xref: /linux/drivers/regulator/core.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56 
57 static struct dentry *debugfs_root;
58 
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65 	struct list_head list;
66 	const char *dev_name;   /* The dev_name() for the consumer */
67 	const char *supply;
68 	struct regulator_dev *regulator;
69 };
70 
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77 	struct device *dev;
78 	struct list_head list;
79 	unsigned int always_on:1;
80 	unsigned int bypass:1;
81 	int uA_load;
82 	int min_uV;
83 	int max_uV;
84 	char *supply_name;
85 	struct device_attribute dev_attr;
86 	struct regulator_dev *rdev;
87 	struct dentry *debugfs;
88 };
89 
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 				  unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 				     int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 					  struct device *dev,
101 					  const char *supply_name);
102 
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124 	struct device_node *regnode = NULL;
125 	char prop_name[32]; /* 32 is max size of property name */
126 
127 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128 
129 	snprintf(prop_name, 32, "%s-supply", supply);
130 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131 
132 	if (!regnode) {
133 		dev_dbg(dev, "Looking up %s property in node %s failed",
134 				prop_name, dev->of_node->full_name);
135 		return NULL;
136 	}
137 	return regnode;
138 }
139 
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142 	if (!rdev->constraints)
143 		return 0;
144 
145 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146 		return 1;
147 	else
148 		return 0;
149 }
150 
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153 				   int *min_uV, int *max_uV)
154 {
155 	BUG_ON(*min_uV > *max_uV);
156 
157 	if (!rdev->constraints) {
158 		rdev_err(rdev, "no constraints\n");
159 		return -ENODEV;
160 	}
161 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162 		rdev_err(rdev, "operation not allowed\n");
163 		return -EPERM;
164 	}
165 
166 	if (*max_uV > rdev->constraints->max_uV)
167 		*max_uV = rdev->constraints->max_uV;
168 	if (*min_uV < rdev->constraints->min_uV)
169 		*min_uV = rdev->constraints->min_uV;
170 
171 	if (*min_uV > *max_uV) {
172 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173 			 *min_uV, *max_uV);
174 		return -EINVAL;
175 	}
176 
177 	return 0;
178 }
179 
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184 				     int *min_uV, int *max_uV)
185 {
186 	struct regulator *regulator;
187 
188 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 		/*
190 		 * Assume consumers that didn't say anything are OK
191 		 * with anything in the constraint range.
192 		 */
193 		if (!regulator->min_uV && !regulator->max_uV)
194 			continue;
195 
196 		if (*max_uV > regulator->max_uV)
197 			*max_uV = regulator->max_uV;
198 		if (*min_uV < regulator->min_uV)
199 			*min_uV = regulator->min_uV;
200 	}
201 
202 	if (*min_uV > *max_uV) {
203 		dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204 			regulator->min_uV, regulator->max_uV);
205 		return -EINVAL;
206 	}
207 
208 	return 0;
209 }
210 
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213 					int *min_uA, int *max_uA)
214 {
215 	BUG_ON(*min_uA > *max_uA);
216 
217 	if (!rdev->constraints) {
218 		rdev_err(rdev, "no constraints\n");
219 		return -ENODEV;
220 	}
221 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222 		rdev_err(rdev, "operation not allowed\n");
223 		return -EPERM;
224 	}
225 
226 	if (*max_uA > rdev->constraints->max_uA)
227 		*max_uA = rdev->constraints->max_uA;
228 	if (*min_uA < rdev->constraints->min_uA)
229 		*min_uA = rdev->constraints->min_uA;
230 
231 	if (*min_uA > *max_uA) {
232 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233 			 *min_uA, *max_uA);
234 		return -EINVAL;
235 	}
236 
237 	return 0;
238 }
239 
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243 	switch (*mode) {
244 	case REGULATOR_MODE_FAST:
245 	case REGULATOR_MODE_NORMAL:
246 	case REGULATOR_MODE_IDLE:
247 	case REGULATOR_MODE_STANDBY:
248 		break;
249 	default:
250 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251 		return -EINVAL;
252 	}
253 
254 	if (!rdev->constraints) {
255 		rdev_err(rdev, "no constraints\n");
256 		return -ENODEV;
257 	}
258 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259 		rdev_err(rdev, "operation not allowed\n");
260 		return -EPERM;
261 	}
262 
263 	/* The modes are bitmasks, the most power hungry modes having
264 	 * the lowest values. If the requested mode isn't supported
265 	 * try higher modes. */
266 	while (*mode) {
267 		if (rdev->constraints->valid_modes_mask & *mode)
268 			return 0;
269 		*mode /= 2;
270 	}
271 
272 	return -EINVAL;
273 }
274 
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278 	if (!rdev->constraints) {
279 		rdev_err(rdev, "no constraints\n");
280 		return -ENODEV;
281 	}
282 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283 		rdev_err(rdev, "operation not allowed\n");
284 		return -EPERM;
285 	}
286 	return 0;
287 }
288 
289 static ssize_t regulator_uV_show(struct device *dev,
290 				struct device_attribute *attr, char *buf)
291 {
292 	struct regulator_dev *rdev = dev_get_drvdata(dev);
293 	ssize_t ret;
294 
295 	mutex_lock(&rdev->mutex);
296 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297 	mutex_unlock(&rdev->mutex);
298 
299 	return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302 
303 static ssize_t regulator_uA_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 
308 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311 
312 static ssize_t regulator_name_show(struct device *dev,
313 			     struct device_attribute *attr, char *buf)
314 {
315 	struct regulator_dev *rdev = dev_get_drvdata(dev);
316 
317 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319 
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322 	switch (mode) {
323 	case REGULATOR_MODE_FAST:
324 		return sprintf(buf, "fast\n");
325 	case REGULATOR_MODE_NORMAL:
326 		return sprintf(buf, "normal\n");
327 	case REGULATOR_MODE_IDLE:
328 		return sprintf(buf, "idle\n");
329 	case REGULATOR_MODE_STANDBY:
330 		return sprintf(buf, "standby\n");
331 	}
332 	return sprintf(buf, "unknown\n");
333 }
334 
335 static ssize_t regulator_opmode_show(struct device *dev,
336 				    struct device_attribute *attr, char *buf)
337 {
338 	struct regulator_dev *rdev = dev_get_drvdata(dev);
339 
340 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343 
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346 	if (state > 0)
347 		return sprintf(buf, "enabled\n");
348 	else if (state == 0)
349 		return sprintf(buf, "disabled\n");
350 	else
351 		return sprintf(buf, "unknown\n");
352 }
353 
354 static ssize_t regulator_state_show(struct device *dev,
355 				   struct device_attribute *attr, char *buf)
356 {
357 	struct regulator_dev *rdev = dev_get_drvdata(dev);
358 	ssize_t ret;
359 
360 	mutex_lock(&rdev->mutex);
361 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362 	mutex_unlock(&rdev->mutex);
363 
364 	return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367 
368 static ssize_t regulator_status_show(struct device *dev,
369 				   struct device_attribute *attr, char *buf)
370 {
371 	struct regulator_dev *rdev = dev_get_drvdata(dev);
372 	int status;
373 	char *label;
374 
375 	status = rdev->desc->ops->get_status(rdev);
376 	if (status < 0)
377 		return status;
378 
379 	switch (status) {
380 	case REGULATOR_STATUS_OFF:
381 		label = "off";
382 		break;
383 	case REGULATOR_STATUS_ON:
384 		label = "on";
385 		break;
386 	case REGULATOR_STATUS_ERROR:
387 		label = "error";
388 		break;
389 	case REGULATOR_STATUS_FAST:
390 		label = "fast";
391 		break;
392 	case REGULATOR_STATUS_NORMAL:
393 		label = "normal";
394 		break;
395 	case REGULATOR_STATUS_IDLE:
396 		label = "idle";
397 		break;
398 	case REGULATOR_STATUS_STANDBY:
399 		label = "standby";
400 		break;
401 	case REGULATOR_STATUS_BYPASS:
402 		label = "bypass";
403 		break;
404 	case REGULATOR_STATUS_UNDEFINED:
405 		label = "undefined";
406 		break;
407 	default:
408 		return -ERANGE;
409 	}
410 
411 	return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414 
415 static ssize_t regulator_min_uA_show(struct device *dev,
416 				    struct device_attribute *attr, char *buf)
417 {
418 	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 
420 	if (!rdev->constraints)
421 		return sprintf(buf, "constraint not defined\n");
422 
423 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426 
427 static ssize_t regulator_max_uA_show(struct device *dev,
428 				    struct device_attribute *attr, char *buf)
429 {
430 	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 
432 	if (!rdev->constraints)
433 		return sprintf(buf, "constraint not defined\n");
434 
435 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438 
439 static ssize_t regulator_min_uV_show(struct device *dev,
440 				    struct device_attribute *attr, char *buf)
441 {
442 	struct regulator_dev *rdev = dev_get_drvdata(dev);
443 
444 	if (!rdev->constraints)
445 		return sprintf(buf, "constraint not defined\n");
446 
447 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450 
451 static ssize_t regulator_max_uV_show(struct device *dev,
452 				    struct device_attribute *attr, char *buf)
453 {
454 	struct regulator_dev *rdev = dev_get_drvdata(dev);
455 
456 	if (!rdev->constraints)
457 		return sprintf(buf, "constraint not defined\n");
458 
459 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462 
463 static ssize_t regulator_total_uA_show(struct device *dev,
464 				      struct device_attribute *attr, char *buf)
465 {
466 	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 	struct regulator *regulator;
468 	int uA = 0;
469 
470 	mutex_lock(&rdev->mutex);
471 	list_for_each_entry(regulator, &rdev->consumer_list, list)
472 		uA += regulator->uA_load;
473 	mutex_unlock(&rdev->mutex);
474 	return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477 
478 static ssize_t regulator_num_users_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	return sprintf(buf, "%d\n", rdev->use_count);
483 }
484 
485 static ssize_t regulator_type_show(struct device *dev,
486 				  struct device_attribute *attr, char *buf)
487 {
488 	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 
490 	switch (rdev->desc->type) {
491 	case REGULATOR_VOLTAGE:
492 		return sprintf(buf, "voltage\n");
493 	case REGULATOR_CURRENT:
494 		return sprintf(buf, "current\n");
495 	}
496 	return sprintf(buf, "unknown\n");
497 }
498 
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500 				struct device_attribute *attr, char *buf)
501 {
502 	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 
504 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507 		regulator_suspend_mem_uV_show, NULL);
508 
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510 				struct device_attribute *attr, char *buf)
511 {
512 	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 
514 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517 		regulator_suspend_disk_uV_show, NULL);
518 
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520 				struct device_attribute *attr, char *buf)
521 {
522 	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 
524 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527 		regulator_suspend_standby_uV_show, NULL);
528 
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530 				struct device_attribute *attr, char *buf)
531 {
532 	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 
534 	return regulator_print_opmode(buf,
535 		rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538 		regulator_suspend_mem_mode_show, NULL);
539 
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541 				struct device_attribute *attr, char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 
545 	return regulator_print_opmode(buf,
546 		rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549 		regulator_suspend_disk_mode_show, NULL);
550 
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552 				struct device_attribute *attr, char *buf)
553 {
554 	struct regulator_dev *rdev = dev_get_drvdata(dev);
555 
556 	return regulator_print_opmode(buf,
557 		rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560 		regulator_suspend_standby_mode_show, NULL);
561 
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563 				   struct device_attribute *attr, char *buf)
564 {
565 	struct regulator_dev *rdev = dev_get_drvdata(dev);
566 
567 	return regulator_print_state(buf,
568 			rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571 		regulator_suspend_mem_state_show, NULL);
572 
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574 				   struct device_attribute *attr, char *buf)
575 {
576 	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 
578 	return regulator_print_state(buf,
579 			rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582 		regulator_suspend_disk_state_show, NULL);
583 
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585 				   struct device_attribute *attr, char *buf)
586 {
587 	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 
589 	return regulator_print_state(buf,
590 			rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593 		regulator_suspend_standby_state_show, NULL);
594 
595 static ssize_t regulator_bypass_show(struct device *dev,
596 				     struct device_attribute *attr, char *buf)
597 {
598 	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 	const char *report;
600 	bool bypass;
601 	int ret;
602 
603 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604 
605 	if (ret != 0)
606 		report = "unknown";
607 	else if (bypass)
608 		report = "enabled";
609 	else
610 		report = "disabled";
611 
612 	return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615 		   regulator_bypass_show, NULL);
616 
617 /*
618  * These are the only attributes are present for all regulators.
619  * Other attributes are a function of regulator functionality.
620  */
621 static struct device_attribute regulator_dev_attrs[] = {
622 	__ATTR(name, 0444, regulator_name_show, NULL),
623 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
624 	__ATTR(type, 0444, regulator_type_show, NULL),
625 	__ATTR_NULL,
626 };
627 
628 static void regulator_dev_release(struct device *dev)
629 {
630 	struct regulator_dev *rdev = dev_get_drvdata(dev);
631 	kfree(rdev);
632 }
633 
634 static struct class regulator_class = {
635 	.name = "regulator",
636 	.dev_release = regulator_dev_release,
637 	.dev_attrs = regulator_dev_attrs,
638 };
639 
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644 	struct regulator *sibling;
645 	int current_uA = 0, output_uV, input_uV, err;
646 	unsigned int mode;
647 
648 	err = regulator_check_drms(rdev);
649 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650 	    (!rdev->desc->ops->get_voltage &&
651 	     !rdev->desc->ops->get_voltage_sel) ||
652 	    !rdev->desc->ops->set_mode)
653 		return;
654 
655 	/* get output voltage */
656 	output_uV = _regulator_get_voltage(rdev);
657 	if (output_uV <= 0)
658 		return;
659 
660 	/* get input voltage */
661 	input_uV = 0;
662 	if (rdev->supply)
663 		input_uV = regulator_get_voltage(rdev->supply);
664 	if (input_uV <= 0)
665 		input_uV = rdev->constraints->input_uV;
666 	if (input_uV <= 0)
667 		return;
668 
669 	/* calc total requested load */
670 	list_for_each_entry(sibling, &rdev->consumer_list, list)
671 		current_uA += sibling->uA_load;
672 
673 	/* now get the optimum mode for our new total regulator load */
674 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675 						  output_uV, current_uA);
676 
677 	/* check the new mode is allowed */
678 	err = regulator_mode_constrain(rdev, &mode);
679 	if (err == 0)
680 		rdev->desc->ops->set_mode(rdev, mode);
681 }
682 
683 static int suspend_set_state(struct regulator_dev *rdev,
684 	struct regulator_state *rstate)
685 {
686 	int ret = 0;
687 
688 	/* If we have no suspend mode configration don't set anything;
689 	 * only warn if the driver implements set_suspend_voltage or
690 	 * set_suspend_mode callback.
691 	 */
692 	if (!rstate->enabled && !rstate->disabled) {
693 		if (rdev->desc->ops->set_suspend_voltage ||
694 		    rdev->desc->ops->set_suspend_mode)
695 			rdev_warn(rdev, "No configuration\n");
696 		return 0;
697 	}
698 
699 	if (rstate->enabled && rstate->disabled) {
700 		rdev_err(rdev, "invalid configuration\n");
701 		return -EINVAL;
702 	}
703 
704 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705 		ret = rdev->desc->ops->set_suspend_enable(rdev);
706 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707 		ret = rdev->desc->ops->set_suspend_disable(rdev);
708 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709 		ret = 0;
710 
711 	if (ret < 0) {
712 		rdev_err(rdev, "failed to enabled/disable\n");
713 		return ret;
714 	}
715 
716 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718 		if (ret < 0) {
719 			rdev_err(rdev, "failed to set voltage\n");
720 			return ret;
721 		}
722 	}
723 
724 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726 		if (ret < 0) {
727 			rdev_err(rdev, "failed to set mode\n");
728 			return ret;
729 		}
730 	}
731 	return ret;
732 }
733 
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737 	if (!rdev->constraints)
738 		return -EINVAL;
739 
740 	switch (state) {
741 	case PM_SUSPEND_STANDBY:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_standby);
744 	case PM_SUSPEND_MEM:
745 		return suspend_set_state(rdev,
746 			&rdev->constraints->state_mem);
747 	case PM_SUSPEND_MAX:
748 		return suspend_set_state(rdev,
749 			&rdev->constraints->state_disk);
750 	default:
751 		return -EINVAL;
752 	}
753 }
754 
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757 	struct regulation_constraints *constraints = rdev->constraints;
758 	char buf[80] = "";
759 	int count = 0;
760 	int ret;
761 
762 	if (constraints->min_uV && constraints->max_uV) {
763 		if (constraints->min_uV == constraints->max_uV)
764 			count += sprintf(buf + count, "%d mV ",
765 					 constraints->min_uV / 1000);
766 		else
767 			count += sprintf(buf + count, "%d <--> %d mV ",
768 					 constraints->min_uV / 1000,
769 					 constraints->max_uV / 1000);
770 	}
771 
772 	if (!constraints->min_uV ||
773 	    constraints->min_uV != constraints->max_uV) {
774 		ret = _regulator_get_voltage(rdev);
775 		if (ret > 0)
776 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777 	}
778 
779 	if (constraints->uV_offset)
780 		count += sprintf(buf, "%dmV offset ",
781 				 constraints->uV_offset / 1000);
782 
783 	if (constraints->min_uA && constraints->max_uA) {
784 		if (constraints->min_uA == constraints->max_uA)
785 			count += sprintf(buf + count, "%d mA ",
786 					 constraints->min_uA / 1000);
787 		else
788 			count += sprintf(buf + count, "%d <--> %d mA ",
789 					 constraints->min_uA / 1000,
790 					 constraints->max_uA / 1000);
791 	}
792 
793 	if (!constraints->min_uA ||
794 	    constraints->min_uA != constraints->max_uA) {
795 		ret = _regulator_get_current_limit(rdev);
796 		if (ret > 0)
797 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798 	}
799 
800 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801 		count += sprintf(buf + count, "fast ");
802 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803 		count += sprintf(buf + count, "normal ");
804 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805 		count += sprintf(buf + count, "idle ");
806 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807 		count += sprintf(buf + count, "standby");
808 
809 	if (!count)
810 		sprintf(buf, "no parameters");
811 
812 	rdev_info(rdev, "%s\n", buf);
813 
814 	if ((constraints->min_uV != constraints->max_uV) &&
815 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816 		rdev_warn(rdev,
817 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819 
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821 	struct regulation_constraints *constraints)
822 {
823 	struct regulator_ops *ops = rdev->desc->ops;
824 	int ret;
825 
826 	/* do we need to apply the constraint voltage */
827 	if (rdev->constraints->apply_uV &&
828 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
829 		ret = _regulator_do_set_voltage(rdev,
830 						rdev->constraints->min_uV,
831 						rdev->constraints->max_uV);
832 		if (ret < 0) {
833 			rdev_err(rdev, "failed to apply %duV constraint\n",
834 				 rdev->constraints->min_uV);
835 			return ret;
836 		}
837 	}
838 
839 	/* constrain machine-level voltage specs to fit
840 	 * the actual range supported by this regulator.
841 	 */
842 	if (ops->list_voltage && rdev->desc->n_voltages) {
843 		int	count = rdev->desc->n_voltages;
844 		int	i;
845 		int	min_uV = INT_MAX;
846 		int	max_uV = INT_MIN;
847 		int	cmin = constraints->min_uV;
848 		int	cmax = constraints->max_uV;
849 
850 		/* it's safe to autoconfigure fixed-voltage supplies
851 		   and the constraints are used by list_voltage. */
852 		if (count == 1 && !cmin) {
853 			cmin = 1;
854 			cmax = INT_MAX;
855 			constraints->min_uV = cmin;
856 			constraints->max_uV = cmax;
857 		}
858 
859 		/* voltage constraints are optional */
860 		if ((cmin == 0) && (cmax == 0))
861 			return 0;
862 
863 		/* else require explicit machine-level constraints */
864 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865 			rdev_err(rdev, "invalid voltage constraints\n");
866 			return -EINVAL;
867 		}
868 
869 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870 		for (i = 0; i < count; i++) {
871 			int	value;
872 
873 			value = ops->list_voltage(rdev, i);
874 			if (value <= 0)
875 				continue;
876 
877 			/* maybe adjust [min_uV..max_uV] */
878 			if (value >= cmin && value < min_uV)
879 				min_uV = value;
880 			if (value <= cmax && value > max_uV)
881 				max_uV = value;
882 		}
883 
884 		/* final: [min_uV..max_uV] valid iff constraints valid */
885 		if (max_uV < min_uV) {
886 			rdev_err(rdev,
887 				 "unsupportable voltage constraints %u-%uuV\n",
888 				 min_uV, max_uV);
889 			return -EINVAL;
890 		}
891 
892 		/* use regulator's subset of machine constraints */
893 		if (constraints->min_uV < min_uV) {
894 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895 				 constraints->min_uV, min_uV);
896 			constraints->min_uV = min_uV;
897 		}
898 		if (constraints->max_uV > max_uV) {
899 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900 				 constraints->max_uV, max_uV);
901 			constraints->max_uV = max_uV;
902 		}
903 	}
904 
905 	return 0;
906 }
907 
908 /**
909  * set_machine_constraints - sets regulator constraints
910  * @rdev: regulator source
911  * @constraints: constraints to apply
912  *
913  * Allows platform initialisation code to define and constrain
914  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915  * Constraints *must* be set by platform code in order for some
916  * regulator operations to proceed i.e. set_voltage, set_current_limit,
917  * set_mode.
918  */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920 	const struct regulation_constraints *constraints)
921 {
922 	int ret = 0;
923 	struct regulator_ops *ops = rdev->desc->ops;
924 
925 	if (constraints)
926 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927 					    GFP_KERNEL);
928 	else
929 		rdev->constraints = kzalloc(sizeof(*constraints),
930 					    GFP_KERNEL);
931 	if (!rdev->constraints)
932 		return -ENOMEM;
933 
934 	ret = machine_constraints_voltage(rdev, rdev->constraints);
935 	if (ret != 0)
936 		goto out;
937 
938 	/* do we need to setup our suspend state */
939 	if (rdev->constraints->initial_state) {
940 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941 		if (ret < 0) {
942 			rdev_err(rdev, "failed to set suspend state\n");
943 			goto out;
944 		}
945 	}
946 
947 	if (rdev->constraints->initial_mode) {
948 		if (!ops->set_mode) {
949 			rdev_err(rdev, "no set_mode operation\n");
950 			ret = -EINVAL;
951 			goto out;
952 		}
953 
954 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955 		if (ret < 0) {
956 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957 			goto out;
958 		}
959 	}
960 
961 	/* If the constraints say the regulator should be on at this point
962 	 * and we have control then make sure it is enabled.
963 	 */
964 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965 	    ops->enable) {
966 		ret = ops->enable(rdev);
967 		if (ret < 0) {
968 			rdev_err(rdev, "failed to enable\n");
969 			goto out;
970 		}
971 	}
972 
973 	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975 		if (ret < 0) {
976 			rdev_err(rdev, "failed to set ramp_delay\n");
977 			goto out;
978 		}
979 	}
980 
981 	print_constraints(rdev);
982 	return 0;
983 out:
984 	kfree(rdev->constraints);
985 	rdev->constraints = NULL;
986 	return ret;
987 }
988 
989 /**
990  * set_supply - set regulator supply regulator
991  * @rdev: regulator name
992  * @supply_rdev: supply regulator name
993  *
994  * Called by platform initialisation code to set the supply regulator for this
995  * regulator. This ensures that a regulators supply will also be enabled by the
996  * core if it's child is enabled.
997  */
998 static int set_supply(struct regulator_dev *rdev,
999 		      struct regulator_dev *supply_rdev)
1000 {
1001 	int err;
1002 
1003 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004 
1005 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006 	if (rdev->supply == NULL) {
1007 		err = -ENOMEM;
1008 		return err;
1009 	}
1010 	supply_rdev->open_count++;
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017  * @rdev:         regulator source
1018  * @consumer_dev_name: dev_name() string for device supply applies to
1019  * @supply:       symbolic name for supply
1020  *
1021  * Allows platform initialisation code to map physical regulator
1022  * sources to symbolic names for supplies for use by devices.  Devices
1023  * should use these symbolic names to request regulators, avoiding the
1024  * need to provide board-specific regulator names as platform data.
1025  */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027 				      const char *consumer_dev_name,
1028 				      const char *supply)
1029 {
1030 	struct regulator_map *node;
1031 	int has_dev;
1032 
1033 	if (supply == NULL)
1034 		return -EINVAL;
1035 
1036 	if (consumer_dev_name != NULL)
1037 		has_dev = 1;
1038 	else
1039 		has_dev = 0;
1040 
1041 	list_for_each_entry(node, &regulator_map_list, list) {
1042 		if (node->dev_name && consumer_dev_name) {
1043 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044 				continue;
1045 		} else if (node->dev_name || consumer_dev_name) {
1046 			continue;
1047 		}
1048 
1049 		if (strcmp(node->supply, supply) != 0)
1050 			continue;
1051 
1052 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053 			 consumer_dev_name,
1054 			 dev_name(&node->regulator->dev),
1055 			 node->regulator->desc->name,
1056 			 supply,
1057 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1058 		return -EBUSY;
1059 	}
1060 
1061 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062 	if (node == NULL)
1063 		return -ENOMEM;
1064 
1065 	node->regulator = rdev;
1066 	node->supply = supply;
1067 
1068 	if (has_dev) {
1069 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070 		if (node->dev_name == NULL) {
1071 			kfree(node);
1072 			return -ENOMEM;
1073 		}
1074 	}
1075 
1076 	list_add(&node->list, &regulator_map_list);
1077 	return 0;
1078 }
1079 
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082 	struct regulator_map *node, *n;
1083 
1084 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085 		if (rdev == node->regulator) {
1086 			list_del(&node->list);
1087 			kfree(node->dev_name);
1088 			kfree(node);
1089 		}
1090 	}
1091 }
1092 
1093 #define REG_STR_SIZE	64
1094 
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096 					  struct device *dev,
1097 					  const char *supply_name)
1098 {
1099 	struct regulator *regulator;
1100 	char buf[REG_STR_SIZE];
1101 	int err, size;
1102 
1103 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104 	if (regulator == NULL)
1105 		return NULL;
1106 
1107 	mutex_lock(&rdev->mutex);
1108 	regulator->rdev = rdev;
1109 	list_add(&regulator->list, &rdev->consumer_list);
1110 
1111 	if (dev) {
1112 		regulator->dev = dev;
1113 
1114 		/* Add a link to the device sysfs entry */
1115 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116 				 dev->kobj.name, supply_name);
1117 		if (size >= REG_STR_SIZE)
1118 			goto overflow_err;
1119 
1120 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121 		if (regulator->supply_name == NULL)
1122 			goto overflow_err;
1123 
1124 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125 					buf);
1126 		if (err) {
1127 			rdev_warn(rdev, "could not add device link %s err %d\n",
1128 				  dev->kobj.name, err);
1129 			/* non-fatal */
1130 		}
1131 	} else {
1132 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133 		if (regulator->supply_name == NULL)
1134 			goto overflow_err;
1135 	}
1136 
1137 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138 						rdev->debugfs);
1139 	if (!regulator->debugfs) {
1140 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1141 	} else {
1142 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143 				   &regulator->uA_load);
1144 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145 				   &regulator->min_uV);
1146 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147 				   &regulator->max_uV);
1148 	}
1149 
1150 	/*
1151 	 * Check now if the regulator is an always on regulator - if
1152 	 * it is then we don't need to do nearly so much work for
1153 	 * enable/disable calls.
1154 	 */
1155 	if (!_regulator_can_change_status(rdev) &&
1156 	    _regulator_is_enabled(rdev))
1157 		regulator->always_on = true;
1158 
1159 	mutex_unlock(&rdev->mutex);
1160 	return regulator;
1161 overflow_err:
1162 	list_del(&regulator->list);
1163 	kfree(regulator);
1164 	mutex_unlock(&rdev->mutex);
1165 	return NULL;
1166 }
1167 
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170 	if (!rdev->desc->ops->enable_time)
1171 		return rdev->desc->enable_time;
1172 	return rdev->desc->ops->enable_time(rdev);
1173 }
1174 
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176 						  const char *supply,
1177 						  int *ret)
1178 {
1179 	struct regulator_dev *r;
1180 	struct device_node *node;
1181 	struct regulator_map *map;
1182 	const char *devname = NULL;
1183 
1184 	/* first do a dt based lookup */
1185 	if (dev && dev->of_node) {
1186 		node = of_get_regulator(dev, supply);
1187 		if (node) {
1188 			list_for_each_entry(r, &regulator_list, list)
1189 				if (r->dev.parent &&
1190 					node == r->dev.of_node)
1191 					return r;
1192 		} else {
1193 			/*
1194 			 * If we couldn't even get the node then it's
1195 			 * not just that the device didn't register
1196 			 * yet, there's no node and we'll never
1197 			 * succeed.
1198 			 */
1199 			*ret = -ENODEV;
1200 		}
1201 	}
1202 
1203 	/* if not found, try doing it non-dt way */
1204 	if (dev)
1205 		devname = dev_name(dev);
1206 
1207 	list_for_each_entry(r, &regulator_list, list)
1208 		if (strcmp(rdev_get_name(r), supply) == 0)
1209 			return r;
1210 
1211 	list_for_each_entry(map, &regulator_map_list, list) {
1212 		/* If the mapping has a device set up it must match */
1213 		if (map->dev_name &&
1214 		    (!devname || strcmp(map->dev_name, devname)))
1215 			continue;
1216 
1217 		if (strcmp(map->supply, supply) == 0)
1218 			return map->regulator;
1219 	}
1220 
1221 
1222 	return NULL;
1223 }
1224 
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227 					int exclusive)
1228 {
1229 	struct regulator_dev *rdev;
1230 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231 	const char *devname = NULL;
1232 	int ret;
1233 
1234 	if (id == NULL) {
1235 		pr_err("get() with no identifier\n");
1236 		return regulator;
1237 	}
1238 
1239 	if (dev)
1240 		devname = dev_name(dev);
1241 
1242 	mutex_lock(&regulator_list_mutex);
1243 
1244 	rdev = regulator_dev_lookup(dev, id, &ret);
1245 	if (rdev)
1246 		goto found;
1247 
1248 	if (board_wants_dummy_regulator) {
1249 		rdev = dummy_regulator_rdev;
1250 		goto found;
1251 	}
1252 
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254 	if (!devname)
1255 		devname = "deviceless";
1256 
1257 	/* If the board didn't flag that it was fully constrained then
1258 	 * substitute in a dummy regulator so consumers can continue.
1259 	 */
1260 	if (!has_full_constraints) {
1261 		pr_warn("%s supply %s not found, using dummy regulator\n",
1262 			devname, id);
1263 		rdev = dummy_regulator_rdev;
1264 		goto found;
1265 	}
1266 #endif
1267 
1268 	mutex_unlock(&regulator_list_mutex);
1269 	return regulator;
1270 
1271 found:
1272 	if (rdev->exclusive) {
1273 		regulator = ERR_PTR(-EPERM);
1274 		goto out;
1275 	}
1276 
1277 	if (exclusive && rdev->open_count) {
1278 		regulator = ERR_PTR(-EBUSY);
1279 		goto out;
1280 	}
1281 
1282 	if (!try_module_get(rdev->owner))
1283 		goto out;
1284 
1285 	regulator = create_regulator(rdev, dev, id);
1286 	if (regulator == NULL) {
1287 		regulator = ERR_PTR(-ENOMEM);
1288 		module_put(rdev->owner);
1289 		goto out;
1290 	}
1291 
1292 	rdev->open_count++;
1293 	if (exclusive) {
1294 		rdev->exclusive = 1;
1295 
1296 		ret = _regulator_is_enabled(rdev);
1297 		if (ret > 0)
1298 			rdev->use_count = 1;
1299 		else
1300 			rdev->use_count = 0;
1301 	}
1302 
1303 out:
1304 	mutex_unlock(&regulator_list_mutex);
1305 
1306 	return regulator;
1307 }
1308 
1309 /**
1310  * regulator_get - lookup and obtain a reference to a regulator.
1311  * @dev: device for regulator "consumer"
1312  * @id: Supply name or regulator ID.
1313  *
1314  * Returns a struct regulator corresponding to the regulator producer,
1315  * or IS_ERR() condition containing errno.
1316  *
1317  * Use of supply names configured via regulator_set_device_supply() is
1318  * strongly encouraged.  It is recommended that the supply name used
1319  * should match the name used for the supply and/or the relevant
1320  * device pins in the datasheet.
1321  */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324 	return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327 
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330 	regulator_put(*(struct regulator **)res);
1331 }
1332 
1333 /**
1334  * devm_regulator_get - Resource managed regulator_get()
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Managed regulator_get(). Regulators returned from this function are
1339  * automatically regulator_put() on driver detach. See regulator_get() for more
1340  * information.
1341  */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344 	struct regulator **ptr, *regulator;
1345 
1346 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347 	if (!ptr)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	regulator = regulator_get(dev, id);
1351 	if (!IS_ERR(regulator)) {
1352 		*ptr = regulator;
1353 		devres_add(dev, ptr);
1354 	} else {
1355 		devres_free(ptr);
1356 	}
1357 
1358 	return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361 
1362 /**
1363  * regulator_get_exclusive - obtain exclusive access to a regulator.
1364  * @dev: device for regulator "consumer"
1365  * @id: Supply name or regulator ID.
1366  *
1367  * Returns a struct regulator corresponding to the regulator producer,
1368  * or IS_ERR() condition containing errno.  Other consumers will be
1369  * unable to obtain this reference is held and the use count for the
1370  * regulator will be initialised to reflect the current state of the
1371  * regulator.
1372  *
1373  * This is intended for use by consumers which cannot tolerate shared
1374  * use of the regulator such as those which need to force the
1375  * regulator off for correct operation of the hardware they are
1376  * controlling.
1377  *
1378  * Use of supply names configured via regulator_set_device_supply() is
1379  * strongly encouraged.  It is recommended that the supply name used
1380  * should match the name used for the supply and/or the relevant
1381  * device pins in the datasheet.
1382  */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385 	return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388 
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392 	struct regulator_dev *rdev;
1393 
1394 	if (regulator == NULL || IS_ERR(regulator))
1395 		return;
1396 
1397 	rdev = regulator->rdev;
1398 
1399 	debugfs_remove_recursive(regulator->debugfs);
1400 
1401 	/* remove any sysfs entries */
1402 	if (regulator->dev)
1403 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404 	kfree(regulator->supply_name);
1405 	list_del(&regulator->list);
1406 	kfree(regulator);
1407 
1408 	rdev->open_count--;
1409 	rdev->exclusive = 0;
1410 
1411 	module_put(rdev->owner);
1412 }
1413 
1414 /**
1415  * regulator_put - "free" the regulator source
1416  * @regulator: regulator source
1417  *
1418  * Note: drivers must ensure that all regulator_enable calls made on this
1419  * regulator source are balanced by regulator_disable calls prior to calling
1420  * this function.
1421  */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424 	mutex_lock(&regulator_list_mutex);
1425 	_regulator_put(regulator);
1426 	mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429 
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432 	struct regulator **r = res;
1433 	if (!r || !*r) {
1434 		WARN_ON(!r || !*r);
1435 		return 0;
1436 	}
1437 	return *r == data;
1438 }
1439 
1440 /**
1441  * devm_regulator_put - Resource managed regulator_put()
1442  * @regulator: regulator to free
1443  *
1444  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445  * this function will not need to be called and the resource management
1446  * code will ensure that the resource is freed.
1447  */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450 	int rc;
1451 
1452 	rc = devres_release(regulator->dev, devm_regulator_release,
1453 			    devm_regulator_match, regulator);
1454 	if (rc != 0)
1455 		WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458 
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461 	int ret, delay;
1462 
1463 	/* Query before enabling in case configuration dependent.  */
1464 	ret = _regulator_get_enable_time(rdev);
1465 	if (ret >= 0) {
1466 		delay = ret;
1467 	} else {
1468 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469 		delay = 0;
1470 	}
1471 
1472 	trace_regulator_enable(rdev_get_name(rdev));
1473 
1474 	if (rdev->ena_gpio) {
1475 		gpio_set_value_cansleep(rdev->ena_gpio,
1476 					!rdev->ena_gpio_invert);
1477 		rdev->ena_gpio_state = 1;
1478 	} else if (rdev->desc->ops->enable) {
1479 		ret = rdev->desc->ops->enable(rdev);
1480 		if (ret < 0)
1481 			return ret;
1482 	} else {
1483 		return -EINVAL;
1484 	}
1485 
1486 	/* Allow the regulator to ramp; it would be useful to extend
1487 	 * this for bulk operations so that the regulators can ramp
1488 	 * together.  */
1489 	trace_regulator_enable_delay(rdev_get_name(rdev));
1490 
1491 	if (delay >= 1000) {
1492 		mdelay(delay / 1000);
1493 		udelay(delay % 1000);
1494 	} else if (delay) {
1495 		udelay(delay);
1496 	}
1497 
1498 	trace_regulator_enable_complete(rdev_get_name(rdev));
1499 
1500 	return 0;
1501 }
1502 
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506 	int ret;
1507 
1508 	/* check voltage and requested load before enabling */
1509 	if (rdev->constraints &&
1510 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511 		drms_uA_update(rdev);
1512 
1513 	if (rdev->use_count == 0) {
1514 		/* The regulator may on if it's not switchable or left on */
1515 		ret = _regulator_is_enabled(rdev);
1516 		if (ret == -EINVAL || ret == 0) {
1517 			if (!_regulator_can_change_status(rdev))
1518 				return -EPERM;
1519 
1520 			ret = _regulator_do_enable(rdev);
1521 			if (ret < 0)
1522 				return ret;
1523 
1524 		} else if (ret < 0) {
1525 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526 			return ret;
1527 		}
1528 		/* Fallthrough on positive return values - already enabled */
1529 	}
1530 
1531 	rdev->use_count++;
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * regulator_enable - enable regulator output
1538  * @regulator: regulator source
1539  *
1540  * Request that the regulator be enabled with the regulator output at
1541  * the predefined voltage or current value.  Calls to regulator_enable()
1542  * must be balanced with calls to regulator_disable().
1543  *
1544  * NOTE: the output value can be set by other drivers, boot loader or may be
1545  * hardwired in the regulator.
1546  */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549 	struct regulator_dev *rdev = regulator->rdev;
1550 	int ret = 0;
1551 
1552 	if (regulator->always_on)
1553 		return 0;
1554 
1555 	if (rdev->supply) {
1556 		ret = regulator_enable(rdev->supply);
1557 		if (ret != 0)
1558 			return ret;
1559 	}
1560 
1561 	mutex_lock(&rdev->mutex);
1562 	ret = _regulator_enable(rdev);
1563 	mutex_unlock(&rdev->mutex);
1564 
1565 	if (ret != 0 && rdev->supply)
1566 		regulator_disable(rdev->supply);
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571 
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574 	int ret;
1575 
1576 	trace_regulator_disable(rdev_get_name(rdev));
1577 
1578 	if (rdev->ena_gpio) {
1579 		gpio_set_value_cansleep(rdev->ena_gpio,
1580 					rdev->ena_gpio_invert);
1581 		rdev->ena_gpio_state = 0;
1582 
1583 	} else if (rdev->desc->ops->disable) {
1584 		ret = rdev->desc->ops->disable(rdev);
1585 		if (ret != 0)
1586 			return ret;
1587 	}
1588 
1589 	trace_regulator_disable_complete(rdev_get_name(rdev));
1590 
1591 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592 			     NULL);
1593 	return 0;
1594 }
1595 
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599 	int ret = 0;
1600 
1601 	if (WARN(rdev->use_count <= 0,
1602 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603 		return -EIO;
1604 
1605 	/* are we the last user and permitted to disable ? */
1606 	if (rdev->use_count == 1 &&
1607 	    (rdev->constraints && !rdev->constraints->always_on)) {
1608 
1609 		/* we are last user */
1610 		if (_regulator_can_change_status(rdev)) {
1611 			ret = _regulator_do_disable(rdev);
1612 			if (ret < 0) {
1613 				rdev_err(rdev, "failed to disable\n");
1614 				return ret;
1615 			}
1616 		}
1617 
1618 		rdev->use_count = 0;
1619 	} else if (rdev->use_count > 1) {
1620 
1621 		if (rdev->constraints &&
1622 			(rdev->constraints->valid_ops_mask &
1623 			REGULATOR_CHANGE_DRMS))
1624 			drms_uA_update(rdev);
1625 
1626 		rdev->use_count--;
1627 	}
1628 
1629 	return ret;
1630 }
1631 
1632 /**
1633  * regulator_disable - disable regulator output
1634  * @regulator: regulator source
1635  *
1636  * Disable the regulator output voltage or current.  Calls to
1637  * regulator_enable() must be balanced with calls to
1638  * regulator_disable().
1639  *
1640  * NOTE: this will only disable the regulator output if no other consumer
1641  * devices have it enabled, the regulator device supports disabling and
1642  * machine constraints permit this operation.
1643  */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646 	struct regulator_dev *rdev = regulator->rdev;
1647 	int ret = 0;
1648 
1649 	if (regulator->always_on)
1650 		return 0;
1651 
1652 	mutex_lock(&rdev->mutex);
1653 	ret = _regulator_disable(rdev);
1654 	mutex_unlock(&rdev->mutex);
1655 
1656 	if (ret == 0 && rdev->supply)
1657 		regulator_disable(rdev->supply);
1658 
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662 
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666 	int ret = 0;
1667 
1668 	/* force disable */
1669 	if (rdev->desc->ops->disable) {
1670 		/* ah well, who wants to live forever... */
1671 		ret = rdev->desc->ops->disable(rdev);
1672 		if (ret < 0) {
1673 			rdev_err(rdev, "failed to force disable\n");
1674 			return ret;
1675 		}
1676 		/* notify other consumers that power has been forced off */
1677 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678 			REGULATOR_EVENT_DISABLE, NULL);
1679 	}
1680 
1681 	return ret;
1682 }
1683 
1684 /**
1685  * regulator_force_disable - force disable regulator output
1686  * @regulator: regulator source
1687  *
1688  * Forcibly disable the regulator output voltage or current.
1689  * NOTE: this *will* disable the regulator output even if other consumer
1690  * devices have it enabled. This should be used for situations when device
1691  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692  */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695 	struct regulator_dev *rdev = regulator->rdev;
1696 	int ret;
1697 
1698 	mutex_lock(&rdev->mutex);
1699 	regulator->uA_load = 0;
1700 	ret = _regulator_force_disable(regulator->rdev);
1701 	mutex_unlock(&rdev->mutex);
1702 
1703 	if (rdev->supply)
1704 		while (rdev->open_count--)
1705 			regulator_disable(rdev->supply);
1706 
1707 	return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710 
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714 						  disable_work.work);
1715 	int count, i, ret;
1716 
1717 	mutex_lock(&rdev->mutex);
1718 
1719 	BUG_ON(!rdev->deferred_disables);
1720 
1721 	count = rdev->deferred_disables;
1722 	rdev->deferred_disables = 0;
1723 
1724 	for (i = 0; i < count; i++) {
1725 		ret = _regulator_disable(rdev);
1726 		if (ret != 0)
1727 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728 	}
1729 
1730 	mutex_unlock(&rdev->mutex);
1731 
1732 	if (rdev->supply) {
1733 		for (i = 0; i < count; i++) {
1734 			ret = regulator_disable(rdev->supply);
1735 			if (ret != 0) {
1736 				rdev_err(rdev,
1737 					 "Supply disable failed: %d\n", ret);
1738 			}
1739 		}
1740 	}
1741 }
1742 
1743 /**
1744  * regulator_disable_deferred - disable regulator output with delay
1745  * @regulator: regulator source
1746  * @ms: miliseconds until the regulator is disabled
1747  *
1748  * Execute regulator_disable() on the regulator after a delay.  This
1749  * is intended for use with devices that require some time to quiesce.
1750  *
1751  * NOTE: this will only disable the regulator output if no other consumer
1752  * devices have it enabled, the regulator device supports disabling and
1753  * machine constraints permit this operation.
1754  */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757 	struct regulator_dev *rdev = regulator->rdev;
1758 	int ret;
1759 
1760 	if (regulator->always_on)
1761 		return 0;
1762 
1763 	if (!ms)
1764 		return regulator_disable(regulator);
1765 
1766 	mutex_lock(&rdev->mutex);
1767 	rdev->deferred_disables++;
1768 	mutex_unlock(&rdev->mutex);
1769 
1770 	ret = schedule_delayed_work(&rdev->disable_work,
1771 				    msecs_to_jiffies(ms));
1772 	if (ret < 0)
1773 		return ret;
1774 	else
1775 		return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778 
1779 /**
1780  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781  *
1782  * @rdev: regulator to operate on
1783  *
1784  * Regulators that use regmap for their register I/O can set the
1785  * enable_reg and enable_mask fields in their descriptor and then use
1786  * this as their is_enabled operation, saving some code.
1787  */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790 	unsigned int val;
1791 	int ret;
1792 
1793 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794 	if (ret != 0)
1795 		return ret;
1796 
1797 	return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800 
1801 /**
1802  * regulator_enable_regmap - standard enable() for regmap users
1803  *
1804  * @rdev: regulator to operate on
1805  *
1806  * Regulators that use regmap for their register I/O can set the
1807  * enable_reg and enable_mask fields in their descriptor and then use
1808  * this as their enable() operation, saving some code.
1809  */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813 				  rdev->desc->enable_mask,
1814 				  rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817 
1818 /**
1819  * regulator_disable_regmap - standard disable() for regmap users
1820  *
1821  * @rdev: regulator to operate on
1822  *
1823  * Regulators that use regmap for their register I/O can set the
1824  * enable_reg and enable_mask fields in their descriptor and then use
1825  * this as their disable() operation, saving some code.
1826  */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830 				  rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833 
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836 	/* A GPIO control always takes precedence */
1837 	if (rdev->ena_gpio)
1838 		return rdev->ena_gpio_state;
1839 
1840 	/* If we don't know then assume that the regulator is always on */
1841 	if (!rdev->desc->ops->is_enabled)
1842 		return 1;
1843 
1844 	return rdev->desc->ops->is_enabled(rdev);
1845 }
1846 
1847 /**
1848  * regulator_is_enabled - is the regulator output enabled
1849  * @regulator: regulator source
1850  *
1851  * Returns positive if the regulator driver backing the source/client
1852  * has requested that the device be enabled, zero if it hasn't, else a
1853  * negative errno code.
1854  *
1855  * Note that the device backing this regulator handle can have multiple
1856  * users, so it might be enabled even if regulator_enable() was never
1857  * called for this particular source.
1858  */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861 	int ret;
1862 
1863 	if (regulator->always_on)
1864 		return 1;
1865 
1866 	mutex_lock(&regulator->rdev->mutex);
1867 	ret = _regulator_is_enabled(regulator->rdev);
1868 	mutex_unlock(&regulator->rdev->mutex);
1869 
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873 
1874 /**
1875  * regulator_can_change_voltage - check if regulator can change voltage
1876  * @regulator: regulator source
1877  *
1878  * Returns positive if the regulator driver backing the source/client
1879  * can change its voltage, false otherwise. Usefull for detecting fixed
1880  * or dummy regulators and disabling voltage change logic in the client
1881  * driver.
1882  */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885 	struct regulator_dev	*rdev = regulator->rdev;
1886 
1887 	if (rdev->constraints &&
1888 	    rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE &&
1889 	    (rdev->desc->n_voltages - rdev->desc->linear_min_sel) > 1)
1890 		return 1;
1891 
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1895 
1896 /**
1897  * regulator_count_voltages - count regulator_list_voltage() selectors
1898  * @regulator: regulator source
1899  *
1900  * Returns number of selectors, or negative errno.  Selectors are
1901  * numbered starting at zero, and typically correspond to bitfields
1902  * in hardware registers.
1903  */
1904 int regulator_count_voltages(struct regulator *regulator)
1905 {
1906 	struct regulator_dev	*rdev = regulator->rdev;
1907 
1908 	return rdev->desc->n_voltages ? : -EINVAL;
1909 }
1910 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1911 
1912 /**
1913  * regulator_list_voltage_linear - List voltages with simple calculation
1914  *
1915  * @rdev: Regulator device
1916  * @selector: Selector to convert into a voltage
1917  *
1918  * Regulators with a simple linear mapping between voltages and
1919  * selectors can set min_uV and uV_step in the regulator descriptor
1920  * and then use this function as their list_voltage() operation,
1921  */
1922 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1923 				  unsigned int selector)
1924 {
1925 	if (selector >= rdev->desc->n_voltages)
1926 		return -EINVAL;
1927 	if (selector < rdev->desc->linear_min_sel)
1928 		return 0;
1929 
1930 	selector -= rdev->desc->linear_min_sel;
1931 
1932 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1933 }
1934 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1935 
1936 /**
1937  * regulator_list_voltage_table - List voltages with table based mapping
1938  *
1939  * @rdev: Regulator device
1940  * @selector: Selector to convert into a voltage
1941  *
1942  * Regulators with table based mapping between voltages and
1943  * selectors can set volt_table in the regulator descriptor
1944  * and then use this function as their list_voltage() operation.
1945  */
1946 int regulator_list_voltage_table(struct regulator_dev *rdev,
1947 				 unsigned int selector)
1948 {
1949 	if (!rdev->desc->volt_table) {
1950 		BUG_ON(!rdev->desc->volt_table);
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (selector >= rdev->desc->n_voltages)
1955 		return -EINVAL;
1956 
1957 	return rdev->desc->volt_table[selector];
1958 }
1959 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1960 
1961 /**
1962  * regulator_list_voltage - enumerate supported voltages
1963  * @regulator: regulator source
1964  * @selector: identify voltage to list
1965  * Context: can sleep
1966  *
1967  * Returns a voltage that can be passed to @regulator_set_voltage(),
1968  * zero if this selector code can't be used on this system, or a
1969  * negative errno.
1970  */
1971 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1972 {
1973 	struct regulator_dev	*rdev = regulator->rdev;
1974 	struct regulator_ops	*ops = rdev->desc->ops;
1975 	int			ret;
1976 
1977 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1978 		return -EINVAL;
1979 
1980 	mutex_lock(&rdev->mutex);
1981 	ret = ops->list_voltage(rdev, selector);
1982 	mutex_unlock(&rdev->mutex);
1983 
1984 	if (ret > 0) {
1985 		if (ret < rdev->constraints->min_uV)
1986 			ret = 0;
1987 		else if (ret > rdev->constraints->max_uV)
1988 			ret = 0;
1989 	}
1990 
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1994 
1995 /**
1996  * regulator_is_supported_voltage - check if a voltage range can be supported
1997  *
1998  * @regulator: Regulator to check.
1999  * @min_uV: Minimum required voltage in uV.
2000  * @max_uV: Maximum required voltage in uV.
2001  *
2002  * Returns a boolean or a negative error code.
2003  */
2004 int regulator_is_supported_voltage(struct regulator *regulator,
2005 				   int min_uV, int max_uV)
2006 {
2007 	struct regulator_dev *rdev = regulator->rdev;
2008 	int i, voltages, ret;
2009 
2010 	/* If we can't change voltage check the current voltage */
2011 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2012 		ret = regulator_get_voltage(regulator);
2013 		if (ret >= 0)
2014 			return (min_uV <= ret && ret <= max_uV);
2015 		else
2016 			return ret;
2017 	}
2018 
2019 	/* Any voltage within constrains range is fine? */
2020 	if (rdev->desc->continuous_voltage_range)
2021 		return min_uV >= rdev->constraints->min_uV &&
2022 				max_uV <= rdev->constraints->max_uV;
2023 
2024 	ret = regulator_count_voltages(regulator);
2025 	if (ret < 0)
2026 		return ret;
2027 	voltages = ret;
2028 
2029 	for (i = 0; i < voltages; i++) {
2030 		ret = regulator_list_voltage(regulator, i);
2031 
2032 		if (ret >= min_uV && ret <= max_uV)
2033 			return 1;
2034 	}
2035 
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2039 
2040 /**
2041  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2042  *
2043  * @rdev: regulator to operate on
2044  *
2045  * Regulators that use regmap for their register I/O can set the
2046  * vsel_reg and vsel_mask fields in their descriptor and then use this
2047  * as their get_voltage_vsel operation, saving some code.
2048  */
2049 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2050 {
2051 	unsigned int val;
2052 	int ret;
2053 
2054 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2055 	if (ret != 0)
2056 		return ret;
2057 
2058 	val &= rdev->desc->vsel_mask;
2059 	val >>= ffs(rdev->desc->vsel_mask) - 1;
2060 
2061 	return val;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2064 
2065 /**
2066  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2067  *
2068  * @rdev: regulator to operate on
2069  * @sel: Selector to set
2070  *
2071  * Regulators that use regmap for their register I/O can set the
2072  * vsel_reg and vsel_mask fields in their descriptor and then use this
2073  * as their set_voltage_vsel operation, saving some code.
2074  */
2075 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2076 {
2077 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2078 
2079 	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2080 				  rdev->desc->vsel_mask, sel);
2081 }
2082 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2083 
2084 /**
2085  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2086  *
2087  * @rdev: Regulator to operate on
2088  * @min_uV: Lower bound for voltage
2089  * @max_uV: Upper bound for voltage
2090  *
2091  * Drivers implementing set_voltage_sel() and list_voltage() can use
2092  * this as their map_voltage() operation.  It will find a suitable
2093  * voltage by calling list_voltage() until it gets something in bounds
2094  * for the requested voltages.
2095  */
2096 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2097 				  int min_uV, int max_uV)
2098 {
2099 	int best_val = INT_MAX;
2100 	int selector = 0;
2101 	int i, ret;
2102 
2103 	/* Find the smallest voltage that falls within the specified
2104 	 * range.
2105 	 */
2106 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2107 		ret = rdev->desc->ops->list_voltage(rdev, i);
2108 		if (ret < 0)
2109 			continue;
2110 
2111 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2112 			best_val = ret;
2113 			selector = i;
2114 		}
2115 	}
2116 
2117 	if (best_val != INT_MAX)
2118 		return selector;
2119 	else
2120 		return -EINVAL;
2121 }
2122 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2123 
2124 /**
2125  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2126  *
2127  * @rdev: Regulator to operate on
2128  * @min_uV: Lower bound for voltage
2129  * @max_uV: Upper bound for voltage
2130  *
2131  * Drivers providing min_uV and uV_step in their regulator_desc can
2132  * use this as their map_voltage() operation.
2133  */
2134 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2135 				 int min_uV, int max_uV)
2136 {
2137 	int ret, voltage;
2138 
2139 	/* Allow uV_step to be 0 for fixed voltage */
2140 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2141 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2142 			return 0;
2143 		else
2144 			return -EINVAL;
2145 	}
2146 
2147 	if (!rdev->desc->uV_step) {
2148 		BUG_ON(!rdev->desc->uV_step);
2149 		return -EINVAL;
2150 	}
2151 
2152 	if (min_uV < rdev->desc->min_uV)
2153 		min_uV = rdev->desc->min_uV;
2154 
2155 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2156 	if (ret < 0)
2157 		return ret;
2158 
2159 	ret += rdev->desc->linear_min_sel;
2160 
2161 	/* Map back into a voltage to verify we're still in bounds */
2162 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2163 	if (voltage < min_uV || voltage > max_uV)
2164 		return -EINVAL;
2165 
2166 	return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2169 
2170 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2171 				     int min_uV, int max_uV)
2172 {
2173 	int ret;
2174 	int delay = 0;
2175 	int best_val = 0;
2176 	unsigned int selector;
2177 	int old_selector = -1;
2178 
2179 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2180 
2181 	min_uV += rdev->constraints->uV_offset;
2182 	max_uV += rdev->constraints->uV_offset;
2183 
2184 	/*
2185 	 * If we can't obtain the old selector there is not enough
2186 	 * info to call set_voltage_time_sel().
2187 	 */
2188 	if (_regulator_is_enabled(rdev) &&
2189 	    rdev->desc->ops->set_voltage_time_sel &&
2190 	    rdev->desc->ops->get_voltage_sel) {
2191 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2192 		if (old_selector < 0)
2193 			return old_selector;
2194 	}
2195 
2196 	if (rdev->desc->ops->set_voltage) {
2197 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2198 						   &selector);
2199 
2200 		if (ret >= 0) {
2201 			if (rdev->desc->ops->list_voltage)
2202 				best_val = rdev->desc->ops->list_voltage(rdev,
2203 									 selector);
2204 			else
2205 				best_val = _regulator_get_voltage(rdev);
2206 		}
2207 
2208 	} else if (rdev->desc->ops->set_voltage_sel) {
2209 		if (rdev->desc->ops->map_voltage) {
2210 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2211 							   max_uV);
2212 		} else {
2213 			if (rdev->desc->ops->list_voltage ==
2214 			    regulator_list_voltage_linear)
2215 				ret = regulator_map_voltage_linear(rdev,
2216 								min_uV, max_uV);
2217 			else
2218 				ret = regulator_map_voltage_iterate(rdev,
2219 								min_uV, max_uV);
2220 		}
2221 
2222 		if (ret >= 0) {
2223 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2224 			if (min_uV <= best_val && max_uV >= best_val) {
2225 				selector = ret;
2226 				ret = rdev->desc->ops->set_voltage_sel(rdev,
2227 								       ret);
2228 			} else {
2229 				ret = -EINVAL;
2230 			}
2231 		}
2232 	} else {
2233 		ret = -EINVAL;
2234 	}
2235 
2236 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2237 	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2238 	    rdev->desc->ops->set_voltage_time_sel) {
2239 
2240 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2241 						old_selector, selector);
2242 		if (delay < 0) {
2243 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2244 				  delay);
2245 			delay = 0;
2246 		}
2247 
2248 		/* Insert any necessary delays */
2249 		if (delay >= 1000) {
2250 			mdelay(delay / 1000);
2251 			udelay(delay % 1000);
2252 		} else if (delay) {
2253 			udelay(delay);
2254 		}
2255 	}
2256 
2257 	if (ret == 0 && best_val >= 0) {
2258 		unsigned long data = best_val;
2259 
2260 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2261 				     (void *)data);
2262 	}
2263 
2264 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2265 
2266 	return ret;
2267 }
2268 
2269 /**
2270  * regulator_set_voltage - set regulator output voltage
2271  * @regulator: regulator source
2272  * @min_uV: Minimum required voltage in uV
2273  * @max_uV: Maximum acceptable voltage in uV
2274  *
2275  * Sets a voltage regulator to the desired output voltage. This can be set
2276  * during any regulator state. IOW, regulator can be disabled or enabled.
2277  *
2278  * If the regulator is enabled then the voltage will change to the new value
2279  * immediately otherwise if the regulator is disabled the regulator will
2280  * output at the new voltage when enabled.
2281  *
2282  * NOTE: If the regulator is shared between several devices then the lowest
2283  * request voltage that meets the system constraints will be used.
2284  * Regulator system constraints must be set for this regulator before
2285  * calling this function otherwise this call will fail.
2286  */
2287 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2288 {
2289 	struct regulator_dev *rdev = regulator->rdev;
2290 	int ret = 0;
2291 
2292 	mutex_lock(&rdev->mutex);
2293 
2294 	/* If we're setting the same range as last time the change
2295 	 * should be a noop (some cpufreq implementations use the same
2296 	 * voltage for multiple frequencies, for example).
2297 	 */
2298 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2299 		goto out;
2300 
2301 	/* sanity check */
2302 	if (!rdev->desc->ops->set_voltage &&
2303 	    !rdev->desc->ops->set_voltage_sel) {
2304 		ret = -EINVAL;
2305 		goto out;
2306 	}
2307 
2308 	/* constraints check */
2309 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2310 	if (ret < 0)
2311 		goto out;
2312 	regulator->min_uV = min_uV;
2313 	regulator->max_uV = max_uV;
2314 
2315 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2316 	if (ret < 0)
2317 		goto out;
2318 
2319 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2320 
2321 out:
2322 	mutex_unlock(&rdev->mutex);
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2326 
2327 /**
2328  * regulator_set_voltage_time - get raise/fall time
2329  * @regulator: regulator source
2330  * @old_uV: starting voltage in microvolts
2331  * @new_uV: target voltage in microvolts
2332  *
2333  * Provided with the starting and ending voltage, this function attempts to
2334  * calculate the time in microseconds required to rise or fall to this new
2335  * voltage.
2336  */
2337 int regulator_set_voltage_time(struct regulator *regulator,
2338 			       int old_uV, int new_uV)
2339 {
2340 	struct regulator_dev	*rdev = regulator->rdev;
2341 	struct regulator_ops	*ops = rdev->desc->ops;
2342 	int old_sel = -1;
2343 	int new_sel = -1;
2344 	int voltage;
2345 	int i;
2346 
2347 	/* Currently requires operations to do this */
2348 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2349 	    || !rdev->desc->n_voltages)
2350 		return -EINVAL;
2351 
2352 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2353 		/* We only look for exact voltage matches here */
2354 		voltage = regulator_list_voltage(regulator, i);
2355 		if (voltage < 0)
2356 			return -EINVAL;
2357 		if (voltage == 0)
2358 			continue;
2359 		if (voltage == old_uV)
2360 			old_sel = i;
2361 		if (voltage == new_uV)
2362 			new_sel = i;
2363 	}
2364 
2365 	if (old_sel < 0 || new_sel < 0)
2366 		return -EINVAL;
2367 
2368 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2371 
2372 /**
2373  * regulator_set_voltage_time_sel - get raise/fall time
2374  * @rdev: regulator source device
2375  * @old_selector: selector for starting voltage
2376  * @new_selector: selector for target voltage
2377  *
2378  * Provided with the starting and target voltage selectors, this function
2379  * returns time in microseconds required to rise or fall to this new voltage
2380  *
2381  * Drivers providing ramp_delay in regulation_constraints can use this as their
2382  * set_voltage_time_sel() operation.
2383  */
2384 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2385 				   unsigned int old_selector,
2386 				   unsigned int new_selector)
2387 {
2388 	unsigned int ramp_delay = 0;
2389 	int old_volt, new_volt;
2390 
2391 	if (rdev->constraints->ramp_delay)
2392 		ramp_delay = rdev->constraints->ramp_delay;
2393 	else if (rdev->desc->ramp_delay)
2394 		ramp_delay = rdev->desc->ramp_delay;
2395 
2396 	if (ramp_delay == 0) {
2397 		rdev_warn(rdev, "ramp_delay not set\n");
2398 		return 0;
2399 	}
2400 
2401 	/* sanity check */
2402 	if (!rdev->desc->ops->list_voltage)
2403 		return -EINVAL;
2404 
2405 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2406 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2407 
2408 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2411 
2412 /**
2413  * regulator_sync_voltage - re-apply last regulator output voltage
2414  * @regulator: regulator source
2415  *
2416  * Re-apply the last configured voltage.  This is intended to be used
2417  * where some external control source the consumer is cooperating with
2418  * has caused the configured voltage to change.
2419  */
2420 int regulator_sync_voltage(struct regulator *regulator)
2421 {
2422 	struct regulator_dev *rdev = regulator->rdev;
2423 	int ret, min_uV, max_uV;
2424 
2425 	mutex_lock(&rdev->mutex);
2426 
2427 	if (!rdev->desc->ops->set_voltage &&
2428 	    !rdev->desc->ops->set_voltage_sel) {
2429 		ret = -EINVAL;
2430 		goto out;
2431 	}
2432 
2433 	/* This is only going to work if we've had a voltage configured. */
2434 	if (!regulator->min_uV && !regulator->max_uV) {
2435 		ret = -EINVAL;
2436 		goto out;
2437 	}
2438 
2439 	min_uV = regulator->min_uV;
2440 	max_uV = regulator->max_uV;
2441 
2442 	/* This should be a paranoia check... */
2443 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2444 	if (ret < 0)
2445 		goto out;
2446 
2447 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2448 	if (ret < 0)
2449 		goto out;
2450 
2451 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2452 
2453 out:
2454 	mutex_unlock(&rdev->mutex);
2455 	return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2458 
2459 static int _regulator_get_voltage(struct regulator_dev *rdev)
2460 {
2461 	int sel, ret;
2462 
2463 	if (rdev->desc->ops->get_voltage_sel) {
2464 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2465 		if (sel < 0)
2466 			return sel;
2467 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2468 	} else if (rdev->desc->ops->get_voltage) {
2469 		ret = rdev->desc->ops->get_voltage(rdev);
2470 	} else if (rdev->desc->ops->list_voltage) {
2471 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2472 	} else {
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (ret < 0)
2477 		return ret;
2478 	return ret - rdev->constraints->uV_offset;
2479 }
2480 
2481 /**
2482  * regulator_get_voltage - get regulator output voltage
2483  * @regulator: regulator source
2484  *
2485  * This returns the current regulator voltage in uV.
2486  *
2487  * NOTE: If the regulator is disabled it will return the voltage value. This
2488  * function should not be used to determine regulator state.
2489  */
2490 int regulator_get_voltage(struct regulator *regulator)
2491 {
2492 	int ret;
2493 
2494 	mutex_lock(&regulator->rdev->mutex);
2495 
2496 	ret = _regulator_get_voltage(regulator->rdev);
2497 
2498 	mutex_unlock(&regulator->rdev->mutex);
2499 
2500 	return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2503 
2504 /**
2505  * regulator_set_current_limit - set regulator output current limit
2506  * @regulator: regulator source
2507  * @min_uA: Minimuum supported current in uA
2508  * @max_uA: Maximum supported current in uA
2509  *
2510  * Sets current sink to the desired output current. This can be set during
2511  * any regulator state. IOW, regulator can be disabled or enabled.
2512  *
2513  * If the regulator is enabled then the current will change to the new value
2514  * immediately otherwise if the regulator is disabled the regulator will
2515  * output at the new current when enabled.
2516  *
2517  * NOTE: Regulator system constraints must be set for this regulator before
2518  * calling this function otherwise this call will fail.
2519  */
2520 int regulator_set_current_limit(struct regulator *regulator,
2521 			       int min_uA, int max_uA)
2522 {
2523 	struct regulator_dev *rdev = regulator->rdev;
2524 	int ret;
2525 
2526 	mutex_lock(&rdev->mutex);
2527 
2528 	/* sanity check */
2529 	if (!rdev->desc->ops->set_current_limit) {
2530 		ret = -EINVAL;
2531 		goto out;
2532 	}
2533 
2534 	/* constraints check */
2535 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2536 	if (ret < 0)
2537 		goto out;
2538 
2539 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2540 out:
2541 	mutex_unlock(&rdev->mutex);
2542 	return ret;
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2545 
2546 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2547 {
2548 	int ret;
2549 
2550 	mutex_lock(&rdev->mutex);
2551 
2552 	/* sanity check */
2553 	if (!rdev->desc->ops->get_current_limit) {
2554 		ret = -EINVAL;
2555 		goto out;
2556 	}
2557 
2558 	ret = rdev->desc->ops->get_current_limit(rdev);
2559 out:
2560 	mutex_unlock(&rdev->mutex);
2561 	return ret;
2562 }
2563 
2564 /**
2565  * regulator_get_current_limit - get regulator output current
2566  * @regulator: regulator source
2567  *
2568  * This returns the current supplied by the specified current sink in uA.
2569  *
2570  * NOTE: If the regulator is disabled it will return the current value. This
2571  * function should not be used to determine regulator state.
2572  */
2573 int regulator_get_current_limit(struct regulator *regulator)
2574 {
2575 	return _regulator_get_current_limit(regulator->rdev);
2576 }
2577 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2578 
2579 /**
2580  * regulator_set_mode - set regulator operating mode
2581  * @regulator: regulator source
2582  * @mode: operating mode - one of the REGULATOR_MODE constants
2583  *
2584  * Set regulator operating mode to increase regulator efficiency or improve
2585  * regulation performance.
2586  *
2587  * NOTE: Regulator system constraints must be set for this regulator before
2588  * calling this function otherwise this call will fail.
2589  */
2590 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2591 {
2592 	struct regulator_dev *rdev = regulator->rdev;
2593 	int ret;
2594 	int regulator_curr_mode;
2595 
2596 	mutex_lock(&rdev->mutex);
2597 
2598 	/* sanity check */
2599 	if (!rdev->desc->ops->set_mode) {
2600 		ret = -EINVAL;
2601 		goto out;
2602 	}
2603 
2604 	/* return if the same mode is requested */
2605 	if (rdev->desc->ops->get_mode) {
2606 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2607 		if (regulator_curr_mode == mode) {
2608 			ret = 0;
2609 			goto out;
2610 		}
2611 	}
2612 
2613 	/* constraints check */
2614 	ret = regulator_mode_constrain(rdev, &mode);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 	ret = rdev->desc->ops->set_mode(rdev, mode);
2619 out:
2620 	mutex_unlock(&rdev->mutex);
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_set_mode);
2624 
2625 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2626 {
2627 	int ret;
2628 
2629 	mutex_lock(&rdev->mutex);
2630 
2631 	/* sanity check */
2632 	if (!rdev->desc->ops->get_mode) {
2633 		ret = -EINVAL;
2634 		goto out;
2635 	}
2636 
2637 	ret = rdev->desc->ops->get_mode(rdev);
2638 out:
2639 	mutex_unlock(&rdev->mutex);
2640 	return ret;
2641 }
2642 
2643 /**
2644  * regulator_get_mode - get regulator operating mode
2645  * @regulator: regulator source
2646  *
2647  * Get the current regulator operating mode.
2648  */
2649 unsigned int regulator_get_mode(struct regulator *regulator)
2650 {
2651 	return _regulator_get_mode(regulator->rdev);
2652 }
2653 EXPORT_SYMBOL_GPL(regulator_get_mode);
2654 
2655 /**
2656  * regulator_set_optimum_mode - set regulator optimum operating mode
2657  * @regulator: regulator source
2658  * @uA_load: load current
2659  *
2660  * Notifies the regulator core of a new device load. This is then used by
2661  * DRMS (if enabled by constraints) to set the most efficient regulator
2662  * operating mode for the new regulator loading.
2663  *
2664  * Consumer devices notify their supply regulator of the maximum power
2665  * they will require (can be taken from device datasheet in the power
2666  * consumption tables) when they change operational status and hence power
2667  * state. Examples of operational state changes that can affect power
2668  * consumption are :-
2669  *
2670  *    o Device is opened / closed.
2671  *    o Device I/O is about to begin or has just finished.
2672  *    o Device is idling in between work.
2673  *
2674  * This information is also exported via sysfs to userspace.
2675  *
2676  * DRMS will sum the total requested load on the regulator and change
2677  * to the most efficient operating mode if platform constraints allow.
2678  *
2679  * Returns the new regulator mode or error.
2680  */
2681 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2682 {
2683 	struct regulator_dev *rdev = regulator->rdev;
2684 	struct regulator *consumer;
2685 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2686 	unsigned int mode;
2687 
2688 	if (rdev->supply)
2689 		input_uV = regulator_get_voltage(rdev->supply);
2690 
2691 	mutex_lock(&rdev->mutex);
2692 
2693 	/*
2694 	 * first check to see if we can set modes at all, otherwise just
2695 	 * tell the consumer everything is OK.
2696 	 */
2697 	regulator->uA_load = uA_load;
2698 	ret = regulator_check_drms(rdev);
2699 	if (ret < 0) {
2700 		ret = 0;
2701 		goto out;
2702 	}
2703 
2704 	if (!rdev->desc->ops->get_optimum_mode)
2705 		goto out;
2706 
2707 	/*
2708 	 * we can actually do this so any errors are indicators of
2709 	 * potential real failure.
2710 	 */
2711 	ret = -EINVAL;
2712 
2713 	if (!rdev->desc->ops->set_mode)
2714 		goto out;
2715 
2716 	/* get output voltage */
2717 	output_uV = _regulator_get_voltage(rdev);
2718 	if (output_uV <= 0) {
2719 		rdev_err(rdev, "invalid output voltage found\n");
2720 		goto out;
2721 	}
2722 
2723 	/* No supply? Use constraint voltage */
2724 	if (input_uV <= 0)
2725 		input_uV = rdev->constraints->input_uV;
2726 	if (input_uV <= 0) {
2727 		rdev_err(rdev, "invalid input voltage found\n");
2728 		goto out;
2729 	}
2730 
2731 	/* calc total requested load for this regulator */
2732 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2733 		total_uA_load += consumer->uA_load;
2734 
2735 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2736 						 input_uV, output_uV,
2737 						 total_uA_load);
2738 	ret = regulator_mode_constrain(rdev, &mode);
2739 	if (ret < 0) {
2740 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2741 			 total_uA_load, input_uV, output_uV);
2742 		goto out;
2743 	}
2744 
2745 	ret = rdev->desc->ops->set_mode(rdev, mode);
2746 	if (ret < 0) {
2747 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2748 		goto out;
2749 	}
2750 	ret = mode;
2751 out:
2752 	mutex_unlock(&rdev->mutex);
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2756 
2757 /**
2758  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2759  *
2760  * @rdev: device to operate on.
2761  * @enable: state to set.
2762  */
2763 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2764 {
2765 	unsigned int val;
2766 
2767 	if (enable)
2768 		val = rdev->desc->bypass_mask;
2769 	else
2770 		val = 0;
2771 
2772 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2773 				  rdev->desc->bypass_mask, val);
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2776 
2777 /**
2778  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2779  *
2780  * @rdev: device to operate on.
2781  * @enable: current state.
2782  */
2783 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2784 {
2785 	unsigned int val;
2786 	int ret;
2787 
2788 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2789 	if (ret != 0)
2790 		return ret;
2791 
2792 	*enable = val & rdev->desc->bypass_mask;
2793 
2794 	return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2797 
2798 /**
2799  * regulator_allow_bypass - allow the regulator to go into bypass mode
2800  *
2801  * @regulator: Regulator to configure
2802  * @allow: enable or disable bypass mode
2803  *
2804  * Allow the regulator to go into bypass mode if all other consumers
2805  * for the regulator also enable bypass mode and the machine
2806  * constraints allow this.  Bypass mode means that the regulator is
2807  * simply passing the input directly to the output with no regulation.
2808  */
2809 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2810 {
2811 	struct regulator_dev *rdev = regulator->rdev;
2812 	int ret = 0;
2813 
2814 	if (!rdev->desc->ops->set_bypass)
2815 		return 0;
2816 
2817 	if (rdev->constraints &&
2818 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2819 		return 0;
2820 
2821 	mutex_lock(&rdev->mutex);
2822 
2823 	if (enable && !regulator->bypass) {
2824 		rdev->bypass_count++;
2825 
2826 		if (rdev->bypass_count == rdev->open_count) {
2827 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2828 			if (ret != 0)
2829 				rdev->bypass_count--;
2830 		}
2831 
2832 	} else if (!enable && regulator->bypass) {
2833 		rdev->bypass_count--;
2834 
2835 		if (rdev->bypass_count != rdev->open_count) {
2836 			ret = rdev->desc->ops->set_bypass(rdev, enable);
2837 			if (ret != 0)
2838 				rdev->bypass_count++;
2839 		}
2840 	}
2841 
2842 	if (ret == 0)
2843 		regulator->bypass = enable;
2844 
2845 	mutex_unlock(&rdev->mutex);
2846 
2847 	return ret;
2848 }
2849 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2850 
2851 /**
2852  * regulator_register_notifier - register regulator event notifier
2853  * @regulator: regulator source
2854  * @nb: notifier block
2855  *
2856  * Register notifier block to receive regulator events.
2857  */
2858 int regulator_register_notifier(struct regulator *regulator,
2859 			      struct notifier_block *nb)
2860 {
2861 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2862 						nb);
2863 }
2864 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2865 
2866 /**
2867  * regulator_unregister_notifier - unregister regulator event notifier
2868  * @regulator: regulator source
2869  * @nb: notifier block
2870  *
2871  * Unregister regulator event notifier block.
2872  */
2873 int regulator_unregister_notifier(struct regulator *regulator,
2874 				struct notifier_block *nb)
2875 {
2876 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2877 						  nb);
2878 }
2879 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2880 
2881 /* notify regulator consumers and downstream regulator consumers.
2882  * Note mutex must be held by caller.
2883  */
2884 static void _notifier_call_chain(struct regulator_dev *rdev,
2885 				  unsigned long event, void *data)
2886 {
2887 	/* call rdev chain first */
2888 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2889 }
2890 
2891 /**
2892  * regulator_bulk_get - get multiple regulator consumers
2893  *
2894  * @dev:           Device to supply
2895  * @num_consumers: Number of consumers to register
2896  * @consumers:     Configuration of consumers; clients are stored here.
2897  *
2898  * @return 0 on success, an errno on failure.
2899  *
2900  * This helper function allows drivers to get several regulator
2901  * consumers in one operation.  If any of the regulators cannot be
2902  * acquired then any regulators that were allocated will be freed
2903  * before returning to the caller.
2904  */
2905 int regulator_bulk_get(struct device *dev, int num_consumers,
2906 		       struct regulator_bulk_data *consumers)
2907 {
2908 	int i;
2909 	int ret;
2910 
2911 	for (i = 0; i < num_consumers; i++)
2912 		consumers[i].consumer = NULL;
2913 
2914 	for (i = 0; i < num_consumers; i++) {
2915 		consumers[i].consumer = regulator_get(dev,
2916 						      consumers[i].supply);
2917 		if (IS_ERR(consumers[i].consumer)) {
2918 			ret = PTR_ERR(consumers[i].consumer);
2919 			dev_err(dev, "Failed to get supply '%s': %d\n",
2920 				consumers[i].supply, ret);
2921 			consumers[i].consumer = NULL;
2922 			goto err;
2923 		}
2924 	}
2925 
2926 	return 0;
2927 
2928 err:
2929 	while (--i >= 0)
2930 		regulator_put(consumers[i].consumer);
2931 
2932 	return ret;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2935 
2936 /**
2937  * devm_regulator_bulk_get - managed get multiple regulator consumers
2938  *
2939  * @dev:           Device to supply
2940  * @num_consumers: Number of consumers to register
2941  * @consumers:     Configuration of consumers; clients are stored here.
2942  *
2943  * @return 0 on success, an errno on failure.
2944  *
2945  * This helper function allows drivers to get several regulator
2946  * consumers in one operation with management, the regulators will
2947  * automatically be freed when the device is unbound.  If any of the
2948  * regulators cannot be acquired then any regulators that were
2949  * allocated will be freed before returning to the caller.
2950  */
2951 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2952 			    struct regulator_bulk_data *consumers)
2953 {
2954 	int i;
2955 	int ret;
2956 
2957 	for (i = 0; i < num_consumers; i++)
2958 		consumers[i].consumer = NULL;
2959 
2960 	for (i = 0; i < num_consumers; i++) {
2961 		consumers[i].consumer = devm_regulator_get(dev,
2962 							   consumers[i].supply);
2963 		if (IS_ERR(consumers[i].consumer)) {
2964 			ret = PTR_ERR(consumers[i].consumer);
2965 			dev_err(dev, "Failed to get supply '%s': %d\n",
2966 				consumers[i].supply, ret);
2967 			consumers[i].consumer = NULL;
2968 			goto err;
2969 		}
2970 	}
2971 
2972 	return 0;
2973 
2974 err:
2975 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2976 		devm_regulator_put(consumers[i].consumer);
2977 
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2981 
2982 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2983 {
2984 	struct regulator_bulk_data *bulk = data;
2985 
2986 	bulk->ret = regulator_enable(bulk->consumer);
2987 }
2988 
2989 /**
2990  * regulator_bulk_enable - enable multiple regulator consumers
2991  *
2992  * @num_consumers: Number of consumers
2993  * @consumers:     Consumer data; clients are stored here.
2994  * @return         0 on success, an errno on failure
2995  *
2996  * This convenience API allows consumers to enable multiple regulator
2997  * clients in a single API call.  If any consumers cannot be enabled
2998  * then any others that were enabled will be disabled again prior to
2999  * return.
3000  */
3001 int regulator_bulk_enable(int num_consumers,
3002 			  struct regulator_bulk_data *consumers)
3003 {
3004 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3005 	int i;
3006 	int ret = 0;
3007 
3008 	for (i = 0; i < num_consumers; i++) {
3009 		if (consumers[i].consumer->always_on)
3010 			consumers[i].ret = 0;
3011 		else
3012 			async_schedule_domain(regulator_bulk_enable_async,
3013 					      &consumers[i], &async_domain);
3014 	}
3015 
3016 	async_synchronize_full_domain(&async_domain);
3017 
3018 	/* If any consumer failed we need to unwind any that succeeded */
3019 	for (i = 0; i < num_consumers; i++) {
3020 		if (consumers[i].ret != 0) {
3021 			ret = consumers[i].ret;
3022 			goto err;
3023 		}
3024 	}
3025 
3026 	return 0;
3027 
3028 err:
3029 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3030 	while (--i >= 0)
3031 		regulator_disable(consumers[i].consumer);
3032 
3033 	return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3036 
3037 /**
3038  * regulator_bulk_disable - disable multiple regulator consumers
3039  *
3040  * @num_consumers: Number of consumers
3041  * @consumers:     Consumer data; clients are stored here.
3042  * @return         0 on success, an errno on failure
3043  *
3044  * This convenience API allows consumers to disable multiple regulator
3045  * clients in a single API call.  If any consumers cannot be disabled
3046  * then any others that were disabled will be enabled again prior to
3047  * return.
3048  */
3049 int regulator_bulk_disable(int num_consumers,
3050 			   struct regulator_bulk_data *consumers)
3051 {
3052 	int i;
3053 	int ret, r;
3054 
3055 	for (i = num_consumers - 1; i >= 0; --i) {
3056 		ret = regulator_disable(consumers[i].consumer);
3057 		if (ret != 0)
3058 			goto err;
3059 	}
3060 
3061 	return 0;
3062 
3063 err:
3064 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3065 	for (++i; i < num_consumers; ++i) {
3066 		r = regulator_enable(consumers[i].consumer);
3067 		if (r != 0)
3068 			pr_err("Failed to reename %s: %d\n",
3069 			       consumers[i].supply, r);
3070 	}
3071 
3072 	return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3075 
3076 /**
3077  * regulator_bulk_force_disable - force disable multiple regulator consumers
3078  *
3079  * @num_consumers: Number of consumers
3080  * @consumers:     Consumer data; clients are stored here.
3081  * @return         0 on success, an errno on failure
3082  *
3083  * This convenience API allows consumers to forcibly disable multiple regulator
3084  * clients in a single API call.
3085  * NOTE: This should be used for situations when device damage will
3086  * likely occur if the regulators are not disabled (e.g. over temp).
3087  * Although regulator_force_disable function call for some consumers can
3088  * return error numbers, the function is called for all consumers.
3089  */
3090 int regulator_bulk_force_disable(int num_consumers,
3091 			   struct regulator_bulk_data *consumers)
3092 {
3093 	int i;
3094 	int ret;
3095 
3096 	for (i = 0; i < num_consumers; i++)
3097 		consumers[i].ret =
3098 			    regulator_force_disable(consumers[i].consumer);
3099 
3100 	for (i = 0; i < num_consumers; i++) {
3101 		if (consumers[i].ret != 0) {
3102 			ret = consumers[i].ret;
3103 			goto out;
3104 		}
3105 	}
3106 
3107 	return 0;
3108 out:
3109 	return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3112 
3113 /**
3114  * regulator_bulk_free - free multiple regulator consumers
3115  *
3116  * @num_consumers: Number of consumers
3117  * @consumers:     Consumer data; clients are stored here.
3118  *
3119  * This convenience API allows consumers to free multiple regulator
3120  * clients in a single API call.
3121  */
3122 void regulator_bulk_free(int num_consumers,
3123 			 struct regulator_bulk_data *consumers)
3124 {
3125 	int i;
3126 
3127 	for (i = 0; i < num_consumers; i++) {
3128 		regulator_put(consumers[i].consumer);
3129 		consumers[i].consumer = NULL;
3130 	}
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3133 
3134 /**
3135  * regulator_notifier_call_chain - call regulator event notifier
3136  * @rdev: regulator source
3137  * @event: notifier block
3138  * @data: callback-specific data.
3139  *
3140  * Called by regulator drivers to notify clients a regulator event has
3141  * occurred. We also notify regulator clients downstream.
3142  * Note lock must be held by caller.
3143  */
3144 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3145 				  unsigned long event, void *data)
3146 {
3147 	_notifier_call_chain(rdev, event, data);
3148 	return NOTIFY_DONE;
3149 
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3152 
3153 /**
3154  * regulator_mode_to_status - convert a regulator mode into a status
3155  *
3156  * @mode: Mode to convert
3157  *
3158  * Convert a regulator mode into a status.
3159  */
3160 int regulator_mode_to_status(unsigned int mode)
3161 {
3162 	switch (mode) {
3163 	case REGULATOR_MODE_FAST:
3164 		return REGULATOR_STATUS_FAST;
3165 	case REGULATOR_MODE_NORMAL:
3166 		return REGULATOR_STATUS_NORMAL;
3167 	case REGULATOR_MODE_IDLE:
3168 		return REGULATOR_STATUS_IDLE;
3169 	case REGULATOR_MODE_STANDBY:
3170 		return REGULATOR_STATUS_STANDBY;
3171 	default:
3172 		return REGULATOR_STATUS_UNDEFINED;
3173 	}
3174 }
3175 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3176 
3177 /*
3178  * To avoid cluttering sysfs (and memory) with useless state, only
3179  * create attributes that can be meaningfully displayed.
3180  */
3181 static int add_regulator_attributes(struct regulator_dev *rdev)
3182 {
3183 	struct device		*dev = &rdev->dev;
3184 	struct regulator_ops	*ops = rdev->desc->ops;
3185 	int			status = 0;
3186 
3187 	/* some attributes need specific methods to be displayed */
3188 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3189 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3190 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3191 		status = device_create_file(dev, &dev_attr_microvolts);
3192 		if (status < 0)
3193 			return status;
3194 	}
3195 	if (ops->get_current_limit) {
3196 		status = device_create_file(dev, &dev_attr_microamps);
3197 		if (status < 0)
3198 			return status;
3199 	}
3200 	if (ops->get_mode) {
3201 		status = device_create_file(dev, &dev_attr_opmode);
3202 		if (status < 0)
3203 			return status;
3204 	}
3205 	if (ops->is_enabled) {
3206 		status = device_create_file(dev, &dev_attr_state);
3207 		if (status < 0)
3208 			return status;
3209 	}
3210 	if (ops->get_status) {
3211 		status = device_create_file(dev, &dev_attr_status);
3212 		if (status < 0)
3213 			return status;
3214 	}
3215 	if (ops->get_bypass) {
3216 		status = device_create_file(dev, &dev_attr_bypass);
3217 		if (status < 0)
3218 			return status;
3219 	}
3220 
3221 	/* some attributes are type-specific */
3222 	if (rdev->desc->type == REGULATOR_CURRENT) {
3223 		status = device_create_file(dev, &dev_attr_requested_microamps);
3224 		if (status < 0)
3225 			return status;
3226 	}
3227 
3228 	/* all the other attributes exist to support constraints;
3229 	 * don't show them if there are no constraints, or if the
3230 	 * relevant supporting methods are missing.
3231 	 */
3232 	if (!rdev->constraints)
3233 		return status;
3234 
3235 	/* constraints need specific supporting methods */
3236 	if (ops->set_voltage || ops->set_voltage_sel) {
3237 		status = device_create_file(dev, &dev_attr_min_microvolts);
3238 		if (status < 0)
3239 			return status;
3240 		status = device_create_file(dev, &dev_attr_max_microvolts);
3241 		if (status < 0)
3242 			return status;
3243 	}
3244 	if (ops->set_current_limit) {
3245 		status = device_create_file(dev, &dev_attr_min_microamps);
3246 		if (status < 0)
3247 			return status;
3248 		status = device_create_file(dev, &dev_attr_max_microamps);
3249 		if (status < 0)
3250 			return status;
3251 	}
3252 
3253 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3254 	if (status < 0)
3255 		return status;
3256 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3257 	if (status < 0)
3258 		return status;
3259 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3260 	if (status < 0)
3261 		return status;
3262 
3263 	if (ops->set_suspend_voltage) {
3264 		status = device_create_file(dev,
3265 				&dev_attr_suspend_standby_microvolts);
3266 		if (status < 0)
3267 			return status;
3268 		status = device_create_file(dev,
3269 				&dev_attr_suspend_mem_microvolts);
3270 		if (status < 0)
3271 			return status;
3272 		status = device_create_file(dev,
3273 				&dev_attr_suspend_disk_microvolts);
3274 		if (status < 0)
3275 			return status;
3276 	}
3277 
3278 	if (ops->set_suspend_mode) {
3279 		status = device_create_file(dev,
3280 				&dev_attr_suspend_standby_mode);
3281 		if (status < 0)
3282 			return status;
3283 		status = device_create_file(dev,
3284 				&dev_attr_suspend_mem_mode);
3285 		if (status < 0)
3286 			return status;
3287 		status = device_create_file(dev,
3288 				&dev_attr_suspend_disk_mode);
3289 		if (status < 0)
3290 			return status;
3291 	}
3292 
3293 	return status;
3294 }
3295 
3296 static void rdev_init_debugfs(struct regulator_dev *rdev)
3297 {
3298 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3299 	if (!rdev->debugfs) {
3300 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3301 		return;
3302 	}
3303 
3304 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3305 			   &rdev->use_count);
3306 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3307 			   &rdev->open_count);
3308 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3309 			   &rdev->bypass_count);
3310 }
3311 
3312 /**
3313  * regulator_register - register regulator
3314  * @regulator_desc: regulator to register
3315  * @config: runtime configuration for regulator
3316  *
3317  * Called by regulator drivers to register a regulator.
3318  * Returns 0 on success.
3319  */
3320 struct regulator_dev *
3321 regulator_register(const struct regulator_desc *regulator_desc,
3322 		   const struct regulator_config *config)
3323 {
3324 	const struct regulation_constraints *constraints = NULL;
3325 	const struct regulator_init_data *init_data;
3326 	static atomic_t regulator_no = ATOMIC_INIT(0);
3327 	struct regulator_dev *rdev;
3328 	struct device *dev;
3329 	int ret, i;
3330 	const char *supply = NULL;
3331 
3332 	if (regulator_desc == NULL || config == NULL)
3333 		return ERR_PTR(-EINVAL);
3334 
3335 	dev = config->dev;
3336 	WARN_ON(!dev);
3337 
3338 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3339 		return ERR_PTR(-EINVAL);
3340 
3341 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3342 	    regulator_desc->type != REGULATOR_CURRENT)
3343 		return ERR_PTR(-EINVAL);
3344 
3345 	/* Only one of each should be implemented */
3346 	WARN_ON(regulator_desc->ops->get_voltage &&
3347 		regulator_desc->ops->get_voltage_sel);
3348 	WARN_ON(regulator_desc->ops->set_voltage &&
3349 		regulator_desc->ops->set_voltage_sel);
3350 
3351 	/* If we're using selectors we must implement list_voltage. */
3352 	if (regulator_desc->ops->get_voltage_sel &&
3353 	    !regulator_desc->ops->list_voltage) {
3354 		return ERR_PTR(-EINVAL);
3355 	}
3356 	if (regulator_desc->ops->set_voltage_sel &&
3357 	    !regulator_desc->ops->list_voltage) {
3358 		return ERR_PTR(-EINVAL);
3359 	}
3360 
3361 	init_data = config->init_data;
3362 
3363 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3364 	if (rdev == NULL)
3365 		return ERR_PTR(-ENOMEM);
3366 
3367 	mutex_lock(&regulator_list_mutex);
3368 
3369 	mutex_init(&rdev->mutex);
3370 	rdev->reg_data = config->driver_data;
3371 	rdev->owner = regulator_desc->owner;
3372 	rdev->desc = regulator_desc;
3373 	if (config->regmap)
3374 		rdev->regmap = config->regmap;
3375 	else if (dev_get_regmap(dev, NULL))
3376 		rdev->regmap = dev_get_regmap(dev, NULL);
3377 	else if (dev->parent)
3378 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3379 	INIT_LIST_HEAD(&rdev->consumer_list);
3380 	INIT_LIST_HEAD(&rdev->list);
3381 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3382 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3383 
3384 	/* preform any regulator specific init */
3385 	if (init_data && init_data->regulator_init) {
3386 		ret = init_data->regulator_init(rdev->reg_data);
3387 		if (ret < 0)
3388 			goto clean;
3389 	}
3390 
3391 	/* register with sysfs */
3392 	rdev->dev.class = &regulator_class;
3393 	rdev->dev.of_node = config->of_node;
3394 	rdev->dev.parent = dev;
3395 	dev_set_name(&rdev->dev, "regulator.%d",
3396 		     atomic_inc_return(&regulator_no) - 1);
3397 	ret = device_register(&rdev->dev);
3398 	if (ret != 0) {
3399 		put_device(&rdev->dev);
3400 		goto clean;
3401 	}
3402 
3403 	dev_set_drvdata(&rdev->dev, rdev);
3404 
3405 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3406 		ret = gpio_request_one(config->ena_gpio,
3407 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3408 				       rdev_get_name(rdev));
3409 		if (ret != 0) {
3410 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3411 				 config->ena_gpio, ret);
3412 			goto wash;
3413 		}
3414 
3415 		rdev->ena_gpio = config->ena_gpio;
3416 		rdev->ena_gpio_invert = config->ena_gpio_invert;
3417 
3418 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3419 			rdev->ena_gpio_state = 1;
3420 
3421 		if (rdev->ena_gpio_invert)
3422 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3423 	}
3424 
3425 	/* set regulator constraints */
3426 	if (init_data)
3427 		constraints = &init_data->constraints;
3428 
3429 	ret = set_machine_constraints(rdev, constraints);
3430 	if (ret < 0)
3431 		goto scrub;
3432 
3433 	/* add attributes supported by this regulator */
3434 	ret = add_regulator_attributes(rdev);
3435 	if (ret < 0)
3436 		goto scrub;
3437 
3438 	if (init_data && init_data->supply_regulator)
3439 		supply = init_data->supply_regulator;
3440 	else if (regulator_desc->supply_name)
3441 		supply = regulator_desc->supply_name;
3442 
3443 	if (supply) {
3444 		struct regulator_dev *r;
3445 
3446 		r = regulator_dev_lookup(dev, supply, &ret);
3447 
3448 		if (!r) {
3449 			dev_err(dev, "Failed to find supply %s\n", supply);
3450 			ret = -EPROBE_DEFER;
3451 			goto scrub;
3452 		}
3453 
3454 		ret = set_supply(rdev, r);
3455 		if (ret < 0)
3456 			goto scrub;
3457 
3458 		/* Enable supply if rail is enabled */
3459 		if (_regulator_is_enabled(rdev)) {
3460 			ret = regulator_enable(rdev->supply);
3461 			if (ret < 0)
3462 				goto scrub;
3463 		}
3464 	}
3465 
3466 	/* add consumers devices */
3467 	if (init_data) {
3468 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3469 			ret = set_consumer_device_supply(rdev,
3470 				init_data->consumer_supplies[i].dev_name,
3471 				init_data->consumer_supplies[i].supply);
3472 			if (ret < 0) {
3473 				dev_err(dev, "Failed to set supply %s\n",
3474 					init_data->consumer_supplies[i].supply);
3475 				goto unset_supplies;
3476 			}
3477 		}
3478 	}
3479 
3480 	list_add(&rdev->list, &regulator_list);
3481 
3482 	rdev_init_debugfs(rdev);
3483 out:
3484 	mutex_unlock(&regulator_list_mutex);
3485 	return rdev;
3486 
3487 unset_supplies:
3488 	unset_regulator_supplies(rdev);
3489 
3490 scrub:
3491 	if (rdev->supply)
3492 		_regulator_put(rdev->supply);
3493 	if (rdev->ena_gpio)
3494 		gpio_free(rdev->ena_gpio);
3495 	kfree(rdev->constraints);
3496 wash:
3497 	device_unregister(&rdev->dev);
3498 	/* device core frees rdev */
3499 	rdev = ERR_PTR(ret);
3500 	goto out;
3501 
3502 clean:
3503 	kfree(rdev);
3504 	rdev = ERR_PTR(ret);
3505 	goto out;
3506 }
3507 EXPORT_SYMBOL_GPL(regulator_register);
3508 
3509 /**
3510  * regulator_unregister - unregister regulator
3511  * @rdev: regulator to unregister
3512  *
3513  * Called by regulator drivers to unregister a regulator.
3514  */
3515 void regulator_unregister(struct regulator_dev *rdev)
3516 {
3517 	if (rdev == NULL)
3518 		return;
3519 
3520 	if (rdev->supply)
3521 		regulator_put(rdev->supply);
3522 	mutex_lock(&regulator_list_mutex);
3523 	debugfs_remove_recursive(rdev->debugfs);
3524 	flush_work(&rdev->disable_work.work);
3525 	WARN_ON(rdev->open_count);
3526 	unset_regulator_supplies(rdev);
3527 	list_del(&rdev->list);
3528 	kfree(rdev->constraints);
3529 	if (rdev->ena_gpio)
3530 		gpio_free(rdev->ena_gpio);
3531 	device_unregister(&rdev->dev);
3532 	mutex_unlock(&regulator_list_mutex);
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_unregister);
3535 
3536 /**
3537  * regulator_suspend_prepare - prepare regulators for system wide suspend
3538  * @state: system suspend state
3539  *
3540  * Configure each regulator with it's suspend operating parameters for state.
3541  * This will usually be called by machine suspend code prior to supending.
3542  */
3543 int regulator_suspend_prepare(suspend_state_t state)
3544 {
3545 	struct regulator_dev *rdev;
3546 	int ret = 0;
3547 
3548 	/* ON is handled by regulator active state */
3549 	if (state == PM_SUSPEND_ON)
3550 		return -EINVAL;
3551 
3552 	mutex_lock(&regulator_list_mutex);
3553 	list_for_each_entry(rdev, &regulator_list, list) {
3554 
3555 		mutex_lock(&rdev->mutex);
3556 		ret = suspend_prepare(rdev, state);
3557 		mutex_unlock(&rdev->mutex);
3558 
3559 		if (ret < 0) {
3560 			rdev_err(rdev, "failed to prepare\n");
3561 			goto out;
3562 		}
3563 	}
3564 out:
3565 	mutex_unlock(&regulator_list_mutex);
3566 	return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3569 
3570 /**
3571  * regulator_suspend_finish - resume regulators from system wide suspend
3572  *
3573  * Turn on regulators that might be turned off by regulator_suspend_prepare
3574  * and that should be turned on according to the regulators properties.
3575  */
3576 int regulator_suspend_finish(void)
3577 {
3578 	struct regulator_dev *rdev;
3579 	int ret = 0, error;
3580 
3581 	mutex_lock(&regulator_list_mutex);
3582 	list_for_each_entry(rdev, &regulator_list, list) {
3583 		struct regulator_ops *ops = rdev->desc->ops;
3584 
3585 		mutex_lock(&rdev->mutex);
3586 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3587 				ops->enable) {
3588 			error = ops->enable(rdev);
3589 			if (error)
3590 				ret = error;
3591 		} else {
3592 			if (!has_full_constraints)
3593 				goto unlock;
3594 			if (!ops->disable)
3595 				goto unlock;
3596 			if (!_regulator_is_enabled(rdev))
3597 				goto unlock;
3598 
3599 			error = ops->disable(rdev);
3600 			if (error)
3601 				ret = error;
3602 		}
3603 unlock:
3604 		mutex_unlock(&rdev->mutex);
3605 	}
3606 	mutex_unlock(&regulator_list_mutex);
3607 	return ret;
3608 }
3609 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3610 
3611 /**
3612  * regulator_has_full_constraints - the system has fully specified constraints
3613  *
3614  * Calling this function will cause the regulator API to disable all
3615  * regulators which have a zero use count and don't have an always_on
3616  * constraint in a late_initcall.
3617  *
3618  * The intention is that this will become the default behaviour in a
3619  * future kernel release so users are encouraged to use this facility
3620  * now.
3621  */
3622 void regulator_has_full_constraints(void)
3623 {
3624 	has_full_constraints = 1;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3627 
3628 /**
3629  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3630  *
3631  * Calling this function will cause the regulator API to provide a
3632  * dummy regulator to consumers if no physical regulator is found,
3633  * allowing most consumers to proceed as though a regulator were
3634  * configured.  This allows systems such as those with software
3635  * controllable regulators for the CPU core only to be brought up more
3636  * readily.
3637  */
3638 void regulator_use_dummy_regulator(void)
3639 {
3640 	board_wants_dummy_regulator = true;
3641 }
3642 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3643 
3644 /**
3645  * rdev_get_drvdata - get rdev regulator driver data
3646  * @rdev: regulator
3647  *
3648  * Get rdev regulator driver private data. This call can be used in the
3649  * regulator driver context.
3650  */
3651 void *rdev_get_drvdata(struct regulator_dev *rdev)
3652 {
3653 	return rdev->reg_data;
3654 }
3655 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3656 
3657 /**
3658  * regulator_get_drvdata - get regulator driver data
3659  * @regulator: regulator
3660  *
3661  * Get regulator driver private data. This call can be used in the consumer
3662  * driver context when non API regulator specific functions need to be called.
3663  */
3664 void *regulator_get_drvdata(struct regulator *regulator)
3665 {
3666 	return regulator->rdev->reg_data;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3669 
3670 /**
3671  * regulator_set_drvdata - set regulator driver data
3672  * @regulator: regulator
3673  * @data: data
3674  */
3675 void regulator_set_drvdata(struct regulator *regulator, void *data)
3676 {
3677 	regulator->rdev->reg_data = data;
3678 }
3679 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3680 
3681 /**
3682  * regulator_get_id - get regulator ID
3683  * @rdev: regulator
3684  */
3685 int rdev_get_id(struct regulator_dev *rdev)
3686 {
3687 	return rdev->desc->id;
3688 }
3689 EXPORT_SYMBOL_GPL(rdev_get_id);
3690 
3691 struct device *rdev_get_dev(struct regulator_dev *rdev)
3692 {
3693 	return &rdev->dev;
3694 }
3695 EXPORT_SYMBOL_GPL(rdev_get_dev);
3696 
3697 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3698 {
3699 	return reg_init_data->driver_data;
3700 }
3701 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3702 
3703 #ifdef CONFIG_DEBUG_FS
3704 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3705 				    size_t count, loff_t *ppos)
3706 {
3707 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3708 	ssize_t len, ret = 0;
3709 	struct regulator_map *map;
3710 
3711 	if (!buf)
3712 		return -ENOMEM;
3713 
3714 	list_for_each_entry(map, &regulator_map_list, list) {
3715 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3716 			       "%s -> %s.%s\n",
3717 			       rdev_get_name(map->regulator), map->dev_name,
3718 			       map->supply);
3719 		if (len >= 0)
3720 			ret += len;
3721 		if (ret > PAGE_SIZE) {
3722 			ret = PAGE_SIZE;
3723 			break;
3724 		}
3725 	}
3726 
3727 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3728 
3729 	kfree(buf);
3730 
3731 	return ret;
3732 }
3733 #endif
3734 
3735 static const struct file_operations supply_map_fops = {
3736 #ifdef CONFIG_DEBUG_FS
3737 	.read = supply_map_read_file,
3738 	.llseek = default_llseek,
3739 #endif
3740 };
3741 
3742 static int __init regulator_init(void)
3743 {
3744 	int ret;
3745 
3746 	ret = class_register(&regulator_class);
3747 
3748 	debugfs_root = debugfs_create_dir("regulator", NULL);
3749 	if (!debugfs_root)
3750 		pr_warn("regulator: Failed to create debugfs directory\n");
3751 
3752 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3753 			    &supply_map_fops);
3754 
3755 	regulator_dummy_init();
3756 
3757 	return ret;
3758 }
3759 
3760 /* init early to allow our consumers to complete system booting */
3761 core_initcall(regulator_init);
3762 
3763 static int __init regulator_init_complete(void)
3764 {
3765 	struct regulator_dev *rdev;
3766 	struct regulator_ops *ops;
3767 	struct regulation_constraints *c;
3768 	int enabled, ret;
3769 
3770 	/*
3771 	 * Since DT doesn't provide an idiomatic mechanism for
3772 	 * enabling full constraints and since it's much more natural
3773 	 * with DT to provide them just assume that a DT enabled
3774 	 * system has full constraints.
3775 	 */
3776 	if (of_have_populated_dt())
3777 		has_full_constraints = true;
3778 
3779 	mutex_lock(&regulator_list_mutex);
3780 
3781 	/* If we have a full configuration then disable any regulators
3782 	 * which are not in use or always_on.  This will become the
3783 	 * default behaviour in the future.
3784 	 */
3785 	list_for_each_entry(rdev, &regulator_list, list) {
3786 		ops = rdev->desc->ops;
3787 		c = rdev->constraints;
3788 
3789 		if (!ops->disable || (c && c->always_on))
3790 			continue;
3791 
3792 		mutex_lock(&rdev->mutex);
3793 
3794 		if (rdev->use_count)
3795 			goto unlock;
3796 
3797 		/* If we can't read the status assume it's on. */
3798 		if (ops->is_enabled)
3799 			enabled = ops->is_enabled(rdev);
3800 		else
3801 			enabled = 1;
3802 
3803 		if (!enabled)
3804 			goto unlock;
3805 
3806 		if (has_full_constraints) {
3807 			/* We log since this may kill the system if it
3808 			 * goes wrong. */
3809 			rdev_info(rdev, "disabling\n");
3810 			ret = ops->disable(rdev);
3811 			if (ret != 0) {
3812 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3813 			}
3814 		} else {
3815 			/* The intention is that in future we will
3816 			 * assume that full constraints are provided
3817 			 * so warn even if we aren't going to do
3818 			 * anything here.
3819 			 */
3820 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3821 		}
3822 
3823 unlock:
3824 		mutex_unlock(&rdev->mutex);
3825 	}
3826 
3827 	mutex_unlock(&regulator_list_mutex);
3828 
3829 	return 0;
3830 }
3831 late_initcall(regulator_init_complete);
3832