiple regulator consumers 4965 * 4966 * @num_consumers: Number of consumers 4967 * @consumers: Consumer data; clients are stored here. 4968 * 4969 * This convenience API allows consumers to free multiple regulator 4970 * clients in a single API call. 4971 */ 4972 void regulator_bulk_free(int num_consumers, 4973 struct regulator_bulk_data *consumers) 4974 { 4975 int i; 4976 4977 for (i = 0; i < num_consumers; i++) { 4978 regulator_put(consumers[i].consumer); 4979 consumers[i].consumer = NULL; 4980 } 4981 } 4982 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4983 4984 /** 4985 * regulator_notifier_call_chain - call regulator event notifier 4986 * @rdev: regulator source 4987 * @event: notifier block 4988 * @data: callback-specific data. 4989 * 4990 * Called by regulator drivers to notify clients a regulator event has 4991 * occurred. 4992 */ 4993 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4994 unsigned long event, void *data) 4995 { 4996 _notifier_call_chain(rdev, event, data); 4997 return NOTIFY_DONE; 4998 4999 } 5000 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5001 5002 /** 5003 * regulator_mode_to_status - convert a regulator mode into a status 5004 * 5005 * @mode: Mode to convert 5006 * 5007 * Convert a regulator mode into a status. 5008 */ 5009 int regulator_mode_to_status(unsigned int mode) 5010 { 5011 switch (mode) { 5012 case REGULATOR_MODE_FAST: 5013 return REGULATOR_STATUS_FAST; 5014 case REGULATOR_MODE_NORMAL: 5015 return REGULATOR_STATUS_NORMAL; 5016 case REGULATOR_MODE_IDLE: 5017 return REGULATOR_STATUS_IDLE; 5018 case REGULATOR_MODE_STANDBY: 5019 return REGULATOR_STATUS_STANDBY; 5020 default: 5021 return REGULATOR_STATUS_UNDEFINED; 5022 } 5023 } 5024 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5025 5026 static struct attribute *regulator_dev_attrs[] = { 5027 &dev_attr_name.attr, 5028 &dev_attr_num_users.attr, 5029 &dev_attr_type.attr, 5030 &dev_attr_microvolts.attr, 5031 &dev_attr_microamps.attr, 5032 &dev_attr_opmode.attr, 5033 &dev_attr_state.attr, 5034 &dev_attr_status.attr, 5035 &dev_attr_bypass.attr, 5036 &dev_attr_requested_microamps.attr, 5037 &dev_attr_min_microvolts.attr, 5038 &dev_attr_max_microvolts.attr, 5039 &dev_attr_min_microamps.attr, 5040 &dev_attr_max_microamps.attr, 5041 &dev_attr_under_voltage.attr, 5042 &dev_attr_over_current.attr, 5043 &dev_attr_regulation_out.attr, 5044 &dev_attr_fail.attr, 5045 &dev_attr_over_temp.attr, 5046 &dev_attr_under_voltage_warn.attr, 5047 &dev_attr_over_current_warn.attr, 5048 &dev_attr_over_voltage_warn.attr, 5049 &dev_attr_over_temp_warn.attr, 5050 &dev_attr_suspend_standby_state.attr, 5051 &dev_attr_suspend_mem_state.attr, 5052 &dev_attr_suspend_disk_state.attr, 5053 &dev_attr_suspend_standby_microvolts.attr, 5054 &dev_attr_suspend_mem_microvolts.attr, 5055 &dev_attr_suspend_disk_microvolts.attr, 5056 &dev_attr_suspend_standby_mode.attr, 5057 &dev_attr_suspend_mem_mode.attr, 5058 &dev_attr_suspend_disk_mode.attr, 5059 NULL 5060 }; 5061 5062 /* 5063 * To avoid cluttering sysfs (and memory) with useless state, only 5064 * create attributes that can be meaningfully displayed. 5065 */ 5066 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5067 struct attribute *attr, int idx) 5068 { 5069 struct device *dev = kobj_to_dev(kobj); 5070 struct regulator_dev *rdev = dev_to_rdev(dev); 5071 const struct regulator_ops *ops = rdev->desc->ops; 5072 umode_t mode = attr->mode; 5073 5074 /* these three are always present */ 5075 if (attr == &dev_attr_name.attr || 5076 attr == &dev_attr_num_users.attr || 5077 attr == &dev_attr_type.attr) 5078 return mode; 5079 5080 /* some attributes need specific methods to be displayed */ 5081 if (attr == &dev_attr_microvolts.attr) { 5082 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5083 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5084 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5085 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5086 return mode; 5087 return 0; 5088 } 5089 5090 if (attr == &dev_attr_microamps.attr) 5091 return ops->get_current_limit ? mode : 0; 5092 5093 if (attr == &dev_attr_opmode.attr) 5094 return ops->get_mode ? mode : 0; 5095 5096 if (attr == &dev_attr_state.attr) 5097 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5098 5099 if (attr == &dev_attr_status.attr) 5100 return ops->get_status ? mode : 0; 5101 5102 if (attr == &dev_attr_bypass.attr) 5103 return ops->get_bypass ? mode : 0; 5104 5105 if (attr == &dev_attr_under_voltage.attr || 5106 attr == &dev_attr_over_current.attr || 5107 attr == &dev_attr_regulation_out.attr || 5108 attr == &dev_attr_fail.attr || 5109 attr == &dev_attr_over_temp.attr || 5110 attr == &dev_attr_under_voltage_warn.attr || 5111 attr == &dev_attr_over_current_warn.attr || 5112 attr == &dev_attr_over_voltage_warn.attr || 5113 attr == &dev_attr_over_temp_warn.attr) 5114 return ops->get_error_flags ? mode : 0; 5115 5116 /* constraints need specific supporting methods */ 5117 if (attr == &dev_attr_min_microvolts.attr || 5118 attr == &dev_attr_max_microvolts.attr) 5119 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5120 5121 if (attr == &dev_attr_min_microamps.attr || 5122 attr == &dev_attr_max_microamps.attr) 5123 return ops->set_current_limit ? mode : 0; 5124 5125 if (attr == &dev_attr_suspend_standby_state.attr || 5126 attr == &dev_attr_suspend_mem_state.attr || 5127 attr == &dev_attr_suspend_disk_state.attr) 5128 return mode; 5129 5130 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5131 attr == &dev_attr_suspend_mem_microvolts.attr || 5132 attr == &dev_attr_suspend_disk_microvolts.attr) 5133 return ops->set_suspend_voltage ? mode : 0; 5134 5135 if (attr == &dev_attr_suspend_standby_mode.attr || 5136 attr == &dev_attr_suspend_mem_mode.attr || 5137 attr == &dev_attr_suspend_disk_mode.attr) 5138 return ops->set_suspend_mode ? mode : 0; 5139 5140 return mode; 5141 } 5142 5143 static const struct attribute_group regulator_dev_group = { 5144 .attrs = regulator_dev_attrs, 5145 .is_visible = regulator_attr_is_visible, 5146 }; 5147 5148 static const struct attribute_group *regulator_dev_groups[] = { 5149 ®ulator_dev_group, 5150 NULL 5151 }; 5152 5153 static void regulator_dev_release(struct device *dev) 5154 { 5155 struct regulator_dev *rdev = dev_get_drvdata(dev); 5156 5157 kfree(rdev->constraints); 5158 of_node_put(rdev->dev.of_node); 5159 kfree(rdev); 5160 } 5161 5162 static void rdev_init_debugfs(struct regulator_dev *rdev) 5163 { 5164 struct device *parent = rdev->dev.parent; 5165 const char *rname = rdev_get_name(rdev); 5166 char name[NAME_MAX]; 5167 5168 /* Avoid duplicate debugfs directory names */ 5169 if (parent && rname == rdev->desc->name) { 5170 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5171 rname); 5172 rname = name; 5173 } 5174 5175 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5176 if (!rdev->debugfs) { 5177 rdev_warn(rdev, "Failed to create debugfs directory\n"); 5178 return; 5179 } 5180 5181 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5182 &rdev->use_count); 5183 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5184 &rdev->open_count); 5185 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5186 &rdev->bypass_count); 5187 } 5188 5189 static int regulator_register_resolve_supply(struct device *dev, void *data) 5190 { 5191 struct regulator_dev *rdev = dev_to_rdev(dev); 5192 5193 if (regulator_resolve_supply(rdev)) 5194 rdev_dbg(rdev, "unable to resolve supply\n"); 5195 5196 return 0; 5197 } 5198 5199 int regulator_coupler_register(struct regulator_coupler *coupler) 5200 { 5201 mutex_lock(®ulator_list_mutex); 5202 list_add_tail(&coupler->list, ®ulator_coupler_list); 5203 mutex_unlock(®ulator_list_mutex); 5204 5205 return 0; 5206 } 5207 5208 static struct regulator_coupler * 5209 regulator_find_coupler(struct regulator_dev *rdev) 5210 { 5211 struct regulator_coupler *coupler; 5212 int err; 5213 5214 /* 5215 * Note that regulators are appended to the list and the generic 5216 * coupler is registered first, hence it will be attached at last 5217 * if nobody cared. 5218 */ 5219 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5220 err = coupler->attach_regulator(coupler, rdev); 5221 if (!err) { 5222 if (!coupler->balance_voltage && 5223 rdev->coupling_desc.n_coupled > 2) 5224 goto err_unsupported; 5225 5226 return coupler; 5227 } 5228 5229 if (err < 0) 5230 return ERR_PTR(err); 5231 5232 if (err == 1) 5233 continue; 5234 5235 break; 5236 } 5237 5238 return ERR_PTR(-EINVAL); 5239 5240 err_unsupported: 5241 if (coupler->detach_regulator) 5242 coupler->detach_regulator(coupler, rdev); 5243 5244 rdev_err(rdev, 5245 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5246 5247 return ERR_PTR(-EPERM); 5248 } 5249 5250 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5251 { 5252 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5253 struct coupling_desc *c_desc = &rdev->coupling_desc; 5254 int n_coupled = c_desc->n_coupled; 5255 struct regulator_dev *c_rdev; 5256 int i; 5257 5258 for (i = 1; i < n_coupled; i++) { 5259 /* already resolved */ 5260 if (c_desc->coupled_rdevs[i]) 5261 continue; 5262 5263 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5264 5265 if (!c_rdev) 5266 continue; 5267 5268 if (c_rdev->coupling_desc.coupler != coupler) { 5269 rdev_err(rdev, "coupler mismatch with %s\n", 5270 rdev_get_name(c_rdev)); 5271 return; 5272 } 5273 5274 c_desc->coupled_rdevs[i] = c_rdev; 5275 c_desc->n_resolved++; 5276 5277 regulator_resolve_coupling(c_rdev); 5278 } 5279 } 5280 5281 static void regulator_remove_coupling(struct regulator_dev *rdev) 5282 { 5283 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5284 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5285 struct regulator_dev *__c_rdev, *c_rdev; 5286 unsigned int __n_coupled, n_coupled; 5287 int i, k; 5288 int err; 5289 5290 n_coupled = c_desc->n_coupled; 5291 5292 for (i = 1; i < n_coupled; i++) { 5293 c_rdev = c_desc->coupled_rdevs[i]; 5294 5295 if (!c_rdev) 5296 continue; 5297 5298 regulator_lock(c_rdev); 5299 5300 __c_desc = &c_rdev->coupling_desc; 5301 __n_coupled = __c_desc->n_coupled; 5302 5303 for (k = 1; k < __n_coupled; k++) { 5304 __c_rdev = __c_desc->coupled_rdevs[k]; 5305 5306 if (__c_rdev == rdev) { 5307 __c_desc->coupled_rdevs[k] = NULL; 5308 __c_desc->n_resolved--; 5309 break; 5310 } 5311 } 5312 5313 regulator_unlock(c_rdev); 5314 5315 c_desc->coupled_rdevs[i] = NULL; 5316 c_desc->n_resolved--; 5317 } 5318 5319 if (coupler && coupler->detach_regulator) { 5320 err = coupler->detach_regulator(coupler, rdev); 5321 if (err) 5322 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5323 ERR_PTR(err)); 5324 } 5325 5326 kfree(rdev->coupling_desc.coupled_rdevs); 5327 rdev->coupling_desc.coupled_rdevs = NULL; 5328 } 5329 5330 static int regulator_init_coupling(struct regulator_dev *rdev) 5331 { 5332 struct regulator_dev **coupled; 5333 int err, n_phandles; 5334 5335 if (!IS_ENABLED(CONFIG_OF)) 5336 n_phandles = 0; 5337 else 5338 n_phandles = of_get_n_coupled(rdev); 5339 5340 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5341 if (!coupled) 5342 return -ENOMEM; 5343 5344 rdev->coupling_desc.coupled_rdevs = coupled; 5345 5346 /* 5347 * Every regulator should always have coupling descriptor filled with 5348 * at least pointer to itself. 5349 */ 5350 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5351 rdev->coupling_desc.n_coupled = n_phandles + 1; 5352 rdev->coupling_desc.n_resolved++; 5353 5354 /* regulator isn't coupled */ 5355 if (n_phandles == 0) 5356 return 0; 5357 5358 if (!of_check_coupling_data(rdev)) 5359 return -EPERM; 5360 5361 mutex_lock(®ulator_list_mutex); 5362 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5363 mutex_unlock(®ulator_list_mutex); 5364 5365 if (IS_ERR(rdev->coupling_desc.coupler)) { 5366 err = PTR_ERR(rdev->coupling_desc.coupler); 5367 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5368 return err; 5369 } 5370 5371 return 0; 5372 } 5373 5374 static int generic_coupler_attach(struct regulator_coupler *coupler, 5375 struct regulator_dev *rdev) 5376 { 5377 if (rdev->coupling_desc.n_coupled > 2) { 5378 rdev_err(rdev, 5379 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5380 return -EPERM; 5381 } 5382 5383 if (!rdev->constraints->always_on) { 5384 rdev_err(rdev, 5385 "Coupling of a non always-on regulator is unimplemented\n"); 5386 return -ENOTSUPP; 5387 } 5388 5389 return 0; 5390 } 5391 5392 static struct regulator_coupler generic_regulator_coupler = { 5393 .attach_regulator = generic_coupler_attach, 5394 }; 5395 5396 /** 5397 * regulator_register - register regulator 5398 * @regulator_desc: regulator to register 5399 * @cfg: runtime configuration for regulator 5400 * 5401 * Called by regulator drivers to register a regulator. 5402 * Returns a valid pointer to struct regulator_dev on success 5403 * or an ERR_PTR() on error. 5404 */ 5405 struct regulator_dev * 5406 regulator_register(const struct regulator_desc *regulator_desc, 5407 const struct regulator_config *cfg) 5408 { 5409 const struct regulator_init_data *init_data; 5410 struct regulator_config *config = NULL; 5411 static atomic_t regulator_no = ATOMIC_INIT(-1); 5412 struct regulator_dev *rdev; 5413 bool dangling_cfg_gpiod = false; 5414 bool dangling_of_gpiod = false; 5415 struct device *dev; 5416 int ret, i; 5417 bool resolved_early = false; 5418 5419 if (cfg == NULL) 5420 return ERR_PTR(-EINVAL); 5421 if (cfg->ena_gpiod) 5422 dangling_cfg_gpiod = true; 5423 if (regulator_desc == NULL) { 5424 ret = -EINVAL; 5425 goto rinse; 5426 } 5427 5428 dev = cfg->dev; 5429 WARN_ON(!dev); 5430 5431 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5432 ret = -EINVAL; 5433 goto rinse; 5434 } 5435 5436 if (regulator_desc->type != REGULATOR_VOLTAGE && 5437 regulator_desc->type != REGULATOR_CURRENT) { 5438 ret = -EINVAL; 5439 goto rinse; 5440 } 5441 5442 /* Only one of each should be implemented */ 5443 WARN_ON(regulator_desc->ops->get_voltage && 5444 regulator_desc->ops->get_voltage_sel); 5445 WARN_ON(regulator_desc->ops->set_voltage && 5446 regulator_desc->ops->set_voltage_sel); 5447 5448 /* If we're using selectors we must implement list_voltage. */ 5449 if (regulator_desc->ops->get_voltage_sel && 5450 !regulator_desc->ops->list_voltage) { 5451 ret = -EINVAL; 5452 goto rinse; 5453 } 5454 if (regulator_desc->ops->set_voltage_sel && 5455 !regulator_desc->ops->list_voltage) { 5456 ret = -EINVAL; 5457 goto rinse; 5458 } 5459 5460 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5461 if (rdev == NULL) { 5462 ret = -ENOMEM; 5463 goto rinse; 5464 } 5465 device_initialize(&rdev->dev); 5466 spin_lock_init(&rdev->err_lock); 5467 5468 /* 5469 * Duplicate the config so the driver could override it after 5470 * parsing init data. 5471 */ 5472 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5473 if (config == NULL) { 5474 ret = -ENOMEM; 5475 goto clean; 5476 } 5477 5478 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5479 &rdev->dev.of_node); 5480 5481 /* 5482 * Sometimes not all resources are probed already so we need to take 5483 * that into account. This happens most the time if the ena_gpiod comes 5484 * from a gpio extender or something else. 5485 */ 5486 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5487 ret = -EPROBE_DEFER; 5488 goto clean; 5489 } 5490 5491 /* 5492 * We need to keep track of any GPIO descriptor coming from the 5493 * device tree until we have handled it over to the core. If the 5494 * config that was passed in to this function DOES NOT contain 5495 * a descriptor, and the config after this call DOES contain 5496 * a descriptor, we definitely got one from parsing the device 5497 * tree. 5498 */ 5499 if (!cfg->ena_gpiod && config->ena_gpiod) 5500 dangling_of_gpiod = true; 5501 if (!init_data) { 5502 init_data = config->init_data; 5503 rdev->dev.of_node = of_node_get(config->of_node); 5504 } 5505 5506 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5507 rdev->reg_data = config->driver_data; 5508 rdev->owner = regulator_desc->owner; 5509 rdev->desc = regulator_desc; 5510 if (config->regmap) 5511 rdev->regmap = config->regmap; 5512 else if (dev_get_regmap(dev, NULL)) 5513 rdev->regmap = dev_get_regmap(dev, NULL); 5514 else if (dev->parent) 5515 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5516 INIT_LIST_HEAD(&rdev->consumer_list); 5517 INIT_LIST_HEAD(&rdev->list); 5518 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5519 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5520 5521 if (init_data && init_data->supply_regulator) 5522 rdev->supply_name = init_data->supply_regulator; 5523 else if (regulator_desc->supply_name) 5524 rdev->supply_name = regulator_desc->supply_name; 5525 5526 /* register with sysfs */ 5527 rdev->dev.class = ®ulator_class; 5528 rdev->dev.parent = dev; 5529 dev_set_name(&rdev->dev, "regulator.%lu", 5530 (unsigned long) atomic_inc_return(®ulator_no)); 5531 dev_set_drvdata(&rdev->dev, rdev); 5532 5533 /* set regulator constraints */ 5534 if (init_data) 5535 rdev->constraints = kmemdup(&init_data->constraints, 5536 sizeof(*rdev->constraints), 5537 GFP_KERNEL); 5538 else 5539 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5540 GFP_KERNEL); 5541 if (!rdev->constraints) { 5542 ret = -ENOMEM; 5543 goto wash; 5544 } 5545 5546 if ((rdev->supply_name && !rdev->supply) && 5547 (rdev->constraints->always_on || 5548 rdev->constraints->boot_on)) { 5549 ret = regulator_resolve_supply(rdev); 5550 if (ret) 5551 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5552 ERR_PTR(ret)); 5553 5554 resolved_early = true; 5555 } 5556 5557 /* perform any regulator specific init */ 5558 if (init_data && init_data->regulator_init) { 5559 ret = init_data->regulator_init(rdev->reg_data); 5560 if (ret < 0) 5561 goto wash; 5562 } 5563 5564 if (config->ena_gpiod) { 5565 ret = regulator_ena_gpio_request(rdev, config); 5566 if (ret != 0) { 5567 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5568 ERR_PTR(ret)); 5569 goto wash; 5570 } 5571 /* The regulator core took over the GPIO descriptor */ 5572 dangling_cfg_gpiod = false; 5573 dangling_of_gpiod = false; 5574 } 5575 5576 ret = set_machine_constraints(rdev); 5577 if (ret == -EPROBE_DEFER && !resolved_early) { 5578 /* Regulator might be in bypass mode and so needs its supply 5579 * to set the constraints 5580 */ 5581 /* FIXME: this currently triggers a chicken-and-egg problem 5582 * when creating -SUPPLY symlink in sysfs to a regulator 5583 * that is just being created 5584 */ 5585 rdev_dbg(rdev, "will resolve supply early: %s\n", 5586 rdev->supply_name); 5587 ret = regulator_resolve_supply(rdev); 5588 if (!ret) 5589 ret = set_machine_constraints(rdev); 5590 else 5591 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5592 ERR_PTR(ret)); 5593 } 5594 if (ret < 0) 5595 goto wash; 5596 5597 ret = regulator_init_coupling(rdev); 5598 if (ret < 0) 5599 goto wash; 5600 5601 /* add consumers devices */ 5602 if (init_data) { 5603 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5604 ret = set_consumer_device_supply(rdev, 5605 init_data->consumer_supplies[i].dev_name, 5606 init_data->consumer_supplies[i].supply); 5607 if (ret < 0) { 5608 dev_err(dev, "Failed to set supply %s\n", 5609 init_data->consumer_supplies[i].supply); 5610 goto unset_supplies; 5611 } 5612 } 5613 } 5614 5615 if (!rdev->desc->ops->get_voltage && 5616 !rdev->desc->ops->list_voltage && 5617 !rdev->desc->fixed_uV) 5618 rdev->is_switch = true; 5619 5620 ret = device_add(&rdev->dev); 5621 if (ret != 0) 5622 goto unset_supplies; 5623 5624 rdev_init_debugfs(rdev); 5625 5626 /* try to resolve regulators coupling since a new one was registered */ 5627 mutex_lock(®ulator_list_mutex); 5628 regulator_resolve_coupling(rdev); 5629 mutex_unlock(®ulator_list_mutex); 5630 5631 /* try to resolve regulators supply since a new one was registered */ 5632 class_for_each_device(®ulator_class, NULL, NULL, 5633 regulator_register_resolve_supply); 5634 kfree(config); 5635 return rdev; 5636 5637 unset_supplies: 5638 mutex_lock(®ulator_list_mutex); 5639 unset_regulator_supplies(rdev); 5640 regulator_remove_coupling(rdev); 5641 mutex_unlock(®ulator_list_mutex); 5642 wash: 5643 kfree(rdev->coupling_desc.coupled_rdevs); 5644 mutex_lock(®ulator_list_mutex); 5645 regulator_ena_gpio_free(rdev); 5646 mutex_unlock(®ulator_list_mutex); 5647 clean: 5648 if (dangling_of_gpiod) 5649 gpiod_put(config->ena_gpiod); 5650 kfree(config); 5651 put_device(&rdev->dev); 5652 rinse: 5653 if (dangling_cfg_gpiod) 5654 gpiod_put(cfg->ena_gpiod); 5655 return ERR_PTR(ret); 5656 } 5657 EXPORT_SYMBOL_GPL(regulator_register); 5658 5659 /** 5660 * regulator_unregister - unregister regulator 5661 * @rdev: regulator to unregister 5662 * 5663 * Called by regulator drivers to unregister a regulator. 5664 */ 5665 void regulator_unregister(struct regulator_dev *rdev) 5666 { 5667 if (rdev == NULL) 5668 return; 5669 5670 if (rdev->supply) { 5671 while (rdev->use_count--) 5672 regulator_disable(rdev->supply); 5673 regulator_put(rdev->supply); 5674 } 5675 5676 flush_work(&rdev->disable_work.work); 5677 5678 mutex_lock(®ulator_list_mutex); 5679 5680 debugfs_remove_recursive(rdev->debugfs); 5681 WARN_ON(rdev->open_count); 5682 regulator_remove_coupling(rdev); 5683 unset_regulator_supplies(rdev); 5684 list_del(&rdev->list); 5685 regulator_ena_gpio_free(rdev); 5686 device_unregister(&rdev->dev); 5687 5688 mutex_unlock(®ulator_list_mutex); 5689 } 5690 EXPORT_SYMBOL_GPL(regulator_unregister); 5691 5692 #ifdef CONFIG_SUSPEND 5693 /** 5694 * regulator_suspend - prepare regulators for system wide suspend 5695 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5696 * 5697 * Configure each regulator with it's suspend operating parameters for state. 5698 */ 5699 static int regulator_suspend(struct device *dev) 5700 { 5701 struct regulator_dev *rdev = dev_to_rdev(dev); 5702 suspend_state_t state = pm_suspend_target_state; 5703 int ret; 5704 const struct regulator_state *rstate; 5705 5706 rstate = regulator_get_suspend_state_check(rdev, state); 5707 if (!rstate) 5708 return 0; 5709 5710 regulator_lock(rdev); 5711 ret = __suspend_set_state(rdev, rstate); 5712 regulator_unlock(rdev); 5713 5714 return ret; 5715 } 5716 5717 static int regulator_resume(struct device *dev) 5718 { 5719 suspend_state_t state = pm_suspend_target_state; 5720 struct regulator_dev *rdev = dev_to_rdev(dev); 5721 struct regulator_state *rstate; 5722 int ret = 0; 5723 5724 rstate = regulator_get_suspend_state(rdev, state); 5725 if (rstate == NULL) 5726 return 0; 5727 5728 /* Avoid grabbing the lock if we don't need to */ 5729 if (!rdev->desc->ops->resume) 5730 return 0; 5731 5732 regulator_lock(rdev); 5733 5734 if (rstate->enabled == ENABLE_IN_SUSPEND || 5735 rstate->enabled == DISABLE_IN_SUSPEND) 5736 ret = rdev->desc->ops->resume(rdev); 5737 5738 regulator_unlock(rdev); 5739 5740 return ret; 5741 } 5742 #else /* !CONFIG_SUSPEND */ 5743 5744 #define regulator_suspend NULL 5745 #define regulator_resume NULL 5746 5747 #endif /* !CONFIG_SUSPEND */ 5748 5749 #ifdef CONFIG_PM 5750 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5751 .suspend = regulator_suspend, 5752 .resume = regulator_resume, 5753 }; 5754 #endif 5755 5756 struct class regulator_class = { 5757 .name = "regulator", 5758 .dev_release = regulator_dev_release, 5759 .dev_groups = regulator_dev_groups, 5760 #ifdef CONFIG_PM 5761 .pm = ®ulator_pm_ops, 5762 #endif 5763 }; 5764 /** 5765 * regulator_has_full_constraints - the system has fully specified constraints 5766 * 5767 * Calling this function will cause the regulator API to disable all 5768 * regulators which have a zero use count and don't have an always_on 5769 * constraint in a late_initcall. 5770 * 5771 * The intention is that this will become the default behaviour in a 5772 * future kernel release so users are encouraged to use this facility 5773 * now. 5774 */ 5775 void regulator_has_full_constraints(void) 5776 { 5777 has_full_constraints = 1; 5778 } 5779 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5780 5781 /** 5782 * rdev_get_drvdata - get rdev regulator driver data 5783 * @rdev: regulator 5784 * 5785 * Get rdev regulator driver private data. This call can be used in the 5786 * regulator driver context. 5787 */ 5788 void *rdev_get_drvdata(struct regulator_dev *rdev) 5789 { 5790 return rdev->reg_data; 5791 } 5792 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5793 5794 /** 5795 * regulator_get_drvdata - get regulator driver data 5796 * @regulator: regulator 5797 * 5798 * Get regulator driver private data. This call can be used in the consumer 5799 * driver context when non API regulator specific functions need to be called. 5800 */ 5801 void *regulator_get_drvdata(struct regulator *regulator) 5802 { 5803 return regulator->rdev->reg_data; 5804 } 5805 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5806 5807 /** 5808 * regulator_set_drvdata - set regulator driver data 5809 * @regulator: regulator 5810 * @data: data 5811 */ 5812 void regulator_set_drvdata(struct regulator *regulator, void *data) 5813 { 5814 regulator->rdev->reg_data = data; 5815 } 5816 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5817 5818 /** 5819 * rdev_get_id - get regulator ID 5820 * @rdev: regulator 5821 */ 5822 int rdev_get_id(struct regulator_dev *rdev) 5823 { 5824 return rdev->desc->id; 5825 } 5826 EXPORT_SYMBOL_GPL(rdev_get_id); 5827 5828 struct device *rdev_get_dev(struct regulator_dev *rdev) 5829 { 5830 return &rdev->dev; 5831 } 5832 EXPORT_SYMBOL_GPL(rdev_get_dev); 5833 5834 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5835 { 5836 return rdev->regmap; 5837 } 5838 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5839 5840 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5841 { 5842 return reg_init_data->driver_data; 5843 } 5844 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5845 5846 #ifdef CONFIG_DEBUG_FS 5847 static int supply_map_show(struct seq_file *sf, void *data) 5848 { 5849 struct regulator_map *map; 5850 5851 list_for_each_entry(map, ®ulator_map_list, list) { 5852 seq_printf(sf, "%s -> %s.%s\n", 5853 rdev_get_name(map->regulator), map->dev_name, 5854 map->supply); 5855 } 5856 5857 return 0; 5858 } 5859 DEFINE_SHOW_ATTRIBUTE(supply_map); 5860 5861 struct summary_data { 5862 struct seq_file *s; 5863 struct regulator_dev *parent; 5864 int level; 5865 }; 5866 5867 static void regulator_summary_show_subtree(struct seq_file *s, 5868 struct regulator_dev *rdev, 5869 int level); 5870 5871 static int regulator_summary_show_children(struct device *dev, void *data) 5872 { 5873 struct regulator_dev *rdev = dev_to_rdev(dev); 5874 struct summary_data *summary_data = data; 5875 5876 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5877 regulator_summary_show_subtree(summary_data->s, rdev, 5878 summary_data->level + 1); 5879 5880 return 0; 5881 } 5882 5883 static void regulator_summary_show_subtree(struct seq_file *s, 5884 struct regulator_dev *rdev, 5885 int level) 5886 { 5887 struct regulation_constraints *c; 5888 struct regulator *consumer; 5889 struct summary_data summary_data; 5890 unsigned int opmode; 5891 5892 if (!rdev) 5893 return; 5894 5895 opmode = _regulator_get_mode_unlocked(rdev); 5896 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5897 level * 3 + 1, "", 5898 30 - level * 3, rdev_get_name(rdev), 5899 rdev->use_count, rdev->open_count, rdev->bypass_count, 5900 regulator_opmode_to_str(opmode)); 5901 5902 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5903 seq_printf(s, "%5dmA ", 5904 _regulator_get_current_limit_unlocked(rdev) / 1000); 5905 5906 c = rdev->constraints; 5907 if (c) { 5908 switch (rdev->desc->type) { 5909 case REGULATOR_VOLTAGE: 5910 seq_printf(s, "%5dmV %5dmV ", 5911 c->min_uV / 1000, c->max_uV / 1000); 5912 break; 5913 case REGULATOR_CURRENT: 5914 seq_printf(s, "%5dmA %5dmA ", 5915 c->min_uA / 1000, c->max_uA / 1000); 5916 break; 5917 } 5918 } 5919 5920 seq_puts(s, "\n"); 5921 5922 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5923 if (consumer->dev && consumer->dev->class == ®ulator_class) 5924 continue; 5925 5926 seq_printf(s, "%*s%-*s ", 5927 (level + 1) * 3 + 1, "", 5928 30 - (level + 1) * 3, 5929 consumer->supply_name ? consumer->supply_name : 5930 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5931 5932 switch (rdev->desc->type) { 5933 case REGULATOR_VOLTAGE: 5934 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5935 consumer->enable_count, 5936 consumer->uA_load / 1000, 5937 consumer->uA_load && !consumer->enable_count ? 5938 '*' : ' ', 5939 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5940 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5941 break; 5942 case REGULATOR_CURRENT: 5943 break; 5944 } 5945 5946 seq_puts(s, "\n"); 5947 } 5948 5949 summary_data.s = s; 5950 summary_data.level = level; 5951 summary_data.parent = rdev; 5952 5953 class_for_each_device(®ulator_class, NULL, &summary_data, 5954 regulator_summary_show_children); 5955 } 5956 5957 struct summary_lock_data { 5958 struct ww_acquire_ctx *ww_ctx; 5959 struct regulator_dev **new_contended_rdev; 5960 struct regulator_dev **old_contended_rdev; 5961 }; 5962 5963 static int regulator_summary_lock_one(struct device *dev, void *data) 5964 { 5965 struct regulator_dev *rdev = dev_to_rdev(dev); 5966 struct summary_lock_data *lock_data = data; 5967 int ret = 0; 5968 5969 if (rdev != *lock_data->old_contended_rdev) { 5970 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5971 5972 if (ret == -EDEADLK) 5973 *lock_data->new_contended_rdev = rdev; 5974 else 5975 WARN_ON_ONCE(ret); 5976 } else { 5977 *lock_data->old_contended_rdev = NULL; 5978 } 5979 5980 return ret; 5981 } 5982 5983 static int regulator_summary_unlock_one(struct device *dev, void *data) 5984 { 5985 struct regulator_dev *rdev = dev_to_rdev(dev); 5986 struct summary_lock_data *lock_data = data; 5987 5988 if (lock_data) { 5989 if (rdev == *lock_data->new_contended_rdev) 5990 return -EDEADLK; 5991 } 5992 5993 regulator_unlock(rdev); 5994 5995 return 0; 5996 } 5997 5998 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5999 struct regulator_dev **new_contended_rdev, 6000 struct regulator_dev **old_contended_rdev) 6001 { 6002 struct summary_lock_data lock_data; 6003 int ret; 6004 6005 lock_data.ww_ctx = ww_ctx; 6006 lock_data.new_contended_rdev = new_contended_rdev; 6007 lock_data.old_contended_rdev = old_contended_rdev; 6008 6009 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6010 regulator_summary_lock_one); 6011 if (ret) 6012 class_for_each_device(®ulator_class, NULL, &lock_data, 6013 regulator_summary_unlock_one); 6014 6015 return ret; 6016 } 6017 6018 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6019 { 6020 struct regulator_dev *new_contended_rdev = NULL; 6021 struct regulator_dev *old_contended_rdev = NULL; 6022 int err; 6023 6024 mutex_lock(®ulator_list_mutex); 6025 6026 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6027 6028 do { 6029 if (new_contended_rdev) { 6030 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6031 old_contended_rdev = new_contended_rdev; 6032 old_contended_rdev->ref_cnt++; 6033 } 6034 6035 err = regulator_summary_lock_all(ww_ctx, 6036 &new_contended_rdev, 6037 &old_contended_rdev); 6038 6039 if (old_contended_rdev) 6040 regulator_unlock(old_contended_rdev); 6041 6042 } while (err == -EDEADLK); 6043 6044 ww_acquire_done(ww_ctx); 6045 } 6046 6047 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6048 { 6049 class_for_each_device(®ulator_class, NULL, NULL, 6050 regulator_summary_unlock_one); 6051 ww_acquire_fini(ww_ctx); 6052 6053 mutex_unlock(®ulator_list_mutex); 6054 } 6055 6056 static int regulator_summary_show_roots(struct device *dev, void *data) 6057 { 6058 struct regulator_dev *rdev = dev_to_rdev(dev); 6059 struct seq_file *s = data; 6060 6061 if (!rdev->supply) 6062 regulator_summary_show_subtree(s, rdev, 0); 6063 6064 return 0; 6065 } 6066 6067 static int regulator_summary_show(struct seq_file *s, void *data) 6068 { 6069 struct ww_acquire_ctx ww_ctx; 6070 6071 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6072 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6073 6074 regulator_summary_lock(&ww_ctx); 6075 6076 class_for_each_device(®ulator_class, NULL, s, 6077 regulator_summary_show_roots); 6078 6079 regulator_summary_unlock(&ww_ctx); 6080 6081 return 0; 6082 } 6083 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6084 #endif /* CONFIG_DEBUG_FS */ 6085 6086 static int __init regulator_init(void) 6087 { 6088 int ret; 6089 6090 ret = class_register(®ulator_class); 6091 6092 debugfs_root = debugfs_create_dir("regulator", NULL); 6093 if (!debugfs_root) 6094 pr_warn("regulator: Failed to create debugfs directory\n"); 6095 6096 #ifdef CONFIG_DEBUG_FS 6097 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6098 &supply_map_fops); 6099 6100 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6101 NULL, ®ulator_summary_fops); 6102 #endif 6103 regulator_dummy_init(); 6104 6105 regulator_coupler_register(&generic_regulator_coupler); 6106 6107 return ret; 6108 } 6109 6110 /* init early to allow our consumers to complete system booting */ 6111 core_initcall(regulator_init); 6112 6113 static int regulator_late_cleanup(struct device *dev, void *data) 6114 { 6115 struct regulator_dev *rdev = dev_to_rdev(dev); 6116 struct regulation_constraints *c = rdev->constraints; 6117 int ret; 6118 6119 if (c && c->always_on) 6120 return 0; 6121 6122 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6123 return 0; 6124 6125 regulator_lock(rdev); 6126 6127 if (rdev->use_count) 6128 goto unlock; 6129 6130 /* If reading the status failed, assume that it's off. */ 6131 if (_regulator_is_enabled(rdev) <= 0) 6132 goto unlock; 6133 6134 if (have_full_constraints()) { 6135 /* We log since this may kill the system if it goes 6136 * wrong. 6137 */ 6138 rdev_info(rdev, "disabling\n"); 6139 ret = _regulator_do_disable(rdev); 6140 if (ret != 0) 6141 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6142 } else { 6143 /* The intention is that in future we will 6144 * assume that full constraints are provided 6145 * so warn even if we aren't going to do 6146 * anything here. 6147 */ 6148 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6149 } 6150 6151 unlock: 6152 regulator_unlock(rdev); 6153 6154 return 0; 6155 } 6156 6157 static void regulator_init_complete_work_function(struct work_struct *work) 6158 { 6159 /* 6160 * Regulators may had failed to resolve their input supplies 6161 * when were registered, either because the input supply was 6162 * not registered yet or because its parent device was not 6163 * bound yet. So attempt to resolve the input supplies for 6164 * pending regulators before trying to disable unused ones. 6165 */ 6166 class_for_each_device(®ulator_class, NULL, NULL, 6167 regulator_register_resolve_supply); 6168 6169 /* If we have a full configuration then disable any regulators 6170 * we have permission to change the status for and which are 6171 * not in use or always_on. This is effectively the default 6172 * for DT and ACPI as they have full constraints. 6173 */ 6174 class_for_each_device(®ulator_class, NULL, NULL, 6175 regulator_late_cleanup); 6176 } 6177 6178 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6179 regulator_init_complete_work_function); 6180 6181 static int __init regulator_init_complete(void) 6182 { 6183 /* 6184 * Since DT doesn't provide an idiomatic mechanism for 6185 * enabling full constraints and since it's much more natural 6186 * with DT to provide them just assume that a DT enabled 6187 * system has full constraints. 6188 */ 6189 if (of_have_populated_dt()) 6190 has_full_constraints = true; 6191 6192 /* 6193 * We punt completion for an arbitrary amount of time since 6194 * systems like distros will load many drivers from userspace 6195 * so consumers might not always be ready yet, this is 6196 * particularly an issue with laptops where this might bounce 6197 * the display off then on. Ideally we'd get a notification 6198 * from userspace when this happens but we don't so just wait 6199 * a bit and hope we waited long enough. It'd be better if 6200 * we'd only do this on systems that need it, and a kernel 6201 * command line option might be useful. 6202 */ 6203 schedule_delayed_work(®ulator_init_complete_work, 6204 msecs_to_jiffies(30000)); 6205 6206 return 0; 6207 } 6208 late_initcall_sync(regulator_init_complete); 6209