1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 struct gpio_desc *gpiod; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 static void _regulator_put(struct regulator *regulator); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 129 { 130 if (!rdev->constraints) { 131 rdev_err(rdev, "no constraints\n"); 132 return false; 133 } 134 135 if (rdev->constraints->valid_ops_mask & ops) 136 return true; 137 138 return false; 139 } 140 141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 142 { 143 if (rdev && rdev->supply) 144 return rdev->supply->rdev; 145 146 return NULL; 147 } 148 149 /** 150 * regulator_lock_supply - lock a regulator and its supplies 151 * @rdev: regulator source 152 */ 153 static void regulator_lock_supply(struct regulator_dev *rdev) 154 { 155 int i; 156 157 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 158 mutex_lock_nested(&rdev->mutex, i); 159 } 160 161 /** 162 * regulator_unlock_supply - unlock a regulator and its supplies 163 * @rdev: regulator source 164 */ 165 static void regulator_unlock_supply(struct regulator_dev *rdev) 166 { 167 struct regulator *supply; 168 169 while (1) { 170 mutex_unlock(&rdev->mutex); 171 supply = rdev->supply; 172 173 if (!rdev->supply) 174 return; 175 176 rdev = supply->rdev; 177 } 178 } 179 180 /** 181 * of_get_regulator - get a regulator device node based on supply name 182 * @dev: Device pointer for the consumer (of regulator) device 183 * @supply: regulator supply name 184 * 185 * Extract the regulator device node corresponding to the supply name. 186 * returns the device node corresponding to the regulator if found, else 187 * returns NULL. 188 */ 189 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 190 { 191 struct device_node *regnode = NULL; 192 char prop_name[32]; /* 32 is max size of property name */ 193 194 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 195 196 snprintf(prop_name, 32, "%s-supply", supply); 197 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 198 199 if (!regnode) { 200 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 201 prop_name, dev->of_node); 202 return NULL; 203 } 204 return regnode; 205 } 206 207 /* Platform voltage constraint check */ 208 static int regulator_check_voltage(struct regulator_dev *rdev, 209 int *min_uV, int *max_uV) 210 { 211 BUG_ON(*min_uV > *max_uV); 212 213 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 214 rdev_err(rdev, "voltage operation not allowed\n"); 215 return -EPERM; 216 } 217 218 if (*max_uV > rdev->constraints->max_uV) 219 *max_uV = rdev->constraints->max_uV; 220 if (*min_uV < rdev->constraints->min_uV) 221 *min_uV = rdev->constraints->min_uV; 222 223 if (*min_uV > *max_uV) { 224 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 225 *min_uV, *max_uV); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 232 /* return 0 if the state is valid */ 233 static int regulator_check_states(suspend_state_t state) 234 { 235 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 236 } 237 238 /* Make sure we select a voltage that suits the needs of all 239 * regulator consumers 240 */ 241 static int regulator_check_consumers(struct regulator_dev *rdev, 242 int *min_uV, int *max_uV, 243 suspend_state_t state) 244 { 245 struct regulator *regulator; 246 struct regulator_voltage *voltage; 247 248 list_for_each_entry(regulator, &rdev->consumer_list, list) { 249 voltage = ®ulator->voltage[state]; 250 /* 251 * Assume consumers that didn't say anything are OK 252 * with anything in the constraint range. 253 */ 254 if (!voltage->min_uV && !voltage->max_uV) 255 continue; 256 257 if (*max_uV > voltage->max_uV) 258 *max_uV = voltage->max_uV; 259 if (*min_uV < voltage->min_uV) 260 *min_uV = voltage->min_uV; 261 } 262 263 if (*min_uV > *max_uV) { 264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 265 *min_uV, *max_uV); 266 return -EINVAL; 267 } 268 269 return 0; 270 } 271 272 /* current constraint check */ 273 static int regulator_check_current_limit(struct regulator_dev *rdev, 274 int *min_uA, int *max_uA) 275 { 276 BUG_ON(*min_uA > *max_uA); 277 278 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 279 rdev_err(rdev, "current operation not allowed\n"); 280 return -EPERM; 281 } 282 283 if (*max_uA > rdev->constraints->max_uA) 284 *max_uA = rdev->constraints->max_uA; 285 if (*min_uA < rdev->constraints->min_uA) 286 *min_uA = rdev->constraints->min_uA; 287 288 if (*min_uA > *max_uA) { 289 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 290 *min_uA, *max_uA); 291 return -EINVAL; 292 } 293 294 return 0; 295 } 296 297 /* operating mode constraint check */ 298 static int regulator_mode_constrain(struct regulator_dev *rdev, 299 unsigned int *mode) 300 { 301 switch (*mode) { 302 case REGULATOR_MODE_FAST: 303 case REGULATOR_MODE_NORMAL: 304 case REGULATOR_MODE_IDLE: 305 case REGULATOR_MODE_STANDBY: 306 break; 307 default: 308 rdev_err(rdev, "invalid mode %x specified\n", *mode); 309 return -EINVAL; 310 } 311 312 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 313 rdev_err(rdev, "mode operation not allowed\n"); 314 return -EPERM; 315 } 316 317 /* The modes are bitmasks, the most power hungry modes having 318 * the lowest values. If the requested mode isn't supported 319 * try higher modes. */ 320 while (*mode) { 321 if (rdev->constraints->valid_modes_mask & *mode) 322 return 0; 323 *mode /= 2; 324 } 325 326 return -EINVAL; 327 } 328 329 static inline struct regulator_state * 330 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 331 { 332 if (rdev->constraints == NULL) 333 return NULL; 334 335 switch (state) { 336 case PM_SUSPEND_STANDBY: 337 return &rdev->constraints->state_standby; 338 case PM_SUSPEND_MEM: 339 return &rdev->constraints->state_mem; 340 case PM_SUSPEND_MAX: 341 return &rdev->constraints->state_disk; 342 default: 343 return NULL; 344 } 345 } 346 347 static ssize_t regulator_uV_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct regulator_dev *rdev = dev_get_drvdata(dev); 351 ssize_t ret; 352 353 mutex_lock(&rdev->mutex); 354 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 355 mutex_unlock(&rdev->mutex); 356 357 return ret; 358 } 359 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 360 361 static ssize_t regulator_uA_show(struct device *dev, 362 struct device_attribute *attr, char *buf) 363 { 364 struct regulator_dev *rdev = dev_get_drvdata(dev); 365 366 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 367 } 368 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 369 370 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 371 char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 375 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 376 } 377 static DEVICE_ATTR_RO(name); 378 379 static ssize_t regulator_print_opmode(char *buf, int mode) 380 { 381 switch (mode) { 382 case REGULATOR_MODE_FAST: 383 return sprintf(buf, "fast\n"); 384 case REGULATOR_MODE_NORMAL: 385 return sprintf(buf, "normal\n"); 386 case REGULATOR_MODE_IDLE: 387 return sprintf(buf, "idle\n"); 388 case REGULATOR_MODE_STANDBY: 389 return sprintf(buf, "standby\n"); 390 } 391 return sprintf(buf, "unknown\n"); 392 } 393 394 static ssize_t regulator_opmode_show(struct device *dev, 395 struct device_attribute *attr, char *buf) 396 { 397 struct regulator_dev *rdev = dev_get_drvdata(dev); 398 399 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 400 } 401 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 402 403 static ssize_t regulator_print_state(char *buf, int state) 404 { 405 if (state > 0) 406 return sprintf(buf, "enabled\n"); 407 else if (state == 0) 408 return sprintf(buf, "disabled\n"); 409 else 410 return sprintf(buf, "unknown\n"); 411 } 412 413 static ssize_t regulator_state_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct regulator_dev *rdev = dev_get_drvdata(dev); 417 ssize_t ret; 418 419 mutex_lock(&rdev->mutex); 420 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 421 mutex_unlock(&rdev->mutex); 422 423 return ret; 424 } 425 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 426 427 static ssize_t regulator_status_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 struct regulator_dev *rdev = dev_get_drvdata(dev); 431 int status; 432 char *label; 433 434 status = rdev->desc->ops->get_status(rdev); 435 if (status < 0) 436 return status; 437 438 switch (status) { 439 case REGULATOR_STATUS_OFF: 440 label = "off"; 441 break; 442 case REGULATOR_STATUS_ON: 443 label = "on"; 444 break; 445 case REGULATOR_STATUS_ERROR: 446 label = "error"; 447 break; 448 case REGULATOR_STATUS_FAST: 449 label = "fast"; 450 break; 451 case REGULATOR_STATUS_NORMAL: 452 label = "normal"; 453 break; 454 case REGULATOR_STATUS_IDLE: 455 label = "idle"; 456 break; 457 case REGULATOR_STATUS_STANDBY: 458 label = "standby"; 459 break; 460 case REGULATOR_STATUS_BYPASS: 461 label = "bypass"; 462 break; 463 case REGULATOR_STATUS_UNDEFINED: 464 label = "undefined"; 465 break; 466 default: 467 return -ERANGE; 468 } 469 470 return sprintf(buf, "%s\n", label); 471 } 472 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 473 474 static ssize_t regulator_min_uA_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct regulator_dev *rdev = dev_get_drvdata(dev); 478 479 if (!rdev->constraints) 480 return sprintf(buf, "constraint not defined\n"); 481 482 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 483 } 484 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 485 486 static ssize_t regulator_max_uA_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488 { 489 struct regulator_dev *rdev = dev_get_drvdata(dev); 490 491 if (!rdev->constraints) 492 return sprintf(buf, "constraint not defined\n"); 493 494 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 495 } 496 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 497 498 static ssize_t regulator_min_uV_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct regulator_dev *rdev = dev_get_drvdata(dev); 502 503 if (!rdev->constraints) 504 return sprintf(buf, "constraint not defined\n"); 505 506 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 507 } 508 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 509 510 static ssize_t regulator_max_uV_show(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct regulator_dev *rdev = dev_get_drvdata(dev); 514 515 if (!rdev->constraints) 516 return sprintf(buf, "constraint not defined\n"); 517 518 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 519 } 520 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 521 522 static ssize_t regulator_total_uA_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct regulator_dev *rdev = dev_get_drvdata(dev); 526 struct regulator *regulator; 527 int uA = 0; 528 529 mutex_lock(&rdev->mutex); 530 list_for_each_entry(regulator, &rdev->consumer_list, list) 531 uA += regulator->uA_load; 532 mutex_unlock(&rdev->mutex); 533 return sprintf(buf, "%d\n", uA); 534 } 535 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 536 537 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 538 char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 return sprintf(buf, "%d\n", rdev->use_count); 542 } 543 static DEVICE_ATTR_RO(num_users); 544 545 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 546 char *buf) 547 { 548 struct regulator_dev *rdev = dev_get_drvdata(dev); 549 550 switch (rdev->desc->type) { 551 case REGULATOR_VOLTAGE: 552 return sprintf(buf, "voltage\n"); 553 case REGULATOR_CURRENT: 554 return sprintf(buf, "current\n"); 555 } 556 return sprintf(buf, "unknown\n"); 557 } 558 static DEVICE_ATTR_RO(type); 559 560 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 566 } 567 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 568 regulator_suspend_mem_uV_show, NULL); 569 570 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 576 } 577 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 578 regulator_suspend_disk_uV_show, NULL); 579 580 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 586 } 587 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 588 regulator_suspend_standby_uV_show, NULL); 589 590 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_opmode(buf, 596 rdev->constraints->state_mem.mode); 597 } 598 static DEVICE_ATTR(suspend_mem_mode, 0444, 599 regulator_suspend_mem_mode_show, NULL); 600 601 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_opmode(buf, 607 rdev->constraints->state_disk.mode); 608 } 609 static DEVICE_ATTR(suspend_disk_mode, 0444, 610 regulator_suspend_disk_mode_show, NULL); 611 612 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 617 return regulator_print_opmode(buf, 618 rdev->constraints->state_standby.mode); 619 } 620 static DEVICE_ATTR(suspend_standby_mode, 0444, 621 regulator_suspend_standby_mode_show, NULL); 622 623 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 624 struct device_attribute *attr, char *buf) 625 { 626 struct regulator_dev *rdev = dev_get_drvdata(dev); 627 628 return regulator_print_state(buf, 629 rdev->constraints->state_mem.enabled); 630 } 631 static DEVICE_ATTR(suspend_mem_state, 0444, 632 regulator_suspend_mem_state_show, NULL); 633 634 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 635 struct device_attribute *attr, char *buf) 636 { 637 struct regulator_dev *rdev = dev_get_drvdata(dev); 638 639 return regulator_print_state(buf, 640 rdev->constraints->state_disk.enabled); 641 } 642 static DEVICE_ATTR(suspend_disk_state, 0444, 643 regulator_suspend_disk_state_show, NULL); 644 645 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 646 struct device_attribute *attr, char *buf) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 650 return regulator_print_state(buf, 651 rdev->constraints->state_standby.enabled); 652 } 653 static DEVICE_ATTR(suspend_standby_state, 0444, 654 regulator_suspend_standby_state_show, NULL); 655 656 static ssize_t regulator_bypass_show(struct device *dev, 657 struct device_attribute *attr, char *buf) 658 { 659 struct regulator_dev *rdev = dev_get_drvdata(dev); 660 const char *report; 661 bool bypass; 662 int ret; 663 664 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 665 666 if (ret != 0) 667 report = "unknown"; 668 else if (bypass) 669 report = "enabled"; 670 else 671 report = "disabled"; 672 673 return sprintf(buf, "%s\n", report); 674 } 675 static DEVICE_ATTR(bypass, 0444, 676 regulator_bypass_show, NULL); 677 678 /* Calculate the new optimum regulator operating mode based on the new total 679 * consumer load. All locks held by caller */ 680 static int drms_uA_update(struct regulator_dev *rdev) 681 { 682 struct regulator *sibling; 683 int current_uA = 0, output_uV, input_uV, err; 684 unsigned int mode; 685 686 lockdep_assert_held_once(&rdev->mutex); 687 688 /* 689 * first check to see if we can set modes at all, otherwise just 690 * tell the consumer everything is OK. 691 */ 692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 693 return 0; 694 695 if (!rdev->desc->ops->get_optimum_mode && 696 !rdev->desc->ops->set_load) 697 return 0; 698 699 if (!rdev->desc->ops->set_mode && 700 !rdev->desc->ops->set_load) 701 return -EINVAL; 702 703 /* calc total requested load */ 704 list_for_each_entry(sibling, &rdev->consumer_list, list) 705 current_uA += sibling->uA_load; 706 707 current_uA += rdev->constraints->system_load; 708 709 if (rdev->desc->ops->set_load) { 710 /* set the optimum mode for our new total regulator load */ 711 err = rdev->desc->ops->set_load(rdev, current_uA); 712 if (err < 0) 713 rdev_err(rdev, "failed to set load %d\n", current_uA); 714 } else { 715 /* get output voltage */ 716 output_uV = _regulator_get_voltage(rdev); 717 if (output_uV <= 0) { 718 rdev_err(rdev, "invalid output voltage found\n"); 719 return -EINVAL; 720 } 721 722 /* get input voltage */ 723 input_uV = 0; 724 if (rdev->supply) 725 input_uV = regulator_get_voltage(rdev->supply); 726 if (input_uV <= 0) 727 input_uV = rdev->constraints->input_uV; 728 if (input_uV <= 0) { 729 rdev_err(rdev, "invalid input voltage found\n"); 730 return -EINVAL; 731 } 732 733 /* now get the optimum mode for our new total regulator load */ 734 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 735 output_uV, current_uA); 736 737 /* check the new mode is allowed */ 738 err = regulator_mode_constrain(rdev, &mode); 739 if (err < 0) { 740 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 741 current_uA, input_uV, output_uV); 742 return err; 743 } 744 745 err = rdev->desc->ops->set_mode(rdev, mode); 746 if (err < 0) 747 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 748 } 749 750 return err; 751 } 752 753 static int suspend_set_state(struct regulator_dev *rdev, 754 suspend_state_t state) 755 { 756 int ret = 0; 757 struct regulator_state *rstate; 758 759 rstate = regulator_get_suspend_state(rdev, state); 760 if (rstate == NULL) 761 return 0; 762 763 /* If we have no suspend mode configration don't set anything; 764 * only warn if the driver implements set_suspend_voltage or 765 * set_suspend_mode callback. 766 */ 767 if (rstate->enabled != ENABLE_IN_SUSPEND && 768 rstate->enabled != DISABLE_IN_SUSPEND) { 769 if (rdev->desc->ops->set_suspend_voltage || 770 rdev->desc->ops->set_suspend_mode) 771 rdev_warn(rdev, "No configuration\n"); 772 return 0; 773 } 774 775 if (rstate->enabled == ENABLE_IN_SUSPEND && 776 rdev->desc->ops->set_suspend_enable) 777 ret = rdev->desc->ops->set_suspend_enable(rdev); 778 else if (rstate->enabled == DISABLE_IN_SUSPEND && 779 rdev->desc->ops->set_suspend_disable) 780 ret = rdev->desc->ops->set_suspend_disable(rdev); 781 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 782 ret = 0; 783 784 if (ret < 0) { 785 rdev_err(rdev, "failed to enabled/disable\n"); 786 return ret; 787 } 788 789 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 790 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 791 if (ret < 0) { 792 rdev_err(rdev, "failed to set voltage\n"); 793 return ret; 794 } 795 } 796 797 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 798 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 799 if (ret < 0) { 800 rdev_err(rdev, "failed to set mode\n"); 801 return ret; 802 } 803 } 804 805 return ret; 806 } 807 808 static void print_constraints(struct regulator_dev *rdev) 809 { 810 struct regulation_constraints *constraints = rdev->constraints; 811 char buf[160] = ""; 812 size_t len = sizeof(buf) - 1; 813 int count = 0; 814 int ret; 815 816 if (constraints->min_uV && constraints->max_uV) { 817 if (constraints->min_uV == constraints->max_uV) 818 count += scnprintf(buf + count, len - count, "%d mV ", 819 constraints->min_uV / 1000); 820 else 821 count += scnprintf(buf + count, len - count, 822 "%d <--> %d mV ", 823 constraints->min_uV / 1000, 824 constraints->max_uV / 1000); 825 } 826 827 if (!constraints->min_uV || 828 constraints->min_uV != constraints->max_uV) { 829 ret = _regulator_get_voltage(rdev); 830 if (ret > 0) 831 count += scnprintf(buf + count, len - count, 832 "at %d mV ", ret / 1000); 833 } 834 835 if (constraints->uV_offset) 836 count += scnprintf(buf + count, len - count, "%dmV offset ", 837 constraints->uV_offset / 1000); 838 839 if (constraints->min_uA && constraints->max_uA) { 840 if (constraints->min_uA == constraints->max_uA) 841 count += scnprintf(buf + count, len - count, "%d mA ", 842 constraints->min_uA / 1000); 843 else 844 count += scnprintf(buf + count, len - count, 845 "%d <--> %d mA ", 846 constraints->min_uA / 1000, 847 constraints->max_uA / 1000); 848 } 849 850 if (!constraints->min_uA || 851 constraints->min_uA != constraints->max_uA) { 852 ret = _regulator_get_current_limit(rdev); 853 if (ret > 0) 854 count += scnprintf(buf + count, len - count, 855 "at %d mA ", ret / 1000); 856 } 857 858 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 859 count += scnprintf(buf + count, len - count, "fast "); 860 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 861 count += scnprintf(buf + count, len - count, "normal "); 862 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 863 count += scnprintf(buf + count, len - count, "idle "); 864 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 865 count += scnprintf(buf + count, len - count, "standby"); 866 867 if (!count) 868 scnprintf(buf, len, "no parameters"); 869 870 rdev_dbg(rdev, "%s\n", buf); 871 872 if ((constraints->min_uV != constraints->max_uV) && 873 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 874 rdev_warn(rdev, 875 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 876 } 877 878 static int machine_constraints_voltage(struct regulator_dev *rdev, 879 struct regulation_constraints *constraints) 880 { 881 const struct regulator_ops *ops = rdev->desc->ops; 882 int ret; 883 884 /* do we need to apply the constraint voltage */ 885 if (rdev->constraints->apply_uV && 886 rdev->constraints->min_uV && rdev->constraints->max_uV) { 887 int target_min, target_max; 888 int current_uV = _regulator_get_voltage(rdev); 889 if (current_uV < 0) { 890 rdev_err(rdev, 891 "failed to get the current voltage(%d)\n", 892 current_uV); 893 return current_uV; 894 } 895 896 /* 897 * If we're below the minimum voltage move up to the 898 * minimum voltage, if we're above the maximum voltage 899 * then move down to the maximum. 900 */ 901 target_min = current_uV; 902 target_max = current_uV; 903 904 if (current_uV < rdev->constraints->min_uV) { 905 target_min = rdev->constraints->min_uV; 906 target_max = rdev->constraints->min_uV; 907 } 908 909 if (current_uV > rdev->constraints->max_uV) { 910 target_min = rdev->constraints->max_uV; 911 target_max = rdev->constraints->max_uV; 912 } 913 914 if (target_min != current_uV || target_max != current_uV) { 915 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 916 current_uV, target_min, target_max); 917 ret = _regulator_do_set_voltage( 918 rdev, target_min, target_max); 919 if (ret < 0) { 920 rdev_err(rdev, 921 "failed to apply %d-%duV constraint(%d)\n", 922 target_min, target_max, ret); 923 return ret; 924 } 925 } 926 } 927 928 /* constrain machine-level voltage specs to fit 929 * the actual range supported by this regulator. 930 */ 931 if (ops->list_voltage && rdev->desc->n_voltages) { 932 int count = rdev->desc->n_voltages; 933 int i; 934 int min_uV = INT_MAX; 935 int max_uV = INT_MIN; 936 int cmin = constraints->min_uV; 937 int cmax = constraints->max_uV; 938 939 /* it's safe to autoconfigure fixed-voltage supplies 940 and the constraints are used by list_voltage. */ 941 if (count == 1 && !cmin) { 942 cmin = 1; 943 cmax = INT_MAX; 944 constraints->min_uV = cmin; 945 constraints->max_uV = cmax; 946 } 947 948 /* voltage constraints are optional */ 949 if ((cmin == 0) && (cmax == 0)) 950 return 0; 951 952 /* else require explicit machine-level constraints */ 953 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 954 rdev_err(rdev, "invalid voltage constraints\n"); 955 return -EINVAL; 956 } 957 958 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 959 for (i = 0; i < count; i++) { 960 int value; 961 962 value = ops->list_voltage(rdev, i); 963 if (value <= 0) 964 continue; 965 966 /* maybe adjust [min_uV..max_uV] */ 967 if (value >= cmin && value < min_uV) 968 min_uV = value; 969 if (value <= cmax && value > max_uV) 970 max_uV = value; 971 } 972 973 /* final: [min_uV..max_uV] valid iff constraints valid */ 974 if (max_uV < min_uV) { 975 rdev_err(rdev, 976 "unsupportable voltage constraints %u-%uuV\n", 977 min_uV, max_uV); 978 return -EINVAL; 979 } 980 981 /* use regulator's subset of machine constraints */ 982 if (constraints->min_uV < min_uV) { 983 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 984 constraints->min_uV, min_uV); 985 constraints->min_uV = min_uV; 986 } 987 if (constraints->max_uV > max_uV) { 988 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 989 constraints->max_uV, max_uV); 990 constraints->max_uV = max_uV; 991 } 992 } 993 994 return 0; 995 } 996 997 static int machine_constraints_current(struct regulator_dev *rdev, 998 struct regulation_constraints *constraints) 999 { 1000 const struct regulator_ops *ops = rdev->desc->ops; 1001 int ret; 1002 1003 if (!constraints->min_uA && !constraints->max_uA) 1004 return 0; 1005 1006 if (constraints->min_uA > constraints->max_uA) { 1007 rdev_err(rdev, "Invalid current constraints\n"); 1008 return -EINVAL; 1009 } 1010 1011 if (!ops->set_current_limit || !ops->get_current_limit) { 1012 rdev_warn(rdev, "Operation of current configuration missing\n"); 1013 return 0; 1014 } 1015 1016 /* Set regulator current in constraints range */ 1017 ret = ops->set_current_limit(rdev, constraints->min_uA, 1018 constraints->max_uA); 1019 if (ret < 0) { 1020 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1021 return ret; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int _regulator_do_enable(struct regulator_dev *rdev); 1028 1029 /** 1030 * set_machine_constraints - sets regulator constraints 1031 * @rdev: regulator source 1032 * @constraints: constraints to apply 1033 * 1034 * Allows platform initialisation code to define and constrain 1035 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1036 * Constraints *must* be set by platform code in order for some 1037 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1038 * set_mode. 1039 */ 1040 static int set_machine_constraints(struct regulator_dev *rdev, 1041 const struct regulation_constraints *constraints) 1042 { 1043 int ret = 0; 1044 const struct regulator_ops *ops = rdev->desc->ops; 1045 1046 if (constraints) 1047 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1048 GFP_KERNEL); 1049 else 1050 rdev->constraints = kzalloc(sizeof(*constraints), 1051 GFP_KERNEL); 1052 if (!rdev->constraints) 1053 return -ENOMEM; 1054 1055 ret = machine_constraints_voltage(rdev, rdev->constraints); 1056 if (ret != 0) 1057 return ret; 1058 1059 ret = machine_constraints_current(rdev, rdev->constraints); 1060 if (ret != 0) 1061 return ret; 1062 1063 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1064 ret = ops->set_input_current_limit(rdev, 1065 rdev->constraints->ilim_uA); 1066 if (ret < 0) { 1067 rdev_err(rdev, "failed to set input limit\n"); 1068 return ret; 1069 } 1070 } 1071 1072 /* do we need to setup our suspend state */ 1073 if (rdev->constraints->initial_state) { 1074 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1075 if (ret < 0) { 1076 rdev_err(rdev, "failed to set suspend state\n"); 1077 return ret; 1078 } 1079 } 1080 1081 if (rdev->constraints->initial_mode) { 1082 if (!ops->set_mode) { 1083 rdev_err(rdev, "no set_mode operation\n"); 1084 return -EINVAL; 1085 } 1086 1087 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1088 if (ret < 0) { 1089 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1090 return ret; 1091 } 1092 } 1093 1094 /* If the constraints say the regulator should be on at this point 1095 * and we have control then make sure it is enabled. 1096 */ 1097 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1098 ret = _regulator_do_enable(rdev); 1099 if (ret < 0 && ret != -EINVAL) { 1100 rdev_err(rdev, "failed to enable\n"); 1101 return ret; 1102 } 1103 } 1104 1105 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1106 && ops->set_ramp_delay) { 1107 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1108 if (ret < 0) { 1109 rdev_err(rdev, "failed to set ramp_delay\n"); 1110 return ret; 1111 } 1112 } 1113 1114 if (rdev->constraints->pull_down && ops->set_pull_down) { 1115 ret = ops->set_pull_down(rdev); 1116 if (ret < 0) { 1117 rdev_err(rdev, "failed to set pull down\n"); 1118 return ret; 1119 } 1120 } 1121 1122 if (rdev->constraints->soft_start && ops->set_soft_start) { 1123 ret = ops->set_soft_start(rdev); 1124 if (ret < 0) { 1125 rdev_err(rdev, "failed to set soft start\n"); 1126 return ret; 1127 } 1128 } 1129 1130 if (rdev->constraints->over_current_protection 1131 && ops->set_over_current_protection) { 1132 ret = ops->set_over_current_protection(rdev); 1133 if (ret < 0) { 1134 rdev_err(rdev, "failed to set over current protection\n"); 1135 return ret; 1136 } 1137 } 1138 1139 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1140 bool ad_state = (rdev->constraints->active_discharge == 1141 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1142 1143 ret = ops->set_active_discharge(rdev, ad_state); 1144 if (ret < 0) { 1145 rdev_err(rdev, "failed to set active discharge\n"); 1146 return ret; 1147 } 1148 } 1149 1150 print_constraints(rdev); 1151 return 0; 1152 } 1153 1154 /** 1155 * set_supply - set regulator supply regulator 1156 * @rdev: regulator name 1157 * @supply_rdev: supply regulator name 1158 * 1159 * Called by platform initialisation code to set the supply regulator for this 1160 * regulator. This ensures that a regulators supply will also be enabled by the 1161 * core if it's child is enabled. 1162 */ 1163 static int set_supply(struct regulator_dev *rdev, 1164 struct regulator_dev *supply_rdev) 1165 { 1166 int err; 1167 1168 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1169 1170 if (!try_module_get(supply_rdev->owner)) 1171 return -ENODEV; 1172 1173 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1174 if (rdev->supply == NULL) { 1175 err = -ENOMEM; 1176 return err; 1177 } 1178 supply_rdev->open_count++; 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1185 * @rdev: regulator source 1186 * @consumer_dev_name: dev_name() string for device supply applies to 1187 * @supply: symbolic name for supply 1188 * 1189 * Allows platform initialisation code to map physical regulator 1190 * sources to symbolic names for supplies for use by devices. Devices 1191 * should use these symbolic names to request regulators, avoiding the 1192 * need to provide board-specific regulator names as platform data. 1193 */ 1194 static int set_consumer_device_supply(struct regulator_dev *rdev, 1195 const char *consumer_dev_name, 1196 const char *supply) 1197 { 1198 struct regulator_map *node; 1199 int has_dev; 1200 1201 if (supply == NULL) 1202 return -EINVAL; 1203 1204 if (consumer_dev_name != NULL) 1205 has_dev = 1; 1206 else 1207 has_dev = 0; 1208 1209 list_for_each_entry(node, ®ulator_map_list, list) { 1210 if (node->dev_name && consumer_dev_name) { 1211 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1212 continue; 1213 } else if (node->dev_name || consumer_dev_name) { 1214 continue; 1215 } 1216 1217 if (strcmp(node->supply, supply) != 0) 1218 continue; 1219 1220 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1221 consumer_dev_name, 1222 dev_name(&node->regulator->dev), 1223 node->regulator->desc->name, 1224 supply, 1225 dev_name(&rdev->dev), rdev_get_name(rdev)); 1226 return -EBUSY; 1227 } 1228 1229 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1230 if (node == NULL) 1231 return -ENOMEM; 1232 1233 node->regulator = rdev; 1234 node->supply = supply; 1235 1236 if (has_dev) { 1237 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1238 if (node->dev_name == NULL) { 1239 kfree(node); 1240 return -ENOMEM; 1241 } 1242 } 1243 1244 list_add(&node->list, ®ulator_map_list); 1245 return 0; 1246 } 1247 1248 static void unset_regulator_supplies(struct regulator_dev *rdev) 1249 { 1250 struct regulator_map *node, *n; 1251 1252 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1253 if (rdev == node->regulator) { 1254 list_del(&node->list); 1255 kfree(node->dev_name); 1256 kfree(node); 1257 } 1258 } 1259 } 1260 1261 #ifdef CONFIG_DEBUG_FS 1262 static ssize_t constraint_flags_read_file(struct file *file, 1263 char __user *user_buf, 1264 size_t count, loff_t *ppos) 1265 { 1266 const struct regulator *regulator = file->private_data; 1267 const struct regulation_constraints *c = regulator->rdev->constraints; 1268 char *buf; 1269 ssize_t ret; 1270 1271 if (!c) 1272 return 0; 1273 1274 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1275 if (!buf) 1276 return -ENOMEM; 1277 1278 ret = snprintf(buf, PAGE_SIZE, 1279 "always_on: %u\n" 1280 "boot_on: %u\n" 1281 "apply_uV: %u\n" 1282 "ramp_disable: %u\n" 1283 "soft_start: %u\n" 1284 "pull_down: %u\n" 1285 "over_current_protection: %u\n", 1286 c->always_on, 1287 c->boot_on, 1288 c->apply_uV, 1289 c->ramp_disable, 1290 c->soft_start, 1291 c->pull_down, 1292 c->over_current_protection); 1293 1294 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1295 kfree(buf); 1296 1297 return ret; 1298 } 1299 1300 #endif 1301 1302 static const struct file_operations constraint_flags_fops = { 1303 #ifdef CONFIG_DEBUG_FS 1304 .open = simple_open, 1305 .read = constraint_flags_read_file, 1306 .llseek = default_llseek, 1307 #endif 1308 }; 1309 1310 #define REG_STR_SIZE 64 1311 1312 static struct regulator *create_regulator(struct regulator_dev *rdev, 1313 struct device *dev, 1314 const char *supply_name) 1315 { 1316 struct regulator *regulator; 1317 char buf[REG_STR_SIZE]; 1318 int err, size; 1319 1320 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1321 if (regulator == NULL) 1322 return NULL; 1323 1324 mutex_lock(&rdev->mutex); 1325 regulator->rdev = rdev; 1326 list_add(®ulator->list, &rdev->consumer_list); 1327 1328 if (dev) { 1329 regulator->dev = dev; 1330 1331 /* Add a link to the device sysfs entry */ 1332 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1333 dev->kobj.name, supply_name); 1334 if (size >= REG_STR_SIZE) 1335 goto overflow_err; 1336 1337 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1338 if (regulator->supply_name == NULL) 1339 goto overflow_err; 1340 1341 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1342 buf); 1343 if (err) { 1344 rdev_dbg(rdev, "could not add device link %s err %d\n", 1345 dev->kobj.name, err); 1346 /* non-fatal */ 1347 } 1348 } else { 1349 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1350 if (regulator->supply_name == NULL) 1351 goto overflow_err; 1352 } 1353 1354 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1355 rdev->debugfs); 1356 if (!regulator->debugfs) { 1357 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1358 } else { 1359 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1360 ®ulator->uA_load); 1361 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1362 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1363 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1364 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1365 debugfs_create_file("constraint_flags", 0444, 1366 regulator->debugfs, regulator, 1367 &constraint_flags_fops); 1368 } 1369 1370 /* 1371 * Check now if the regulator is an always on regulator - if 1372 * it is then we don't need to do nearly so much work for 1373 * enable/disable calls. 1374 */ 1375 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1376 _regulator_is_enabled(rdev)) 1377 regulator->always_on = true; 1378 1379 mutex_unlock(&rdev->mutex); 1380 return regulator; 1381 overflow_err: 1382 list_del(®ulator->list); 1383 kfree(regulator); 1384 mutex_unlock(&rdev->mutex); 1385 return NULL; 1386 } 1387 1388 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1389 { 1390 if (rdev->constraints && rdev->constraints->enable_time) 1391 return rdev->constraints->enable_time; 1392 if (!rdev->desc->ops->enable_time) 1393 return rdev->desc->enable_time; 1394 return rdev->desc->ops->enable_time(rdev); 1395 } 1396 1397 static struct regulator_supply_alias *regulator_find_supply_alias( 1398 struct device *dev, const char *supply) 1399 { 1400 struct regulator_supply_alias *map; 1401 1402 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1403 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1404 return map; 1405 1406 return NULL; 1407 } 1408 1409 static void regulator_supply_alias(struct device **dev, const char **supply) 1410 { 1411 struct regulator_supply_alias *map; 1412 1413 map = regulator_find_supply_alias(*dev, *supply); 1414 if (map) { 1415 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1416 *supply, map->alias_supply, 1417 dev_name(map->alias_dev)); 1418 *dev = map->alias_dev; 1419 *supply = map->alias_supply; 1420 } 1421 } 1422 1423 static int regulator_match(struct device *dev, const void *data) 1424 { 1425 struct regulator_dev *r = dev_to_rdev(dev); 1426 1427 return strcmp(rdev_get_name(r), data) == 0; 1428 } 1429 1430 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1431 { 1432 struct device *dev; 1433 1434 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1435 1436 return dev ? dev_to_rdev(dev) : NULL; 1437 } 1438 1439 /** 1440 * regulator_dev_lookup - lookup a regulator device. 1441 * @dev: device for regulator "consumer". 1442 * @supply: Supply name or regulator ID. 1443 * 1444 * If successful, returns a struct regulator_dev that corresponds to the name 1445 * @supply and with the embedded struct device refcount incremented by one. 1446 * The refcount must be dropped by calling put_device(). 1447 * On failure one of the following ERR-PTR-encoded values is returned: 1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1449 * in the future. 1450 */ 1451 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1452 const char *supply) 1453 { 1454 struct regulator_dev *r = NULL; 1455 struct device_node *node; 1456 struct regulator_map *map; 1457 const char *devname = NULL; 1458 1459 regulator_supply_alias(&dev, &supply); 1460 1461 /* first do a dt based lookup */ 1462 if (dev && dev->of_node) { 1463 node = of_get_regulator(dev, supply); 1464 if (node) { 1465 r = of_find_regulator_by_node(node); 1466 if (r) 1467 return r; 1468 1469 /* 1470 * We have a node, but there is no device. 1471 * assume it has not registered yet. 1472 */ 1473 return ERR_PTR(-EPROBE_DEFER); 1474 } 1475 } 1476 1477 /* if not found, try doing it non-dt way */ 1478 if (dev) 1479 devname = dev_name(dev); 1480 1481 mutex_lock(®ulator_list_mutex); 1482 list_for_each_entry(map, ®ulator_map_list, list) { 1483 /* If the mapping has a device set up it must match */ 1484 if (map->dev_name && 1485 (!devname || strcmp(map->dev_name, devname))) 1486 continue; 1487 1488 if (strcmp(map->supply, supply) == 0 && 1489 get_device(&map->regulator->dev)) { 1490 r = map->regulator; 1491 break; 1492 } 1493 } 1494 mutex_unlock(®ulator_list_mutex); 1495 1496 if (r) 1497 return r; 1498 1499 r = regulator_lookup_by_name(supply); 1500 if (r) 1501 return r; 1502 1503 return ERR_PTR(-ENODEV); 1504 } 1505 1506 static int regulator_resolve_supply(struct regulator_dev *rdev) 1507 { 1508 struct regulator_dev *r; 1509 struct device *dev = rdev->dev.parent; 1510 int ret; 1511 1512 /* No supply to resovle? */ 1513 if (!rdev->supply_name) 1514 return 0; 1515 1516 /* Supply already resolved? */ 1517 if (rdev->supply) 1518 return 0; 1519 1520 r = regulator_dev_lookup(dev, rdev->supply_name); 1521 if (IS_ERR(r)) { 1522 ret = PTR_ERR(r); 1523 1524 /* Did the lookup explicitly defer for us? */ 1525 if (ret == -EPROBE_DEFER) 1526 return ret; 1527 1528 if (have_full_constraints()) { 1529 r = dummy_regulator_rdev; 1530 get_device(&r->dev); 1531 } else { 1532 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1533 rdev->supply_name, rdev->desc->name); 1534 return -EPROBE_DEFER; 1535 } 1536 } 1537 1538 /* 1539 * If the supply's parent device is not the same as the 1540 * regulator's parent device, then ensure the parent device 1541 * is bound before we resolve the supply, in case the parent 1542 * device get probe deferred and unregisters the supply. 1543 */ 1544 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1545 if (!device_is_bound(r->dev.parent)) { 1546 put_device(&r->dev); 1547 return -EPROBE_DEFER; 1548 } 1549 } 1550 1551 /* Recursively resolve the supply of the supply */ 1552 ret = regulator_resolve_supply(r); 1553 if (ret < 0) { 1554 put_device(&r->dev); 1555 return ret; 1556 } 1557 1558 ret = set_supply(rdev, r); 1559 if (ret < 0) { 1560 put_device(&r->dev); 1561 return ret; 1562 } 1563 1564 /* Cascade always-on state to supply */ 1565 if (_regulator_is_enabled(rdev)) { 1566 ret = regulator_enable(rdev->supply); 1567 if (ret < 0) { 1568 _regulator_put(rdev->supply); 1569 rdev->supply = NULL; 1570 return ret; 1571 } 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* Internal regulator request function */ 1578 struct regulator *_regulator_get(struct device *dev, const char *id, 1579 enum regulator_get_type get_type) 1580 { 1581 struct regulator_dev *rdev; 1582 struct regulator *regulator; 1583 const char *devname = dev ? dev_name(dev) : "deviceless"; 1584 int ret; 1585 1586 if (get_type >= MAX_GET_TYPE) { 1587 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1588 return ERR_PTR(-EINVAL); 1589 } 1590 1591 if (id == NULL) { 1592 pr_err("get() with no identifier\n"); 1593 return ERR_PTR(-EINVAL); 1594 } 1595 1596 rdev = regulator_dev_lookup(dev, id); 1597 if (IS_ERR(rdev)) { 1598 ret = PTR_ERR(rdev); 1599 1600 /* 1601 * If regulator_dev_lookup() fails with error other 1602 * than -ENODEV our job here is done, we simply return it. 1603 */ 1604 if (ret != -ENODEV) 1605 return ERR_PTR(ret); 1606 1607 if (!have_full_constraints()) { 1608 dev_warn(dev, 1609 "incomplete constraints, dummy supplies not allowed\n"); 1610 return ERR_PTR(-ENODEV); 1611 } 1612 1613 switch (get_type) { 1614 case NORMAL_GET: 1615 /* 1616 * Assume that a regulator is physically present and 1617 * enabled, even if it isn't hooked up, and just 1618 * provide a dummy. 1619 */ 1620 dev_warn(dev, 1621 "%s supply %s not found, using dummy regulator\n", 1622 devname, id); 1623 rdev = dummy_regulator_rdev; 1624 get_device(&rdev->dev); 1625 break; 1626 1627 case EXCLUSIVE_GET: 1628 dev_warn(dev, 1629 "dummy supplies not allowed for exclusive requests\n"); 1630 /* fall through */ 1631 1632 default: 1633 return ERR_PTR(-ENODEV); 1634 } 1635 } 1636 1637 if (rdev->exclusive) { 1638 regulator = ERR_PTR(-EPERM); 1639 put_device(&rdev->dev); 1640 return regulator; 1641 } 1642 1643 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1644 regulator = ERR_PTR(-EBUSY); 1645 put_device(&rdev->dev); 1646 return regulator; 1647 } 1648 1649 ret = regulator_resolve_supply(rdev); 1650 if (ret < 0) { 1651 regulator = ERR_PTR(ret); 1652 put_device(&rdev->dev); 1653 return regulator; 1654 } 1655 1656 if (!try_module_get(rdev->owner)) { 1657 regulator = ERR_PTR(-EPROBE_DEFER); 1658 put_device(&rdev->dev); 1659 return regulator; 1660 } 1661 1662 regulator = create_regulator(rdev, dev, id); 1663 if (regulator == NULL) { 1664 regulator = ERR_PTR(-ENOMEM); 1665 put_device(&rdev->dev); 1666 module_put(rdev->owner); 1667 return regulator; 1668 } 1669 1670 rdev->open_count++; 1671 if (get_type == EXCLUSIVE_GET) { 1672 rdev->exclusive = 1; 1673 1674 ret = _regulator_is_enabled(rdev); 1675 if (ret > 0) 1676 rdev->use_count = 1; 1677 else 1678 rdev->use_count = 0; 1679 } 1680 1681 return regulator; 1682 } 1683 1684 /** 1685 * regulator_get - lookup and obtain a reference to a regulator. 1686 * @dev: device for regulator "consumer" 1687 * @id: Supply name or regulator ID. 1688 * 1689 * Returns a struct regulator corresponding to the regulator producer, 1690 * or IS_ERR() condition containing errno. 1691 * 1692 * Use of supply names configured via regulator_set_device_supply() is 1693 * strongly encouraged. It is recommended that the supply name used 1694 * should match the name used for the supply and/or the relevant 1695 * device pins in the datasheet. 1696 */ 1697 struct regulator *regulator_get(struct device *dev, const char *id) 1698 { 1699 return _regulator_get(dev, id, NORMAL_GET); 1700 } 1701 EXPORT_SYMBOL_GPL(regulator_get); 1702 1703 /** 1704 * regulator_get_exclusive - obtain exclusive access to a regulator. 1705 * @dev: device for regulator "consumer" 1706 * @id: Supply name or regulator ID. 1707 * 1708 * Returns a struct regulator corresponding to the regulator producer, 1709 * or IS_ERR() condition containing errno. Other consumers will be 1710 * unable to obtain this regulator while this reference is held and the 1711 * use count for the regulator will be initialised to reflect the current 1712 * state of the regulator. 1713 * 1714 * This is intended for use by consumers which cannot tolerate shared 1715 * use of the regulator such as those which need to force the 1716 * regulator off for correct operation of the hardware they are 1717 * controlling. 1718 * 1719 * Use of supply names configured via regulator_set_device_supply() is 1720 * strongly encouraged. It is recommended that the supply name used 1721 * should match the name used for the supply and/or the relevant 1722 * device pins in the datasheet. 1723 */ 1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1725 { 1726 return _regulator_get(dev, id, EXCLUSIVE_GET); 1727 } 1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1729 1730 /** 1731 * regulator_get_optional - obtain optional access to a regulator. 1732 * @dev: device for regulator "consumer" 1733 * @id: Supply name or regulator ID. 1734 * 1735 * Returns a struct regulator corresponding to the regulator producer, 1736 * or IS_ERR() condition containing errno. 1737 * 1738 * This is intended for use by consumers for devices which can have 1739 * some supplies unconnected in normal use, such as some MMC devices. 1740 * It can allow the regulator core to provide stub supplies for other 1741 * supplies requested using normal regulator_get() calls without 1742 * disrupting the operation of drivers that can handle absent 1743 * supplies. 1744 * 1745 * Use of supply names configured via regulator_set_device_supply() is 1746 * strongly encouraged. It is recommended that the supply name used 1747 * should match the name used for the supply and/or the relevant 1748 * device pins in the datasheet. 1749 */ 1750 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1751 { 1752 return _regulator_get(dev, id, OPTIONAL_GET); 1753 } 1754 EXPORT_SYMBOL_GPL(regulator_get_optional); 1755 1756 /* regulator_list_mutex lock held by regulator_put() */ 1757 static void _regulator_put(struct regulator *regulator) 1758 { 1759 struct regulator_dev *rdev; 1760 1761 if (IS_ERR_OR_NULL(regulator)) 1762 return; 1763 1764 lockdep_assert_held_once(®ulator_list_mutex); 1765 1766 rdev = regulator->rdev; 1767 1768 debugfs_remove_recursive(regulator->debugfs); 1769 1770 /* remove any sysfs entries */ 1771 if (regulator->dev) 1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1773 mutex_lock(&rdev->mutex); 1774 list_del(®ulator->list); 1775 1776 rdev->open_count--; 1777 rdev->exclusive = 0; 1778 put_device(&rdev->dev); 1779 mutex_unlock(&rdev->mutex); 1780 1781 kfree_const(regulator->supply_name); 1782 kfree(regulator); 1783 1784 module_put(rdev->owner); 1785 } 1786 1787 /** 1788 * regulator_put - "free" the regulator source 1789 * @regulator: regulator source 1790 * 1791 * Note: drivers must ensure that all regulator_enable calls made on this 1792 * regulator source are balanced by regulator_disable calls prior to calling 1793 * this function. 1794 */ 1795 void regulator_put(struct regulator *regulator) 1796 { 1797 mutex_lock(®ulator_list_mutex); 1798 _regulator_put(regulator); 1799 mutex_unlock(®ulator_list_mutex); 1800 } 1801 EXPORT_SYMBOL_GPL(regulator_put); 1802 1803 /** 1804 * regulator_register_supply_alias - Provide device alias for supply lookup 1805 * 1806 * @dev: device that will be given as the regulator "consumer" 1807 * @id: Supply name or regulator ID 1808 * @alias_dev: device that should be used to lookup the supply 1809 * @alias_id: Supply name or regulator ID that should be used to lookup the 1810 * supply 1811 * 1812 * All lookups for id on dev will instead be conducted for alias_id on 1813 * alias_dev. 1814 */ 1815 int regulator_register_supply_alias(struct device *dev, const char *id, 1816 struct device *alias_dev, 1817 const char *alias_id) 1818 { 1819 struct regulator_supply_alias *map; 1820 1821 map = regulator_find_supply_alias(dev, id); 1822 if (map) 1823 return -EEXIST; 1824 1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1826 if (!map) 1827 return -ENOMEM; 1828 1829 map->src_dev = dev; 1830 map->src_supply = id; 1831 map->alias_dev = alias_dev; 1832 map->alias_supply = alias_id; 1833 1834 list_add(&map->list, ®ulator_supply_alias_list); 1835 1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1837 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1842 1843 /** 1844 * regulator_unregister_supply_alias - Remove device alias 1845 * 1846 * @dev: device that will be given as the regulator "consumer" 1847 * @id: Supply name or regulator ID 1848 * 1849 * Remove a lookup alias if one exists for id on dev. 1850 */ 1851 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1852 { 1853 struct regulator_supply_alias *map; 1854 1855 map = regulator_find_supply_alias(dev, id); 1856 if (map) { 1857 list_del(&map->list); 1858 kfree(map); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1862 1863 /** 1864 * regulator_bulk_register_supply_alias - register multiple aliases 1865 * 1866 * @dev: device that will be given as the regulator "consumer" 1867 * @id: List of supply names or regulator IDs 1868 * @alias_dev: device that should be used to lookup the supply 1869 * @alias_id: List of supply names or regulator IDs that should be used to 1870 * lookup the supply 1871 * @num_id: Number of aliases to register 1872 * 1873 * @return 0 on success, an errno on failure. 1874 * 1875 * This helper function allows drivers to register several supply 1876 * aliases in one operation. If any of the aliases cannot be 1877 * registered any aliases that were registered will be removed 1878 * before returning to the caller. 1879 */ 1880 int regulator_bulk_register_supply_alias(struct device *dev, 1881 const char *const *id, 1882 struct device *alias_dev, 1883 const char *const *alias_id, 1884 int num_id) 1885 { 1886 int i; 1887 int ret; 1888 1889 for (i = 0; i < num_id; ++i) { 1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1891 alias_id[i]); 1892 if (ret < 0) 1893 goto err; 1894 } 1895 1896 return 0; 1897 1898 err: 1899 dev_err(dev, 1900 "Failed to create supply alias %s,%s -> %s,%s\n", 1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1902 1903 while (--i >= 0) 1904 regulator_unregister_supply_alias(dev, id[i]); 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1909 1910 /** 1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1912 * 1913 * @dev: device that will be given as the regulator "consumer" 1914 * @id: List of supply names or regulator IDs 1915 * @num_id: Number of aliases to unregister 1916 * 1917 * This helper function allows drivers to unregister several supply 1918 * aliases in one operation. 1919 */ 1920 void regulator_bulk_unregister_supply_alias(struct device *dev, 1921 const char *const *id, 1922 int num_id) 1923 { 1924 int i; 1925 1926 for (i = 0; i < num_id; ++i) 1927 regulator_unregister_supply_alias(dev, id[i]); 1928 } 1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1930 1931 1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1934 const struct regulator_config *config) 1935 { 1936 struct regulator_enable_gpio *pin; 1937 struct gpio_desc *gpiod; 1938 int ret; 1939 1940 if (config->ena_gpiod) 1941 gpiod = config->ena_gpiod; 1942 else 1943 gpiod = gpio_to_desc(config->ena_gpio); 1944 1945 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1946 if (pin->gpiod == gpiod) { 1947 rdev_dbg(rdev, "GPIO %d is already used\n", 1948 config->ena_gpio); 1949 goto update_ena_gpio_to_rdev; 1950 } 1951 } 1952 1953 if (!config->ena_gpiod) { 1954 ret = gpio_request_one(config->ena_gpio, 1955 GPIOF_DIR_OUT | config->ena_gpio_flags, 1956 rdev_get_name(rdev)); 1957 if (ret) 1958 return ret; 1959 } 1960 1961 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1962 if (pin == NULL) { 1963 if (!config->ena_gpiod) 1964 gpio_free(config->ena_gpio); 1965 return -ENOMEM; 1966 } 1967 1968 pin->gpiod = gpiod; 1969 pin->ena_gpio_invert = config->ena_gpio_invert; 1970 list_add(&pin->list, ®ulator_ena_gpio_list); 1971 1972 update_ena_gpio_to_rdev: 1973 pin->request_count++; 1974 rdev->ena_pin = pin; 1975 return 0; 1976 } 1977 1978 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1979 { 1980 struct regulator_enable_gpio *pin, *n; 1981 1982 if (!rdev->ena_pin) 1983 return; 1984 1985 /* Free the GPIO only in case of no use */ 1986 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1987 if (pin->gpiod == rdev->ena_pin->gpiod) { 1988 if (pin->request_count <= 1) { 1989 pin->request_count = 0; 1990 gpiod_put(pin->gpiod); 1991 list_del(&pin->list); 1992 kfree(pin); 1993 rdev->ena_pin = NULL; 1994 return; 1995 } else { 1996 pin->request_count--; 1997 } 1998 } 1999 } 2000 } 2001 2002 /** 2003 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2004 * @rdev: regulator_dev structure 2005 * @enable: enable GPIO at initial use? 2006 * 2007 * GPIO is enabled in case of initial use. (enable_count is 0) 2008 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2009 */ 2010 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2011 { 2012 struct regulator_enable_gpio *pin = rdev->ena_pin; 2013 2014 if (!pin) 2015 return -EINVAL; 2016 2017 if (enable) { 2018 /* Enable GPIO at initial use */ 2019 if (pin->enable_count == 0) 2020 gpiod_set_value_cansleep(pin->gpiod, 2021 !pin->ena_gpio_invert); 2022 2023 pin->enable_count++; 2024 } else { 2025 if (pin->enable_count > 1) { 2026 pin->enable_count--; 2027 return 0; 2028 } 2029 2030 /* Disable GPIO if not used */ 2031 if (pin->enable_count <= 1) { 2032 gpiod_set_value_cansleep(pin->gpiod, 2033 pin->ena_gpio_invert); 2034 pin->enable_count = 0; 2035 } 2036 } 2037 2038 return 0; 2039 } 2040 2041 /** 2042 * _regulator_enable_delay - a delay helper function 2043 * @delay: time to delay in microseconds 2044 * 2045 * Delay for the requested amount of time as per the guidelines in: 2046 * 2047 * Documentation/timers/timers-howto.txt 2048 * 2049 * The assumption here is that regulators will never be enabled in 2050 * atomic context and therefore sleeping functions can be used. 2051 */ 2052 static void _regulator_enable_delay(unsigned int delay) 2053 { 2054 unsigned int ms = delay / 1000; 2055 unsigned int us = delay % 1000; 2056 2057 if (ms > 0) { 2058 /* 2059 * For small enough values, handle super-millisecond 2060 * delays in the usleep_range() call below. 2061 */ 2062 if (ms < 20) 2063 us += ms * 1000; 2064 else 2065 msleep(ms); 2066 } 2067 2068 /* 2069 * Give the scheduler some room to coalesce with any other 2070 * wakeup sources. For delays shorter than 10 us, don't even 2071 * bother setting up high-resolution timers and just busy- 2072 * loop. 2073 */ 2074 if (us >= 10) 2075 usleep_range(us, us + 100); 2076 else 2077 udelay(us); 2078 } 2079 2080 static int _regulator_do_enable(struct regulator_dev *rdev) 2081 { 2082 int ret, delay; 2083 2084 /* Query before enabling in case configuration dependent. */ 2085 ret = _regulator_get_enable_time(rdev); 2086 if (ret >= 0) { 2087 delay = ret; 2088 } else { 2089 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2090 delay = 0; 2091 } 2092 2093 trace_regulator_enable(rdev_get_name(rdev)); 2094 2095 if (rdev->desc->off_on_delay) { 2096 /* if needed, keep a distance of off_on_delay from last time 2097 * this regulator was disabled. 2098 */ 2099 unsigned long start_jiffy = jiffies; 2100 unsigned long intended, max_delay, remaining; 2101 2102 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2103 intended = rdev->last_off_jiffy + max_delay; 2104 2105 if (time_before(start_jiffy, intended)) { 2106 /* calc remaining jiffies to deal with one-time 2107 * timer wrapping. 2108 * in case of multiple timer wrapping, either it can be 2109 * detected by out-of-range remaining, or it cannot be 2110 * detected and we gets a panelty of 2111 * _regulator_enable_delay(). 2112 */ 2113 remaining = intended - start_jiffy; 2114 if (remaining <= max_delay) 2115 _regulator_enable_delay( 2116 jiffies_to_usecs(remaining)); 2117 } 2118 } 2119 2120 if (rdev->ena_pin) { 2121 if (!rdev->ena_gpio_state) { 2122 ret = regulator_ena_gpio_ctrl(rdev, true); 2123 if (ret < 0) 2124 return ret; 2125 rdev->ena_gpio_state = 1; 2126 } 2127 } else if (rdev->desc->ops->enable) { 2128 ret = rdev->desc->ops->enable(rdev); 2129 if (ret < 0) 2130 return ret; 2131 } else { 2132 return -EINVAL; 2133 } 2134 2135 /* Allow the regulator to ramp; it would be useful to extend 2136 * this for bulk operations so that the regulators can ramp 2137 * together. */ 2138 trace_regulator_enable_delay(rdev_get_name(rdev)); 2139 2140 _regulator_enable_delay(delay); 2141 2142 trace_regulator_enable_complete(rdev_get_name(rdev)); 2143 2144 return 0; 2145 } 2146 2147 /* locks held by regulator_enable() */ 2148 static int _regulator_enable(struct regulator_dev *rdev) 2149 { 2150 int ret; 2151 2152 lockdep_assert_held_once(&rdev->mutex); 2153 2154 /* check voltage and requested load before enabling */ 2155 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2156 drms_uA_update(rdev); 2157 2158 if (rdev->use_count == 0) { 2159 /* The regulator may on if it's not switchable or left on */ 2160 ret = _regulator_is_enabled(rdev); 2161 if (ret == -EINVAL || ret == 0) { 2162 if (!regulator_ops_is_valid(rdev, 2163 REGULATOR_CHANGE_STATUS)) 2164 return -EPERM; 2165 2166 ret = _regulator_do_enable(rdev); 2167 if (ret < 0) 2168 return ret; 2169 2170 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2171 NULL); 2172 } else if (ret < 0) { 2173 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2174 return ret; 2175 } 2176 /* Fallthrough on positive return values - already enabled */ 2177 } 2178 2179 rdev->use_count++; 2180 2181 return 0; 2182 } 2183 2184 /** 2185 * regulator_enable - enable regulator output 2186 * @regulator: regulator source 2187 * 2188 * Request that the regulator be enabled with the regulator output at 2189 * the predefined voltage or current value. Calls to regulator_enable() 2190 * must be balanced with calls to regulator_disable(). 2191 * 2192 * NOTE: the output value can be set by other drivers, boot loader or may be 2193 * hardwired in the regulator. 2194 */ 2195 int regulator_enable(struct regulator *regulator) 2196 { 2197 struct regulator_dev *rdev = regulator->rdev; 2198 int ret = 0; 2199 2200 if (regulator->always_on) 2201 return 0; 2202 2203 if (rdev->supply) { 2204 ret = regulator_enable(rdev->supply); 2205 if (ret != 0) 2206 return ret; 2207 } 2208 2209 mutex_lock(&rdev->mutex); 2210 ret = _regulator_enable(rdev); 2211 mutex_unlock(&rdev->mutex); 2212 2213 if (ret != 0 && rdev->supply) 2214 regulator_disable(rdev->supply); 2215 2216 return ret; 2217 } 2218 EXPORT_SYMBOL_GPL(regulator_enable); 2219 2220 static int _regulator_do_disable(struct regulator_dev *rdev) 2221 { 2222 int ret; 2223 2224 trace_regulator_disable(rdev_get_name(rdev)); 2225 2226 if (rdev->ena_pin) { 2227 if (rdev->ena_gpio_state) { 2228 ret = regulator_ena_gpio_ctrl(rdev, false); 2229 if (ret < 0) 2230 return ret; 2231 rdev->ena_gpio_state = 0; 2232 } 2233 2234 } else if (rdev->desc->ops->disable) { 2235 ret = rdev->desc->ops->disable(rdev); 2236 if (ret != 0) 2237 return ret; 2238 } 2239 2240 /* cares about last_off_jiffy only if off_on_delay is required by 2241 * device. 2242 */ 2243 if (rdev->desc->off_on_delay) 2244 rdev->last_off_jiffy = jiffies; 2245 2246 trace_regulator_disable_complete(rdev_get_name(rdev)); 2247 2248 return 0; 2249 } 2250 2251 /* locks held by regulator_disable() */ 2252 static int _regulator_disable(struct regulator_dev *rdev) 2253 { 2254 int ret = 0; 2255 2256 lockdep_assert_held_once(&rdev->mutex); 2257 2258 if (WARN(rdev->use_count <= 0, 2259 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2260 return -EIO; 2261 2262 /* are we the last user and permitted to disable ? */ 2263 if (rdev->use_count == 1 && 2264 (rdev->constraints && !rdev->constraints->always_on)) { 2265 2266 /* we are last user */ 2267 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2268 ret = _notifier_call_chain(rdev, 2269 REGULATOR_EVENT_PRE_DISABLE, 2270 NULL); 2271 if (ret & NOTIFY_STOP_MASK) 2272 return -EINVAL; 2273 2274 ret = _regulator_do_disable(rdev); 2275 if (ret < 0) { 2276 rdev_err(rdev, "failed to disable\n"); 2277 _notifier_call_chain(rdev, 2278 REGULATOR_EVENT_ABORT_DISABLE, 2279 NULL); 2280 return ret; 2281 } 2282 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2283 NULL); 2284 } 2285 2286 rdev->use_count = 0; 2287 } else if (rdev->use_count > 1) { 2288 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2289 drms_uA_update(rdev); 2290 2291 rdev->use_count--; 2292 } 2293 2294 return ret; 2295 } 2296 2297 /** 2298 * regulator_disable - disable regulator output 2299 * @regulator: regulator source 2300 * 2301 * Disable the regulator output voltage or current. Calls to 2302 * regulator_enable() must be balanced with calls to 2303 * regulator_disable(). 2304 * 2305 * NOTE: this will only disable the regulator output if no other consumer 2306 * devices have it enabled, the regulator device supports disabling and 2307 * machine constraints permit this operation. 2308 */ 2309 int regulator_disable(struct regulator *regulator) 2310 { 2311 struct regulator_dev *rdev = regulator->rdev; 2312 int ret = 0; 2313 2314 if (regulator->always_on) 2315 return 0; 2316 2317 mutex_lock(&rdev->mutex); 2318 ret = _regulator_disable(rdev); 2319 mutex_unlock(&rdev->mutex); 2320 2321 if (ret == 0 && rdev->supply) 2322 regulator_disable(rdev->supply); 2323 2324 return ret; 2325 } 2326 EXPORT_SYMBOL_GPL(regulator_disable); 2327 2328 /* locks held by regulator_force_disable() */ 2329 static int _regulator_force_disable(struct regulator_dev *rdev) 2330 { 2331 int ret = 0; 2332 2333 lockdep_assert_held_once(&rdev->mutex); 2334 2335 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2336 REGULATOR_EVENT_PRE_DISABLE, NULL); 2337 if (ret & NOTIFY_STOP_MASK) 2338 return -EINVAL; 2339 2340 ret = _regulator_do_disable(rdev); 2341 if (ret < 0) { 2342 rdev_err(rdev, "failed to force disable\n"); 2343 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2344 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2345 return ret; 2346 } 2347 2348 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2349 REGULATOR_EVENT_DISABLE, NULL); 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * regulator_force_disable - force disable regulator output 2356 * @regulator: regulator source 2357 * 2358 * Forcibly disable the regulator output voltage or current. 2359 * NOTE: this *will* disable the regulator output even if other consumer 2360 * devices have it enabled. This should be used for situations when device 2361 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2362 */ 2363 int regulator_force_disable(struct regulator *regulator) 2364 { 2365 struct regulator_dev *rdev = regulator->rdev; 2366 int ret; 2367 2368 mutex_lock(&rdev->mutex); 2369 regulator->uA_load = 0; 2370 ret = _regulator_force_disable(regulator->rdev); 2371 mutex_unlock(&rdev->mutex); 2372 2373 if (rdev->supply) 2374 while (rdev->open_count--) 2375 regulator_disable(rdev->supply); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL_GPL(regulator_force_disable); 2380 2381 static void regulator_disable_work(struct work_struct *work) 2382 { 2383 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2384 disable_work.work); 2385 int count, i, ret; 2386 2387 mutex_lock(&rdev->mutex); 2388 2389 BUG_ON(!rdev->deferred_disables); 2390 2391 count = rdev->deferred_disables; 2392 rdev->deferred_disables = 0; 2393 2394 /* 2395 * Workqueue functions queue the new work instance while the previous 2396 * work instance is being processed. Cancel the queued work instance 2397 * as the work instance under processing does the job of the queued 2398 * work instance. 2399 */ 2400 cancel_delayed_work(&rdev->disable_work); 2401 2402 for (i = 0; i < count; i++) { 2403 ret = _regulator_disable(rdev); 2404 if (ret != 0) 2405 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2406 } 2407 2408 mutex_unlock(&rdev->mutex); 2409 2410 if (rdev->supply) { 2411 for (i = 0; i < count; i++) { 2412 ret = regulator_disable(rdev->supply); 2413 if (ret != 0) { 2414 rdev_err(rdev, 2415 "Supply disable failed: %d\n", ret); 2416 } 2417 } 2418 } 2419 } 2420 2421 /** 2422 * regulator_disable_deferred - disable regulator output with delay 2423 * @regulator: regulator source 2424 * @ms: miliseconds until the regulator is disabled 2425 * 2426 * Execute regulator_disable() on the regulator after a delay. This 2427 * is intended for use with devices that require some time to quiesce. 2428 * 2429 * NOTE: this will only disable the regulator output if no other consumer 2430 * devices have it enabled, the regulator device supports disabling and 2431 * machine constraints permit this operation. 2432 */ 2433 int regulator_disable_deferred(struct regulator *regulator, int ms) 2434 { 2435 struct regulator_dev *rdev = regulator->rdev; 2436 2437 if (regulator->always_on) 2438 return 0; 2439 2440 if (!ms) 2441 return regulator_disable(regulator); 2442 2443 mutex_lock(&rdev->mutex); 2444 rdev->deferred_disables++; 2445 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2446 msecs_to_jiffies(ms)); 2447 mutex_unlock(&rdev->mutex); 2448 2449 return 0; 2450 } 2451 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2452 2453 static int _regulator_is_enabled(struct regulator_dev *rdev) 2454 { 2455 /* A GPIO control always takes precedence */ 2456 if (rdev->ena_pin) 2457 return rdev->ena_gpio_state; 2458 2459 /* If we don't know then assume that the regulator is always on */ 2460 if (!rdev->desc->ops->is_enabled) 2461 return 1; 2462 2463 return rdev->desc->ops->is_enabled(rdev); 2464 } 2465 2466 static int _regulator_list_voltage(struct regulator_dev *rdev, 2467 unsigned selector, int lock) 2468 { 2469 const struct regulator_ops *ops = rdev->desc->ops; 2470 int ret; 2471 2472 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2473 return rdev->desc->fixed_uV; 2474 2475 if (ops->list_voltage) { 2476 if (selector >= rdev->desc->n_voltages) 2477 return -EINVAL; 2478 if (lock) 2479 mutex_lock(&rdev->mutex); 2480 ret = ops->list_voltage(rdev, selector); 2481 if (lock) 2482 mutex_unlock(&rdev->mutex); 2483 } else if (rdev->is_switch && rdev->supply) { 2484 ret = _regulator_list_voltage(rdev->supply->rdev, 2485 selector, lock); 2486 } else { 2487 return -EINVAL; 2488 } 2489 2490 if (ret > 0) { 2491 if (ret < rdev->constraints->min_uV) 2492 ret = 0; 2493 else if (ret > rdev->constraints->max_uV) 2494 ret = 0; 2495 } 2496 2497 return ret; 2498 } 2499 2500 /** 2501 * regulator_is_enabled - is the regulator output enabled 2502 * @regulator: regulator source 2503 * 2504 * Returns positive if the regulator driver backing the source/client 2505 * has requested that the device be enabled, zero if it hasn't, else a 2506 * negative errno code. 2507 * 2508 * Note that the device backing this regulator handle can have multiple 2509 * users, so it might be enabled even if regulator_enable() was never 2510 * called for this particular source. 2511 */ 2512 int regulator_is_enabled(struct regulator *regulator) 2513 { 2514 int ret; 2515 2516 if (regulator->always_on) 2517 return 1; 2518 2519 mutex_lock(®ulator->rdev->mutex); 2520 ret = _regulator_is_enabled(regulator->rdev); 2521 mutex_unlock(®ulator->rdev->mutex); 2522 2523 return ret; 2524 } 2525 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2526 2527 /** 2528 * regulator_count_voltages - count regulator_list_voltage() selectors 2529 * @regulator: regulator source 2530 * 2531 * Returns number of selectors, or negative errno. Selectors are 2532 * numbered starting at zero, and typically correspond to bitfields 2533 * in hardware registers. 2534 */ 2535 int regulator_count_voltages(struct regulator *regulator) 2536 { 2537 struct regulator_dev *rdev = regulator->rdev; 2538 2539 if (rdev->desc->n_voltages) 2540 return rdev->desc->n_voltages; 2541 2542 if (!rdev->is_switch || !rdev->supply) 2543 return -EINVAL; 2544 2545 return regulator_count_voltages(rdev->supply); 2546 } 2547 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2548 2549 /** 2550 * regulator_list_voltage - enumerate supported voltages 2551 * @regulator: regulator source 2552 * @selector: identify voltage to list 2553 * Context: can sleep 2554 * 2555 * Returns a voltage that can be passed to @regulator_set_voltage(), 2556 * zero if this selector code can't be used on this system, or a 2557 * negative errno. 2558 */ 2559 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2560 { 2561 return _regulator_list_voltage(regulator->rdev, selector, 1); 2562 } 2563 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2564 2565 /** 2566 * regulator_get_regmap - get the regulator's register map 2567 * @regulator: regulator source 2568 * 2569 * Returns the register map for the given regulator, or an ERR_PTR value 2570 * if the regulator doesn't use regmap. 2571 */ 2572 struct regmap *regulator_get_regmap(struct regulator *regulator) 2573 { 2574 struct regmap *map = regulator->rdev->regmap; 2575 2576 return map ? map : ERR_PTR(-EOPNOTSUPP); 2577 } 2578 2579 /** 2580 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2581 * @regulator: regulator source 2582 * @vsel_reg: voltage selector register, output parameter 2583 * @vsel_mask: mask for voltage selector bitfield, output parameter 2584 * 2585 * Returns the hardware register offset and bitmask used for setting the 2586 * regulator voltage. This might be useful when configuring voltage-scaling 2587 * hardware or firmware that can make I2C requests behind the kernel's back, 2588 * for example. 2589 * 2590 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2591 * and 0 is returned, otherwise a negative errno is returned. 2592 */ 2593 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2594 unsigned *vsel_reg, 2595 unsigned *vsel_mask) 2596 { 2597 struct regulator_dev *rdev = regulator->rdev; 2598 const struct regulator_ops *ops = rdev->desc->ops; 2599 2600 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2601 return -EOPNOTSUPP; 2602 2603 *vsel_reg = rdev->desc->vsel_reg; 2604 *vsel_mask = rdev->desc->vsel_mask; 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2609 2610 /** 2611 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2612 * @regulator: regulator source 2613 * @selector: identify voltage to list 2614 * 2615 * Converts the selector to a hardware-specific voltage selector that can be 2616 * directly written to the regulator registers. The address of the voltage 2617 * register can be determined by calling @regulator_get_hardware_vsel_register. 2618 * 2619 * On error a negative errno is returned. 2620 */ 2621 int regulator_list_hardware_vsel(struct regulator *regulator, 2622 unsigned selector) 2623 { 2624 struct regulator_dev *rdev = regulator->rdev; 2625 const struct regulator_ops *ops = rdev->desc->ops; 2626 2627 if (selector >= rdev->desc->n_voltages) 2628 return -EINVAL; 2629 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2630 return -EOPNOTSUPP; 2631 2632 return selector; 2633 } 2634 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2635 2636 /** 2637 * regulator_get_linear_step - return the voltage step size between VSEL values 2638 * @regulator: regulator source 2639 * 2640 * Returns the voltage step size between VSEL values for linear 2641 * regulators, or return 0 if the regulator isn't a linear regulator. 2642 */ 2643 unsigned int regulator_get_linear_step(struct regulator *regulator) 2644 { 2645 struct regulator_dev *rdev = regulator->rdev; 2646 2647 return rdev->desc->uV_step; 2648 } 2649 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2650 2651 /** 2652 * regulator_is_supported_voltage - check if a voltage range can be supported 2653 * 2654 * @regulator: Regulator to check. 2655 * @min_uV: Minimum required voltage in uV. 2656 * @max_uV: Maximum required voltage in uV. 2657 * 2658 * Returns a boolean or a negative error code. 2659 */ 2660 int regulator_is_supported_voltage(struct regulator *regulator, 2661 int min_uV, int max_uV) 2662 { 2663 struct regulator_dev *rdev = regulator->rdev; 2664 int i, voltages, ret; 2665 2666 /* If we can't change voltage check the current voltage */ 2667 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2668 ret = regulator_get_voltage(regulator); 2669 if (ret >= 0) 2670 return min_uV <= ret && ret <= max_uV; 2671 else 2672 return ret; 2673 } 2674 2675 /* Any voltage within constrains range is fine? */ 2676 if (rdev->desc->continuous_voltage_range) 2677 return min_uV >= rdev->constraints->min_uV && 2678 max_uV <= rdev->constraints->max_uV; 2679 2680 ret = regulator_count_voltages(regulator); 2681 if (ret < 0) 2682 return ret; 2683 voltages = ret; 2684 2685 for (i = 0; i < voltages; i++) { 2686 ret = regulator_list_voltage(regulator, i); 2687 2688 if (ret >= min_uV && ret <= max_uV) 2689 return 1; 2690 } 2691 2692 return 0; 2693 } 2694 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2695 2696 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2697 int max_uV) 2698 { 2699 const struct regulator_desc *desc = rdev->desc; 2700 2701 if (desc->ops->map_voltage) 2702 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2703 2704 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2705 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2706 2707 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2708 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2709 2710 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2711 } 2712 2713 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2714 int min_uV, int max_uV, 2715 unsigned *selector) 2716 { 2717 struct pre_voltage_change_data data; 2718 int ret; 2719 2720 data.old_uV = _regulator_get_voltage(rdev); 2721 data.min_uV = min_uV; 2722 data.max_uV = max_uV; 2723 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2724 &data); 2725 if (ret & NOTIFY_STOP_MASK) 2726 return -EINVAL; 2727 2728 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2729 if (ret >= 0) 2730 return ret; 2731 2732 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2733 (void *)data.old_uV); 2734 2735 return ret; 2736 } 2737 2738 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2739 int uV, unsigned selector) 2740 { 2741 struct pre_voltage_change_data data; 2742 int ret; 2743 2744 data.old_uV = _regulator_get_voltage(rdev); 2745 data.min_uV = uV; 2746 data.max_uV = uV; 2747 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2748 &data); 2749 if (ret & NOTIFY_STOP_MASK) 2750 return -EINVAL; 2751 2752 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2753 if (ret >= 0) 2754 return ret; 2755 2756 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2757 (void *)data.old_uV); 2758 2759 return ret; 2760 } 2761 2762 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2763 int old_uV, int new_uV) 2764 { 2765 unsigned int ramp_delay = 0; 2766 2767 if (rdev->constraints->ramp_delay) 2768 ramp_delay = rdev->constraints->ramp_delay; 2769 else if (rdev->desc->ramp_delay) 2770 ramp_delay = rdev->desc->ramp_delay; 2771 else if (rdev->constraints->settling_time) 2772 return rdev->constraints->settling_time; 2773 else if (rdev->constraints->settling_time_up && 2774 (new_uV > old_uV)) 2775 return rdev->constraints->settling_time_up; 2776 else if (rdev->constraints->settling_time_down && 2777 (new_uV < old_uV)) 2778 return rdev->constraints->settling_time_down; 2779 2780 if (ramp_delay == 0) { 2781 rdev_dbg(rdev, "ramp_delay not set\n"); 2782 return 0; 2783 } 2784 2785 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2786 } 2787 2788 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2789 int min_uV, int max_uV) 2790 { 2791 int ret; 2792 int delay = 0; 2793 int best_val = 0; 2794 unsigned int selector; 2795 int old_selector = -1; 2796 const struct regulator_ops *ops = rdev->desc->ops; 2797 int old_uV = _regulator_get_voltage(rdev); 2798 2799 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2800 2801 min_uV += rdev->constraints->uV_offset; 2802 max_uV += rdev->constraints->uV_offset; 2803 2804 /* 2805 * If we can't obtain the old selector there is not enough 2806 * info to call set_voltage_time_sel(). 2807 */ 2808 if (_regulator_is_enabled(rdev) && 2809 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2810 old_selector = ops->get_voltage_sel(rdev); 2811 if (old_selector < 0) 2812 return old_selector; 2813 } 2814 2815 if (ops->set_voltage) { 2816 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2817 &selector); 2818 2819 if (ret >= 0) { 2820 if (ops->list_voltage) 2821 best_val = ops->list_voltage(rdev, 2822 selector); 2823 else 2824 best_val = _regulator_get_voltage(rdev); 2825 } 2826 2827 } else if (ops->set_voltage_sel) { 2828 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2829 if (ret >= 0) { 2830 best_val = ops->list_voltage(rdev, ret); 2831 if (min_uV <= best_val && max_uV >= best_val) { 2832 selector = ret; 2833 if (old_selector == selector) 2834 ret = 0; 2835 else 2836 ret = _regulator_call_set_voltage_sel( 2837 rdev, best_val, selector); 2838 } else { 2839 ret = -EINVAL; 2840 } 2841 } 2842 } else { 2843 ret = -EINVAL; 2844 } 2845 2846 if (ret) 2847 goto out; 2848 2849 if (ops->set_voltage_time_sel) { 2850 /* 2851 * Call set_voltage_time_sel if successfully obtained 2852 * old_selector 2853 */ 2854 if (old_selector >= 0 && old_selector != selector) 2855 delay = ops->set_voltage_time_sel(rdev, old_selector, 2856 selector); 2857 } else { 2858 if (old_uV != best_val) { 2859 if (ops->set_voltage_time) 2860 delay = ops->set_voltage_time(rdev, old_uV, 2861 best_val); 2862 else 2863 delay = _regulator_set_voltage_time(rdev, 2864 old_uV, 2865 best_val); 2866 } 2867 } 2868 2869 if (delay < 0) { 2870 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2871 delay = 0; 2872 } 2873 2874 /* Insert any necessary delays */ 2875 if (delay >= 1000) { 2876 mdelay(delay / 1000); 2877 udelay(delay % 1000); 2878 } else if (delay) { 2879 udelay(delay); 2880 } 2881 2882 if (best_val >= 0) { 2883 unsigned long data = best_val; 2884 2885 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2886 (void *)data); 2887 } 2888 2889 out: 2890 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2891 2892 return ret; 2893 } 2894 2895 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 2896 int min_uV, int max_uV, suspend_state_t state) 2897 { 2898 struct regulator_state *rstate; 2899 int uV, sel; 2900 2901 rstate = regulator_get_suspend_state(rdev, state); 2902 if (rstate == NULL) 2903 return -EINVAL; 2904 2905 if (min_uV < rstate->min_uV) 2906 min_uV = rstate->min_uV; 2907 if (max_uV > rstate->max_uV) 2908 max_uV = rstate->max_uV; 2909 2910 sel = regulator_map_voltage(rdev, min_uV, max_uV); 2911 if (sel < 0) 2912 return sel; 2913 2914 uV = rdev->desc->ops->list_voltage(rdev, sel); 2915 if (uV >= min_uV && uV <= max_uV) 2916 rstate->uV = uV; 2917 2918 return 0; 2919 } 2920 2921 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2922 int min_uV, int max_uV, 2923 suspend_state_t state) 2924 { 2925 struct regulator_dev *rdev = regulator->rdev; 2926 struct regulator_voltage *voltage = ®ulator->voltage[state]; 2927 int ret = 0; 2928 int old_min_uV, old_max_uV; 2929 int current_uV; 2930 int best_supply_uV = 0; 2931 int supply_change_uV = 0; 2932 2933 /* If we're setting the same range as last time the change 2934 * should be a noop (some cpufreq implementations use the same 2935 * voltage for multiple frequencies, for example). 2936 */ 2937 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 2938 goto out; 2939 2940 /* If we're trying to set a range that overlaps the current voltage, 2941 * return successfully even though the regulator does not support 2942 * changing the voltage. 2943 */ 2944 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2945 current_uV = _regulator_get_voltage(rdev); 2946 if (min_uV <= current_uV && current_uV <= max_uV) { 2947 voltage->min_uV = min_uV; 2948 voltage->max_uV = max_uV; 2949 goto out; 2950 } 2951 } 2952 2953 /* sanity check */ 2954 if (!rdev->desc->ops->set_voltage && 2955 !rdev->desc->ops->set_voltage_sel) { 2956 ret = -EINVAL; 2957 goto out; 2958 } 2959 2960 /* constraints check */ 2961 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2962 if (ret < 0) 2963 goto out; 2964 2965 /* restore original values in case of error */ 2966 old_min_uV = voltage->min_uV; 2967 old_max_uV = voltage->max_uV; 2968 voltage->min_uV = min_uV; 2969 voltage->max_uV = max_uV; 2970 2971 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state); 2972 if (ret < 0) 2973 goto out2; 2974 2975 if (rdev->supply && 2976 regulator_ops_is_valid(rdev->supply->rdev, 2977 REGULATOR_CHANGE_VOLTAGE) && 2978 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 2979 rdev->desc->ops->get_voltage_sel))) { 2980 int current_supply_uV; 2981 int selector; 2982 2983 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2984 if (selector < 0) { 2985 ret = selector; 2986 goto out2; 2987 } 2988 2989 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 2990 if (best_supply_uV < 0) { 2991 ret = best_supply_uV; 2992 goto out2; 2993 } 2994 2995 best_supply_uV += rdev->desc->min_dropout_uV; 2996 2997 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2998 if (current_supply_uV < 0) { 2999 ret = current_supply_uV; 3000 goto out2; 3001 } 3002 3003 supply_change_uV = best_supply_uV - current_supply_uV; 3004 } 3005 3006 if (supply_change_uV > 0) { 3007 ret = regulator_set_voltage_unlocked(rdev->supply, 3008 best_supply_uV, INT_MAX, state); 3009 if (ret) { 3010 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3011 ret); 3012 goto out2; 3013 } 3014 } 3015 3016 if (state == PM_SUSPEND_ON) 3017 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3018 else 3019 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3020 max_uV, state); 3021 if (ret < 0) 3022 goto out2; 3023 3024 if (supply_change_uV < 0) { 3025 ret = regulator_set_voltage_unlocked(rdev->supply, 3026 best_supply_uV, INT_MAX, state); 3027 if (ret) 3028 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3029 ret); 3030 /* No need to fail here */ 3031 ret = 0; 3032 } 3033 3034 out: 3035 return ret; 3036 out2: 3037 voltage->min_uV = old_min_uV; 3038 voltage->max_uV = old_max_uV; 3039 3040 return ret; 3041 } 3042 3043 /** 3044 * regulator_set_voltage - set regulator output voltage 3045 * @regulator: regulator source 3046 * @min_uV: Minimum required voltage in uV 3047 * @max_uV: Maximum acceptable voltage in uV 3048 * 3049 * Sets a voltage regulator to the desired output voltage. This can be set 3050 * during any regulator state. IOW, regulator can be disabled or enabled. 3051 * 3052 * If the regulator is enabled then the voltage will change to the new value 3053 * immediately otherwise if the regulator is disabled the regulator will 3054 * output at the new voltage when enabled. 3055 * 3056 * NOTE: If the regulator is shared between several devices then the lowest 3057 * request voltage that meets the system constraints will be used. 3058 * Regulator system constraints must be set for this regulator before 3059 * calling this function otherwise this call will fail. 3060 */ 3061 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3062 { 3063 int ret = 0; 3064 3065 regulator_lock_supply(regulator->rdev); 3066 3067 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3068 PM_SUSPEND_ON); 3069 3070 regulator_unlock_supply(regulator->rdev); 3071 3072 return ret; 3073 } 3074 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3075 3076 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3077 suspend_state_t state, bool en) 3078 { 3079 struct regulator_state *rstate; 3080 3081 rstate = regulator_get_suspend_state(rdev, state); 3082 if (rstate == NULL) 3083 return -EINVAL; 3084 3085 if (!rstate->changeable) 3086 return -EPERM; 3087 3088 rstate->enabled = en; 3089 3090 return 0; 3091 } 3092 3093 int regulator_suspend_enable(struct regulator_dev *rdev, 3094 suspend_state_t state) 3095 { 3096 return regulator_suspend_toggle(rdev, state, true); 3097 } 3098 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3099 3100 int regulator_suspend_disable(struct regulator_dev *rdev, 3101 suspend_state_t state) 3102 { 3103 struct regulator *regulator; 3104 struct regulator_voltage *voltage; 3105 3106 /* 3107 * if any consumer wants this regulator device keeping on in 3108 * suspend states, don't set it as disabled. 3109 */ 3110 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3111 voltage = ®ulator->voltage[state]; 3112 if (voltage->min_uV || voltage->max_uV) 3113 return 0; 3114 } 3115 3116 return regulator_suspend_toggle(rdev, state, false); 3117 } 3118 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3119 3120 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3121 int min_uV, int max_uV, 3122 suspend_state_t state) 3123 { 3124 struct regulator_dev *rdev = regulator->rdev; 3125 struct regulator_state *rstate; 3126 3127 rstate = regulator_get_suspend_state(rdev, state); 3128 if (rstate == NULL) 3129 return -EINVAL; 3130 3131 if (rstate->min_uV == rstate->max_uV) { 3132 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3133 return -EPERM; 3134 } 3135 3136 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3137 } 3138 3139 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3140 int max_uV, suspend_state_t state) 3141 { 3142 int ret = 0; 3143 3144 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3145 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3146 return -EINVAL; 3147 3148 regulator_lock_supply(regulator->rdev); 3149 3150 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3151 max_uV, state); 3152 3153 regulator_unlock_supply(regulator->rdev); 3154 3155 return ret; 3156 } 3157 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3158 3159 /** 3160 * regulator_set_voltage_time - get raise/fall time 3161 * @regulator: regulator source 3162 * @old_uV: starting voltage in microvolts 3163 * @new_uV: target voltage in microvolts 3164 * 3165 * Provided with the starting and ending voltage, this function attempts to 3166 * calculate the time in microseconds required to rise or fall to this new 3167 * voltage. 3168 */ 3169 int regulator_set_voltage_time(struct regulator *regulator, 3170 int old_uV, int new_uV) 3171 { 3172 struct regulator_dev *rdev = regulator->rdev; 3173 const struct regulator_ops *ops = rdev->desc->ops; 3174 int old_sel = -1; 3175 int new_sel = -1; 3176 int voltage; 3177 int i; 3178 3179 if (ops->set_voltage_time) 3180 return ops->set_voltage_time(rdev, old_uV, new_uV); 3181 else if (!ops->set_voltage_time_sel) 3182 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3183 3184 /* Currently requires operations to do this */ 3185 if (!ops->list_voltage || !rdev->desc->n_voltages) 3186 return -EINVAL; 3187 3188 for (i = 0; i < rdev->desc->n_voltages; i++) { 3189 /* We only look for exact voltage matches here */ 3190 voltage = regulator_list_voltage(regulator, i); 3191 if (voltage < 0) 3192 return -EINVAL; 3193 if (voltage == 0) 3194 continue; 3195 if (voltage == old_uV) 3196 old_sel = i; 3197 if (voltage == new_uV) 3198 new_sel = i; 3199 } 3200 3201 if (old_sel < 0 || new_sel < 0) 3202 return -EINVAL; 3203 3204 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3205 } 3206 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3207 3208 /** 3209 * regulator_set_voltage_time_sel - get raise/fall time 3210 * @rdev: regulator source device 3211 * @old_selector: selector for starting voltage 3212 * @new_selector: selector for target voltage 3213 * 3214 * Provided with the starting and target voltage selectors, this function 3215 * returns time in microseconds required to rise or fall to this new voltage 3216 * 3217 * Drivers providing ramp_delay in regulation_constraints can use this as their 3218 * set_voltage_time_sel() operation. 3219 */ 3220 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3221 unsigned int old_selector, 3222 unsigned int new_selector) 3223 { 3224 int old_volt, new_volt; 3225 3226 /* sanity check */ 3227 if (!rdev->desc->ops->list_voltage) 3228 return -EINVAL; 3229 3230 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3231 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3232 3233 if (rdev->desc->ops->set_voltage_time) 3234 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3235 new_volt); 3236 else 3237 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3238 } 3239 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3240 3241 /** 3242 * regulator_sync_voltage - re-apply last regulator output voltage 3243 * @regulator: regulator source 3244 * 3245 * Re-apply the last configured voltage. This is intended to be used 3246 * where some external control source the consumer is cooperating with 3247 * has caused the configured voltage to change. 3248 */ 3249 int regulator_sync_voltage(struct regulator *regulator) 3250 { 3251 struct regulator_dev *rdev = regulator->rdev; 3252 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3253 int ret, min_uV, max_uV; 3254 3255 mutex_lock(&rdev->mutex); 3256 3257 if (!rdev->desc->ops->set_voltage && 3258 !rdev->desc->ops->set_voltage_sel) { 3259 ret = -EINVAL; 3260 goto out; 3261 } 3262 3263 /* This is only going to work if we've had a voltage configured. */ 3264 if (!voltage->min_uV && !voltage->max_uV) { 3265 ret = -EINVAL; 3266 goto out; 3267 } 3268 3269 min_uV = voltage->min_uV; 3270 max_uV = voltage->max_uV; 3271 3272 /* This should be a paranoia check... */ 3273 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3274 if (ret < 0) 3275 goto out; 3276 3277 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3278 if (ret < 0) 3279 goto out; 3280 3281 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3282 3283 out: 3284 mutex_unlock(&rdev->mutex); 3285 return ret; 3286 } 3287 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3288 3289 static int _regulator_get_voltage(struct regulator_dev *rdev) 3290 { 3291 int sel, ret; 3292 bool bypassed; 3293 3294 if (rdev->desc->ops->get_bypass) { 3295 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3296 if (ret < 0) 3297 return ret; 3298 if (bypassed) { 3299 /* if bypassed the regulator must have a supply */ 3300 if (!rdev->supply) { 3301 rdev_err(rdev, 3302 "bypassed regulator has no supply!\n"); 3303 return -EPROBE_DEFER; 3304 } 3305 3306 return _regulator_get_voltage(rdev->supply->rdev); 3307 } 3308 } 3309 3310 if (rdev->desc->ops->get_voltage_sel) { 3311 sel = rdev->desc->ops->get_voltage_sel(rdev); 3312 if (sel < 0) 3313 return sel; 3314 ret = rdev->desc->ops->list_voltage(rdev, sel); 3315 } else if (rdev->desc->ops->get_voltage) { 3316 ret = rdev->desc->ops->get_voltage(rdev); 3317 } else if (rdev->desc->ops->list_voltage) { 3318 ret = rdev->desc->ops->list_voltage(rdev, 0); 3319 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3320 ret = rdev->desc->fixed_uV; 3321 } else if (rdev->supply) { 3322 ret = _regulator_get_voltage(rdev->supply->rdev); 3323 } else { 3324 return -EINVAL; 3325 } 3326 3327 if (ret < 0) 3328 return ret; 3329 return ret - rdev->constraints->uV_offset; 3330 } 3331 3332 /** 3333 * regulator_get_voltage - get regulator output voltage 3334 * @regulator: regulator source 3335 * 3336 * This returns the current regulator voltage in uV. 3337 * 3338 * NOTE: If the regulator is disabled it will return the voltage value. This 3339 * function should not be used to determine regulator state. 3340 */ 3341 int regulator_get_voltage(struct regulator *regulator) 3342 { 3343 int ret; 3344 3345 regulator_lock_supply(regulator->rdev); 3346 3347 ret = _regulator_get_voltage(regulator->rdev); 3348 3349 regulator_unlock_supply(regulator->rdev); 3350 3351 return ret; 3352 } 3353 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3354 3355 /** 3356 * regulator_set_current_limit - set regulator output current limit 3357 * @regulator: regulator source 3358 * @min_uA: Minimum supported current in uA 3359 * @max_uA: Maximum supported current in uA 3360 * 3361 * Sets current sink to the desired output current. This can be set during 3362 * any regulator state. IOW, regulator can be disabled or enabled. 3363 * 3364 * If the regulator is enabled then the current will change to the new value 3365 * immediately otherwise if the regulator is disabled the regulator will 3366 * output at the new current when enabled. 3367 * 3368 * NOTE: Regulator system constraints must be set for this regulator before 3369 * calling this function otherwise this call will fail. 3370 */ 3371 int regulator_set_current_limit(struct regulator *regulator, 3372 int min_uA, int max_uA) 3373 { 3374 struct regulator_dev *rdev = regulator->rdev; 3375 int ret; 3376 3377 mutex_lock(&rdev->mutex); 3378 3379 /* sanity check */ 3380 if (!rdev->desc->ops->set_current_limit) { 3381 ret = -EINVAL; 3382 goto out; 3383 } 3384 3385 /* constraints check */ 3386 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3387 if (ret < 0) 3388 goto out; 3389 3390 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3391 out: 3392 mutex_unlock(&rdev->mutex); 3393 return ret; 3394 } 3395 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3396 3397 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3398 { 3399 int ret; 3400 3401 mutex_lock(&rdev->mutex); 3402 3403 /* sanity check */ 3404 if (!rdev->desc->ops->get_current_limit) { 3405 ret = -EINVAL; 3406 goto out; 3407 } 3408 3409 ret = rdev->desc->ops->get_current_limit(rdev); 3410 out: 3411 mutex_unlock(&rdev->mutex); 3412 return ret; 3413 } 3414 3415 /** 3416 * regulator_get_current_limit - get regulator output current 3417 * @regulator: regulator source 3418 * 3419 * This returns the current supplied by the specified current sink in uA. 3420 * 3421 * NOTE: If the regulator is disabled it will return the current value. This 3422 * function should not be used to determine regulator state. 3423 */ 3424 int regulator_get_current_limit(struct regulator *regulator) 3425 { 3426 return _regulator_get_current_limit(regulator->rdev); 3427 } 3428 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3429 3430 /** 3431 * regulator_set_mode - set regulator operating mode 3432 * @regulator: regulator source 3433 * @mode: operating mode - one of the REGULATOR_MODE constants 3434 * 3435 * Set regulator operating mode to increase regulator efficiency or improve 3436 * regulation performance. 3437 * 3438 * NOTE: Regulator system constraints must be set for this regulator before 3439 * calling this function otherwise this call will fail. 3440 */ 3441 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3442 { 3443 struct regulator_dev *rdev = regulator->rdev; 3444 int ret; 3445 int regulator_curr_mode; 3446 3447 mutex_lock(&rdev->mutex); 3448 3449 /* sanity check */ 3450 if (!rdev->desc->ops->set_mode) { 3451 ret = -EINVAL; 3452 goto out; 3453 } 3454 3455 /* return if the same mode is requested */ 3456 if (rdev->desc->ops->get_mode) { 3457 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3458 if (regulator_curr_mode == mode) { 3459 ret = 0; 3460 goto out; 3461 } 3462 } 3463 3464 /* constraints check */ 3465 ret = regulator_mode_constrain(rdev, &mode); 3466 if (ret < 0) 3467 goto out; 3468 3469 ret = rdev->desc->ops->set_mode(rdev, mode); 3470 out: 3471 mutex_unlock(&rdev->mutex); 3472 return ret; 3473 } 3474 EXPORT_SYMBOL_GPL(regulator_set_mode); 3475 3476 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3477 { 3478 int ret; 3479 3480 mutex_lock(&rdev->mutex); 3481 3482 /* sanity check */ 3483 if (!rdev->desc->ops->get_mode) { 3484 ret = -EINVAL; 3485 goto out; 3486 } 3487 3488 ret = rdev->desc->ops->get_mode(rdev); 3489 out: 3490 mutex_unlock(&rdev->mutex); 3491 return ret; 3492 } 3493 3494 /** 3495 * regulator_get_mode - get regulator operating mode 3496 * @regulator: regulator source 3497 * 3498 * Get the current regulator operating mode. 3499 */ 3500 unsigned int regulator_get_mode(struct regulator *regulator) 3501 { 3502 return _regulator_get_mode(regulator->rdev); 3503 } 3504 EXPORT_SYMBOL_GPL(regulator_get_mode); 3505 3506 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3507 unsigned int *flags) 3508 { 3509 int ret; 3510 3511 mutex_lock(&rdev->mutex); 3512 3513 /* sanity check */ 3514 if (!rdev->desc->ops->get_error_flags) { 3515 ret = -EINVAL; 3516 goto out; 3517 } 3518 3519 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3520 out: 3521 mutex_unlock(&rdev->mutex); 3522 return ret; 3523 } 3524 3525 /** 3526 * regulator_get_error_flags - get regulator error information 3527 * @regulator: regulator source 3528 * @flags: pointer to store error flags 3529 * 3530 * Get the current regulator error information. 3531 */ 3532 int regulator_get_error_flags(struct regulator *regulator, 3533 unsigned int *flags) 3534 { 3535 return _regulator_get_error_flags(regulator->rdev, flags); 3536 } 3537 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3538 3539 /** 3540 * regulator_set_load - set regulator load 3541 * @regulator: regulator source 3542 * @uA_load: load current 3543 * 3544 * Notifies the regulator core of a new device load. This is then used by 3545 * DRMS (if enabled by constraints) to set the most efficient regulator 3546 * operating mode for the new regulator loading. 3547 * 3548 * Consumer devices notify their supply regulator of the maximum power 3549 * they will require (can be taken from device datasheet in the power 3550 * consumption tables) when they change operational status and hence power 3551 * state. Examples of operational state changes that can affect power 3552 * consumption are :- 3553 * 3554 * o Device is opened / closed. 3555 * o Device I/O is about to begin or has just finished. 3556 * o Device is idling in between work. 3557 * 3558 * This information is also exported via sysfs to userspace. 3559 * 3560 * DRMS will sum the total requested load on the regulator and change 3561 * to the most efficient operating mode if platform constraints allow. 3562 * 3563 * On error a negative errno is returned. 3564 */ 3565 int regulator_set_load(struct regulator *regulator, int uA_load) 3566 { 3567 struct regulator_dev *rdev = regulator->rdev; 3568 int ret; 3569 3570 mutex_lock(&rdev->mutex); 3571 regulator->uA_load = uA_load; 3572 ret = drms_uA_update(rdev); 3573 mutex_unlock(&rdev->mutex); 3574 3575 return ret; 3576 } 3577 EXPORT_SYMBOL_GPL(regulator_set_load); 3578 3579 /** 3580 * regulator_allow_bypass - allow the regulator to go into bypass mode 3581 * 3582 * @regulator: Regulator to configure 3583 * @enable: enable or disable bypass mode 3584 * 3585 * Allow the regulator to go into bypass mode if all other consumers 3586 * for the regulator also enable bypass mode and the machine 3587 * constraints allow this. Bypass mode means that the regulator is 3588 * simply passing the input directly to the output with no regulation. 3589 */ 3590 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3591 { 3592 struct regulator_dev *rdev = regulator->rdev; 3593 int ret = 0; 3594 3595 if (!rdev->desc->ops->set_bypass) 3596 return 0; 3597 3598 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3599 return 0; 3600 3601 mutex_lock(&rdev->mutex); 3602 3603 if (enable && !regulator->bypass) { 3604 rdev->bypass_count++; 3605 3606 if (rdev->bypass_count == rdev->open_count) { 3607 ret = rdev->desc->ops->set_bypass(rdev, enable); 3608 if (ret != 0) 3609 rdev->bypass_count--; 3610 } 3611 3612 } else if (!enable && regulator->bypass) { 3613 rdev->bypass_count--; 3614 3615 if (rdev->bypass_count != rdev->open_count) { 3616 ret = rdev->desc->ops->set_bypass(rdev, enable); 3617 if (ret != 0) 3618 rdev->bypass_count++; 3619 } 3620 } 3621 3622 if (ret == 0) 3623 regulator->bypass = enable; 3624 3625 mutex_unlock(&rdev->mutex); 3626 3627 return ret; 3628 } 3629 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3630 3631 /** 3632 * regulator_register_notifier - register regulator event notifier 3633 * @regulator: regulator source 3634 * @nb: notifier block 3635 * 3636 * Register notifier block to receive regulator events. 3637 */ 3638 int regulator_register_notifier(struct regulator *regulator, 3639 struct notifier_block *nb) 3640 { 3641 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3642 nb); 3643 } 3644 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3645 3646 /** 3647 * regulator_unregister_notifier - unregister regulator event notifier 3648 * @regulator: regulator source 3649 * @nb: notifier block 3650 * 3651 * Unregister regulator event notifier block. 3652 */ 3653 int regulator_unregister_notifier(struct regulator *regulator, 3654 struct notifier_block *nb) 3655 { 3656 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3657 nb); 3658 } 3659 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3660 3661 /* notify regulator consumers and downstream regulator consumers. 3662 * Note mutex must be held by caller. 3663 */ 3664 static int _notifier_call_chain(struct regulator_dev *rdev, 3665 unsigned long event, void *data) 3666 { 3667 /* call rdev chain first */ 3668 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3669 } 3670 3671 /** 3672 * regulator_bulk_get - get multiple regulator consumers 3673 * 3674 * @dev: Device to supply 3675 * @num_consumers: Number of consumers to register 3676 * @consumers: Configuration of consumers; clients are stored here. 3677 * 3678 * @return 0 on success, an errno on failure. 3679 * 3680 * This helper function allows drivers to get several regulator 3681 * consumers in one operation. If any of the regulators cannot be 3682 * acquired then any regulators that were allocated will be freed 3683 * before returning to the caller. 3684 */ 3685 int regulator_bulk_get(struct device *dev, int num_consumers, 3686 struct regulator_bulk_data *consumers) 3687 { 3688 int i; 3689 int ret; 3690 3691 for (i = 0; i < num_consumers; i++) 3692 consumers[i].consumer = NULL; 3693 3694 for (i = 0; i < num_consumers; i++) { 3695 consumers[i].consumer = regulator_get(dev, 3696 consumers[i].supply); 3697 if (IS_ERR(consumers[i].consumer)) { 3698 ret = PTR_ERR(consumers[i].consumer); 3699 dev_err(dev, "Failed to get supply '%s': %d\n", 3700 consumers[i].supply, ret); 3701 consumers[i].consumer = NULL; 3702 goto err; 3703 } 3704 } 3705 3706 return 0; 3707 3708 err: 3709 while (--i >= 0) 3710 regulator_put(consumers[i].consumer); 3711 3712 return ret; 3713 } 3714 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3715 3716 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3717 { 3718 struct regulator_bulk_data *bulk = data; 3719 3720 bulk->ret = regulator_enable(bulk->consumer); 3721 } 3722 3723 /** 3724 * regulator_bulk_enable - enable multiple regulator consumers 3725 * 3726 * @num_consumers: Number of consumers 3727 * @consumers: Consumer data; clients are stored here. 3728 * @return 0 on success, an errno on failure 3729 * 3730 * This convenience API allows consumers to enable multiple regulator 3731 * clients in a single API call. If any consumers cannot be enabled 3732 * then any others that were enabled will be disabled again prior to 3733 * return. 3734 */ 3735 int regulator_bulk_enable(int num_consumers, 3736 struct regulator_bulk_data *consumers) 3737 { 3738 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3739 int i; 3740 int ret = 0; 3741 3742 for (i = 0; i < num_consumers; i++) { 3743 if (consumers[i].consumer->always_on) 3744 consumers[i].ret = 0; 3745 else 3746 async_schedule_domain(regulator_bulk_enable_async, 3747 &consumers[i], &async_domain); 3748 } 3749 3750 async_synchronize_full_domain(&async_domain); 3751 3752 /* If any consumer failed we need to unwind any that succeeded */ 3753 for (i = 0; i < num_consumers; i++) { 3754 if (consumers[i].ret != 0) { 3755 ret = consumers[i].ret; 3756 goto err; 3757 } 3758 } 3759 3760 return 0; 3761 3762 err: 3763 for (i = 0; i < num_consumers; i++) { 3764 if (consumers[i].ret < 0) 3765 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3766 consumers[i].ret); 3767 else 3768 regulator_disable(consumers[i].consumer); 3769 } 3770 3771 return ret; 3772 } 3773 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3774 3775 /** 3776 * regulator_bulk_disable - disable multiple regulator consumers 3777 * 3778 * @num_consumers: Number of consumers 3779 * @consumers: Consumer data; clients are stored here. 3780 * @return 0 on success, an errno on failure 3781 * 3782 * This convenience API allows consumers to disable multiple regulator 3783 * clients in a single API call. If any consumers cannot be disabled 3784 * then any others that were disabled will be enabled again prior to 3785 * return. 3786 */ 3787 int regulator_bulk_disable(int num_consumers, 3788 struct regulator_bulk_data *consumers) 3789 { 3790 int i; 3791 int ret, r; 3792 3793 for (i = num_consumers - 1; i >= 0; --i) { 3794 ret = regulator_disable(consumers[i].consumer); 3795 if (ret != 0) 3796 goto err; 3797 } 3798 3799 return 0; 3800 3801 err: 3802 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3803 for (++i; i < num_consumers; ++i) { 3804 r = regulator_enable(consumers[i].consumer); 3805 if (r != 0) 3806 pr_err("Failed to re-enable %s: %d\n", 3807 consumers[i].supply, r); 3808 } 3809 3810 return ret; 3811 } 3812 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3813 3814 /** 3815 * regulator_bulk_force_disable - force disable multiple regulator consumers 3816 * 3817 * @num_consumers: Number of consumers 3818 * @consumers: Consumer data; clients are stored here. 3819 * @return 0 on success, an errno on failure 3820 * 3821 * This convenience API allows consumers to forcibly disable multiple regulator 3822 * clients in a single API call. 3823 * NOTE: This should be used for situations when device damage will 3824 * likely occur if the regulators are not disabled (e.g. over temp). 3825 * Although regulator_force_disable function call for some consumers can 3826 * return error numbers, the function is called for all consumers. 3827 */ 3828 int regulator_bulk_force_disable(int num_consumers, 3829 struct regulator_bulk_data *consumers) 3830 { 3831 int i; 3832 int ret = 0; 3833 3834 for (i = 0; i < num_consumers; i++) { 3835 consumers[i].ret = 3836 regulator_force_disable(consumers[i].consumer); 3837 3838 /* Store first error for reporting */ 3839 if (consumers[i].ret && !ret) 3840 ret = consumers[i].ret; 3841 } 3842 3843 return ret; 3844 } 3845 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3846 3847 /** 3848 * regulator_bulk_free - free multiple regulator consumers 3849 * 3850 * @num_consumers: Number of consumers 3851 * @consumers: Consumer data; clients are stored here. 3852 * 3853 * This convenience API allows consumers to free multiple regulator 3854 * clients in a single API call. 3855 */ 3856 void regulator_bulk_free(int num_consumers, 3857 struct regulator_bulk_data *consumers) 3858 { 3859 int i; 3860 3861 for (i = 0; i < num_consumers; i++) { 3862 regulator_put(consumers[i].consumer); 3863 consumers[i].consumer = NULL; 3864 } 3865 } 3866 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3867 3868 /** 3869 * regulator_notifier_call_chain - call regulator event notifier 3870 * @rdev: regulator source 3871 * @event: notifier block 3872 * @data: callback-specific data. 3873 * 3874 * Called by regulator drivers to notify clients a regulator event has 3875 * occurred. We also notify regulator clients downstream. 3876 * Note lock must be held by caller. 3877 */ 3878 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3879 unsigned long event, void *data) 3880 { 3881 lockdep_assert_held_once(&rdev->mutex); 3882 3883 _notifier_call_chain(rdev, event, data); 3884 return NOTIFY_DONE; 3885 3886 } 3887 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3888 3889 /** 3890 * regulator_mode_to_status - convert a regulator mode into a status 3891 * 3892 * @mode: Mode to convert 3893 * 3894 * Convert a regulator mode into a status. 3895 */ 3896 int regulator_mode_to_status(unsigned int mode) 3897 { 3898 switch (mode) { 3899 case REGULATOR_MODE_FAST: 3900 return REGULATOR_STATUS_FAST; 3901 case REGULATOR_MODE_NORMAL: 3902 return REGULATOR_STATUS_NORMAL; 3903 case REGULATOR_MODE_IDLE: 3904 return REGULATOR_STATUS_IDLE; 3905 case REGULATOR_MODE_STANDBY: 3906 return REGULATOR_STATUS_STANDBY; 3907 default: 3908 return REGULATOR_STATUS_UNDEFINED; 3909 } 3910 } 3911 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3912 3913 static struct attribute *regulator_dev_attrs[] = { 3914 &dev_attr_name.attr, 3915 &dev_attr_num_users.attr, 3916 &dev_attr_type.attr, 3917 &dev_attr_microvolts.attr, 3918 &dev_attr_microamps.attr, 3919 &dev_attr_opmode.attr, 3920 &dev_attr_state.attr, 3921 &dev_attr_status.attr, 3922 &dev_attr_bypass.attr, 3923 &dev_attr_requested_microamps.attr, 3924 &dev_attr_min_microvolts.attr, 3925 &dev_attr_max_microvolts.attr, 3926 &dev_attr_min_microamps.attr, 3927 &dev_attr_max_microamps.attr, 3928 &dev_attr_suspend_standby_state.attr, 3929 &dev_attr_suspend_mem_state.attr, 3930 &dev_attr_suspend_disk_state.attr, 3931 &dev_attr_suspend_standby_microvolts.attr, 3932 &dev_attr_suspend_mem_microvolts.attr, 3933 &dev_attr_suspend_disk_microvolts.attr, 3934 &dev_attr_suspend_standby_mode.attr, 3935 &dev_attr_suspend_mem_mode.attr, 3936 &dev_attr_suspend_disk_mode.attr, 3937 NULL 3938 }; 3939 3940 /* 3941 * To avoid cluttering sysfs (and memory) with useless state, only 3942 * create attributes that can be meaningfully displayed. 3943 */ 3944 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3945 struct attribute *attr, int idx) 3946 { 3947 struct device *dev = kobj_to_dev(kobj); 3948 struct regulator_dev *rdev = dev_to_rdev(dev); 3949 const struct regulator_ops *ops = rdev->desc->ops; 3950 umode_t mode = attr->mode; 3951 3952 /* these three are always present */ 3953 if (attr == &dev_attr_name.attr || 3954 attr == &dev_attr_num_users.attr || 3955 attr == &dev_attr_type.attr) 3956 return mode; 3957 3958 /* some attributes need specific methods to be displayed */ 3959 if (attr == &dev_attr_microvolts.attr) { 3960 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3961 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3962 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3963 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3964 return mode; 3965 return 0; 3966 } 3967 3968 if (attr == &dev_attr_microamps.attr) 3969 return ops->get_current_limit ? mode : 0; 3970 3971 if (attr == &dev_attr_opmode.attr) 3972 return ops->get_mode ? mode : 0; 3973 3974 if (attr == &dev_attr_state.attr) 3975 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3976 3977 if (attr == &dev_attr_status.attr) 3978 return ops->get_status ? mode : 0; 3979 3980 if (attr == &dev_attr_bypass.attr) 3981 return ops->get_bypass ? mode : 0; 3982 3983 /* some attributes are type-specific */ 3984 if (attr == &dev_attr_requested_microamps.attr) 3985 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3986 3987 /* constraints need specific supporting methods */ 3988 if (attr == &dev_attr_min_microvolts.attr || 3989 attr == &dev_attr_max_microvolts.attr) 3990 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3991 3992 if (attr == &dev_attr_min_microamps.attr || 3993 attr == &dev_attr_max_microamps.attr) 3994 return ops->set_current_limit ? mode : 0; 3995 3996 if (attr == &dev_attr_suspend_standby_state.attr || 3997 attr == &dev_attr_suspend_mem_state.attr || 3998 attr == &dev_attr_suspend_disk_state.attr) 3999 return mode; 4000 4001 if (attr == &dev_attr_suspend_standby_microvolts.attr || 4002 attr == &dev_attr_suspend_mem_microvolts.attr || 4003 attr == &dev_attr_suspend_disk_microvolts.attr) 4004 return ops->set_suspend_voltage ? mode : 0; 4005 4006 if (attr == &dev_attr_suspend_standby_mode.attr || 4007 attr == &dev_attr_suspend_mem_mode.attr || 4008 attr == &dev_attr_suspend_disk_mode.attr) 4009 return ops->set_suspend_mode ? mode : 0; 4010 4011 return mode; 4012 } 4013 4014 static const struct attribute_group regulator_dev_group = { 4015 .attrs = regulator_dev_attrs, 4016 .is_visible = regulator_attr_is_visible, 4017 }; 4018 4019 static const struct attribute_group *regulator_dev_groups[] = { 4020 ®ulator_dev_group, 4021 NULL 4022 }; 4023 4024 static void regulator_dev_release(struct device *dev) 4025 { 4026 struct regulator_dev *rdev = dev_get_drvdata(dev); 4027 4028 kfree(rdev->constraints); 4029 of_node_put(rdev->dev.of_node); 4030 kfree(rdev); 4031 } 4032 4033 static void rdev_init_debugfs(struct regulator_dev *rdev) 4034 { 4035 struct device *parent = rdev->dev.parent; 4036 const char *rname = rdev_get_name(rdev); 4037 char name[NAME_MAX]; 4038 4039 /* Avoid duplicate debugfs directory names */ 4040 if (parent && rname == rdev->desc->name) { 4041 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4042 rname); 4043 rname = name; 4044 } 4045 4046 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4047 if (!rdev->debugfs) { 4048 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4049 return; 4050 } 4051 4052 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4053 &rdev->use_count); 4054 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4055 &rdev->open_count); 4056 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4057 &rdev->bypass_count); 4058 } 4059 4060 static int regulator_register_resolve_supply(struct device *dev, void *data) 4061 { 4062 struct regulator_dev *rdev = dev_to_rdev(dev); 4063 4064 if (regulator_resolve_supply(rdev)) 4065 rdev_dbg(rdev, "unable to resolve supply\n"); 4066 4067 return 0; 4068 } 4069 4070 /** 4071 * regulator_register - register regulator 4072 * @regulator_desc: regulator to register 4073 * @cfg: runtime configuration for regulator 4074 * 4075 * Called by regulator drivers to register a regulator. 4076 * Returns a valid pointer to struct regulator_dev on success 4077 * or an ERR_PTR() on error. 4078 */ 4079 struct regulator_dev * 4080 regulator_register(const struct regulator_desc *regulator_desc, 4081 const struct regulator_config *cfg) 4082 { 4083 const struct regulation_constraints *constraints = NULL; 4084 const struct regulator_init_data *init_data; 4085 struct regulator_config *config = NULL; 4086 static atomic_t regulator_no = ATOMIC_INIT(-1); 4087 struct regulator_dev *rdev; 4088 struct device *dev; 4089 int ret, i; 4090 4091 if (regulator_desc == NULL || cfg == NULL) 4092 return ERR_PTR(-EINVAL); 4093 4094 dev = cfg->dev; 4095 WARN_ON(!dev); 4096 4097 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 4098 return ERR_PTR(-EINVAL); 4099 4100 if (regulator_desc->type != REGULATOR_VOLTAGE && 4101 regulator_desc->type != REGULATOR_CURRENT) 4102 return ERR_PTR(-EINVAL); 4103 4104 /* Only one of each should be implemented */ 4105 WARN_ON(regulator_desc->ops->get_voltage && 4106 regulator_desc->ops->get_voltage_sel); 4107 WARN_ON(regulator_desc->ops->set_voltage && 4108 regulator_desc->ops->set_voltage_sel); 4109 4110 /* If we're using selectors we must implement list_voltage. */ 4111 if (regulator_desc->ops->get_voltage_sel && 4112 !regulator_desc->ops->list_voltage) { 4113 return ERR_PTR(-EINVAL); 4114 } 4115 if (regulator_desc->ops->set_voltage_sel && 4116 !regulator_desc->ops->list_voltage) { 4117 return ERR_PTR(-EINVAL); 4118 } 4119 4120 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4121 if (rdev == NULL) 4122 return ERR_PTR(-ENOMEM); 4123 4124 /* 4125 * Duplicate the config so the driver could override it after 4126 * parsing init data. 4127 */ 4128 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4129 if (config == NULL) { 4130 kfree(rdev); 4131 return ERR_PTR(-ENOMEM); 4132 } 4133 4134 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4135 &rdev->dev.of_node); 4136 if (!init_data) { 4137 init_data = config->init_data; 4138 rdev->dev.of_node = of_node_get(config->of_node); 4139 } 4140 4141 mutex_init(&rdev->mutex); 4142 rdev->reg_data = config->driver_data; 4143 rdev->owner = regulator_desc->owner; 4144 rdev->desc = regulator_desc; 4145 if (config->regmap) 4146 rdev->regmap = config->regmap; 4147 else if (dev_get_regmap(dev, NULL)) 4148 rdev->regmap = dev_get_regmap(dev, NULL); 4149 else if (dev->parent) 4150 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4151 INIT_LIST_HEAD(&rdev->consumer_list); 4152 INIT_LIST_HEAD(&rdev->list); 4153 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4154 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4155 4156 /* preform any regulator specific init */ 4157 if (init_data && init_data->regulator_init) { 4158 ret = init_data->regulator_init(rdev->reg_data); 4159 if (ret < 0) 4160 goto clean; 4161 } 4162 4163 if (config->ena_gpiod || 4164 ((config->ena_gpio || config->ena_gpio_initialized) && 4165 gpio_is_valid(config->ena_gpio))) { 4166 mutex_lock(®ulator_list_mutex); 4167 ret = regulator_ena_gpio_request(rdev, config); 4168 mutex_unlock(®ulator_list_mutex); 4169 if (ret != 0) { 4170 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4171 config->ena_gpio, ret); 4172 goto clean; 4173 } 4174 } 4175 4176 /* register with sysfs */ 4177 rdev->dev.class = ®ulator_class; 4178 rdev->dev.parent = dev; 4179 dev_set_name(&rdev->dev, "regulator.%lu", 4180 (unsigned long) atomic_inc_return(®ulator_no)); 4181 4182 /* set regulator constraints */ 4183 if (init_data) 4184 constraints = &init_data->constraints; 4185 4186 if (init_data && init_data->supply_regulator) 4187 rdev->supply_name = init_data->supply_regulator; 4188 else if (regulator_desc->supply_name) 4189 rdev->supply_name = regulator_desc->supply_name; 4190 4191 /* 4192 * Attempt to resolve the regulator supply, if specified, 4193 * but don't return an error if we fail because we will try 4194 * to resolve it again later as more regulators are added. 4195 */ 4196 if (regulator_resolve_supply(rdev)) 4197 rdev_dbg(rdev, "unable to resolve supply\n"); 4198 4199 ret = set_machine_constraints(rdev, constraints); 4200 if (ret < 0) 4201 goto wash; 4202 4203 /* add consumers devices */ 4204 if (init_data) { 4205 mutex_lock(®ulator_list_mutex); 4206 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4207 ret = set_consumer_device_supply(rdev, 4208 init_data->consumer_supplies[i].dev_name, 4209 init_data->consumer_supplies[i].supply); 4210 if (ret < 0) { 4211 mutex_unlock(®ulator_list_mutex); 4212 dev_err(dev, "Failed to set supply %s\n", 4213 init_data->consumer_supplies[i].supply); 4214 goto unset_supplies; 4215 } 4216 } 4217 mutex_unlock(®ulator_list_mutex); 4218 } 4219 4220 if (!rdev->desc->ops->get_voltage && 4221 !rdev->desc->ops->list_voltage && 4222 !rdev->desc->fixed_uV) 4223 rdev->is_switch = true; 4224 4225 ret = device_register(&rdev->dev); 4226 if (ret != 0) { 4227 put_device(&rdev->dev); 4228 goto unset_supplies; 4229 } 4230 4231 dev_set_drvdata(&rdev->dev, rdev); 4232 rdev_init_debugfs(rdev); 4233 4234 /* try to resolve regulators supply since a new one was registered */ 4235 class_for_each_device(®ulator_class, NULL, NULL, 4236 regulator_register_resolve_supply); 4237 kfree(config); 4238 return rdev; 4239 4240 unset_supplies: 4241 mutex_lock(®ulator_list_mutex); 4242 unset_regulator_supplies(rdev); 4243 mutex_unlock(®ulator_list_mutex); 4244 wash: 4245 kfree(rdev->constraints); 4246 mutex_lock(®ulator_list_mutex); 4247 regulator_ena_gpio_free(rdev); 4248 mutex_unlock(®ulator_list_mutex); 4249 clean: 4250 kfree(rdev); 4251 kfree(config); 4252 return ERR_PTR(ret); 4253 } 4254 EXPORT_SYMBOL_GPL(regulator_register); 4255 4256 /** 4257 * regulator_unregister - unregister regulator 4258 * @rdev: regulator to unregister 4259 * 4260 * Called by regulator drivers to unregister a regulator. 4261 */ 4262 void regulator_unregister(struct regulator_dev *rdev) 4263 { 4264 if (rdev == NULL) 4265 return; 4266 4267 if (rdev->supply) { 4268 while (rdev->use_count--) 4269 regulator_disable(rdev->supply); 4270 regulator_put(rdev->supply); 4271 } 4272 mutex_lock(®ulator_list_mutex); 4273 debugfs_remove_recursive(rdev->debugfs); 4274 flush_work(&rdev->disable_work.work); 4275 WARN_ON(rdev->open_count); 4276 unset_regulator_supplies(rdev); 4277 list_del(&rdev->list); 4278 regulator_ena_gpio_free(rdev); 4279 mutex_unlock(®ulator_list_mutex); 4280 device_unregister(&rdev->dev); 4281 } 4282 EXPORT_SYMBOL_GPL(regulator_unregister); 4283 4284 #ifdef CONFIG_SUSPEND 4285 static int _regulator_suspend_late(struct device *dev, void *data) 4286 { 4287 struct regulator_dev *rdev = dev_to_rdev(dev); 4288 suspend_state_t *state = data; 4289 int ret; 4290 4291 mutex_lock(&rdev->mutex); 4292 ret = suspend_set_state(rdev, *state); 4293 mutex_unlock(&rdev->mutex); 4294 4295 return ret; 4296 } 4297 4298 /** 4299 * regulator_suspend_late - prepare regulators for system wide suspend 4300 * @state: system suspend state 4301 * 4302 * Configure each regulator with it's suspend operating parameters for state. 4303 */ 4304 static int regulator_suspend_late(struct device *dev) 4305 { 4306 suspend_state_t state = pm_suspend_target_state; 4307 4308 return class_for_each_device(®ulator_class, NULL, &state, 4309 _regulator_suspend_late); 4310 } 4311 4312 static int _regulator_resume_early(struct device *dev, void *data) 4313 { 4314 int ret = 0; 4315 struct regulator_dev *rdev = dev_to_rdev(dev); 4316 suspend_state_t *state = data; 4317 struct regulator_state *rstate; 4318 4319 rstate = regulator_get_suspend_state(rdev, *state); 4320 if (rstate == NULL) 4321 return 0; 4322 4323 mutex_lock(&rdev->mutex); 4324 4325 if (rdev->desc->ops->resume_early && 4326 (rstate->enabled == ENABLE_IN_SUSPEND || 4327 rstate->enabled == DISABLE_IN_SUSPEND)) 4328 ret = rdev->desc->ops->resume_early(rdev); 4329 4330 mutex_unlock(&rdev->mutex); 4331 4332 return ret; 4333 } 4334 4335 static int regulator_resume_early(struct device *dev) 4336 { 4337 suspend_state_t state = pm_suspend_target_state; 4338 4339 return class_for_each_device(®ulator_class, NULL, &state, 4340 _regulator_resume_early); 4341 } 4342 4343 #else /* !CONFIG_SUSPEND */ 4344 4345 #define regulator_suspend_late NULL 4346 #define regulator_resume_early NULL 4347 4348 #endif /* !CONFIG_SUSPEND */ 4349 4350 #ifdef CONFIG_PM 4351 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 4352 .suspend_late = regulator_suspend_late, 4353 .resume_early = regulator_resume_early, 4354 }; 4355 #endif 4356 4357 struct class regulator_class = { 4358 .name = "regulator", 4359 .dev_release = regulator_dev_release, 4360 .dev_groups = regulator_dev_groups, 4361 #ifdef CONFIG_PM 4362 .pm = ®ulator_pm_ops, 4363 #endif 4364 }; 4365 /** 4366 * regulator_has_full_constraints - the system has fully specified constraints 4367 * 4368 * Calling this function will cause the regulator API to disable all 4369 * regulators which have a zero use count and don't have an always_on 4370 * constraint in a late_initcall. 4371 * 4372 * The intention is that this will become the default behaviour in a 4373 * future kernel release so users are encouraged to use this facility 4374 * now. 4375 */ 4376 void regulator_has_full_constraints(void) 4377 { 4378 has_full_constraints = 1; 4379 } 4380 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4381 4382 /** 4383 * rdev_get_drvdata - get rdev regulator driver data 4384 * @rdev: regulator 4385 * 4386 * Get rdev regulator driver private data. This call can be used in the 4387 * regulator driver context. 4388 */ 4389 void *rdev_get_drvdata(struct regulator_dev *rdev) 4390 { 4391 return rdev->reg_data; 4392 } 4393 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4394 4395 /** 4396 * regulator_get_drvdata - get regulator driver data 4397 * @regulator: regulator 4398 * 4399 * Get regulator driver private data. This call can be used in the consumer 4400 * driver context when non API regulator specific functions need to be called. 4401 */ 4402 void *regulator_get_drvdata(struct regulator *regulator) 4403 { 4404 return regulator->rdev->reg_data; 4405 } 4406 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4407 4408 /** 4409 * regulator_set_drvdata - set regulator driver data 4410 * @regulator: regulator 4411 * @data: data 4412 */ 4413 void regulator_set_drvdata(struct regulator *regulator, void *data) 4414 { 4415 regulator->rdev->reg_data = data; 4416 } 4417 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4418 4419 /** 4420 * regulator_get_id - get regulator ID 4421 * @rdev: regulator 4422 */ 4423 int rdev_get_id(struct regulator_dev *rdev) 4424 { 4425 return rdev->desc->id; 4426 } 4427 EXPORT_SYMBOL_GPL(rdev_get_id); 4428 4429 struct device *rdev_get_dev(struct regulator_dev *rdev) 4430 { 4431 return &rdev->dev; 4432 } 4433 EXPORT_SYMBOL_GPL(rdev_get_dev); 4434 4435 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4436 { 4437 return reg_init_data->driver_data; 4438 } 4439 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4440 4441 #ifdef CONFIG_DEBUG_FS 4442 static int supply_map_show(struct seq_file *sf, void *data) 4443 { 4444 struct regulator_map *map; 4445 4446 list_for_each_entry(map, ®ulator_map_list, list) { 4447 seq_printf(sf, "%s -> %s.%s\n", 4448 rdev_get_name(map->regulator), map->dev_name, 4449 map->supply); 4450 } 4451 4452 return 0; 4453 } 4454 4455 static int supply_map_open(struct inode *inode, struct file *file) 4456 { 4457 return single_open(file, supply_map_show, inode->i_private); 4458 } 4459 #endif 4460 4461 static const struct file_operations supply_map_fops = { 4462 #ifdef CONFIG_DEBUG_FS 4463 .open = supply_map_open, 4464 .read = seq_read, 4465 .llseek = seq_lseek, 4466 .release = single_release, 4467 #endif 4468 }; 4469 4470 #ifdef CONFIG_DEBUG_FS 4471 struct summary_data { 4472 struct seq_file *s; 4473 struct regulator_dev *parent; 4474 int level; 4475 }; 4476 4477 static void regulator_summary_show_subtree(struct seq_file *s, 4478 struct regulator_dev *rdev, 4479 int level); 4480 4481 static int regulator_summary_show_children(struct device *dev, void *data) 4482 { 4483 struct regulator_dev *rdev = dev_to_rdev(dev); 4484 struct summary_data *summary_data = data; 4485 4486 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4487 regulator_summary_show_subtree(summary_data->s, rdev, 4488 summary_data->level + 1); 4489 4490 return 0; 4491 } 4492 4493 static void regulator_summary_show_subtree(struct seq_file *s, 4494 struct regulator_dev *rdev, 4495 int level) 4496 { 4497 struct regulation_constraints *c; 4498 struct regulator *consumer; 4499 struct summary_data summary_data; 4500 4501 if (!rdev) 4502 return; 4503 4504 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4505 level * 3 + 1, "", 4506 30 - level * 3, rdev_get_name(rdev), 4507 rdev->use_count, rdev->open_count, rdev->bypass_count); 4508 4509 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4510 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4511 4512 c = rdev->constraints; 4513 if (c) { 4514 switch (rdev->desc->type) { 4515 case REGULATOR_VOLTAGE: 4516 seq_printf(s, "%5dmV %5dmV ", 4517 c->min_uV / 1000, c->max_uV / 1000); 4518 break; 4519 case REGULATOR_CURRENT: 4520 seq_printf(s, "%5dmA %5dmA ", 4521 c->min_uA / 1000, c->max_uA / 1000); 4522 break; 4523 } 4524 } 4525 4526 seq_puts(s, "\n"); 4527 4528 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4529 if (consumer->dev && consumer->dev->class == ®ulator_class) 4530 continue; 4531 4532 seq_printf(s, "%*s%-*s ", 4533 (level + 1) * 3 + 1, "", 4534 30 - (level + 1) * 3, 4535 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4536 4537 switch (rdev->desc->type) { 4538 case REGULATOR_VOLTAGE: 4539 seq_printf(s, "%37dmV %5dmV", 4540 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 4541 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 4542 break; 4543 case REGULATOR_CURRENT: 4544 break; 4545 } 4546 4547 seq_puts(s, "\n"); 4548 } 4549 4550 summary_data.s = s; 4551 summary_data.level = level; 4552 summary_data.parent = rdev; 4553 4554 class_for_each_device(®ulator_class, NULL, &summary_data, 4555 regulator_summary_show_children); 4556 } 4557 4558 static int regulator_summary_show_roots(struct device *dev, void *data) 4559 { 4560 struct regulator_dev *rdev = dev_to_rdev(dev); 4561 struct seq_file *s = data; 4562 4563 if (!rdev->supply) 4564 regulator_summary_show_subtree(s, rdev, 0); 4565 4566 return 0; 4567 } 4568 4569 static int regulator_summary_show(struct seq_file *s, void *data) 4570 { 4571 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4572 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4573 4574 class_for_each_device(®ulator_class, NULL, s, 4575 regulator_summary_show_roots); 4576 4577 return 0; 4578 } 4579 4580 static int regulator_summary_open(struct inode *inode, struct file *file) 4581 { 4582 return single_open(file, regulator_summary_show, inode->i_private); 4583 } 4584 #endif 4585 4586 static const struct file_operations regulator_summary_fops = { 4587 #ifdef CONFIG_DEBUG_FS 4588 .open = regulator_summary_open, 4589 .read = seq_read, 4590 .llseek = seq_lseek, 4591 .release = single_release, 4592 #endif 4593 }; 4594 4595 static int __init regulator_init(void) 4596 { 4597 int ret; 4598 4599 ret = class_register(®ulator_class); 4600 4601 debugfs_root = debugfs_create_dir("regulator", NULL); 4602 if (!debugfs_root) 4603 pr_warn("regulator: Failed to create debugfs directory\n"); 4604 4605 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4606 &supply_map_fops); 4607 4608 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4609 NULL, ®ulator_summary_fops); 4610 4611 regulator_dummy_init(); 4612 4613 return ret; 4614 } 4615 4616 /* init early to allow our consumers to complete system booting */ 4617 core_initcall(regulator_init); 4618 4619 static int __init regulator_late_cleanup(struct device *dev, void *data) 4620 { 4621 struct regulator_dev *rdev = dev_to_rdev(dev); 4622 const struct regulator_ops *ops = rdev->desc->ops; 4623 struct regulation_constraints *c = rdev->constraints; 4624 int enabled, ret; 4625 4626 if (c && c->always_on) 4627 return 0; 4628 4629 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4630 return 0; 4631 4632 mutex_lock(&rdev->mutex); 4633 4634 if (rdev->use_count) 4635 goto unlock; 4636 4637 /* If we can't read the status assume it's on. */ 4638 if (ops->is_enabled) 4639 enabled = ops->is_enabled(rdev); 4640 else 4641 enabled = 1; 4642 4643 if (!enabled) 4644 goto unlock; 4645 4646 if (have_full_constraints()) { 4647 /* We log since this may kill the system if it goes 4648 * wrong. */ 4649 rdev_info(rdev, "disabling\n"); 4650 ret = _regulator_do_disable(rdev); 4651 if (ret != 0) 4652 rdev_err(rdev, "couldn't disable: %d\n", ret); 4653 } else { 4654 /* The intention is that in future we will 4655 * assume that full constraints are provided 4656 * so warn even if we aren't going to do 4657 * anything here. 4658 */ 4659 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4660 } 4661 4662 unlock: 4663 mutex_unlock(&rdev->mutex); 4664 4665 return 0; 4666 } 4667 4668 static int __init regulator_init_complete(void) 4669 { 4670 /* 4671 * Since DT doesn't provide an idiomatic mechanism for 4672 * enabling full constraints and since it's much more natural 4673 * with DT to provide them just assume that a DT enabled 4674 * system has full constraints. 4675 */ 4676 if (of_have_populated_dt()) 4677 has_full_constraints = true; 4678 4679 /* 4680 * Regulators may had failed to resolve their input supplies 4681 * when were registered, either because the input supply was 4682 * not registered yet or because its parent device was not 4683 * bound yet. So attempt to resolve the input supplies for 4684 * pending regulators before trying to disable unused ones. 4685 */ 4686 class_for_each_device(®ulator_class, NULL, NULL, 4687 regulator_register_resolve_supply); 4688 4689 /* If we have a full configuration then disable any regulators 4690 * we have permission to change the status for and which are 4691 * not in use or always_on. This is effectively the default 4692 * for DT and ACPI as they have full constraints. 4693 */ 4694 class_for_each_device(®ulator_class, NULL, NULL, 4695 regulator_late_cleanup); 4696 4697 return 0; 4698 } 4699 late_initcall_sync(regulator_init_complete); 4700