1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 #define rdev_crit(rdev, fmt, ...) \ 37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 38 #define rdev_err(rdev, fmt, ...) \ 39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 40 #define rdev_warn(rdev, fmt, ...) \ 41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_info(rdev, fmt, ...) \ 43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_dbg(rdev, fmt, ...) \ 45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 47 static DEFINE_WW_CLASS(regulator_ww_class); 48 static DEFINE_MUTEX(regulator_nesting_mutex); 49 static DEFINE_MUTEX(regulator_list_mutex); 50 static LIST_HEAD(regulator_map_list); 51 static LIST_HEAD(regulator_ena_gpio_list); 52 static LIST_HEAD(regulator_supply_alias_list); 53 static LIST_HEAD(regulator_coupler_list); 54 static bool has_full_constraints; 55 56 static struct dentry *debugfs_root; 57 58 /* 59 * struct regulator_map 60 * 61 * Used to provide symbolic supply names to devices. 62 */ 63 struct regulator_map { 64 struct list_head list; 65 const char *dev_name; /* The dev_name() for the consumer */ 66 const char *supply; 67 struct regulator_dev *regulator; 68 }; 69 70 /* 71 * struct regulator_enable_gpio 72 * 73 * Management for shared enable GPIO pin 74 */ 75 struct regulator_enable_gpio { 76 struct list_head list; 77 struct gpio_desc *gpiod; 78 u32 enable_count; /* a number of enabled shared GPIO */ 79 u32 request_count; /* a number of requested shared GPIO */ 80 }; 81 82 /* 83 * struct regulator_supply_alias 84 * 85 * Used to map lookups for a supply onto an alternative device. 86 */ 87 struct regulator_supply_alias { 88 struct list_head list; 89 struct device *src_dev; 90 const char *src_supply; 91 struct device *alias_dev; 92 const char *alias_supply; 93 }; 94 95 static int _regulator_is_enabled(struct regulator_dev *rdev); 96 static int _regulator_disable(struct regulator *regulator); 97 static int _regulator_get_current_limit(struct regulator_dev *rdev); 98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 99 static int _notifier_call_chain(struct regulator_dev *rdev, 100 unsigned long event, void *data); 101 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 102 int min_uV, int max_uV); 103 static int regulator_balance_voltage(struct regulator_dev *rdev, 104 suspend_state_t state); 105 static struct regulator *create_regulator(struct regulator_dev *rdev, 106 struct device *dev, 107 const char *supply_name); 108 static void destroy_regulator(struct regulator *regulator); 109 static void _regulator_put(struct regulator *regulator); 110 111 const char *rdev_get_name(struct regulator_dev *rdev) 112 { 113 if (rdev->constraints && rdev->constraints->name) 114 return rdev->constraints->name; 115 else if (rdev->desc->name) 116 return rdev->desc->name; 117 else 118 return ""; 119 } 120 121 static bool have_full_constraints(void) 122 { 123 return has_full_constraints || of_have_populated_dt(); 124 } 125 126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 127 { 128 if (!rdev->constraints) { 129 rdev_err(rdev, "no constraints\n"); 130 return false; 131 } 132 133 if (rdev->constraints->valid_ops_mask & ops) 134 return true; 135 136 return false; 137 } 138 139 /** 140 * regulator_lock_nested - lock a single regulator 141 * @rdev: regulator source 142 * @ww_ctx: w/w mutex acquire context 143 * 144 * This function can be called many times by one task on 145 * a single regulator and its mutex will be locked only 146 * once. If a task, which is calling this function is other 147 * than the one, which initially locked the mutex, it will 148 * wait on mutex. 149 */ 150 static inline int regulator_lock_nested(struct regulator_dev *rdev, 151 struct ww_acquire_ctx *ww_ctx) 152 { 153 bool lock = false; 154 int ret = 0; 155 156 mutex_lock(®ulator_nesting_mutex); 157 158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) { 159 if (rdev->mutex_owner == current) 160 rdev->ref_cnt++; 161 else 162 lock = true; 163 164 if (lock) { 165 mutex_unlock(®ulator_nesting_mutex); 166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 167 mutex_lock(®ulator_nesting_mutex); 168 } 169 } else { 170 lock = true; 171 } 172 173 if (lock && ret != -EDEADLK) { 174 rdev->ref_cnt++; 175 rdev->mutex_owner = current; 176 } 177 178 mutex_unlock(®ulator_nesting_mutex); 179 180 return ret; 181 } 182 183 /** 184 * regulator_lock - lock a single regulator 185 * @rdev: regulator source 186 * 187 * This function can be called many times by one task on 188 * a single regulator and its mutex will be locked only 189 * once. If a task, which is calling this function is other 190 * than the one, which initially locked the mutex, it will 191 * wait on mutex. 192 */ 193 static void regulator_lock(struct regulator_dev *rdev) 194 { 195 regulator_lock_nested(rdev, NULL); 196 } 197 198 /** 199 * regulator_unlock - unlock a single regulator 200 * @rdev: regulator_source 201 * 202 * This function unlocks the mutex when the 203 * reference counter reaches 0. 204 */ 205 static void regulator_unlock(struct regulator_dev *rdev) 206 { 207 mutex_lock(®ulator_nesting_mutex); 208 209 if (--rdev->ref_cnt == 0) { 210 rdev->mutex_owner = NULL; 211 ww_mutex_unlock(&rdev->mutex); 212 } 213 214 WARN_ON_ONCE(rdev->ref_cnt < 0); 215 216 mutex_unlock(®ulator_nesting_mutex); 217 } 218 219 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 220 { 221 struct regulator_dev *c_rdev; 222 int i; 223 224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 225 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 226 227 if (rdev->supply->rdev == c_rdev) 228 return true; 229 } 230 231 return false; 232 } 233 234 static void regulator_unlock_recursive(struct regulator_dev *rdev, 235 unsigned int n_coupled) 236 { 237 struct regulator_dev *c_rdev, *supply_rdev; 238 int i, supply_n_coupled; 239 240 for (i = n_coupled; i > 0; i--) { 241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 242 243 if (!c_rdev) 244 continue; 245 246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 247 supply_rdev = c_rdev->supply->rdev; 248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 249 250 regulator_unlock_recursive(supply_rdev, 251 supply_n_coupled); 252 } 253 254 regulator_unlock(c_rdev); 255 } 256 } 257 258 static int regulator_lock_recursive(struct regulator_dev *rdev, 259 struct regulator_dev **new_contended_rdev, 260 struct regulator_dev **old_contended_rdev, 261 struct ww_acquire_ctx *ww_ctx) 262 { 263 struct regulator_dev *c_rdev; 264 int i, err; 265 266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 267 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 268 269 if (!c_rdev) 270 continue; 271 272 if (c_rdev != *old_contended_rdev) { 273 err = regulator_lock_nested(c_rdev, ww_ctx); 274 if (err) { 275 if (err == -EDEADLK) { 276 *new_contended_rdev = c_rdev; 277 goto err_unlock; 278 } 279 280 /* shouldn't happen */ 281 WARN_ON_ONCE(err != -EALREADY); 282 } 283 } else { 284 *old_contended_rdev = NULL; 285 } 286 287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 288 err = regulator_lock_recursive(c_rdev->supply->rdev, 289 new_contended_rdev, 290 old_contended_rdev, 291 ww_ctx); 292 if (err) { 293 regulator_unlock(c_rdev); 294 goto err_unlock; 295 } 296 } 297 } 298 299 return 0; 300 301 err_unlock: 302 regulator_unlock_recursive(rdev, i); 303 304 return err; 305 } 306 307 /** 308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 309 * regulators 310 * @rdev: regulator source 311 * @ww_ctx: w/w mutex acquire context 312 * 313 * Unlock all regulators related with rdev by coupling or supplying. 314 */ 315 static void regulator_unlock_dependent(struct regulator_dev *rdev, 316 struct ww_acquire_ctx *ww_ctx) 317 { 318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 319 ww_acquire_fini(ww_ctx); 320 } 321 322 /** 323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 324 * @rdev: regulator source 325 * @ww_ctx: w/w mutex acquire context 326 * 327 * This function as a wrapper on regulator_lock_recursive(), which locks 328 * all regulators related with rdev by coupling or supplying. 329 */ 330 static void regulator_lock_dependent(struct regulator_dev *rdev, 331 struct ww_acquire_ctx *ww_ctx) 332 { 333 struct regulator_dev *new_contended_rdev = NULL; 334 struct regulator_dev *old_contended_rdev = NULL; 335 int err; 336 337 mutex_lock(®ulator_list_mutex); 338 339 ww_acquire_init(ww_ctx, ®ulator_ww_class); 340 341 do { 342 if (new_contended_rdev) { 343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 344 old_contended_rdev = new_contended_rdev; 345 old_contended_rdev->ref_cnt++; 346 } 347 348 err = regulator_lock_recursive(rdev, 349 &new_contended_rdev, 350 &old_contended_rdev, 351 ww_ctx); 352 353 if (old_contended_rdev) 354 regulator_unlock(old_contended_rdev); 355 356 } while (err == -EDEADLK); 357 358 ww_acquire_done(ww_ctx); 359 360 mutex_unlock(®ulator_list_mutex); 361 } 362 363 /** 364 * of_get_child_regulator - get a child regulator device node 365 * based on supply name 366 * @parent: Parent device node 367 * @prop_name: Combination regulator supply name and "-supply" 368 * 369 * Traverse all child nodes. 370 * Extract the child regulator device node corresponding to the supply name. 371 * returns the device node corresponding to the regulator if found, else 372 * returns NULL. 373 */ 374 static struct device_node *of_get_child_regulator(struct device_node *parent, 375 const char *prop_name) 376 { 377 struct device_node *regnode = NULL; 378 struct device_node *child = NULL; 379 380 for_each_child_of_node(parent, child) { 381 regnode = of_parse_phandle(child, prop_name, 0); 382 383 if (!regnode) { 384 regnode = of_get_child_regulator(child, prop_name); 385 if (regnode) 386 goto err_node_put; 387 } else { 388 goto err_node_put; 389 } 390 } 391 return NULL; 392 393 err_node_put: 394 of_node_put(child); 395 return regnode; 396 } 397 398 /** 399 * of_get_regulator - get a regulator device node based on supply name 400 * @dev: Device pointer for the consumer (of regulator) device 401 * @supply: regulator supply name 402 * 403 * Extract the regulator device node corresponding to the supply name. 404 * returns the device node corresponding to the regulator if found, else 405 * returns NULL. 406 */ 407 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 408 { 409 struct device_node *regnode = NULL; 410 char prop_name[64]; /* 64 is max size of property name */ 411 412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 413 414 snprintf(prop_name, 64, "%s-supply", supply); 415 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 416 417 if (!regnode) { 418 regnode = of_get_child_regulator(dev->of_node, prop_name); 419 if (regnode) 420 return regnode; 421 422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 423 prop_name, dev->of_node); 424 return NULL; 425 } 426 return regnode; 427 } 428 429 /* Platform voltage constraint check */ 430 int regulator_check_voltage(struct regulator_dev *rdev, 431 int *min_uV, int *max_uV) 432 { 433 BUG_ON(*min_uV > *max_uV); 434 435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 436 rdev_err(rdev, "voltage operation not allowed\n"); 437 return -EPERM; 438 } 439 440 if (*max_uV > rdev->constraints->max_uV) 441 *max_uV = rdev->constraints->max_uV; 442 if (*min_uV < rdev->constraints->min_uV) 443 *min_uV = rdev->constraints->min_uV; 444 445 if (*min_uV > *max_uV) { 446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 447 *min_uV, *max_uV); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 /* return 0 if the state is valid */ 455 static int regulator_check_states(suspend_state_t state) 456 { 457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 458 } 459 460 /* Make sure we select a voltage that suits the needs of all 461 * regulator consumers 462 */ 463 int regulator_check_consumers(struct regulator_dev *rdev, 464 int *min_uV, int *max_uV, 465 suspend_state_t state) 466 { 467 struct regulator *regulator; 468 struct regulator_voltage *voltage; 469 470 list_for_each_entry(regulator, &rdev->consumer_list, list) { 471 voltage = ®ulator->voltage[state]; 472 /* 473 * Assume consumers that didn't say anything are OK 474 * with anything in the constraint range. 475 */ 476 if (!voltage->min_uV && !voltage->max_uV) 477 continue; 478 479 if (*max_uV > voltage->max_uV) 480 *max_uV = voltage->max_uV; 481 if (*min_uV < voltage->min_uV) 482 *min_uV = voltage->min_uV; 483 } 484 485 if (*min_uV > *max_uV) { 486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 487 *min_uV, *max_uV); 488 return -EINVAL; 489 } 490 491 return 0; 492 } 493 494 /* current constraint check */ 495 static int regulator_check_current_limit(struct regulator_dev *rdev, 496 int *min_uA, int *max_uA) 497 { 498 BUG_ON(*min_uA > *max_uA); 499 500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 501 rdev_err(rdev, "current operation not allowed\n"); 502 return -EPERM; 503 } 504 505 if (*max_uA > rdev->constraints->max_uA) 506 *max_uA = rdev->constraints->max_uA; 507 if (*min_uA < rdev->constraints->min_uA) 508 *min_uA = rdev->constraints->min_uA; 509 510 if (*min_uA > *max_uA) { 511 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 512 *min_uA, *max_uA); 513 return -EINVAL; 514 } 515 516 return 0; 517 } 518 519 /* operating mode constraint check */ 520 static int regulator_mode_constrain(struct regulator_dev *rdev, 521 unsigned int *mode) 522 { 523 switch (*mode) { 524 case REGULATOR_MODE_FAST: 525 case REGULATOR_MODE_NORMAL: 526 case REGULATOR_MODE_IDLE: 527 case REGULATOR_MODE_STANDBY: 528 break; 529 default: 530 rdev_err(rdev, "invalid mode %x specified\n", *mode); 531 return -EINVAL; 532 } 533 534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 535 rdev_err(rdev, "mode operation not allowed\n"); 536 return -EPERM; 537 } 538 539 /* The modes are bitmasks, the most power hungry modes having 540 * the lowest values. If the requested mode isn't supported 541 * try higher modes. 542 */ 543 while (*mode) { 544 if (rdev->constraints->valid_modes_mask & *mode) 545 return 0; 546 *mode /= 2; 547 } 548 549 return -EINVAL; 550 } 551 552 static inline struct regulator_state * 553 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 554 { 555 if (rdev->constraints == NULL) 556 return NULL; 557 558 switch (state) { 559 case PM_SUSPEND_STANDBY: 560 return &rdev->constraints->state_standby; 561 case PM_SUSPEND_MEM: 562 return &rdev->constraints->state_mem; 563 case PM_SUSPEND_MAX: 564 return &rdev->constraints->state_disk; 565 default: 566 return NULL; 567 } 568 } 569 570 static const struct regulator_state * 571 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 572 { 573 const struct regulator_state *rstate; 574 575 rstate = regulator_get_suspend_state(rdev, state); 576 if (rstate == NULL) 577 return NULL; 578 579 /* If we have no suspend mode configuration don't set anything; 580 * only warn if the driver implements set_suspend_voltage or 581 * set_suspend_mode callback. 582 */ 583 if (rstate->enabled != ENABLE_IN_SUSPEND && 584 rstate->enabled != DISABLE_IN_SUSPEND) { 585 if (rdev->desc->ops->set_suspend_voltage || 586 rdev->desc->ops->set_suspend_mode) 587 rdev_warn(rdev, "No configuration\n"); 588 return NULL; 589 } 590 591 return rstate; 592 } 593 594 static ssize_t regulator_uV_show(struct device *dev, 595 struct device_attribute *attr, char *buf) 596 { 597 struct regulator_dev *rdev = dev_get_drvdata(dev); 598 int uV; 599 600 regulator_lock(rdev); 601 uV = regulator_get_voltage_rdev(rdev); 602 regulator_unlock(rdev); 603 604 if (uV < 0) 605 return uV; 606 return sprintf(buf, "%d\n", uV); 607 } 608 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 609 610 static ssize_t regulator_uA_show(struct device *dev, 611 struct device_attribute *attr, char *buf) 612 { 613 struct regulator_dev *rdev = dev_get_drvdata(dev); 614 615 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 616 } 617 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 618 619 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 620 char *buf) 621 { 622 struct regulator_dev *rdev = dev_get_drvdata(dev); 623 624 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 625 } 626 static DEVICE_ATTR_RO(name); 627 628 static const char *regulator_opmode_to_str(int mode) 629 { 630 switch (mode) { 631 case REGULATOR_MODE_FAST: 632 return "fast"; 633 case REGULATOR_MODE_NORMAL: 634 return "normal"; 635 case REGULATOR_MODE_IDLE: 636 return "idle"; 637 case REGULATOR_MODE_STANDBY: 638 return "standby"; 639 } 640 return "unknown"; 641 } 642 643 static ssize_t regulator_print_opmode(char *buf, int mode) 644 { 645 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 646 } 647 648 static ssize_t regulator_opmode_show(struct device *dev, 649 struct device_attribute *attr, char *buf) 650 { 651 struct regulator_dev *rdev = dev_get_drvdata(dev); 652 653 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 654 } 655 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 656 657 static ssize_t regulator_print_state(char *buf, int state) 658 { 659 if (state > 0) 660 return sprintf(buf, "enabled\n"); 661 else if (state == 0) 662 return sprintf(buf, "disabled\n"); 663 else 664 return sprintf(buf, "unknown\n"); 665 } 666 667 static ssize_t regulator_state_show(struct device *dev, 668 struct device_attribute *attr, char *buf) 669 { 670 struct regulator_dev *rdev = dev_get_drvdata(dev); 671 ssize_t ret; 672 673 regulator_lock(rdev); 674 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 675 regulator_unlock(rdev); 676 677 return ret; 678 } 679 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 680 681 static ssize_t regulator_status_show(struct device *dev, 682 struct device_attribute *attr, char *buf) 683 { 684 struct regulator_dev *rdev = dev_get_drvdata(dev); 685 int status; 686 char *label; 687 688 status = rdev->desc->ops->get_status(rdev); 689 if (status < 0) 690 return status; 691 692 switch (status) { 693 case REGULATOR_STATUS_OFF: 694 label = "off"; 695 break; 696 case REGULATOR_STATUS_ON: 697 label = "on"; 698 break; 699 case REGULATOR_STATUS_ERROR: 700 label = "error"; 701 break; 702 case REGULATOR_STATUS_FAST: 703 label = "fast"; 704 break; 705 case REGULATOR_STATUS_NORMAL: 706 label = "normal"; 707 break; 708 case REGULATOR_STATUS_IDLE: 709 label = "idle"; 710 break; 711 case REGULATOR_STATUS_STANDBY: 712 label = "standby"; 713 break; 714 case REGULATOR_STATUS_BYPASS: 715 label = "bypass"; 716 break; 717 case REGULATOR_STATUS_UNDEFINED: 718 label = "undefined"; 719 break; 720 default: 721 return -ERANGE; 722 } 723 724 return sprintf(buf, "%s\n", label); 725 } 726 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 727 728 static ssize_t regulator_min_uA_show(struct device *dev, 729 struct device_attribute *attr, char *buf) 730 { 731 struct regulator_dev *rdev = dev_get_drvdata(dev); 732 733 if (!rdev->constraints) 734 return sprintf(buf, "constraint not defined\n"); 735 736 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 737 } 738 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 739 740 static ssize_t regulator_max_uA_show(struct device *dev, 741 struct device_attribute *attr, char *buf) 742 { 743 struct regulator_dev *rdev = dev_get_drvdata(dev); 744 745 if (!rdev->constraints) 746 return sprintf(buf, "constraint not defined\n"); 747 748 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 749 } 750 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 751 752 static ssize_t regulator_min_uV_show(struct device *dev, 753 struct device_attribute *attr, char *buf) 754 { 755 struct regulator_dev *rdev = dev_get_drvdata(dev); 756 757 if (!rdev->constraints) 758 return sprintf(buf, "constraint not defined\n"); 759 760 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 761 } 762 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 763 764 static ssize_t regulator_max_uV_show(struct device *dev, 765 struct device_attribute *attr, char *buf) 766 { 767 struct regulator_dev *rdev = dev_get_drvdata(dev); 768 769 if (!rdev->constraints) 770 return sprintf(buf, "constraint not defined\n"); 771 772 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 773 } 774 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 775 776 static ssize_t regulator_total_uA_show(struct device *dev, 777 struct device_attribute *attr, char *buf) 778 { 779 struct regulator_dev *rdev = dev_get_drvdata(dev); 780 struct regulator *regulator; 781 int uA = 0; 782 783 regulator_lock(rdev); 784 list_for_each_entry(regulator, &rdev->consumer_list, list) { 785 if (regulator->enable_count) 786 uA += regulator->uA_load; 787 } 788 regulator_unlock(rdev); 789 return sprintf(buf, "%d\n", uA); 790 } 791 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 792 793 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 794 char *buf) 795 { 796 struct regulator_dev *rdev = dev_get_drvdata(dev); 797 return sprintf(buf, "%d\n", rdev->use_count); 798 } 799 static DEVICE_ATTR_RO(num_users); 800 801 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 802 char *buf) 803 { 804 struct regulator_dev *rdev = dev_get_drvdata(dev); 805 806 switch (rdev->desc->type) { 807 case REGULATOR_VOLTAGE: 808 return sprintf(buf, "voltage\n"); 809 case REGULATOR_CURRENT: 810 return sprintf(buf, "current\n"); 811 } 812 return sprintf(buf, "unknown\n"); 813 } 814 static DEVICE_ATTR_RO(type); 815 816 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 817 struct device_attribute *attr, char *buf) 818 { 819 struct regulator_dev *rdev = dev_get_drvdata(dev); 820 821 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 822 } 823 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 824 regulator_suspend_mem_uV_show, NULL); 825 826 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 827 struct device_attribute *attr, char *buf) 828 { 829 struct regulator_dev *rdev = dev_get_drvdata(dev); 830 831 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 832 } 833 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 834 regulator_suspend_disk_uV_show, NULL); 835 836 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 837 struct device_attribute *attr, char *buf) 838 { 839 struct regulator_dev *rdev = dev_get_drvdata(dev); 840 841 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 842 } 843 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 844 regulator_suspend_standby_uV_show, NULL); 845 846 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 847 struct device_attribute *attr, char *buf) 848 { 849 struct regulator_dev *rdev = dev_get_drvdata(dev); 850 851 return regulator_print_opmode(buf, 852 rdev->constraints->state_mem.mode); 853 } 854 static DEVICE_ATTR(suspend_mem_mode, 0444, 855 regulator_suspend_mem_mode_show, NULL); 856 857 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 858 struct device_attribute *attr, char *buf) 859 { 860 struct regulator_dev *rdev = dev_get_drvdata(dev); 861 862 return regulator_print_opmode(buf, 863 rdev->constraints->state_disk.mode); 864 } 865 static DEVICE_ATTR(suspend_disk_mode, 0444, 866 regulator_suspend_disk_mode_show, NULL); 867 868 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 869 struct device_attribute *attr, char *buf) 870 { 871 struct regulator_dev *rdev = dev_get_drvdata(dev); 872 873 return regulator_print_opmode(buf, 874 rdev->constraints->state_standby.mode); 875 } 876 static DEVICE_ATTR(suspend_standby_mode, 0444, 877 regulator_suspend_standby_mode_show, NULL); 878 879 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct regulator_dev *rdev = dev_get_drvdata(dev); 883 884 return regulator_print_state(buf, 885 rdev->constraints->state_mem.enabled); 886 } 887 static DEVICE_ATTR(suspend_mem_state, 0444, 888 regulator_suspend_mem_state_show, NULL); 889 890 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 891 struct device_attribute *attr, char *buf) 892 { 893 struct regulator_dev *rdev = dev_get_drvdata(dev); 894 895 return regulator_print_state(buf, 896 rdev->constraints->state_disk.enabled); 897 } 898 static DEVICE_ATTR(suspend_disk_state, 0444, 899 regulator_suspend_disk_state_show, NULL); 900 901 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 902 struct device_attribute *attr, char *buf) 903 { 904 struct regulator_dev *rdev = dev_get_drvdata(dev); 905 906 return regulator_print_state(buf, 907 rdev->constraints->state_standby.enabled); 908 } 909 static DEVICE_ATTR(suspend_standby_state, 0444, 910 regulator_suspend_standby_state_show, NULL); 911 912 static ssize_t regulator_bypass_show(struct device *dev, 913 struct device_attribute *attr, char *buf) 914 { 915 struct regulator_dev *rdev = dev_get_drvdata(dev); 916 const char *report; 917 bool bypass; 918 int ret; 919 920 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 921 922 if (ret != 0) 923 report = "unknown"; 924 else if (bypass) 925 report = "enabled"; 926 else 927 report = "disabled"; 928 929 return sprintf(buf, "%s\n", report); 930 } 931 static DEVICE_ATTR(bypass, 0444, 932 regulator_bypass_show, NULL); 933 934 /* Calculate the new optimum regulator operating mode based on the new total 935 * consumer load. All locks held by caller 936 */ 937 static int drms_uA_update(struct regulator_dev *rdev) 938 { 939 struct regulator *sibling; 940 int current_uA = 0, output_uV, input_uV, err; 941 unsigned int mode; 942 943 /* 944 * first check to see if we can set modes at all, otherwise just 945 * tell the consumer everything is OK. 946 */ 947 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 948 rdev_dbg(rdev, "DRMS operation not allowed\n"); 949 return 0; 950 } 951 952 if (!rdev->desc->ops->get_optimum_mode && 953 !rdev->desc->ops->set_load) 954 return 0; 955 956 if (!rdev->desc->ops->set_mode && 957 !rdev->desc->ops->set_load) 958 return -EINVAL; 959 960 /* calc total requested load */ 961 list_for_each_entry(sibling, &rdev->consumer_list, list) { 962 if (sibling->enable_count) 963 current_uA += sibling->uA_load; 964 } 965 966 current_uA += rdev->constraints->system_load; 967 968 if (rdev->desc->ops->set_load) { 969 /* set the optimum mode for our new total regulator load */ 970 err = rdev->desc->ops->set_load(rdev, current_uA); 971 if (err < 0) 972 rdev_err(rdev, "failed to set load %d: %pe\n", 973 current_uA, ERR_PTR(err)); 974 } else { 975 /* get output voltage */ 976 output_uV = regulator_get_voltage_rdev(rdev); 977 if (output_uV <= 0) { 978 rdev_err(rdev, "invalid output voltage found\n"); 979 return -EINVAL; 980 } 981 982 /* get input voltage */ 983 input_uV = 0; 984 if (rdev->supply) 985 input_uV = regulator_get_voltage(rdev->supply); 986 if (input_uV <= 0) 987 input_uV = rdev->constraints->input_uV; 988 if (input_uV <= 0) { 989 rdev_err(rdev, "invalid input voltage found\n"); 990 return -EINVAL; 991 } 992 993 /* now get the optimum mode for our new total regulator load */ 994 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 995 output_uV, current_uA); 996 997 /* check the new mode is allowed */ 998 err = regulator_mode_constrain(rdev, &mode); 999 if (err < 0) { 1000 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1001 current_uA, input_uV, output_uV, ERR_PTR(err)); 1002 return err; 1003 } 1004 1005 err = rdev->desc->ops->set_mode(rdev, mode); 1006 if (err < 0) 1007 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1008 mode, ERR_PTR(err)); 1009 } 1010 1011 return err; 1012 } 1013 1014 static int __suspend_set_state(struct regulator_dev *rdev, 1015 const struct regulator_state *rstate) 1016 { 1017 int ret = 0; 1018 1019 if (rstate->enabled == ENABLE_IN_SUSPEND && 1020 rdev->desc->ops->set_suspend_enable) 1021 ret = rdev->desc->ops->set_suspend_enable(rdev); 1022 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1023 rdev->desc->ops->set_suspend_disable) 1024 ret = rdev->desc->ops->set_suspend_disable(rdev); 1025 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1026 ret = 0; 1027 1028 if (ret < 0) { 1029 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1030 return ret; 1031 } 1032 1033 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1034 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1035 if (ret < 0) { 1036 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1037 return ret; 1038 } 1039 } 1040 1041 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1042 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1043 if (ret < 0) { 1044 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1045 return ret; 1046 } 1047 } 1048 1049 return ret; 1050 } 1051 1052 static int suspend_set_initial_state(struct regulator_dev *rdev) 1053 { 1054 const struct regulator_state *rstate; 1055 1056 rstate = regulator_get_suspend_state_check(rdev, 1057 rdev->constraints->initial_state); 1058 if (!rstate) 1059 return 0; 1060 1061 return __suspend_set_state(rdev, rstate); 1062 } 1063 1064 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1065 static void print_constraints_debug(struct regulator_dev *rdev) 1066 { 1067 struct regulation_constraints *constraints = rdev->constraints; 1068 char buf[160] = ""; 1069 size_t len = sizeof(buf) - 1; 1070 int count = 0; 1071 int ret; 1072 1073 if (constraints->min_uV && constraints->max_uV) { 1074 if (constraints->min_uV == constraints->max_uV) 1075 count += scnprintf(buf + count, len - count, "%d mV ", 1076 constraints->min_uV / 1000); 1077 else 1078 count += scnprintf(buf + count, len - count, 1079 "%d <--> %d mV ", 1080 constraints->min_uV / 1000, 1081 constraints->max_uV / 1000); 1082 } 1083 1084 if (!constraints->min_uV || 1085 constraints->min_uV != constraints->max_uV) { 1086 ret = regulator_get_voltage_rdev(rdev); 1087 if (ret > 0) 1088 count += scnprintf(buf + count, len - count, 1089 "at %d mV ", ret / 1000); 1090 } 1091 1092 if (constraints->uV_offset) 1093 count += scnprintf(buf + count, len - count, "%dmV offset ", 1094 constraints->uV_offset / 1000); 1095 1096 if (constraints->min_uA && constraints->max_uA) { 1097 if (constraints->min_uA == constraints->max_uA) 1098 count += scnprintf(buf + count, len - count, "%d mA ", 1099 constraints->min_uA / 1000); 1100 else 1101 count += scnprintf(buf + count, len - count, 1102 "%d <--> %d mA ", 1103 constraints->min_uA / 1000, 1104 constraints->max_uA / 1000); 1105 } 1106 1107 if (!constraints->min_uA || 1108 constraints->min_uA != constraints->max_uA) { 1109 ret = _regulator_get_current_limit(rdev); 1110 if (ret > 0) 1111 count += scnprintf(buf + count, len - count, 1112 "at %d mA ", ret / 1000); 1113 } 1114 1115 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1116 count += scnprintf(buf + count, len - count, "fast "); 1117 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1118 count += scnprintf(buf + count, len - count, "normal "); 1119 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1120 count += scnprintf(buf + count, len - count, "idle "); 1121 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1122 count += scnprintf(buf + count, len - count, "standby "); 1123 1124 if (!count) 1125 count = scnprintf(buf, len, "no parameters"); 1126 else 1127 --count; 1128 1129 count += scnprintf(buf + count, len - count, ", %s", 1130 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1131 1132 rdev_dbg(rdev, "%s\n", buf); 1133 } 1134 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1135 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1136 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1137 1138 static void print_constraints(struct regulator_dev *rdev) 1139 { 1140 struct regulation_constraints *constraints = rdev->constraints; 1141 1142 print_constraints_debug(rdev); 1143 1144 if ((constraints->min_uV != constraints->max_uV) && 1145 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1146 rdev_warn(rdev, 1147 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1148 } 1149 1150 static int machine_constraints_voltage(struct regulator_dev *rdev, 1151 struct regulation_constraints *constraints) 1152 { 1153 const struct regulator_ops *ops = rdev->desc->ops; 1154 int ret; 1155 1156 /* do we need to apply the constraint voltage */ 1157 if (rdev->constraints->apply_uV && 1158 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1159 int target_min, target_max; 1160 int current_uV = regulator_get_voltage_rdev(rdev); 1161 1162 if (current_uV == -ENOTRECOVERABLE) { 1163 /* This regulator can't be read and must be initialized */ 1164 rdev_info(rdev, "Setting %d-%duV\n", 1165 rdev->constraints->min_uV, 1166 rdev->constraints->max_uV); 1167 _regulator_do_set_voltage(rdev, 1168 rdev->constraints->min_uV, 1169 rdev->constraints->max_uV); 1170 current_uV = regulator_get_voltage_rdev(rdev); 1171 } 1172 1173 if (current_uV < 0) { 1174 rdev_err(rdev, 1175 "failed to get the current voltage: %pe\n", 1176 ERR_PTR(current_uV)); 1177 return current_uV; 1178 } 1179 1180 /* 1181 * If we're below the minimum voltage move up to the 1182 * minimum voltage, if we're above the maximum voltage 1183 * then move down to the maximum. 1184 */ 1185 target_min = current_uV; 1186 target_max = current_uV; 1187 1188 if (current_uV < rdev->constraints->min_uV) { 1189 target_min = rdev->constraints->min_uV; 1190 target_max = rdev->constraints->min_uV; 1191 } 1192 1193 if (current_uV > rdev->constraints->max_uV) { 1194 target_min = rdev->constraints->max_uV; 1195 target_max = rdev->constraints->max_uV; 1196 } 1197 1198 if (target_min != current_uV || target_max != current_uV) { 1199 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1200 current_uV, target_min, target_max); 1201 ret = _regulator_do_set_voltage( 1202 rdev, target_min, target_max); 1203 if (ret < 0) { 1204 rdev_err(rdev, 1205 "failed to apply %d-%duV constraint: %pe\n", 1206 target_min, target_max, ERR_PTR(ret)); 1207 return ret; 1208 } 1209 } 1210 } 1211 1212 /* constrain machine-level voltage specs to fit 1213 * the actual range supported by this regulator. 1214 */ 1215 if (ops->list_voltage && rdev->desc->n_voltages) { 1216 int count = rdev->desc->n_voltages; 1217 int i; 1218 int min_uV = INT_MAX; 1219 int max_uV = INT_MIN; 1220 int cmin = constraints->min_uV; 1221 int cmax = constraints->max_uV; 1222 1223 /* it's safe to autoconfigure fixed-voltage supplies 1224 * and the constraints are used by list_voltage. 1225 */ 1226 if (count == 1 && !cmin) { 1227 cmin = 1; 1228 cmax = INT_MAX; 1229 constraints->min_uV = cmin; 1230 constraints->max_uV = cmax; 1231 } 1232 1233 /* voltage constraints are optional */ 1234 if ((cmin == 0) && (cmax == 0)) 1235 return 0; 1236 1237 /* else require explicit machine-level constraints */ 1238 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1239 rdev_err(rdev, "invalid voltage constraints\n"); 1240 return -EINVAL; 1241 } 1242 1243 /* no need to loop voltages if range is continuous */ 1244 if (rdev->desc->continuous_voltage_range) 1245 return 0; 1246 1247 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1248 for (i = 0; i < count; i++) { 1249 int value; 1250 1251 value = ops->list_voltage(rdev, i); 1252 if (value <= 0) 1253 continue; 1254 1255 /* maybe adjust [min_uV..max_uV] */ 1256 if (value >= cmin && value < min_uV) 1257 min_uV = value; 1258 if (value <= cmax && value > max_uV) 1259 max_uV = value; 1260 } 1261 1262 /* final: [min_uV..max_uV] valid iff constraints valid */ 1263 if (max_uV < min_uV) { 1264 rdev_err(rdev, 1265 "unsupportable voltage constraints %u-%uuV\n", 1266 min_uV, max_uV); 1267 return -EINVAL; 1268 } 1269 1270 /* use regulator's subset of machine constraints */ 1271 if (constraints->min_uV < min_uV) { 1272 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1273 constraints->min_uV, min_uV); 1274 constraints->min_uV = min_uV; 1275 } 1276 if (constraints->max_uV > max_uV) { 1277 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1278 constraints->max_uV, max_uV); 1279 constraints->max_uV = max_uV; 1280 } 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int machine_constraints_current(struct regulator_dev *rdev, 1287 struct regulation_constraints *constraints) 1288 { 1289 const struct regulator_ops *ops = rdev->desc->ops; 1290 int ret; 1291 1292 if (!constraints->min_uA && !constraints->max_uA) 1293 return 0; 1294 1295 if (constraints->min_uA > constraints->max_uA) { 1296 rdev_err(rdev, "Invalid current constraints\n"); 1297 return -EINVAL; 1298 } 1299 1300 if (!ops->set_current_limit || !ops->get_current_limit) { 1301 rdev_warn(rdev, "Operation of current configuration missing\n"); 1302 return 0; 1303 } 1304 1305 /* Set regulator current in constraints range */ 1306 ret = ops->set_current_limit(rdev, constraints->min_uA, 1307 constraints->max_uA); 1308 if (ret < 0) { 1309 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1310 return ret; 1311 } 1312 1313 return 0; 1314 } 1315 1316 static int _regulator_do_enable(struct regulator_dev *rdev); 1317 1318 /** 1319 * set_machine_constraints - sets regulator constraints 1320 * @rdev: regulator source 1321 * 1322 * Allows platform initialisation code to define and constrain 1323 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1324 * Constraints *must* be set by platform code in order for some 1325 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1326 * set_mode. 1327 */ 1328 static int set_machine_constraints(struct regulator_dev *rdev) 1329 { 1330 int ret = 0; 1331 const struct regulator_ops *ops = rdev->desc->ops; 1332 1333 ret = machine_constraints_voltage(rdev, rdev->constraints); 1334 if (ret != 0) 1335 return ret; 1336 1337 ret = machine_constraints_current(rdev, rdev->constraints); 1338 if (ret != 0) 1339 return ret; 1340 1341 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1342 ret = ops->set_input_current_limit(rdev, 1343 rdev->constraints->ilim_uA); 1344 if (ret < 0) { 1345 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1346 return ret; 1347 } 1348 } 1349 1350 /* do we need to setup our suspend state */ 1351 if (rdev->constraints->initial_state) { 1352 ret = suspend_set_initial_state(rdev); 1353 if (ret < 0) { 1354 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1355 return ret; 1356 } 1357 } 1358 1359 if (rdev->constraints->initial_mode) { 1360 if (!ops->set_mode) { 1361 rdev_err(rdev, "no set_mode operation\n"); 1362 return -EINVAL; 1363 } 1364 1365 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1366 if (ret < 0) { 1367 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1368 return ret; 1369 } 1370 } else if (rdev->constraints->system_load) { 1371 /* 1372 * We'll only apply the initial system load if an 1373 * initial mode wasn't specified. 1374 */ 1375 drms_uA_update(rdev); 1376 } 1377 1378 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1379 && ops->set_ramp_delay) { 1380 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1381 if (ret < 0) { 1382 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1383 return ret; 1384 } 1385 } 1386 1387 if (rdev->constraints->pull_down && ops->set_pull_down) { 1388 ret = ops->set_pull_down(rdev); 1389 if (ret < 0) { 1390 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1391 return ret; 1392 } 1393 } 1394 1395 if (rdev->constraints->soft_start && ops->set_soft_start) { 1396 ret = ops->set_soft_start(rdev); 1397 if (ret < 0) { 1398 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1399 return ret; 1400 } 1401 } 1402 1403 if (rdev->constraints->over_current_protection 1404 && ops->set_over_current_protection) { 1405 ret = ops->set_over_current_protection(rdev); 1406 if (ret < 0) { 1407 rdev_err(rdev, "failed to set over current protection: %pe\n", 1408 ERR_PTR(ret)); 1409 return ret; 1410 } 1411 } 1412 1413 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1414 bool ad_state = (rdev->constraints->active_discharge == 1415 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1416 1417 ret = ops->set_active_discharge(rdev, ad_state); 1418 if (ret < 0) { 1419 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1420 return ret; 1421 } 1422 } 1423 1424 /* If the constraints say the regulator should be on at this point 1425 * and we have control then make sure it is enabled. 1426 */ 1427 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1428 if (rdev->supply) { 1429 ret = regulator_enable(rdev->supply); 1430 if (ret < 0) { 1431 _regulator_put(rdev->supply); 1432 rdev->supply = NULL; 1433 return ret; 1434 } 1435 } 1436 1437 ret = _regulator_do_enable(rdev); 1438 if (ret < 0 && ret != -EINVAL) { 1439 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1440 return ret; 1441 } 1442 1443 if (rdev->constraints->always_on) 1444 rdev->use_count++; 1445 } else if (rdev->desc->off_on_delay) { 1446 rdev->last_off = ktime_get(); 1447 } 1448 1449 print_constraints(rdev); 1450 return 0; 1451 } 1452 1453 /** 1454 * set_supply - set regulator supply regulator 1455 * @rdev: regulator name 1456 * @supply_rdev: supply regulator name 1457 * 1458 * Called by platform initialisation code to set the supply regulator for this 1459 * regulator. This ensures that a regulators supply will also be enabled by the 1460 * core if it's child is enabled. 1461 */ 1462 static int set_supply(struct regulator_dev *rdev, 1463 struct regulator_dev *supply_rdev) 1464 { 1465 int err; 1466 1467 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1468 1469 if (!try_module_get(supply_rdev->owner)) 1470 return -ENODEV; 1471 1472 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1473 if (rdev->supply == NULL) { 1474 err = -ENOMEM; 1475 return err; 1476 } 1477 supply_rdev->open_count++; 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1484 * @rdev: regulator source 1485 * @consumer_dev_name: dev_name() string for device supply applies to 1486 * @supply: symbolic name for supply 1487 * 1488 * Allows platform initialisation code to map physical regulator 1489 * sources to symbolic names for supplies for use by devices. Devices 1490 * should use these symbolic names to request regulators, avoiding the 1491 * need to provide board-specific regulator names as platform data. 1492 */ 1493 static int set_consumer_device_supply(struct regulator_dev *rdev, 1494 const char *consumer_dev_name, 1495 const char *supply) 1496 { 1497 struct regulator_map *node, *new_node; 1498 int has_dev; 1499 1500 if (supply == NULL) 1501 return -EINVAL; 1502 1503 if (consumer_dev_name != NULL) 1504 has_dev = 1; 1505 else 1506 has_dev = 0; 1507 1508 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1509 if (new_node == NULL) 1510 return -ENOMEM; 1511 1512 new_node->regulator = rdev; 1513 new_node->supply = supply; 1514 1515 if (has_dev) { 1516 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1517 if (new_node->dev_name == NULL) { 1518 kfree(new_node); 1519 return -ENOMEM; 1520 } 1521 } 1522 1523 mutex_lock(®ulator_list_mutex); 1524 list_for_each_entry(node, ®ulator_map_list, list) { 1525 if (node->dev_name && consumer_dev_name) { 1526 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1527 continue; 1528 } else if (node->dev_name || consumer_dev_name) { 1529 continue; 1530 } 1531 1532 if (strcmp(node->supply, supply) != 0) 1533 continue; 1534 1535 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1536 consumer_dev_name, 1537 dev_name(&node->regulator->dev), 1538 node->regulator->desc->name, 1539 supply, 1540 dev_name(&rdev->dev), rdev_get_name(rdev)); 1541 goto fail; 1542 } 1543 1544 list_add(&new_node->list, ®ulator_map_list); 1545 mutex_unlock(®ulator_list_mutex); 1546 1547 return 0; 1548 1549 fail: 1550 mutex_unlock(®ulator_list_mutex); 1551 kfree(new_node->dev_name); 1552 kfree(new_node); 1553 return -EBUSY; 1554 } 1555 1556 static void unset_regulator_supplies(struct regulator_dev *rdev) 1557 { 1558 struct regulator_map *node, *n; 1559 1560 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1561 if (rdev == node->regulator) { 1562 list_del(&node->list); 1563 kfree(node->dev_name); 1564 kfree(node); 1565 } 1566 } 1567 } 1568 1569 #ifdef CONFIG_DEBUG_FS 1570 static ssize_t constraint_flags_read_file(struct file *file, 1571 char __user *user_buf, 1572 size_t count, loff_t *ppos) 1573 { 1574 const struct regulator *regulator = file->private_data; 1575 const struct regulation_constraints *c = regulator->rdev->constraints; 1576 char *buf; 1577 ssize_t ret; 1578 1579 if (!c) 1580 return 0; 1581 1582 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1583 if (!buf) 1584 return -ENOMEM; 1585 1586 ret = snprintf(buf, PAGE_SIZE, 1587 "always_on: %u\n" 1588 "boot_on: %u\n" 1589 "apply_uV: %u\n" 1590 "ramp_disable: %u\n" 1591 "soft_start: %u\n" 1592 "pull_down: %u\n" 1593 "over_current_protection: %u\n", 1594 c->always_on, 1595 c->boot_on, 1596 c->apply_uV, 1597 c->ramp_disable, 1598 c->soft_start, 1599 c->pull_down, 1600 c->over_current_protection); 1601 1602 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1603 kfree(buf); 1604 1605 return ret; 1606 } 1607 1608 #endif 1609 1610 static const struct file_operations constraint_flags_fops = { 1611 #ifdef CONFIG_DEBUG_FS 1612 .open = simple_open, 1613 .read = constraint_flags_read_file, 1614 .llseek = default_llseek, 1615 #endif 1616 }; 1617 1618 #define REG_STR_SIZE 64 1619 1620 static struct regulator *create_regulator(struct regulator_dev *rdev, 1621 struct device *dev, 1622 const char *supply_name) 1623 { 1624 struct regulator *regulator; 1625 int err = 0; 1626 1627 if (dev) { 1628 char buf[REG_STR_SIZE]; 1629 int size; 1630 1631 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1632 dev->kobj.name, supply_name); 1633 if (size >= REG_STR_SIZE) 1634 return NULL; 1635 1636 supply_name = kstrdup(buf, GFP_KERNEL); 1637 if (supply_name == NULL) 1638 return NULL; 1639 } else { 1640 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1641 if (supply_name == NULL) 1642 return NULL; 1643 } 1644 1645 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1646 if (regulator == NULL) { 1647 kfree(supply_name); 1648 return NULL; 1649 } 1650 1651 regulator->rdev = rdev; 1652 regulator->supply_name = supply_name; 1653 1654 regulator_lock(rdev); 1655 list_add(®ulator->list, &rdev->consumer_list); 1656 regulator_unlock(rdev); 1657 1658 if (dev) { 1659 regulator->dev = dev; 1660 1661 /* Add a link to the device sysfs entry */ 1662 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1663 supply_name); 1664 if (err) { 1665 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1666 dev->kobj.name, ERR_PTR(err)); 1667 /* non-fatal */ 1668 } 1669 } 1670 1671 if (err != -EEXIST) 1672 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1673 if (!regulator->debugfs) { 1674 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1675 } else { 1676 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1677 ®ulator->uA_load); 1678 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1679 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1680 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1681 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1682 debugfs_create_file("constraint_flags", 0444, 1683 regulator->debugfs, regulator, 1684 &constraint_flags_fops); 1685 } 1686 1687 /* 1688 * Check now if the regulator is an always on regulator - if 1689 * it is then we don't need to do nearly so much work for 1690 * enable/disable calls. 1691 */ 1692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1693 _regulator_is_enabled(rdev)) 1694 regulator->always_on = true; 1695 1696 return regulator; 1697 } 1698 1699 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1700 { 1701 if (rdev->constraints && rdev->constraints->enable_time) 1702 return rdev->constraints->enable_time; 1703 if (rdev->desc->ops->enable_time) 1704 return rdev->desc->ops->enable_time(rdev); 1705 return rdev->desc->enable_time; 1706 } 1707 1708 static struct regulator_supply_alias *regulator_find_supply_alias( 1709 struct device *dev, const char *supply) 1710 { 1711 struct regulator_supply_alias *map; 1712 1713 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1714 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1715 return map; 1716 1717 return NULL; 1718 } 1719 1720 static void regulator_supply_alias(struct device **dev, const char **supply) 1721 { 1722 struct regulator_supply_alias *map; 1723 1724 map = regulator_find_supply_alias(*dev, *supply); 1725 if (map) { 1726 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1727 *supply, map->alias_supply, 1728 dev_name(map->alias_dev)); 1729 *dev = map->alias_dev; 1730 *supply = map->alias_supply; 1731 } 1732 } 1733 1734 static int regulator_match(struct device *dev, const void *data) 1735 { 1736 struct regulator_dev *r = dev_to_rdev(dev); 1737 1738 return strcmp(rdev_get_name(r), data) == 0; 1739 } 1740 1741 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1742 { 1743 struct device *dev; 1744 1745 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1746 1747 return dev ? dev_to_rdev(dev) : NULL; 1748 } 1749 1750 /** 1751 * regulator_dev_lookup - lookup a regulator device. 1752 * @dev: device for regulator "consumer". 1753 * @supply: Supply name or regulator ID. 1754 * 1755 * If successful, returns a struct regulator_dev that corresponds to the name 1756 * @supply and with the embedded struct device refcount incremented by one. 1757 * The refcount must be dropped by calling put_device(). 1758 * On failure one of the following ERR-PTR-encoded values is returned: 1759 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1760 * in the future. 1761 */ 1762 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1763 const char *supply) 1764 { 1765 struct regulator_dev *r = NULL; 1766 struct device_node *node; 1767 struct regulator_map *map; 1768 const char *devname = NULL; 1769 1770 regulator_supply_alias(&dev, &supply); 1771 1772 /* first do a dt based lookup */ 1773 if (dev && dev->of_node) { 1774 node = of_get_regulator(dev, supply); 1775 if (node) { 1776 r = of_find_regulator_by_node(node); 1777 if (r) 1778 return r; 1779 1780 /* 1781 * We have a node, but there is no device. 1782 * assume it has not registered yet. 1783 */ 1784 return ERR_PTR(-EPROBE_DEFER); 1785 } 1786 } 1787 1788 /* if not found, try doing it non-dt way */ 1789 if (dev) 1790 devname = dev_name(dev); 1791 1792 mutex_lock(®ulator_list_mutex); 1793 list_for_each_entry(map, ®ulator_map_list, list) { 1794 /* If the mapping has a device set up it must match */ 1795 if (map->dev_name && 1796 (!devname || strcmp(map->dev_name, devname))) 1797 continue; 1798 1799 if (strcmp(map->supply, supply) == 0 && 1800 get_device(&map->regulator->dev)) { 1801 r = map->regulator; 1802 break; 1803 } 1804 } 1805 mutex_unlock(®ulator_list_mutex); 1806 1807 if (r) 1808 return r; 1809 1810 r = regulator_lookup_by_name(supply); 1811 if (r) 1812 return r; 1813 1814 return ERR_PTR(-ENODEV); 1815 } 1816 1817 static int regulator_resolve_supply(struct regulator_dev *rdev) 1818 { 1819 struct regulator_dev *r; 1820 struct device *dev = rdev->dev.parent; 1821 int ret = 0; 1822 1823 /* No supply to resolve? */ 1824 if (!rdev->supply_name) 1825 return 0; 1826 1827 /* Supply already resolved? (fast-path without locking contention) */ 1828 if (rdev->supply) 1829 return 0; 1830 1831 r = regulator_dev_lookup(dev, rdev->supply_name); 1832 if (IS_ERR(r)) { 1833 ret = PTR_ERR(r); 1834 1835 /* Did the lookup explicitly defer for us? */ 1836 if (ret == -EPROBE_DEFER) 1837 goto out; 1838 1839 if (have_full_constraints()) { 1840 r = dummy_regulator_rdev; 1841 get_device(&r->dev); 1842 } else { 1843 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1844 rdev->supply_name, rdev->desc->name); 1845 ret = -EPROBE_DEFER; 1846 goto out; 1847 } 1848 } 1849 1850 if (r == rdev) { 1851 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 1852 rdev->desc->name, rdev->supply_name); 1853 if (!have_full_constraints()) { 1854 ret = -EINVAL; 1855 goto out; 1856 } 1857 r = dummy_regulator_rdev; 1858 get_device(&r->dev); 1859 } 1860 1861 /* 1862 * If the supply's parent device is not the same as the 1863 * regulator's parent device, then ensure the parent device 1864 * is bound before we resolve the supply, in case the parent 1865 * device get probe deferred and unregisters the supply. 1866 */ 1867 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1868 if (!device_is_bound(r->dev.parent)) { 1869 put_device(&r->dev); 1870 ret = -EPROBE_DEFER; 1871 goto out; 1872 } 1873 } 1874 1875 /* Recursively resolve the supply of the supply */ 1876 ret = regulator_resolve_supply(r); 1877 if (ret < 0) { 1878 put_device(&r->dev); 1879 goto out; 1880 } 1881 1882 /* 1883 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 1884 * between rdev->supply null check and setting rdev->supply in 1885 * set_supply() from concurrent tasks. 1886 */ 1887 regulator_lock(rdev); 1888 1889 /* Supply just resolved by a concurrent task? */ 1890 if (rdev->supply) { 1891 regulator_unlock(rdev); 1892 put_device(&r->dev); 1893 goto out; 1894 } 1895 1896 ret = set_supply(rdev, r); 1897 if (ret < 0) { 1898 regulator_unlock(rdev); 1899 put_device(&r->dev); 1900 goto out; 1901 } 1902 1903 regulator_unlock(rdev); 1904 1905 /* 1906 * In set_machine_constraints() we may have turned this regulator on 1907 * but we couldn't propagate to the supply if it hadn't been resolved 1908 * yet. Do it now. 1909 */ 1910 if (rdev->use_count) { 1911 ret = regulator_enable(rdev->supply); 1912 if (ret < 0) { 1913 _regulator_put(rdev->supply); 1914 rdev->supply = NULL; 1915 goto out; 1916 } 1917 } 1918 1919 out: 1920 return ret; 1921 } 1922 1923 /* Internal regulator request function */ 1924 struct regulator *_regulator_get(struct device *dev, const char *id, 1925 enum regulator_get_type get_type) 1926 { 1927 struct regulator_dev *rdev; 1928 struct regulator *regulator; 1929 struct device_link *link; 1930 int ret; 1931 1932 if (get_type >= MAX_GET_TYPE) { 1933 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1934 return ERR_PTR(-EINVAL); 1935 } 1936 1937 if (id == NULL) { 1938 pr_err("get() with no identifier\n"); 1939 return ERR_PTR(-EINVAL); 1940 } 1941 1942 rdev = regulator_dev_lookup(dev, id); 1943 if (IS_ERR(rdev)) { 1944 ret = PTR_ERR(rdev); 1945 1946 /* 1947 * If regulator_dev_lookup() fails with error other 1948 * than -ENODEV our job here is done, we simply return it. 1949 */ 1950 if (ret != -ENODEV) 1951 return ERR_PTR(ret); 1952 1953 if (!have_full_constraints()) { 1954 dev_warn(dev, 1955 "incomplete constraints, dummy supplies not allowed\n"); 1956 return ERR_PTR(-ENODEV); 1957 } 1958 1959 switch (get_type) { 1960 case NORMAL_GET: 1961 /* 1962 * Assume that a regulator is physically present and 1963 * enabled, even if it isn't hooked up, and just 1964 * provide a dummy. 1965 */ 1966 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 1967 rdev = dummy_regulator_rdev; 1968 get_device(&rdev->dev); 1969 break; 1970 1971 case EXCLUSIVE_GET: 1972 dev_warn(dev, 1973 "dummy supplies not allowed for exclusive requests\n"); 1974 fallthrough; 1975 1976 default: 1977 return ERR_PTR(-ENODEV); 1978 } 1979 } 1980 1981 if (rdev->exclusive) { 1982 regulator = ERR_PTR(-EPERM); 1983 put_device(&rdev->dev); 1984 return regulator; 1985 } 1986 1987 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1988 regulator = ERR_PTR(-EBUSY); 1989 put_device(&rdev->dev); 1990 return regulator; 1991 } 1992 1993 mutex_lock(®ulator_list_mutex); 1994 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 1995 mutex_unlock(®ulator_list_mutex); 1996 1997 if (ret != 0) { 1998 regulator = ERR_PTR(-EPROBE_DEFER); 1999 put_device(&rdev->dev); 2000 return regulator; 2001 } 2002 2003 ret = regulator_resolve_supply(rdev); 2004 if (ret < 0) { 2005 regulator = ERR_PTR(ret); 2006 put_device(&rdev->dev); 2007 return regulator; 2008 } 2009 2010 if (!try_module_get(rdev->owner)) { 2011 regulator = ERR_PTR(-EPROBE_DEFER); 2012 put_device(&rdev->dev); 2013 return regulator; 2014 } 2015 2016 regulator = create_regulator(rdev, dev, id); 2017 if (regulator == NULL) { 2018 regulator = ERR_PTR(-ENOMEM); 2019 module_put(rdev->owner); 2020 put_device(&rdev->dev); 2021 return regulator; 2022 } 2023 2024 rdev->open_count++; 2025 if (get_type == EXCLUSIVE_GET) { 2026 rdev->exclusive = 1; 2027 2028 ret = _regulator_is_enabled(rdev); 2029 if (ret > 0) 2030 rdev->use_count = 1; 2031 else 2032 rdev->use_count = 0; 2033 } 2034 2035 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2036 if (!IS_ERR_OR_NULL(link)) 2037 regulator->device_link = true; 2038 2039 return regulator; 2040 } 2041 2042 /** 2043 * regulator_get - lookup and obtain a reference to a regulator. 2044 * @dev: device for regulator "consumer" 2045 * @id: Supply name or regulator ID. 2046 * 2047 * Returns a struct regulator corresponding to the regulator producer, 2048 * or IS_ERR() condition containing errno. 2049 * 2050 * Use of supply names configured via set_consumer_device_supply() is 2051 * strongly encouraged. It is recommended that the supply name used 2052 * should match the name used for the supply and/or the relevant 2053 * device pins in the datasheet. 2054 */ 2055 struct regulator *regulator_get(struct device *dev, const char *id) 2056 { 2057 return _regulator_get(dev, id, NORMAL_GET); 2058 } 2059 EXPORT_SYMBOL_GPL(regulator_get); 2060 2061 /** 2062 * regulator_get_exclusive - obtain exclusive access to a regulator. 2063 * @dev: device for regulator "consumer" 2064 * @id: Supply name or regulator ID. 2065 * 2066 * Returns a struct regulator corresponding to the regulator producer, 2067 * or IS_ERR() condition containing errno. Other consumers will be 2068 * unable to obtain this regulator while this reference is held and the 2069 * use count for the regulator will be initialised to reflect the current 2070 * state of the regulator. 2071 * 2072 * This is intended for use by consumers which cannot tolerate shared 2073 * use of the regulator such as those which need to force the 2074 * regulator off for correct operation of the hardware they are 2075 * controlling. 2076 * 2077 * Use of supply names configured via set_consumer_device_supply() is 2078 * strongly encouraged. It is recommended that the supply name used 2079 * should match the name used for the supply and/or the relevant 2080 * device pins in the datasheet. 2081 */ 2082 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2083 { 2084 return _regulator_get(dev, id, EXCLUSIVE_GET); 2085 } 2086 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2087 2088 /** 2089 * regulator_get_optional - obtain optional access to a regulator. 2090 * @dev: device for regulator "consumer" 2091 * @id: Supply name or regulator ID. 2092 * 2093 * Returns a struct regulator corresponding to the regulator producer, 2094 * or IS_ERR() condition containing errno. 2095 * 2096 * This is intended for use by consumers for devices which can have 2097 * some supplies unconnected in normal use, such as some MMC devices. 2098 * It can allow the regulator core to provide stub supplies for other 2099 * supplies requested using normal regulator_get() calls without 2100 * disrupting the operation of drivers that can handle absent 2101 * supplies. 2102 * 2103 * Use of supply names configured via set_consumer_device_supply() is 2104 * strongly encouraged. It is recommended that the supply name used 2105 * should match the name used for the supply and/or the relevant 2106 * device pins in the datasheet. 2107 */ 2108 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2109 { 2110 return _regulator_get(dev, id, OPTIONAL_GET); 2111 } 2112 EXPORT_SYMBOL_GPL(regulator_get_optional); 2113 2114 static void destroy_regulator(struct regulator *regulator) 2115 { 2116 struct regulator_dev *rdev = regulator->rdev; 2117 2118 debugfs_remove_recursive(regulator->debugfs); 2119 2120 if (regulator->dev) { 2121 if (regulator->device_link) 2122 device_link_remove(regulator->dev, &rdev->dev); 2123 2124 /* remove any sysfs entries */ 2125 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2126 } 2127 2128 regulator_lock(rdev); 2129 list_del(®ulator->list); 2130 2131 rdev->open_count--; 2132 rdev->exclusive = 0; 2133 regulator_unlock(rdev); 2134 2135 kfree_const(regulator->supply_name); 2136 kfree(regulator); 2137 } 2138 2139 /* regulator_list_mutex lock held by regulator_put() */ 2140 static void _regulator_put(struct regulator *regulator) 2141 { 2142 struct regulator_dev *rdev; 2143 2144 if (IS_ERR_OR_NULL(regulator)) 2145 return; 2146 2147 lockdep_assert_held_once(®ulator_list_mutex); 2148 2149 /* Docs say you must disable before calling regulator_put() */ 2150 WARN_ON(regulator->enable_count); 2151 2152 rdev = regulator->rdev; 2153 2154 destroy_regulator(regulator); 2155 2156 module_put(rdev->owner); 2157 put_device(&rdev->dev); 2158 } 2159 2160 /** 2161 * regulator_put - "free" the regulator source 2162 * @regulator: regulator source 2163 * 2164 * Note: drivers must ensure that all regulator_enable calls made on this 2165 * regulator source are balanced by regulator_disable calls prior to calling 2166 * this function. 2167 */ 2168 void regulator_put(struct regulator *regulator) 2169 { 2170 mutex_lock(®ulator_list_mutex); 2171 _regulator_put(regulator); 2172 mutex_unlock(®ulator_list_mutex); 2173 } 2174 EXPORT_SYMBOL_GPL(regulator_put); 2175 2176 /** 2177 * regulator_register_supply_alias - Provide device alias for supply lookup 2178 * 2179 * @dev: device that will be given as the regulator "consumer" 2180 * @id: Supply name or regulator ID 2181 * @alias_dev: device that should be used to lookup the supply 2182 * @alias_id: Supply name or regulator ID that should be used to lookup the 2183 * supply 2184 * 2185 * All lookups for id on dev will instead be conducted for alias_id on 2186 * alias_dev. 2187 */ 2188 int regulator_register_supply_alias(struct device *dev, const char *id, 2189 struct device *alias_dev, 2190 const char *alias_id) 2191 { 2192 struct regulator_supply_alias *map; 2193 2194 map = regulator_find_supply_alias(dev, id); 2195 if (map) 2196 return -EEXIST; 2197 2198 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2199 if (!map) 2200 return -ENOMEM; 2201 2202 map->src_dev = dev; 2203 map->src_supply = id; 2204 map->alias_dev = alias_dev; 2205 map->alias_supply = alias_id; 2206 2207 list_add(&map->list, ®ulator_supply_alias_list); 2208 2209 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2210 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2211 2212 return 0; 2213 } 2214 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2215 2216 /** 2217 * regulator_unregister_supply_alias - Remove device alias 2218 * 2219 * @dev: device that will be given as the regulator "consumer" 2220 * @id: Supply name or regulator ID 2221 * 2222 * Remove a lookup alias if one exists for id on dev. 2223 */ 2224 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2225 { 2226 struct regulator_supply_alias *map; 2227 2228 map = regulator_find_supply_alias(dev, id); 2229 if (map) { 2230 list_del(&map->list); 2231 kfree(map); 2232 } 2233 } 2234 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2235 2236 /** 2237 * regulator_bulk_register_supply_alias - register multiple aliases 2238 * 2239 * @dev: device that will be given as the regulator "consumer" 2240 * @id: List of supply names or regulator IDs 2241 * @alias_dev: device that should be used to lookup the supply 2242 * @alias_id: List of supply names or regulator IDs that should be used to 2243 * lookup the supply 2244 * @num_id: Number of aliases to register 2245 * 2246 * @return 0 on success, an errno on failure. 2247 * 2248 * This helper function allows drivers to register several supply 2249 * aliases in one operation. If any of the aliases cannot be 2250 * registered any aliases that were registered will be removed 2251 * before returning to the caller. 2252 */ 2253 int regulator_bulk_register_supply_alias(struct device *dev, 2254 const char *const *id, 2255 struct device *alias_dev, 2256 const char *const *alias_id, 2257 int num_id) 2258 { 2259 int i; 2260 int ret; 2261 2262 for (i = 0; i < num_id; ++i) { 2263 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2264 alias_id[i]); 2265 if (ret < 0) 2266 goto err; 2267 } 2268 2269 return 0; 2270 2271 err: 2272 dev_err(dev, 2273 "Failed to create supply alias %s,%s -> %s,%s\n", 2274 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2275 2276 while (--i >= 0) 2277 regulator_unregister_supply_alias(dev, id[i]); 2278 2279 return ret; 2280 } 2281 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2282 2283 /** 2284 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2285 * 2286 * @dev: device that will be given as the regulator "consumer" 2287 * @id: List of supply names or regulator IDs 2288 * @num_id: Number of aliases to unregister 2289 * 2290 * This helper function allows drivers to unregister several supply 2291 * aliases in one operation. 2292 */ 2293 void regulator_bulk_unregister_supply_alias(struct device *dev, 2294 const char *const *id, 2295 int num_id) 2296 { 2297 int i; 2298 2299 for (i = 0; i < num_id; ++i) 2300 regulator_unregister_supply_alias(dev, id[i]); 2301 } 2302 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2303 2304 2305 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2306 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2307 const struct regulator_config *config) 2308 { 2309 struct regulator_enable_gpio *pin, *new_pin; 2310 struct gpio_desc *gpiod; 2311 2312 gpiod = config->ena_gpiod; 2313 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2314 2315 mutex_lock(®ulator_list_mutex); 2316 2317 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2318 if (pin->gpiod == gpiod) { 2319 rdev_dbg(rdev, "GPIO is already used\n"); 2320 goto update_ena_gpio_to_rdev; 2321 } 2322 } 2323 2324 if (new_pin == NULL) { 2325 mutex_unlock(®ulator_list_mutex); 2326 return -ENOMEM; 2327 } 2328 2329 pin = new_pin; 2330 new_pin = NULL; 2331 2332 pin->gpiod = gpiod; 2333 list_add(&pin->list, ®ulator_ena_gpio_list); 2334 2335 update_ena_gpio_to_rdev: 2336 pin->request_count++; 2337 rdev->ena_pin = pin; 2338 2339 mutex_unlock(®ulator_list_mutex); 2340 kfree(new_pin); 2341 2342 return 0; 2343 } 2344 2345 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2346 { 2347 struct regulator_enable_gpio *pin, *n; 2348 2349 if (!rdev->ena_pin) 2350 return; 2351 2352 /* Free the GPIO only in case of no use */ 2353 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2354 if (pin != rdev->ena_pin) 2355 continue; 2356 2357 if (--pin->request_count) 2358 break; 2359 2360 gpiod_put(pin->gpiod); 2361 list_del(&pin->list); 2362 kfree(pin); 2363 break; 2364 } 2365 2366 rdev->ena_pin = NULL; 2367 } 2368 2369 /** 2370 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2371 * @rdev: regulator_dev structure 2372 * @enable: enable GPIO at initial use? 2373 * 2374 * GPIO is enabled in case of initial use. (enable_count is 0) 2375 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2376 */ 2377 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2378 { 2379 struct regulator_enable_gpio *pin = rdev->ena_pin; 2380 2381 if (!pin) 2382 return -EINVAL; 2383 2384 if (enable) { 2385 /* Enable GPIO at initial use */ 2386 if (pin->enable_count == 0) 2387 gpiod_set_value_cansleep(pin->gpiod, 1); 2388 2389 pin->enable_count++; 2390 } else { 2391 if (pin->enable_count > 1) { 2392 pin->enable_count--; 2393 return 0; 2394 } 2395 2396 /* Disable GPIO if not used */ 2397 if (pin->enable_count <= 1) { 2398 gpiod_set_value_cansleep(pin->gpiod, 0); 2399 pin->enable_count = 0; 2400 } 2401 } 2402 2403 return 0; 2404 } 2405 2406 /** 2407 * _regulator_enable_delay - a delay helper function 2408 * @delay: time to delay in microseconds 2409 * 2410 * Delay for the requested amount of time as per the guidelines in: 2411 * 2412 * Documentation/timers/timers-howto.rst 2413 * 2414 * The assumption here is that regulators will never be enabled in 2415 * atomic context and therefore sleeping functions can be used. 2416 */ 2417 static void _regulator_enable_delay(unsigned int delay) 2418 { 2419 unsigned int ms = delay / 1000; 2420 unsigned int us = delay % 1000; 2421 2422 if (ms > 0) { 2423 /* 2424 * For small enough values, handle super-millisecond 2425 * delays in the usleep_range() call below. 2426 */ 2427 if (ms < 20) 2428 us += ms * 1000; 2429 else 2430 msleep(ms); 2431 } 2432 2433 /* 2434 * Give the scheduler some room to coalesce with any other 2435 * wakeup sources. For delays shorter than 10 us, don't even 2436 * bother setting up high-resolution timers and just busy- 2437 * loop. 2438 */ 2439 if (us >= 10) 2440 usleep_range(us, us + 100); 2441 else 2442 udelay(us); 2443 } 2444 2445 /** 2446 * _regulator_check_status_enabled 2447 * 2448 * A helper function to check if the regulator status can be interpreted 2449 * as 'regulator is enabled'. 2450 * @rdev: the regulator device to check 2451 * 2452 * Return: 2453 * * 1 - if status shows regulator is in enabled state 2454 * * 0 - if not enabled state 2455 * * Error Value - as received from ops->get_status() 2456 */ 2457 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2458 { 2459 int ret = rdev->desc->ops->get_status(rdev); 2460 2461 if (ret < 0) { 2462 rdev_info(rdev, "get_status returned error: %d\n", ret); 2463 return ret; 2464 } 2465 2466 switch (ret) { 2467 case REGULATOR_STATUS_OFF: 2468 case REGULATOR_STATUS_ERROR: 2469 case REGULATOR_STATUS_UNDEFINED: 2470 return 0; 2471 default: 2472 return 1; 2473 } 2474 } 2475 2476 static int _regulator_do_enable(struct regulator_dev *rdev) 2477 { 2478 int ret, delay; 2479 2480 /* Query before enabling in case configuration dependent. */ 2481 ret = _regulator_get_enable_time(rdev); 2482 if (ret >= 0) { 2483 delay = ret; 2484 } else { 2485 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2486 delay = 0; 2487 } 2488 2489 trace_regulator_enable(rdev_get_name(rdev)); 2490 2491 if (rdev->desc->off_on_delay && rdev->last_off) { 2492 /* if needed, keep a distance of off_on_delay from last time 2493 * this regulator was disabled. 2494 */ 2495 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2496 s64 remaining = ktime_us_delta(end, ktime_get()); 2497 2498 if (remaining > 0) 2499 _regulator_enable_delay(remaining); 2500 } 2501 2502 if (rdev->ena_pin) { 2503 if (!rdev->ena_gpio_state) { 2504 ret = regulator_ena_gpio_ctrl(rdev, true); 2505 if (ret < 0) 2506 return ret; 2507 rdev->ena_gpio_state = 1; 2508 } 2509 } else if (rdev->desc->ops->enable) { 2510 ret = rdev->desc->ops->enable(rdev); 2511 if (ret < 0) 2512 return ret; 2513 } else { 2514 return -EINVAL; 2515 } 2516 2517 /* Allow the regulator to ramp; it would be useful to extend 2518 * this for bulk operations so that the regulators can ramp 2519 * together. 2520 */ 2521 trace_regulator_enable_delay(rdev_get_name(rdev)); 2522 2523 /* If poll_enabled_time is set, poll upto the delay calculated 2524 * above, delaying poll_enabled_time uS to check if the regulator 2525 * actually got enabled. 2526 * If the regulator isn't enabled after enable_delay has 2527 * expired, return -ETIMEDOUT. 2528 */ 2529 if (rdev->desc->poll_enabled_time) { 2530 unsigned int time_remaining = delay; 2531 2532 while (time_remaining > 0) { 2533 _regulator_enable_delay(rdev->desc->poll_enabled_time); 2534 2535 if (rdev->desc->ops->get_status) { 2536 ret = _regulator_check_status_enabled(rdev); 2537 if (ret < 0) 2538 return ret; 2539 else if (ret) 2540 break; 2541 } else if (rdev->desc->ops->is_enabled(rdev)) 2542 break; 2543 2544 time_remaining -= rdev->desc->poll_enabled_time; 2545 } 2546 2547 if (time_remaining <= 0) { 2548 rdev_err(rdev, "Enabled check timed out\n"); 2549 return -ETIMEDOUT; 2550 } 2551 } else { 2552 _regulator_enable_delay(delay); 2553 } 2554 2555 trace_regulator_enable_complete(rdev_get_name(rdev)); 2556 2557 return 0; 2558 } 2559 2560 /** 2561 * _regulator_handle_consumer_enable - handle that a consumer enabled 2562 * @regulator: regulator source 2563 * 2564 * Some things on a regulator consumer (like the contribution towards total 2565 * load on the regulator) only have an effect when the consumer wants the 2566 * regulator enabled. Explained in example with two consumers of the same 2567 * regulator: 2568 * consumer A: set_load(100); => total load = 0 2569 * consumer A: regulator_enable(); => total load = 100 2570 * consumer B: set_load(1000); => total load = 100 2571 * consumer B: regulator_enable(); => total load = 1100 2572 * consumer A: regulator_disable(); => total_load = 1000 2573 * 2574 * This function (together with _regulator_handle_consumer_disable) is 2575 * responsible for keeping track of the refcount for a given regulator consumer 2576 * and applying / unapplying these things. 2577 * 2578 * Returns 0 upon no error; -error upon error. 2579 */ 2580 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2581 { 2582 struct regulator_dev *rdev = regulator->rdev; 2583 2584 lockdep_assert_held_once(&rdev->mutex.base); 2585 2586 regulator->enable_count++; 2587 if (regulator->uA_load && regulator->enable_count == 1) 2588 return drms_uA_update(rdev); 2589 2590 return 0; 2591 } 2592 2593 /** 2594 * _regulator_handle_consumer_disable - handle that a consumer disabled 2595 * @regulator: regulator source 2596 * 2597 * The opposite of _regulator_handle_consumer_enable(). 2598 * 2599 * Returns 0 upon no error; -error upon error. 2600 */ 2601 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2602 { 2603 struct regulator_dev *rdev = regulator->rdev; 2604 2605 lockdep_assert_held_once(&rdev->mutex.base); 2606 2607 if (!regulator->enable_count) { 2608 rdev_err(rdev, "Underflow of regulator enable count\n"); 2609 return -EINVAL; 2610 } 2611 2612 regulator->enable_count--; 2613 if (regulator->uA_load && regulator->enable_count == 0) 2614 return drms_uA_update(rdev); 2615 2616 return 0; 2617 } 2618 2619 /* locks held by regulator_enable() */ 2620 static int _regulator_enable(struct regulator *regulator) 2621 { 2622 struct regulator_dev *rdev = regulator->rdev; 2623 int ret; 2624 2625 lockdep_assert_held_once(&rdev->mutex.base); 2626 2627 if (rdev->use_count == 0 && rdev->supply) { 2628 ret = _regulator_enable(rdev->supply); 2629 if (ret < 0) 2630 return ret; 2631 } 2632 2633 /* balance only if there are regulators coupled */ 2634 if (rdev->coupling_desc.n_coupled > 1) { 2635 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2636 if (ret < 0) 2637 goto err_disable_supply; 2638 } 2639 2640 ret = _regulator_handle_consumer_enable(regulator); 2641 if (ret < 0) 2642 goto err_disable_supply; 2643 2644 if (rdev->use_count == 0) { 2645 /* 2646 * The regulator may already be enabled if it's not switchable 2647 * or was left on 2648 */ 2649 ret = _regulator_is_enabled(rdev); 2650 if (ret == -EINVAL || ret == 0) { 2651 if (!regulator_ops_is_valid(rdev, 2652 REGULATOR_CHANGE_STATUS)) { 2653 ret = -EPERM; 2654 goto err_consumer_disable; 2655 } 2656 2657 ret = _regulator_do_enable(rdev); 2658 if (ret < 0) 2659 goto err_consumer_disable; 2660 2661 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2662 NULL); 2663 } else if (ret < 0) { 2664 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2665 goto err_consumer_disable; 2666 } 2667 /* Fallthrough on positive return values - already enabled */ 2668 } 2669 2670 rdev->use_count++; 2671 2672 return 0; 2673 2674 err_consumer_disable: 2675 _regulator_handle_consumer_disable(regulator); 2676 2677 err_disable_supply: 2678 if (rdev->use_count == 0 && rdev->supply) 2679 _regulator_disable(rdev->supply); 2680 2681 return ret; 2682 } 2683 2684 /** 2685 * regulator_enable - enable regulator output 2686 * @regulator: regulator source 2687 * 2688 * Request that the regulator be enabled with the regulator output at 2689 * the predefined voltage or current value. Calls to regulator_enable() 2690 * must be balanced with calls to regulator_disable(). 2691 * 2692 * NOTE: the output value can be set by other drivers, boot loader or may be 2693 * hardwired in the regulator. 2694 */ 2695 int regulator_enable(struct regulator *regulator) 2696 { 2697 struct regulator_dev *rdev = regulator->rdev; 2698 struct ww_acquire_ctx ww_ctx; 2699 int ret; 2700 2701 regulator_lock_dependent(rdev, &ww_ctx); 2702 ret = _regulator_enable(regulator); 2703 regulator_unlock_dependent(rdev, &ww_ctx); 2704 2705 return ret; 2706 } 2707 EXPORT_SYMBOL_GPL(regulator_enable); 2708 2709 static int _regulator_do_disable(struct regulator_dev *rdev) 2710 { 2711 int ret; 2712 2713 trace_regulator_disable(rdev_get_name(rdev)); 2714 2715 if (rdev->ena_pin) { 2716 if (rdev->ena_gpio_state) { 2717 ret = regulator_ena_gpio_ctrl(rdev, false); 2718 if (ret < 0) 2719 return ret; 2720 rdev->ena_gpio_state = 0; 2721 } 2722 2723 } else if (rdev->desc->ops->disable) { 2724 ret = rdev->desc->ops->disable(rdev); 2725 if (ret != 0) 2726 return ret; 2727 } 2728 2729 if (rdev->desc->off_on_delay) 2730 rdev->last_off = ktime_get(); 2731 2732 trace_regulator_disable_complete(rdev_get_name(rdev)); 2733 2734 return 0; 2735 } 2736 2737 /* locks held by regulator_disable() */ 2738 static int _regulator_disable(struct regulator *regulator) 2739 { 2740 struct regulator_dev *rdev = regulator->rdev; 2741 int ret = 0; 2742 2743 lockdep_assert_held_once(&rdev->mutex.base); 2744 2745 if (WARN(rdev->use_count <= 0, 2746 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2747 return -EIO; 2748 2749 /* are we the last user and permitted to disable ? */ 2750 if (rdev->use_count == 1 && 2751 (rdev->constraints && !rdev->constraints->always_on)) { 2752 2753 /* we are last user */ 2754 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2755 ret = _notifier_call_chain(rdev, 2756 REGULATOR_EVENT_PRE_DISABLE, 2757 NULL); 2758 if (ret & NOTIFY_STOP_MASK) 2759 return -EINVAL; 2760 2761 ret = _regulator_do_disable(rdev); 2762 if (ret < 0) { 2763 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 2764 _notifier_call_chain(rdev, 2765 REGULATOR_EVENT_ABORT_DISABLE, 2766 NULL); 2767 return ret; 2768 } 2769 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2770 NULL); 2771 } 2772 2773 rdev->use_count = 0; 2774 } else if (rdev->use_count > 1) { 2775 rdev->use_count--; 2776 } 2777 2778 if (ret == 0) 2779 ret = _regulator_handle_consumer_disable(regulator); 2780 2781 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2782 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2783 2784 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2785 ret = _regulator_disable(rdev->supply); 2786 2787 return ret; 2788 } 2789 2790 /** 2791 * regulator_disable - disable regulator output 2792 * @regulator: regulator source 2793 * 2794 * Disable the regulator output voltage or current. Calls to 2795 * regulator_enable() must be balanced with calls to 2796 * regulator_disable(). 2797 * 2798 * NOTE: this will only disable the regulator output if no other consumer 2799 * devices have it enabled, the regulator device supports disabling and 2800 * machine constraints permit this operation. 2801 */ 2802 int regulator_disable(struct regulator *regulator) 2803 { 2804 struct regulator_dev *rdev = regulator->rdev; 2805 struct ww_acquire_ctx ww_ctx; 2806 int ret; 2807 2808 regulator_lock_dependent(rdev, &ww_ctx); 2809 ret = _regulator_disable(regulator); 2810 regulator_unlock_dependent(rdev, &ww_ctx); 2811 2812 return ret; 2813 } 2814 EXPORT_SYMBOL_GPL(regulator_disable); 2815 2816 /* locks held by regulator_force_disable() */ 2817 static int _regulator_force_disable(struct regulator_dev *rdev) 2818 { 2819 int ret = 0; 2820 2821 lockdep_assert_held_once(&rdev->mutex.base); 2822 2823 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2824 REGULATOR_EVENT_PRE_DISABLE, NULL); 2825 if (ret & NOTIFY_STOP_MASK) 2826 return -EINVAL; 2827 2828 ret = _regulator_do_disable(rdev); 2829 if (ret < 0) { 2830 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 2831 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2832 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2833 return ret; 2834 } 2835 2836 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2837 REGULATOR_EVENT_DISABLE, NULL); 2838 2839 return 0; 2840 } 2841 2842 /** 2843 * regulator_force_disable - force disable regulator output 2844 * @regulator: regulator source 2845 * 2846 * Forcibly disable the regulator output voltage or current. 2847 * NOTE: this *will* disable the regulator output even if other consumer 2848 * devices have it enabled. This should be used for situations when device 2849 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2850 */ 2851 int regulator_force_disable(struct regulator *regulator) 2852 { 2853 struct regulator_dev *rdev = regulator->rdev; 2854 struct ww_acquire_ctx ww_ctx; 2855 int ret; 2856 2857 regulator_lock_dependent(rdev, &ww_ctx); 2858 2859 ret = _regulator_force_disable(regulator->rdev); 2860 2861 if (rdev->coupling_desc.n_coupled > 1) 2862 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2863 2864 if (regulator->uA_load) { 2865 regulator->uA_load = 0; 2866 ret = drms_uA_update(rdev); 2867 } 2868 2869 if (rdev->use_count != 0 && rdev->supply) 2870 _regulator_disable(rdev->supply); 2871 2872 regulator_unlock_dependent(rdev, &ww_ctx); 2873 2874 return ret; 2875 } 2876 EXPORT_SYMBOL_GPL(regulator_force_disable); 2877 2878 static void regulator_disable_work(struct work_struct *work) 2879 { 2880 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2881 disable_work.work); 2882 struct ww_acquire_ctx ww_ctx; 2883 int count, i, ret; 2884 struct regulator *regulator; 2885 int total_count = 0; 2886 2887 regulator_lock_dependent(rdev, &ww_ctx); 2888 2889 /* 2890 * Workqueue functions queue the new work instance while the previous 2891 * work instance is being processed. Cancel the queued work instance 2892 * as the work instance under processing does the job of the queued 2893 * work instance. 2894 */ 2895 cancel_delayed_work(&rdev->disable_work); 2896 2897 list_for_each_entry(regulator, &rdev->consumer_list, list) { 2898 count = regulator->deferred_disables; 2899 2900 if (!count) 2901 continue; 2902 2903 total_count += count; 2904 regulator->deferred_disables = 0; 2905 2906 for (i = 0; i < count; i++) { 2907 ret = _regulator_disable(regulator); 2908 if (ret != 0) 2909 rdev_err(rdev, "Deferred disable failed: %pe\n", 2910 ERR_PTR(ret)); 2911 } 2912 } 2913 WARN_ON(!total_count); 2914 2915 if (rdev->coupling_desc.n_coupled > 1) 2916 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2917 2918 regulator_unlock_dependent(rdev, &ww_ctx); 2919 } 2920 2921 /** 2922 * regulator_disable_deferred - disable regulator output with delay 2923 * @regulator: regulator source 2924 * @ms: milliseconds until the regulator is disabled 2925 * 2926 * Execute regulator_disable() on the regulator after a delay. This 2927 * is intended for use with devices that require some time to quiesce. 2928 * 2929 * NOTE: this will only disable the regulator output if no other consumer 2930 * devices have it enabled, the regulator device supports disabling and 2931 * machine constraints permit this operation. 2932 */ 2933 int regulator_disable_deferred(struct regulator *regulator, int ms) 2934 { 2935 struct regulator_dev *rdev = regulator->rdev; 2936 2937 if (!ms) 2938 return regulator_disable(regulator); 2939 2940 regulator_lock(rdev); 2941 regulator->deferred_disables++; 2942 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2943 msecs_to_jiffies(ms)); 2944 regulator_unlock(rdev); 2945 2946 return 0; 2947 } 2948 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2949 2950 static int _regulator_is_enabled(struct regulator_dev *rdev) 2951 { 2952 /* A GPIO control always takes precedence */ 2953 if (rdev->ena_pin) 2954 return rdev->ena_gpio_state; 2955 2956 /* If we don't know then assume that the regulator is always on */ 2957 if (!rdev->desc->ops->is_enabled) 2958 return 1; 2959 2960 return rdev->desc->ops->is_enabled(rdev); 2961 } 2962 2963 static int _regulator_list_voltage(struct regulator_dev *rdev, 2964 unsigned selector, int lock) 2965 { 2966 const struct regulator_ops *ops = rdev->desc->ops; 2967 int ret; 2968 2969 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2970 return rdev->desc->fixed_uV; 2971 2972 if (ops->list_voltage) { 2973 if (selector >= rdev->desc->n_voltages) 2974 return -EINVAL; 2975 if (selector < rdev->desc->linear_min_sel) 2976 return 0; 2977 if (lock) 2978 regulator_lock(rdev); 2979 ret = ops->list_voltage(rdev, selector); 2980 if (lock) 2981 regulator_unlock(rdev); 2982 } else if (rdev->is_switch && rdev->supply) { 2983 ret = _regulator_list_voltage(rdev->supply->rdev, 2984 selector, lock); 2985 } else { 2986 return -EINVAL; 2987 } 2988 2989 if (ret > 0) { 2990 if (ret < rdev->constraints->min_uV) 2991 ret = 0; 2992 else if (ret > rdev->constraints->max_uV) 2993 ret = 0; 2994 } 2995 2996 return ret; 2997 } 2998 2999 /** 3000 * regulator_is_enabled - is the regulator output enabled 3001 * @regulator: regulator source 3002 * 3003 * Returns positive if the regulator driver backing the source/client 3004 * has requested that the device be enabled, zero if it hasn't, else a 3005 * negative errno code. 3006 * 3007 * Note that the device backing this regulator handle can have multiple 3008 * users, so it might be enabled even if regulator_enable() was never 3009 * called for this particular source. 3010 */ 3011 int regulator_is_enabled(struct regulator *regulator) 3012 { 3013 int ret; 3014 3015 if (regulator->always_on) 3016 return 1; 3017 3018 regulator_lock(regulator->rdev); 3019 ret = _regulator_is_enabled(regulator->rdev); 3020 regulator_unlock(regulator->rdev); 3021 3022 return ret; 3023 } 3024 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3025 3026 /** 3027 * regulator_count_voltages - count regulator_list_voltage() selectors 3028 * @regulator: regulator source 3029 * 3030 * Returns number of selectors, or negative errno. Selectors are 3031 * numbered starting at zero, and typically correspond to bitfields 3032 * in hardware registers. 3033 */ 3034 int regulator_count_voltages(struct regulator *regulator) 3035 { 3036 struct regulator_dev *rdev = regulator->rdev; 3037 3038 if (rdev->desc->n_voltages) 3039 return rdev->desc->n_voltages; 3040 3041 if (!rdev->is_switch || !rdev->supply) 3042 return -EINVAL; 3043 3044 return regulator_count_voltages(rdev->supply); 3045 } 3046 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3047 3048 /** 3049 * regulator_list_voltage - enumerate supported voltages 3050 * @regulator: regulator source 3051 * @selector: identify voltage to list 3052 * Context: can sleep 3053 * 3054 * Returns a voltage that can be passed to @regulator_set_voltage(), 3055 * zero if this selector code can't be used on this system, or a 3056 * negative errno. 3057 */ 3058 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3059 { 3060 return _regulator_list_voltage(regulator->rdev, selector, 1); 3061 } 3062 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3063 3064 /** 3065 * regulator_get_regmap - get the regulator's register map 3066 * @regulator: regulator source 3067 * 3068 * Returns the register map for the given regulator, or an ERR_PTR value 3069 * if the regulator doesn't use regmap. 3070 */ 3071 struct regmap *regulator_get_regmap(struct regulator *regulator) 3072 { 3073 struct regmap *map = regulator->rdev->regmap; 3074 3075 return map ? map : ERR_PTR(-EOPNOTSUPP); 3076 } 3077 3078 /** 3079 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3080 * @regulator: regulator source 3081 * @vsel_reg: voltage selector register, output parameter 3082 * @vsel_mask: mask for voltage selector bitfield, output parameter 3083 * 3084 * Returns the hardware register offset and bitmask used for setting the 3085 * regulator voltage. This might be useful when configuring voltage-scaling 3086 * hardware or firmware that can make I2C requests behind the kernel's back, 3087 * for example. 3088 * 3089 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3090 * and 0 is returned, otherwise a negative errno is returned. 3091 */ 3092 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3093 unsigned *vsel_reg, 3094 unsigned *vsel_mask) 3095 { 3096 struct regulator_dev *rdev = regulator->rdev; 3097 const struct regulator_ops *ops = rdev->desc->ops; 3098 3099 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3100 return -EOPNOTSUPP; 3101 3102 *vsel_reg = rdev->desc->vsel_reg; 3103 *vsel_mask = rdev->desc->vsel_mask; 3104 3105 return 0; 3106 } 3107 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3108 3109 /** 3110 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3111 * @regulator: regulator source 3112 * @selector: identify voltage to list 3113 * 3114 * Converts the selector to a hardware-specific voltage selector that can be 3115 * directly written to the regulator registers. The address of the voltage 3116 * register can be determined by calling @regulator_get_hardware_vsel_register. 3117 * 3118 * On error a negative errno is returned. 3119 */ 3120 int regulator_list_hardware_vsel(struct regulator *regulator, 3121 unsigned selector) 3122 { 3123 struct regulator_dev *rdev = regulator->rdev; 3124 const struct regulator_ops *ops = rdev->desc->ops; 3125 3126 if (selector >= rdev->desc->n_voltages) 3127 return -EINVAL; 3128 if (selector < rdev->desc->linear_min_sel) 3129 return 0; 3130 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3131 return -EOPNOTSUPP; 3132 3133 return selector; 3134 } 3135 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3136 3137 /** 3138 * regulator_get_linear_step - return the voltage step size between VSEL values 3139 * @regulator: regulator source 3140 * 3141 * Returns the voltage step size between VSEL values for linear 3142 * regulators, or return 0 if the regulator isn't a linear regulator. 3143 */ 3144 unsigned int regulator_get_linear_step(struct regulator *regulator) 3145 { 3146 struct regulator_dev *rdev = regulator->rdev; 3147 3148 return rdev->desc->uV_step; 3149 } 3150 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3151 3152 /** 3153 * regulator_is_supported_voltage - check if a voltage range can be supported 3154 * 3155 * @regulator: Regulator to check. 3156 * @min_uV: Minimum required voltage in uV. 3157 * @max_uV: Maximum required voltage in uV. 3158 * 3159 * Returns a boolean. 3160 */ 3161 int regulator_is_supported_voltage(struct regulator *regulator, 3162 int min_uV, int max_uV) 3163 { 3164 struct regulator_dev *rdev = regulator->rdev; 3165 int i, voltages, ret; 3166 3167 /* If we can't change voltage check the current voltage */ 3168 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3169 ret = regulator_get_voltage(regulator); 3170 if (ret >= 0) 3171 return min_uV <= ret && ret <= max_uV; 3172 else 3173 return ret; 3174 } 3175 3176 /* Any voltage within constrains range is fine? */ 3177 if (rdev->desc->continuous_voltage_range) 3178 return min_uV >= rdev->constraints->min_uV && 3179 max_uV <= rdev->constraints->max_uV; 3180 3181 ret = regulator_count_voltages(regulator); 3182 if (ret < 0) 3183 return 0; 3184 voltages = ret; 3185 3186 for (i = 0; i < voltages; i++) { 3187 ret = regulator_list_voltage(regulator, i); 3188 3189 if (ret >= min_uV && ret <= max_uV) 3190 return 1; 3191 } 3192 3193 return 0; 3194 } 3195 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3196 3197 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3198 int max_uV) 3199 { 3200 const struct regulator_desc *desc = rdev->desc; 3201 3202 if (desc->ops->map_voltage) 3203 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3204 3205 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3206 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3207 3208 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3209 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3210 3211 if (desc->ops->list_voltage == 3212 regulator_list_voltage_pickable_linear_range) 3213 return regulator_map_voltage_pickable_linear_range(rdev, 3214 min_uV, max_uV); 3215 3216 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3217 } 3218 3219 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3220 int min_uV, int max_uV, 3221 unsigned *selector) 3222 { 3223 struct pre_voltage_change_data data; 3224 int ret; 3225 3226 data.old_uV = regulator_get_voltage_rdev(rdev); 3227 data.min_uV = min_uV; 3228 data.max_uV = max_uV; 3229 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3230 &data); 3231 if (ret & NOTIFY_STOP_MASK) 3232 return -EINVAL; 3233 3234 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3235 if (ret >= 0) 3236 return ret; 3237 3238 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3239 (void *)data.old_uV); 3240 3241 return ret; 3242 } 3243 3244 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3245 int uV, unsigned selector) 3246 { 3247 struct pre_voltage_change_data data; 3248 int ret; 3249 3250 data.old_uV = regulator_get_voltage_rdev(rdev); 3251 data.min_uV = uV; 3252 data.max_uV = uV; 3253 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3254 &data); 3255 if (ret & NOTIFY_STOP_MASK) 3256 return -EINVAL; 3257 3258 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3259 if (ret >= 0) 3260 return ret; 3261 3262 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3263 (void *)data.old_uV); 3264 3265 return ret; 3266 } 3267 3268 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3269 int uV, int new_selector) 3270 { 3271 const struct regulator_ops *ops = rdev->desc->ops; 3272 int diff, old_sel, curr_sel, ret; 3273 3274 /* Stepping is only needed if the regulator is enabled. */ 3275 if (!_regulator_is_enabled(rdev)) 3276 goto final_set; 3277 3278 if (!ops->get_voltage_sel) 3279 return -EINVAL; 3280 3281 old_sel = ops->get_voltage_sel(rdev); 3282 if (old_sel < 0) 3283 return old_sel; 3284 3285 diff = new_selector - old_sel; 3286 if (diff == 0) 3287 return 0; /* No change needed. */ 3288 3289 if (diff > 0) { 3290 /* Stepping up. */ 3291 for (curr_sel = old_sel + rdev->desc->vsel_step; 3292 curr_sel < new_selector; 3293 curr_sel += rdev->desc->vsel_step) { 3294 /* 3295 * Call the callback directly instead of using 3296 * _regulator_call_set_voltage_sel() as we don't 3297 * want to notify anyone yet. Same in the branch 3298 * below. 3299 */ 3300 ret = ops->set_voltage_sel(rdev, curr_sel); 3301 if (ret) 3302 goto try_revert; 3303 } 3304 } else { 3305 /* Stepping down. */ 3306 for (curr_sel = old_sel - rdev->desc->vsel_step; 3307 curr_sel > new_selector; 3308 curr_sel -= rdev->desc->vsel_step) { 3309 ret = ops->set_voltage_sel(rdev, curr_sel); 3310 if (ret) 3311 goto try_revert; 3312 } 3313 } 3314 3315 final_set: 3316 /* The final selector will trigger the notifiers. */ 3317 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3318 3319 try_revert: 3320 /* 3321 * At least try to return to the previous voltage if setting a new 3322 * one failed. 3323 */ 3324 (void)ops->set_voltage_sel(rdev, old_sel); 3325 return ret; 3326 } 3327 3328 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3329 int old_uV, int new_uV) 3330 { 3331 unsigned int ramp_delay = 0; 3332 3333 if (rdev->constraints->ramp_delay) 3334 ramp_delay = rdev->constraints->ramp_delay; 3335 else if (rdev->desc->ramp_delay) 3336 ramp_delay = rdev->desc->ramp_delay; 3337 else if (rdev->constraints->settling_time) 3338 return rdev->constraints->settling_time; 3339 else if (rdev->constraints->settling_time_up && 3340 (new_uV > old_uV)) 3341 return rdev->constraints->settling_time_up; 3342 else if (rdev->constraints->settling_time_down && 3343 (new_uV < old_uV)) 3344 return rdev->constraints->settling_time_down; 3345 3346 if (ramp_delay == 0) { 3347 rdev_dbg(rdev, "ramp_delay not set\n"); 3348 return 0; 3349 } 3350 3351 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3352 } 3353 3354 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3355 int min_uV, int max_uV) 3356 { 3357 int ret; 3358 int delay = 0; 3359 int best_val = 0; 3360 unsigned int selector; 3361 int old_selector = -1; 3362 const struct regulator_ops *ops = rdev->desc->ops; 3363 int old_uV = regulator_get_voltage_rdev(rdev); 3364 3365 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3366 3367 min_uV += rdev->constraints->uV_offset; 3368 max_uV += rdev->constraints->uV_offset; 3369 3370 /* 3371 * If we can't obtain the old selector there is not enough 3372 * info to call set_voltage_time_sel(). 3373 */ 3374 if (_regulator_is_enabled(rdev) && 3375 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3376 old_selector = ops->get_voltage_sel(rdev); 3377 if (old_selector < 0) 3378 return old_selector; 3379 } 3380 3381 if (ops->set_voltage) { 3382 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3383 &selector); 3384 3385 if (ret >= 0) { 3386 if (ops->list_voltage) 3387 best_val = ops->list_voltage(rdev, 3388 selector); 3389 else 3390 best_val = regulator_get_voltage_rdev(rdev); 3391 } 3392 3393 } else if (ops->set_voltage_sel) { 3394 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3395 if (ret >= 0) { 3396 best_val = ops->list_voltage(rdev, ret); 3397 if (min_uV <= best_val && max_uV >= best_val) { 3398 selector = ret; 3399 if (old_selector == selector) 3400 ret = 0; 3401 else if (rdev->desc->vsel_step) 3402 ret = _regulator_set_voltage_sel_step( 3403 rdev, best_val, selector); 3404 else 3405 ret = _regulator_call_set_voltage_sel( 3406 rdev, best_val, selector); 3407 } else { 3408 ret = -EINVAL; 3409 } 3410 } 3411 } else { 3412 ret = -EINVAL; 3413 } 3414 3415 if (ret) 3416 goto out; 3417 3418 if (ops->set_voltage_time_sel) { 3419 /* 3420 * Call set_voltage_time_sel if successfully obtained 3421 * old_selector 3422 */ 3423 if (old_selector >= 0 && old_selector != selector) 3424 delay = ops->set_voltage_time_sel(rdev, old_selector, 3425 selector); 3426 } else { 3427 if (old_uV != best_val) { 3428 if (ops->set_voltage_time) 3429 delay = ops->set_voltage_time(rdev, old_uV, 3430 best_val); 3431 else 3432 delay = _regulator_set_voltage_time(rdev, 3433 old_uV, 3434 best_val); 3435 } 3436 } 3437 3438 if (delay < 0) { 3439 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3440 delay = 0; 3441 } 3442 3443 /* Insert any necessary delays */ 3444 if (delay >= 1000) { 3445 mdelay(delay / 1000); 3446 udelay(delay % 1000); 3447 } else if (delay) { 3448 udelay(delay); 3449 } 3450 3451 if (best_val >= 0) { 3452 unsigned long data = best_val; 3453 3454 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3455 (void *)data); 3456 } 3457 3458 out: 3459 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3460 3461 return ret; 3462 } 3463 3464 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3465 int min_uV, int max_uV, suspend_state_t state) 3466 { 3467 struct regulator_state *rstate; 3468 int uV, sel; 3469 3470 rstate = regulator_get_suspend_state(rdev, state); 3471 if (rstate == NULL) 3472 return -EINVAL; 3473 3474 if (min_uV < rstate->min_uV) 3475 min_uV = rstate->min_uV; 3476 if (max_uV > rstate->max_uV) 3477 max_uV = rstate->max_uV; 3478 3479 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3480 if (sel < 0) 3481 return sel; 3482 3483 uV = rdev->desc->ops->list_voltage(rdev, sel); 3484 if (uV >= min_uV && uV <= max_uV) 3485 rstate->uV = uV; 3486 3487 return 0; 3488 } 3489 3490 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3491 int min_uV, int max_uV, 3492 suspend_state_t state) 3493 { 3494 struct regulator_dev *rdev = regulator->rdev; 3495 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3496 int ret = 0; 3497 int old_min_uV, old_max_uV; 3498 int current_uV; 3499 3500 /* If we're setting the same range as last time the change 3501 * should be a noop (some cpufreq implementations use the same 3502 * voltage for multiple frequencies, for example). 3503 */ 3504 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3505 goto out; 3506 3507 /* If we're trying to set a range that overlaps the current voltage, 3508 * return successfully even though the regulator does not support 3509 * changing the voltage. 3510 */ 3511 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3512 current_uV = regulator_get_voltage_rdev(rdev); 3513 if (min_uV <= current_uV && current_uV <= max_uV) { 3514 voltage->min_uV = min_uV; 3515 voltage->max_uV = max_uV; 3516 goto out; 3517 } 3518 } 3519 3520 /* sanity check */ 3521 if (!rdev->desc->ops->set_voltage && 3522 !rdev->desc->ops->set_voltage_sel) { 3523 ret = -EINVAL; 3524 goto out; 3525 } 3526 3527 /* constraints check */ 3528 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3529 if (ret < 0) 3530 goto out; 3531 3532 /* restore original values in case of error */ 3533 old_min_uV = voltage->min_uV; 3534 old_max_uV = voltage->max_uV; 3535 voltage->min_uV = min_uV; 3536 voltage->max_uV = max_uV; 3537 3538 /* for not coupled regulators this will just set the voltage */ 3539 ret = regulator_balance_voltage(rdev, state); 3540 if (ret < 0) { 3541 voltage->min_uV = old_min_uV; 3542 voltage->max_uV = old_max_uV; 3543 } 3544 3545 out: 3546 return ret; 3547 } 3548 3549 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3550 int max_uV, suspend_state_t state) 3551 { 3552 int best_supply_uV = 0; 3553 int supply_change_uV = 0; 3554 int ret; 3555 3556 if (rdev->supply && 3557 regulator_ops_is_valid(rdev->supply->rdev, 3558 REGULATOR_CHANGE_VOLTAGE) && 3559 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3560 rdev->desc->ops->get_voltage_sel))) { 3561 int current_supply_uV; 3562 int selector; 3563 3564 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3565 if (selector < 0) { 3566 ret = selector; 3567 goto out; 3568 } 3569 3570 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3571 if (best_supply_uV < 0) { 3572 ret = best_supply_uV; 3573 goto out; 3574 } 3575 3576 best_supply_uV += rdev->desc->min_dropout_uV; 3577 3578 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3579 if (current_supply_uV < 0) { 3580 ret = current_supply_uV; 3581 goto out; 3582 } 3583 3584 supply_change_uV = best_supply_uV - current_supply_uV; 3585 } 3586 3587 if (supply_change_uV > 0) { 3588 ret = regulator_set_voltage_unlocked(rdev->supply, 3589 best_supply_uV, INT_MAX, state); 3590 if (ret) { 3591 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3592 ERR_PTR(ret)); 3593 goto out; 3594 } 3595 } 3596 3597 if (state == PM_SUSPEND_ON) 3598 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3599 else 3600 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3601 max_uV, state); 3602 if (ret < 0) 3603 goto out; 3604 3605 if (supply_change_uV < 0) { 3606 ret = regulator_set_voltage_unlocked(rdev->supply, 3607 best_supply_uV, INT_MAX, state); 3608 if (ret) 3609 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3610 ERR_PTR(ret)); 3611 /* No need to fail here */ 3612 ret = 0; 3613 } 3614 3615 out: 3616 return ret; 3617 } 3618 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3619 3620 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3621 int *current_uV, int *min_uV) 3622 { 3623 struct regulation_constraints *constraints = rdev->constraints; 3624 3625 /* Limit voltage change only if necessary */ 3626 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3627 return 1; 3628 3629 if (*current_uV < 0) { 3630 *current_uV = regulator_get_voltage_rdev(rdev); 3631 3632 if (*current_uV < 0) 3633 return *current_uV; 3634 } 3635 3636 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3637 return 1; 3638 3639 /* Clamp target voltage within the given step */ 3640 if (*current_uV < *min_uV) 3641 *min_uV = min(*current_uV + constraints->max_uV_step, 3642 *min_uV); 3643 else 3644 *min_uV = max(*current_uV - constraints->max_uV_step, 3645 *min_uV); 3646 3647 return 0; 3648 } 3649 3650 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3651 int *current_uV, 3652 int *min_uV, int *max_uV, 3653 suspend_state_t state, 3654 int n_coupled) 3655 { 3656 struct coupling_desc *c_desc = &rdev->coupling_desc; 3657 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3658 struct regulation_constraints *constraints = rdev->constraints; 3659 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3660 int max_current_uV = 0, min_current_uV = INT_MAX; 3661 int highest_min_uV = 0, target_uV, possible_uV; 3662 int i, ret, max_spread; 3663 bool done; 3664 3665 *current_uV = -1; 3666 3667 /* 3668 * If there are no coupled regulators, simply set the voltage 3669 * demanded by consumers. 3670 */ 3671 if (n_coupled == 1) { 3672 /* 3673 * If consumers don't provide any demands, set voltage 3674 * to min_uV 3675 */ 3676 desired_min_uV = constraints->min_uV; 3677 desired_max_uV = constraints->max_uV; 3678 3679 ret = regulator_check_consumers(rdev, 3680 &desired_min_uV, 3681 &desired_max_uV, state); 3682 if (ret < 0) 3683 return ret; 3684 3685 possible_uV = desired_min_uV; 3686 done = true; 3687 3688 goto finish; 3689 } 3690 3691 /* Find highest min desired voltage */ 3692 for (i = 0; i < n_coupled; i++) { 3693 int tmp_min = 0; 3694 int tmp_max = INT_MAX; 3695 3696 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3697 3698 ret = regulator_check_consumers(c_rdevs[i], 3699 &tmp_min, 3700 &tmp_max, state); 3701 if (ret < 0) 3702 return ret; 3703 3704 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3705 if (ret < 0) 3706 return ret; 3707 3708 highest_min_uV = max(highest_min_uV, tmp_min); 3709 3710 if (i == 0) { 3711 desired_min_uV = tmp_min; 3712 desired_max_uV = tmp_max; 3713 } 3714 } 3715 3716 max_spread = constraints->max_spread[0]; 3717 3718 /* 3719 * Let target_uV be equal to the desired one if possible. 3720 * If not, set it to minimum voltage, allowed by other coupled 3721 * regulators. 3722 */ 3723 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3724 3725 /* 3726 * Find min and max voltages, which currently aren't violating 3727 * max_spread. 3728 */ 3729 for (i = 1; i < n_coupled; i++) { 3730 int tmp_act; 3731 3732 if (!_regulator_is_enabled(c_rdevs[i])) 3733 continue; 3734 3735 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3736 if (tmp_act < 0) 3737 return tmp_act; 3738 3739 min_current_uV = min(tmp_act, min_current_uV); 3740 max_current_uV = max(tmp_act, max_current_uV); 3741 } 3742 3743 /* There aren't any other regulators enabled */ 3744 if (max_current_uV == 0) { 3745 possible_uV = target_uV; 3746 } else { 3747 /* 3748 * Correct target voltage, so as it currently isn't 3749 * violating max_spread 3750 */ 3751 possible_uV = max(target_uV, max_current_uV - max_spread); 3752 possible_uV = min(possible_uV, min_current_uV + max_spread); 3753 } 3754 3755 if (possible_uV > desired_max_uV) 3756 return -EINVAL; 3757 3758 done = (possible_uV == target_uV); 3759 desired_min_uV = possible_uV; 3760 3761 finish: 3762 /* Apply max_uV_step constraint if necessary */ 3763 if (state == PM_SUSPEND_ON) { 3764 ret = regulator_limit_voltage_step(rdev, current_uV, 3765 &desired_min_uV); 3766 if (ret < 0) 3767 return ret; 3768 3769 if (ret == 0) 3770 done = false; 3771 } 3772 3773 /* Set current_uV if wasn't done earlier in the code and if necessary */ 3774 if (n_coupled > 1 && *current_uV == -1) { 3775 3776 if (_regulator_is_enabled(rdev)) { 3777 ret = regulator_get_voltage_rdev(rdev); 3778 if (ret < 0) 3779 return ret; 3780 3781 *current_uV = ret; 3782 } else { 3783 *current_uV = desired_min_uV; 3784 } 3785 } 3786 3787 *min_uV = desired_min_uV; 3788 *max_uV = desired_max_uV; 3789 3790 return done; 3791 } 3792 3793 int regulator_do_balance_voltage(struct regulator_dev *rdev, 3794 suspend_state_t state, bool skip_coupled) 3795 { 3796 struct regulator_dev **c_rdevs; 3797 struct regulator_dev *best_rdev; 3798 struct coupling_desc *c_desc = &rdev->coupling_desc; 3799 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 3800 unsigned int delta, best_delta; 3801 unsigned long c_rdev_done = 0; 3802 bool best_c_rdev_done; 3803 3804 c_rdevs = c_desc->coupled_rdevs; 3805 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 3806 3807 /* 3808 * Find the best possible voltage change on each loop. Leave the loop 3809 * if there isn't any possible change. 3810 */ 3811 do { 3812 best_c_rdev_done = false; 3813 best_delta = 0; 3814 best_min_uV = 0; 3815 best_max_uV = 0; 3816 best_c_rdev = 0; 3817 best_rdev = NULL; 3818 3819 /* 3820 * Find highest difference between optimal voltage 3821 * and current voltage. 3822 */ 3823 for (i = 0; i < n_coupled; i++) { 3824 /* 3825 * optimal_uV is the best voltage that can be set for 3826 * i-th regulator at the moment without violating 3827 * max_spread constraint in order to balance 3828 * the coupled voltages. 3829 */ 3830 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 3831 3832 if (test_bit(i, &c_rdev_done)) 3833 continue; 3834 3835 ret = regulator_get_optimal_voltage(c_rdevs[i], 3836 ¤t_uV, 3837 &optimal_uV, 3838 &optimal_max_uV, 3839 state, n_coupled); 3840 if (ret < 0) 3841 goto out; 3842 3843 delta = abs(optimal_uV - current_uV); 3844 3845 if (delta && best_delta <= delta) { 3846 best_c_rdev_done = ret; 3847 best_delta = delta; 3848 best_rdev = c_rdevs[i]; 3849 best_min_uV = optimal_uV; 3850 best_max_uV = optimal_max_uV; 3851 best_c_rdev = i; 3852 } 3853 } 3854 3855 /* Nothing to change, return successfully */ 3856 if (!best_rdev) { 3857 ret = 0; 3858 goto out; 3859 } 3860 3861 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 3862 best_max_uV, state); 3863 3864 if (ret < 0) 3865 goto out; 3866 3867 if (best_c_rdev_done) 3868 set_bit(best_c_rdev, &c_rdev_done); 3869 3870 } while (n_coupled > 1); 3871 3872 out: 3873 return ret; 3874 } 3875 3876 static int regulator_balance_voltage(struct regulator_dev *rdev, 3877 suspend_state_t state) 3878 { 3879 struct coupling_desc *c_desc = &rdev->coupling_desc; 3880 struct regulator_coupler *coupler = c_desc->coupler; 3881 bool skip_coupled = false; 3882 3883 /* 3884 * If system is in a state other than PM_SUSPEND_ON, don't check 3885 * other coupled regulators. 3886 */ 3887 if (state != PM_SUSPEND_ON) 3888 skip_coupled = true; 3889 3890 if (c_desc->n_resolved < c_desc->n_coupled) { 3891 rdev_err(rdev, "Not all coupled regulators registered\n"); 3892 return -EPERM; 3893 } 3894 3895 /* Invoke custom balancer for customized couplers */ 3896 if (coupler && coupler->balance_voltage) 3897 return coupler->balance_voltage(coupler, rdev, state); 3898 3899 return regulator_do_balance_voltage(rdev, state, skip_coupled); 3900 } 3901 3902 /** 3903 * regulator_set_voltage - set regulator output voltage 3904 * @regulator: regulator source 3905 * @min_uV: Minimum required voltage in uV 3906 * @max_uV: Maximum acceptable voltage in uV 3907 * 3908 * Sets a voltage regulator to the desired output voltage. This can be set 3909 * during any regulator state. IOW, regulator can be disabled or enabled. 3910 * 3911 * If the regulator is enabled then the voltage will change to the new value 3912 * immediately otherwise if the regulator is disabled the regulator will 3913 * output at the new voltage when enabled. 3914 * 3915 * NOTE: If the regulator is shared between several devices then the lowest 3916 * request voltage that meets the system constraints will be used. 3917 * Regulator system constraints must be set for this regulator before 3918 * calling this function otherwise this call will fail. 3919 */ 3920 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3921 { 3922 struct ww_acquire_ctx ww_ctx; 3923 int ret; 3924 3925 regulator_lock_dependent(regulator->rdev, &ww_ctx); 3926 3927 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3928 PM_SUSPEND_ON); 3929 3930 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 3931 3932 return ret; 3933 } 3934 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3935 3936 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3937 suspend_state_t state, bool en) 3938 { 3939 struct regulator_state *rstate; 3940 3941 rstate = regulator_get_suspend_state(rdev, state); 3942 if (rstate == NULL) 3943 return -EINVAL; 3944 3945 if (!rstate->changeable) 3946 return -EPERM; 3947 3948 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 3949 3950 return 0; 3951 } 3952 3953 int regulator_suspend_enable(struct regulator_dev *rdev, 3954 suspend_state_t state) 3955 { 3956 return regulator_suspend_toggle(rdev, state, true); 3957 } 3958 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3959 3960 int regulator_suspend_disable(struct regulator_dev *rdev, 3961 suspend_state_t state) 3962 { 3963 struct regulator *regulator; 3964 struct regulator_voltage *voltage; 3965 3966 /* 3967 * if any consumer wants this regulator device keeping on in 3968 * suspend states, don't set it as disabled. 3969 */ 3970 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3971 voltage = ®ulator->voltage[state]; 3972 if (voltage->min_uV || voltage->max_uV) 3973 return 0; 3974 } 3975 3976 return regulator_suspend_toggle(rdev, state, false); 3977 } 3978 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3979 3980 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3981 int min_uV, int max_uV, 3982 suspend_state_t state) 3983 { 3984 struct regulator_dev *rdev = regulator->rdev; 3985 struct regulator_state *rstate; 3986 3987 rstate = regulator_get_suspend_state(rdev, state); 3988 if (rstate == NULL) 3989 return -EINVAL; 3990 3991 if (rstate->min_uV == rstate->max_uV) { 3992 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3993 return -EPERM; 3994 } 3995 3996 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3997 } 3998 3999 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4000 int max_uV, suspend_state_t state) 4001 { 4002 struct ww_acquire_ctx ww_ctx; 4003 int ret; 4004 4005 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4006 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4007 return -EINVAL; 4008 4009 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4010 4011 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4012 max_uV, state); 4013 4014 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4015 4016 return ret; 4017 } 4018 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4019 4020 /** 4021 * regulator_set_voltage_time - get raise/fall time 4022 * @regulator: regulator source 4023 * @old_uV: starting voltage in microvolts 4024 * @new_uV: target voltage in microvolts 4025 * 4026 * Provided with the starting and ending voltage, this function attempts to 4027 * calculate the time in microseconds required to rise or fall to this new 4028 * voltage. 4029 */ 4030 int regulator_set_voltage_time(struct regulator *regulator, 4031 int old_uV, int new_uV) 4032 { 4033 struct regulator_dev *rdev = regulator->rdev; 4034 const struct regulator_ops *ops = rdev->desc->ops; 4035 int old_sel = -1; 4036 int new_sel = -1; 4037 int voltage; 4038 int i; 4039 4040 if (ops->set_voltage_time) 4041 return ops->set_voltage_time(rdev, old_uV, new_uV); 4042 else if (!ops->set_voltage_time_sel) 4043 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4044 4045 /* Currently requires operations to do this */ 4046 if (!ops->list_voltage || !rdev->desc->n_voltages) 4047 return -EINVAL; 4048 4049 for (i = 0; i < rdev->desc->n_voltages; i++) { 4050 /* We only look for exact voltage matches here */ 4051 if (i < rdev->desc->linear_min_sel) 4052 continue; 4053 4054 if (old_sel >= 0 && new_sel >= 0) 4055 break; 4056 4057 voltage = regulator_list_voltage(regulator, i); 4058 if (voltage < 0) 4059 return -EINVAL; 4060 if (voltage == 0) 4061 continue; 4062 if (voltage == old_uV) 4063 old_sel = i; 4064 if (voltage == new_uV) 4065 new_sel = i; 4066 } 4067 4068 if (old_sel < 0 || new_sel < 0) 4069 return -EINVAL; 4070 4071 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4072 } 4073 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4074 4075 /** 4076 * regulator_set_voltage_time_sel - get raise/fall time 4077 * @rdev: regulator source device 4078 * @old_selector: selector for starting voltage 4079 * @new_selector: selector for target voltage 4080 * 4081 * Provided with the starting and target voltage selectors, this function 4082 * returns time in microseconds required to rise or fall to this new voltage 4083 * 4084 * Drivers providing ramp_delay in regulation_constraints can use this as their 4085 * set_voltage_time_sel() operation. 4086 */ 4087 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4088 unsigned int old_selector, 4089 unsigned int new_selector) 4090 { 4091 int old_volt, new_volt; 4092 4093 /* sanity check */ 4094 if (!rdev->desc->ops->list_voltage) 4095 return -EINVAL; 4096 4097 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4098 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4099 4100 if (rdev->desc->ops->set_voltage_time) 4101 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4102 new_volt); 4103 else 4104 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4105 } 4106 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4107 4108 /** 4109 * regulator_sync_voltage - re-apply last regulator output voltage 4110 * @regulator: regulator source 4111 * 4112 * Re-apply the last configured voltage. This is intended to be used 4113 * where some external control source the consumer is cooperating with 4114 * has caused the configured voltage to change. 4115 */ 4116 int regulator_sync_voltage(struct regulator *regulator) 4117 { 4118 struct regulator_dev *rdev = regulator->rdev; 4119 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4120 int ret, min_uV, max_uV; 4121 4122 regulator_lock(rdev); 4123 4124 if (!rdev->desc->ops->set_voltage && 4125 !rdev->desc->ops->set_voltage_sel) { 4126 ret = -EINVAL; 4127 goto out; 4128 } 4129 4130 /* This is only going to work if we've had a voltage configured. */ 4131 if (!voltage->min_uV && !voltage->max_uV) { 4132 ret = -EINVAL; 4133 goto out; 4134 } 4135 4136 min_uV = voltage->min_uV; 4137 max_uV = voltage->max_uV; 4138 4139 /* This should be a paranoia check... */ 4140 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4141 if (ret < 0) 4142 goto out; 4143 4144 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4145 if (ret < 0) 4146 goto out; 4147 4148 /* balance only, if regulator is coupled */ 4149 if (rdev->coupling_desc.n_coupled > 1) 4150 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4151 else 4152 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4153 4154 out: 4155 regulator_unlock(rdev); 4156 return ret; 4157 } 4158 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4159 4160 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4161 { 4162 int sel, ret; 4163 bool bypassed; 4164 4165 if (rdev->desc->ops->get_bypass) { 4166 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4167 if (ret < 0) 4168 return ret; 4169 if (bypassed) { 4170 /* if bypassed the regulator must have a supply */ 4171 if (!rdev->supply) { 4172 rdev_err(rdev, 4173 "bypassed regulator has no supply!\n"); 4174 return -EPROBE_DEFER; 4175 } 4176 4177 return regulator_get_voltage_rdev(rdev->supply->rdev); 4178 } 4179 } 4180 4181 if (rdev->desc->ops->get_voltage_sel) { 4182 sel = rdev->desc->ops->get_voltage_sel(rdev); 4183 if (sel < 0) 4184 return sel; 4185 ret = rdev->desc->ops->list_voltage(rdev, sel); 4186 } else if (rdev->desc->ops->get_voltage) { 4187 ret = rdev->desc->ops->get_voltage(rdev); 4188 } else if (rdev->desc->ops->list_voltage) { 4189 ret = rdev->desc->ops->list_voltage(rdev, 0); 4190 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4191 ret = rdev->desc->fixed_uV; 4192 } else if (rdev->supply) { 4193 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4194 } else if (rdev->supply_name) { 4195 return -EPROBE_DEFER; 4196 } else { 4197 return -EINVAL; 4198 } 4199 4200 if (ret < 0) 4201 return ret; 4202 return ret - rdev->constraints->uV_offset; 4203 } 4204 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4205 4206 /** 4207 * regulator_get_voltage - get regulator output voltage 4208 * @regulator: regulator source 4209 * 4210 * This returns the current regulator voltage in uV. 4211 * 4212 * NOTE: If the regulator is disabled it will return the voltage value. This 4213 * function should not be used to determine regulator state. 4214 */ 4215 int regulator_get_voltage(struct regulator *regulator) 4216 { 4217 struct ww_acquire_ctx ww_ctx; 4218 int ret; 4219 4220 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4221 ret = regulator_get_voltage_rdev(regulator->rdev); 4222 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4223 4224 return ret; 4225 } 4226 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4227 4228 /** 4229 * regulator_set_current_limit - set regulator output current limit 4230 * @regulator: regulator source 4231 * @min_uA: Minimum supported current in uA 4232 * @max_uA: Maximum supported current in uA 4233 * 4234 * Sets current sink to the desired output current. This can be set during 4235 * any regulator state. IOW, regulator can be disabled or enabled. 4236 * 4237 * If the regulator is enabled then the current will change to the new value 4238 * immediately otherwise if the regulator is disabled the regulator will 4239 * output at the new current when enabled. 4240 * 4241 * NOTE: Regulator system constraints must be set for this regulator before 4242 * calling this function otherwise this call will fail. 4243 */ 4244 int regulator_set_current_limit(struct regulator *regulator, 4245 int min_uA, int max_uA) 4246 { 4247 struct regulator_dev *rdev = regulator->rdev; 4248 int ret; 4249 4250 regulator_lock(rdev); 4251 4252 /* sanity check */ 4253 if (!rdev->desc->ops->set_current_limit) { 4254 ret = -EINVAL; 4255 goto out; 4256 } 4257 4258 /* constraints check */ 4259 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4260 if (ret < 0) 4261 goto out; 4262 4263 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4264 out: 4265 regulator_unlock(rdev); 4266 return ret; 4267 } 4268 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4269 4270 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4271 { 4272 /* sanity check */ 4273 if (!rdev->desc->ops->get_current_limit) 4274 return -EINVAL; 4275 4276 return rdev->desc->ops->get_current_limit(rdev); 4277 } 4278 4279 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4280 { 4281 int ret; 4282 4283 regulator_lock(rdev); 4284 ret = _regulator_get_current_limit_unlocked(rdev); 4285 regulator_unlock(rdev); 4286 4287 return ret; 4288 } 4289 4290 /** 4291 * regulator_get_current_limit - get regulator output current 4292 * @regulator: regulator source 4293 * 4294 * This returns the current supplied by the specified current sink in uA. 4295 * 4296 * NOTE: If the regulator is disabled it will return the current value. This 4297 * function should not be used to determine regulator state. 4298 */ 4299 int regulator_get_current_limit(struct regulator *regulator) 4300 { 4301 return _regulator_get_current_limit(regulator->rdev); 4302 } 4303 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4304 4305 /** 4306 * regulator_set_mode - set regulator operating mode 4307 * @regulator: regulator source 4308 * @mode: operating mode - one of the REGULATOR_MODE constants 4309 * 4310 * Set regulator operating mode to increase regulator efficiency or improve 4311 * regulation performance. 4312 * 4313 * NOTE: Regulator system constraints must be set for this regulator before 4314 * calling this function otherwise this call will fail. 4315 */ 4316 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4317 { 4318 struct regulator_dev *rdev = regulator->rdev; 4319 int ret; 4320 int regulator_curr_mode; 4321 4322 regulator_lock(rdev); 4323 4324 /* sanity check */ 4325 if (!rdev->desc->ops->set_mode) { 4326 ret = -EINVAL; 4327 goto out; 4328 } 4329 4330 /* return if the same mode is requested */ 4331 if (rdev->desc->ops->get_mode) { 4332 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4333 if (regulator_curr_mode == mode) { 4334 ret = 0; 4335 goto out; 4336 } 4337 } 4338 4339 /* constraints check */ 4340 ret = regulator_mode_constrain(rdev, &mode); 4341 if (ret < 0) 4342 goto out; 4343 4344 ret = rdev->desc->ops->set_mode(rdev, mode); 4345 out: 4346 regulator_unlock(rdev); 4347 return ret; 4348 } 4349 EXPORT_SYMBOL_GPL(regulator_set_mode); 4350 4351 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4352 { 4353 /* sanity check */ 4354 if (!rdev->desc->ops->get_mode) 4355 return -EINVAL; 4356 4357 return rdev->desc->ops->get_mode(rdev); 4358 } 4359 4360 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4361 { 4362 int ret; 4363 4364 regulator_lock(rdev); 4365 ret = _regulator_get_mode_unlocked(rdev); 4366 regulator_unlock(rdev); 4367 4368 return ret; 4369 } 4370 4371 /** 4372 * regulator_get_mode - get regulator operating mode 4373 * @regulator: regulator source 4374 * 4375 * Get the current regulator operating mode. 4376 */ 4377 unsigned int regulator_get_mode(struct regulator *regulator) 4378 { 4379 return _regulator_get_mode(regulator->rdev); 4380 } 4381 EXPORT_SYMBOL_GPL(regulator_get_mode); 4382 4383 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4384 unsigned int *flags) 4385 { 4386 int ret; 4387 4388 regulator_lock(rdev); 4389 4390 /* sanity check */ 4391 if (!rdev->desc->ops->get_error_flags) { 4392 ret = -EINVAL; 4393 goto out; 4394 } 4395 4396 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4397 out: 4398 regulator_unlock(rdev); 4399 return ret; 4400 } 4401 4402 /** 4403 * regulator_get_error_flags - get regulator error information 4404 * @regulator: regulator source 4405 * @flags: pointer to store error flags 4406 * 4407 * Get the current regulator error information. 4408 */ 4409 int regulator_get_error_flags(struct regulator *regulator, 4410 unsigned int *flags) 4411 { 4412 return _regulator_get_error_flags(regulator->rdev, flags); 4413 } 4414 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4415 4416 /** 4417 * regulator_set_load - set regulator load 4418 * @regulator: regulator source 4419 * @uA_load: load current 4420 * 4421 * Notifies the regulator core of a new device load. This is then used by 4422 * DRMS (if enabled by constraints) to set the most efficient regulator 4423 * operating mode for the new regulator loading. 4424 * 4425 * Consumer devices notify their supply regulator of the maximum power 4426 * they will require (can be taken from device datasheet in the power 4427 * consumption tables) when they change operational status and hence power 4428 * state. Examples of operational state changes that can affect power 4429 * consumption are :- 4430 * 4431 * o Device is opened / closed. 4432 * o Device I/O is about to begin or has just finished. 4433 * o Device is idling in between work. 4434 * 4435 * This information is also exported via sysfs to userspace. 4436 * 4437 * DRMS will sum the total requested load on the regulator and change 4438 * to the most efficient operating mode if platform constraints allow. 4439 * 4440 * NOTE: when a regulator consumer requests to have a regulator 4441 * disabled then any load that consumer requested no longer counts 4442 * toward the total requested load. If the regulator is re-enabled 4443 * then the previously requested load will start counting again. 4444 * 4445 * If a regulator is an always-on regulator then an individual consumer's 4446 * load will still be removed if that consumer is fully disabled. 4447 * 4448 * On error a negative errno is returned. 4449 */ 4450 int regulator_set_load(struct regulator *regulator, int uA_load) 4451 { 4452 struct regulator_dev *rdev = regulator->rdev; 4453 int old_uA_load; 4454 int ret = 0; 4455 4456 regulator_lock(rdev); 4457 old_uA_load = regulator->uA_load; 4458 regulator->uA_load = uA_load; 4459 if (regulator->enable_count && old_uA_load != uA_load) { 4460 ret = drms_uA_update(rdev); 4461 if (ret < 0) 4462 regulator->uA_load = old_uA_load; 4463 } 4464 regulator_unlock(rdev); 4465 4466 return ret; 4467 } 4468 EXPORT_SYMBOL_GPL(regulator_set_load); 4469 4470 /** 4471 * regulator_allow_bypass - allow the regulator to go into bypass mode 4472 * 4473 * @regulator: Regulator to configure 4474 * @enable: enable or disable bypass mode 4475 * 4476 * Allow the regulator to go into bypass mode if all other consumers 4477 * for the regulator also enable bypass mode and the machine 4478 * constraints allow this. Bypass mode means that the regulator is 4479 * simply passing the input directly to the output with no regulation. 4480 */ 4481 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4482 { 4483 struct regulator_dev *rdev = regulator->rdev; 4484 const char *name = rdev_get_name(rdev); 4485 int ret = 0; 4486 4487 if (!rdev->desc->ops->set_bypass) 4488 return 0; 4489 4490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4491 return 0; 4492 4493 regulator_lock(rdev); 4494 4495 if (enable && !regulator->bypass) { 4496 rdev->bypass_count++; 4497 4498 if (rdev->bypass_count == rdev->open_count) { 4499 trace_regulator_bypass_enable(name); 4500 4501 ret = rdev->desc->ops->set_bypass(rdev, enable); 4502 if (ret != 0) 4503 rdev->bypass_count--; 4504 else 4505 trace_regulator_bypass_enable_complete(name); 4506 } 4507 4508 } else if (!enable && regulator->bypass) { 4509 rdev->bypass_count--; 4510 4511 if (rdev->bypass_count != rdev->open_count) { 4512 trace_regulator_bypass_disable(name); 4513 4514 ret = rdev->desc->ops->set_bypass(rdev, enable); 4515 if (ret != 0) 4516 rdev->bypass_count++; 4517 else 4518 trace_regulator_bypass_disable_complete(name); 4519 } 4520 } 4521 4522 if (ret == 0) 4523 regulator->bypass = enable; 4524 4525 regulator_unlock(rdev); 4526 4527 return ret; 4528 } 4529 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4530 4531 /** 4532 * regulator_register_notifier - register regulator event notifier 4533 * @regulator: regulator source 4534 * @nb: notifier block 4535 * 4536 * Register notifier block to receive regulator events. 4537 */ 4538 int regulator_register_notifier(struct regulator *regulator, 4539 struct notifier_block *nb) 4540 { 4541 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4542 nb); 4543 } 4544 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4545 4546 /** 4547 * regulator_unregister_notifier - unregister regulator event notifier 4548 * @regulator: regulator source 4549 * @nb: notifier block 4550 * 4551 * Unregister regulator event notifier block. 4552 */ 4553 int regulator_unregister_notifier(struct regulator *regulator, 4554 struct notifier_block *nb) 4555 { 4556 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4557 nb); 4558 } 4559 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4560 4561 /* notify regulator consumers and downstream regulator consumers. 4562 * Note mutex must be held by caller. 4563 */ 4564 static int _notifier_call_chain(struct regulator_dev *rdev, 4565 unsigned long event, void *data) 4566 { 4567 /* call rdev chain first */ 4568 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4569 } 4570 4571 /** 4572 * regulator_bulk_get - get multiple regulator consumers 4573 * 4574 * @dev: Device to supply 4575 * @num_consumers: Number of consumers to register 4576 * @consumers: Configuration of consumers; clients are stored here. 4577 * 4578 * @return 0 on success, an errno on failure. 4579 * 4580 * This helper function allows drivers to get several regulator 4581 * consumers in one operation. If any of the regulators cannot be 4582 * acquired then any regulators that were allocated will be freed 4583 * before returning to the caller. 4584 */ 4585 int regulator_bulk_get(struct device *dev, int num_consumers, 4586 struct regulator_bulk_data *consumers) 4587 { 4588 int i; 4589 int ret; 4590 4591 for (i = 0; i < num_consumers; i++) 4592 consumers[i].consumer = NULL; 4593 4594 for (i = 0; i < num_consumers; i++) { 4595 consumers[i].consumer = regulator_get(dev, 4596 consumers[i].supply); 4597 if (IS_ERR(consumers[i].consumer)) { 4598 ret = PTR_ERR(consumers[i].consumer); 4599 consumers[i].consumer = NULL; 4600 goto err; 4601 } 4602 } 4603 4604 return 0; 4605 4606 err: 4607 if (ret != -EPROBE_DEFER) 4608 dev_err(dev, "Failed to get supply '%s': %pe\n", 4609 consumers[i].supply, ERR_PTR(ret)); 4610 else 4611 dev_dbg(dev, "Failed to get supply '%s', deferring\n", 4612 consumers[i].supply); 4613 4614 while (--i >= 0) 4615 regulator_put(consumers[i].consumer); 4616 4617 return ret; 4618 } 4619 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4620 4621 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4622 { 4623 struct regulator_bulk_data *bulk = data; 4624 4625 bulk->ret = regulator_enable(bulk->consumer); 4626 } 4627 4628 /** 4629 * regulator_bulk_enable - enable multiple regulator consumers 4630 * 4631 * @num_consumers: Number of consumers 4632 * @consumers: Consumer data; clients are stored here. 4633 * @return 0 on success, an errno on failure 4634 * 4635 * This convenience API allows consumers to enable multiple regulator 4636 * clients in a single API call. If any consumers cannot be enabled 4637 * then any others that were enabled will be disabled again prior to 4638 * return. 4639 */ 4640 int regulator_bulk_enable(int num_consumers, 4641 struct regulator_bulk_data *consumers) 4642 { 4643 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4644 int i; 4645 int ret = 0; 4646 4647 for (i = 0; i < num_consumers; i++) { 4648 async_schedule_domain(regulator_bulk_enable_async, 4649 &consumers[i], &async_domain); 4650 } 4651 4652 async_synchronize_full_domain(&async_domain); 4653 4654 /* If any consumer failed we need to unwind any that succeeded */ 4655 for (i = 0; i < num_consumers; i++) { 4656 if (consumers[i].ret != 0) { 4657 ret = consumers[i].ret; 4658 goto err; 4659 } 4660 } 4661 4662 return 0; 4663 4664 err: 4665 for (i = 0; i < num_consumers; i++) { 4666 if (consumers[i].ret < 0) 4667 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4668 ERR_PTR(consumers[i].ret)); 4669 else 4670 regulator_disable(consumers[i].consumer); 4671 } 4672 4673 return ret; 4674 } 4675 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4676 4677 /** 4678 * regulator_bulk_disable - disable multiple regulator consumers 4679 * 4680 * @num_consumers: Number of consumers 4681 * @consumers: Consumer data; clients are stored here. 4682 * @return 0 on success, an errno on failure 4683 * 4684 * This convenience API allows consumers to disable multiple regulator 4685 * clients in a single API call. If any consumers cannot be disabled 4686 * then any others that were disabled will be enabled again prior to 4687 * return. 4688 */ 4689 int regulator_bulk_disable(int num_consumers, 4690 struct regulator_bulk_data *consumers) 4691 { 4692 int i; 4693 int ret, r; 4694 4695 for (i = num_consumers - 1; i >= 0; --i) { 4696 ret = regulator_disable(consumers[i].consumer); 4697 if (ret != 0) 4698 goto err; 4699 } 4700 4701 return 0; 4702 4703 err: 4704 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 4705 for (++i; i < num_consumers; ++i) { 4706 r = regulator_enable(consumers[i].consumer); 4707 if (r != 0) 4708 pr_err("Failed to re-enable %s: %pe\n", 4709 consumers[i].supply, ERR_PTR(r)); 4710 } 4711 4712 return ret; 4713 } 4714 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 4715 4716 /** 4717 * regulator_bulk_force_disable - force disable multiple regulator consumers 4718 * 4719 * @num_consumers: Number of consumers 4720 * @consumers: Consumer data; clients are stored here. 4721 * @return 0 on success, an errno on failure 4722 * 4723 * This convenience API allows consumers to forcibly disable multiple regulator 4724 * clients in a single API call. 4725 * NOTE: This should be used for situations when device damage will 4726 * likely occur if the regulators are not disabled (e.g. over temp). 4727 * Although regulator_force_disable function call for some consumers can 4728 * return error numbers, the function is called for all consumers. 4729 */ 4730 int regulator_bulk_force_disable(int num_consumers, 4731 struct regulator_bulk_data *consumers) 4732 { 4733 int i; 4734 int ret = 0; 4735 4736 for (i = 0; i < num_consumers; i++) { 4737 consumers[i].ret = 4738 regulator_force_disable(consumers[i].consumer); 4739 4740 /* Store first error for reporting */ 4741 if (consumers[i].ret && !ret) 4742 ret = consumers[i].ret; 4743 } 4744 4745 return ret; 4746 } 4747 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 4748 4749 /** 4750 * regulator_bulk_free - free multiple regulator consumers 4751 * 4752 * @num_consumers: Number of consumers 4753 * @consumers: Consumer data; clients are stored here. 4754 * 4755 * This convenience API allows consumers to free multiple regulator 4756 * clients in a single API call. 4757 */ 4758 void regulator_bulk_free(int num_consumers, 4759 struct regulator_bulk_data *consumers) 4760 { 4761 int i; 4762 4763 for (i = 0; i < num_consumers; i++) { 4764 regulator_put(consumers[i].consumer); 4765 consumers[i].consumer = NULL; 4766 } 4767 } 4768 EXPORT_SYMBOL_GPL(regulator_bulk_free); 4769 4770 /** 4771 * regulator_notifier_call_chain - call regulator event notifier 4772 * @rdev: regulator source 4773 * @event: notifier block 4774 * @data: callback-specific data. 4775 * 4776 * Called by regulator drivers to notify clients a regulator event has 4777 * occurred. 4778 */ 4779 int regulator_notifier_call_chain(struct regulator_dev *rdev, 4780 unsigned long event, void *data) 4781 { 4782 _notifier_call_chain(rdev, event, data); 4783 return NOTIFY_DONE; 4784 4785 } 4786 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 4787 4788 /** 4789 * regulator_mode_to_status - convert a regulator mode into a status 4790 * 4791 * @mode: Mode to convert 4792 * 4793 * Convert a regulator mode into a status. 4794 */ 4795 int regulator_mode_to_status(unsigned int mode) 4796 { 4797 switch (mode) { 4798 case REGULATOR_MODE_FAST: 4799 return REGULATOR_STATUS_FAST; 4800 case REGULATOR_MODE_NORMAL: 4801 return REGULATOR_STATUS_NORMAL; 4802 case REGULATOR_MODE_IDLE: 4803 return REGULATOR_STATUS_IDLE; 4804 case REGULATOR_MODE_STANDBY: 4805 return REGULATOR_STATUS_STANDBY; 4806 default: 4807 return REGULATOR_STATUS_UNDEFINED; 4808 } 4809 } 4810 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 4811 4812 static struct attribute *regulator_dev_attrs[] = { 4813 &dev_attr_name.attr, 4814 &dev_attr_num_users.attr, 4815 &dev_attr_type.attr, 4816 &dev_attr_microvolts.attr, 4817 &dev_attr_microamps.attr, 4818 &dev_attr_opmode.attr, 4819 &dev_attr_state.attr, 4820 &dev_attr_status.attr, 4821 &dev_attr_bypass.attr, 4822 &dev_attr_requested_microamps.attr, 4823 &dev_attr_min_microvolts.attr, 4824 &dev_attr_max_microvolts.attr, 4825 &dev_attr_min_microamps.attr, 4826 &dev_attr_max_microamps.attr, 4827 &dev_attr_suspend_standby_state.attr, 4828 &dev_attr_suspend_mem_state.attr, 4829 &dev_attr_suspend_disk_state.attr, 4830 &dev_attr_suspend_standby_microvolts.attr, 4831 &dev_attr_suspend_mem_microvolts.attr, 4832 &dev_attr_suspend_disk_microvolts.attr, 4833 &dev_attr_suspend_standby_mode.attr, 4834 &dev_attr_suspend_mem_mode.attr, 4835 &dev_attr_suspend_disk_mode.attr, 4836 NULL 4837 }; 4838 4839 /* 4840 * To avoid cluttering sysfs (and memory) with useless state, only 4841 * create attributes that can be meaningfully displayed. 4842 */ 4843 static umode_t regulator_attr_is_visible(struct kobject *kobj, 4844 struct attribute *attr, int idx) 4845 { 4846 struct device *dev = kobj_to_dev(kobj); 4847 struct regulator_dev *rdev = dev_to_rdev(dev); 4848 const struct regulator_ops *ops = rdev->desc->ops; 4849 umode_t mode = attr->mode; 4850 4851 /* these three are always present */ 4852 if (attr == &dev_attr_name.attr || 4853 attr == &dev_attr_num_users.attr || 4854 attr == &dev_attr_type.attr) 4855 return mode; 4856 4857 /* some attributes need specific methods to be displayed */ 4858 if (attr == &dev_attr_microvolts.attr) { 4859 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 4860 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 4861 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 4862 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 4863 return mode; 4864 return 0; 4865 } 4866 4867 if (attr == &dev_attr_microamps.attr) 4868 return ops->get_current_limit ? mode : 0; 4869 4870 if (attr == &dev_attr_opmode.attr) 4871 return ops->get_mode ? mode : 0; 4872 4873 if (attr == &dev_attr_state.attr) 4874 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 4875 4876 if (attr == &dev_attr_status.attr) 4877 return ops->get_status ? mode : 0; 4878 4879 if (attr == &dev_attr_bypass.attr) 4880 return ops->get_bypass ? mode : 0; 4881 4882 /* constraints need specific supporting methods */ 4883 if (attr == &dev_attr_min_microvolts.attr || 4884 attr == &dev_attr_max_microvolts.attr) 4885 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 4886 4887 if (attr == &dev_attr_min_microamps.attr || 4888 attr == &dev_attr_max_microamps.attr) 4889 return ops->set_current_limit ? mode : 0; 4890 4891 if (attr == &dev_attr_suspend_standby_state.attr || 4892 attr == &dev_attr_suspend_mem_state.attr || 4893 attr == &dev_attr_suspend_disk_state.attr) 4894 return mode; 4895 4896 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4897 attr == &dev_attr_suspend_mem_microvolts.attr || 4898 attr == &dev_attr_suspend_disk_microvolts.attr) 4899 return ops->set_suspend_voltage ? mode : 0; 4900 4901 if (attr == &dev_attr_suspend_standby_mode.attr || 4902 attr == &dev_attr_suspend_mem_mode.attr || 4903 attr == &dev_attr_suspend_disk_mode.attr) 4904 return ops->set_suspend_mode ? mode : 0; 4905 4906 return mode; 4907 } 4908 4909 static const struct attribute_group regulator_dev_group = { 4910 .attrs = regulator_dev_attrs, 4911 .is_visible = regulator_attr_is_visible, 4912 }; 4913 4914 static const struct attribute_group *regulator_dev_groups[] = { 4915 ®ulator_dev_group, 4916 NULL 4917 }; 4918 4919 static void regulator_dev_release(struct device *dev) 4920 { 4921 struct regulator_dev *rdev = dev_get_drvdata(dev); 4922 4923 kfree(rdev->constraints); 4924 of_node_put(rdev->dev.of_node); 4925 kfree(rdev); 4926 } 4927 4928 static void rdev_init_debugfs(struct regulator_dev *rdev) 4929 { 4930 struct device *parent = rdev->dev.parent; 4931 const char *rname = rdev_get_name(rdev); 4932 char name[NAME_MAX]; 4933 4934 /* Avoid duplicate debugfs directory names */ 4935 if (parent && rname == rdev->desc->name) { 4936 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4937 rname); 4938 rname = name; 4939 } 4940 4941 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4942 if (!rdev->debugfs) { 4943 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4944 return; 4945 } 4946 4947 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4948 &rdev->use_count); 4949 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4950 &rdev->open_count); 4951 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4952 &rdev->bypass_count); 4953 } 4954 4955 static int regulator_register_resolve_supply(struct device *dev, void *data) 4956 { 4957 struct regulator_dev *rdev = dev_to_rdev(dev); 4958 4959 if (regulator_resolve_supply(rdev)) 4960 rdev_dbg(rdev, "unable to resolve supply\n"); 4961 4962 return 0; 4963 } 4964 4965 int regulator_coupler_register(struct regulator_coupler *coupler) 4966 { 4967 mutex_lock(®ulator_list_mutex); 4968 list_add_tail(&coupler->list, ®ulator_coupler_list); 4969 mutex_unlock(®ulator_list_mutex); 4970 4971 return 0; 4972 } 4973 4974 static struct regulator_coupler * 4975 regulator_find_coupler(struct regulator_dev *rdev) 4976 { 4977 struct regulator_coupler *coupler; 4978 int err; 4979 4980 /* 4981 * Note that regulators are appended to the list and the generic 4982 * coupler is registered first, hence it will be attached at last 4983 * if nobody cared. 4984 */ 4985 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 4986 err = coupler->attach_regulator(coupler, rdev); 4987 if (!err) { 4988 if (!coupler->balance_voltage && 4989 rdev->coupling_desc.n_coupled > 2) 4990 goto err_unsupported; 4991 4992 return coupler; 4993 } 4994 4995 if (err < 0) 4996 return ERR_PTR(err); 4997 4998 if (err == 1) 4999 continue; 5000 5001 break; 5002 } 5003 5004 return ERR_PTR(-EINVAL); 5005 5006 err_unsupported: 5007 if (coupler->detach_regulator) 5008 coupler->detach_regulator(coupler, rdev); 5009 5010 rdev_err(rdev, 5011 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5012 5013 return ERR_PTR(-EPERM); 5014 } 5015 5016 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5017 { 5018 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5019 struct coupling_desc *c_desc = &rdev->coupling_desc; 5020 int n_coupled = c_desc->n_coupled; 5021 struct regulator_dev *c_rdev; 5022 int i; 5023 5024 for (i = 1; i < n_coupled; i++) { 5025 /* already resolved */ 5026 if (c_desc->coupled_rdevs[i]) 5027 continue; 5028 5029 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5030 5031 if (!c_rdev) 5032 continue; 5033 5034 if (c_rdev->coupling_desc.coupler != coupler) { 5035 rdev_err(rdev, "coupler mismatch with %s\n", 5036 rdev_get_name(c_rdev)); 5037 return; 5038 } 5039 5040 c_desc->coupled_rdevs[i] = c_rdev; 5041 c_desc->n_resolved++; 5042 5043 regulator_resolve_coupling(c_rdev); 5044 } 5045 } 5046 5047 static void regulator_remove_coupling(struct regulator_dev *rdev) 5048 { 5049 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5050 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5051 struct regulator_dev *__c_rdev, *c_rdev; 5052 unsigned int __n_coupled, n_coupled; 5053 int i, k; 5054 int err; 5055 5056 n_coupled = c_desc->n_coupled; 5057 5058 for (i = 1; i < n_coupled; i++) { 5059 c_rdev = c_desc->coupled_rdevs[i]; 5060 5061 if (!c_rdev) 5062 continue; 5063 5064 regulator_lock(c_rdev); 5065 5066 __c_desc = &c_rdev->coupling_desc; 5067 __n_coupled = __c_desc->n_coupled; 5068 5069 for (k = 1; k < __n_coupled; k++) { 5070 __c_rdev = __c_desc->coupled_rdevs[k]; 5071 5072 if (__c_rdev == rdev) { 5073 __c_desc->coupled_rdevs[k] = NULL; 5074 __c_desc->n_resolved--; 5075 break; 5076 } 5077 } 5078 5079 regulator_unlock(c_rdev); 5080 5081 c_desc->coupled_rdevs[i] = NULL; 5082 c_desc->n_resolved--; 5083 } 5084 5085 if (coupler && coupler->detach_regulator) { 5086 err = coupler->detach_regulator(coupler, rdev); 5087 if (err) 5088 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5089 ERR_PTR(err)); 5090 } 5091 5092 kfree(rdev->coupling_desc.coupled_rdevs); 5093 rdev->coupling_desc.coupled_rdevs = NULL; 5094 } 5095 5096 static int regulator_init_coupling(struct regulator_dev *rdev) 5097 { 5098 struct regulator_dev **coupled; 5099 int err, n_phandles; 5100 5101 if (!IS_ENABLED(CONFIG_OF)) 5102 n_phandles = 0; 5103 else 5104 n_phandles = of_get_n_coupled(rdev); 5105 5106 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5107 if (!coupled) 5108 return -ENOMEM; 5109 5110 rdev->coupling_desc.coupled_rdevs = coupled; 5111 5112 /* 5113 * Every regulator should always have coupling descriptor filled with 5114 * at least pointer to itself. 5115 */ 5116 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5117 rdev->coupling_desc.n_coupled = n_phandles + 1; 5118 rdev->coupling_desc.n_resolved++; 5119 5120 /* regulator isn't coupled */ 5121 if (n_phandles == 0) 5122 return 0; 5123 5124 if (!of_check_coupling_data(rdev)) 5125 return -EPERM; 5126 5127 mutex_lock(®ulator_list_mutex); 5128 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5129 mutex_unlock(®ulator_list_mutex); 5130 5131 if (IS_ERR(rdev->coupling_desc.coupler)) { 5132 err = PTR_ERR(rdev->coupling_desc.coupler); 5133 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5134 return err; 5135 } 5136 5137 return 0; 5138 } 5139 5140 static int generic_coupler_attach(struct regulator_coupler *coupler, 5141 struct regulator_dev *rdev) 5142 { 5143 if (rdev->coupling_desc.n_coupled > 2) { 5144 rdev_err(rdev, 5145 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5146 return -EPERM; 5147 } 5148 5149 if (!rdev->constraints->always_on) { 5150 rdev_err(rdev, 5151 "Coupling of a non always-on regulator is unimplemented\n"); 5152 return -ENOTSUPP; 5153 } 5154 5155 return 0; 5156 } 5157 5158 static struct regulator_coupler generic_regulator_coupler = { 5159 .attach_regulator = generic_coupler_attach, 5160 }; 5161 5162 /** 5163 * regulator_register - register regulator 5164 * @regulator_desc: regulator to register 5165 * @cfg: runtime configuration for regulator 5166 * 5167 * Called by regulator drivers to register a regulator. 5168 * Returns a valid pointer to struct regulator_dev on success 5169 * or an ERR_PTR() on error. 5170 */ 5171 struct regulator_dev * 5172 regulator_register(const struct regulator_desc *regulator_desc, 5173 const struct regulator_config *cfg) 5174 { 5175 const struct regulator_init_data *init_data; 5176 struct regulator_config *config = NULL; 5177 static atomic_t regulator_no = ATOMIC_INIT(-1); 5178 struct regulator_dev *rdev; 5179 bool dangling_cfg_gpiod = false; 5180 bool dangling_of_gpiod = false; 5181 struct device *dev; 5182 int ret, i; 5183 5184 if (cfg == NULL) 5185 return ERR_PTR(-EINVAL); 5186 if (cfg->ena_gpiod) 5187 dangling_cfg_gpiod = true; 5188 if (regulator_desc == NULL) { 5189 ret = -EINVAL; 5190 goto rinse; 5191 } 5192 5193 dev = cfg->dev; 5194 WARN_ON(!dev); 5195 5196 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5197 ret = -EINVAL; 5198 goto rinse; 5199 } 5200 5201 if (regulator_desc->type != REGULATOR_VOLTAGE && 5202 regulator_desc->type != REGULATOR_CURRENT) { 5203 ret = -EINVAL; 5204 goto rinse; 5205 } 5206 5207 /* Only one of each should be implemented */ 5208 WARN_ON(regulator_desc->ops->get_voltage && 5209 regulator_desc->ops->get_voltage_sel); 5210 WARN_ON(regulator_desc->ops->set_voltage && 5211 regulator_desc->ops->set_voltage_sel); 5212 5213 /* If we're using selectors we must implement list_voltage. */ 5214 if (regulator_desc->ops->get_voltage_sel && 5215 !regulator_desc->ops->list_voltage) { 5216 ret = -EINVAL; 5217 goto rinse; 5218 } 5219 if (regulator_desc->ops->set_voltage_sel && 5220 !regulator_desc->ops->list_voltage) { 5221 ret = -EINVAL; 5222 goto rinse; 5223 } 5224 5225 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5226 if (rdev == NULL) { 5227 ret = -ENOMEM; 5228 goto rinse; 5229 } 5230 device_initialize(&rdev->dev); 5231 5232 /* 5233 * Duplicate the config so the driver could override it after 5234 * parsing init data. 5235 */ 5236 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5237 if (config == NULL) { 5238 ret = -ENOMEM; 5239 goto clean; 5240 } 5241 5242 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5243 &rdev->dev.of_node); 5244 5245 /* 5246 * Sometimes not all resources are probed already so we need to take 5247 * that into account. This happens most the time if the ena_gpiod comes 5248 * from a gpio extender or something else. 5249 */ 5250 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5251 ret = -EPROBE_DEFER; 5252 goto clean; 5253 } 5254 5255 /* 5256 * We need to keep track of any GPIO descriptor coming from the 5257 * device tree until we have handled it over to the core. If the 5258 * config that was passed in to this function DOES NOT contain 5259 * a descriptor, and the config after this call DOES contain 5260 * a descriptor, we definitely got one from parsing the device 5261 * tree. 5262 */ 5263 if (!cfg->ena_gpiod && config->ena_gpiod) 5264 dangling_of_gpiod = true; 5265 if (!init_data) { 5266 init_data = config->init_data; 5267 rdev->dev.of_node = of_node_get(config->of_node); 5268 } 5269 5270 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5271 rdev->reg_data = config->driver_data; 5272 rdev->owner = regulator_desc->owner; 5273 rdev->desc = regulator_desc; 5274 if (config->regmap) 5275 rdev->regmap = config->regmap; 5276 else if (dev_get_regmap(dev, NULL)) 5277 rdev->regmap = dev_get_regmap(dev, NULL); 5278 else if (dev->parent) 5279 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5280 INIT_LIST_HEAD(&rdev->consumer_list); 5281 INIT_LIST_HEAD(&rdev->list); 5282 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5283 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5284 5285 /* preform any regulator specific init */ 5286 if (init_data && init_data->regulator_init) { 5287 ret = init_data->regulator_init(rdev->reg_data); 5288 if (ret < 0) 5289 goto clean; 5290 } 5291 5292 if (config->ena_gpiod) { 5293 ret = regulator_ena_gpio_request(rdev, config); 5294 if (ret != 0) { 5295 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5296 ERR_PTR(ret)); 5297 goto clean; 5298 } 5299 /* The regulator core took over the GPIO descriptor */ 5300 dangling_cfg_gpiod = false; 5301 dangling_of_gpiod = false; 5302 } 5303 5304 /* register with sysfs */ 5305 rdev->dev.class = ®ulator_class; 5306 rdev->dev.parent = dev; 5307 dev_set_name(&rdev->dev, "regulator.%lu", 5308 (unsigned long) atomic_inc_return(®ulator_no)); 5309 dev_set_drvdata(&rdev->dev, rdev); 5310 5311 /* set regulator constraints */ 5312 if (init_data) 5313 rdev->constraints = kmemdup(&init_data->constraints, 5314 sizeof(*rdev->constraints), 5315 GFP_KERNEL); 5316 else 5317 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5318 GFP_KERNEL); 5319 if (!rdev->constraints) { 5320 ret = -ENOMEM; 5321 goto wash; 5322 } 5323 5324 if (init_data && init_data->supply_regulator) 5325 rdev->supply_name = init_data->supply_regulator; 5326 else if (regulator_desc->supply_name) 5327 rdev->supply_name = regulator_desc->supply_name; 5328 5329 ret = set_machine_constraints(rdev); 5330 if (ret == -EPROBE_DEFER) { 5331 /* Regulator might be in bypass mode and so needs its supply 5332 * to set the constraints 5333 */ 5334 /* FIXME: this currently triggers a chicken-and-egg problem 5335 * when creating -SUPPLY symlink in sysfs to a regulator 5336 * that is just being created 5337 */ 5338 rdev_dbg(rdev, "will resolve supply early: %s\n", 5339 rdev->supply_name); 5340 ret = regulator_resolve_supply(rdev); 5341 if (!ret) 5342 ret = set_machine_constraints(rdev); 5343 else 5344 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5345 ERR_PTR(ret)); 5346 } 5347 if (ret < 0) 5348 goto wash; 5349 5350 ret = regulator_init_coupling(rdev); 5351 if (ret < 0) 5352 goto wash; 5353 5354 /* add consumers devices */ 5355 if (init_data) { 5356 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5357 ret = set_consumer_device_supply(rdev, 5358 init_data->consumer_supplies[i].dev_name, 5359 init_data->consumer_supplies[i].supply); 5360 if (ret < 0) { 5361 dev_err(dev, "Failed to set supply %s\n", 5362 init_data->consumer_supplies[i].supply); 5363 goto unset_supplies; 5364 } 5365 } 5366 } 5367 5368 if (!rdev->desc->ops->get_voltage && 5369 !rdev->desc->ops->list_voltage && 5370 !rdev->desc->fixed_uV) 5371 rdev->is_switch = true; 5372 5373 ret = device_add(&rdev->dev); 5374 if (ret != 0) 5375 goto unset_supplies; 5376 5377 rdev_init_debugfs(rdev); 5378 5379 /* try to resolve regulators coupling since a new one was registered */ 5380 mutex_lock(®ulator_list_mutex); 5381 regulator_resolve_coupling(rdev); 5382 mutex_unlock(®ulator_list_mutex); 5383 5384 /* try to resolve regulators supply since a new one was registered */ 5385 class_for_each_device(®ulator_class, NULL, NULL, 5386 regulator_register_resolve_supply); 5387 kfree(config); 5388 return rdev; 5389 5390 unset_supplies: 5391 mutex_lock(®ulator_list_mutex); 5392 unset_regulator_supplies(rdev); 5393 regulator_remove_coupling(rdev); 5394 mutex_unlock(®ulator_list_mutex); 5395 wash: 5396 kfree(rdev->coupling_desc.coupled_rdevs); 5397 mutex_lock(®ulator_list_mutex); 5398 regulator_ena_gpio_free(rdev); 5399 mutex_unlock(®ulator_list_mutex); 5400 clean: 5401 if (dangling_of_gpiod) 5402 gpiod_put(config->ena_gpiod); 5403 kfree(config); 5404 put_device(&rdev->dev); 5405 rinse: 5406 if (dangling_cfg_gpiod) 5407 gpiod_put(cfg->ena_gpiod); 5408 return ERR_PTR(ret); 5409 } 5410 EXPORT_SYMBOL_GPL(regulator_register); 5411 5412 /** 5413 * regulator_unregister - unregister regulator 5414 * @rdev: regulator to unregister 5415 * 5416 * Called by regulator drivers to unregister a regulator. 5417 */ 5418 void regulator_unregister(struct regulator_dev *rdev) 5419 { 5420 if (rdev == NULL) 5421 return; 5422 5423 if (rdev->supply) { 5424 while (rdev->use_count--) 5425 regulator_disable(rdev->supply); 5426 regulator_put(rdev->supply); 5427 } 5428 5429 flush_work(&rdev->disable_work.work); 5430 5431 mutex_lock(®ulator_list_mutex); 5432 5433 debugfs_remove_recursive(rdev->debugfs); 5434 WARN_ON(rdev->open_count); 5435 regulator_remove_coupling(rdev); 5436 unset_regulator_supplies(rdev); 5437 list_del(&rdev->list); 5438 regulator_ena_gpio_free(rdev); 5439 device_unregister(&rdev->dev); 5440 5441 mutex_unlock(®ulator_list_mutex); 5442 } 5443 EXPORT_SYMBOL_GPL(regulator_unregister); 5444 5445 #ifdef CONFIG_SUSPEND 5446 /** 5447 * regulator_suspend - prepare regulators for system wide suspend 5448 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5449 * 5450 * Configure each regulator with it's suspend operating parameters for state. 5451 */ 5452 static int regulator_suspend(struct device *dev) 5453 { 5454 struct regulator_dev *rdev = dev_to_rdev(dev); 5455 suspend_state_t state = pm_suspend_target_state; 5456 int ret; 5457 const struct regulator_state *rstate; 5458 5459 rstate = regulator_get_suspend_state_check(rdev, state); 5460 if (!rstate) 5461 return 0; 5462 5463 regulator_lock(rdev); 5464 ret = __suspend_set_state(rdev, rstate); 5465 regulator_unlock(rdev); 5466 5467 return ret; 5468 } 5469 5470 static int regulator_resume(struct device *dev) 5471 { 5472 suspend_state_t state = pm_suspend_target_state; 5473 struct regulator_dev *rdev = dev_to_rdev(dev); 5474 struct regulator_state *rstate; 5475 int ret = 0; 5476 5477 rstate = regulator_get_suspend_state(rdev, state); 5478 if (rstate == NULL) 5479 return 0; 5480 5481 /* Avoid grabbing the lock if we don't need to */ 5482 if (!rdev->desc->ops->resume) 5483 return 0; 5484 5485 regulator_lock(rdev); 5486 5487 if (rstate->enabled == ENABLE_IN_SUSPEND || 5488 rstate->enabled == DISABLE_IN_SUSPEND) 5489 ret = rdev->desc->ops->resume(rdev); 5490 5491 regulator_unlock(rdev); 5492 5493 return ret; 5494 } 5495 #else /* !CONFIG_SUSPEND */ 5496 5497 #define regulator_suspend NULL 5498 #define regulator_resume NULL 5499 5500 #endif /* !CONFIG_SUSPEND */ 5501 5502 #ifdef CONFIG_PM 5503 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5504 .suspend = regulator_suspend, 5505 .resume = regulator_resume, 5506 }; 5507 #endif 5508 5509 struct class regulator_class = { 5510 .name = "regulator", 5511 .dev_release = regulator_dev_release, 5512 .dev_groups = regulator_dev_groups, 5513 #ifdef CONFIG_PM 5514 .pm = ®ulator_pm_ops, 5515 #endif 5516 }; 5517 /** 5518 * regulator_has_full_constraints - the system has fully specified constraints 5519 * 5520 * Calling this function will cause the regulator API to disable all 5521 * regulators which have a zero use count and don't have an always_on 5522 * constraint in a late_initcall. 5523 * 5524 * The intention is that this will become the default behaviour in a 5525 * future kernel release so users are encouraged to use this facility 5526 * now. 5527 */ 5528 void regulator_has_full_constraints(void) 5529 { 5530 has_full_constraints = 1; 5531 } 5532 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5533 5534 /** 5535 * rdev_get_drvdata - get rdev regulator driver data 5536 * @rdev: regulator 5537 * 5538 * Get rdev regulator driver private data. This call can be used in the 5539 * regulator driver context. 5540 */ 5541 void *rdev_get_drvdata(struct regulator_dev *rdev) 5542 { 5543 return rdev->reg_data; 5544 } 5545 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5546 5547 /** 5548 * regulator_get_drvdata - get regulator driver data 5549 * @regulator: regulator 5550 * 5551 * Get regulator driver private data. This call can be used in the consumer 5552 * driver context when non API regulator specific functions need to be called. 5553 */ 5554 void *regulator_get_drvdata(struct regulator *regulator) 5555 { 5556 return regulator->rdev->reg_data; 5557 } 5558 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5559 5560 /** 5561 * regulator_set_drvdata - set regulator driver data 5562 * @regulator: regulator 5563 * @data: data 5564 */ 5565 void regulator_set_drvdata(struct regulator *regulator, void *data) 5566 { 5567 regulator->rdev->reg_data = data; 5568 } 5569 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5570 5571 /** 5572 * rdev_get_id - get regulator ID 5573 * @rdev: regulator 5574 */ 5575 int rdev_get_id(struct regulator_dev *rdev) 5576 { 5577 return rdev->desc->id; 5578 } 5579 EXPORT_SYMBOL_GPL(rdev_get_id); 5580 5581 struct device *rdev_get_dev(struct regulator_dev *rdev) 5582 { 5583 return &rdev->dev; 5584 } 5585 EXPORT_SYMBOL_GPL(rdev_get_dev); 5586 5587 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5588 { 5589 return rdev->regmap; 5590 } 5591 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5592 5593 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5594 { 5595 return reg_init_data->driver_data; 5596 } 5597 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5598 5599 #ifdef CONFIG_DEBUG_FS 5600 static int supply_map_show(struct seq_file *sf, void *data) 5601 { 5602 struct regulator_map *map; 5603 5604 list_for_each_entry(map, ®ulator_map_list, list) { 5605 seq_printf(sf, "%s -> %s.%s\n", 5606 rdev_get_name(map->regulator), map->dev_name, 5607 map->supply); 5608 } 5609 5610 return 0; 5611 } 5612 DEFINE_SHOW_ATTRIBUTE(supply_map); 5613 5614 struct summary_data { 5615 struct seq_file *s; 5616 struct regulator_dev *parent; 5617 int level; 5618 }; 5619 5620 static void regulator_summary_show_subtree(struct seq_file *s, 5621 struct regulator_dev *rdev, 5622 int level); 5623 5624 static int regulator_summary_show_children(struct device *dev, void *data) 5625 { 5626 struct regulator_dev *rdev = dev_to_rdev(dev); 5627 struct summary_data *summary_data = data; 5628 5629 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5630 regulator_summary_show_subtree(summary_data->s, rdev, 5631 summary_data->level + 1); 5632 5633 return 0; 5634 } 5635 5636 static void regulator_summary_show_subtree(struct seq_file *s, 5637 struct regulator_dev *rdev, 5638 int level) 5639 { 5640 struct regulation_constraints *c; 5641 struct regulator *consumer; 5642 struct summary_data summary_data; 5643 unsigned int opmode; 5644 5645 if (!rdev) 5646 return; 5647 5648 opmode = _regulator_get_mode_unlocked(rdev); 5649 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5650 level * 3 + 1, "", 5651 30 - level * 3, rdev_get_name(rdev), 5652 rdev->use_count, rdev->open_count, rdev->bypass_count, 5653 regulator_opmode_to_str(opmode)); 5654 5655 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5656 seq_printf(s, "%5dmA ", 5657 _regulator_get_current_limit_unlocked(rdev) / 1000); 5658 5659 c = rdev->constraints; 5660 if (c) { 5661 switch (rdev->desc->type) { 5662 case REGULATOR_VOLTAGE: 5663 seq_printf(s, "%5dmV %5dmV ", 5664 c->min_uV / 1000, c->max_uV / 1000); 5665 break; 5666 case REGULATOR_CURRENT: 5667 seq_printf(s, "%5dmA %5dmA ", 5668 c->min_uA / 1000, c->max_uA / 1000); 5669 break; 5670 } 5671 } 5672 5673 seq_puts(s, "\n"); 5674 5675 list_for_each_entry(consumer, &rdev->consumer_list, list) { 5676 if (consumer->dev && consumer->dev->class == ®ulator_class) 5677 continue; 5678 5679 seq_printf(s, "%*s%-*s ", 5680 (level + 1) * 3 + 1, "", 5681 30 - (level + 1) * 3, 5682 consumer->supply_name ? consumer->supply_name : 5683 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 5684 5685 switch (rdev->desc->type) { 5686 case REGULATOR_VOLTAGE: 5687 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 5688 consumer->enable_count, 5689 consumer->uA_load / 1000, 5690 consumer->uA_load && !consumer->enable_count ? 5691 '*' : ' ', 5692 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 5693 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 5694 break; 5695 case REGULATOR_CURRENT: 5696 break; 5697 } 5698 5699 seq_puts(s, "\n"); 5700 } 5701 5702 summary_data.s = s; 5703 summary_data.level = level; 5704 summary_data.parent = rdev; 5705 5706 class_for_each_device(®ulator_class, NULL, &summary_data, 5707 regulator_summary_show_children); 5708 } 5709 5710 struct summary_lock_data { 5711 struct ww_acquire_ctx *ww_ctx; 5712 struct regulator_dev **new_contended_rdev; 5713 struct regulator_dev **old_contended_rdev; 5714 }; 5715 5716 static int regulator_summary_lock_one(struct device *dev, void *data) 5717 { 5718 struct regulator_dev *rdev = dev_to_rdev(dev); 5719 struct summary_lock_data *lock_data = data; 5720 int ret = 0; 5721 5722 if (rdev != *lock_data->old_contended_rdev) { 5723 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 5724 5725 if (ret == -EDEADLK) 5726 *lock_data->new_contended_rdev = rdev; 5727 else 5728 WARN_ON_ONCE(ret); 5729 } else { 5730 *lock_data->old_contended_rdev = NULL; 5731 } 5732 5733 return ret; 5734 } 5735 5736 static int regulator_summary_unlock_one(struct device *dev, void *data) 5737 { 5738 struct regulator_dev *rdev = dev_to_rdev(dev); 5739 struct summary_lock_data *lock_data = data; 5740 5741 if (lock_data) { 5742 if (rdev == *lock_data->new_contended_rdev) 5743 return -EDEADLK; 5744 } 5745 5746 regulator_unlock(rdev); 5747 5748 return 0; 5749 } 5750 5751 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 5752 struct regulator_dev **new_contended_rdev, 5753 struct regulator_dev **old_contended_rdev) 5754 { 5755 struct summary_lock_data lock_data; 5756 int ret; 5757 5758 lock_data.ww_ctx = ww_ctx; 5759 lock_data.new_contended_rdev = new_contended_rdev; 5760 lock_data.old_contended_rdev = old_contended_rdev; 5761 5762 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 5763 regulator_summary_lock_one); 5764 if (ret) 5765 class_for_each_device(®ulator_class, NULL, &lock_data, 5766 regulator_summary_unlock_one); 5767 5768 return ret; 5769 } 5770 5771 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 5772 { 5773 struct regulator_dev *new_contended_rdev = NULL; 5774 struct regulator_dev *old_contended_rdev = NULL; 5775 int err; 5776 5777 mutex_lock(®ulator_list_mutex); 5778 5779 ww_acquire_init(ww_ctx, ®ulator_ww_class); 5780 5781 do { 5782 if (new_contended_rdev) { 5783 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 5784 old_contended_rdev = new_contended_rdev; 5785 old_contended_rdev->ref_cnt++; 5786 } 5787 5788 err = regulator_summary_lock_all(ww_ctx, 5789 &new_contended_rdev, 5790 &old_contended_rdev); 5791 5792 if (old_contended_rdev) 5793 regulator_unlock(old_contended_rdev); 5794 5795 } while (err == -EDEADLK); 5796 5797 ww_acquire_done(ww_ctx); 5798 } 5799 5800 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 5801 { 5802 class_for_each_device(®ulator_class, NULL, NULL, 5803 regulator_summary_unlock_one); 5804 ww_acquire_fini(ww_ctx); 5805 5806 mutex_unlock(®ulator_list_mutex); 5807 } 5808 5809 static int regulator_summary_show_roots(struct device *dev, void *data) 5810 { 5811 struct regulator_dev *rdev = dev_to_rdev(dev); 5812 struct seq_file *s = data; 5813 5814 if (!rdev->supply) 5815 regulator_summary_show_subtree(s, rdev, 0); 5816 5817 return 0; 5818 } 5819 5820 static int regulator_summary_show(struct seq_file *s, void *data) 5821 { 5822 struct ww_acquire_ctx ww_ctx; 5823 5824 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 5825 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 5826 5827 regulator_summary_lock(&ww_ctx); 5828 5829 class_for_each_device(®ulator_class, NULL, s, 5830 regulator_summary_show_roots); 5831 5832 regulator_summary_unlock(&ww_ctx); 5833 5834 return 0; 5835 } 5836 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 5837 #endif /* CONFIG_DEBUG_FS */ 5838 5839 static int __init regulator_init(void) 5840 { 5841 int ret; 5842 5843 ret = class_register(®ulator_class); 5844 5845 debugfs_root = debugfs_create_dir("regulator", NULL); 5846 if (!debugfs_root) 5847 pr_warn("regulator: Failed to create debugfs directory\n"); 5848 5849 #ifdef CONFIG_DEBUG_FS 5850 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 5851 &supply_map_fops); 5852 5853 debugfs_create_file("regulator_summary", 0444, debugfs_root, 5854 NULL, ®ulator_summary_fops); 5855 #endif 5856 regulator_dummy_init(); 5857 5858 regulator_coupler_register(&generic_regulator_coupler); 5859 5860 return ret; 5861 } 5862 5863 /* init early to allow our consumers to complete system booting */ 5864 core_initcall(regulator_init); 5865 5866 static int regulator_late_cleanup(struct device *dev, void *data) 5867 { 5868 struct regulator_dev *rdev = dev_to_rdev(dev); 5869 const struct regulator_ops *ops = rdev->desc->ops; 5870 struct regulation_constraints *c = rdev->constraints; 5871 int enabled, ret; 5872 5873 if (c && c->always_on) 5874 return 0; 5875 5876 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 5877 return 0; 5878 5879 regulator_lock(rdev); 5880 5881 if (rdev->use_count) 5882 goto unlock; 5883 5884 /* If we can't read the status assume it's always on. */ 5885 if (ops->is_enabled) 5886 enabled = ops->is_enabled(rdev); 5887 else 5888 enabled = 1; 5889 5890 /* But if reading the status failed, assume that it's off. */ 5891 if (enabled <= 0) 5892 goto unlock; 5893 5894 if (have_full_constraints()) { 5895 /* We log since this may kill the system if it goes 5896 * wrong. 5897 */ 5898 rdev_info(rdev, "disabling\n"); 5899 ret = _regulator_do_disable(rdev); 5900 if (ret != 0) 5901 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 5902 } else { 5903 /* The intention is that in future we will 5904 * assume that full constraints are provided 5905 * so warn even if we aren't going to do 5906 * anything here. 5907 */ 5908 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 5909 } 5910 5911 unlock: 5912 regulator_unlock(rdev); 5913 5914 return 0; 5915 } 5916 5917 static void regulator_init_complete_work_function(struct work_struct *work) 5918 { 5919 /* 5920 * Regulators may had failed to resolve their input supplies 5921 * when were registered, either because the input supply was 5922 * not registered yet or because its parent device was not 5923 * bound yet. So attempt to resolve the input supplies for 5924 * pending regulators before trying to disable unused ones. 5925 */ 5926 class_for_each_device(®ulator_class, NULL, NULL, 5927 regulator_register_resolve_supply); 5928 5929 /* If we have a full configuration then disable any regulators 5930 * we have permission to change the status for and which are 5931 * not in use or always_on. This is effectively the default 5932 * for DT and ACPI as they have full constraints. 5933 */ 5934 class_for_each_device(®ulator_class, NULL, NULL, 5935 regulator_late_cleanup); 5936 } 5937 5938 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 5939 regulator_init_complete_work_function); 5940 5941 static int __init regulator_init_complete(void) 5942 { 5943 /* 5944 * Since DT doesn't provide an idiomatic mechanism for 5945 * enabling full constraints and since it's much more natural 5946 * with DT to provide them just assume that a DT enabled 5947 * system has full constraints. 5948 */ 5949 if (of_have_populated_dt()) 5950 has_full_constraints = true; 5951 5952 /* 5953 * We punt completion for an arbitrary amount of time since 5954 * systems like distros will load many drivers from userspace 5955 * so consumers might not always be ready yet, this is 5956 * particularly an issue with laptops where this might bounce 5957 * the display off then on. Ideally we'd get a notification 5958 * from userspace when this happens but we don't so just wait 5959 * a bit and hope we waited long enough. It'd be better if 5960 * we'd only do this on systems that need it, and a kernel 5961 * command line option might be useful. 5962 */ 5963 schedule_delayed_work(®ulator_init_complete_work, 5964 msecs_to_jiffies(30000)); 5965 5966 return 0; 5967 } 5968 late_initcall_sync(regulator_init_complete); 5969