1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 */ 143 static inline int regulator_lock_nested(struct regulator_dev *rdev, 144 struct ww_acquire_ctx *ww_ctx) 145 { 146 bool lock = false; 147 int ret = 0; 148 149 mutex_lock(®ulator_nesting_mutex); 150 151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 152 if (rdev->mutex_owner == current) 153 rdev->ref_cnt++; 154 else 155 lock = true; 156 157 if (lock) { 158 mutex_unlock(®ulator_nesting_mutex); 159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 160 mutex_lock(®ulator_nesting_mutex); 161 } 162 } else { 163 lock = true; 164 } 165 166 if (lock && ret != -EDEADLK) { 167 rdev->ref_cnt++; 168 rdev->mutex_owner = current; 169 } 170 171 mutex_unlock(®ulator_nesting_mutex); 172 173 return ret; 174 } 175 176 /** 177 * regulator_lock - lock a single regulator 178 * @rdev: regulator source 179 * 180 * This function can be called many times by one task on 181 * a single regulator and its mutex will be locked only 182 * once. If a task, which is calling this function is other 183 * than the one, which initially locked the mutex, it will 184 * wait on mutex. 185 */ 186 static void regulator_lock(struct regulator_dev *rdev) 187 { 188 regulator_lock_nested(rdev, NULL); 189 } 190 191 /** 192 * regulator_unlock - unlock a single regulator 193 * @rdev: regulator_source 194 * 195 * This function unlocks the mutex when the 196 * reference counter reaches 0. 197 */ 198 static void regulator_unlock(struct regulator_dev *rdev) 199 { 200 mutex_lock(®ulator_nesting_mutex); 201 202 if (--rdev->ref_cnt == 0) { 203 rdev->mutex_owner = NULL; 204 ww_mutex_unlock(&rdev->mutex); 205 } 206 207 WARN_ON_ONCE(rdev->ref_cnt < 0); 208 209 mutex_unlock(®ulator_nesting_mutex); 210 } 211 212 /** 213 * regulator_lock_two - lock two regulators 214 * @rdev1: first regulator 215 * @rdev2: second regulator 216 * @ww_ctx: w/w mutex acquire context 217 * 218 * Locks both rdevs using the regulator_ww_class. 219 */ 220 static void regulator_lock_two(struct regulator_dev *rdev1, 221 struct regulator_dev *rdev2, 222 struct ww_acquire_ctx *ww_ctx) 223 { 224 struct regulator_dev *held, *contended; 225 int ret; 226 227 ww_acquire_init(ww_ctx, ®ulator_ww_class); 228 229 /* Try to just grab both of them */ 230 ret = regulator_lock_nested(rdev1, ww_ctx); 231 WARN_ON(ret); 232 ret = regulator_lock_nested(rdev2, ww_ctx); 233 if (ret != -EDEADLOCK) { 234 WARN_ON(ret); 235 goto exit; 236 } 237 238 held = rdev1; 239 contended = rdev2; 240 while (true) { 241 regulator_unlock(held); 242 243 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 244 contended->ref_cnt++; 245 contended->mutex_owner = current; 246 swap(held, contended); 247 ret = regulator_lock_nested(contended, ww_ctx); 248 249 if (ret != -EDEADLOCK) { 250 WARN_ON(ret); 251 break; 252 } 253 } 254 255 exit: 256 ww_acquire_done(ww_ctx); 257 } 258 259 /** 260 * regulator_unlock_two - unlock two regulators 261 * @rdev1: first regulator 262 * @rdev2: second regulator 263 * @ww_ctx: w/w mutex acquire context 264 * 265 * The inverse of regulator_lock_two(). 266 */ 267 268 static void regulator_unlock_two(struct regulator_dev *rdev1, 269 struct regulator_dev *rdev2, 270 struct ww_acquire_ctx *ww_ctx) 271 { 272 regulator_unlock(rdev2); 273 regulator_unlock(rdev1); 274 ww_acquire_fini(ww_ctx); 275 } 276 277 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 278 { 279 struct regulator_dev *c_rdev; 280 int i; 281 282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 283 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 284 285 if (rdev->supply->rdev == c_rdev) 286 return true; 287 } 288 289 return false; 290 } 291 292 static void regulator_unlock_recursive(struct regulator_dev *rdev, 293 unsigned int n_coupled) 294 { 295 struct regulator_dev *c_rdev, *supply_rdev; 296 int i, supply_n_coupled; 297 298 for (i = n_coupled; i > 0; i--) { 299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 300 301 if (!c_rdev) 302 continue; 303 304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 305 supply_rdev = c_rdev->supply->rdev; 306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 307 308 regulator_unlock_recursive(supply_rdev, 309 supply_n_coupled); 310 } 311 312 regulator_unlock(c_rdev); 313 } 314 } 315 316 static int regulator_lock_recursive(struct regulator_dev *rdev, 317 struct regulator_dev **new_contended_rdev, 318 struct regulator_dev **old_contended_rdev, 319 struct ww_acquire_ctx *ww_ctx) 320 { 321 struct regulator_dev *c_rdev; 322 int i, err; 323 324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 325 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 326 327 if (!c_rdev) 328 continue; 329 330 if (c_rdev != *old_contended_rdev) { 331 err = regulator_lock_nested(c_rdev, ww_ctx); 332 if (err) { 333 if (err == -EDEADLK) { 334 *new_contended_rdev = c_rdev; 335 goto err_unlock; 336 } 337 338 /* shouldn't happen */ 339 WARN_ON_ONCE(err != -EALREADY); 340 } 341 } else { 342 *old_contended_rdev = NULL; 343 } 344 345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 346 err = regulator_lock_recursive(c_rdev->supply->rdev, 347 new_contended_rdev, 348 old_contended_rdev, 349 ww_ctx); 350 if (err) { 351 regulator_unlock(c_rdev); 352 goto err_unlock; 353 } 354 } 355 } 356 357 return 0; 358 359 err_unlock: 360 regulator_unlock_recursive(rdev, i); 361 362 return err; 363 } 364 365 /** 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 367 * regulators 368 * @rdev: regulator source 369 * @ww_ctx: w/w mutex acquire context 370 * 371 * Unlock all regulators related with rdev by coupling or supplying. 372 */ 373 static void regulator_unlock_dependent(struct regulator_dev *rdev, 374 struct ww_acquire_ctx *ww_ctx) 375 { 376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 377 ww_acquire_fini(ww_ctx); 378 } 379 380 /** 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 382 * @rdev: regulator source 383 * @ww_ctx: w/w mutex acquire context 384 * 385 * This function as a wrapper on regulator_lock_recursive(), which locks 386 * all regulators related with rdev by coupling or supplying. 387 */ 388 static void regulator_lock_dependent(struct regulator_dev *rdev, 389 struct ww_acquire_ctx *ww_ctx) 390 { 391 struct regulator_dev *new_contended_rdev = NULL; 392 struct regulator_dev *old_contended_rdev = NULL; 393 int err; 394 395 mutex_lock(®ulator_list_mutex); 396 397 ww_acquire_init(ww_ctx, ®ulator_ww_class); 398 399 do { 400 if (new_contended_rdev) { 401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 402 old_contended_rdev = new_contended_rdev; 403 old_contended_rdev->ref_cnt++; 404 old_contended_rdev->mutex_owner = current; 405 } 406 407 err = regulator_lock_recursive(rdev, 408 &new_contended_rdev, 409 &old_contended_rdev, 410 ww_ctx); 411 412 if (old_contended_rdev) 413 regulator_unlock(old_contended_rdev); 414 415 } while (err == -EDEADLK); 416 417 ww_acquire_done(ww_ctx); 418 419 mutex_unlock(®ulator_list_mutex); 420 } 421 422 /** 423 * of_get_child_regulator - get a child regulator device node 424 * based on supply name 425 * @parent: Parent device node 426 * @prop_name: Combination regulator supply name and "-supply" 427 * 428 * Traverse all child nodes. 429 * Extract the child regulator device node corresponding to the supply name. 430 * returns the device node corresponding to the regulator if found, else 431 * returns NULL. 432 */ 433 static struct device_node *of_get_child_regulator(struct device_node *parent, 434 const char *prop_name) 435 { 436 struct device_node *regnode = NULL; 437 struct device_node *child = NULL; 438 439 for_each_child_of_node(parent, child) { 440 regnode = of_parse_phandle(child, prop_name, 0); 441 442 if (!regnode) { 443 regnode = of_get_child_regulator(child, prop_name); 444 if (regnode) 445 goto err_node_put; 446 } else { 447 goto err_node_put; 448 } 449 } 450 return NULL; 451 452 err_node_put: 453 of_node_put(child); 454 return regnode; 455 } 456 457 /** 458 * of_get_regulator - get a regulator device node based on supply name 459 * @dev: Device pointer for the consumer (of regulator) device 460 * @supply: regulator supply name 461 * 462 * Extract the regulator device node corresponding to the supply name. 463 * returns the device node corresponding to the regulator if found, else 464 * returns NULL. 465 */ 466 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 467 { 468 struct device_node *regnode = NULL; 469 char prop_name[64]; /* 64 is max size of property name */ 470 471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 472 473 snprintf(prop_name, 64, "%s-supply", supply); 474 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 475 476 if (!regnode) { 477 regnode = of_get_child_regulator(dev->of_node, prop_name); 478 if (regnode) 479 return regnode; 480 481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 482 prop_name, dev->of_node); 483 return NULL; 484 } 485 return regnode; 486 } 487 488 /* Platform voltage constraint check */ 489 int regulator_check_voltage(struct regulator_dev *rdev, 490 int *min_uV, int *max_uV) 491 { 492 BUG_ON(*min_uV > *max_uV); 493 494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 495 rdev_err(rdev, "voltage operation not allowed\n"); 496 return -EPERM; 497 } 498 499 if (*max_uV > rdev->constraints->max_uV) 500 *max_uV = rdev->constraints->max_uV; 501 if (*min_uV < rdev->constraints->min_uV) 502 *min_uV = rdev->constraints->min_uV; 503 504 if (*min_uV > *max_uV) { 505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 506 *min_uV, *max_uV); 507 return -EINVAL; 508 } 509 510 return 0; 511 } 512 513 /* return 0 if the state is valid */ 514 static int regulator_check_states(suspend_state_t state) 515 { 516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 517 } 518 519 /* Make sure we select a voltage that suits the needs of all 520 * regulator consumers 521 */ 522 int regulator_check_consumers(struct regulator_dev *rdev, 523 int *min_uV, int *max_uV, 524 suspend_state_t state) 525 { 526 struct regulator *regulator; 527 struct regulator_voltage *voltage; 528 529 list_for_each_entry(regulator, &rdev->consumer_list, list) { 530 voltage = ®ulator->voltage[state]; 531 /* 532 * Assume consumers that didn't say anything are OK 533 * with anything in the constraint range. 534 */ 535 if (!voltage->min_uV && !voltage->max_uV) 536 continue; 537 538 if (*max_uV > voltage->max_uV) 539 *max_uV = voltage->max_uV; 540 if (*min_uV < voltage->min_uV) 541 *min_uV = voltage->min_uV; 542 } 543 544 if (*min_uV > *max_uV) { 545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 546 *min_uV, *max_uV); 547 return -EINVAL; 548 } 549 550 return 0; 551 } 552 553 /* current constraint check */ 554 static int regulator_check_current_limit(struct regulator_dev *rdev, 555 int *min_uA, int *max_uA) 556 { 557 BUG_ON(*min_uA > *max_uA); 558 559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 560 rdev_err(rdev, "current operation not allowed\n"); 561 return -EPERM; 562 } 563 564 if (*max_uA > rdev->constraints->max_uA) 565 *max_uA = rdev->constraints->max_uA; 566 if (*min_uA < rdev->constraints->min_uA) 567 *min_uA = rdev->constraints->min_uA; 568 569 if (*min_uA > *max_uA) { 570 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 571 *min_uA, *max_uA); 572 return -EINVAL; 573 } 574 575 return 0; 576 } 577 578 /* operating mode constraint check */ 579 static int regulator_mode_constrain(struct regulator_dev *rdev, 580 unsigned int *mode) 581 { 582 switch (*mode) { 583 case REGULATOR_MODE_FAST: 584 case REGULATOR_MODE_NORMAL: 585 case REGULATOR_MODE_IDLE: 586 case REGULATOR_MODE_STANDBY: 587 break; 588 default: 589 rdev_err(rdev, "invalid mode %x specified\n", *mode); 590 return -EINVAL; 591 } 592 593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 594 rdev_err(rdev, "mode operation not allowed\n"); 595 return -EPERM; 596 } 597 598 /* The modes are bitmasks, the most power hungry modes having 599 * the lowest values. If the requested mode isn't supported 600 * try higher modes. 601 */ 602 while (*mode) { 603 if (rdev->constraints->valid_modes_mask & *mode) 604 return 0; 605 *mode /= 2; 606 } 607 608 return -EINVAL; 609 } 610 611 static inline struct regulator_state * 612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 613 { 614 if (rdev->constraints == NULL) 615 return NULL; 616 617 switch (state) { 618 case PM_SUSPEND_STANDBY: 619 return &rdev->constraints->state_standby; 620 case PM_SUSPEND_MEM: 621 return &rdev->constraints->state_mem; 622 case PM_SUSPEND_MAX: 623 return &rdev->constraints->state_disk; 624 default: 625 return NULL; 626 } 627 } 628 629 static const struct regulator_state * 630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 631 { 632 const struct regulator_state *rstate; 633 634 rstate = regulator_get_suspend_state(rdev, state); 635 if (rstate == NULL) 636 return NULL; 637 638 /* If we have no suspend mode configuration don't set anything; 639 * only warn if the driver implements set_suspend_voltage or 640 * set_suspend_mode callback. 641 */ 642 if (rstate->enabled != ENABLE_IN_SUSPEND && 643 rstate->enabled != DISABLE_IN_SUSPEND) { 644 if (rdev->desc->ops->set_suspend_voltage || 645 rdev->desc->ops->set_suspend_mode) 646 rdev_warn(rdev, "No configuration\n"); 647 return NULL; 648 } 649 650 return rstate; 651 } 652 653 static ssize_t microvolts_show(struct device *dev, 654 struct device_attribute *attr, char *buf) 655 { 656 struct regulator_dev *rdev = dev_get_drvdata(dev); 657 int uV; 658 659 regulator_lock(rdev); 660 uV = regulator_get_voltage_rdev(rdev); 661 regulator_unlock(rdev); 662 663 if (uV < 0) 664 return uV; 665 return sprintf(buf, "%d\n", uV); 666 } 667 static DEVICE_ATTR_RO(microvolts); 668 669 static ssize_t microamps_show(struct device *dev, 670 struct device_attribute *attr, char *buf) 671 { 672 struct regulator_dev *rdev = dev_get_drvdata(dev); 673 674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 675 } 676 static DEVICE_ATTR_RO(microamps); 677 678 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 679 char *buf) 680 { 681 struct regulator_dev *rdev = dev_get_drvdata(dev); 682 683 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 684 } 685 static DEVICE_ATTR_RO(name); 686 687 static const char *regulator_opmode_to_str(int mode) 688 { 689 switch (mode) { 690 case REGULATOR_MODE_FAST: 691 return "fast"; 692 case REGULATOR_MODE_NORMAL: 693 return "normal"; 694 case REGULATOR_MODE_IDLE: 695 return "idle"; 696 case REGULATOR_MODE_STANDBY: 697 return "standby"; 698 } 699 return "unknown"; 700 } 701 702 static ssize_t regulator_print_opmode(char *buf, int mode) 703 { 704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 705 } 706 707 static ssize_t opmode_show(struct device *dev, 708 struct device_attribute *attr, char *buf) 709 { 710 struct regulator_dev *rdev = dev_get_drvdata(dev); 711 712 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 713 } 714 static DEVICE_ATTR_RO(opmode); 715 716 static ssize_t regulator_print_state(char *buf, int state) 717 { 718 if (state > 0) 719 return sprintf(buf, "enabled\n"); 720 else if (state == 0) 721 return sprintf(buf, "disabled\n"); 722 else 723 return sprintf(buf, "unknown\n"); 724 } 725 726 static ssize_t state_show(struct device *dev, 727 struct device_attribute *attr, char *buf) 728 { 729 struct regulator_dev *rdev = dev_get_drvdata(dev); 730 ssize_t ret; 731 732 regulator_lock(rdev); 733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 734 regulator_unlock(rdev); 735 736 return ret; 737 } 738 static DEVICE_ATTR_RO(state); 739 740 static ssize_t status_show(struct device *dev, 741 struct device_attribute *attr, char *buf) 742 { 743 struct regulator_dev *rdev = dev_get_drvdata(dev); 744 int status; 745 char *label; 746 747 status = rdev->desc->ops->get_status(rdev); 748 if (status < 0) 749 return status; 750 751 switch (status) { 752 case REGULATOR_STATUS_OFF: 753 label = "off"; 754 break; 755 case REGULATOR_STATUS_ON: 756 label = "on"; 757 break; 758 case REGULATOR_STATUS_ERROR: 759 label = "error"; 760 break; 761 case REGULATOR_STATUS_FAST: 762 label = "fast"; 763 break; 764 case REGULATOR_STATUS_NORMAL: 765 label = "normal"; 766 break; 767 case REGULATOR_STATUS_IDLE: 768 label = "idle"; 769 break; 770 case REGULATOR_STATUS_STANDBY: 771 label = "standby"; 772 break; 773 case REGULATOR_STATUS_BYPASS: 774 label = "bypass"; 775 break; 776 case REGULATOR_STATUS_UNDEFINED: 777 label = "undefined"; 778 break; 779 default: 780 return -ERANGE; 781 } 782 783 return sprintf(buf, "%s\n", label); 784 } 785 static DEVICE_ATTR_RO(status); 786 787 static ssize_t min_microamps_show(struct device *dev, 788 struct device_attribute *attr, char *buf) 789 { 790 struct regulator_dev *rdev = dev_get_drvdata(dev); 791 792 if (!rdev->constraints) 793 return sprintf(buf, "constraint not defined\n"); 794 795 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 796 } 797 static DEVICE_ATTR_RO(min_microamps); 798 799 static ssize_t max_microamps_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 if (!rdev->constraints) 805 return sprintf(buf, "constraint not defined\n"); 806 807 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 808 } 809 static DEVICE_ATTR_RO(max_microamps); 810 811 static ssize_t min_microvolts_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 if (!rdev->constraints) 817 return sprintf(buf, "constraint not defined\n"); 818 819 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 820 } 821 static DEVICE_ATTR_RO(min_microvolts); 822 823 static ssize_t max_microvolts_show(struct device *dev, 824 struct device_attribute *attr, char *buf) 825 { 826 struct regulator_dev *rdev = dev_get_drvdata(dev); 827 828 if (!rdev->constraints) 829 return sprintf(buf, "constraint not defined\n"); 830 831 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 832 } 833 static DEVICE_ATTR_RO(max_microvolts); 834 835 static ssize_t requested_microamps_show(struct device *dev, 836 struct device_attribute *attr, char *buf) 837 { 838 struct regulator_dev *rdev = dev_get_drvdata(dev); 839 struct regulator *regulator; 840 int uA = 0; 841 842 regulator_lock(rdev); 843 list_for_each_entry(regulator, &rdev->consumer_list, list) { 844 if (regulator->enable_count) 845 uA += regulator->uA_load; 846 } 847 regulator_unlock(rdev); 848 return sprintf(buf, "%d\n", uA); 849 } 850 static DEVICE_ATTR_RO(requested_microamps); 851 852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 853 char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 return sprintf(buf, "%d\n", rdev->use_count); 857 } 858 static DEVICE_ATTR_RO(num_users); 859 860 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 861 char *buf) 862 { 863 struct regulator_dev *rdev = dev_get_drvdata(dev); 864 865 switch (rdev->desc->type) { 866 case REGULATOR_VOLTAGE: 867 return sprintf(buf, "voltage\n"); 868 case REGULATOR_CURRENT: 869 return sprintf(buf, "current\n"); 870 } 871 return sprintf(buf, "unknown\n"); 872 } 873 static DEVICE_ATTR_RO(type); 874 875 static ssize_t suspend_mem_microvolts_show(struct device *dev, 876 struct device_attribute *attr, char *buf) 877 { 878 struct regulator_dev *rdev = dev_get_drvdata(dev); 879 880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 881 } 882 static DEVICE_ATTR_RO(suspend_mem_microvolts); 883 884 static ssize_t suspend_disk_microvolts_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct regulator_dev *rdev = dev_get_drvdata(dev); 888 889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 890 } 891 static DEVICE_ATTR_RO(suspend_disk_microvolts); 892 893 static ssize_t suspend_standby_microvolts_show(struct device *dev, 894 struct device_attribute *attr, char *buf) 895 { 896 struct regulator_dev *rdev = dev_get_drvdata(dev); 897 898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 899 } 900 static DEVICE_ATTR_RO(suspend_standby_microvolts); 901 902 static ssize_t suspend_mem_mode_show(struct device *dev, 903 struct device_attribute *attr, char *buf) 904 { 905 struct regulator_dev *rdev = dev_get_drvdata(dev); 906 907 return regulator_print_opmode(buf, 908 rdev->constraints->state_mem.mode); 909 } 910 static DEVICE_ATTR_RO(suspend_mem_mode); 911 912 static ssize_t suspend_disk_mode_show(struct device *dev, 913 struct device_attribute *attr, char *buf) 914 { 915 struct regulator_dev *rdev = dev_get_drvdata(dev); 916 917 return regulator_print_opmode(buf, 918 rdev->constraints->state_disk.mode); 919 } 920 static DEVICE_ATTR_RO(suspend_disk_mode); 921 922 static ssize_t suspend_standby_mode_show(struct device *dev, 923 struct device_attribute *attr, char *buf) 924 { 925 struct regulator_dev *rdev = dev_get_drvdata(dev); 926 927 return regulator_print_opmode(buf, 928 rdev->constraints->state_standby.mode); 929 } 930 static DEVICE_ATTR_RO(suspend_standby_mode); 931 932 static ssize_t suspend_mem_state_show(struct device *dev, 933 struct device_attribute *attr, char *buf) 934 { 935 struct regulator_dev *rdev = dev_get_drvdata(dev); 936 937 return regulator_print_state(buf, 938 rdev->constraints->state_mem.enabled); 939 } 940 static DEVICE_ATTR_RO(suspend_mem_state); 941 942 static ssize_t suspend_disk_state_show(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct regulator_dev *rdev = dev_get_drvdata(dev); 946 947 return regulator_print_state(buf, 948 rdev->constraints->state_disk.enabled); 949 } 950 static DEVICE_ATTR_RO(suspend_disk_state); 951 952 static ssize_t suspend_standby_state_show(struct device *dev, 953 struct device_attribute *attr, char *buf) 954 { 955 struct regulator_dev *rdev = dev_get_drvdata(dev); 956 957 return regulator_print_state(buf, 958 rdev->constraints->state_standby.enabled); 959 } 960 static DEVICE_ATTR_RO(suspend_standby_state); 961 962 static ssize_t bypass_show(struct device *dev, 963 struct device_attribute *attr, char *buf) 964 { 965 struct regulator_dev *rdev = dev_get_drvdata(dev); 966 const char *report; 967 bool bypass; 968 int ret; 969 970 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 971 972 if (ret != 0) 973 report = "unknown"; 974 else if (bypass) 975 report = "enabled"; 976 else 977 report = "disabled"; 978 979 return sprintf(buf, "%s\n", report); 980 } 981 static DEVICE_ATTR_RO(bypass); 982 983 #define REGULATOR_ERROR_ATTR(name, bit) \ 984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 985 char *buf) \ 986 { \ 987 int ret; \ 988 unsigned int flags; \ 989 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 990 ret = _regulator_get_error_flags(rdev, &flags); \ 991 if (ret) \ 992 return ret; \ 993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 994 } \ 995 static DEVICE_ATTR_RO(name) 996 997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1006 1007 /* Calculate the new optimum regulator operating mode based on the new total 1008 * consumer load. All locks held by caller 1009 */ 1010 static int drms_uA_update(struct regulator_dev *rdev) 1011 { 1012 struct regulator *sibling; 1013 int current_uA = 0, output_uV, input_uV, err; 1014 unsigned int mode; 1015 1016 /* 1017 * first check to see if we can set modes at all, otherwise just 1018 * tell the consumer everything is OK. 1019 */ 1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1021 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1022 return 0; 1023 } 1024 1025 if (!rdev->desc->ops->get_optimum_mode && 1026 !rdev->desc->ops->set_load) 1027 return 0; 1028 1029 if (!rdev->desc->ops->set_mode && 1030 !rdev->desc->ops->set_load) 1031 return -EINVAL; 1032 1033 /* calc total requested load */ 1034 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1035 if (sibling->enable_count) 1036 current_uA += sibling->uA_load; 1037 } 1038 1039 current_uA += rdev->constraints->system_load; 1040 1041 if (rdev->desc->ops->set_load) { 1042 /* set the optimum mode for our new total regulator load */ 1043 err = rdev->desc->ops->set_load(rdev, current_uA); 1044 if (err < 0) 1045 rdev_err(rdev, "failed to set load %d: %pe\n", 1046 current_uA, ERR_PTR(err)); 1047 } else { 1048 /* 1049 * Unfortunately in some cases the constraints->valid_ops has 1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1051 * That's not really legit but we won't consider it a fatal 1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1053 * wasn't set. 1054 */ 1055 if (!rdev->constraints->valid_modes_mask) { 1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1057 return 0; 1058 } 1059 1060 /* get output voltage */ 1061 output_uV = regulator_get_voltage_rdev(rdev); 1062 1063 /* 1064 * Don't return an error; if regulator driver cares about 1065 * output_uV then it's up to the driver to validate. 1066 */ 1067 if (output_uV <= 0) 1068 rdev_dbg(rdev, "invalid output voltage found\n"); 1069 1070 /* get input voltage */ 1071 input_uV = 0; 1072 if (rdev->supply) 1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1074 if (input_uV <= 0) 1075 input_uV = rdev->constraints->input_uV; 1076 1077 /* 1078 * Don't return an error; if regulator driver cares about 1079 * input_uV then it's up to the driver to validate. 1080 */ 1081 if (input_uV <= 0) 1082 rdev_dbg(rdev, "invalid input voltage found\n"); 1083 1084 /* now get the optimum mode for our new total regulator load */ 1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1086 output_uV, current_uA); 1087 1088 /* check the new mode is allowed */ 1089 err = regulator_mode_constrain(rdev, &mode); 1090 if (err < 0) { 1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1092 current_uA, input_uV, output_uV, ERR_PTR(err)); 1093 return err; 1094 } 1095 1096 err = rdev->desc->ops->set_mode(rdev, mode); 1097 if (err < 0) 1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1099 mode, ERR_PTR(err)); 1100 } 1101 1102 return err; 1103 } 1104 1105 static int __suspend_set_state(struct regulator_dev *rdev, 1106 const struct regulator_state *rstate) 1107 { 1108 int ret = 0; 1109 1110 if (rstate->enabled == ENABLE_IN_SUSPEND && 1111 rdev->desc->ops->set_suspend_enable) 1112 ret = rdev->desc->ops->set_suspend_enable(rdev); 1113 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1114 rdev->desc->ops->set_suspend_disable) 1115 ret = rdev->desc->ops->set_suspend_disable(rdev); 1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1117 ret = 0; 1118 1119 if (ret < 0) { 1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1121 return ret; 1122 } 1123 1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1126 if (ret < 0) { 1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1128 return ret; 1129 } 1130 } 1131 1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1134 if (ret < 0) { 1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1136 return ret; 1137 } 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int suspend_set_initial_state(struct regulator_dev *rdev) 1144 { 1145 const struct regulator_state *rstate; 1146 1147 rstate = regulator_get_suspend_state_check(rdev, 1148 rdev->constraints->initial_state); 1149 if (!rstate) 1150 return 0; 1151 1152 return __suspend_set_state(rdev, rstate); 1153 } 1154 1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1156 static void print_constraints_debug(struct regulator_dev *rdev) 1157 { 1158 struct regulation_constraints *constraints = rdev->constraints; 1159 char buf[160] = ""; 1160 size_t len = sizeof(buf) - 1; 1161 int count = 0; 1162 int ret; 1163 1164 if (constraints->min_uV && constraints->max_uV) { 1165 if (constraints->min_uV == constraints->max_uV) 1166 count += scnprintf(buf + count, len - count, "%d mV ", 1167 constraints->min_uV / 1000); 1168 else 1169 count += scnprintf(buf + count, len - count, 1170 "%d <--> %d mV ", 1171 constraints->min_uV / 1000, 1172 constraints->max_uV / 1000); 1173 } 1174 1175 if (!constraints->min_uV || 1176 constraints->min_uV != constraints->max_uV) { 1177 ret = regulator_get_voltage_rdev(rdev); 1178 if (ret > 0) 1179 count += scnprintf(buf + count, len - count, 1180 "at %d mV ", ret / 1000); 1181 } 1182 1183 if (constraints->uV_offset) 1184 count += scnprintf(buf + count, len - count, "%dmV offset ", 1185 constraints->uV_offset / 1000); 1186 1187 if (constraints->min_uA && constraints->max_uA) { 1188 if (constraints->min_uA == constraints->max_uA) 1189 count += scnprintf(buf + count, len - count, "%d mA ", 1190 constraints->min_uA / 1000); 1191 else 1192 count += scnprintf(buf + count, len - count, 1193 "%d <--> %d mA ", 1194 constraints->min_uA / 1000, 1195 constraints->max_uA / 1000); 1196 } 1197 1198 if (!constraints->min_uA || 1199 constraints->min_uA != constraints->max_uA) { 1200 ret = _regulator_get_current_limit(rdev); 1201 if (ret > 0) 1202 count += scnprintf(buf + count, len - count, 1203 "at %d mA ", ret / 1000); 1204 } 1205 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1207 count += scnprintf(buf + count, len - count, "fast "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1209 count += scnprintf(buf + count, len - count, "normal "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1211 count += scnprintf(buf + count, len - count, "idle "); 1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1213 count += scnprintf(buf + count, len - count, "standby "); 1214 1215 if (!count) 1216 count = scnprintf(buf, len, "no parameters"); 1217 else 1218 --count; 1219 1220 count += scnprintf(buf + count, len - count, ", %s", 1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1222 1223 rdev_dbg(rdev, "%s\n", buf); 1224 } 1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1228 1229 static void print_constraints(struct regulator_dev *rdev) 1230 { 1231 struct regulation_constraints *constraints = rdev->constraints; 1232 1233 print_constraints_debug(rdev); 1234 1235 if ((constraints->min_uV != constraints->max_uV) && 1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1237 rdev_warn(rdev, 1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1239 } 1240 1241 static int machine_constraints_voltage(struct regulator_dev *rdev, 1242 struct regulation_constraints *constraints) 1243 { 1244 const struct regulator_ops *ops = rdev->desc->ops; 1245 int ret; 1246 1247 /* do we need to apply the constraint voltage */ 1248 if (rdev->constraints->apply_uV && 1249 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1250 int target_min, target_max; 1251 int current_uV = regulator_get_voltage_rdev(rdev); 1252 1253 if (current_uV == -ENOTRECOVERABLE) { 1254 /* This regulator can't be read and must be initialized */ 1255 rdev_info(rdev, "Setting %d-%duV\n", 1256 rdev->constraints->min_uV, 1257 rdev->constraints->max_uV); 1258 _regulator_do_set_voltage(rdev, 1259 rdev->constraints->min_uV, 1260 rdev->constraints->max_uV); 1261 current_uV = regulator_get_voltage_rdev(rdev); 1262 } 1263 1264 if (current_uV < 0) { 1265 if (current_uV != -EPROBE_DEFER) 1266 rdev_err(rdev, 1267 "failed to get the current voltage: %pe\n", 1268 ERR_PTR(current_uV)); 1269 return current_uV; 1270 } 1271 1272 /* 1273 * If we're below the minimum voltage move up to the 1274 * minimum voltage, if we're above the maximum voltage 1275 * then move down to the maximum. 1276 */ 1277 target_min = current_uV; 1278 target_max = current_uV; 1279 1280 if (current_uV < rdev->constraints->min_uV) { 1281 target_min = rdev->constraints->min_uV; 1282 target_max = rdev->constraints->min_uV; 1283 } 1284 1285 if (current_uV > rdev->constraints->max_uV) { 1286 target_min = rdev->constraints->max_uV; 1287 target_max = rdev->constraints->max_uV; 1288 } 1289 1290 if (target_min != current_uV || target_max != current_uV) { 1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1292 current_uV, target_min, target_max); 1293 ret = _regulator_do_set_voltage( 1294 rdev, target_min, target_max); 1295 if (ret < 0) { 1296 rdev_err(rdev, 1297 "failed to apply %d-%duV constraint: %pe\n", 1298 target_min, target_max, ERR_PTR(ret)); 1299 return ret; 1300 } 1301 } 1302 } 1303 1304 /* constrain machine-level voltage specs to fit 1305 * the actual range supported by this regulator. 1306 */ 1307 if (ops->list_voltage && rdev->desc->n_voltages) { 1308 int count = rdev->desc->n_voltages; 1309 int i; 1310 int min_uV = INT_MAX; 1311 int max_uV = INT_MIN; 1312 int cmin = constraints->min_uV; 1313 int cmax = constraints->max_uV; 1314 1315 /* it's safe to autoconfigure fixed-voltage supplies 1316 * and the constraints are used by list_voltage. 1317 */ 1318 if (count == 1 && !cmin) { 1319 cmin = 1; 1320 cmax = INT_MAX; 1321 constraints->min_uV = cmin; 1322 constraints->max_uV = cmax; 1323 } 1324 1325 /* voltage constraints are optional */ 1326 if ((cmin == 0) && (cmax == 0)) 1327 return 0; 1328 1329 /* else require explicit machine-level constraints */ 1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1331 rdev_err(rdev, "invalid voltage constraints\n"); 1332 return -EINVAL; 1333 } 1334 1335 /* no need to loop voltages if range is continuous */ 1336 if (rdev->desc->continuous_voltage_range) 1337 return 0; 1338 1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1340 for (i = 0; i < count; i++) { 1341 int value; 1342 1343 value = ops->list_voltage(rdev, i); 1344 if (value <= 0) 1345 continue; 1346 1347 /* maybe adjust [min_uV..max_uV] */ 1348 if (value >= cmin && value < min_uV) 1349 min_uV = value; 1350 if (value <= cmax && value > max_uV) 1351 max_uV = value; 1352 } 1353 1354 /* final: [min_uV..max_uV] valid iff constraints valid */ 1355 if (max_uV < min_uV) { 1356 rdev_err(rdev, 1357 "unsupportable voltage constraints %u-%uuV\n", 1358 min_uV, max_uV); 1359 return -EINVAL; 1360 } 1361 1362 /* use regulator's subset of machine constraints */ 1363 if (constraints->min_uV < min_uV) { 1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1365 constraints->min_uV, min_uV); 1366 constraints->min_uV = min_uV; 1367 } 1368 if (constraints->max_uV > max_uV) { 1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1370 constraints->max_uV, max_uV); 1371 constraints->max_uV = max_uV; 1372 } 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int machine_constraints_current(struct regulator_dev *rdev, 1379 struct regulation_constraints *constraints) 1380 { 1381 const struct regulator_ops *ops = rdev->desc->ops; 1382 int ret; 1383 1384 if (!constraints->min_uA && !constraints->max_uA) 1385 return 0; 1386 1387 if (constraints->min_uA > constraints->max_uA) { 1388 rdev_err(rdev, "Invalid current constraints\n"); 1389 return -EINVAL; 1390 } 1391 1392 if (!ops->set_current_limit || !ops->get_current_limit) { 1393 rdev_warn(rdev, "Operation of current configuration missing\n"); 1394 return 0; 1395 } 1396 1397 /* Set regulator current in constraints range */ 1398 ret = ops->set_current_limit(rdev, constraints->min_uA, 1399 constraints->max_uA); 1400 if (ret < 0) { 1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1402 return ret; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int _regulator_do_enable(struct regulator_dev *rdev); 1409 1410 static int notif_set_limit(struct regulator_dev *rdev, 1411 int (*set)(struct regulator_dev *, int, int, bool), 1412 int limit, int severity) 1413 { 1414 bool enable; 1415 1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1417 enable = false; 1418 limit = 0; 1419 } else { 1420 enable = true; 1421 } 1422 1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1424 limit = 0; 1425 1426 return set(rdev, limit, severity, enable); 1427 } 1428 1429 static int handle_notify_limits(struct regulator_dev *rdev, 1430 int (*set)(struct regulator_dev *, int, int, bool), 1431 struct notification_limit *limits) 1432 { 1433 int ret = 0; 1434 1435 if (!set) 1436 return -EOPNOTSUPP; 1437 1438 if (limits->prot) 1439 ret = notif_set_limit(rdev, set, limits->prot, 1440 REGULATOR_SEVERITY_PROT); 1441 if (ret) 1442 return ret; 1443 1444 if (limits->err) 1445 ret = notif_set_limit(rdev, set, limits->err, 1446 REGULATOR_SEVERITY_ERR); 1447 if (ret) 1448 return ret; 1449 1450 if (limits->warn) 1451 ret = notif_set_limit(rdev, set, limits->warn, 1452 REGULATOR_SEVERITY_WARN); 1453 1454 return ret; 1455 } 1456 /** 1457 * set_machine_constraints - sets regulator constraints 1458 * @rdev: regulator source 1459 * 1460 * Allows platform initialisation code to define and constrain 1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1462 * Constraints *must* be set by platform code in order for some 1463 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1464 * set_mode. 1465 */ 1466 static int set_machine_constraints(struct regulator_dev *rdev) 1467 { 1468 int ret = 0; 1469 const struct regulator_ops *ops = rdev->desc->ops; 1470 1471 ret = machine_constraints_voltage(rdev, rdev->constraints); 1472 if (ret != 0) 1473 return ret; 1474 1475 ret = machine_constraints_current(rdev, rdev->constraints); 1476 if (ret != 0) 1477 return ret; 1478 1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1480 ret = ops->set_input_current_limit(rdev, 1481 rdev->constraints->ilim_uA); 1482 if (ret < 0) { 1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1484 return ret; 1485 } 1486 } 1487 1488 /* do we need to setup our suspend state */ 1489 if (rdev->constraints->initial_state) { 1490 ret = suspend_set_initial_state(rdev); 1491 if (ret < 0) { 1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1493 return ret; 1494 } 1495 } 1496 1497 if (rdev->constraints->initial_mode) { 1498 if (!ops->set_mode) { 1499 rdev_err(rdev, "no set_mode operation\n"); 1500 return -EINVAL; 1501 } 1502 1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1504 if (ret < 0) { 1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1506 return ret; 1507 } 1508 } else if (rdev->constraints->system_load) { 1509 /* 1510 * We'll only apply the initial system load if an 1511 * initial mode wasn't specified. 1512 */ 1513 drms_uA_update(rdev); 1514 } 1515 1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1517 && ops->set_ramp_delay) { 1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1519 if (ret < 0) { 1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1521 return ret; 1522 } 1523 } 1524 1525 if (rdev->constraints->pull_down && ops->set_pull_down) { 1526 ret = ops->set_pull_down(rdev); 1527 if (ret < 0) { 1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1529 return ret; 1530 } 1531 } 1532 1533 if (rdev->constraints->soft_start && ops->set_soft_start) { 1534 ret = ops->set_soft_start(rdev); 1535 if (ret < 0) { 1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1537 return ret; 1538 } 1539 } 1540 1541 /* 1542 * Existing logic does not warn if over_current_protection is given as 1543 * a constraint but driver does not support that. I think we should 1544 * warn about this type of issues as it is possible someone changes 1545 * PMIC on board to another type - and the another PMIC's driver does 1546 * not support setting protection. Board composer may happily believe 1547 * the DT limits are respected - especially if the new PMIC HW also 1548 * supports protection but the driver does not. I won't change the logic 1549 * without hearing more experienced opinion on this though. 1550 * 1551 * If warning is seen as a good idea then we can merge handling the 1552 * over-curret protection and detection and get rid of this special 1553 * handling. 1554 */ 1555 if (rdev->constraints->over_current_protection 1556 && ops->set_over_current_protection) { 1557 int lim = rdev->constraints->over_curr_limits.prot; 1558 1559 ret = ops->set_over_current_protection(rdev, lim, 1560 REGULATOR_SEVERITY_PROT, 1561 true); 1562 if (ret < 0) { 1563 rdev_err(rdev, "failed to set over current protection: %pe\n", 1564 ERR_PTR(ret)); 1565 return ret; 1566 } 1567 } 1568 1569 if (rdev->constraints->over_current_detection) 1570 ret = handle_notify_limits(rdev, 1571 ops->set_over_current_protection, 1572 &rdev->constraints->over_curr_limits); 1573 if (ret) { 1574 if (ret != -EOPNOTSUPP) { 1575 rdev_err(rdev, "failed to set over current limits: %pe\n", 1576 ERR_PTR(ret)); 1577 return ret; 1578 } 1579 rdev_warn(rdev, 1580 "IC does not support requested over-current limits\n"); 1581 } 1582 1583 if (rdev->constraints->over_voltage_detection) 1584 ret = handle_notify_limits(rdev, 1585 ops->set_over_voltage_protection, 1586 &rdev->constraints->over_voltage_limits); 1587 if (ret) { 1588 if (ret != -EOPNOTSUPP) { 1589 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1590 ERR_PTR(ret)); 1591 return ret; 1592 } 1593 rdev_warn(rdev, 1594 "IC does not support requested over voltage limits\n"); 1595 } 1596 1597 if (rdev->constraints->under_voltage_detection) 1598 ret = handle_notify_limits(rdev, 1599 ops->set_under_voltage_protection, 1600 &rdev->constraints->under_voltage_limits); 1601 if (ret) { 1602 if (ret != -EOPNOTSUPP) { 1603 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1604 ERR_PTR(ret)); 1605 return ret; 1606 } 1607 rdev_warn(rdev, 1608 "IC does not support requested under voltage limits\n"); 1609 } 1610 1611 if (rdev->constraints->over_temp_detection) 1612 ret = handle_notify_limits(rdev, 1613 ops->set_thermal_protection, 1614 &rdev->constraints->temp_limits); 1615 if (ret) { 1616 if (ret != -EOPNOTSUPP) { 1617 rdev_err(rdev, "failed to set temperature limits %pe\n", 1618 ERR_PTR(ret)); 1619 return ret; 1620 } 1621 rdev_warn(rdev, 1622 "IC does not support requested temperature limits\n"); 1623 } 1624 1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1626 bool ad_state = (rdev->constraints->active_discharge == 1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1628 1629 ret = ops->set_active_discharge(rdev, ad_state); 1630 if (ret < 0) { 1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1632 return ret; 1633 } 1634 } 1635 1636 /* 1637 * If there is no mechanism for controlling the regulator then 1638 * flag it as always_on so we don't end up duplicating checks 1639 * for this so much. Note that we could control the state of 1640 * a supply to control the output on a regulator that has no 1641 * direct control. 1642 */ 1643 if (!rdev->ena_pin && !ops->enable) { 1644 if (rdev->supply_name && !rdev->supply) 1645 return -EPROBE_DEFER; 1646 1647 if (rdev->supply) 1648 rdev->constraints->always_on = 1649 rdev->supply->rdev->constraints->always_on; 1650 else 1651 rdev->constraints->always_on = true; 1652 } 1653 1654 /* If the constraints say the regulator should be on at this point 1655 * and we have control then make sure it is enabled. 1656 */ 1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1658 /* If we want to enable this regulator, make sure that we know 1659 * the supplying regulator. 1660 */ 1661 if (rdev->supply_name && !rdev->supply) 1662 return -EPROBE_DEFER; 1663 1664 /* If supplying regulator has already been enabled, 1665 * it's not intended to have use_count increment 1666 * when rdev is only boot-on. 1667 */ 1668 if (rdev->supply && 1669 (rdev->constraints->always_on || 1670 !regulator_is_enabled(rdev->supply))) { 1671 ret = regulator_enable(rdev->supply); 1672 if (ret < 0) { 1673 _regulator_put(rdev->supply); 1674 rdev->supply = NULL; 1675 return ret; 1676 } 1677 } 1678 1679 ret = _regulator_do_enable(rdev); 1680 if (ret < 0 && ret != -EINVAL) { 1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1682 return ret; 1683 } 1684 1685 if (rdev->constraints->always_on) 1686 rdev->use_count++; 1687 } else if (rdev->desc->off_on_delay) { 1688 rdev->last_off = ktime_get(); 1689 } 1690 1691 print_constraints(rdev); 1692 return 0; 1693 } 1694 1695 /** 1696 * set_supply - set regulator supply regulator 1697 * @rdev: regulator (locked) 1698 * @supply_rdev: supply regulator (locked)) 1699 * 1700 * Called by platform initialisation code to set the supply regulator for this 1701 * regulator. This ensures that a regulators supply will also be enabled by the 1702 * core if it's child is enabled. 1703 */ 1704 static int set_supply(struct regulator_dev *rdev, 1705 struct regulator_dev *supply_rdev) 1706 { 1707 int err; 1708 1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1710 1711 if (!try_module_get(supply_rdev->owner)) 1712 return -ENODEV; 1713 1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1715 if (rdev->supply == NULL) { 1716 module_put(supply_rdev->owner); 1717 err = -ENOMEM; 1718 return err; 1719 } 1720 supply_rdev->open_count++; 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1727 * @rdev: regulator source 1728 * @consumer_dev_name: dev_name() string for device supply applies to 1729 * @supply: symbolic name for supply 1730 * 1731 * Allows platform initialisation code to map physical regulator 1732 * sources to symbolic names for supplies for use by devices. Devices 1733 * should use these symbolic names to request regulators, avoiding the 1734 * need to provide board-specific regulator names as platform data. 1735 */ 1736 static int set_consumer_device_supply(struct regulator_dev *rdev, 1737 const char *consumer_dev_name, 1738 const char *supply) 1739 { 1740 struct regulator_map *node, *new_node; 1741 int has_dev; 1742 1743 if (supply == NULL) 1744 return -EINVAL; 1745 1746 if (consumer_dev_name != NULL) 1747 has_dev = 1; 1748 else 1749 has_dev = 0; 1750 1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1752 if (new_node == NULL) 1753 return -ENOMEM; 1754 1755 new_node->regulator = rdev; 1756 new_node->supply = supply; 1757 1758 if (has_dev) { 1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1760 if (new_node->dev_name == NULL) { 1761 kfree(new_node); 1762 return -ENOMEM; 1763 } 1764 } 1765 1766 mutex_lock(®ulator_list_mutex); 1767 list_for_each_entry(node, ®ulator_map_list, list) { 1768 if (node->dev_name && consumer_dev_name) { 1769 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1770 continue; 1771 } else if (node->dev_name || consumer_dev_name) { 1772 continue; 1773 } 1774 1775 if (strcmp(node->supply, supply) != 0) 1776 continue; 1777 1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1779 consumer_dev_name, 1780 dev_name(&node->regulator->dev), 1781 node->regulator->desc->name, 1782 supply, 1783 dev_name(&rdev->dev), rdev_get_name(rdev)); 1784 goto fail; 1785 } 1786 1787 list_add(&new_node->list, ®ulator_map_list); 1788 mutex_unlock(®ulator_list_mutex); 1789 1790 return 0; 1791 1792 fail: 1793 mutex_unlock(®ulator_list_mutex); 1794 kfree(new_node->dev_name); 1795 kfree(new_node); 1796 return -EBUSY; 1797 } 1798 1799 static void unset_regulator_supplies(struct regulator_dev *rdev) 1800 { 1801 struct regulator_map *node, *n; 1802 1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1804 if (rdev == node->regulator) { 1805 list_del(&node->list); 1806 kfree(node->dev_name); 1807 kfree(node); 1808 } 1809 } 1810 } 1811 1812 #ifdef CONFIG_DEBUG_FS 1813 static ssize_t constraint_flags_read_file(struct file *file, 1814 char __user *user_buf, 1815 size_t count, loff_t *ppos) 1816 { 1817 const struct regulator *regulator = file->private_data; 1818 const struct regulation_constraints *c = regulator->rdev->constraints; 1819 char *buf; 1820 ssize_t ret; 1821 1822 if (!c) 1823 return 0; 1824 1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1826 if (!buf) 1827 return -ENOMEM; 1828 1829 ret = snprintf(buf, PAGE_SIZE, 1830 "always_on: %u\n" 1831 "boot_on: %u\n" 1832 "apply_uV: %u\n" 1833 "ramp_disable: %u\n" 1834 "soft_start: %u\n" 1835 "pull_down: %u\n" 1836 "over_current_protection: %u\n", 1837 c->always_on, 1838 c->boot_on, 1839 c->apply_uV, 1840 c->ramp_disable, 1841 c->soft_start, 1842 c->pull_down, 1843 c->over_current_protection); 1844 1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1846 kfree(buf); 1847 1848 return ret; 1849 } 1850 1851 #endif 1852 1853 static const struct file_operations constraint_flags_fops = { 1854 #ifdef CONFIG_DEBUG_FS 1855 .open = simple_open, 1856 .read = constraint_flags_read_file, 1857 .llseek = default_llseek, 1858 #endif 1859 }; 1860 1861 #define REG_STR_SIZE 64 1862 1863 static struct regulator *create_regulator(struct regulator_dev *rdev, 1864 struct device *dev, 1865 const char *supply_name) 1866 { 1867 struct regulator *regulator; 1868 int err = 0; 1869 1870 lockdep_assert_held_once(&rdev->mutex.base); 1871 1872 if (dev) { 1873 char buf[REG_STR_SIZE]; 1874 int size; 1875 1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1877 dev->kobj.name, supply_name); 1878 if (size >= REG_STR_SIZE) 1879 return NULL; 1880 1881 supply_name = kstrdup(buf, GFP_KERNEL); 1882 if (supply_name == NULL) 1883 return NULL; 1884 } else { 1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1886 if (supply_name == NULL) 1887 return NULL; 1888 } 1889 1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1891 if (regulator == NULL) { 1892 kfree_const(supply_name); 1893 return NULL; 1894 } 1895 1896 regulator->rdev = rdev; 1897 regulator->supply_name = supply_name; 1898 1899 list_add(®ulator->list, &rdev->consumer_list); 1900 1901 if (dev) { 1902 regulator->dev = dev; 1903 1904 /* Add a link to the device sysfs entry */ 1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1906 supply_name); 1907 if (err) { 1908 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1909 dev->kobj.name, ERR_PTR(err)); 1910 /* non-fatal */ 1911 } 1912 } 1913 1914 if (err != -EEXIST) 1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1916 if (IS_ERR(regulator->debugfs)) 1917 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1918 1919 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1920 ®ulator->uA_load); 1921 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1922 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1923 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1924 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1925 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1926 regulator, &constraint_flags_fops); 1927 1928 /* 1929 * Check now if the regulator is an always on regulator - if 1930 * it is then we don't need to do nearly so much work for 1931 * enable/disable calls. 1932 */ 1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1934 _regulator_is_enabled(rdev)) 1935 regulator->always_on = true; 1936 1937 return regulator; 1938 } 1939 1940 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1941 { 1942 if (rdev->constraints && rdev->constraints->enable_time) 1943 return rdev->constraints->enable_time; 1944 if (rdev->desc->ops->enable_time) 1945 return rdev->desc->ops->enable_time(rdev); 1946 return rdev->desc->enable_time; 1947 } 1948 1949 static struct regulator_supply_alias *regulator_find_supply_alias( 1950 struct device *dev, const char *supply) 1951 { 1952 struct regulator_supply_alias *map; 1953 1954 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1956 return map; 1957 1958 return NULL; 1959 } 1960 1961 static void regulator_supply_alias(struct device **dev, const char **supply) 1962 { 1963 struct regulator_supply_alias *map; 1964 1965 map = regulator_find_supply_alias(*dev, *supply); 1966 if (map) { 1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1968 *supply, map->alias_supply, 1969 dev_name(map->alias_dev)); 1970 *dev = map->alias_dev; 1971 *supply = map->alias_supply; 1972 } 1973 } 1974 1975 static int regulator_match(struct device *dev, const void *data) 1976 { 1977 struct regulator_dev *r = dev_to_rdev(dev); 1978 1979 return strcmp(rdev_get_name(r), data) == 0; 1980 } 1981 1982 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1983 { 1984 struct device *dev; 1985 1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1987 1988 return dev ? dev_to_rdev(dev) : NULL; 1989 } 1990 1991 /** 1992 * regulator_dev_lookup - lookup a regulator device. 1993 * @dev: device for regulator "consumer". 1994 * @supply: Supply name or regulator ID. 1995 * 1996 * If successful, returns a struct regulator_dev that corresponds to the name 1997 * @supply and with the embedded struct device refcount incremented by one. 1998 * The refcount must be dropped by calling put_device(). 1999 * On failure one of the following ERR-PTR-encoded values is returned: 2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 2001 * in the future. 2002 */ 2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2004 const char *supply) 2005 { 2006 struct regulator_dev *r = NULL; 2007 struct device_node *node; 2008 struct regulator_map *map; 2009 const char *devname = NULL; 2010 2011 regulator_supply_alias(&dev, &supply); 2012 2013 /* first do a dt based lookup */ 2014 if (dev && dev->of_node) { 2015 node = of_get_regulator(dev, supply); 2016 if (node) { 2017 r = of_find_regulator_by_node(node); 2018 of_node_put(node); 2019 if (r) 2020 return r; 2021 2022 /* 2023 * We have a node, but there is no device. 2024 * assume it has not registered yet. 2025 */ 2026 return ERR_PTR(-EPROBE_DEFER); 2027 } 2028 } 2029 2030 /* if not found, try doing it non-dt way */ 2031 if (dev) 2032 devname = dev_name(dev); 2033 2034 mutex_lock(®ulator_list_mutex); 2035 list_for_each_entry(map, ®ulator_map_list, list) { 2036 /* If the mapping has a device set up it must match */ 2037 if (map->dev_name && 2038 (!devname || strcmp(map->dev_name, devname))) 2039 continue; 2040 2041 if (strcmp(map->supply, supply) == 0 && 2042 get_device(&map->regulator->dev)) { 2043 r = map->regulator; 2044 break; 2045 } 2046 } 2047 mutex_unlock(®ulator_list_mutex); 2048 2049 if (r) 2050 return r; 2051 2052 r = regulator_lookup_by_name(supply); 2053 if (r) 2054 return r; 2055 2056 return ERR_PTR(-ENODEV); 2057 } 2058 2059 static int regulator_resolve_supply(struct regulator_dev *rdev) 2060 { 2061 struct regulator_dev *r; 2062 struct device *dev = rdev->dev.parent; 2063 struct ww_acquire_ctx ww_ctx; 2064 int ret = 0; 2065 2066 /* No supply to resolve? */ 2067 if (!rdev->supply_name) 2068 return 0; 2069 2070 /* Supply already resolved? (fast-path without locking contention) */ 2071 if (rdev->supply) 2072 return 0; 2073 2074 r = regulator_dev_lookup(dev, rdev->supply_name); 2075 if (IS_ERR(r)) { 2076 ret = PTR_ERR(r); 2077 2078 /* Did the lookup explicitly defer for us? */ 2079 if (ret == -EPROBE_DEFER) 2080 goto out; 2081 2082 if (have_full_constraints()) { 2083 r = dummy_regulator_rdev; 2084 get_device(&r->dev); 2085 } else { 2086 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2087 rdev->supply_name, rdev->desc->name); 2088 ret = -EPROBE_DEFER; 2089 goto out; 2090 } 2091 } 2092 2093 if (r == rdev) { 2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2095 rdev->desc->name, rdev->supply_name); 2096 if (!have_full_constraints()) { 2097 ret = -EINVAL; 2098 goto out; 2099 } 2100 r = dummy_regulator_rdev; 2101 get_device(&r->dev); 2102 } 2103 2104 /* 2105 * If the supply's parent device is not the same as the 2106 * regulator's parent device, then ensure the parent device 2107 * is bound before we resolve the supply, in case the parent 2108 * device get probe deferred and unregisters the supply. 2109 */ 2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2111 if (!device_is_bound(r->dev.parent)) { 2112 put_device(&r->dev); 2113 ret = -EPROBE_DEFER; 2114 goto out; 2115 } 2116 } 2117 2118 /* Recursively resolve the supply of the supply */ 2119 ret = regulator_resolve_supply(r); 2120 if (ret < 0) { 2121 put_device(&r->dev); 2122 goto out; 2123 } 2124 2125 /* 2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2127 * between rdev->supply null check and setting rdev->supply in 2128 * set_supply() from concurrent tasks. 2129 */ 2130 regulator_lock_two(rdev, r, &ww_ctx); 2131 2132 /* Supply just resolved by a concurrent task? */ 2133 if (rdev->supply) { 2134 regulator_unlock_two(rdev, r, &ww_ctx); 2135 put_device(&r->dev); 2136 goto out; 2137 } 2138 2139 ret = set_supply(rdev, r); 2140 if (ret < 0) { 2141 regulator_unlock_two(rdev, r, &ww_ctx); 2142 put_device(&r->dev); 2143 goto out; 2144 } 2145 2146 regulator_unlock_two(rdev, r, &ww_ctx); 2147 2148 /* 2149 * In set_machine_constraints() we may have turned this regulator on 2150 * but we couldn't propagate to the supply if it hadn't been resolved 2151 * yet. Do it now. 2152 */ 2153 if (rdev->use_count) { 2154 ret = regulator_enable(rdev->supply); 2155 if (ret < 0) { 2156 _regulator_put(rdev->supply); 2157 rdev->supply = NULL; 2158 goto out; 2159 } 2160 } 2161 2162 out: 2163 return ret; 2164 } 2165 2166 /* Internal regulator request function */ 2167 struct regulator *_regulator_get(struct device *dev, const char *id, 2168 enum regulator_get_type get_type) 2169 { 2170 struct regulator_dev *rdev; 2171 struct regulator *regulator; 2172 struct device_link *link; 2173 int ret; 2174 2175 if (get_type >= MAX_GET_TYPE) { 2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2177 return ERR_PTR(-EINVAL); 2178 } 2179 2180 if (id == NULL) { 2181 pr_err("get() with no identifier\n"); 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 rdev = regulator_dev_lookup(dev, id); 2186 if (IS_ERR(rdev)) { 2187 ret = PTR_ERR(rdev); 2188 2189 /* 2190 * If regulator_dev_lookup() fails with error other 2191 * than -ENODEV our job here is done, we simply return it. 2192 */ 2193 if (ret != -ENODEV) 2194 return ERR_PTR(ret); 2195 2196 if (!have_full_constraints()) { 2197 dev_warn(dev, 2198 "incomplete constraints, dummy supplies not allowed\n"); 2199 return ERR_PTR(-ENODEV); 2200 } 2201 2202 switch (get_type) { 2203 case NORMAL_GET: 2204 /* 2205 * Assume that a regulator is physically present and 2206 * enabled, even if it isn't hooked up, and just 2207 * provide a dummy. 2208 */ 2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2210 rdev = dummy_regulator_rdev; 2211 get_device(&rdev->dev); 2212 break; 2213 2214 case EXCLUSIVE_GET: 2215 dev_warn(dev, 2216 "dummy supplies not allowed for exclusive requests\n"); 2217 fallthrough; 2218 2219 default: 2220 return ERR_PTR(-ENODEV); 2221 } 2222 } 2223 2224 if (rdev->exclusive) { 2225 regulator = ERR_PTR(-EPERM); 2226 put_device(&rdev->dev); 2227 return regulator; 2228 } 2229 2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2231 regulator = ERR_PTR(-EBUSY); 2232 put_device(&rdev->dev); 2233 return regulator; 2234 } 2235 2236 mutex_lock(®ulator_list_mutex); 2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2238 mutex_unlock(®ulator_list_mutex); 2239 2240 if (ret != 0) { 2241 regulator = ERR_PTR(-EPROBE_DEFER); 2242 put_device(&rdev->dev); 2243 return regulator; 2244 } 2245 2246 ret = regulator_resolve_supply(rdev); 2247 if (ret < 0) { 2248 regulator = ERR_PTR(ret); 2249 put_device(&rdev->dev); 2250 return regulator; 2251 } 2252 2253 if (!try_module_get(rdev->owner)) { 2254 regulator = ERR_PTR(-EPROBE_DEFER); 2255 put_device(&rdev->dev); 2256 return regulator; 2257 } 2258 2259 regulator_lock(rdev); 2260 regulator = create_regulator(rdev, dev, id); 2261 regulator_unlock(rdev); 2262 if (regulator == NULL) { 2263 regulator = ERR_PTR(-ENOMEM); 2264 module_put(rdev->owner); 2265 put_device(&rdev->dev); 2266 return regulator; 2267 } 2268 2269 rdev->open_count++; 2270 if (get_type == EXCLUSIVE_GET) { 2271 rdev->exclusive = 1; 2272 2273 ret = _regulator_is_enabled(rdev); 2274 if (ret > 0) { 2275 rdev->use_count = 1; 2276 regulator->enable_count = 1; 2277 } else { 2278 rdev->use_count = 0; 2279 regulator->enable_count = 0; 2280 } 2281 } 2282 2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2284 if (!IS_ERR_OR_NULL(link)) 2285 regulator->device_link = true; 2286 2287 return regulator; 2288 } 2289 2290 /** 2291 * regulator_get - lookup and obtain a reference to a regulator. 2292 * @dev: device for regulator "consumer" 2293 * @id: Supply name or regulator ID. 2294 * 2295 * Returns a struct regulator corresponding to the regulator producer, 2296 * or IS_ERR() condition containing errno. 2297 * 2298 * Use of supply names configured via set_consumer_device_supply() is 2299 * strongly encouraged. It is recommended that the supply name used 2300 * should match the name used for the supply and/or the relevant 2301 * device pins in the datasheet. 2302 */ 2303 struct regulator *regulator_get(struct device *dev, const char *id) 2304 { 2305 return _regulator_get(dev, id, NORMAL_GET); 2306 } 2307 EXPORT_SYMBOL_GPL(regulator_get); 2308 2309 /** 2310 * regulator_get_exclusive - obtain exclusive access to a regulator. 2311 * @dev: device for regulator "consumer" 2312 * @id: Supply name or regulator ID. 2313 * 2314 * Returns a struct regulator corresponding to the regulator producer, 2315 * or IS_ERR() condition containing errno. Other consumers will be 2316 * unable to obtain this regulator while this reference is held and the 2317 * use count for the regulator will be initialised to reflect the current 2318 * state of the regulator. 2319 * 2320 * This is intended for use by consumers which cannot tolerate shared 2321 * use of the regulator such as those which need to force the 2322 * regulator off for correct operation of the hardware they are 2323 * controlling. 2324 * 2325 * Use of supply names configured via set_consumer_device_supply() is 2326 * strongly encouraged. It is recommended that the supply name used 2327 * should match the name used for the supply and/or the relevant 2328 * device pins in the datasheet. 2329 */ 2330 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2331 { 2332 return _regulator_get(dev, id, EXCLUSIVE_GET); 2333 } 2334 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2335 2336 /** 2337 * regulator_get_optional - obtain optional access to a regulator. 2338 * @dev: device for regulator "consumer" 2339 * @id: Supply name or regulator ID. 2340 * 2341 * Returns a struct regulator corresponding to the regulator producer, 2342 * or IS_ERR() condition containing errno. 2343 * 2344 * This is intended for use by consumers for devices which can have 2345 * some supplies unconnected in normal use, such as some MMC devices. 2346 * It can allow the regulator core to provide stub supplies for other 2347 * supplies requested using normal regulator_get() calls without 2348 * disrupting the operation of drivers that can handle absent 2349 * supplies. 2350 * 2351 * Use of supply names configured via set_consumer_device_supply() is 2352 * strongly encouraged. It is recommended that the supply name used 2353 * should match the name used for the supply and/or the relevant 2354 * device pins in the datasheet. 2355 */ 2356 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2357 { 2358 return _regulator_get(dev, id, OPTIONAL_GET); 2359 } 2360 EXPORT_SYMBOL_GPL(regulator_get_optional); 2361 2362 static void destroy_regulator(struct regulator *regulator) 2363 { 2364 struct regulator_dev *rdev = regulator->rdev; 2365 2366 debugfs_remove_recursive(regulator->debugfs); 2367 2368 if (regulator->dev) { 2369 if (regulator->device_link) 2370 device_link_remove(regulator->dev, &rdev->dev); 2371 2372 /* remove any sysfs entries */ 2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2374 } 2375 2376 regulator_lock(rdev); 2377 list_del(®ulator->list); 2378 2379 rdev->open_count--; 2380 rdev->exclusive = 0; 2381 regulator_unlock(rdev); 2382 2383 kfree_const(regulator->supply_name); 2384 kfree(regulator); 2385 } 2386 2387 /* regulator_list_mutex lock held by regulator_put() */ 2388 static void _regulator_put(struct regulator *regulator) 2389 { 2390 struct regulator_dev *rdev; 2391 2392 if (IS_ERR_OR_NULL(regulator)) 2393 return; 2394 2395 lockdep_assert_held_once(®ulator_list_mutex); 2396 2397 /* Docs say you must disable before calling regulator_put() */ 2398 WARN_ON(regulator->enable_count); 2399 2400 rdev = regulator->rdev; 2401 2402 destroy_regulator(regulator); 2403 2404 module_put(rdev->owner); 2405 put_device(&rdev->dev); 2406 } 2407 2408 /** 2409 * regulator_put - "free" the regulator source 2410 * @regulator: regulator source 2411 * 2412 * Note: drivers must ensure that all regulator_enable calls made on this 2413 * regulator source are balanced by regulator_disable calls prior to calling 2414 * this function. 2415 */ 2416 void regulator_put(struct regulator *regulator) 2417 { 2418 mutex_lock(®ulator_list_mutex); 2419 _regulator_put(regulator); 2420 mutex_unlock(®ulator_list_mutex); 2421 } 2422 EXPORT_SYMBOL_GPL(regulator_put); 2423 2424 /** 2425 * regulator_register_supply_alias - Provide device alias for supply lookup 2426 * 2427 * @dev: device that will be given as the regulator "consumer" 2428 * @id: Supply name or regulator ID 2429 * @alias_dev: device that should be used to lookup the supply 2430 * @alias_id: Supply name or regulator ID that should be used to lookup the 2431 * supply 2432 * 2433 * All lookups for id on dev will instead be conducted for alias_id on 2434 * alias_dev. 2435 */ 2436 int regulator_register_supply_alias(struct device *dev, const char *id, 2437 struct device *alias_dev, 2438 const char *alias_id) 2439 { 2440 struct regulator_supply_alias *map; 2441 2442 map = regulator_find_supply_alias(dev, id); 2443 if (map) 2444 return -EEXIST; 2445 2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2447 if (!map) 2448 return -ENOMEM; 2449 2450 map->src_dev = dev; 2451 map->src_supply = id; 2452 map->alias_dev = alias_dev; 2453 map->alias_supply = alias_id; 2454 2455 list_add(&map->list, ®ulator_supply_alias_list); 2456 2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2458 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2463 2464 /** 2465 * regulator_unregister_supply_alias - Remove device alias 2466 * 2467 * @dev: device that will be given as the regulator "consumer" 2468 * @id: Supply name or regulator ID 2469 * 2470 * Remove a lookup alias if one exists for id on dev. 2471 */ 2472 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2473 { 2474 struct regulator_supply_alias *map; 2475 2476 map = regulator_find_supply_alias(dev, id); 2477 if (map) { 2478 list_del(&map->list); 2479 kfree(map); 2480 } 2481 } 2482 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2483 2484 /** 2485 * regulator_bulk_register_supply_alias - register multiple aliases 2486 * 2487 * @dev: device that will be given as the regulator "consumer" 2488 * @id: List of supply names or regulator IDs 2489 * @alias_dev: device that should be used to lookup the supply 2490 * @alias_id: List of supply names or regulator IDs that should be used to 2491 * lookup the supply 2492 * @num_id: Number of aliases to register 2493 * 2494 * @return 0 on success, an errno on failure. 2495 * 2496 * This helper function allows drivers to register several supply 2497 * aliases in one operation. If any of the aliases cannot be 2498 * registered any aliases that were registered will be removed 2499 * before returning to the caller. 2500 */ 2501 int regulator_bulk_register_supply_alias(struct device *dev, 2502 const char *const *id, 2503 struct device *alias_dev, 2504 const char *const *alias_id, 2505 int num_id) 2506 { 2507 int i; 2508 int ret; 2509 2510 for (i = 0; i < num_id; ++i) { 2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2512 alias_id[i]); 2513 if (ret < 0) 2514 goto err; 2515 } 2516 2517 return 0; 2518 2519 err: 2520 dev_err(dev, 2521 "Failed to create supply alias %s,%s -> %s,%s\n", 2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2523 2524 while (--i >= 0) 2525 regulator_unregister_supply_alias(dev, id[i]); 2526 2527 return ret; 2528 } 2529 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2530 2531 /** 2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2533 * 2534 * @dev: device that will be given as the regulator "consumer" 2535 * @id: List of supply names or regulator IDs 2536 * @num_id: Number of aliases to unregister 2537 * 2538 * This helper function allows drivers to unregister several supply 2539 * aliases in one operation. 2540 */ 2541 void regulator_bulk_unregister_supply_alias(struct device *dev, 2542 const char *const *id, 2543 int num_id) 2544 { 2545 int i; 2546 2547 for (i = 0; i < num_id; ++i) 2548 regulator_unregister_supply_alias(dev, id[i]); 2549 } 2550 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2551 2552 2553 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2554 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2555 const struct regulator_config *config) 2556 { 2557 struct regulator_enable_gpio *pin, *new_pin; 2558 struct gpio_desc *gpiod; 2559 2560 gpiod = config->ena_gpiod; 2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2562 2563 mutex_lock(®ulator_list_mutex); 2564 2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2566 if (pin->gpiod == gpiod) { 2567 rdev_dbg(rdev, "GPIO is already used\n"); 2568 goto update_ena_gpio_to_rdev; 2569 } 2570 } 2571 2572 if (new_pin == NULL) { 2573 mutex_unlock(®ulator_list_mutex); 2574 return -ENOMEM; 2575 } 2576 2577 pin = new_pin; 2578 new_pin = NULL; 2579 2580 pin->gpiod = gpiod; 2581 list_add(&pin->list, ®ulator_ena_gpio_list); 2582 2583 update_ena_gpio_to_rdev: 2584 pin->request_count++; 2585 rdev->ena_pin = pin; 2586 2587 mutex_unlock(®ulator_list_mutex); 2588 kfree(new_pin); 2589 2590 return 0; 2591 } 2592 2593 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2594 { 2595 struct regulator_enable_gpio *pin, *n; 2596 2597 if (!rdev->ena_pin) 2598 return; 2599 2600 /* Free the GPIO only in case of no use */ 2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2602 if (pin != rdev->ena_pin) 2603 continue; 2604 2605 if (--pin->request_count) 2606 break; 2607 2608 gpiod_put(pin->gpiod); 2609 list_del(&pin->list); 2610 kfree(pin); 2611 break; 2612 } 2613 2614 rdev->ena_pin = NULL; 2615 } 2616 2617 /** 2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2619 * @rdev: regulator_dev structure 2620 * @enable: enable GPIO at initial use? 2621 * 2622 * GPIO is enabled in case of initial use. (enable_count is 0) 2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2624 */ 2625 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2626 { 2627 struct regulator_enable_gpio *pin = rdev->ena_pin; 2628 2629 if (!pin) 2630 return -EINVAL; 2631 2632 if (enable) { 2633 /* Enable GPIO at initial use */ 2634 if (pin->enable_count == 0) 2635 gpiod_set_value_cansleep(pin->gpiod, 1); 2636 2637 pin->enable_count++; 2638 } else { 2639 if (pin->enable_count > 1) { 2640 pin->enable_count--; 2641 return 0; 2642 } 2643 2644 /* Disable GPIO if not used */ 2645 if (pin->enable_count <= 1) { 2646 gpiod_set_value_cansleep(pin->gpiod, 0); 2647 pin->enable_count = 0; 2648 } 2649 } 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * _regulator_delay_helper - a delay helper function 2656 * @delay: time to delay in microseconds 2657 * 2658 * Delay for the requested amount of time as per the guidelines in: 2659 * 2660 * Documentation/timers/timers-howto.rst 2661 * 2662 * The assumption here is that these regulator operations will never used in 2663 * atomic context and therefore sleeping functions can be used. 2664 */ 2665 static void _regulator_delay_helper(unsigned int delay) 2666 { 2667 unsigned int ms = delay / 1000; 2668 unsigned int us = delay % 1000; 2669 2670 if (ms > 0) { 2671 /* 2672 * For small enough values, handle super-millisecond 2673 * delays in the usleep_range() call below. 2674 */ 2675 if (ms < 20) 2676 us += ms * 1000; 2677 else 2678 msleep(ms); 2679 } 2680 2681 /* 2682 * Give the scheduler some room to coalesce with any other 2683 * wakeup sources. For delays shorter than 10 us, don't even 2684 * bother setting up high-resolution timers and just busy- 2685 * loop. 2686 */ 2687 if (us >= 10) 2688 usleep_range(us, us + 100); 2689 else 2690 udelay(us); 2691 } 2692 2693 /** 2694 * _regulator_check_status_enabled 2695 * 2696 * A helper function to check if the regulator status can be interpreted 2697 * as 'regulator is enabled'. 2698 * @rdev: the regulator device to check 2699 * 2700 * Return: 2701 * * 1 - if status shows regulator is in enabled state 2702 * * 0 - if not enabled state 2703 * * Error Value - as received from ops->get_status() 2704 */ 2705 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2706 { 2707 int ret = rdev->desc->ops->get_status(rdev); 2708 2709 if (ret < 0) { 2710 rdev_info(rdev, "get_status returned error: %d\n", ret); 2711 return ret; 2712 } 2713 2714 switch (ret) { 2715 case REGULATOR_STATUS_OFF: 2716 case REGULATOR_STATUS_ERROR: 2717 case REGULATOR_STATUS_UNDEFINED: 2718 return 0; 2719 default: 2720 return 1; 2721 } 2722 } 2723 2724 static int _regulator_do_enable(struct regulator_dev *rdev) 2725 { 2726 int ret, delay; 2727 2728 /* Query before enabling in case configuration dependent. */ 2729 ret = _regulator_get_enable_time(rdev); 2730 if (ret >= 0) { 2731 delay = ret; 2732 } else { 2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2734 delay = 0; 2735 } 2736 2737 trace_regulator_enable(rdev_get_name(rdev)); 2738 2739 if (rdev->desc->off_on_delay) { 2740 /* if needed, keep a distance of off_on_delay from last time 2741 * this regulator was disabled. 2742 */ 2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2745 2746 if (remaining > 0) 2747 _regulator_delay_helper(remaining); 2748 } 2749 2750 if (rdev->ena_pin) { 2751 if (!rdev->ena_gpio_state) { 2752 ret = regulator_ena_gpio_ctrl(rdev, true); 2753 if (ret < 0) 2754 return ret; 2755 rdev->ena_gpio_state = 1; 2756 } 2757 } else if (rdev->desc->ops->enable) { 2758 ret = rdev->desc->ops->enable(rdev); 2759 if (ret < 0) 2760 return ret; 2761 } else { 2762 return -EINVAL; 2763 } 2764 2765 /* Allow the regulator to ramp; it would be useful to extend 2766 * this for bulk operations so that the regulators can ramp 2767 * together. 2768 */ 2769 trace_regulator_enable_delay(rdev_get_name(rdev)); 2770 2771 /* If poll_enabled_time is set, poll upto the delay calculated 2772 * above, delaying poll_enabled_time uS to check if the regulator 2773 * actually got enabled. 2774 * If the regulator isn't enabled after our delay helper has expired, 2775 * return -ETIMEDOUT. 2776 */ 2777 if (rdev->desc->poll_enabled_time) { 2778 int time_remaining = delay; 2779 2780 while (time_remaining > 0) { 2781 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2782 2783 if (rdev->desc->ops->get_status) { 2784 ret = _regulator_check_status_enabled(rdev); 2785 if (ret < 0) 2786 return ret; 2787 else if (ret) 2788 break; 2789 } else if (rdev->desc->ops->is_enabled(rdev)) 2790 break; 2791 2792 time_remaining -= rdev->desc->poll_enabled_time; 2793 } 2794 2795 if (time_remaining <= 0) { 2796 rdev_err(rdev, "Enabled check timed out\n"); 2797 return -ETIMEDOUT; 2798 } 2799 } else { 2800 _regulator_delay_helper(delay); 2801 } 2802 2803 trace_regulator_enable_complete(rdev_get_name(rdev)); 2804 2805 return 0; 2806 } 2807 2808 /** 2809 * _regulator_handle_consumer_enable - handle that a consumer enabled 2810 * @regulator: regulator source 2811 * 2812 * Some things on a regulator consumer (like the contribution towards total 2813 * load on the regulator) only have an effect when the consumer wants the 2814 * regulator enabled. Explained in example with two consumers of the same 2815 * regulator: 2816 * consumer A: set_load(100); => total load = 0 2817 * consumer A: regulator_enable(); => total load = 100 2818 * consumer B: set_load(1000); => total load = 100 2819 * consumer B: regulator_enable(); => total load = 1100 2820 * consumer A: regulator_disable(); => total_load = 1000 2821 * 2822 * This function (together with _regulator_handle_consumer_disable) is 2823 * responsible for keeping track of the refcount for a given regulator consumer 2824 * and applying / unapplying these things. 2825 * 2826 * Returns 0 upon no error; -error upon error. 2827 */ 2828 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2829 { 2830 int ret; 2831 struct regulator_dev *rdev = regulator->rdev; 2832 2833 lockdep_assert_held_once(&rdev->mutex.base); 2834 2835 regulator->enable_count++; 2836 if (regulator->uA_load && regulator->enable_count == 1) { 2837 ret = drms_uA_update(rdev); 2838 if (ret) 2839 regulator->enable_count--; 2840 return ret; 2841 } 2842 2843 return 0; 2844 } 2845 2846 /** 2847 * _regulator_handle_consumer_disable - handle that a consumer disabled 2848 * @regulator: regulator source 2849 * 2850 * The opposite of _regulator_handle_consumer_enable(). 2851 * 2852 * Returns 0 upon no error; -error upon error. 2853 */ 2854 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2855 { 2856 struct regulator_dev *rdev = regulator->rdev; 2857 2858 lockdep_assert_held_once(&rdev->mutex.base); 2859 2860 if (!regulator->enable_count) { 2861 rdev_err(rdev, "Underflow of regulator enable count\n"); 2862 return -EINVAL; 2863 } 2864 2865 regulator->enable_count--; 2866 if (regulator->uA_load && regulator->enable_count == 0) 2867 return drms_uA_update(rdev); 2868 2869 return 0; 2870 } 2871 2872 /* locks held by regulator_enable() */ 2873 static int _regulator_enable(struct regulator *regulator) 2874 { 2875 struct regulator_dev *rdev = regulator->rdev; 2876 int ret; 2877 2878 lockdep_assert_held_once(&rdev->mutex.base); 2879 2880 if (rdev->use_count == 0 && rdev->supply) { 2881 ret = _regulator_enable(rdev->supply); 2882 if (ret < 0) 2883 return ret; 2884 } 2885 2886 /* balance only if there are regulators coupled */ 2887 if (rdev->coupling_desc.n_coupled > 1) { 2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2889 if (ret < 0) 2890 goto err_disable_supply; 2891 } 2892 2893 ret = _regulator_handle_consumer_enable(regulator); 2894 if (ret < 0) 2895 goto err_disable_supply; 2896 2897 if (rdev->use_count == 0) { 2898 /* 2899 * The regulator may already be enabled if it's not switchable 2900 * or was left on 2901 */ 2902 ret = _regulator_is_enabled(rdev); 2903 if (ret == -EINVAL || ret == 0) { 2904 if (!regulator_ops_is_valid(rdev, 2905 REGULATOR_CHANGE_STATUS)) { 2906 ret = -EPERM; 2907 goto err_consumer_disable; 2908 } 2909 2910 ret = _regulator_do_enable(rdev); 2911 if (ret < 0) 2912 goto err_consumer_disable; 2913 2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2915 NULL); 2916 } else if (ret < 0) { 2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2918 goto err_consumer_disable; 2919 } 2920 /* Fallthrough on positive return values - already enabled */ 2921 } 2922 2923 if (regulator->enable_count == 1) 2924 rdev->use_count++; 2925 2926 return 0; 2927 2928 err_consumer_disable: 2929 _regulator_handle_consumer_disable(regulator); 2930 2931 err_disable_supply: 2932 if (rdev->use_count == 0 && rdev->supply) 2933 _regulator_disable(rdev->supply); 2934 2935 return ret; 2936 } 2937 2938 /** 2939 * regulator_enable - enable regulator output 2940 * @regulator: regulator source 2941 * 2942 * Request that the regulator be enabled with the regulator output at 2943 * the predefined voltage or current value. Calls to regulator_enable() 2944 * must be balanced with calls to regulator_disable(). 2945 * 2946 * NOTE: the output value can be set by other drivers, boot loader or may be 2947 * hardwired in the regulator. 2948 */ 2949 int regulator_enable(struct regulator *regulator) 2950 { 2951 struct regulator_dev *rdev = regulator->rdev; 2952 struct ww_acquire_ctx ww_ctx; 2953 int ret; 2954 2955 regulator_lock_dependent(rdev, &ww_ctx); 2956 ret = _regulator_enable(regulator); 2957 regulator_unlock_dependent(rdev, &ww_ctx); 2958 2959 return ret; 2960 } 2961 EXPORT_SYMBOL_GPL(regulator_enable); 2962 2963 static int _regulator_do_disable(struct regulator_dev *rdev) 2964 { 2965 int ret; 2966 2967 trace_regulator_disable(rdev_get_name(rdev)); 2968 2969 if (rdev->ena_pin) { 2970 if (rdev->ena_gpio_state) { 2971 ret = regulator_ena_gpio_ctrl(rdev, false); 2972 if (ret < 0) 2973 return ret; 2974 rdev->ena_gpio_state = 0; 2975 } 2976 2977 } else if (rdev->desc->ops->disable) { 2978 ret = rdev->desc->ops->disable(rdev); 2979 if (ret != 0) 2980 return ret; 2981 } 2982 2983 if (rdev->desc->off_on_delay) 2984 rdev->last_off = ktime_get_boottime(); 2985 2986 trace_regulator_disable_complete(rdev_get_name(rdev)); 2987 2988 return 0; 2989 } 2990 2991 /* locks held by regulator_disable() */ 2992 static int _regulator_disable(struct regulator *regulator) 2993 { 2994 struct regulator_dev *rdev = regulator->rdev; 2995 int ret = 0; 2996 2997 lockdep_assert_held_once(&rdev->mutex.base); 2998 2999 if (WARN(regulator->enable_count == 0, 3000 "unbalanced disables for %s\n", rdev_get_name(rdev))) 3001 return -EIO; 3002 3003 if (regulator->enable_count == 1) { 3004 /* disabling last enable_count from this regulator */ 3005 /* are we the last user and permitted to disable ? */ 3006 if (rdev->use_count == 1 && 3007 (rdev->constraints && !rdev->constraints->always_on)) { 3008 3009 /* we are last user */ 3010 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3011 ret = _notifier_call_chain(rdev, 3012 REGULATOR_EVENT_PRE_DISABLE, 3013 NULL); 3014 if (ret & NOTIFY_STOP_MASK) 3015 return -EINVAL; 3016 3017 ret = _regulator_do_disable(rdev); 3018 if (ret < 0) { 3019 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3020 _notifier_call_chain(rdev, 3021 REGULATOR_EVENT_ABORT_DISABLE, 3022 NULL); 3023 return ret; 3024 } 3025 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3026 NULL); 3027 } 3028 3029 rdev->use_count = 0; 3030 } else if (rdev->use_count > 1) { 3031 rdev->use_count--; 3032 } 3033 } 3034 3035 if (ret == 0) 3036 ret = _regulator_handle_consumer_disable(regulator); 3037 3038 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3039 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3040 3041 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3042 ret = _regulator_disable(rdev->supply); 3043 3044 return ret; 3045 } 3046 3047 /** 3048 * regulator_disable - disable regulator output 3049 * @regulator: regulator source 3050 * 3051 * Disable the regulator output voltage or current. Calls to 3052 * regulator_enable() must be balanced with calls to 3053 * regulator_disable(). 3054 * 3055 * NOTE: this will only disable the regulator output if no other consumer 3056 * devices have it enabled, the regulator device supports disabling and 3057 * machine constraints permit this operation. 3058 */ 3059 int regulator_disable(struct regulator *regulator) 3060 { 3061 struct regulator_dev *rdev = regulator->rdev; 3062 struct ww_acquire_ctx ww_ctx; 3063 int ret; 3064 3065 regulator_lock_dependent(rdev, &ww_ctx); 3066 ret = _regulator_disable(regulator); 3067 regulator_unlock_dependent(rdev, &ww_ctx); 3068 3069 return ret; 3070 } 3071 EXPORT_SYMBOL_GPL(regulator_disable); 3072 3073 /* locks held by regulator_force_disable() */ 3074 static int _regulator_force_disable(struct regulator_dev *rdev) 3075 { 3076 int ret = 0; 3077 3078 lockdep_assert_held_once(&rdev->mutex.base); 3079 3080 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3081 REGULATOR_EVENT_PRE_DISABLE, NULL); 3082 if (ret & NOTIFY_STOP_MASK) 3083 return -EINVAL; 3084 3085 ret = _regulator_do_disable(rdev); 3086 if (ret < 0) { 3087 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3088 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3089 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3090 return ret; 3091 } 3092 3093 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3094 REGULATOR_EVENT_DISABLE, NULL); 3095 3096 return 0; 3097 } 3098 3099 /** 3100 * regulator_force_disable - force disable regulator output 3101 * @regulator: regulator source 3102 * 3103 * Forcibly disable the regulator output voltage or current. 3104 * NOTE: this *will* disable the regulator output even if other consumer 3105 * devices have it enabled. This should be used for situations when device 3106 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3107 */ 3108 int regulator_force_disable(struct regulator *regulator) 3109 { 3110 struct regulator_dev *rdev = regulator->rdev; 3111 struct ww_acquire_ctx ww_ctx; 3112 int ret; 3113 3114 regulator_lock_dependent(rdev, &ww_ctx); 3115 3116 ret = _regulator_force_disable(regulator->rdev); 3117 3118 if (rdev->coupling_desc.n_coupled > 1) 3119 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3120 3121 if (regulator->uA_load) { 3122 regulator->uA_load = 0; 3123 ret = drms_uA_update(rdev); 3124 } 3125 3126 if (rdev->use_count != 0 && rdev->supply) 3127 _regulator_disable(rdev->supply); 3128 3129 regulator_unlock_dependent(rdev, &ww_ctx); 3130 3131 return ret; 3132 } 3133 EXPORT_SYMBOL_GPL(regulator_force_disable); 3134 3135 static void regulator_disable_work(struct work_struct *work) 3136 { 3137 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3138 disable_work.work); 3139 struct ww_acquire_ctx ww_ctx; 3140 int count, i, ret; 3141 struct regulator *regulator; 3142 int total_count = 0; 3143 3144 regulator_lock_dependent(rdev, &ww_ctx); 3145 3146 /* 3147 * Workqueue functions queue the new work instance while the previous 3148 * work instance is being processed. Cancel the queued work instance 3149 * as the work instance under processing does the job of the queued 3150 * work instance. 3151 */ 3152 cancel_delayed_work(&rdev->disable_work); 3153 3154 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3155 count = regulator->deferred_disables; 3156 3157 if (!count) 3158 continue; 3159 3160 total_count += count; 3161 regulator->deferred_disables = 0; 3162 3163 for (i = 0; i < count; i++) { 3164 ret = _regulator_disable(regulator); 3165 if (ret != 0) 3166 rdev_err(rdev, "Deferred disable failed: %pe\n", 3167 ERR_PTR(ret)); 3168 } 3169 } 3170 WARN_ON(!total_count); 3171 3172 if (rdev->coupling_desc.n_coupled > 1) 3173 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3174 3175 regulator_unlock_dependent(rdev, &ww_ctx); 3176 } 3177 3178 /** 3179 * regulator_disable_deferred - disable regulator output with delay 3180 * @regulator: regulator source 3181 * @ms: milliseconds until the regulator is disabled 3182 * 3183 * Execute regulator_disable() on the regulator after a delay. This 3184 * is intended for use with devices that require some time to quiesce. 3185 * 3186 * NOTE: this will only disable the regulator output if no other consumer 3187 * devices have it enabled, the regulator device supports disabling and 3188 * machine constraints permit this operation. 3189 */ 3190 int regulator_disable_deferred(struct regulator *regulator, int ms) 3191 { 3192 struct regulator_dev *rdev = regulator->rdev; 3193 3194 if (!ms) 3195 return regulator_disable(regulator); 3196 3197 regulator_lock(rdev); 3198 regulator->deferred_disables++; 3199 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3200 msecs_to_jiffies(ms)); 3201 regulator_unlock(rdev); 3202 3203 return 0; 3204 } 3205 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3206 3207 static int _regulator_is_enabled(struct regulator_dev *rdev) 3208 { 3209 /* A GPIO control always takes precedence */ 3210 if (rdev->ena_pin) 3211 return rdev->ena_gpio_state; 3212 3213 /* If we don't know then assume that the regulator is always on */ 3214 if (!rdev->desc->ops->is_enabled) 3215 return 1; 3216 3217 return rdev->desc->ops->is_enabled(rdev); 3218 } 3219 3220 static int _regulator_list_voltage(struct regulator_dev *rdev, 3221 unsigned selector, int lock) 3222 { 3223 const struct regulator_ops *ops = rdev->desc->ops; 3224 int ret; 3225 3226 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3227 return rdev->desc->fixed_uV; 3228 3229 if (ops->list_voltage) { 3230 if (selector >= rdev->desc->n_voltages) 3231 return -EINVAL; 3232 if (selector < rdev->desc->linear_min_sel) 3233 return 0; 3234 if (lock) 3235 regulator_lock(rdev); 3236 ret = ops->list_voltage(rdev, selector); 3237 if (lock) 3238 regulator_unlock(rdev); 3239 } else if (rdev->is_switch && rdev->supply) { 3240 ret = _regulator_list_voltage(rdev->supply->rdev, 3241 selector, lock); 3242 } else { 3243 return -EINVAL; 3244 } 3245 3246 if (ret > 0) { 3247 if (ret < rdev->constraints->min_uV) 3248 ret = 0; 3249 else if (ret > rdev->constraints->max_uV) 3250 ret = 0; 3251 } 3252 3253 return ret; 3254 } 3255 3256 /** 3257 * regulator_is_enabled - is the regulator output enabled 3258 * @regulator: regulator source 3259 * 3260 * Returns positive if the regulator driver backing the source/client 3261 * has requested that the device be enabled, zero if it hasn't, else a 3262 * negative errno code. 3263 * 3264 * Note that the device backing this regulator handle can have multiple 3265 * users, so it might be enabled even if regulator_enable() was never 3266 * called for this particular source. 3267 */ 3268 int regulator_is_enabled(struct regulator *regulator) 3269 { 3270 int ret; 3271 3272 if (regulator->always_on) 3273 return 1; 3274 3275 regulator_lock(regulator->rdev); 3276 ret = _regulator_is_enabled(regulator->rdev); 3277 regulator_unlock(regulator->rdev); 3278 3279 return ret; 3280 } 3281 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3282 3283 /** 3284 * regulator_count_voltages - count regulator_list_voltage() selectors 3285 * @regulator: regulator source 3286 * 3287 * Returns number of selectors, or negative errno. Selectors are 3288 * numbered starting at zero, and typically correspond to bitfields 3289 * in hardware registers. 3290 */ 3291 int regulator_count_voltages(struct regulator *regulator) 3292 { 3293 struct regulator_dev *rdev = regulator->rdev; 3294 3295 if (rdev->desc->n_voltages) 3296 return rdev->desc->n_voltages; 3297 3298 if (!rdev->is_switch || !rdev->supply) 3299 return -EINVAL; 3300 3301 return regulator_count_voltages(rdev->supply); 3302 } 3303 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3304 3305 /** 3306 * regulator_list_voltage - enumerate supported voltages 3307 * @regulator: regulator source 3308 * @selector: identify voltage to list 3309 * Context: can sleep 3310 * 3311 * Returns a voltage that can be passed to @regulator_set_voltage(), 3312 * zero if this selector code can't be used on this system, or a 3313 * negative errno. 3314 */ 3315 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3316 { 3317 return _regulator_list_voltage(regulator->rdev, selector, 1); 3318 } 3319 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3320 3321 /** 3322 * regulator_get_regmap - get the regulator's register map 3323 * @regulator: regulator source 3324 * 3325 * Returns the register map for the given regulator, or an ERR_PTR value 3326 * if the regulator doesn't use regmap. 3327 */ 3328 struct regmap *regulator_get_regmap(struct regulator *regulator) 3329 { 3330 struct regmap *map = regulator->rdev->regmap; 3331 3332 return map ? map : ERR_PTR(-EOPNOTSUPP); 3333 } 3334 3335 /** 3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3337 * @regulator: regulator source 3338 * @vsel_reg: voltage selector register, output parameter 3339 * @vsel_mask: mask for voltage selector bitfield, output parameter 3340 * 3341 * Returns the hardware register offset and bitmask used for setting the 3342 * regulator voltage. This might be useful when configuring voltage-scaling 3343 * hardware or firmware that can make I2C requests behind the kernel's back, 3344 * for example. 3345 * 3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3347 * and 0 is returned, otherwise a negative errno is returned. 3348 */ 3349 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3350 unsigned *vsel_reg, 3351 unsigned *vsel_mask) 3352 { 3353 struct regulator_dev *rdev = regulator->rdev; 3354 const struct regulator_ops *ops = rdev->desc->ops; 3355 3356 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3357 return -EOPNOTSUPP; 3358 3359 *vsel_reg = rdev->desc->vsel_reg; 3360 *vsel_mask = rdev->desc->vsel_mask; 3361 3362 return 0; 3363 } 3364 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3365 3366 /** 3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3368 * @regulator: regulator source 3369 * @selector: identify voltage to list 3370 * 3371 * Converts the selector to a hardware-specific voltage selector that can be 3372 * directly written to the regulator registers. The address of the voltage 3373 * register can be determined by calling @regulator_get_hardware_vsel_register. 3374 * 3375 * On error a negative errno is returned. 3376 */ 3377 int regulator_list_hardware_vsel(struct regulator *regulator, 3378 unsigned selector) 3379 { 3380 struct regulator_dev *rdev = regulator->rdev; 3381 const struct regulator_ops *ops = rdev->desc->ops; 3382 3383 if (selector >= rdev->desc->n_voltages) 3384 return -EINVAL; 3385 if (selector < rdev->desc->linear_min_sel) 3386 return 0; 3387 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3388 return -EOPNOTSUPP; 3389 3390 return selector; 3391 } 3392 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3393 3394 /** 3395 * regulator_get_linear_step - return the voltage step size between VSEL values 3396 * @regulator: regulator source 3397 * 3398 * Returns the voltage step size between VSEL values for linear 3399 * regulators, or return 0 if the regulator isn't a linear regulator. 3400 */ 3401 unsigned int regulator_get_linear_step(struct regulator *regulator) 3402 { 3403 struct regulator_dev *rdev = regulator->rdev; 3404 3405 return rdev->desc->uV_step; 3406 } 3407 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3408 3409 /** 3410 * regulator_is_supported_voltage - check if a voltage range can be supported 3411 * 3412 * @regulator: Regulator to check. 3413 * @min_uV: Minimum required voltage in uV. 3414 * @max_uV: Maximum required voltage in uV. 3415 * 3416 * Returns a boolean. 3417 */ 3418 int regulator_is_supported_voltage(struct regulator *regulator, 3419 int min_uV, int max_uV) 3420 { 3421 struct regulator_dev *rdev = regulator->rdev; 3422 int i, voltages, ret; 3423 3424 /* If we can't change voltage check the current voltage */ 3425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3426 ret = regulator_get_voltage(regulator); 3427 if (ret >= 0) 3428 return min_uV <= ret && ret <= max_uV; 3429 else 3430 return ret; 3431 } 3432 3433 /* Any voltage within constrains range is fine? */ 3434 if (rdev->desc->continuous_voltage_range) 3435 return min_uV >= rdev->constraints->min_uV && 3436 max_uV <= rdev->constraints->max_uV; 3437 3438 ret = regulator_count_voltages(regulator); 3439 if (ret < 0) 3440 return 0; 3441 voltages = ret; 3442 3443 for (i = 0; i < voltages; i++) { 3444 ret = regulator_list_voltage(regulator, i); 3445 3446 if (ret >= min_uV && ret <= max_uV) 3447 return 1; 3448 } 3449 3450 return 0; 3451 } 3452 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3453 3454 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3455 int max_uV) 3456 { 3457 const struct regulator_desc *desc = rdev->desc; 3458 3459 if (desc->ops->map_voltage) 3460 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3461 3462 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3463 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3464 3465 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3466 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3467 3468 if (desc->ops->list_voltage == 3469 regulator_list_voltage_pickable_linear_range) 3470 return regulator_map_voltage_pickable_linear_range(rdev, 3471 min_uV, max_uV); 3472 3473 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3474 } 3475 3476 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3477 int min_uV, int max_uV, 3478 unsigned *selector) 3479 { 3480 struct pre_voltage_change_data data; 3481 int ret; 3482 3483 data.old_uV = regulator_get_voltage_rdev(rdev); 3484 data.min_uV = min_uV; 3485 data.max_uV = max_uV; 3486 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3487 &data); 3488 if (ret & NOTIFY_STOP_MASK) 3489 return -EINVAL; 3490 3491 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3492 if (ret >= 0) 3493 return ret; 3494 3495 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3496 (void *)data.old_uV); 3497 3498 return ret; 3499 } 3500 3501 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3502 int uV, unsigned selector) 3503 { 3504 struct pre_voltage_change_data data; 3505 int ret; 3506 3507 data.old_uV = regulator_get_voltage_rdev(rdev); 3508 data.min_uV = uV; 3509 data.max_uV = uV; 3510 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3511 &data); 3512 if (ret & NOTIFY_STOP_MASK) 3513 return -EINVAL; 3514 3515 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3516 if (ret >= 0) 3517 return ret; 3518 3519 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3520 (void *)data.old_uV); 3521 3522 return ret; 3523 } 3524 3525 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3526 int uV, int new_selector) 3527 { 3528 const struct regulator_ops *ops = rdev->desc->ops; 3529 int diff, old_sel, curr_sel, ret; 3530 3531 /* Stepping is only needed if the regulator is enabled. */ 3532 if (!_regulator_is_enabled(rdev)) 3533 goto final_set; 3534 3535 if (!ops->get_voltage_sel) 3536 return -EINVAL; 3537 3538 old_sel = ops->get_voltage_sel(rdev); 3539 if (old_sel < 0) 3540 return old_sel; 3541 3542 diff = new_selector - old_sel; 3543 if (diff == 0) 3544 return 0; /* No change needed. */ 3545 3546 if (diff > 0) { 3547 /* Stepping up. */ 3548 for (curr_sel = old_sel + rdev->desc->vsel_step; 3549 curr_sel < new_selector; 3550 curr_sel += rdev->desc->vsel_step) { 3551 /* 3552 * Call the callback directly instead of using 3553 * _regulator_call_set_voltage_sel() as we don't 3554 * want to notify anyone yet. Same in the branch 3555 * below. 3556 */ 3557 ret = ops->set_voltage_sel(rdev, curr_sel); 3558 if (ret) 3559 goto try_revert; 3560 } 3561 } else { 3562 /* Stepping down. */ 3563 for (curr_sel = old_sel - rdev->desc->vsel_step; 3564 curr_sel > new_selector; 3565 curr_sel -= rdev->desc->vsel_step) { 3566 ret = ops->set_voltage_sel(rdev, curr_sel); 3567 if (ret) 3568 goto try_revert; 3569 } 3570 } 3571 3572 final_set: 3573 /* The final selector will trigger the notifiers. */ 3574 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3575 3576 try_revert: 3577 /* 3578 * At least try to return to the previous voltage if setting a new 3579 * one failed. 3580 */ 3581 (void)ops->set_voltage_sel(rdev, old_sel); 3582 return ret; 3583 } 3584 3585 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3586 int old_uV, int new_uV) 3587 { 3588 unsigned int ramp_delay = 0; 3589 3590 if (rdev->constraints->ramp_delay) 3591 ramp_delay = rdev->constraints->ramp_delay; 3592 else if (rdev->desc->ramp_delay) 3593 ramp_delay = rdev->desc->ramp_delay; 3594 else if (rdev->constraints->settling_time) 3595 return rdev->constraints->settling_time; 3596 else if (rdev->constraints->settling_time_up && 3597 (new_uV > old_uV)) 3598 return rdev->constraints->settling_time_up; 3599 else if (rdev->constraints->settling_time_down && 3600 (new_uV < old_uV)) 3601 return rdev->constraints->settling_time_down; 3602 3603 if (ramp_delay == 0) 3604 return 0; 3605 3606 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3607 } 3608 3609 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3610 int min_uV, int max_uV) 3611 { 3612 int ret; 3613 int delay = 0; 3614 int best_val = 0; 3615 unsigned int selector; 3616 int old_selector = -1; 3617 const struct regulator_ops *ops = rdev->desc->ops; 3618 int old_uV = regulator_get_voltage_rdev(rdev); 3619 3620 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3621 3622 min_uV += rdev->constraints->uV_offset; 3623 max_uV += rdev->constraints->uV_offset; 3624 3625 /* 3626 * If we can't obtain the old selector there is not enough 3627 * info to call set_voltage_time_sel(). 3628 */ 3629 if (_regulator_is_enabled(rdev) && 3630 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3631 old_selector = ops->get_voltage_sel(rdev); 3632 if (old_selector < 0) 3633 return old_selector; 3634 } 3635 3636 if (ops->set_voltage) { 3637 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3638 &selector); 3639 3640 if (ret >= 0) { 3641 if (ops->list_voltage) 3642 best_val = ops->list_voltage(rdev, 3643 selector); 3644 else 3645 best_val = regulator_get_voltage_rdev(rdev); 3646 } 3647 3648 } else if (ops->set_voltage_sel) { 3649 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3650 if (ret >= 0) { 3651 best_val = ops->list_voltage(rdev, ret); 3652 if (min_uV <= best_val && max_uV >= best_val) { 3653 selector = ret; 3654 if (old_selector == selector) 3655 ret = 0; 3656 else if (rdev->desc->vsel_step) 3657 ret = _regulator_set_voltage_sel_step( 3658 rdev, best_val, selector); 3659 else 3660 ret = _regulator_call_set_voltage_sel( 3661 rdev, best_val, selector); 3662 } else { 3663 ret = -EINVAL; 3664 } 3665 } 3666 } else { 3667 ret = -EINVAL; 3668 } 3669 3670 if (ret) 3671 goto out; 3672 3673 if (ops->set_voltage_time_sel) { 3674 /* 3675 * Call set_voltage_time_sel if successfully obtained 3676 * old_selector 3677 */ 3678 if (old_selector >= 0 && old_selector != selector) 3679 delay = ops->set_voltage_time_sel(rdev, old_selector, 3680 selector); 3681 } else { 3682 if (old_uV != best_val) { 3683 if (ops->set_voltage_time) 3684 delay = ops->set_voltage_time(rdev, old_uV, 3685 best_val); 3686 else 3687 delay = _regulator_set_voltage_time(rdev, 3688 old_uV, 3689 best_val); 3690 } 3691 } 3692 3693 if (delay < 0) { 3694 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3695 delay = 0; 3696 } 3697 3698 /* Insert any necessary delays */ 3699 _regulator_delay_helper(delay); 3700 3701 if (best_val >= 0) { 3702 unsigned long data = best_val; 3703 3704 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3705 (void *)data); 3706 } 3707 3708 out: 3709 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3710 3711 return ret; 3712 } 3713 3714 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3715 int min_uV, int max_uV, suspend_state_t state) 3716 { 3717 struct regulator_state *rstate; 3718 int uV, sel; 3719 3720 rstate = regulator_get_suspend_state(rdev, state); 3721 if (rstate == NULL) 3722 return -EINVAL; 3723 3724 if (min_uV < rstate->min_uV) 3725 min_uV = rstate->min_uV; 3726 if (max_uV > rstate->max_uV) 3727 max_uV = rstate->max_uV; 3728 3729 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3730 if (sel < 0) 3731 return sel; 3732 3733 uV = rdev->desc->ops->list_voltage(rdev, sel); 3734 if (uV >= min_uV && uV <= max_uV) 3735 rstate->uV = uV; 3736 3737 return 0; 3738 } 3739 3740 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3741 int min_uV, int max_uV, 3742 suspend_state_t state) 3743 { 3744 struct regulator_dev *rdev = regulator->rdev; 3745 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3746 int ret = 0; 3747 int old_min_uV, old_max_uV; 3748 int current_uV; 3749 3750 /* If we're setting the same range as last time the change 3751 * should be a noop (some cpufreq implementations use the same 3752 * voltage for multiple frequencies, for example). 3753 */ 3754 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3755 goto out; 3756 3757 /* If we're trying to set a range that overlaps the current voltage, 3758 * return successfully even though the regulator does not support 3759 * changing the voltage. 3760 */ 3761 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3762 current_uV = regulator_get_voltage_rdev(rdev); 3763 if (min_uV <= current_uV && current_uV <= max_uV) { 3764 voltage->min_uV = min_uV; 3765 voltage->max_uV = max_uV; 3766 goto out; 3767 } 3768 } 3769 3770 /* sanity check */ 3771 if (!rdev->desc->ops->set_voltage && 3772 !rdev->desc->ops->set_voltage_sel) { 3773 ret = -EINVAL; 3774 goto out; 3775 } 3776 3777 /* constraints check */ 3778 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3779 if (ret < 0) 3780 goto out; 3781 3782 /* restore original values in case of error */ 3783 old_min_uV = voltage->min_uV; 3784 old_max_uV = voltage->max_uV; 3785 voltage->min_uV = min_uV; 3786 voltage->max_uV = max_uV; 3787 3788 /* for not coupled regulators this will just set the voltage */ 3789 ret = regulator_balance_voltage(rdev, state); 3790 if (ret < 0) { 3791 voltage->min_uV = old_min_uV; 3792 voltage->max_uV = old_max_uV; 3793 } 3794 3795 out: 3796 return ret; 3797 } 3798 3799 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3800 int max_uV, suspend_state_t state) 3801 { 3802 int best_supply_uV = 0; 3803 int supply_change_uV = 0; 3804 int ret; 3805 3806 if (rdev->supply && 3807 regulator_ops_is_valid(rdev->supply->rdev, 3808 REGULATOR_CHANGE_VOLTAGE) && 3809 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3810 rdev->desc->ops->get_voltage_sel))) { 3811 int current_supply_uV; 3812 int selector; 3813 3814 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3815 if (selector < 0) { 3816 ret = selector; 3817 goto out; 3818 } 3819 3820 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3821 if (best_supply_uV < 0) { 3822 ret = best_supply_uV; 3823 goto out; 3824 } 3825 3826 best_supply_uV += rdev->desc->min_dropout_uV; 3827 3828 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3829 if (current_supply_uV < 0) { 3830 ret = current_supply_uV; 3831 goto out; 3832 } 3833 3834 supply_change_uV = best_supply_uV - current_supply_uV; 3835 } 3836 3837 if (supply_change_uV > 0) { 3838 ret = regulator_set_voltage_unlocked(rdev->supply, 3839 best_supply_uV, INT_MAX, state); 3840 if (ret) { 3841 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3842 ERR_PTR(ret)); 3843 goto out; 3844 } 3845 } 3846 3847 if (state == PM_SUSPEND_ON) 3848 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3849 else 3850 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3851 max_uV, state); 3852 if (ret < 0) 3853 goto out; 3854 3855 if (supply_change_uV < 0) { 3856 ret = regulator_set_voltage_unlocked(rdev->supply, 3857 best_supply_uV, INT_MAX, state); 3858 if (ret) 3859 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3860 ERR_PTR(ret)); 3861 /* No need to fail here */ 3862 ret = 0; 3863 } 3864 3865 out: 3866 return ret; 3867 } 3868 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3869 3870 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3871 int *current_uV, int *min_uV) 3872 { 3873 struct regulation_constraints *constraints = rdev->constraints; 3874 3875 /* Limit voltage change only if necessary */ 3876 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3877 return 1; 3878 3879 if (*current_uV < 0) { 3880 *current_uV = regulator_get_voltage_rdev(rdev); 3881 3882 if (*current_uV < 0) 3883 return *current_uV; 3884 } 3885 3886 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3887 return 1; 3888 3889 /* Clamp target voltage within the given step */ 3890 if (*current_uV < *min_uV) 3891 *min_uV = min(*current_uV + constraints->max_uV_step, 3892 *min_uV); 3893 else 3894 *min_uV = max(*current_uV - constraints->max_uV_step, 3895 *min_uV); 3896 3897 return 0; 3898 } 3899 3900 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3901 int *current_uV, 3902 int *min_uV, int *max_uV, 3903 suspend_state_t state, 3904 int n_coupled) 3905 { 3906 struct coupling_desc *c_desc = &rdev->coupling_desc; 3907 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3908 struct regulation_constraints *constraints = rdev->constraints; 3909 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3910 int max_current_uV = 0, min_current_uV = INT_MAX; 3911 int highest_min_uV = 0, target_uV, possible_uV; 3912 int i, ret, max_spread; 3913 bool done; 3914 3915 *current_uV = -1; 3916 3917 /* 3918 * If there are no coupled regulators, simply set the voltage 3919 * demanded by consumers. 3920 */ 3921 if (n_coupled == 1) { 3922 /* 3923 * If consumers don't provide any demands, set voltage 3924 * to min_uV 3925 */ 3926 desired_min_uV = constraints->min_uV; 3927 desired_max_uV = constraints->max_uV; 3928 3929 ret = regulator_check_consumers(rdev, 3930 &desired_min_uV, 3931 &desired_max_uV, state); 3932 if (ret < 0) 3933 return ret; 3934 3935 possible_uV = desired_min_uV; 3936 done = true; 3937 3938 goto finish; 3939 } 3940 3941 /* Find highest min desired voltage */ 3942 for (i = 0; i < n_coupled; i++) { 3943 int tmp_min = 0; 3944 int tmp_max = INT_MAX; 3945 3946 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3947 3948 ret = regulator_check_consumers(c_rdevs[i], 3949 &tmp_min, 3950 &tmp_max, state); 3951 if (ret < 0) 3952 return ret; 3953 3954 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3955 if (ret < 0) 3956 return ret; 3957 3958 highest_min_uV = max(highest_min_uV, tmp_min); 3959 3960 if (i == 0) { 3961 desired_min_uV = tmp_min; 3962 desired_max_uV = tmp_max; 3963 } 3964 } 3965 3966 max_spread = constraints->max_spread[0]; 3967 3968 /* 3969 * Let target_uV be equal to the desired one if possible. 3970 * If not, set it to minimum voltage, allowed by other coupled 3971 * regulators. 3972 */ 3973 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3974 3975 /* 3976 * Find min and max voltages, which currently aren't violating 3977 * max_spread. 3978 */ 3979 for (i = 1; i < n_coupled; i++) { 3980 int tmp_act; 3981 3982 if (!_regulator_is_enabled(c_rdevs[i])) 3983 continue; 3984 3985 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3986 if (tmp_act < 0) 3987 return tmp_act; 3988 3989 min_current_uV = min(tmp_act, min_current_uV); 3990 max_current_uV = max(tmp_act, max_current_uV); 3991 } 3992 3993 /* There aren't any other regulators enabled */ 3994 if (max_current_uV == 0) { 3995 possible_uV = target_uV; 3996 } else { 3997 /* 3998 * Correct target voltage, so as it currently isn't 3999 * violating max_spread 4000 */ 4001 possible_uV = max(target_uV, max_current_uV - max_spread); 4002 possible_uV = min(possible_uV, min_current_uV + max_spread); 4003 } 4004 4005 if (possible_uV > desired_max_uV) 4006 return -EINVAL; 4007 4008 done = (possible_uV == target_uV); 4009 desired_min_uV = possible_uV; 4010 4011 finish: 4012 /* Apply max_uV_step constraint if necessary */ 4013 if (state == PM_SUSPEND_ON) { 4014 ret = regulator_limit_voltage_step(rdev, current_uV, 4015 &desired_min_uV); 4016 if (ret < 0) 4017 return ret; 4018 4019 if (ret == 0) 4020 done = false; 4021 } 4022 4023 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4024 if (n_coupled > 1 && *current_uV == -1) { 4025 4026 if (_regulator_is_enabled(rdev)) { 4027 ret = regulator_get_voltage_rdev(rdev); 4028 if (ret < 0) 4029 return ret; 4030 4031 *current_uV = ret; 4032 } else { 4033 *current_uV = desired_min_uV; 4034 } 4035 } 4036 4037 *min_uV = desired_min_uV; 4038 *max_uV = desired_max_uV; 4039 4040 return done; 4041 } 4042 4043 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4044 suspend_state_t state, bool skip_coupled) 4045 { 4046 struct regulator_dev **c_rdevs; 4047 struct regulator_dev *best_rdev; 4048 struct coupling_desc *c_desc = &rdev->coupling_desc; 4049 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4050 unsigned int delta, best_delta; 4051 unsigned long c_rdev_done = 0; 4052 bool best_c_rdev_done; 4053 4054 c_rdevs = c_desc->coupled_rdevs; 4055 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4056 4057 /* 4058 * Find the best possible voltage change on each loop. Leave the loop 4059 * if there isn't any possible change. 4060 */ 4061 do { 4062 best_c_rdev_done = false; 4063 best_delta = 0; 4064 best_min_uV = 0; 4065 best_max_uV = 0; 4066 best_c_rdev = 0; 4067 best_rdev = NULL; 4068 4069 /* 4070 * Find highest difference between optimal voltage 4071 * and current voltage. 4072 */ 4073 for (i = 0; i < n_coupled; i++) { 4074 /* 4075 * optimal_uV is the best voltage that can be set for 4076 * i-th regulator at the moment without violating 4077 * max_spread constraint in order to balance 4078 * the coupled voltages. 4079 */ 4080 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4081 4082 if (test_bit(i, &c_rdev_done)) 4083 continue; 4084 4085 ret = regulator_get_optimal_voltage(c_rdevs[i], 4086 ¤t_uV, 4087 &optimal_uV, 4088 &optimal_max_uV, 4089 state, n_coupled); 4090 if (ret < 0) 4091 goto out; 4092 4093 delta = abs(optimal_uV - current_uV); 4094 4095 if (delta && best_delta <= delta) { 4096 best_c_rdev_done = ret; 4097 best_delta = delta; 4098 best_rdev = c_rdevs[i]; 4099 best_min_uV = optimal_uV; 4100 best_max_uV = optimal_max_uV; 4101 best_c_rdev = i; 4102 } 4103 } 4104 4105 /* Nothing to change, return successfully */ 4106 if (!best_rdev) { 4107 ret = 0; 4108 goto out; 4109 } 4110 4111 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4112 best_max_uV, state); 4113 4114 if (ret < 0) 4115 goto out; 4116 4117 if (best_c_rdev_done) 4118 set_bit(best_c_rdev, &c_rdev_done); 4119 4120 } while (n_coupled > 1); 4121 4122 out: 4123 return ret; 4124 } 4125 4126 static int regulator_balance_voltage(struct regulator_dev *rdev, 4127 suspend_state_t state) 4128 { 4129 struct coupling_desc *c_desc = &rdev->coupling_desc; 4130 struct regulator_coupler *coupler = c_desc->coupler; 4131 bool skip_coupled = false; 4132 4133 /* 4134 * If system is in a state other than PM_SUSPEND_ON, don't check 4135 * other coupled regulators. 4136 */ 4137 if (state != PM_SUSPEND_ON) 4138 skip_coupled = true; 4139 4140 if (c_desc->n_resolved < c_desc->n_coupled) { 4141 rdev_err(rdev, "Not all coupled regulators registered\n"); 4142 return -EPERM; 4143 } 4144 4145 /* Invoke custom balancer for customized couplers */ 4146 if (coupler && coupler->balance_voltage) 4147 return coupler->balance_voltage(coupler, rdev, state); 4148 4149 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4150 } 4151 4152 /** 4153 * regulator_set_voltage - set regulator output voltage 4154 * @regulator: regulator source 4155 * @min_uV: Minimum required voltage in uV 4156 * @max_uV: Maximum acceptable voltage in uV 4157 * 4158 * Sets a voltage regulator to the desired output voltage. This can be set 4159 * during any regulator state. IOW, regulator can be disabled or enabled. 4160 * 4161 * If the regulator is enabled then the voltage will change to the new value 4162 * immediately otherwise if the regulator is disabled the regulator will 4163 * output at the new voltage when enabled. 4164 * 4165 * NOTE: If the regulator is shared between several devices then the lowest 4166 * request voltage that meets the system constraints will be used. 4167 * Regulator system constraints must be set for this regulator before 4168 * calling this function otherwise this call will fail. 4169 */ 4170 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4171 { 4172 struct ww_acquire_ctx ww_ctx; 4173 int ret; 4174 4175 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4176 4177 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4178 PM_SUSPEND_ON); 4179 4180 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4181 4182 return ret; 4183 } 4184 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4185 4186 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4187 suspend_state_t state, bool en) 4188 { 4189 struct regulator_state *rstate; 4190 4191 rstate = regulator_get_suspend_state(rdev, state); 4192 if (rstate == NULL) 4193 return -EINVAL; 4194 4195 if (!rstate->changeable) 4196 return -EPERM; 4197 4198 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4199 4200 return 0; 4201 } 4202 4203 int regulator_suspend_enable(struct regulator_dev *rdev, 4204 suspend_state_t state) 4205 { 4206 return regulator_suspend_toggle(rdev, state, true); 4207 } 4208 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4209 4210 int regulator_suspend_disable(struct regulator_dev *rdev, 4211 suspend_state_t state) 4212 { 4213 struct regulator *regulator; 4214 struct regulator_voltage *voltage; 4215 4216 /* 4217 * if any consumer wants this regulator device keeping on in 4218 * suspend states, don't set it as disabled. 4219 */ 4220 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4221 voltage = ®ulator->voltage[state]; 4222 if (voltage->min_uV || voltage->max_uV) 4223 return 0; 4224 } 4225 4226 return regulator_suspend_toggle(rdev, state, false); 4227 } 4228 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4229 4230 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4231 int min_uV, int max_uV, 4232 suspend_state_t state) 4233 { 4234 struct regulator_dev *rdev = regulator->rdev; 4235 struct regulator_state *rstate; 4236 4237 rstate = regulator_get_suspend_state(rdev, state); 4238 if (rstate == NULL) 4239 return -EINVAL; 4240 4241 if (rstate->min_uV == rstate->max_uV) { 4242 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4243 return -EPERM; 4244 } 4245 4246 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4247 } 4248 4249 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4250 int max_uV, suspend_state_t state) 4251 { 4252 struct ww_acquire_ctx ww_ctx; 4253 int ret; 4254 4255 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4256 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4257 return -EINVAL; 4258 4259 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4260 4261 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4262 max_uV, state); 4263 4264 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4265 4266 return ret; 4267 } 4268 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4269 4270 /** 4271 * regulator_set_voltage_time - get raise/fall time 4272 * @regulator: regulator source 4273 * @old_uV: starting voltage in microvolts 4274 * @new_uV: target voltage in microvolts 4275 * 4276 * Provided with the starting and ending voltage, this function attempts to 4277 * calculate the time in microseconds required to rise or fall to this new 4278 * voltage. 4279 */ 4280 int regulator_set_voltage_time(struct regulator *regulator, 4281 int old_uV, int new_uV) 4282 { 4283 struct regulator_dev *rdev = regulator->rdev; 4284 const struct regulator_ops *ops = rdev->desc->ops; 4285 int old_sel = -1; 4286 int new_sel = -1; 4287 int voltage; 4288 int i; 4289 4290 if (ops->set_voltage_time) 4291 return ops->set_voltage_time(rdev, old_uV, new_uV); 4292 else if (!ops->set_voltage_time_sel) 4293 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4294 4295 /* Currently requires operations to do this */ 4296 if (!ops->list_voltage || !rdev->desc->n_voltages) 4297 return -EINVAL; 4298 4299 for (i = 0; i < rdev->desc->n_voltages; i++) { 4300 /* We only look for exact voltage matches here */ 4301 if (i < rdev->desc->linear_min_sel) 4302 continue; 4303 4304 if (old_sel >= 0 && new_sel >= 0) 4305 break; 4306 4307 voltage = regulator_list_voltage(regulator, i); 4308 if (voltage < 0) 4309 return -EINVAL; 4310 if (voltage == 0) 4311 continue; 4312 if (voltage == old_uV) 4313 old_sel = i; 4314 if (voltage == new_uV) 4315 new_sel = i; 4316 } 4317 4318 if (old_sel < 0 || new_sel < 0) 4319 return -EINVAL; 4320 4321 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4322 } 4323 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4324 4325 /** 4326 * regulator_set_voltage_time_sel - get raise/fall time 4327 * @rdev: regulator source device 4328 * @old_selector: selector for starting voltage 4329 * @new_selector: selector for target voltage 4330 * 4331 * Provided with the starting and target voltage selectors, this function 4332 * returns time in microseconds required to rise or fall to this new voltage 4333 * 4334 * Drivers providing ramp_delay in regulation_constraints can use this as their 4335 * set_voltage_time_sel() operation. 4336 */ 4337 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4338 unsigned int old_selector, 4339 unsigned int new_selector) 4340 { 4341 int old_volt, new_volt; 4342 4343 /* sanity check */ 4344 if (!rdev->desc->ops->list_voltage) 4345 return -EINVAL; 4346 4347 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4348 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4349 4350 if (rdev->desc->ops->set_voltage_time) 4351 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4352 new_volt); 4353 else 4354 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4355 } 4356 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4357 4358 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4359 { 4360 int ret; 4361 4362 regulator_lock(rdev); 4363 4364 if (!rdev->desc->ops->set_voltage && 4365 !rdev->desc->ops->set_voltage_sel) { 4366 ret = -EINVAL; 4367 goto out; 4368 } 4369 4370 /* balance only, if regulator is coupled */ 4371 if (rdev->coupling_desc.n_coupled > 1) 4372 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4373 else 4374 ret = -EOPNOTSUPP; 4375 4376 out: 4377 regulator_unlock(rdev); 4378 return ret; 4379 } 4380 4381 /** 4382 * regulator_sync_voltage - re-apply last regulator output voltage 4383 * @regulator: regulator source 4384 * 4385 * Re-apply the last configured voltage. This is intended to be used 4386 * where some external control source the consumer is cooperating with 4387 * has caused the configured voltage to change. 4388 */ 4389 int regulator_sync_voltage(struct regulator *regulator) 4390 { 4391 struct regulator_dev *rdev = regulator->rdev; 4392 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4393 int ret, min_uV, max_uV; 4394 4395 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4396 return 0; 4397 4398 regulator_lock(rdev); 4399 4400 if (!rdev->desc->ops->set_voltage && 4401 !rdev->desc->ops->set_voltage_sel) { 4402 ret = -EINVAL; 4403 goto out; 4404 } 4405 4406 /* This is only going to work if we've had a voltage configured. */ 4407 if (!voltage->min_uV && !voltage->max_uV) { 4408 ret = -EINVAL; 4409 goto out; 4410 } 4411 4412 min_uV = voltage->min_uV; 4413 max_uV = voltage->max_uV; 4414 4415 /* This should be a paranoia check... */ 4416 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4417 if (ret < 0) 4418 goto out; 4419 4420 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4421 if (ret < 0) 4422 goto out; 4423 4424 /* balance only, if regulator is coupled */ 4425 if (rdev->coupling_desc.n_coupled > 1) 4426 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4427 else 4428 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4429 4430 out: 4431 regulator_unlock(rdev); 4432 return ret; 4433 } 4434 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4435 4436 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4437 { 4438 int sel, ret; 4439 bool bypassed; 4440 4441 if (rdev->desc->ops->get_bypass) { 4442 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4443 if (ret < 0) 4444 return ret; 4445 if (bypassed) { 4446 /* if bypassed the regulator must have a supply */ 4447 if (!rdev->supply) { 4448 rdev_err(rdev, 4449 "bypassed regulator has no supply!\n"); 4450 return -EPROBE_DEFER; 4451 } 4452 4453 return regulator_get_voltage_rdev(rdev->supply->rdev); 4454 } 4455 } 4456 4457 if (rdev->desc->ops->get_voltage_sel) { 4458 sel = rdev->desc->ops->get_voltage_sel(rdev); 4459 if (sel < 0) 4460 return sel; 4461 ret = rdev->desc->ops->list_voltage(rdev, sel); 4462 } else if (rdev->desc->ops->get_voltage) { 4463 ret = rdev->desc->ops->get_voltage(rdev); 4464 } else if (rdev->desc->ops->list_voltage) { 4465 ret = rdev->desc->ops->list_voltage(rdev, 0); 4466 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4467 ret = rdev->desc->fixed_uV; 4468 } else if (rdev->supply) { 4469 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4470 } else if (rdev->supply_name) { 4471 return -EPROBE_DEFER; 4472 } else { 4473 return -EINVAL; 4474 } 4475 4476 if (ret < 0) 4477 return ret; 4478 return ret - rdev->constraints->uV_offset; 4479 } 4480 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4481 4482 /** 4483 * regulator_get_voltage - get regulator output voltage 4484 * @regulator: regulator source 4485 * 4486 * This returns the current regulator voltage in uV. 4487 * 4488 * NOTE: If the regulator is disabled it will return the voltage value. This 4489 * function should not be used to determine regulator state. 4490 */ 4491 int regulator_get_voltage(struct regulator *regulator) 4492 { 4493 struct ww_acquire_ctx ww_ctx; 4494 int ret; 4495 4496 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4497 ret = regulator_get_voltage_rdev(regulator->rdev); 4498 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4499 4500 return ret; 4501 } 4502 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4503 4504 /** 4505 * regulator_set_current_limit - set regulator output current limit 4506 * @regulator: regulator source 4507 * @min_uA: Minimum supported current in uA 4508 * @max_uA: Maximum supported current in uA 4509 * 4510 * Sets current sink to the desired output current. This can be set during 4511 * any regulator state. IOW, regulator can be disabled or enabled. 4512 * 4513 * If the regulator is enabled then the current will change to the new value 4514 * immediately otherwise if the regulator is disabled the regulator will 4515 * output at the new current when enabled. 4516 * 4517 * NOTE: Regulator system constraints must be set for this regulator before 4518 * calling this function otherwise this call will fail. 4519 */ 4520 int regulator_set_current_limit(struct regulator *regulator, 4521 int min_uA, int max_uA) 4522 { 4523 struct regulator_dev *rdev = regulator->rdev; 4524 int ret; 4525 4526 regulator_lock(rdev); 4527 4528 /* sanity check */ 4529 if (!rdev->desc->ops->set_current_limit) { 4530 ret = -EINVAL; 4531 goto out; 4532 } 4533 4534 /* constraints check */ 4535 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4536 if (ret < 0) 4537 goto out; 4538 4539 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4540 out: 4541 regulator_unlock(rdev); 4542 return ret; 4543 } 4544 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4545 4546 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4547 { 4548 /* sanity check */ 4549 if (!rdev->desc->ops->get_current_limit) 4550 return -EINVAL; 4551 4552 return rdev->desc->ops->get_current_limit(rdev); 4553 } 4554 4555 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4556 { 4557 int ret; 4558 4559 regulator_lock(rdev); 4560 ret = _regulator_get_current_limit_unlocked(rdev); 4561 regulator_unlock(rdev); 4562 4563 return ret; 4564 } 4565 4566 /** 4567 * regulator_get_current_limit - get regulator output current 4568 * @regulator: regulator source 4569 * 4570 * This returns the current supplied by the specified current sink in uA. 4571 * 4572 * NOTE: If the regulator is disabled it will return the current value. This 4573 * function should not be used to determine regulator state. 4574 */ 4575 int regulator_get_current_limit(struct regulator *regulator) 4576 { 4577 return _regulator_get_current_limit(regulator->rdev); 4578 } 4579 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4580 4581 /** 4582 * regulator_set_mode - set regulator operating mode 4583 * @regulator: regulator source 4584 * @mode: operating mode - one of the REGULATOR_MODE constants 4585 * 4586 * Set regulator operating mode to increase regulator efficiency or improve 4587 * regulation performance. 4588 * 4589 * NOTE: Regulator system constraints must be set for this regulator before 4590 * calling this function otherwise this call will fail. 4591 */ 4592 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4593 { 4594 struct regulator_dev *rdev = regulator->rdev; 4595 int ret; 4596 int regulator_curr_mode; 4597 4598 regulator_lock(rdev); 4599 4600 /* sanity check */ 4601 if (!rdev->desc->ops->set_mode) { 4602 ret = -EINVAL; 4603 goto out; 4604 } 4605 4606 /* return if the same mode is requested */ 4607 if (rdev->desc->ops->get_mode) { 4608 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4609 if (regulator_curr_mode == mode) { 4610 ret = 0; 4611 goto out; 4612 } 4613 } 4614 4615 /* constraints check */ 4616 ret = regulator_mode_constrain(rdev, &mode); 4617 if (ret < 0) 4618 goto out; 4619 4620 ret = rdev->desc->ops->set_mode(rdev, mode); 4621 out: 4622 regulator_unlock(rdev); 4623 return ret; 4624 } 4625 EXPORT_SYMBOL_GPL(regulator_set_mode); 4626 4627 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4628 { 4629 /* sanity check */ 4630 if (!rdev->desc->ops->get_mode) 4631 return -EINVAL; 4632 4633 return rdev->desc->ops->get_mode(rdev); 4634 } 4635 4636 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4637 { 4638 int ret; 4639 4640 regulator_lock(rdev); 4641 ret = _regulator_get_mode_unlocked(rdev); 4642 regulator_unlock(rdev); 4643 4644 return ret; 4645 } 4646 4647 /** 4648 * regulator_get_mode - get regulator operating mode 4649 * @regulator: regulator source 4650 * 4651 * Get the current regulator operating mode. 4652 */ 4653 unsigned int regulator_get_mode(struct regulator *regulator) 4654 { 4655 return _regulator_get_mode(regulator->rdev); 4656 } 4657 EXPORT_SYMBOL_GPL(regulator_get_mode); 4658 4659 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4660 { 4661 int ret = 0; 4662 4663 if (rdev->use_cached_err) { 4664 spin_lock(&rdev->err_lock); 4665 ret = rdev->cached_err; 4666 spin_unlock(&rdev->err_lock); 4667 } 4668 return ret; 4669 } 4670 4671 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4672 unsigned int *flags) 4673 { 4674 int cached_flags, ret = 0; 4675 4676 regulator_lock(rdev); 4677 4678 cached_flags = rdev_get_cached_err_flags(rdev); 4679 4680 if (rdev->desc->ops->get_error_flags) 4681 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4682 else if (!rdev->use_cached_err) 4683 ret = -EINVAL; 4684 4685 *flags |= cached_flags; 4686 4687 regulator_unlock(rdev); 4688 4689 return ret; 4690 } 4691 4692 /** 4693 * regulator_get_error_flags - get regulator error information 4694 * @regulator: regulator source 4695 * @flags: pointer to store error flags 4696 * 4697 * Get the current regulator error information. 4698 */ 4699 int regulator_get_error_flags(struct regulator *regulator, 4700 unsigned int *flags) 4701 { 4702 return _regulator_get_error_flags(regulator->rdev, flags); 4703 } 4704 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4705 4706 /** 4707 * regulator_set_load - set regulator load 4708 * @regulator: regulator source 4709 * @uA_load: load current 4710 * 4711 * Notifies the regulator core of a new device load. This is then used by 4712 * DRMS (if enabled by constraints) to set the most efficient regulator 4713 * operating mode for the new regulator loading. 4714 * 4715 * Consumer devices notify their supply regulator of the maximum power 4716 * they will require (can be taken from device datasheet in the power 4717 * consumption tables) when they change operational status and hence power 4718 * state. Examples of operational state changes that can affect power 4719 * consumption are :- 4720 * 4721 * o Device is opened / closed. 4722 * o Device I/O is about to begin or has just finished. 4723 * o Device is idling in between work. 4724 * 4725 * This information is also exported via sysfs to userspace. 4726 * 4727 * DRMS will sum the total requested load on the regulator and change 4728 * to the most efficient operating mode if platform constraints allow. 4729 * 4730 * NOTE: when a regulator consumer requests to have a regulator 4731 * disabled then any load that consumer requested no longer counts 4732 * toward the total requested load. If the regulator is re-enabled 4733 * then the previously requested load will start counting again. 4734 * 4735 * If a regulator is an always-on regulator then an individual consumer's 4736 * load will still be removed if that consumer is fully disabled. 4737 * 4738 * On error a negative errno is returned. 4739 */ 4740 int regulator_set_load(struct regulator *regulator, int uA_load) 4741 { 4742 struct regulator_dev *rdev = regulator->rdev; 4743 int old_uA_load; 4744 int ret = 0; 4745 4746 regulator_lock(rdev); 4747 old_uA_load = regulator->uA_load; 4748 regulator->uA_load = uA_load; 4749 if (regulator->enable_count && old_uA_load != uA_load) { 4750 ret = drms_uA_update(rdev); 4751 if (ret < 0) 4752 regulator->uA_load = old_uA_load; 4753 } 4754 regulator_unlock(rdev); 4755 4756 return ret; 4757 } 4758 EXPORT_SYMBOL_GPL(regulator_set_load); 4759 4760 /** 4761 * regulator_allow_bypass - allow the regulator to go into bypass mode 4762 * 4763 * @regulator: Regulator to configure 4764 * @enable: enable or disable bypass mode 4765 * 4766 * Allow the regulator to go into bypass mode if all other consumers 4767 * for the regulator also enable bypass mode and the machine 4768 * constraints allow this. Bypass mode means that the regulator is 4769 * simply passing the input directly to the output with no regulation. 4770 */ 4771 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4772 { 4773 struct regulator_dev *rdev = regulator->rdev; 4774 const char *name = rdev_get_name(rdev); 4775 int ret = 0; 4776 4777 if (!rdev->desc->ops->set_bypass) 4778 return 0; 4779 4780 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4781 return 0; 4782 4783 regulator_lock(rdev); 4784 4785 if (enable && !regulator->bypass) { 4786 rdev->bypass_count++; 4787 4788 if (rdev->bypass_count == rdev->open_count) { 4789 trace_regulator_bypass_enable(name); 4790 4791 ret = rdev->desc->ops->set_bypass(rdev, enable); 4792 if (ret != 0) 4793 rdev->bypass_count--; 4794 else 4795 trace_regulator_bypass_enable_complete(name); 4796 } 4797 4798 } else if (!enable && regulator->bypass) { 4799 rdev->bypass_count--; 4800 4801 if (rdev->bypass_count != rdev->open_count) { 4802 trace_regulator_bypass_disable(name); 4803 4804 ret = rdev->desc->ops->set_bypass(rdev, enable); 4805 if (ret != 0) 4806 rdev->bypass_count++; 4807 else 4808 trace_regulator_bypass_disable_complete(name); 4809 } 4810 } 4811 4812 if (ret == 0) 4813 regulator->bypass = enable; 4814 4815 regulator_unlock(rdev); 4816 4817 return ret; 4818 } 4819 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4820 4821 /** 4822 * regulator_register_notifier - register regulator event notifier 4823 * @regulator: regulator source 4824 * @nb: notifier block 4825 * 4826 * Register notifier block to receive regulator events. 4827 */ 4828 int regulator_register_notifier(struct regulator *regulator, 4829 struct notifier_block *nb) 4830 { 4831 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4832 nb); 4833 } 4834 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4835 4836 /** 4837 * regulator_unregister_notifier - unregister regulator event notifier 4838 * @regulator: regulator source 4839 * @nb: notifier block 4840 * 4841 * Unregister regulator event notifier block. 4842 */ 4843 int regulator_unregister_notifier(struct regulator *regulator, 4844 struct notifier_block *nb) 4845 { 4846 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4847 nb); 4848 } 4849 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4850 4851 /* notify regulator consumers and downstream regulator consumers. 4852 * Note mutex must be held by caller. 4853 */ 4854 static int _notifier_call_chain(struct regulator_dev *rdev, 4855 unsigned long event, void *data) 4856 { 4857 /* call rdev chain first */ 4858 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 4859 4860 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 4861 struct device *parent = rdev->dev.parent; 4862 const char *rname = rdev_get_name(rdev); 4863 char name[32]; 4864 4865 /* Avoid duplicate debugfs directory names */ 4866 if (parent && rname == rdev->desc->name) { 4867 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4868 rname); 4869 rname = name; 4870 } 4871 reg_generate_netlink_event(rname, event); 4872 } 4873 4874 return ret; 4875 } 4876 4877 int _regulator_bulk_get(struct device *dev, int num_consumers, 4878 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4879 { 4880 int i; 4881 int ret; 4882 4883 for (i = 0; i < num_consumers; i++) 4884 consumers[i].consumer = NULL; 4885 4886 for (i = 0; i < num_consumers; i++) { 4887 consumers[i].consumer = _regulator_get(dev, 4888 consumers[i].supply, get_type); 4889 if (IS_ERR(consumers[i].consumer)) { 4890 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4891 "Failed to get supply '%s'", 4892 consumers[i].supply); 4893 consumers[i].consumer = NULL; 4894 goto err; 4895 } 4896 4897 if (consumers[i].init_load_uA > 0) { 4898 ret = regulator_set_load(consumers[i].consumer, 4899 consumers[i].init_load_uA); 4900 if (ret) { 4901 i++; 4902 goto err; 4903 } 4904 } 4905 } 4906 4907 return 0; 4908 4909 err: 4910 while (--i >= 0) 4911 regulator_put(consumers[i].consumer); 4912 4913 return ret; 4914 } 4915 4916 /** 4917 * regulator_bulk_get - get multiple regulator consumers 4918 * 4919 * @dev: Device to supply 4920 * @num_consumers: Number of consumers to register 4921 * @consumers: Configuration of consumers; clients are stored here. 4922 * 4923 * @return 0 on success, an errno on failure. 4924 * 4925 * This helper function allows drivers to get several regulator 4926 * consumers in one operation. If any of the regulators cannot be 4927 * acquired then any regulators that were allocated will be freed 4928 * before returning to the caller. 4929 */ 4930 int regulator_bulk_get(struct device *dev, int num_consumers, 4931 struct regulator_bulk_data *consumers) 4932 { 4933 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4934 } 4935 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4936 4937 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4938 { 4939 struct regulator_bulk_data *bulk = data; 4940 4941 bulk->ret = regulator_enable(bulk->consumer); 4942 } 4943 4944 /** 4945 * regulator_bulk_enable - enable multiple regulator consumers 4946 * 4947 * @num_consumers: Number of consumers 4948 * @consumers: Consumer data; clients are stored here. 4949 * @return 0 on success, an errno on failure 4950 * 4951 * This convenience API allows consumers to enable multiple regulator 4952 * clients in a single API call. If any consumers cannot be enabled 4953 * then any others that were enabled will be disabled again prior to 4954 * return. 4955 */ 4956 int regulator_bulk_enable(int num_consumers, 4957 struct regulator_bulk_data *consumers) 4958 { 4959 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4960 int i; 4961 int ret = 0; 4962 4963 for (i = 0; i < num_consumers; i++) { 4964 async_schedule_domain(regulator_bulk_enable_async, 4965 &consumers[i], &async_domain); 4966 } 4967 4968 async_synchronize_full_domain(&async_domain); 4969 4970 /* If any consumer failed we need to unwind any that succeeded */ 4971 for (i = 0; i < num_consumers; i++) { 4972 if (consumers[i].ret != 0) { 4973 ret = consumers[i].ret; 4974 goto err; 4975 } 4976 } 4977 4978 return 0; 4979 4980 err: 4981 for (i = 0; i < num_consumers; i++) { 4982 if (consumers[i].ret < 0) 4983 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4984 ERR_PTR(consumers[i].ret)); 4985 else 4986 regulator_disable(consumers[i].consumer); 4987 } 4988 4989 return ret; 4990 } 4991 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4992 4993 /** 4994 * regulator_bulk_disable - disable multiple regulator consumers 4995 * 4996 * @num_consumers: Number of consumers 4997 * @consumers: Consumer data; clients are stored here. 4998 * @return 0 on success, an errno on failure 4999 * 5000 * This convenience API allows consumers to disable multiple regulator 5001 * clients in a single API call. If any consumers cannot be disabled 5002 * then any others that were disabled will be enabled again prior to 5003 * return. 5004 */ 5005 int regulator_bulk_disable(int num_consumers, 5006 struct regulator_bulk_data *consumers) 5007 { 5008 int i; 5009 int ret, r; 5010 5011 for (i = num_consumers - 1; i >= 0; --i) { 5012 ret = regulator_disable(consumers[i].consumer); 5013 if (ret != 0) 5014 goto err; 5015 } 5016 5017 return 0; 5018 5019 err: 5020 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5021 for (++i; i < num_consumers; ++i) { 5022 r = regulator_enable(consumers[i].consumer); 5023 if (r != 0) 5024 pr_err("Failed to re-enable %s: %pe\n", 5025 consumers[i].supply, ERR_PTR(r)); 5026 } 5027 5028 return ret; 5029 } 5030 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5031 5032 /** 5033 * regulator_bulk_force_disable - force disable multiple regulator consumers 5034 * 5035 * @num_consumers: Number of consumers 5036 * @consumers: Consumer data; clients are stored here. 5037 * @return 0 on success, an errno on failure 5038 * 5039 * This convenience API allows consumers to forcibly disable multiple regulator 5040 * clients in a single API call. 5041 * NOTE: This should be used for situations when device damage will 5042 * likely occur if the regulators are not disabled (e.g. over temp). 5043 * Although regulator_force_disable function call for some consumers can 5044 * return error numbers, the function is called for all consumers. 5045 */ 5046 int regulator_bulk_force_disable(int num_consumers, 5047 struct regulator_bulk_data *consumers) 5048 { 5049 int i; 5050 int ret = 0; 5051 5052 for (i = 0; i < num_consumers; i++) { 5053 consumers[i].ret = 5054 regulator_force_disable(consumers[i].consumer); 5055 5056 /* Store first error for reporting */ 5057 if (consumers[i].ret && !ret) 5058 ret = consumers[i].ret; 5059 } 5060 5061 return ret; 5062 } 5063 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5064 5065 /** 5066 * regulator_bulk_free - free multiple regulator consumers 5067 * 5068 * @num_consumers: Number of consumers 5069 * @consumers: Consumer data; clients are stored here. 5070 * 5071 * This convenience API allows consumers to free multiple regulator 5072 * clients in a single API call. 5073 */ 5074 void regulator_bulk_free(int num_consumers, 5075 struct regulator_bulk_data *consumers) 5076 { 5077 int i; 5078 5079 for (i = 0; i < num_consumers; i++) { 5080 regulator_put(consumers[i].consumer); 5081 consumers[i].consumer = NULL; 5082 } 5083 } 5084 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5085 5086 /** 5087 * regulator_handle_critical - Handle events for system-critical regulators. 5088 * @rdev: The regulator device. 5089 * @event: The event being handled. 5090 * 5091 * This function handles critical events such as under-voltage, over-current, 5092 * and unknown errors for regulators deemed system-critical. On detecting such 5093 * events, it triggers a hardware protection shutdown with a defined timeout. 5094 */ 5095 static void regulator_handle_critical(struct regulator_dev *rdev, 5096 unsigned long event) 5097 { 5098 const char *reason = NULL; 5099 5100 if (!rdev->constraints->system_critical) 5101 return; 5102 5103 switch (event) { 5104 case REGULATOR_EVENT_UNDER_VOLTAGE: 5105 reason = "System critical regulator: voltage drop detected"; 5106 break; 5107 case REGULATOR_EVENT_OVER_CURRENT: 5108 reason = "System critical regulator: over-current detected"; 5109 break; 5110 case REGULATOR_EVENT_FAIL: 5111 reason = "System critical regulator: unknown error"; 5112 } 5113 5114 if (!reason) 5115 return; 5116 5117 hw_protection_shutdown(reason, 5118 rdev->constraints->uv_less_critical_window_ms); 5119 } 5120 5121 /** 5122 * regulator_notifier_call_chain - call regulator event notifier 5123 * @rdev: regulator source 5124 * @event: notifier block 5125 * @data: callback-specific data. 5126 * 5127 * Called by regulator drivers to notify clients a regulator event has 5128 * occurred. 5129 */ 5130 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5131 unsigned long event, void *data) 5132 { 5133 regulator_handle_critical(rdev, event); 5134 5135 _notifier_call_chain(rdev, event, data); 5136 return NOTIFY_DONE; 5137 5138 } 5139 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5140 5141 /** 5142 * regulator_mode_to_status - convert a regulator mode into a status 5143 * 5144 * @mode: Mode to convert 5145 * 5146 * Convert a regulator mode into a status. 5147 */ 5148 int regulator_mode_to_status(unsigned int mode) 5149 { 5150 switch (mode) { 5151 case REGULATOR_MODE_FAST: 5152 return REGULATOR_STATUS_FAST; 5153 case REGULATOR_MODE_NORMAL: 5154 return REGULATOR_STATUS_NORMAL; 5155 case REGULATOR_MODE_IDLE: 5156 return REGULATOR_STATUS_IDLE; 5157 case REGULATOR_MODE_STANDBY: 5158 return REGULATOR_STATUS_STANDBY; 5159 default: 5160 return REGULATOR_STATUS_UNDEFINED; 5161 } 5162 } 5163 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5164 5165 static struct attribute *regulator_dev_attrs[] = { 5166 &dev_attr_name.attr, 5167 &dev_attr_num_users.attr, 5168 &dev_attr_type.attr, 5169 &dev_attr_microvolts.attr, 5170 &dev_attr_microamps.attr, 5171 &dev_attr_opmode.attr, 5172 &dev_attr_state.attr, 5173 &dev_attr_status.attr, 5174 &dev_attr_bypass.attr, 5175 &dev_attr_requested_microamps.attr, 5176 &dev_attr_min_microvolts.attr, 5177 &dev_attr_max_microvolts.attr, 5178 &dev_attr_min_microamps.attr, 5179 &dev_attr_max_microamps.attr, 5180 &dev_attr_under_voltage.attr, 5181 &dev_attr_over_current.attr, 5182 &dev_attr_regulation_out.attr, 5183 &dev_attr_fail.attr, 5184 &dev_attr_over_temp.attr, 5185 &dev_attr_under_voltage_warn.attr, 5186 &dev_attr_over_current_warn.attr, 5187 &dev_attr_over_voltage_warn.attr, 5188 &dev_attr_over_temp_warn.attr, 5189 &dev_attr_suspend_standby_state.attr, 5190 &dev_attr_suspend_mem_state.attr, 5191 &dev_attr_suspend_disk_state.attr, 5192 &dev_attr_suspend_standby_microvolts.attr, 5193 &dev_attr_suspend_mem_microvolts.attr, 5194 &dev_attr_suspend_disk_microvolts.attr, 5195 &dev_attr_suspend_standby_mode.attr, 5196 &dev_attr_suspend_mem_mode.attr, 5197 &dev_attr_suspend_disk_mode.attr, 5198 NULL 5199 }; 5200 5201 /* 5202 * To avoid cluttering sysfs (and memory) with useless state, only 5203 * create attributes that can be meaningfully displayed. 5204 */ 5205 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5206 struct attribute *attr, int idx) 5207 { 5208 struct device *dev = kobj_to_dev(kobj); 5209 struct regulator_dev *rdev = dev_to_rdev(dev); 5210 const struct regulator_ops *ops = rdev->desc->ops; 5211 umode_t mode = attr->mode; 5212 5213 /* these three are always present */ 5214 if (attr == &dev_attr_name.attr || 5215 attr == &dev_attr_num_users.attr || 5216 attr == &dev_attr_type.attr) 5217 return mode; 5218 5219 /* some attributes need specific methods to be displayed */ 5220 if (attr == &dev_attr_microvolts.attr) { 5221 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5222 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5223 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5224 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5225 return mode; 5226 return 0; 5227 } 5228 5229 if (attr == &dev_attr_microamps.attr) 5230 return ops->get_current_limit ? mode : 0; 5231 5232 if (attr == &dev_attr_opmode.attr) 5233 return ops->get_mode ? mode : 0; 5234 5235 if (attr == &dev_attr_state.attr) 5236 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5237 5238 if (attr == &dev_attr_status.attr) 5239 return ops->get_status ? mode : 0; 5240 5241 if (attr == &dev_attr_bypass.attr) 5242 return ops->get_bypass ? mode : 0; 5243 5244 if (attr == &dev_attr_under_voltage.attr || 5245 attr == &dev_attr_over_current.attr || 5246 attr == &dev_attr_regulation_out.attr || 5247 attr == &dev_attr_fail.attr || 5248 attr == &dev_attr_over_temp.attr || 5249 attr == &dev_attr_under_voltage_warn.attr || 5250 attr == &dev_attr_over_current_warn.attr || 5251 attr == &dev_attr_over_voltage_warn.attr || 5252 attr == &dev_attr_over_temp_warn.attr) 5253 return ops->get_error_flags ? mode : 0; 5254 5255 /* constraints need specific supporting methods */ 5256 if (attr == &dev_attr_min_microvolts.attr || 5257 attr == &dev_attr_max_microvolts.attr) 5258 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5259 5260 if (attr == &dev_attr_min_microamps.attr || 5261 attr == &dev_attr_max_microamps.attr) 5262 return ops->set_current_limit ? mode : 0; 5263 5264 if (attr == &dev_attr_suspend_standby_state.attr || 5265 attr == &dev_attr_suspend_mem_state.attr || 5266 attr == &dev_attr_suspend_disk_state.attr) 5267 return mode; 5268 5269 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5270 attr == &dev_attr_suspend_mem_microvolts.attr || 5271 attr == &dev_attr_suspend_disk_microvolts.attr) 5272 return ops->set_suspend_voltage ? mode : 0; 5273 5274 if (attr == &dev_attr_suspend_standby_mode.attr || 5275 attr == &dev_attr_suspend_mem_mode.attr || 5276 attr == &dev_attr_suspend_disk_mode.attr) 5277 return ops->set_suspend_mode ? mode : 0; 5278 5279 return mode; 5280 } 5281 5282 static const struct attribute_group regulator_dev_group = { 5283 .attrs = regulator_dev_attrs, 5284 .is_visible = regulator_attr_is_visible, 5285 }; 5286 5287 static const struct attribute_group *regulator_dev_groups[] = { 5288 ®ulator_dev_group, 5289 NULL 5290 }; 5291 5292 static void regulator_dev_release(struct device *dev) 5293 { 5294 struct regulator_dev *rdev = dev_get_drvdata(dev); 5295 5296 debugfs_remove_recursive(rdev->debugfs); 5297 kfree(rdev->constraints); 5298 of_node_put(rdev->dev.of_node); 5299 kfree(rdev); 5300 } 5301 5302 static void rdev_init_debugfs(struct regulator_dev *rdev) 5303 { 5304 struct device *parent = rdev->dev.parent; 5305 const char *rname = rdev_get_name(rdev); 5306 char name[NAME_MAX]; 5307 5308 /* Avoid duplicate debugfs directory names */ 5309 if (parent && rname == rdev->desc->name) { 5310 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5311 rname); 5312 rname = name; 5313 } 5314 5315 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5316 if (IS_ERR(rdev->debugfs)) 5317 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5318 5319 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5320 &rdev->use_count); 5321 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5322 &rdev->open_count); 5323 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5324 &rdev->bypass_count); 5325 } 5326 5327 static int regulator_register_resolve_supply(struct device *dev, void *data) 5328 { 5329 struct regulator_dev *rdev = dev_to_rdev(dev); 5330 5331 if (regulator_resolve_supply(rdev)) 5332 rdev_dbg(rdev, "unable to resolve supply\n"); 5333 5334 return 0; 5335 } 5336 5337 int regulator_coupler_register(struct regulator_coupler *coupler) 5338 { 5339 mutex_lock(®ulator_list_mutex); 5340 list_add_tail(&coupler->list, ®ulator_coupler_list); 5341 mutex_unlock(®ulator_list_mutex); 5342 5343 return 0; 5344 } 5345 5346 static struct regulator_coupler * 5347 regulator_find_coupler(struct regulator_dev *rdev) 5348 { 5349 struct regulator_coupler *coupler; 5350 int err; 5351 5352 /* 5353 * Note that regulators are appended to the list and the generic 5354 * coupler is registered first, hence it will be attached at last 5355 * if nobody cared. 5356 */ 5357 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5358 err = coupler->attach_regulator(coupler, rdev); 5359 if (!err) { 5360 if (!coupler->balance_voltage && 5361 rdev->coupling_desc.n_coupled > 2) 5362 goto err_unsupported; 5363 5364 return coupler; 5365 } 5366 5367 if (err < 0) 5368 return ERR_PTR(err); 5369 5370 if (err == 1) 5371 continue; 5372 5373 break; 5374 } 5375 5376 return ERR_PTR(-EINVAL); 5377 5378 err_unsupported: 5379 if (coupler->detach_regulator) 5380 coupler->detach_regulator(coupler, rdev); 5381 5382 rdev_err(rdev, 5383 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5384 5385 return ERR_PTR(-EPERM); 5386 } 5387 5388 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5389 { 5390 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5391 struct coupling_desc *c_desc = &rdev->coupling_desc; 5392 int n_coupled = c_desc->n_coupled; 5393 struct regulator_dev *c_rdev; 5394 int i; 5395 5396 for (i = 1; i < n_coupled; i++) { 5397 /* already resolved */ 5398 if (c_desc->coupled_rdevs[i]) 5399 continue; 5400 5401 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5402 5403 if (!c_rdev) 5404 continue; 5405 5406 if (c_rdev->coupling_desc.coupler != coupler) { 5407 rdev_err(rdev, "coupler mismatch with %s\n", 5408 rdev_get_name(c_rdev)); 5409 return; 5410 } 5411 5412 c_desc->coupled_rdevs[i] = c_rdev; 5413 c_desc->n_resolved++; 5414 5415 regulator_resolve_coupling(c_rdev); 5416 } 5417 } 5418 5419 static void regulator_remove_coupling(struct regulator_dev *rdev) 5420 { 5421 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5422 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5423 struct regulator_dev *__c_rdev, *c_rdev; 5424 unsigned int __n_coupled, n_coupled; 5425 int i, k; 5426 int err; 5427 5428 n_coupled = c_desc->n_coupled; 5429 5430 for (i = 1; i < n_coupled; i++) { 5431 c_rdev = c_desc->coupled_rdevs[i]; 5432 5433 if (!c_rdev) 5434 continue; 5435 5436 regulator_lock(c_rdev); 5437 5438 __c_desc = &c_rdev->coupling_desc; 5439 __n_coupled = __c_desc->n_coupled; 5440 5441 for (k = 1; k < __n_coupled; k++) { 5442 __c_rdev = __c_desc->coupled_rdevs[k]; 5443 5444 if (__c_rdev == rdev) { 5445 __c_desc->coupled_rdevs[k] = NULL; 5446 __c_desc->n_resolved--; 5447 break; 5448 } 5449 } 5450 5451 regulator_unlock(c_rdev); 5452 5453 c_desc->coupled_rdevs[i] = NULL; 5454 c_desc->n_resolved--; 5455 } 5456 5457 if (coupler && coupler->detach_regulator) { 5458 err = coupler->detach_regulator(coupler, rdev); 5459 if (err) 5460 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5461 ERR_PTR(err)); 5462 } 5463 5464 kfree(rdev->coupling_desc.coupled_rdevs); 5465 rdev->coupling_desc.coupled_rdevs = NULL; 5466 } 5467 5468 static int regulator_init_coupling(struct regulator_dev *rdev) 5469 { 5470 struct regulator_dev **coupled; 5471 int err, n_phandles; 5472 5473 if (!IS_ENABLED(CONFIG_OF)) 5474 n_phandles = 0; 5475 else 5476 n_phandles = of_get_n_coupled(rdev); 5477 5478 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5479 if (!coupled) 5480 return -ENOMEM; 5481 5482 rdev->coupling_desc.coupled_rdevs = coupled; 5483 5484 /* 5485 * Every regulator should always have coupling descriptor filled with 5486 * at least pointer to itself. 5487 */ 5488 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5489 rdev->coupling_desc.n_coupled = n_phandles + 1; 5490 rdev->coupling_desc.n_resolved++; 5491 5492 /* regulator isn't coupled */ 5493 if (n_phandles == 0) 5494 return 0; 5495 5496 if (!of_check_coupling_data(rdev)) 5497 return -EPERM; 5498 5499 mutex_lock(®ulator_list_mutex); 5500 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5501 mutex_unlock(®ulator_list_mutex); 5502 5503 if (IS_ERR(rdev->coupling_desc.coupler)) { 5504 err = PTR_ERR(rdev->coupling_desc.coupler); 5505 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5506 return err; 5507 } 5508 5509 return 0; 5510 } 5511 5512 static int generic_coupler_attach(struct regulator_coupler *coupler, 5513 struct regulator_dev *rdev) 5514 { 5515 if (rdev->coupling_desc.n_coupled > 2) { 5516 rdev_err(rdev, 5517 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5518 return -EPERM; 5519 } 5520 5521 if (!rdev->constraints->always_on) { 5522 rdev_err(rdev, 5523 "Coupling of a non always-on regulator is unimplemented\n"); 5524 return -ENOTSUPP; 5525 } 5526 5527 return 0; 5528 } 5529 5530 static struct regulator_coupler generic_regulator_coupler = { 5531 .attach_regulator = generic_coupler_attach, 5532 }; 5533 5534 /** 5535 * regulator_register - register regulator 5536 * @dev: the device that drive the regulator 5537 * @regulator_desc: regulator to register 5538 * @cfg: runtime configuration for regulator 5539 * 5540 * Called by regulator drivers to register a regulator. 5541 * Returns a valid pointer to struct regulator_dev on success 5542 * or an ERR_PTR() on error. 5543 */ 5544 struct regulator_dev * 5545 regulator_register(struct device *dev, 5546 const struct regulator_desc *regulator_desc, 5547 const struct regulator_config *cfg) 5548 { 5549 const struct regulator_init_data *init_data; 5550 struct regulator_config *config = NULL; 5551 static atomic_t regulator_no = ATOMIC_INIT(-1); 5552 struct regulator_dev *rdev; 5553 bool dangling_cfg_gpiod = false; 5554 bool dangling_of_gpiod = false; 5555 int ret, i; 5556 bool resolved_early = false; 5557 5558 if (cfg == NULL) 5559 return ERR_PTR(-EINVAL); 5560 if (cfg->ena_gpiod) 5561 dangling_cfg_gpiod = true; 5562 if (regulator_desc == NULL) { 5563 ret = -EINVAL; 5564 goto rinse; 5565 } 5566 5567 WARN_ON(!dev || !cfg->dev); 5568 5569 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5570 ret = -EINVAL; 5571 goto rinse; 5572 } 5573 5574 if (regulator_desc->type != REGULATOR_VOLTAGE && 5575 regulator_desc->type != REGULATOR_CURRENT) { 5576 ret = -EINVAL; 5577 goto rinse; 5578 } 5579 5580 /* Only one of each should be implemented */ 5581 WARN_ON(regulator_desc->ops->get_voltage && 5582 regulator_desc->ops->get_voltage_sel); 5583 WARN_ON(regulator_desc->ops->set_voltage && 5584 regulator_desc->ops->set_voltage_sel); 5585 5586 /* If we're using selectors we must implement list_voltage. */ 5587 if (regulator_desc->ops->get_voltage_sel && 5588 !regulator_desc->ops->list_voltage) { 5589 ret = -EINVAL; 5590 goto rinse; 5591 } 5592 if (regulator_desc->ops->set_voltage_sel && 5593 !regulator_desc->ops->list_voltage) { 5594 ret = -EINVAL; 5595 goto rinse; 5596 } 5597 5598 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5599 if (rdev == NULL) { 5600 ret = -ENOMEM; 5601 goto rinse; 5602 } 5603 device_initialize(&rdev->dev); 5604 dev_set_drvdata(&rdev->dev, rdev); 5605 rdev->dev.class = ®ulator_class; 5606 spin_lock_init(&rdev->err_lock); 5607 5608 /* 5609 * Duplicate the config so the driver could override it after 5610 * parsing init data. 5611 */ 5612 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5613 if (config == NULL) { 5614 ret = -ENOMEM; 5615 goto clean; 5616 } 5617 5618 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5619 &rdev->dev.of_node); 5620 5621 /* 5622 * Sometimes not all resources are probed already so we need to take 5623 * that into account. This happens most the time if the ena_gpiod comes 5624 * from a gpio extender or something else. 5625 */ 5626 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5627 ret = -EPROBE_DEFER; 5628 goto clean; 5629 } 5630 5631 /* 5632 * We need to keep track of any GPIO descriptor coming from the 5633 * device tree until we have handled it over to the core. If the 5634 * config that was passed in to this function DOES NOT contain 5635 * a descriptor, and the config after this call DOES contain 5636 * a descriptor, we definitely got one from parsing the device 5637 * tree. 5638 */ 5639 if (!cfg->ena_gpiod && config->ena_gpiod) 5640 dangling_of_gpiod = true; 5641 if (!init_data) { 5642 init_data = config->init_data; 5643 rdev->dev.of_node = of_node_get(config->of_node); 5644 } 5645 5646 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5647 rdev->reg_data = config->driver_data; 5648 rdev->owner = regulator_desc->owner; 5649 rdev->desc = regulator_desc; 5650 if (config->regmap) 5651 rdev->regmap = config->regmap; 5652 else if (dev_get_regmap(dev, NULL)) 5653 rdev->regmap = dev_get_regmap(dev, NULL); 5654 else if (dev->parent) 5655 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5656 INIT_LIST_HEAD(&rdev->consumer_list); 5657 INIT_LIST_HEAD(&rdev->list); 5658 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5659 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5660 5661 if (init_data && init_data->supply_regulator) 5662 rdev->supply_name = init_data->supply_regulator; 5663 else if (regulator_desc->supply_name) 5664 rdev->supply_name = regulator_desc->supply_name; 5665 5666 /* register with sysfs */ 5667 rdev->dev.parent = config->dev; 5668 dev_set_name(&rdev->dev, "regulator.%lu", 5669 (unsigned long) atomic_inc_return(®ulator_no)); 5670 5671 /* set regulator constraints */ 5672 if (init_data) 5673 rdev->constraints = kmemdup(&init_data->constraints, 5674 sizeof(*rdev->constraints), 5675 GFP_KERNEL); 5676 else 5677 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5678 GFP_KERNEL); 5679 if (!rdev->constraints) { 5680 ret = -ENOMEM; 5681 goto wash; 5682 } 5683 5684 if ((rdev->supply_name && !rdev->supply) && 5685 (rdev->constraints->always_on || 5686 rdev->constraints->boot_on)) { 5687 ret = regulator_resolve_supply(rdev); 5688 if (ret) 5689 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5690 ERR_PTR(ret)); 5691 5692 resolved_early = true; 5693 } 5694 5695 /* perform any regulator specific init */ 5696 if (init_data && init_data->regulator_init) { 5697 ret = init_data->regulator_init(rdev->reg_data); 5698 if (ret < 0) 5699 goto wash; 5700 } 5701 5702 if (config->ena_gpiod) { 5703 ret = regulator_ena_gpio_request(rdev, config); 5704 if (ret != 0) { 5705 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5706 ERR_PTR(ret)); 5707 goto wash; 5708 } 5709 /* The regulator core took over the GPIO descriptor */ 5710 dangling_cfg_gpiod = false; 5711 dangling_of_gpiod = false; 5712 } 5713 5714 ret = set_machine_constraints(rdev); 5715 if (ret == -EPROBE_DEFER && !resolved_early) { 5716 /* Regulator might be in bypass mode and so needs its supply 5717 * to set the constraints 5718 */ 5719 /* FIXME: this currently triggers a chicken-and-egg problem 5720 * when creating -SUPPLY symlink in sysfs to a regulator 5721 * that is just being created 5722 */ 5723 rdev_dbg(rdev, "will resolve supply early: %s\n", 5724 rdev->supply_name); 5725 ret = regulator_resolve_supply(rdev); 5726 if (!ret) 5727 ret = set_machine_constraints(rdev); 5728 else 5729 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5730 ERR_PTR(ret)); 5731 } 5732 if (ret < 0) 5733 goto wash; 5734 5735 ret = regulator_init_coupling(rdev); 5736 if (ret < 0) 5737 goto wash; 5738 5739 /* add consumers devices */ 5740 if (init_data) { 5741 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5742 ret = set_consumer_device_supply(rdev, 5743 init_data->consumer_supplies[i].dev_name, 5744 init_data->consumer_supplies[i].supply); 5745 if (ret < 0) { 5746 dev_err(dev, "Failed to set supply %s\n", 5747 init_data->consumer_supplies[i].supply); 5748 goto unset_supplies; 5749 } 5750 } 5751 } 5752 5753 if (!rdev->desc->ops->get_voltage && 5754 !rdev->desc->ops->list_voltage && 5755 !rdev->desc->fixed_uV) 5756 rdev->is_switch = true; 5757 5758 ret = device_add(&rdev->dev); 5759 if (ret != 0) 5760 goto unset_supplies; 5761 5762 rdev_init_debugfs(rdev); 5763 5764 /* try to resolve regulators coupling since a new one was registered */ 5765 mutex_lock(®ulator_list_mutex); 5766 regulator_resolve_coupling(rdev); 5767 mutex_unlock(®ulator_list_mutex); 5768 5769 /* try to resolve regulators supply since a new one was registered */ 5770 class_for_each_device(®ulator_class, NULL, NULL, 5771 regulator_register_resolve_supply); 5772 kfree(config); 5773 return rdev; 5774 5775 unset_supplies: 5776 mutex_lock(®ulator_list_mutex); 5777 unset_regulator_supplies(rdev); 5778 regulator_remove_coupling(rdev); 5779 mutex_unlock(®ulator_list_mutex); 5780 wash: 5781 regulator_put(rdev->supply); 5782 kfree(rdev->coupling_desc.coupled_rdevs); 5783 mutex_lock(®ulator_list_mutex); 5784 regulator_ena_gpio_free(rdev); 5785 mutex_unlock(®ulator_list_mutex); 5786 clean: 5787 if (dangling_of_gpiod) 5788 gpiod_put(config->ena_gpiod); 5789 kfree(config); 5790 put_device(&rdev->dev); 5791 rinse: 5792 if (dangling_cfg_gpiod) 5793 gpiod_put(cfg->ena_gpiod); 5794 return ERR_PTR(ret); 5795 } 5796 EXPORT_SYMBOL_GPL(regulator_register); 5797 5798 /** 5799 * regulator_unregister - unregister regulator 5800 * @rdev: regulator to unregister 5801 * 5802 * Called by regulator drivers to unregister a regulator. 5803 */ 5804 void regulator_unregister(struct regulator_dev *rdev) 5805 { 5806 if (rdev == NULL) 5807 return; 5808 5809 if (rdev->supply) { 5810 while (rdev->use_count--) 5811 regulator_disable(rdev->supply); 5812 regulator_put(rdev->supply); 5813 } 5814 5815 flush_work(&rdev->disable_work.work); 5816 5817 mutex_lock(®ulator_list_mutex); 5818 5819 WARN_ON(rdev->open_count); 5820 regulator_remove_coupling(rdev); 5821 unset_regulator_supplies(rdev); 5822 list_del(&rdev->list); 5823 regulator_ena_gpio_free(rdev); 5824 device_unregister(&rdev->dev); 5825 5826 mutex_unlock(®ulator_list_mutex); 5827 } 5828 EXPORT_SYMBOL_GPL(regulator_unregister); 5829 5830 #ifdef CONFIG_SUSPEND 5831 /** 5832 * regulator_suspend - prepare regulators for system wide suspend 5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5834 * 5835 * Configure each regulator with it's suspend operating parameters for state. 5836 */ 5837 static int regulator_suspend(struct device *dev) 5838 { 5839 struct regulator_dev *rdev = dev_to_rdev(dev); 5840 suspend_state_t state = pm_suspend_target_state; 5841 int ret; 5842 const struct regulator_state *rstate; 5843 5844 rstate = regulator_get_suspend_state_check(rdev, state); 5845 if (!rstate) 5846 return 0; 5847 5848 regulator_lock(rdev); 5849 ret = __suspend_set_state(rdev, rstate); 5850 regulator_unlock(rdev); 5851 5852 return ret; 5853 } 5854 5855 static int regulator_resume(struct device *dev) 5856 { 5857 suspend_state_t state = pm_suspend_target_state; 5858 struct regulator_dev *rdev = dev_to_rdev(dev); 5859 struct regulator_state *rstate; 5860 int ret = 0; 5861 5862 rstate = regulator_get_suspend_state(rdev, state); 5863 if (rstate == NULL) 5864 return 0; 5865 5866 /* Avoid grabbing the lock if we don't need to */ 5867 if (!rdev->desc->ops->resume) 5868 return 0; 5869 5870 regulator_lock(rdev); 5871 5872 if (rstate->enabled == ENABLE_IN_SUSPEND || 5873 rstate->enabled == DISABLE_IN_SUSPEND) 5874 ret = rdev->desc->ops->resume(rdev); 5875 5876 regulator_unlock(rdev); 5877 5878 return ret; 5879 } 5880 #else /* !CONFIG_SUSPEND */ 5881 5882 #define regulator_suspend NULL 5883 #define regulator_resume NULL 5884 5885 #endif /* !CONFIG_SUSPEND */ 5886 5887 #ifdef CONFIG_PM 5888 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5889 .suspend = regulator_suspend, 5890 .resume = regulator_resume, 5891 }; 5892 #endif 5893 5894 struct class regulator_class = { 5895 .name = "regulator", 5896 .dev_release = regulator_dev_release, 5897 .dev_groups = regulator_dev_groups, 5898 #ifdef CONFIG_PM 5899 .pm = ®ulator_pm_ops, 5900 #endif 5901 }; 5902 /** 5903 * regulator_has_full_constraints - the system has fully specified constraints 5904 * 5905 * Calling this function will cause the regulator API to disable all 5906 * regulators which have a zero use count and don't have an always_on 5907 * constraint in a late_initcall. 5908 * 5909 * The intention is that this will become the default behaviour in a 5910 * future kernel release so users are encouraged to use this facility 5911 * now. 5912 */ 5913 void regulator_has_full_constraints(void) 5914 { 5915 has_full_constraints = 1; 5916 } 5917 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5918 5919 /** 5920 * rdev_get_drvdata - get rdev regulator driver data 5921 * @rdev: regulator 5922 * 5923 * Get rdev regulator driver private data. This call can be used in the 5924 * regulator driver context. 5925 */ 5926 void *rdev_get_drvdata(struct regulator_dev *rdev) 5927 { 5928 return rdev->reg_data; 5929 } 5930 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5931 5932 /** 5933 * regulator_get_drvdata - get regulator driver data 5934 * @regulator: regulator 5935 * 5936 * Get regulator driver private data. This call can be used in the consumer 5937 * driver context when non API regulator specific functions need to be called. 5938 */ 5939 void *regulator_get_drvdata(struct regulator *regulator) 5940 { 5941 return regulator->rdev->reg_data; 5942 } 5943 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5944 5945 /** 5946 * regulator_set_drvdata - set regulator driver data 5947 * @regulator: regulator 5948 * @data: data 5949 */ 5950 void regulator_set_drvdata(struct regulator *regulator, void *data) 5951 { 5952 regulator->rdev->reg_data = data; 5953 } 5954 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5955 5956 /** 5957 * rdev_get_id - get regulator ID 5958 * @rdev: regulator 5959 */ 5960 int rdev_get_id(struct regulator_dev *rdev) 5961 { 5962 return rdev->desc->id; 5963 } 5964 EXPORT_SYMBOL_GPL(rdev_get_id); 5965 5966 struct device *rdev_get_dev(struct regulator_dev *rdev) 5967 { 5968 return &rdev->dev; 5969 } 5970 EXPORT_SYMBOL_GPL(rdev_get_dev); 5971 5972 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5973 { 5974 return rdev->regmap; 5975 } 5976 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5977 5978 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5979 { 5980 return reg_init_data->driver_data; 5981 } 5982 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5983 5984 #ifdef CONFIG_DEBUG_FS 5985 static int supply_map_show(struct seq_file *sf, void *data) 5986 { 5987 struct regulator_map *map; 5988 5989 list_for_each_entry(map, ®ulator_map_list, list) { 5990 seq_printf(sf, "%s -> %s.%s\n", 5991 rdev_get_name(map->regulator), map->dev_name, 5992 map->supply); 5993 } 5994 5995 return 0; 5996 } 5997 DEFINE_SHOW_ATTRIBUTE(supply_map); 5998 5999 struct summary_data { 6000 struct seq_file *s; 6001 struct regulator_dev *parent; 6002 int level; 6003 }; 6004 6005 static void regulator_summary_show_subtree(struct seq_file *s, 6006 struct regulator_dev *rdev, 6007 int level); 6008 6009 static int regulator_summary_show_children(struct device *dev, void *data) 6010 { 6011 struct regulator_dev *rdev = dev_to_rdev(dev); 6012 struct summary_data *summary_data = data; 6013 6014 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6015 regulator_summary_show_subtree(summary_data->s, rdev, 6016 summary_data->level + 1); 6017 6018 return 0; 6019 } 6020 6021 static void regulator_summary_show_subtree(struct seq_file *s, 6022 struct regulator_dev *rdev, 6023 int level) 6024 { 6025 struct regulation_constraints *c; 6026 struct regulator *consumer; 6027 struct summary_data summary_data; 6028 unsigned int opmode; 6029 6030 if (!rdev) 6031 return; 6032 6033 opmode = _regulator_get_mode_unlocked(rdev); 6034 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6035 level * 3 + 1, "", 6036 30 - level * 3, rdev_get_name(rdev), 6037 rdev->use_count, rdev->open_count, rdev->bypass_count, 6038 regulator_opmode_to_str(opmode)); 6039 6040 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6041 seq_printf(s, "%5dmA ", 6042 _regulator_get_current_limit_unlocked(rdev) / 1000); 6043 6044 c = rdev->constraints; 6045 if (c) { 6046 switch (rdev->desc->type) { 6047 case REGULATOR_VOLTAGE: 6048 seq_printf(s, "%5dmV %5dmV ", 6049 c->min_uV / 1000, c->max_uV / 1000); 6050 break; 6051 case REGULATOR_CURRENT: 6052 seq_printf(s, "%5dmA %5dmA ", 6053 c->min_uA / 1000, c->max_uA / 1000); 6054 break; 6055 } 6056 } 6057 6058 seq_puts(s, "\n"); 6059 6060 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6061 if (consumer->dev && consumer->dev->class == ®ulator_class) 6062 continue; 6063 6064 seq_printf(s, "%*s%-*s ", 6065 (level + 1) * 3 + 1, "", 6066 30 - (level + 1) * 3, 6067 consumer->supply_name ? consumer->supply_name : 6068 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6069 6070 switch (rdev->desc->type) { 6071 case REGULATOR_VOLTAGE: 6072 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6073 consumer->enable_count, 6074 consumer->uA_load / 1000, 6075 consumer->uA_load && !consumer->enable_count ? 6076 '*' : ' ', 6077 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6078 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6079 break; 6080 case REGULATOR_CURRENT: 6081 break; 6082 } 6083 6084 seq_puts(s, "\n"); 6085 } 6086 6087 summary_data.s = s; 6088 summary_data.level = level; 6089 summary_data.parent = rdev; 6090 6091 class_for_each_device(®ulator_class, NULL, &summary_data, 6092 regulator_summary_show_children); 6093 } 6094 6095 struct summary_lock_data { 6096 struct ww_acquire_ctx *ww_ctx; 6097 struct regulator_dev **new_contended_rdev; 6098 struct regulator_dev **old_contended_rdev; 6099 }; 6100 6101 static int regulator_summary_lock_one(struct device *dev, void *data) 6102 { 6103 struct regulator_dev *rdev = dev_to_rdev(dev); 6104 struct summary_lock_data *lock_data = data; 6105 int ret = 0; 6106 6107 if (rdev != *lock_data->old_contended_rdev) { 6108 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6109 6110 if (ret == -EDEADLK) 6111 *lock_data->new_contended_rdev = rdev; 6112 else 6113 WARN_ON_ONCE(ret); 6114 } else { 6115 *lock_data->old_contended_rdev = NULL; 6116 } 6117 6118 return ret; 6119 } 6120 6121 static int regulator_summary_unlock_one(struct device *dev, void *data) 6122 { 6123 struct regulator_dev *rdev = dev_to_rdev(dev); 6124 struct summary_lock_data *lock_data = data; 6125 6126 if (lock_data) { 6127 if (rdev == *lock_data->new_contended_rdev) 6128 return -EDEADLK; 6129 } 6130 6131 regulator_unlock(rdev); 6132 6133 return 0; 6134 } 6135 6136 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6137 struct regulator_dev **new_contended_rdev, 6138 struct regulator_dev **old_contended_rdev) 6139 { 6140 struct summary_lock_data lock_data; 6141 int ret; 6142 6143 lock_data.ww_ctx = ww_ctx; 6144 lock_data.new_contended_rdev = new_contended_rdev; 6145 lock_data.old_contended_rdev = old_contended_rdev; 6146 6147 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6148 regulator_summary_lock_one); 6149 if (ret) 6150 class_for_each_device(®ulator_class, NULL, &lock_data, 6151 regulator_summary_unlock_one); 6152 6153 return ret; 6154 } 6155 6156 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6157 { 6158 struct regulator_dev *new_contended_rdev = NULL; 6159 struct regulator_dev *old_contended_rdev = NULL; 6160 int err; 6161 6162 mutex_lock(®ulator_list_mutex); 6163 6164 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6165 6166 do { 6167 if (new_contended_rdev) { 6168 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6169 old_contended_rdev = new_contended_rdev; 6170 old_contended_rdev->ref_cnt++; 6171 old_contended_rdev->mutex_owner = current; 6172 } 6173 6174 err = regulator_summary_lock_all(ww_ctx, 6175 &new_contended_rdev, 6176 &old_contended_rdev); 6177 6178 if (old_contended_rdev) 6179 regulator_unlock(old_contended_rdev); 6180 6181 } while (err == -EDEADLK); 6182 6183 ww_acquire_done(ww_ctx); 6184 } 6185 6186 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6187 { 6188 class_for_each_device(®ulator_class, NULL, NULL, 6189 regulator_summary_unlock_one); 6190 ww_acquire_fini(ww_ctx); 6191 6192 mutex_unlock(®ulator_list_mutex); 6193 } 6194 6195 static int regulator_summary_show_roots(struct device *dev, void *data) 6196 { 6197 struct regulator_dev *rdev = dev_to_rdev(dev); 6198 struct seq_file *s = data; 6199 6200 if (!rdev->supply) 6201 regulator_summary_show_subtree(s, rdev, 0); 6202 6203 return 0; 6204 } 6205 6206 static int regulator_summary_show(struct seq_file *s, void *data) 6207 { 6208 struct ww_acquire_ctx ww_ctx; 6209 6210 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6211 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6212 6213 regulator_summary_lock(&ww_ctx); 6214 6215 class_for_each_device(®ulator_class, NULL, s, 6216 regulator_summary_show_roots); 6217 6218 regulator_summary_unlock(&ww_ctx); 6219 6220 return 0; 6221 } 6222 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6223 #endif /* CONFIG_DEBUG_FS */ 6224 6225 static int __init regulator_init(void) 6226 { 6227 int ret; 6228 6229 ret = class_register(®ulator_class); 6230 6231 debugfs_root = debugfs_create_dir("regulator", NULL); 6232 if (IS_ERR(debugfs_root)) 6233 pr_debug("regulator: Failed to create debugfs directory\n"); 6234 6235 #ifdef CONFIG_DEBUG_FS 6236 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6237 &supply_map_fops); 6238 6239 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6240 NULL, ®ulator_summary_fops); 6241 #endif 6242 regulator_dummy_init(); 6243 6244 regulator_coupler_register(&generic_regulator_coupler); 6245 6246 return ret; 6247 } 6248 6249 /* init early to allow our consumers to complete system booting */ 6250 core_initcall(regulator_init); 6251 6252 static int regulator_late_cleanup(struct device *dev, void *data) 6253 { 6254 struct regulator_dev *rdev = dev_to_rdev(dev); 6255 struct regulation_constraints *c = rdev->constraints; 6256 int ret; 6257 6258 if (c && c->always_on) 6259 return 0; 6260 6261 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6262 return 0; 6263 6264 regulator_lock(rdev); 6265 6266 if (rdev->use_count) 6267 goto unlock; 6268 6269 /* If reading the status failed, assume that it's off. */ 6270 if (_regulator_is_enabled(rdev) <= 0) 6271 goto unlock; 6272 6273 if (have_full_constraints()) { 6274 /* We log since this may kill the system if it goes 6275 * wrong. 6276 */ 6277 rdev_info(rdev, "disabling\n"); 6278 ret = _regulator_do_disable(rdev); 6279 if (ret != 0) 6280 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6281 } else { 6282 /* The intention is that in future we will 6283 * assume that full constraints are provided 6284 * so warn even if we aren't going to do 6285 * anything here. 6286 */ 6287 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6288 } 6289 6290 unlock: 6291 regulator_unlock(rdev); 6292 6293 return 0; 6294 } 6295 6296 static bool regulator_ignore_unused; 6297 static int __init regulator_ignore_unused_setup(char *__unused) 6298 { 6299 regulator_ignore_unused = true; 6300 return 1; 6301 } 6302 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6303 6304 static void regulator_init_complete_work_function(struct work_struct *work) 6305 { 6306 /* 6307 * Regulators may had failed to resolve their input supplies 6308 * when were registered, either because the input supply was 6309 * not registered yet or because its parent device was not 6310 * bound yet. So attempt to resolve the input supplies for 6311 * pending regulators before trying to disable unused ones. 6312 */ 6313 class_for_each_device(®ulator_class, NULL, NULL, 6314 regulator_register_resolve_supply); 6315 6316 /* 6317 * For debugging purposes, it may be useful to prevent unused 6318 * regulators from being disabled. 6319 */ 6320 if (regulator_ignore_unused) { 6321 pr_warn("regulator: Not disabling unused regulators\n"); 6322 return; 6323 } 6324 6325 /* If we have a full configuration then disable any regulators 6326 * we have permission to change the status for and which are 6327 * not in use or always_on. This is effectively the default 6328 * for DT and ACPI as they have full constraints. 6329 */ 6330 class_for_each_device(®ulator_class, NULL, NULL, 6331 regulator_late_cleanup); 6332 } 6333 6334 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6335 regulator_init_complete_work_function); 6336 6337 static int __init regulator_init_complete(void) 6338 { 6339 /* 6340 * Since DT doesn't provide an idiomatic mechanism for 6341 * enabling full constraints and since it's much more natural 6342 * with DT to provide them just assume that a DT enabled 6343 * system has full constraints. 6344 */ 6345 if (of_have_populated_dt()) 6346 has_full_constraints = true; 6347 6348 /* 6349 * We punt completion for an arbitrary amount of time since 6350 * systems like distros will load many drivers from userspace 6351 * so consumers might not always be ready yet, this is 6352 * particularly an issue with laptops where this might bounce 6353 * the display off then on. Ideally we'd get a notification 6354 * from userspace when this happens but we don't so just wait 6355 * a bit and hope we waited long enough. It'd be better if 6356 * we'd only do this on systems that need it, and a kernel 6357 * command line option might be useful. 6358 */ 6359 schedule_delayed_work(®ulator_init_complete_work, 6360 msecs_to_jiffies(30000)); 6361 6362 return 0; 6363 } 6364 late_initcall_sync(regulator_init_complete); 6365