xref: /linux/drivers/regulator/core.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27 
28 #include "dummy.h"
29 
30 #define REGULATOR_VERSION "0.5"
31 
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 
37 /*
38  * struct regulator_map
39  *
40  * Used to provide symbolic supply names to devices.
41  */
42 struct regulator_map {
43 	struct list_head list;
44 	const char *dev_name;   /* The dev_name() for the consumer */
45 	const char *supply;
46 	struct regulator_dev *regulator;
47 };
48 
49 /*
50  * struct regulator
51  *
52  * One for each consumer device.
53  */
54 struct regulator {
55 	struct device *dev;
56 	struct list_head list;
57 	int uA_load;
58 	int min_uV;
59 	int max_uV;
60 	char *supply_name;
61 	struct device_attribute dev_attr;
62 	struct regulator_dev *rdev;
63 };
64 
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71 				  unsigned long event, void *data);
72 
73 static const char *rdev_get_name(struct regulator_dev *rdev)
74 {
75 	if (rdev->constraints && rdev->constraints->name)
76 		return rdev->constraints->name;
77 	else if (rdev->desc->name)
78 		return rdev->desc->name;
79 	else
80 		return "";
81 }
82 
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
85 {
86 	struct regulator *regulator = NULL;
87 	struct regulator_dev *rdev;
88 
89 	mutex_lock(&regulator_list_mutex);
90 	list_for_each_entry(rdev, &regulator_list, list) {
91 		mutex_lock(&rdev->mutex);
92 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
93 			if (regulator->dev == dev) {
94 				mutex_unlock(&rdev->mutex);
95 				mutex_unlock(&regulator_list_mutex);
96 				return regulator;
97 			}
98 		}
99 		mutex_unlock(&rdev->mutex);
100 	}
101 	mutex_unlock(&regulator_list_mutex);
102 	return NULL;
103 }
104 
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107 				   int *min_uV, int *max_uV)
108 {
109 	BUG_ON(*min_uV > *max_uV);
110 
111 	if (!rdev->constraints) {
112 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113 		       rdev_get_name(rdev));
114 		return -ENODEV;
115 	}
116 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117 		printk(KERN_ERR "%s: operation not allowed for %s\n",
118 		       __func__, rdev_get_name(rdev));
119 		return -EPERM;
120 	}
121 
122 	if (*max_uV > rdev->constraints->max_uV)
123 		*max_uV = rdev->constraints->max_uV;
124 	if (*min_uV < rdev->constraints->min_uV)
125 		*min_uV = rdev->constraints->min_uV;
126 
127 	if (*min_uV > *max_uV)
128 		return -EINVAL;
129 
130 	return 0;
131 }
132 
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135 					int *min_uA, int *max_uA)
136 {
137 	BUG_ON(*min_uA > *max_uA);
138 
139 	if (!rdev->constraints) {
140 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141 		       rdev_get_name(rdev));
142 		return -ENODEV;
143 	}
144 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145 		printk(KERN_ERR "%s: operation not allowed for %s\n",
146 		       __func__, rdev_get_name(rdev));
147 		return -EPERM;
148 	}
149 
150 	if (*max_uA > rdev->constraints->max_uA)
151 		*max_uA = rdev->constraints->max_uA;
152 	if (*min_uA < rdev->constraints->min_uA)
153 		*min_uA = rdev->constraints->min_uA;
154 
155 	if (*min_uA > *max_uA)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163 {
164 	switch (mode) {
165 	case REGULATOR_MODE_FAST:
166 	case REGULATOR_MODE_NORMAL:
167 	case REGULATOR_MODE_IDLE:
168 	case REGULATOR_MODE_STANDBY:
169 		break;
170 	default:
171 		return -EINVAL;
172 	}
173 
174 	if (!rdev->constraints) {
175 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176 		       rdev_get_name(rdev));
177 		return -ENODEV;
178 	}
179 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180 		printk(KERN_ERR "%s: operation not allowed for %s\n",
181 		       __func__, rdev_get_name(rdev));
182 		return -EPERM;
183 	}
184 	if (!(rdev->constraints->valid_modes_mask & mode)) {
185 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
186 		       __func__, mode, rdev_get_name(rdev));
187 		return -EINVAL;
188 	}
189 	return 0;
190 }
191 
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
194 {
195 	if (!rdev->constraints) {
196 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197 		       rdev_get_name(rdev));
198 		return -ENODEV;
199 	}
200 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201 		printk(KERN_ERR "%s: operation not allowed for %s\n",
202 		       __func__, rdev_get_name(rdev));
203 		return -EPERM;
204 	}
205 	return 0;
206 }
207 
208 static ssize_t device_requested_uA_show(struct device *dev,
209 			     struct device_attribute *attr, char *buf)
210 {
211 	struct regulator *regulator;
212 
213 	regulator = get_device_regulator(dev);
214 	if (regulator == NULL)
215 		return 0;
216 
217 	return sprintf(buf, "%d\n", regulator->uA_load);
218 }
219 
220 static ssize_t regulator_uV_show(struct device *dev,
221 				struct device_attribute *attr, char *buf)
222 {
223 	struct regulator_dev *rdev = dev_get_drvdata(dev);
224 	ssize_t ret;
225 
226 	mutex_lock(&rdev->mutex);
227 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228 	mutex_unlock(&rdev->mutex);
229 
230 	return ret;
231 }
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233 
234 static ssize_t regulator_uA_show(struct device *dev,
235 				struct device_attribute *attr, char *buf)
236 {
237 	struct regulator_dev *rdev = dev_get_drvdata(dev);
238 
239 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240 }
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242 
243 static ssize_t regulator_name_show(struct device *dev,
244 			     struct device_attribute *attr, char *buf)
245 {
246 	struct regulator_dev *rdev = dev_get_drvdata(dev);
247 
248 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
249 }
250 
251 static ssize_t regulator_print_opmode(char *buf, int mode)
252 {
253 	switch (mode) {
254 	case REGULATOR_MODE_FAST:
255 		return sprintf(buf, "fast\n");
256 	case REGULATOR_MODE_NORMAL:
257 		return sprintf(buf, "normal\n");
258 	case REGULATOR_MODE_IDLE:
259 		return sprintf(buf, "idle\n");
260 	case REGULATOR_MODE_STANDBY:
261 		return sprintf(buf, "standby\n");
262 	}
263 	return sprintf(buf, "unknown\n");
264 }
265 
266 static ssize_t regulator_opmode_show(struct device *dev,
267 				    struct device_attribute *attr, char *buf)
268 {
269 	struct regulator_dev *rdev = dev_get_drvdata(dev);
270 
271 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272 }
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274 
275 static ssize_t regulator_print_state(char *buf, int state)
276 {
277 	if (state > 0)
278 		return sprintf(buf, "enabled\n");
279 	else if (state == 0)
280 		return sprintf(buf, "disabled\n");
281 	else
282 		return sprintf(buf, "unknown\n");
283 }
284 
285 static ssize_t regulator_state_show(struct device *dev,
286 				   struct device_attribute *attr, char *buf)
287 {
288 	struct regulator_dev *rdev = dev_get_drvdata(dev);
289 	ssize_t ret;
290 
291 	mutex_lock(&rdev->mutex);
292 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293 	mutex_unlock(&rdev->mutex);
294 
295 	return ret;
296 }
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298 
299 static ssize_t regulator_status_show(struct device *dev,
300 				   struct device_attribute *attr, char *buf)
301 {
302 	struct regulator_dev *rdev = dev_get_drvdata(dev);
303 	int status;
304 	char *label;
305 
306 	status = rdev->desc->ops->get_status(rdev);
307 	if (status < 0)
308 		return status;
309 
310 	switch (status) {
311 	case REGULATOR_STATUS_OFF:
312 		label = "off";
313 		break;
314 	case REGULATOR_STATUS_ON:
315 		label = "on";
316 		break;
317 	case REGULATOR_STATUS_ERROR:
318 		label = "error";
319 		break;
320 	case REGULATOR_STATUS_FAST:
321 		label = "fast";
322 		break;
323 	case REGULATOR_STATUS_NORMAL:
324 		label = "normal";
325 		break;
326 	case REGULATOR_STATUS_IDLE:
327 		label = "idle";
328 		break;
329 	case REGULATOR_STATUS_STANDBY:
330 		label = "standby";
331 		break;
332 	default:
333 		return -ERANGE;
334 	}
335 
336 	return sprintf(buf, "%s\n", label);
337 }
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339 
340 static ssize_t regulator_min_uA_show(struct device *dev,
341 				    struct device_attribute *attr, char *buf)
342 {
343 	struct regulator_dev *rdev = dev_get_drvdata(dev);
344 
345 	if (!rdev->constraints)
346 		return sprintf(buf, "constraint not defined\n");
347 
348 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349 }
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351 
352 static ssize_t regulator_max_uA_show(struct device *dev,
353 				    struct device_attribute *attr, char *buf)
354 {
355 	struct regulator_dev *rdev = dev_get_drvdata(dev);
356 
357 	if (!rdev->constraints)
358 		return sprintf(buf, "constraint not defined\n");
359 
360 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361 }
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363 
364 static ssize_t regulator_min_uV_show(struct device *dev,
365 				    struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 
369 	if (!rdev->constraints)
370 		return sprintf(buf, "constraint not defined\n");
371 
372 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373 }
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375 
376 static ssize_t regulator_max_uV_show(struct device *dev,
377 				    struct device_attribute *attr, char *buf)
378 {
379 	struct regulator_dev *rdev = dev_get_drvdata(dev);
380 
381 	if (!rdev->constraints)
382 		return sprintf(buf, "constraint not defined\n");
383 
384 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385 }
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387 
388 static ssize_t regulator_total_uA_show(struct device *dev,
389 				      struct device_attribute *attr, char *buf)
390 {
391 	struct regulator_dev *rdev = dev_get_drvdata(dev);
392 	struct regulator *regulator;
393 	int uA = 0;
394 
395 	mutex_lock(&rdev->mutex);
396 	list_for_each_entry(regulator, &rdev->consumer_list, list)
397 		uA += regulator->uA_load;
398 	mutex_unlock(&rdev->mutex);
399 	return sprintf(buf, "%d\n", uA);
400 }
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402 
403 static ssize_t regulator_num_users_show(struct device *dev,
404 				      struct device_attribute *attr, char *buf)
405 {
406 	struct regulator_dev *rdev = dev_get_drvdata(dev);
407 	return sprintf(buf, "%d\n", rdev->use_count);
408 }
409 
410 static ssize_t regulator_type_show(struct device *dev,
411 				  struct device_attribute *attr, char *buf)
412 {
413 	struct regulator_dev *rdev = dev_get_drvdata(dev);
414 
415 	switch (rdev->desc->type) {
416 	case REGULATOR_VOLTAGE:
417 		return sprintf(buf, "voltage\n");
418 	case REGULATOR_CURRENT:
419 		return sprintf(buf, "current\n");
420 	}
421 	return sprintf(buf, "unknown\n");
422 }
423 
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425 				struct device_attribute *attr, char *buf)
426 {
427 	struct regulator_dev *rdev = dev_get_drvdata(dev);
428 
429 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430 }
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432 		regulator_suspend_mem_uV_show, NULL);
433 
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435 				struct device_attribute *attr, char *buf)
436 {
437 	struct regulator_dev *rdev = dev_get_drvdata(dev);
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440 }
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442 		regulator_suspend_disk_uV_show, NULL);
443 
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445 				struct device_attribute *attr, char *buf)
446 {
447 	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 
449 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450 }
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452 		regulator_suspend_standby_uV_show, NULL);
453 
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455 				struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	return regulator_print_opmode(buf,
460 		rdev->constraints->state_mem.mode);
461 }
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463 		regulator_suspend_mem_mode_show, NULL);
464 
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466 				struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	return regulator_print_opmode(buf,
471 		rdev->constraints->state_disk.mode);
472 }
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474 		regulator_suspend_disk_mode_show, NULL);
475 
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477 				struct device_attribute *attr, char *buf)
478 {
479 	struct regulator_dev *rdev = dev_get_drvdata(dev);
480 
481 	return regulator_print_opmode(buf,
482 		rdev->constraints->state_standby.mode);
483 }
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485 		regulator_suspend_standby_mode_show, NULL);
486 
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488 				   struct device_attribute *attr, char *buf)
489 {
490 	struct regulator_dev *rdev = dev_get_drvdata(dev);
491 
492 	return regulator_print_state(buf,
493 			rdev->constraints->state_mem.enabled);
494 }
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496 		regulator_suspend_mem_state_show, NULL);
497 
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499 				   struct device_attribute *attr, char *buf)
500 {
501 	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 
503 	return regulator_print_state(buf,
504 			rdev->constraints->state_disk.enabled);
505 }
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507 		regulator_suspend_disk_state_show, NULL);
508 
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510 				   struct device_attribute *attr, char *buf)
511 {
512 	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 
514 	return regulator_print_state(buf,
515 			rdev->constraints->state_standby.enabled);
516 }
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518 		regulator_suspend_standby_state_show, NULL);
519 
520 
521 /*
522  * These are the only attributes are present for all regulators.
523  * Other attributes are a function of regulator functionality.
524  */
525 static struct device_attribute regulator_dev_attrs[] = {
526 	__ATTR(name, 0444, regulator_name_show, NULL),
527 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
528 	__ATTR(type, 0444, regulator_type_show, NULL),
529 	__ATTR_NULL,
530 };
531 
532 static void regulator_dev_release(struct device *dev)
533 {
534 	struct regulator_dev *rdev = dev_get_drvdata(dev);
535 	kfree(rdev);
536 }
537 
538 static struct class regulator_class = {
539 	.name = "regulator",
540 	.dev_release = regulator_dev_release,
541 	.dev_attrs = regulator_dev_attrs,
542 };
543 
544 /* Calculate the new optimum regulator operating mode based on the new total
545  * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
547 {
548 	struct regulator *sibling;
549 	int current_uA = 0, output_uV, input_uV, err;
550 	unsigned int mode;
551 
552 	err = regulator_check_drms(rdev);
553 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555 		return;
556 
557 	/* get output voltage */
558 	output_uV = rdev->desc->ops->get_voltage(rdev);
559 	if (output_uV <= 0)
560 		return;
561 
562 	/* get input voltage */
563 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565 	else
566 		input_uV = rdev->constraints->input_uV;
567 	if (input_uV <= 0)
568 		return;
569 
570 	/* calc total requested load */
571 	list_for_each_entry(sibling, &rdev->consumer_list, list)
572 		current_uA += sibling->uA_load;
573 
574 	/* now get the optimum mode for our new total regulator load */
575 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576 						  output_uV, current_uA);
577 
578 	/* check the new mode is allowed */
579 	err = regulator_check_mode(rdev, mode);
580 	if (err == 0)
581 		rdev->desc->ops->set_mode(rdev, mode);
582 }
583 
584 static int suspend_set_state(struct regulator_dev *rdev,
585 	struct regulator_state *rstate)
586 {
587 	int ret = 0;
588 	bool can_set_state;
589 
590 	can_set_state = rdev->desc->ops->set_suspend_enable &&
591 		rdev->desc->ops->set_suspend_disable;
592 
593 	/* If we have no suspend mode configration don't set anything;
594 	 * only warn if the driver actually makes the suspend mode
595 	 * configurable.
596 	 */
597 	if (!rstate->enabled && !rstate->disabled) {
598 		if (can_set_state)
599 			printk(KERN_WARNING "%s: No configuration for %s\n",
600 			       __func__, rdev_get_name(rdev));
601 		return 0;
602 	}
603 
604 	if (rstate->enabled && rstate->disabled) {
605 		printk(KERN_ERR "%s: invalid configuration for %s\n",
606 		       __func__, rdev_get_name(rdev));
607 		return -EINVAL;
608 	}
609 
610 	if (!can_set_state) {
611 		printk(KERN_ERR "%s: no way to set suspend state\n",
612 			__func__);
613 		return -EINVAL;
614 	}
615 
616 	if (rstate->enabled)
617 		ret = rdev->desc->ops->set_suspend_enable(rdev);
618 	else
619 		ret = rdev->desc->ops->set_suspend_disable(rdev);
620 	if (ret < 0) {
621 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622 		return ret;
623 	}
624 
625 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627 		if (ret < 0) {
628 			printk(KERN_ERR "%s: failed to set voltage\n",
629 				__func__);
630 			return ret;
631 		}
632 	}
633 
634 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636 		if (ret < 0) {
637 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
638 			return ret;
639 		}
640 	}
641 	return ret;
642 }
643 
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646 {
647 	if (!rdev->constraints)
648 		return -EINVAL;
649 
650 	switch (state) {
651 	case PM_SUSPEND_STANDBY:
652 		return suspend_set_state(rdev,
653 			&rdev->constraints->state_standby);
654 	case PM_SUSPEND_MEM:
655 		return suspend_set_state(rdev,
656 			&rdev->constraints->state_mem);
657 	case PM_SUSPEND_MAX:
658 		return suspend_set_state(rdev,
659 			&rdev->constraints->state_disk);
660 	default:
661 		return -EINVAL;
662 	}
663 }
664 
665 static void print_constraints(struct regulator_dev *rdev)
666 {
667 	struct regulation_constraints *constraints = rdev->constraints;
668 	char buf[80] = "";
669 	int count = 0;
670 	int ret;
671 
672 	if (constraints->min_uV && constraints->max_uV) {
673 		if (constraints->min_uV == constraints->max_uV)
674 			count += sprintf(buf + count, "%d mV ",
675 					 constraints->min_uV / 1000);
676 		else
677 			count += sprintf(buf + count, "%d <--> %d mV ",
678 					 constraints->min_uV / 1000,
679 					 constraints->max_uV / 1000);
680 	}
681 
682 	if (!constraints->min_uV ||
683 	    constraints->min_uV != constraints->max_uV) {
684 		ret = _regulator_get_voltage(rdev);
685 		if (ret > 0)
686 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
687 	}
688 
689 	if (constraints->min_uA && constraints->max_uA) {
690 		if (constraints->min_uA == constraints->max_uA)
691 			count += sprintf(buf + count, "%d mA ",
692 					 constraints->min_uA / 1000);
693 		else
694 			count += sprintf(buf + count, "%d <--> %d mA ",
695 					 constraints->min_uA / 1000,
696 					 constraints->max_uA / 1000);
697 	}
698 
699 	if (!constraints->min_uA ||
700 	    constraints->min_uA != constraints->max_uA) {
701 		ret = _regulator_get_current_limit(rdev);
702 		if (ret > 0)
703 			count += sprintf(buf + count, "at %d uA ", ret / 1000);
704 	}
705 
706 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707 		count += sprintf(buf + count, "fast ");
708 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709 		count += sprintf(buf + count, "normal ");
710 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711 		count += sprintf(buf + count, "idle ");
712 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713 		count += sprintf(buf + count, "standby");
714 
715 	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
716 }
717 
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719 	struct regulation_constraints *constraints)
720 {
721 	struct regulator_ops *ops = rdev->desc->ops;
722 	const char *name = rdev_get_name(rdev);
723 	int ret;
724 
725 	/* do we need to apply the constraint voltage */
726 	if (rdev->constraints->apply_uV &&
727 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
728 		ops->set_voltage) {
729 		ret = ops->set_voltage(rdev,
730 			rdev->constraints->min_uV, rdev->constraints->max_uV);
731 			if (ret < 0) {
732 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733 				       __func__,
734 				       rdev->constraints->min_uV, name);
735 				rdev->constraints = NULL;
736 				return ret;
737 			}
738 	}
739 
740 	/* constrain machine-level voltage specs to fit
741 	 * the actual range supported by this regulator.
742 	 */
743 	if (ops->list_voltage && rdev->desc->n_voltages) {
744 		int	count = rdev->desc->n_voltages;
745 		int	i;
746 		int	min_uV = INT_MAX;
747 		int	max_uV = INT_MIN;
748 		int	cmin = constraints->min_uV;
749 		int	cmax = constraints->max_uV;
750 
751 		/* it's safe to autoconfigure fixed-voltage supplies
752 		   and the constraints are used by list_voltage. */
753 		if (count == 1 && !cmin) {
754 			cmin = 1;
755 			cmax = INT_MAX;
756 			constraints->min_uV = cmin;
757 			constraints->max_uV = cmax;
758 		}
759 
760 		/* voltage constraints are optional */
761 		if ((cmin == 0) && (cmax == 0))
762 			return 0;
763 
764 		/* else require explicit machine-level constraints */
765 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766 			pr_err("%s: %s '%s' voltage constraints\n",
767 				       __func__, "invalid", name);
768 			return -EINVAL;
769 		}
770 
771 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772 		for (i = 0; i < count; i++) {
773 			int	value;
774 
775 			value = ops->list_voltage(rdev, i);
776 			if (value <= 0)
777 				continue;
778 
779 			/* maybe adjust [min_uV..max_uV] */
780 			if (value >= cmin && value < min_uV)
781 				min_uV = value;
782 			if (value <= cmax && value > max_uV)
783 				max_uV = value;
784 		}
785 
786 		/* final: [min_uV..max_uV] valid iff constraints valid */
787 		if (max_uV < min_uV) {
788 			pr_err("%s: %s '%s' voltage constraints\n",
789 				       __func__, "unsupportable", name);
790 			return -EINVAL;
791 		}
792 
793 		/* use regulator's subset of machine constraints */
794 		if (constraints->min_uV < min_uV) {
795 			pr_debug("%s: override '%s' %s, %d -> %d\n",
796 				       __func__, name, "min_uV",
797 					constraints->min_uV, min_uV);
798 			constraints->min_uV = min_uV;
799 		}
800 		if (constraints->max_uV > max_uV) {
801 			pr_debug("%s: override '%s' %s, %d -> %d\n",
802 				       __func__, name, "max_uV",
803 					constraints->max_uV, max_uV);
804 			constraints->max_uV = max_uV;
805 		}
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * set_machine_constraints - sets regulator constraints
813  * @rdev: regulator source
814  * @constraints: constraints to apply
815  *
816  * Allows platform initialisation code to define and constrain
817  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
818  * Constraints *must* be set by platform code in order for some
819  * regulator operations to proceed i.e. set_voltage, set_current_limit,
820  * set_mode.
821  */
822 static int set_machine_constraints(struct regulator_dev *rdev,
823 	struct regulation_constraints *constraints)
824 {
825 	int ret = 0;
826 	const char *name;
827 	struct regulator_ops *ops = rdev->desc->ops;
828 
829 	rdev->constraints = constraints;
830 
831 	name = rdev_get_name(rdev);
832 
833 	ret = machine_constraints_voltage(rdev, constraints);
834 	if (ret != 0)
835 		goto out;
836 
837 	/* do we need to setup our suspend state */
838 	if (constraints->initial_state) {
839 		ret = suspend_prepare(rdev, constraints->initial_state);
840 		if (ret < 0) {
841 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842 			       __func__, name);
843 			rdev->constraints = NULL;
844 			goto out;
845 		}
846 	}
847 
848 	if (constraints->initial_mode) {
849 		if (!ops->set_mode) {
850 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
851 			       __func__, name);
852 			ret = -EINVAL;
853 			goto out;
854 		}
855 
856 		ret = ops->set_mode(rdev, constraints->initial_mode);
857 		if (ret < 0) {
858 			printk(KERN_ERR
859 			       "%s: failed to set initial mode for %s: %d\n",
860 			       __func__, name, ret);
861 			goto out;
862 		}
863 	}
864 
865 	/* If the constraints say the regulator should be on at this point
866 	 * and we have control then make sure it is enabled.
867 	 */
868 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869 		ret = ops->enable(rdev);
870 		if (ret < 0) {
871 			printk(KERN_ERR "%s: failed to enable %s\n",
872 			       __func__, name);
873 			rdev->constraints = NULL;
874 			goto out;
875 		}
876 	}
877 
878 	print_constraints(rdev);
879 out:
880 	return ret;
881 }
882 
883 /**
884  * set_supply - set regulator supply regulator
885  * @rdev: regulator name
886  * @supply_rdev: supply regulator name
887  *
888  * Called by platform initialisation code to set the supply regulator for this
889  * regulator. This ensures that a regulators supply will also be enabled by the
890  * core if it's child is enabled.
891  */
892 static int set_supply(struct regulator_dev *rdev,
893 	struct regulator_dev *supply_rdev)
894 {
895 	int err;
896 
897 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898 				"supply");
899 	if (err) {
900 		printk(KERN_ERR
901 		       "%s: could not add device link %s err %d\n",
902 		       __func__, supply_rdev->dev.kobj.name, err);
903 		       goto out;
904 	}
905 	rdev->supply = supply_rdev;
906 	list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908 	return err;
909 }
910 
911 /**
912  * set_consumer_device_supply: Bind a regulator to a symbolic supply
913  * @rdev:         regulator source
914  * @consumer_dev: device the supply applies to
915  * @consumer_dev_name: dev_name() string for device supply applies to
916  * @supply:       symbolic name for supply
917  *
918  * Allows platform initialisation code to map physical regulator
919  * sources to symbolic names for supplies for use by devices.  Devices
920  * should use these symbolic names to request regulators, avoiding the
921  * need to provide board-specific regulator names as platform data.
922  *
923  * Only one of consumer_dev and consumer_dev_name may be specified.
924  */
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926 	struct device *consumer_dev, const char *consumer_dev_name,
927 	const char *supply)
928 {
929 	struct regulator_map *node;
930 	int has_dev;
931 
932 	if (consumer_dev && consumer_dev_name)
933 		return -EINVAL;
934 
935 	if (!consumer_dev_name && consumer_dev)
936 		consumer_dev_name = dev_name(consumer_dev);
937 
938 	if (supply == NULL)
939 		return -EINVAL;
940 
941 	if (consumer_dev_name != NULL)
942 		has_dev = 1;
943 	else
944 		has_dev = 0;
945 
946 	list_for_each_entry(node, &regulator_map_list, list) {
947 		if (consumer_dev_name != node->dev_name)
948 			continue;
949 		if (strcmp(node->supply, supply) != 0)
950 			continue;
951 
952 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
953 				dev_name(&node->regulator->dev),
954 				node->regulator->desc->name,
955 				supply,
956 				dev_name(&rdev->dev), rdev_get_name(rdev));
957 		return -EBUSY;
958 	}
959 
960 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
961 	if (node == NULL)
962 		return -ENOMEM;
963 
964 	node->regulator = rdev;
965 	node->supply = supply;
966 
967 	if (has_dev) {
968 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
969 		if (node->dev_name == NULL) {
970 			kfree(node);
971 			return -ENOMEM;
972 		}
973 	}
974 
975 	list_add(&node->list, &regulator_map_list);
976 	return 0;
977 }
978 
979 static void unset_consumer_device_supply(struct regulator_dev *rdev,
980 	const char *consumer_dev_name, struct device *consumer_dev)
981 {
982 	struct regulator_map *node, *n;
983 
984 	if (consumer_dev && !consumer_dev_name)
985 		consumer_dev_name = dev_name(consumer_dev);
986 
987 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
988 		if (rdev != node->regulator)
989 			continue;
990 
991 		if (consumer_dev_name && node->dev_name &&
992 		    strcmp(consumer_dev_name, node->dev_name))
993 			continue;
994 
995 		list_del(&node->list);
996 		kfree(node->dev_name);
997 		kfree(node);
998 		return;
999 	}
1000 }
1001 
1002 static void unset_regulator_supplies(struct regulator_dev *rdev)
1003 {
1004 	struct regulator_map *node, *n;
1005 
1006 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1007 		if (rdev == node->regulator) {
1008 			list_del(&node->list);
1009 			kfree(node->dev_name);
1010 			kfree(node);
1011 			return;
1012 		}
1013 	}
1014 }
1015 
1016 #define REG_STR_SIZE	32
1017 
1018 static struct regulator *create_regulator(struct regulator_dev *rdev,
1019 					  struct device *dev,
1020 					  const char *supply_name)
1021 {
1022 	struct regulator *regulator;
1023 	char buf[REG_STR_SIZE];
1024 	int err, size;
1025 
1026 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1027 	if (regulator == NULL)
1028 		return NULL;
1029 
1030 	mutex_lock(&rdev->mutex);
1031 	regulator->rdev = rdev;
1032 	list_add(&regulator->list, &rdev->consumer_list);
1033 
1034 	if (dev) {
1035 		/* create a 'requested_microamps_name' sysfs entry */
1036 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1037 			supply_name);
1038 		if (size >= REG_STR_SIZE)
1039 			goto overflow_err;
1040 
1041 		regulator->dev = dev;
1042 		sysfs_attr_init(&regulator->dev_attr.attr);
1043 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1044 		if (regulator->dev_attr.attr.name == NULL)
1045 			goto attr_name_err;
1046 
1047 		regulator->dev_attr.attr.owner = THIS_MODULE;
1048 		regulator->dev_attr.attr.mode = 0444;
1049 		regulator->dev_attr.show = device_requested_uA_show;
1050 		err = device_create_file(dev, &regulator->dev_attr);
1051 		if (err < 0) {
1052 			printk(KERN_WARNING "%s: could not add regulator_dev"
1053 				" load sysfs\n", __func__);
1054 			goto attr_name_err;
1055 		}
1056 
1057 		/* also add a link to the device sysfs entry */
1058 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059 				 dev->kobj.name, supply_name);
1060 		if (size >= REG_STR_SIZE)
1061 			goto attr_err;
1062 
1063 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064 		if (regulator->supply_name == NULL)
1065 			goto attr_err;
1066 
1067 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068 					buf);
1069 		if (err) {
1070 			printk(KERN_WARNING
1071 			       "%s: could not add device link %s err %d\n",
1072 			       __func__, dev->kobj.name, err);
1073 			device_remove_file(dev, &regulator->dev_attr);
1074 			goto link_name_err;
1075 		}
1076 	}
1077 	mutex_unlock(&rdev->mutex);
1078 	return regulator;
1079 link_name_err:
1080 	kfree(regulator->supply_name);
1081 attr_err:
1082 	device_remove_file(regulator->dev, &regulator->dev_attr);
1083 attr_name_err:
1084 	kfree(regulator->dev_attr.attr.name);
1085 overflow_err:
1086 	list_del(&regulator->list);
1087 	kfree(regulator);
1088 	mutex_unlock(&rdev->mutex);
1089 	return NULL;
1090 }
1091 
1092 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1093 {
1094 	if (!rdev->desc->ops->enable_time)
1095 		return 0;
1096 	return rdev->desc->ops->enable_time(rdev);
1097 }
1098 
1099 /* Internal regulator request function */
1100 static struct regulator *_regulator_get(struct device *dev, const char *id,
1101 					int exclusive)
1102 {
1103 	struct regulator_dev *rdev;
1104 	struct regulator_map *map;
1105 	struct regulator *regulator = ERR_PTR(-ENODEV);
1106 	const char *devname = NULL;
1107 	int ret;
1108 
1109 	if (id == NULL) {
1110 		printk(KERN_ERR "regulator: get() with no identifier\n");
1111 		return regulator;
1112 	}
1113 
1114 	if (dev)
1115 		devname = dev_name(dev);
1116 
1117 	mutex_lock(&regulator_list_mutex);
1118 
1119 	list_for_each_entry(map, &regulator_map_list, list) {
1120 		/* If the mapping has a device set up it must match */
1121 		if (map->dev_name &&
1122 		    (!devname || strcmp(map->dev_name, devname)))
1123 			continue;
1124 
1125 		if (strcmp(map->supply, id) == 0) {
1126 			rdev = map->regulator;
1127 			goto found;
1128 		}
1129 	}
1130 
1131 #ifdef CONFIG_REGULATOR_DUMMY
1132 	if (!devname)
1133 		devname = "deviceless";
1134 
1135 	/* If the board didn't flag that it was fully constrained then
1136 	 * substitute in a dummy regulator so consumers can continue.
1137 	 */
1138 	if (!has_full_constraints) {
1139 		pr_warning("%s supply %s not found, using dummy regulator\n",
1140 			   devname, id);
1141 		rdev = dummy_regulator_rdev;
1142 		goto found;
1143 	}
1144 #endif
1145 
1146 	mutex_unlock(&regulator_list_mutex);
1147 	return regulator;
1148 
1149 found:
1150 	if (rdev->exclusive) {
1151 		regulator = ERR_PTR(-EPERM);
1152 		goto out;
1153 	}
1154 
1155 	if (exclusive && rdev->open_count) {
1156 		regulator = ERR_PTR(-EBUSY);
1157 		goto out;
1158 	}
1159 
1160 	if (!try_module_get(rdev->owner))
1161 		goto out;
1162 
1163 	regulator = create_regulator(rdev, dev, id);
1164 	if (regulator == NULL) {
1165 		regulator = ERR_PTR(-ENOMEM);
1166 		module_put(rdev->owner);
1167 	}
1168 
1169 	rdev->open_count++;
1170 	if (exclusive) {
1171 		rdev->exclusive = 1;
1172 
1173 		ret = _regulator_is_enabled(rdev);
1174 		if (ret > 0)
1175 			rdev->use_count = 1;
1176 		else
1177 			rdev->use_count = 0;
1178 	}
1179 
1180 out:
1181 	mutex_unlock(&regulator_list_mutex);
1182 
1183 	return regulator;
1184 }
1185 
1186 /**
1187  * regulator_get - lookup and obtain a reference to a regulator.
1188  * @dev: device for regulator "consumer"
1189  * @id: Supply name or regulator ID.
1190  *
1191  * Returns a struct regulator corresponding to the regulator producer,
1192  * or IS_ERR() condition containing errno.
1193  *
1194  * Use of supply names configured via regulator_set_device_supply() is
1195  * strongly encouraged.  It is recommended that the supply name used
1196  * should match the name used for the supply and/or the relevant
1197  * device pins in the datasheet.
1198  */
1199 struct regulator *regulator_get(struct device *dev, const char *id)
1200 {
1201 	return _regulator_get(dev, id, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(regulator_get);
1204 
1205 /**
1206  * regulator_get_exclusive - obtain exclusive access to a regulator.
1207  * @dev: device for regulator "consumer"
1208  * @id: Supply name or regulator ID.
1209  *
1210  * Returns a struct regulator corresponding to the regulator producer,
1211  * or IS_ERR() condition containing errno.  Other consumers will be
1212  * unable to obtain this reference is held and the use count for the
1213  * regulator will be initialised to reflect the current state of the
1214  * regulator.
1215  *
1216  * This is intended for use by consumers which cannot tolerate shared
1217  * use of the regulator such as those which need to force the
1218  * regulator off for correct operation of the hardware they are
1219  * controlling.
1220  *
1221  * Use of supply names configured via regulator_set_device_supply() is
1222  * strongly encouraged.  It is recommended that the supply name used
1223  * should match the name used for the supply and/or the relevant
1224  * device pins in the datasheet.
1225  */
1226 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1227 {
1228 	return _regulator_get(dev, id, 1);
1229 }
1230 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1231 
1232 /**
1233  * regulator_put - "free" the regulator source
1234  * @regulator: regulator source
1235  *
1236  * Note: drivers must ensure that all regulator_enable calls made on this
1237  * regulator source are balanced by regulator_disable calls prior to calling
1238  * this function.
1239  */
1240 void regulator_put(struct regulator *regulator)
1241 {
1242 	struct regulator_dev *rdev;
1243 
1244 	if (regulator == NULL || IS_ERR(regulator))
1245 		return;
1246 
1247 	mutex_lock(&regulator_list_mutex);
1248 	rdev = regulator->rdev;
1249 
1250 	/* remove any sysfs entries */
1251 	if (regulator->dev) {
1252 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1253 		kfree(regulator->supply_name);
1254 		device_remove_file(regulator->dev, &regulator->dev_attr);
1255 		kfree(regulator->dev_attr.attr.name);
1256 	}
1257 	list_del(&regulator->list);
1258 	kfree(regulator);
1259 
1260 	rdev->open_count--;
1261 	rdev->exclusive = 0;
1262 
1263 	module_put(rdev->owner);
1264 	mutex_unlock(&regulator_list_mutex);
1265 }
1266 EXPORT_SYMBOL_GPL(regulator_put);
1267 
1268 static int _regulator_can_change_status(struct regulator_dev *rdev)
1269 {
1270 	if (!rdev->constraints)
1271 		return 0;
1272 
1273 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1274 		return 1;
1275 	else
1276 		return 0;
1277 }
1278 
1279 /* locks held by regulator_enable() */
1280 static int _regulator_enable(struct regulator_dev *rdev)
1281 {
1282 	int ret, delay;
1283 
1284 	/* do we need to enable the supply regulator first */
1285 	if (rdev->supply) {
1286 		ret = _regulator_enable(rdev->supply);
1287 		if (ret < 0) {
1288 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1289 			       __func__, rdev_get_name(rdev), ret);
1290 			return ret;
1291 		}
1292 	}
1293 
1294 	/* check voltage and requested load before enabling */
1295 	if (rdev->constraints &&
1296 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1297 		drms_uA_update(rdev);
1298 
1299 	if (rdev->use_count == 0) {
1300 		/* The regulator may on if it's not switchable or left on */
1301 		ret = _regulator_is_enabled(rdev);
1302 		if (ret == -EINVAL || ret == 0) {
1303 			if (!_regulator_can_change_status(rdev))
1304 				return -EPERM;
1305 
1306 			if (!rdev->desc->ops->enable)
1307 				return -EINVAL;
1308 
1309 			/* Query before enabling in case configuration
1310 			 * dependant.  */
1311 			ret = _regulator_get_enable_time(rdev);
1312 			if (ret >= 0) {
1313 				delay = ret;
1314 			} else {
1315 				printk(KERN_WARNING
1316 					"%s: enable_time() failed for %s: %d\n",
1317 					__func__, rdev_get_name(rdev),
1318 					ret);
1319 				delay = 0;
1320 			}
1321 
1322 			/* Allow the regulator to ramp; it would be useful
1323 			 * to extend this for bulk operations so that the
1324 			 * regulators can ramp together.  */
1325 			ret = rdev->desc->ops->enable(rdev);
1326 			if (ret < 0)
1327 				return ret;
1328 
1329 			if (delay >= 1000)
1330 				mdelay(delay / 1000);
1331 			else if (delay)
1332 				udelay(delay);
1333 
1334 		} else if (ret < 0) {
1335 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1336 			       __func__, rdev_get_name(rdev), ret);
1337 			return ret;
1338 		}
1339 		/* Fallthrough on positive return values - already enabled */
1340 	}
1341 
1342 	rdev->use_count++;
1343 
1344 	return 0;
1345 }
1346 
1347 /**
1348  * regulator_enable - enable regulator output
1349  * @regulator: regulator source
1350  *
1351  * Request that the regulator be enabled with the regulator output at
1352  * the predefined voltage or current value.  Calls to regulator_enable()
1353  * must be balanced with calls to regulator_disable().
1354  *
1355  * NOTE: the output value can be set by other drivers, boot loader or may be
1356  * hardwired in the regulator.
1357  */
1358 int regulator_enable(struct regulator *regulator)
1359 {
1360 	struct regulator_dev *rdev = regulator->rdev;
1361 	int ret = 0;
1362 
1363 	mutex_lock(&rdev->mutex);
1364 	ret = _regulator_enable(rdev);
1365 	mutex_unlock(&rdev->mutex);
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(regulator_enable);
1369 
1370 /* locks held by regulator_disable() */
1371 static int _regulator_disable(struct regulator_dev *rdev)
1372 {
1373 	int ret = 0;
1374 
1375 	if (WARN(rdev->use_count <= 0,
1376 			"unbalanced disables for %s\n",
1377 			rdev_get_name(rdev)))
1378 		return -EIO;
1379 
1380 	/* are we the last user and permitted to disable ? */
1381 	if (rdev->use_count == 1 &&
1382 	    (rdev->constraints && !rdev->constraints->always_on)) {
1383 
1384 		/* we are last user */
1385 		if (_regulator_can_change_status(rdev) &&
1386 		    rdev->desc->ops->disable) {
1387 			ret = rdev->desc->ops->disable(rdev);
1388 			if (ret < 0) {
1389 				printk(KERN_ERR "%s: failed to disable %s\n",
1390 				       __func__, rdev_get_name(rdev));
1391 				return ret;
1392 			}
1393 
1394 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1395 					     NULL);
1396 		}
1397 
1398 		/* decrease our supplies ref count and disable if required */
1399 		if (rdev->supply)
1400 			_regulator_disable(rdev->supply);
1401 
1402 		rdev->use_count = 0;
1403 	} else if (rdev->use_count > 1) {
1404 
1405 		if (rdev->constraints &&
1406 			(rdev->constraints->valid_ops_mask &
1407 			REGULATOR_CHANGE_DRMS))
1408 			drms_uA_update(rdev);
1409 
1410 		rdev->use_count--;
1411 	}
1412 	return ret;
1413 }
1414 
1415 /**
1416  * regulator_disable - disable regulator output
1417  * @regulator: regulator source
1418  *
1419  * Disable the regulator output voltage or current.  Calls to
1420  * regulator_enable() must be balanced with calls to
1421  * regulator_disable().
1422  *
1423  * NOTE: this will only disable the regulator output if no other consumer
1424  * devices have it enabled, the regulator device supports disabling and
1425  * machine constraints permit this operation.
1426  */
1427 int regulator_disable(struct regulator *regulator)
1428 {
1429 	struct regulator_dev *rdev = regulator->rdev;
1430 	int ret = 0;
1431 
1432 	mutex_lock(&rdev->mutex);
1433 	ret = _regulator_disable(rdev);
1434 	mutex_unlock(&rdev->mutex);
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(regulator_disable);
1438 
1439 /* locks held by regulator_force_disable() */
1440 static int _regulator_force_disable(struct regulator_dev *rdev)
1441 {
1442 	int ret = 0;
1443 
1444 	/* force disable */
1445 	if (rdev->desc->ops->disable) {
1446 		/* ah well, who wants to live forever... */
1447 		ret = rdev->desc->ops->disable(rdev);
1448 		if (ret < 0) {
1449 			printk(KERN_ERR "%s: failed to force disable %s\n",
1450 			       __func__, rdev_get_name(rdev));
1451 			return ret;
1452 		}
1453 		/* notify other consumers that power has been forced off */
1454 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1455 			REGULATOR_EVENT_DISABLE, NULL);
1456 	}
1457 
1458 	/* decrease our supplies ref count and disable if required */
1459 	if (rdev->supply)
1460 		_regulator_disable(rdev->supply);
1461 
1462 	rdev->use_count = 0;
1463 	return ret;
1464 }
1465 
1466 /**
1467  * regulator_force_disable - force disable regulator output
1468  * @regulator: regulator source
1469  *
1470  * Forcibly disable the regulator output voltage or current.
1471  * NOTE: this *will* disable the regulator output even if other consumer
1472  * devices have it enabled. This should be used for situations when device
1473  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1474  */
1475 int regulator_force_disable(struct regulator *regulator)
1476 {
1477 	int ret;
1478 
1479 	mutex_lock(&regulator->rdev->mutex);
1480 	regulator->uA_load = 0;
1481 	ret = _regulator_force_disable(regulator->rdev);
1482 	mutex_unlock(&regulator->rdev->mutex);
1483 	return ret;
1484 }
1485 EXPORT_SYMBOL_GPL(regulator_force_disable);
1486 
1487 static int _regulator_is_enabled(struct regulator_dev *rdev)
1488 {
1489 	/* If we don't know then assume that the regulator is always on */
1490 	if (!rdev->desc->ops->is_enabled)
1491 		return 1;
1492 
1493 	return rdev->desc->ops->is_enabled(rdev);
1494 }
1495 
1496 /**
1497  * regulator_is_enabled - is the regulator output enabled
1498  * @regulator: regulator source
1499  *
1500  * Returns positive if the regulator driver backing the source/client
1501  * has requested that the device be enabled, zero if it hasn't, else a
1502  * negative errno code.
1503  *
1504  * Note that the device backing this regulator handle can have multiple
1505  * users, so it might be enabled even if regulator_enable() was never
1506  * called for this particular source.
1507  */
1508 int regulator_is_enabled(struct regulator *regulator)
1509 {
1510 	int ret;
1511 
1512 	mutex_lock(&regulator->rdev->mutex);
1513 	ret = _regulator_is_enabled(regulator->rdev);
1514 	mutex_unlock(&regulator->rdev->mutex);
1515 
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1519 
1520 /**
1521  * regulator_count_voltages - count regulator_list_voltage() selectors
1522  * @regulator: regulator source
1523  *
1524  * Returns number of selectors, or negative errno.  Selectors are
1525  * numbered starting at zero, and typically correspond to bitfields
1526  * in hardware registers.
1527  */
1528 int regulator_count_voltages(struct regulator *regulator)
1529 {
1530 	struct regulator_dev	*rdev = regulator->rdev;
1531 
1532 	return rdev->desc->n_voltages ? : -EINVAL;
1533 }
1534 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1535 
1536 /**
1537  * regulator_list_voltage - enumerate supported voltages
1538  * @regulator: regulator source
1539  * @selector: identify voltage to list
1540  * Context: can sleep
1541  *
1542  * Returns a voltage that can be passed to @regulator_set_voltage(),
1543  * zero if this selector code can't be used on this system, or a
1544  * negative errno.
1545  */
1546 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1547 {
1548 	struct regulator_dev	*rdev = regulator->rdev;
1549 	struct regulator_ops	*ops = rdev->desc->ops;
1550 	int			ret;
1551 
1552 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1553 		return -EINVAL;
1554 
1555 	mutex_lock(&rdev->mutex);
1556 	ret = ops->list_voltage(rdev, selector);
1557 	mutex_unlock(&rdev->mutex);
1558 
1559 	if (ret > 0) {
1560 		if (ret < rdev->constraints->min_uV)
1561 			ret = 0;
1562 		else if (ret > rdev->constraints->max_uV)
1563 			ret = 0;
1564 	}
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1569 
1570 /**
1571  * regulator_is_supported_voltage - check if a voltage range can be supported
1572  *
1573  * @regulator: Regulator to check.
1574  * @min_uV: Minimum required voltage in uV.
1575  * @max_uV: Maximum required voltage in uV.
1576  *
1577  * Returns a boolean or a negative error code.
1578  */
1579 int regulator_is_supported_voltage(struct regulator *regulator,
1580 				   int min_uV, int max_uV)
1581 {
1582 	int i, voltages, ret;
1583 
1584 	ret = regulator_count_voltages(regulator);
1585 	if (ret < 0)
1586 		return ret;
1587 	voltages = ret;
1588 
1589 	for (i = 0; i < voltages; i++) {
1590 		ret = regulator_list_voltage(regulator, i);
1591 
1592 		if (ret >= min_uV && ret <= max_uV)
1593 			return 1;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /**
1600  * regulator_set_voltage - set regulator output voltage
1601  * @regulator: regulator source
1602  * @min_uV: Minimum required voltage in uV
1603  * @max_uV: Maximum acceptable voltage in uV
1604  *
1605  * Sets a voltage regulator to the desired output voltage. This can be set
1606  * during any regulator state. IOW, regulator can be disabled or enabled.
1607  *
1608  * If the regulator is enabled then the voltage will change to the new value
1609  * immediately otherwise if the regulator is disabled the regulator will
1610  * output at the new voltage when enabled.
1611  *
1612  * NOTE: If the regulator is shared between several devices then the lowest
1613  * request voltage that meets the system constraints will be used.
1614  * Regulator system constraints must be set for this regulator before
1615  * calling this function otherwise this call will fail.
1616  */
1617 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1618 {
1619 	struct regulator_dev *rdev = regulator->rdev;
1620 	int ret;
1621 
1622 	mutex_lock(&rdev->mutex);
1623 
1624 	/* sanity check */
1625 	if (!rdev->desc->ops->set_voltage) {
1626 		ret = -EINVAL;
1627 		goto out;
1628 	}
1629 
1630 	/* constraints check */
1631 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1632 	if (ret < 0)
1633 		goto out;
1634 	regulator->min_uV = min_uV;
1635 	regulator->max_uV = max_uV;
1636 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1637 
1638 out:
1639 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1640 	mutex_unlock(&rdev->mutex);
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1644 
1645 static int _regulator_get_voltage(struct regulator_dev *rdev)
1646 {
1647 	/* sanity check */
1648 	if (rdev->desc->ops->get_voltage)
1649 		return rdev->desc->ops->get_voltage(rdev);
1650 	else
1651 		return -EINVAL;
1652 }
1653 
1654 /**
1655  * regulator_get_voltage - get regulator output voltage
1656  * @regulator: regulator source
1657  *
1658  * This returns the current regulator voltage in uV.
1659  *
1660  * NOTE: If the regulator is disabled it will return the voltage value. This
1661  * function should not be used to determine regulator state.
1662  */
1663 int regulator_get_voltage(struct regulator *regulator)
1664 {
1665 	int ret;
1666 
1667 	mutex_lock(&regulator->rdev->mutex);
1668 
1669 	ret = _regulator_get_voltage(regulator->rdev);
1670 
1671 	mutex_unlock(&regulator->rdev->mutex);
1672 
1673 	return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1676 
1677 /**
1678  * regulator_set_current_limit - set regulator output current limit
1679  * @regulator: regulator source
1680  * @min_uA: Minimuum supported current in uA
1681  * @max_uA: Maximum supported current in uA
1682  *
1683  * Sets current sink to the desired output current. This can be set during
1684  * any regulator state. IOW, regulator can be disabled or enabled.
1685  *
1686  * If the regulator is enabled then the current will change to the new value
1687  * immediately otherwise if the regulator is disabled the regulator will
1688  * output at the new current when enabled.
1689  *
1690  * NOTE: Regulator system constraints must be set for this regulator before
1691  * calling this function otherwise this call will fail.
1692  */
1693 int regulator_set_current_limit(struct regulator *regulator,
1694 			       int min_uA, int max_uA)
1695 {
1696 	struct regulator_dev *rdev = regulator->rdev;
1697 	int ret;
1698 
1699 	mutex_lock(&rdev->mutex);
1700 
1701 	/* sanity check */
1702 	if (!rdev->desc->ops->set_current_limit) {
1703 		ret = -EINVAL;
1704 		goto out;
1705 	}
1706 
1707 	/* constraints check */
1708 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1709 	if (ret < 0)
1710 		goto out;
1711 
1712 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1713 out:
1714 	mutex_unlock(&rdev->mutex);
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1718 
1719 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1720 {
1721 	int ret;
1722 
1723 	mutex_lock(&rdev->mutex);
1724 
1725 	/* sanity check */
1726 	if (!rdev->desc->ops->get_current_limit) {
1727 		ret = -EINVAL;
1728 		goto out;
1729 	}
1730 
1731 	ret = rdev->desc->ops->get_current_limit(rdev);
1732 out:
1733 	mutex_unlock(&rdev->mutex);
1734 	return ret;
1735 }
1736 
1737 /**
1738  * regulator_get_current_limit - get regulator output current
1739  * @regulator: regulator source
1740  *
1741  * This returns the current supplied by the specified current sink in uA.
1742  *
1743  * NOTE: If the regulator is disabled it will return the current value. This
1744  * function should not be used to determine regulator state.
1745  */
1746 int regulator_get_current_limit(struct regulator *regulator)
1747 {
1748 	return _regulator_get_current_limit(regulator->rdev);
1749 }
1750 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1751 
1752 /**
1753  * regulator_set_mode - set regulator operating mode
1754  * @regulator: regulator source
1755  * @mode: operating mode - one of the REGULATOR_MODE constants
1756  *
1757  * Set regulator operating mode to increase regulator efficiency or improve
1758  * regulation performance.
1759  *
1760  * NOTE: Regulator system constraints must be set for this regulator before
1761  * calling this function otherwise this call will fail.
1762  */
1763 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1764 {
1765 	struct regulator_dev *rdev = regulator->rdev;
1766 	int ret;
1767 
1768 	mutex_lock(&rdev->mutex);
1769 
1770 	/* sanity check */
1771 	if (!rdev->desc->ops->set_mode) {
1772 		ret = -EINVAL;
1773 		goto out;
1774 	}
1775 
1776 	/* constraints check */
1777 	ret = regulator_check_mode(rdev, mode);
1778 	if (ret < 0)
1779 		goto out;
1780 
1781 	ret = rdev->desc->ops->set_mode(rdev, mode);
1782 out:
1783 	mutex_unlock(&rdev->mutex);
1784 	return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_set_mode);
1787 
1788 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1789 {
1790 	int ret;
1791 
1792 	mutex_lock(&rdev->mutex);
1793 
1794 	/* sanity check */
1795 	if (!rdev->desc->ops->get_mode) {
1796 		ret = -EINVAL;
1797 		goto out;
1798 	}
1799 
1800 	ret = rdev->desc->ops->get_mode(rdev);
1801 out:
1802 	mutex_unlock(&rdev->mutex);
1803 	return ret;
1804 }
1805 
1806 /**
1807  * regulator_get_mode - get regulator operating mode
1808  * @regulator: regulator source
1809  *
1810  * Get the current regulator operating mode.
1811  */
1812 unsigned int regulator_get_mode(struct regulator *regulator)
1813 {
1814 	return _regulator_get_mode(regulator->rdev);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_get_mode);
1817 
1818 /**
1819  * regulator_set_optimum_mode - set regulator optimum operating mode
1820  * @regulator: regulator source
1821  * @uA_load: load current
1822  *
1823  * Notifies the regulator core of a new device load. This is then used by
1824  * DRMS (if enabled by constraints) to set the most efficient regulator
1825  * operating mode for the new regulator loading.
1826  *
1827  * Consumer devices notify their supply regulator of the maximum power
1828  * they will require (can be taken from device datasheet in the power
1829  * consumption tables) when they change operational status and hence power
1830  * state. Examples of operational state changes that can affect power
1831  * consumption are :-
1832  *
1833  *    o Device is opened / closed.
1834  *    o Device I/O is about to begin or has just finished.
1835  *    o Device is idling in between work.
1836  *
1837  * This information is also exported via sysfs to userspace.
1838  *
1839  * DRMS will sum the total requested load on the regulator and change
1840  * to the most efficient operating mode if platform constraints allow.
1841  *
1842  * Returns the new regulator mode or error.
1843  */
1844 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1845 {
1846 	struct regulator_dev *rdev = regulator->rdev;
1847 	struct regulator *consumer;
1848 	int ret, output_uV, input_uV, total_uA_load = 0;
1849 	unsigned int mode;
1850 
1851 	mutex_lock(&rdev->mutex);
1852 
1853 	regulator->uA_load = uA_load;
1854 	ret = regulator_check_drms(rdev);
1855 	if (ret < 0)
1856 		goto out;
1857 	ret = -EINVAL;
1858 
1859 	/* sanity check */
1860 	if (!rdev->desc->ops->get_optimum_mode)
1861 		goto out;
1862 
1863 	/* get output voltage */
1864 	output_uV = rdev->desc->ops->get_voltage(rdev);
1865 	if (output_uV <= 0) {
1866 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1867 			__func__, rdev_get_name(rdev));
1868 		goto out;
1869 	}
1870 
1871 	/* get input voltage */
1872 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1873 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1874 	else
1875 		input_uV = rdev->constraints->input_uV;
1876 	if (input_uV <= 0) {
1877 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1878 			__func__, rdev_get_name(rdev));
1879 		goto out;
1880 	}
1881 
1882 	/* calc total requested load for this regulator */
1883 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1884 		total_uA_load += consumer->uA_load;
1885 
1886 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1887 						 input_uV, output_uV,
1888 						 total_uA_load);
1889 	ret = regulator_check_mode(rdev, mode);
1890 	if (ret < 0) {
1891 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1892 			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1893 			total_uA_load, input_uV, output_uV);
1894 		goto out;
1895 	}
1896 
1897 	ret = rdev->desc->ops->set_mode(rdev, mode);
1898 	if (ret < 0) {
1899 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1900 			__func__, mode, rdev_get_name(rdev));
1901 		goto out;
1902 	}
1903 	ret = mode;
1904 out:
1905 	mutex_unlock(&rdev->mutex);
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1909 
1910 /**
1911  * regulator_register_notifier - register regulator event notifier
1912  * @regulator: regulator source
1913  * @nb: notifier block
1914  *
1915  * Register notifier block to receive regulator events.
1916  */
1917 int regulator_register_notifier(struct regulator *regulator,
1918 			      struct notifier_block *nb)
1919 {
1920 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1921 						nb);
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1924 
1925 /**
1926  * regulator_unregister_notifier - unregister regulator event notifier
1927  * @regulator: regulator source
1928  * @nb: notifier block
1929  *
1930  * Unregister regulator event notifier block.
1931  */
1932 int regulator_unregister_notifier(struct regulator *regulator,
1933 				struct notifier_block *nb)
1934 {
1935 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1936 						  nb);
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1939 
1940 /* notify regulator consumers and downstream regulator consumers.
1941  * Note mutex must be held by caller.
1942  */
1943 static void _notifier_call_chain(struct regulator_dev *rdev,
1944 				  unsigned long event, void *data)
1945 {
1946 	struct regulator_dev *_rdev;
1947 
1948 	/* call rdev chain first */
1949 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1950 
1951 	/* now notify regulator we supply */
1952 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1953 		mutex_lock(&_rdev->mutex);
1954 		_notifier_call_chain(_rdev, event, data);
1955 		mutex_unlock(&_rdev->mutex);
1956 	}
1957 }
1958 
1959 /**
1960  * regulator_bulk_get - get multiple regulator consumers
1961  *
1962  * @dev:           Device to supply
1963  * @num_consumers: Number of consumers to register
1964  * @consumers:     Configuration of consumers; clients are stored here.
1965  *
1966  * @return 0 on success, an errno on failure.
1967  *
1968  * This helper function allows drivers to get several regulator
1969  * consumers in one operation.  If any of the regulators cannot be
1970  * acquired then any regulators that were allocated will be freed
1971  * before returning to the caller.
1972  */
1973 int regulator_bulk_get(struct device *dev, int num_consumers,
1974 		       struct regulator_bulk_data *consumers)
1975 {
1976 	int i;
1977 	int ret;
1978 
1979 	for (i = 0; i < num_consumers; i++)
1980 		consumers[i].consumer = NULL;
1981 
1982 	for (i = 0; i < num_consumers; i++) {
1983 		consumers[i].consumer = regulator_get(dev,
1984 						      consumers[i].supply);
1985 		if (IS_ERR(consumers[i].consumer)) {
1986 			ret = PTR_ERR(consumers[i].consumer);
1987 			dev_err(dev, "Failed to get supply '%s': %d\n",
1988 				consumers[i].supply, ret);
1989 			consumers[i].consumer = NULL;
1990 			goto err;
1991 		}
1992 	}
1993 
1994 	return 0;
1995 
1996 err:
1997 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1998 		regulator_put(consumers[i].consumer);
1999 
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2003 
2004 /**
2005  * regulator_bulk_enable - enable multiple regulator consumers
2006  *
2007  * @num_consumers: Number of consumers
2008  * @consumers:     Consumer data; clients are stored here.
2009  * @return         0 on success, an errno on failure
2010  *
2011  * This convenience API allows consumers to enable multiple regulator
2012  * clients in a single API call.  If any consumers cannot be enabled
2013  * then any others that were enabled will be disabled again prior to
2014  * return.
2015  */
2016 int regulator_bulk_enable(int num_consumers,
2017 			  struct regulator_bulk_data *consumers)
2018 {
2019 	int i;
2020 	int ret;
2021 
2022 	for (i = 0; i < num_consumers; i++) {
2023 		ret = regulator_enable(consumers[i].consumer);
2024 		if (ret != 0)
2025 			goto err;
2026 	}
2027 
2028 	return 0;
2029 
2030 err:
2031 	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2032 	for (--i; i >= 0; --i)
2033 		regulator_disable(consumers[i].consumer);
2034 
2035 	return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2038 
2039 /**
2040  * regulator_bulk_disable - disable multiple regulator consumers
2041  *
2042  * @num_consumers: Number of consumers
2043  * @consumers:     Consumer data; clients are stored here.
2044  * @return         0 on success, an errno on failure
2045  *
2046  * This convenience API allows consumers to disable multiple regulator
2047  * clients in a single API call.  If any consumers cannot be enabled
2048  * then any others that were disabled will be disabled again prior to
2049  * return.
2050  */
2051 int regulator_bulk_disable(int num_consumers,
2052 			   struct regulator_bulk_data *consumers)
2053 {
2054 	int i;
2055 	int ret;
2056 
2057 	for (i = 0; i < num_consumers; i++) {
2058 		ret = regulator_disable(consumers[i].consumer);
2059 		if (ret != 0)
2060 			goto err;
2061 	}
2062 
2063 	return 0;
2064 
2065 err:
2066 	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2067 	       ret);
2068 	for (--i; i >= 0; --i)
2069 		regulator_enable(consumers[i].consumer);
2070 
2071 	return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2074 
2075 /**
2076  * regulator_bulk_free - free multiple regulator consumers
2077  *
2078  * @num_consumers: Number of consumers
2079  * @consumers:     Consumer data; clients are stored here.
2080  *
2081  * This convenience API allows consumers to free multiple regulator
2082  * clients in a single API call.
2083  */
2084 void regulator_bulk_free(int num_consumers,
2085 			 struct regulator_bulk_data *consumers)
2086 {
2087 	int i;
2088 
2089 	for (i = 0; i < num_consumers; i++) {
2090 		regulator_put(consumers[i].consumer);
2091 		consumers[i].consumer = NULL;
2092 	}
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2095 
2096 /**
2097  * regulator_notifier_call_chain - call regulator event notifier
2098  * @rdev: regulator source
2099  * @event: notifier block
2100  * @data: callback-specific data.
2101  *
2102  * Called by regulator drivers to notify clients a regulator event has
2103  * occurred. We also notify regulator clients downstream.
2104  * Note lock must be held by caller.
2105  */
2106 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2107 				  unsigned long event, void *data)
2108 {
2109 	_notifier_call_chain(rdev, event, data);
2110 	return NOTIFY_DONE;
2111 
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2114 
2115 /**
2116  * regulator_mode_to_status - convert a regulator mode into a status
2117  *
2118  * @mode: Mode to convert
2119  *
2120  * Convert a regulator mode into a status.
2121  */
2122 int regulator_mode_to_status(unsigned int mode)
2123 {
2124 	switch (mode) {
2125 	case REGULATOR_MODE_FAST:
2126 		return REGULATOR_STATUS_FAST;
2127 	case REGULATOR_MODE_NORMAL:
2128 		return REGULATOR_STATUS_NORMAL;
2129 	case REGULATOR_MODE_IDLE:
2130 		return REGULATOR_STATUS_IDLE;
2131 	case REGULATOR_STATUS_STANDBY:
2132 		return REGULATOR_STATUS_STANDBY;
2133 	default:
2134 		return 0;
2135 	}
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2138 
2139 /*
2140  * To avoid cluttering sysfs (and memory) with useless state, only
2141  * create attributes that can be meaningfully displayed.
2142  */
2143 static int add_regulator_attributes(struct regulator_dev *rdev)
2144 {
2145 	struct device		*dev = &rdev->dev;
2146 	struct regulator_ops	*ops = rdev->desc->ops;
2147 	int			status = 0;
2148 
2149 	/* some attributes need specific methods to be displayed */
2150 	if (ops->get_voltage) {
2151 		status = device_create_file(dev, &dev_attr_microvolts);
2152 		if (status < 0)
2153 			return status;
2154 	}
2155 	if (ops->get_current_limit) {
2156 		status = device_create_file(dev, &dev_attr_microamps);
2157 		if (status < 0)
2158 			return status;
2159 	}
2160 	if (ops->get_mode) {
2161 		status = device_create_file(dev, &dev_attr_opmode);
2162 		if (status < 0)
2163 			return status;
2164 	}
2165 	if (ops->is_enabled) {
2166 		status = device_create_file(dev, &dev_attr_state);
2167 		if (status < 0)
2168 			return status;
2169 	}
2170 	if (ops->get_status) {
2171 		status = device_create_file(dev, &dev_attr_status);
2172 		if (status < 0)
2173 			return status;
2174 	}
2175 
2176 	/* some attributes are type-specific */
2177 	if (rdev->desc->type == REGULATOR_CURRENT) {
2178 		status = device_create_file(dev, &dev_attr_requested_microamps);
2179 		if (status < 0)
2180 			return status;
2181 	}
2182 
2183 	/* all the other attributes exist to support constraints;
2184 	 * don't show them if there are no constraints, or if the
2185 	 * relevant supporting methods are missing.
2186 	 */
2187 	if (!rdev->constraints)
2188 		return status;
2189 
2190 	/* constraints need specific supporting methods */
2191 	if (ops->set_voltage) {
2192 		status = device_create_file(dev, &dev_attr_min_microvolts);
2193 		if (status < 0)
2194 			return status;
2195 		status = device_create_file(dev, &dev_attr_max_microvolts);
2196 		if (status < 0)
2197 			return status;
2198 	}
2199 	if (ops->set_current_limit) {
2200 		status = device_create_file(dev, &dev_attr_min_microamps);
2201 		if (status < 0)
2202 			return status;
2203 		status = device_create_file(dev, &dev_attr_max_microamps);
2204 		if (status < 0)
2205 			return status;
2206 	}
2207 
2208 	/* suspend mode constraints need multiple supporting methods */
2209 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2210 		return status;
2211 
2212 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2213 	if (status < 0)
2214 		return status;
2215 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2216 	if (status < 0)
2217 		return status;
2218 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2219 	if (status < 0)
2220 		return status;
2221 
2222 	if (ops->set_suspend_voltage) {
2223 		status = device_create_file(dev,
2224 				&dev_attr_suspend_standby_microvolts);
2225 		if (status < 0)
2226 			return status;
2227 		status = device_create_file(dev,
2228 				&dev_attr_suspend_mem_microvolts);
2229 		if (status < 0)
2230 			return status;
2231 		status = device_create_file(dev,
2232 				&dev_attr_suspend_disk_microvolts);
2233 		if (status < 0)
2234 			return status;
2235 	}
2236 
2237 	if (ops->set_suspend_mode) {
2238 		status = device_create_file(dev,
2239 				&dev_attr_suspend_standby_mode);
2240 		if (status < 0)
2241 			return status;
2242 		status = device_create_file(dev,
2243 				&dev_attr_suspend_mem_mode);
2244 		if (status < 0)
2245 			return status;
2246 		status = device_create_file(dev,
2247 				&dev_attr_suspend_disk_mode);
2248 		if (status < 0)
2249 			return status;
2250 	}
2251 
2252 	return status;
2253 }
2254 
2255 /**
2256  * regulator_register - register regulator
2257  * @regulator_desc: regulator to register
2258  * @dev: struct device for the regulator
2259  * @init_data: platform provided init data, passed through by driver
2260  * @driver_data: private regulator data
2261  *
2262  * Called by regulator drivers to register a regulator.
2263  * Returns 0 on success.
2264  */
2265 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2266 	struct device *dev, struct regulator_init_data *init_data,
2267 	void *driver_data)
2268 {
2269 	static atomic_t regulator_no = ATOMIC_INIT(0);
2270 	struct regulator_dev *rdev;
2271 	int ret, i;
2272 
2273 	if (regulator_desc == NULL)
2274 		return ERR_PTR(-EINVAL);
2275 
2276 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2277 		return ERR_PTR(-EINVAL);
2278 
2279 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2280 	    regulator_desc->type != REGULATOR_CURRENT)
2281 		return ERR_PTR(-EINVAL);
2282 
2283 	if (!init_data)
2284 		return ERR_PTR(-EINVAL);
2285 
2286 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2287 	if (rdev == NULL)
2288 		return ERR_PTR(-ENOMEM);
2289 
2290 	mutex_lock(&regulator_list_mutex);
2291 
2292 	mutex_init(&rdev->mutex);
2293 	rdev->reg_data = driver_data;
2294 	rdev->owner = regulator_desc->owner;
2295 	rdev->desc = regulator_desc;
2296 	INIT_LIST_HEAD(&rdev->consumer_list);
2297 	INIT_LIST_HEAD(&rdev->supply_list);
2298 	INIT_LIST_HEAD(&rdev->list);
2299 	INIT_LIST_HEAD(&rdev->slist);
2300 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2301 
2302 	/* preform any regulator specific init */
2303 	if (init_data->regulator_init) {
2304 		ret = init_data->regulator_init(rdev->reg_data);
2305 		if (ret < 0)
2306 			goto clean;
2307 	}
2308 
2309 	/* register with sysfs */
2310 	rdev->dev.class = &regulator_class;
2311 	rdev->dev.parent = dev;
2312 	dev_set_name(&rdev->dev, "regulator.%d",
2313 		     atomic_inc_return(&regulator_no) - 1);
2314 	ret = device_register(&rdev->dev);
2315 	if (ret != 0)
2316 		goto clean;
2317 
2318 	dev_set_drvdata(&rdev->dev, rdev);
2319 
2320 	/* set regulator constraints */
2321 	ret = set_machine_constraints(rdev, &init_data->constraints);
2322 	if (ret < 0)
2323 		goto scrub;
2324 
2325 	/* add attributes supported by this regulator */
2326 	ret = add_regulator_attributes(rdev);
2327 	if (ret < 0)
2328 		goto scrub;
2329 
2330 	/* set supply regulator if it exists */
2331 	if (init_data->supply_regulator_dev) {
2332 		ret = set_supply(rdev,
2333 			dev_get_drvdata(init_data->supply_regulator_dev));
2334 		if (ret < 0)
2335 			goto scrub;
2336 	}
2337 
2338 	/* add consumers devices */
2339 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2340 		ret = set_consumer_device_supply(rdev,
2341 			init_data->consumer_supplies[i].dev,
2342 			init_data->consumer_supplies[i].dev_name,
2343 			init_data->consumer_supplies[i].supply);
2344 		if (ret < 0) {
2345 			for (--i; i >= 0; i--)
2346 				unset_consumer_device_supply(rdev,
2347 				    init_data->consumer_supplies[i].dev_name,
2348 				    init_data->consumer_supplies[i].dev);
2349 			goto scrub;
2350 		}
2351 	}
2352 
2353 	list_add(&rdev->list, &regulator_list);
2354 out:
2355 	mutex_unlock(&regulator_list_mutex);
2356 	return rdev;
2357 
2358 scrub:
2359 	device_unregister(&rdev->dev);
2360 	/* device core frees rdev */
2361 	rdev = ERR_PTR(ret);
2362 	goto out;
2363 
2364 clean:
2365 	kfree(rdev);
2366 	rdev = ERR_PTR(ret);
2367 	goto out;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_register);
2370 
2371 /**
2372  * regulator_unregister - unregister regulator
2373  * @rdev: regulator to unregister
2374  *
2375  * Called by regulator drivers to unregister a regulator.
2376  */
2377 void regulator_unregister(struct regulator_dev *rdev)
2378 {
2379 	if (rdev == NULL)
2380 		return;
2381 
2382 	mutex_lock(&regulator_list_mutex);
2383 	WARN_ON(rdev->open_count);
2384 	unset_regulator_supplies(rdev);
2385 	list_del(&rdev->list);
2386 	if (rdev->supply)
2387 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2388 	device_unregister(&rdev->dev);
2389 	mutex_unlock(&regulator_list_mutex);
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_unregister);
2392 
2393 /**
2394  * regulator_suspend_prepare - prepare regulators for system wide suspend
2395  * @state: system suspend state
2396  *
2397  * Configure each regulator with it's suspend operating parameters for state.
2398  * This will usually be called by machine suspend code prior to supending.
2399  */
2400 int regulator_suspend_prepare(suspend_state_t state)
2401 {
2402 	struct regulator_dev *rdev;
2403 	int ret = 0;
2404 
2405 	/* ON is handled by regulator active state */
2406 	if (state == PM_SUSPEND_ON)
2407 		return -EINVAL;
2408 
2409 	mutex_lock(&regulator_list_mutex);
2410 	list_for_each_entry(rdev, &regulator_list, list) {
2411 
2412 		mutex_lock(&rdev->mutex);
2413 		ret = suspend_prepare(rdev, state);
2414 		mutex_unlock(&rdev->mutex);
2415 
2416 		if (ret < 0) {
2417 			printk(KERN_ERR "%s: failed to prepare %s\n",
2418 				__func__, rdev_get_name(rdev));
2419 			goto out;
2420 		}
2421 	}
2422 out:
2423 	mutex_unlock(&regulator_list_mutex);
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2427 
2428 /**
2429  * regulator_has_full_constraints - the system has fully specified constraints
2430  *
2431  * Calling this function will cause the regulator API to disable all
2432  * regulators which have a zero use count and don't have an always_on
2433  * constraint in a late_initcall.
2434  *
2435  * The intention is that this will become the default behaviour in a
2436  * future kernel release so users are encouraged to use this facility
2437  * now.
2438  */
2439 void regulator_has_full_constraints(void)
2440 {
2441 	has_full_constraints = 1;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2444 
2445 /**
2446  * rdev_get_drvdata - get rdev regulator driver data
2447  * @rdev: regulator
2448  *
2449  * Get rdev regulator driver private data. This call can be used in the
2450  * regulator driver context.
2451  */
2452 void *rdev_get_drvdata(struct regulator_dev *rdev)
2453 {
2454 	return rdev->reg_data;
2455 }
2456 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2457 
2458 /**
2459  * regulator_get_drvdata - get regulator driver data
2460  * @regulator: regulator
2461  *
2462  * Get regulator driver private data. This call can be used in the consumer
2463  * driver context when non API regulator specific functions need to be called.
2464  */
2465 void *regulator_get_drvdata(struct regulator *regulator)
2466 {
2467 	return regulator->rdev->reg_data;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2470 
2471 /**
2472  * regulator_set_drvdata - set regulator driver data
2473  * @regulator: regulator
2474  * @data: data
2475  */
2476 void regulator_set_drvdata(struct regulator *regulator, void *data)
2477 {
2478 	regulator->rdev->reg_data = data;
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2481 
2482 /**
2483  * regulator_get_id - get regulator ID
2484  * @rdev: regulator
2485  */
2486 int rdev_get_id(struct regulator_dev *rdev)
2487 {
2488 	return rdev->desc->id;
2489 }
2490 EXPORT_SYMBOL_GPL(rdev_get_id);
2491 
2492 struct device *rdev_get_dev(struct regulator_dev *rdev)
2493 {
2494 	return &rdev->dev;
2495 }
2496 EXPORT_SYMBOL_GPL(rdev_get_dev);
2497 
2498 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2499 {
2500 	return reg_init_data->driver_data;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2503 
2504 static int __init regulator_init(void)
2505 {
2506 	int ret;
2507 
2508 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2509 
2510 	ret = class_register(&regulator_class);
2511 
2512 	regulator_dummy_init();
2513 
2514 	return ret;
2515 }
2516 
2517 /* init early to allow our consumers to complete system booting */
2518 core_initcall(regulator_init);
2519 
2520 static int __init regulator_init_complete(void)
2521 {
2522 	struct regulator_dev *rdev;
2523 	struct regulator_ops *ops;
2524 	struct regulation_constraints *c;
2525 	int enabled, ret;
2526 	const char *name;
2527 
2528 	mutex_lock(&regulator_list_mutex);
2529 
2530 	/* If we have a full configuration then disable any regulators
2531 	 * which are not in use or always_on.  This will become the
2532 	 * default behaviour in the future.
2533 	 */
2534 	list_for_each_entry(rdev, &regulator_list, list) {
2535 		ops = rdev->desc->ops;
2536 		c = rdev->constraints;
2537 
2538 		name = rdev_get_name(rdev);
2539 
2540 		if (!ops->disable || (c && c->always_on))
2541 			continue;
2542 
2543 		mutex_lock(&rdev->mutex);
2544 
2545 		if (rdev->use_count)
2546 			goto unlock;
2547 
2548 		/* If we can't read the status assume it's on. */
2549 		if (ops->is_enabled)
2550 			enabled = ops->is_enabled(rdev);
2551 		else
2552 			enabled = 1;
2553 
2554 		if (!enabled)
2555 			goto unlock;
2556 
2557 		if (has_full_constraints) {
2558 			/* We log since this may kill the system if it
2559 			 * goes wrong. */
2560 			printk(KERN_INFO "%s: disabling %s\n",
2561 			       __func__, name);
2562 			ret = ops->disable(rdev);
2563 			if (ret != 0) {
2564 				printk(KERN_ERR
2565 				       "%s: couldn't disable %s: %d\n",
2566 				       __func__, name, ret);
2567 			}
2568 		} else {
2569 			/* The intention is that in future we will
2570 			 * assume that full constraints are provided
2571 			 * so warn even if we aren't going to do
2572 			 * anything here.
2573 			 */
2574 			printk(KERN_WARNING
2575 			       "%s: incomplete constraints, leaving %s on\n",
2576 			       __func__, name);
2577 		}
2578 
2579 unlock:
2580 		mutex_unlock(&rdev->mutex);
2581 	}
2582 
2583 	mutex_unlock(&regulator_list_mutex);
2584 
2585 	return 0;
2586 }
2587 late_initcall(regulator_init_complete);
2588