1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 /* 62 * struct regulator_map 63 * 64 * Used to provide symbolic supply names to devices. 65 */ 66 struct regulator_map { 67 struct list_head list; 68 const char *dev_name; /* The dev_name() for the consumer */ 69 const char *supply; 70 struct regulator_dev *regulator; 71 }; 72 73 /* 74 * struct regulator_enable_gpio 75 * 76 * Management for shared enable GPIO pin 77 */ 78 struct regulator_enable_gpio { 79 struct list_head list; 80 struct gpio_desc *gpiod; 81 u32 enable_count; /* a number of enabled shared GPIO */ 82 u32 request_count; /* a number of requested shared GPIO */ 83 unsigned int ena_gpio_invert:1; 84 }; 85 86 /* 87 * struct regulator_supply_alias 88 * 89 * Used to map lookups for a supply onto an alternative device. 90 */ 91 struct regulator_supply_alias { 92 struct list_head list; 93 struct device *src_dev; 94 const char *src_supply; 95 struct device *alias_dev; 96 const char *alias_supply; 97 }; 98 99 static int _regulator_is_enabled(struct regulator_dev *rdev); 100 static int _regulator_disable(struct regulator_dev *rdev); 101 static int _regulator_get_voltage(struct regulator_dev *rdev); 102 static int _regulator_get_current_limit(struct regulator_dev *rdev); 103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 104 static int _notifier_call_chain(struct regulator_dev *rdev, 105 unsigned long event, void *data); 106 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 107 int min_uV, int max_uV); 108 static struct regulator *create_regulator(struct regulator_dev *rdev, 109 struct device *dev, 110 const char *supply_name); 111 static void _regulator_put(struct regulator *regulator); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 129 { 130 if (!rdev->constraints) { 131 rdev_err(rdev, "no constraints\n"); 132 return false; 133 } 134 135 if (rdev->constraints->valid_ops_mask & ops) 136 return true; 137 138 return false; 139 } 140 141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 142 { 143 if (rdev && rdev->supply) 144 return rdev->supply->rdev; 145 146 return NULL; 147 } 148 149 /** 150 * regulator_lock_supply - lock a regulator and its supplies 151 * @rdev: regulator source 152 */ 153 static void regulator_lock_supply(struct regulator_dev *rdev) 154 { 155 int i; 156 157 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 158 mutex_lock_nested(&rdev->mutex, i); 159 } 160 161 /** 162 * regulator_unlock_supply - unlock a regulator and its supplies 163 * @rdev: regulator source 164 */ 165 static void regulator_unlock_supply(struct regulator_dev *rdev) 166 { 167 struct regulator *supply; 168 169 while (1) { 170 mutex_unlock(&rdev->mutex); 171 supply = rdev->supply; 172 173 if (!rdev->supply) 174 return; 175 176 rdev = supply->rdev; 177 } 178 } 179 180 /** 181 * of_get_regulator - get a regulator device node based on supply name 182 * @dev: Device pointer for the consumer (of regulator) device 183 * @supply: regulator supply name 184 * 185 * Extract the regulator device node corresponding to the supply name. 186 * returns the device node corresponding to the regulator if found, else 187 * returns NULL. 188 */ 189 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 190 { 191 struct device_node *regnode = NULL; 192 char prop_name[32]; /* 32 is max size of property name */ 193 194 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 195 196 snprintf(prop_name, 32, "%s-supply", supply); 197 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 198 199 if (!regnode) { 200 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 201 prop_name, dev->of_node); 202 return NULL; 203 } 204 return regnode; 205 } 206 207 /* Platform voltage constraint check */ 208 static int regulator_check_voltage(struct regulator_dev *rdev, 209 int *min_uV, int *max_uV) 210 { 211 BUG_ON(*min_uV > *max_uV); 212 213 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 214 rdev_err(rdev, "voltage operation not allowed\n"); 215 return -EPERM; 216 } 217 218 if (*max_uV > rdev->constraints->max_uV) 219 *max_uV = rdev->constraints->max_uV; 220 if (*min_uV < rdev->constraints->min_uV) 221 *min_uV = rdev->constraints->min_uV; 222 223 if (*min_uV > *max_uV) { 224 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 225 *min_uV, *max_uV); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 232 /* return 0 if the state is valid */ 233 static int regulator_check_states(suspend_state_t state) 234 { 235 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 236 } 237 238 /* Make sure we select a voltage that suits the needs of all 239 * regulator consumers 240 */ 241 static int regulator_check_consumers(struct regulator_dev *rdev, 242 int *min_uV, int *max_uV, 243 suspend_state_t state) 244 { 245 struct regulator *regulator; 246 struct regulator_voltage *voltage; 247 248 list_for_each_entry(regulator, &rdev->consumer_list, list) { 249 voltage = ®ulator->voltage[state]; 250 /* 251 * Assume consumers that didn't say anything are OK 252 * with anything in the constraint range. 253 */ 254 if (!voltage->min_uV && !voltage->max_uV) 255 continue; 256 257 if (*max_uV > voltage->max_uV) 258 *max_uV = voltage->max_uV; 259 if (*min_uV < voltage->min_uV) 260 *min_uV = voltage->min_uV; 261 } 262 263 if (*min_uV > *max_uV) { 264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 265 *min_uV, *max_uV); 266 return -EINVAL; 267 } 268 269 return 0; 270 } 271 272 /* current constraint check */ 273 static int regulator_check_current_limit(struct regulator_dev *rdev, 274 int *min_uA, int *max_uA) 275 { 276 BUG_ON(*min_uA > *max_uA); 277 278 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 279 rdev_err(rdev, "current operation not allowed\n"); 280 return -EPERM; 281 } 282 283 if (*max_uA > rdev->constraints->max_uA) 284 *max_uA = rdev->constraints->max_uA; 285 if (*min_uA < rdev->constraints->min_uA) 286 *min_uA = rdev->constraints->min_uA; 287 288 if (*min_uA > *max_uA) { 289 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 290 *min_uA, *max_uA); 291 return -EINVAL; 292 } 293 294 return 0; 295 } 296 297 /* operating mode constraint check */ 298 static int regulator_mode_constrain(struct regulator_dev *rdev, 299 unsigned int *mode) 300 { 301 switch (*mode) { 302 case REGULATOR_MODE_FAST: 303 case REGULATOR_MODE_NORMAL: 304 case REGULATOR_MODE_IDLE: 305 case REGULATOR_MODE_STANDBY: 306 break; 307 default: 308 rdev_err(rdev, "invalid mode %x specified\n", *mode); 309 return -EINVAL; 310 } 311 312 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 313 rdev_err(rdev, "mode operation not allowed\n"); 314 return -EPERM; 315 } 316 317 /* The modes are bitmasks, the most power hungry modes having 318 * the lowest values. If the requested mode isn't supported 319 * try higher modes. */ 320 while (*mode) { 321 if (rdev->constraints->valid_modes_mask & *mode) 322 return 0; 323 *mode /= 2; 324 } 325 326 return -EINVAL; 327 } 328 329 static inline struct regulator_state * 330 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 331 { 332 if (rdev->constraints == NULL) 333 return NULL; 334 335 switch (state) { 336 case PM_SUSPEND_STANDBY: 337 return &rdev->constraints->state_standby; 338 case PM_SUSPEND_MEM: 339 return &rdev->constraints->state_mem; 340 case PM_SUSPEND_MAX: 341 return &rdev->constraints->state_disk; 342 default: 343 return NULL; 344 } 345 } 346 347 static ssize_t regulator_uV_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct regulator_dev *rdev = dev_get_drvdata(dev); 351 ssize_t ret; 352 353 mutex_lock(&rdev->mutex); 354 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 355 mutex_unlock(&rdev->mutex); 356 357 return ret; 358 } 359 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 360 361 static ssize_t regulator_uA_show(struct device *dev, 362 struct device_attribute *attr, char *buf) 363 { 364 struct regulator_dev *rdev = dev_get_drvdata(dev); 365 366 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 367 } 368 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 369 370 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 371 char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 375 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 376 } 377 static DEVICE_ATTR_RO(name); 378 379 static ssize_t regulator_print_opmode(char *buf, int mode) 380 { 381 switch (mode) { 382 case REGULATOR_MODE_FAST: 383 return sprintf(buf, "fast\n"); 384 case REGULATOR_MODE_NORMAL: 385 return sprintf(buf, "normal\n"); 386 case REGULATOR_MODE_IDLE: 387 return sprintf(buf, "idle\n"); 388 case REGULATOR_MODE_STANDBY: 389 return sprintf(buf, "standby\n"); 390 } 391 return sprintf(buf, "unknown\n"); 392 } 393 394 static ssize_t regulator_opmode_show(struct device *dev, 395 struct device_attribute *attr, char *buf) 396 { 397 struct regulator_dev *rdev = dev_get_drvdata(dev); 398 399 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 400 } 401 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 402 403 static ssize_t regulator_print_state(char *buf, int state) 404 { 405 if (state > 0) 406 return sprintf(buf, "enabled\n"); 407 else if (state == 0) 408 return sprintf(buf, "disabled\n"); 409 else 410 return sprintf(buf, "unknown\n"); 411 } 412 413 static ssize_t regulator_state_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct regulator_dev *rdev = dev_get_drvdata(dev); 417 ssize_t ret; 418 419 mutex_lock(&rdev->mutex); 420 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 421 mutex_unlock(&rdev->mutex); 422 423 return ret; 424 } 425 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 426 427 static ssize_t regulator_status_show(struct device *dev, 428 struct device_attribute *attr, char *buf) 429 { 430 struct regulator_dev *rdev = dev_get_drvdata(dev); 431 int status; 432 char *label; 433 434 status = rdev->desc->ops->get_status(rdev); 435 if (status < 0) 436 return status; 437 438 switch (status) { 439 case REGULATOR_STATUS_OFF: 440 label = "off"; 441 break; 442 case REGULATOR_STATUS_ON: 443 label = "on"; 444 break; 445 case REGULATOR_STATUS_ERROR: 446 label = "error"; 447 break; 448 case REGULATOR_STATUS_FAST: 449 label = "fast"; 450 break; 451 case REGULATOR_STATUS_NORMAL: 452 label = "normal"; 453 break; 454 case REGULATOR_STATUS_IDLE: 455 label = "idle"; 456 break; 457 case REGULATOR_STATUS_STANDBY: 458 label = "standby"; 459 break; 460 case REGULATOR_STATUS_BYPASS: 461 label = "bypass"; 462 break; 463 case REGULATOR_STATUS_UNDEFINED: 464 label = "undefined"; 465 break; 466 default: 467 return -ERANGE; 468 } 469 470 return sprintf(buf, "%s\n", label); 471 } 472 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 473 474 static ssize_t regulator_min_uA_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct regulator_dev *rdev = dev_get_drvdata(dev); 478 479 if (!rdev->constraints) 480 return sprintf(buf, "constraint not defined\n"); 481 482 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 483 } 484 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 485 486 static ssize_t regulator_max_uA_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488 { 489 struct regulator_dev *rdev = dev_get_drvdata(dev); 490 491 if (!rdev->constraints) 492 return sprintf(buf, "constraint not defined\n"); 493 494 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 495 } 496 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 497 498 static ssize_t regulator_min_uV_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct regulator_dev *rdev = dev_get_drvdata(dev); 502 503 if (!rdev->constraints) 504 return sprintf(buf, "constraint not defined\n"); 505 506 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 507 } 508 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 509 510 static ssize_t regulator_max_uV_show(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct regulator_dev *rdev = dev_get_drvdata(dev); 514 515 if (!rdev->constraints) 516 return sprintf(buf, "constraint not defined\n"); 517 518 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 519 } 520 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 521 522 static ssize_t regulator_total_uA_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct regulator_dev *rdev = dev_get_drvdata(dev); 526 struct regulator *regulator; 527 int uA = 0; 528 529 mutex_lock(&rdev->mutex); 530 list_for_each_entry(regulator, &rdev->consumer_list, list) 531 uA += regulator->uA_load; 532 mutex_unlock(&rdev->mutex); 533 return sprintf(buf, "%d\n", uA); 534 } 535 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 536 537 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 538 char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 return sprintf(buf, "%d\n", rdev->use_count); 542 } 543 static DEVICE_ATTR_RO(num_users); 544 545 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 546 char *buf) 547 { 548 struct regulator_dev *rdev = dev_get_drvdata(dev); 549 550 switch (rdev->desc->type) { 551 case REGULATOR_VOLTAGE: 552 return sprintf(buf, "voltage\n"); 553 case REGULATOR_CURRENT: 554 return sprintf(buf, "current\n"); 555 } 556 return sprintf(buf, "unknown\n"); 557 } 558 static DEVICE_ATTR_RO(type); 559 560 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 566 } 567 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 568 regulator_suspend_mem_uV_show, NULL); 569 570 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 576 } 577 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 578 regulator_suspend_disk_uV_show, NULL); 579 580 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 586 } 587 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 588 regulator_suspend_standby_uV_show, NULL); 589 590 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 595 return regulator_print_opmode(buf, 596 rdev->constraints->state_mem.mode); 597 } 598 static DEVICE_ATTR(suspend_mem_mode, 0444, 599 regulator_suspend_mem_mode_show, NULL); 600 601 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 602 struct device_attribute *attr, char *buf) 603 { 604 struct regulator_dev *rdev = dev_get_drvdata(dev); 605 606 return regulator_print_opmode(buf, 607 rdev->constraints->state_disk.mode); 608 } 609 static DEVICE_ATTR(suspend_disk_mode, 0444, 610 regulator_suspend_disk_mode_show, NULL); 611 612 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct regulator_dev *rdev = dev_get_drvdata(dev); 616 617 return regulator_print_opmode(buf, 618 rdev->constraints->state_standby.mode); 619 } 620 static DEVICE_ATTR(suspend_standby_mode, 0444, 621 regulator_suspend_standby_mode_show, NULL); 622 623 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 624 struct device_attribute *attr, char *buf) 625 { 626 struct regulator_dev *rdev = dev_get_drvdata(dev); 627 628 return regulator_print_state(buf, 629 rdev->constraints->state_mem.enabled); 630 } 631 static DEVICE_ATTR(suspend_mem_state, 0444, 632 regulator_suspend_mem_state_show, NULL); 633 634 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 635 struct device_attribute *attr, char *buf) 636 { 637 struct regulator_dev *rdev = dev_get_drvdata(dev); 638 639 return regulator_print_state(buf, 640 rdev->constraints->state_disk.enabled); 641 } 642 static DEVICE_ATTR(suspend_disk_state, 0444, 643 regulator_suspend_disk_state_show, NULL); 644 645 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 646 struct device_attribute *attr, char *buf) 647 { 648 struct regulator_dev *rdev = dev_get_drvdata(dev); 649 650 return regulator_print_state(buf, 651 rdev->constraints->state_standby.enabled); 652 } 653 static DEVICE_ATTR(suspend_standby_state, 0444, 654 regulator_suspend_standby_state_show, NULL); 655 656 static ssize_t regulator_bypass_show(struct device *dev, 657 struct device_attribute *attr, char *buf) 658 { 659 struct regulator_dev *rdev = dev_get_drvdata(dev); 660 const char *report; 661 bool bypass; 662 int ret; 663 664 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 665 666 if (ret != 0) 667 report = "unknown"; 668 else if (bypass) 669 report = "enabled"; 670 else 671 report = "disabled"; 672 673 return sprintf(buf, "%s\n", report); 674 } 675 static DEVICE_ATTR(bypass, 0444, 676 regulator_bypass_show, NULL); 677 678 /* Calculate the new optimum regulator operating mode based on the new total 679 * consumer load. All locks held by caller */ 680 static int drms_uA_update(struct regulator_dev *rdev) 681 { 682 struct regulator *sibling; 683 int current_uA = 0, output_uV, input_uV, err; 684 unsigned int mode; 685 686 lockdep_assert_held_once(&rdev->mutex); 687 688 /* 689 * first check to see if we can set modes at all, otherwise just 690 * tell the consumer everything is OK. 691 */ 692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 693 return 0; 694 695 if (!rdev->desc->ops->get_optimum_mode && 696 !rdev->desc->ops->set_load) 697 return 0; 698 699 if (!rdev->desc->ops->set_mode && 700 !rdev->desc->ops->set_load) 701 return -EINVAL; 702 703 /* calc total requested load */ 704 list_for_each_entry(sibling, &rdev->consumer_list, list) 705 current_uA += sibling->uA_load; 706 707 current_uA += rdev->constraints->system_load; 708 709 if (rdev->desc->ops->set_load) { 710 /* set the optimum mode for our new total regulator load */ 711 err = rdev->desc->ops->set_load(rdev, current_uA); 712 if (err < 0) 713 rdev_err(rdev, "failed to set load %d\n", current_uA); 714 } else { 715 /* get output voltage */ 716 output_uV = _regulator_get_voltage(rdev); 717 if (output_uV <= 0) { 718 rdev_err(rdev, "invalid output voltage found\n"); 719 return -EINVAL; 720 } 721 722 /* get input voltage */ 723 input_uV = 0; 724 if (rdev->supply) 725 input_uV = regulator_get_voltage(rdev->supply); 726 if (input_uV <= 0) 727 input_uV = rdev->constraints->input_uV; 728 if (input_uV <= 0) { 729 rdev_err(rdev, "invalid input voltage found\n"); 730 return -EINVAL; 731 } 732 733 /* now get the optimum mode for our new total regulator load */ 734 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 735 output_uV, current_uA); 736 737 /* check the new mode is allowed */ 738 err = regulator_mode_constrain(rdev, &mode); 739 if (err < 0) { 740 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 741 current_uA, input_uV, output_uV); 742 return err; 743 } 744 745 err = rdev->desc->ops->set_mode(rdev, mode); 746 if (err < 0) 747 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 748 } 749 750 return err; 751 } 752 753 static int suspend_set_state(struct regulator_dev *rdev, 754 suspend_state_t state) 755 { 756 int ret = 0; 757 struct regulator_state *rstate; 758 759 rstate = regulator_get_suspend_state(rdev, state); 760 if (rstate == NULL) 761 return 0; 762 763 /* If we have no suspend mode configration don't set anything; 764 * only warn if the driver implements set_suspend_voltage or 765 * set_suspend_mode callback. 766 */ 767 if (rstate->enabled != ENABLE_IN_SUSPEND && 768 rstate->enabled != DISABLE_IN_SUSPEND) { 769 if (rdev->desc->ops->set_suspend_voltage || 770 rdev->desc->ops->set_suspend_mode) 771 rdev_warn(rdev, "No configuration\n"); 772 return 0; 773 } 774 775 if (rstate->enabled == ENABLE_IN_SUSPEND && 776 rdev->desc->ops->set_suspend_enable) 777 ret = rdev->desc->ops->set_suspend_enable(rdev); 778 else if (rstate->enabled == DISABLE_IN_SUSPEND && 779 rdev->desc->ops->set_suspend_disable) 780 ret = rdev->desc->ops->set_suspend_disable(rdev); 781 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 782 ret = 0; 783 784 if (ret < 0) { 785 rdev_err(rdev, "failed to enabled/disable\n"); 786 return ret; 787 } 788 789 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 790 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 791 if (ret < 0) { 792 rdev_err(rdev, "failed to set voltage\n"); 793 return ret; 794 } 795 } 796 797 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 798 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 799 if (ret < 0) { 800 rdev_err(rdev, "failed to set mode\n"); 801 return ret; 802 } 803 } 804 805 return ret; 806 } 807 808 static void print_constraints(struct regulator_dev *rdev) 809 { 810 struct regulation_constraints *constraints = rdev->constraints; 811 char buf[160] = ""; 812 size_t len = sizeof(buf) - 1; 813 int count = 0; 814 int ret; 815 816 if (constraints->min_uV && constraints->max_uV) { 817 if (constraints->min_uV == constraints->max_uV) 818 count += scnprintf(buf + count, len - count, "%d mV ", 819 constraints->min_uV / 1000); 820 else 821 count += scnprintf(buf + count, len - count, 822 "%d <--> %d mV ", 823 constraints->min_uV / 1000, 824 constraints->max_uV / 1000); 825 } 826 827 if (!constraints->min_uV || 828 constraints->min_uV != constraints->max_uV) { 829 ret = _regulator_get_voltage(rdev); 830 if (ret > 0) 831 count += scnprintf(buf + count, len - count, 832 "at %d mV ", ret / 1000); 833 } 834 835 if (constraints->uV_offset) 836 count += scnprintf(buf + count, len - count, "%dmV offset ", 837 constraints->uV_offset / 1000); 838 839 if (constraints->min_uA && constraints->max_uA) { 840 if (constraints->min_uA == constraints->max_uA) 841 count += scnprintf(buf + count, len - count, "%d mA ", 842 constraints->min_uA / 1000); 843 else 844 count += scnprintf(buf + count, len - count, 845 "%d <--> %d mA ", 846 constraints->min_uA / 1000, 847 constraints->max_uA / 1000); 848 } 849 850 if (!constraints->min_uA || 851 constraints->min_uA != constraints->max_uA) { 852 ret = _regulator_get_current_limit(rdev); 853 if (ret > 0) 854 count += scnprintf(buf + count, len - count, 855 "at %d mA ", ret / 1000); 856 } 857 858 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 859 count += scnprintf(buf + count, len - count, "fast "); 860 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 861 count += scnprintf(buf + count, len - count, "normal "); 862 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 863 count += scnprintf(buf + count, len - count, "idle "); 864 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 865 count += scnprintf(buf + count, len - count, "standby"); 866 867 if (!count) 868 scnprintf(buf, len, "no parameters"); 869 870 rdev_dbg(rdev, "%s\n", buf); 871 872 if ((constraints->min_uV != constraints->max_uV) && 873 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 874 rdev_warn(rdev, 875 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 876 } 877 878 static int machine_constraints_voltage(struct regulator_dev *rdev, 879 struct regulation_constraints *constraints) 880 { 881 const struct regulator_ops *ops = rdev->desc->ops; 882 int ret; 883 884 /* do we need to apply the constraint voltage */ 885 if (rdev->constraints->apply_uV && 886 rdev->constraints->min_uV && rdev->constraints->max_uV) { 887 int target_min, target_max; 888 int current_uV = _regulator_get_voltage(rdev); 889 if (current_uV < 0) { 890 rdev_err(rdev, 891 "failed to get the current voltage(%d)\n", 892 current_uV); 893 return current_uV; 894 } 895 896 /* 897 * If we're below the minimum voltage move up to the 898 * minimum voltage, if we're above the maximum voltage 899 * then move down to the maximum. 900 */ 901 target_min = current_uV; 902 target_max = current_uV; 903 904 if (current_uV < rdev->constraints->min_uV) { 905 target_min = rdev->constraints->min_uV; 906 target_max = rdev->constraints->min_uV; 907 } 908 909 if (current_uV > rdev->constraints->max_uV) { 910 target_min = rdev->constraints->max_uV; 911 target_max = rdev->constraints->max_uV; 912 } 913 914 if (target_min != current_uV || target_max != current_uV) { 915 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 916 current_uV, target_min, target_max); 917 ret = _regulator_do_set_voltage( 918 rdev, target_min, target_max); 919 if (ret < 0) { 920 rdev_err(rdev, 921 "failed to apply %d-%duV constraint(%d)\n", 922 target_min, target_max, ret); 923 return ret; 924 } 925 } 926 } 927 928 /* constrain machine-level voltage specs to fit 929 * the actual range supported by this regulator. 930 */ 931 if (ops->list_voltage && rdev->desc->n_voltages) { 932 int count = rdev->desc->n_voltages; 933 int i; 934 int min_uV = INT_MAX; 935 int max_uV = INT_MIN; 936 int cmin = constraints->min_uV; 937 int cmax = constraints->max_uV; 938 939 /* it's safe to autoconfigure fixed-voltage supplies 940 and the constraints are used by list_voltage. */ 941 if (count == 1 && !cmin) { 942 cmin = 1; 943 cmax = INT_MAX; 944 constraints->min_uV = cmin; 945 constraints->max_uV = cmax; 946 } 947 948 /* voltage constraints are optional */ 949 if ((cmin == 0) && (cmax == 0)) 950 return 0; 951 952 /* else require explicit machine-level constraints */ 953 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 954 rdev_err(rdev, "invalid voltage constraints\n"); 955 return -EINVAL; 956 } 957 958 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 959 for (i = 0; i < count; i++) { 960 int value; 961 962 value = ops->list_voltage(rdev, i); 963 if (value <= 0) 964 continue; 965 966 /* maybe adjust [min_uV..max_uV] */ 967 if (value >= cmin && value < min_uV) 968 min_uV = value; 969 if (value <= cmax && value > max_uV) 970 max_uV = value; 971 } 972 973 /* final: [min_uV..max_uV] valid iff constraints valid */ 974 if (max_uV < min_uV) { 975 rdev_err(rdev, 976 "unsupportable voltage constraints %u-%uuV\n", 977 min_uV, max_uV); 978 return -EINVAL; 979 } 980 981 /* use regulator's subset of machine constraints */ 982 if (constraints->min_uV < min_uV) { 983 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 984 constraints->min_uV, min_uV); 985 constraints->min_uV = min_uV; 986 } 987 if (constraints->max_uV > max_uV) { 988 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 989 constraints->max_uV, max_uV); 990 constraints->max_uV = max_uV; 991 } 992 } 993 994 return 0; 995 } 996 997 static int machine_constraints_current(struct regulator_dev *rdev, 998 struct regulation_constraints *constraints) 999 { 1000 const struct regulator_ops *ops = rdev->desc->ops; 1001 int ret; 1002 1003 if (!constraints->min_uA && !constraints->max_uA) 1004 return 0; 1005 1006 if (constraints->min_uA > constraints->max_uA) { 1007 rdev_err(rdev, "Invalid current constraints\n"); 1008 return -EINVAL; 1009 } 1010 1011 if (!ops->set_current_limit || !ops->get_current_limit) { 1012 rdev_warn(rdev, "Operation of current configuration missing\n"); 1013 return 0; 1014 } 1015 1016 /* Set regulator current in constraints range */ 1017 ret = ops->set_current_limit(rdev, constraints->min_uA, 1018 constraints->max_uA); 1019 if (ret < 0) { 1020 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1021 return ret; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int _regulator_do_enable(struct regulator_dev *rdev); 1028 1029 /** 1030 * set_machine_constraints - sets regulator constraints 1031 * @rdev: regulator source 1032 * @constraints: constraints to apply 1033 * 1034 * Allows platform initialisation code to define and constrain 1035 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1036 * Constraints *must* be set by platform code in order for some 1037 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1038 * set_mode. 1039 */ 1040 static int set_machine_constraints(struct regulator_dev *rdev, 1041 const struct regulation_constraints *constraints) 1042 { 1043 int ret = 0; 1044 const struct regulator_ops *ops = rdev->desc->ops; 1045 1046 if (constraints) 1047 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1048 GFP_KERNEL); 1049 else 1050 rdev->constraints = kzalloc(sizeof(*constraints), 1051 GFP_KERNEL); 1052 if (!rdev->constraints) 1053 return -ENOMEM; 1054 1055 ret = machine_constraints_voltage(rdev, rdev->constraints); 1056 if (ret != 0) 1057 return ret; 1058 1059 ret = machine_constraints_current(rdev, rdev->constraints); 1060 if (ret != 0) 1061 return ret; 1062 1063 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1064 ret = ops->set_input_current_limit(rdev, 1065 rdev->constraints->ilim_uA); 1066 if (ret < 0) { 1067 rdev_err(rdev, "failed to set input limit\n"); 1068 return ret; 1069 } 1070 } 1071 1072 /* do we need to setup our suspend state */ 1073 if (rdev->constraints->initial_state) { 1074 ret = suspend_set_state(rdev, rdev->constraints->initial_state); 1075 if (ret < 0) { 1076 rdev_err(rdev, "failed to set suspend state\n"); 1077 return ret; 1078 } 1079 } 1080 1081 if (rdev->constraints->initial_mode) { 1082 if (!ops->set_mode) { 1083 rdev_err(rdev, "no set_mode operation\n"); 1084 return -EINVAL; 1085 } 1086 1087 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1088 if (ret < 0) { 1089 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1090 return ret; 1091 } 1092 } 1093 1094 /* If the constraints say the regulator should be on at this point 1095 * and we have control then make sure it is enabled. 1096 */ 1097 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1098 ret = _regulator_do_enable(rdev); 1099 if (ret < 0 && ret != -EINVAL) { 1100 rdev_err(rdev, "failed to enable\n"); 1101 return ret; 1102 } 1103 } 1104 1105 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1106 && ops->set_ramp_delay) { 1107 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1108 if (ret < 0) { 1109 rdev_err(rdev, "failed to set ramp_delay\n"); 1110 return ret; 1111 } 1112 } 1113 1114 if (rdev->constraints->pull_down && ops->set_pull_down) { 1115 ret = ops->set_pull_down(rdev); 1116 if (ret < 0) { 1117 rdev_err(rdev, "failed to set pull down\n"); 1118 return ret; 1119 } 1120 } 1121 1122 if (rdev->constraints->soft_start && ops->set_soft_start) { 1123 ret = ops->set_soft_start(rdev); 1124 if (ret < 0) { 1125 rdev_err(rdev, "failed to set soft start\n"); 1126 return ret; 1127 } 1128 } 1129 1130 if (rdev->constraints->over_current_protection 1131 && ops->set_over_current_protection) { 1132 ret = ops->set_over_current_protection(rdev); 1133 if (ret < 0) { 1134 rdev_err(rdev, "failed to set over current protection\n"); 1135 return ret; 1136 } 1137 } 1138 1139 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1140 bool ad_state = (rdev->constraints->active_discharge == 1141 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1142 1143 ret = ops->set_active_discharge(rdev, ad_state); 1144 if (ret < 0) { 1145 rdev_err(rdev, "failed to set active discharge\n"); 1146 return ret; 1147 } 1148 } 1149 1150 print_constraints(rdev); 1151 return 0; 1152 } 1153 1154 /** 1155 * set_supply - set regulator supply regulator 1156 * @rdev: regulator name 1157 * @supply_rdev: supply regulator name 1158 * 1159 * Called by platform initialisation code to set the supply regulator for this 1160 * regulator. This ensures that a regulators supply will also be enabled by the 1161 * core if it's child is enabled. 1162 */ 1163 static int set_supply(struct regulator_dev *rdev, 1164 struct regulator_dev *supply_rdev) 1165 { 1166 int err; 1167 1168 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1169 1170 if (!try_module_get(supply_rdev->owner)) 1171 return -ENODEV; 1172 1173 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1174 if (rdev->supply == NULL) { 1175 err = -ENOMEM; 1176 return err; 1177 } 1178 supply_rdev->open_count++; 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1185 * @rdev: regulator source 1186 * @consumer_dev_name: dev_name() string for device supply applies to 1187 * @supply: symbolic name for supply 1188 * 1189 * Allows platform initialisation code to map physical regulator 1190 * sources to symbolic names for supplies for use by devices. Devices 1191 * should use these symbolic names to request regulators, avoiding the 1192 * need to provide board-specific regulator names as platform data. 1193 */ 1194 static int set_consumer_device_supply(struct regulator_dev *rdev, 1195 const char *consumer_dev_name, 1196 const char *supply) 1197 { 1198 struct regulator_map *node; 1199 int has_dev; 1200 1201 if (supply == NULL) 1202 return -EINVAL; 1203 1204 if (consumer_dev_name != NULL) 1205 has_dev = 1; 1206 else 1207 has_dev = 0; 1208 1209 list_for_each_entry(node, ®ulator_map_list, list) { 1210 if (node->dev_name && consumer_dev_name) { 1211 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1212 continue; 1213 } else if (node->dev_name || consumer_dev_name) { 1214 continue; 1215 } 1216 1217 if (strcmp(node->supply, supply) != 0) 1218 continue; 1219 1220 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1221 consumer_dev_name, 1222 dev_name(&node->regulator->dev), 1223 node->regulator->desc->name, 1224 supply, 1225 dev_name(&rdev->dev), rdev_get_name(rdev)); 1226 return -EBUSY; 1227 } 1228 1229 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1230 if (node == NULL) 1231 return -ENOMEM; 1232 1233 node->regulator = rdev; 1234 node->supply = supply; 1235 1236 if (has_dev) { 1237 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1238 if (node->dev_name == NULL) { 1239 kfree(node); 1240 return -ENOMEM; 1241 } 1242 } 1243 1244 list_add(&node->list, ®ulator_map_list); 1245 return 0; 1246 } 1247 1248 static void unset_regulator_supplies(struct regulator_dev *rdev) 1249 { 1250 struct regulator_map *node, *n; 1251 1252 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1253 if (rdev == node->regulator) { 1254 list_del(&node->list); 1255 kfree(node->dev_name); 1256 kfree(node); 1257 } 1258 } 1259 } 1260 1261 #ifdef CONFIG_DEBUG_FS 1262 static ssize_t constraint_flags_read_file(struct file *file, 1263 char __user *user_buf, 1264 size_t count, loff_t *ppos) 1265 { 1266 const struct regulator *regulator = file->private_data; 1267 const struct regulation_constraints *c = regulator->rdev->constraints; 1268 char *buf; 1269 ssize_t ret; 1270 1271 if (!c) 1272 return 0; 1273 1274 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1275 if (!buf) 1276 return -ENOMEM; 1277 1278 ret = snprintf(buf, PAGE_SIZE, 1279 "always_on: %u\n" 1280 "boot_on: %u\n" 1281 "apply_uV: %u\n" 1282 "ramp_disable: %u\n" 1283 "soft_start: %u\n" 1284 "pull_down: %u\n" 1285 "over_current_protection: %u\n", 1286 c->always_on, 1287 c->boot_on, 1288 c->apply_uV, 1289 c->ramp_disable, 1290 c->soft_start, 1291 c->pull_down, 1292 c->over_current_protection); 1293 1294 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1295 kfree(buf); 1296 1297 return ret; 1298 } 1299 1300 #endif 1301 1302 static const struct file_operations constraint_flags_fops = { 1303 #ifdef CONFIG_DEBUG_FS 1304 .open = simple_open, 1305 .read = constraint_flags_read_file, 1306 .llseek = default_llseek, 1307 #endif 1308 }; 1309 1310 #define REG_STR_SIZE 64 1311 1312 static struct regulator *create_regulator(struct regulator_dev *rdev, 1313 struct device *dev, 1314 const char *supply_name) 1315 { 1316 struct regulator *regulator; 1317 char buf[REG_STR_SIZE]; 1318 int err, size; 1319 1320 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1321 if (regulator == NULL) 1322 return NULL; 1323 1324 mutex_lock(&rdev->mutex); 1325 regulator->rdev = rdev; 1326 list_add(®ulator->list, &rdev->consumer_list); 1327 1328 if (dev) { 1329 regulator->dev = dev; 1330 1331 /* Add a link to the device sysfs entry */ 1332 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1333 dev->kobj.name, supply_name); 1334 if (size >= REG_STR_SIZE) 1335 goto overflow_err; 1336 1337 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1338 if (regulator->supply_name == NULL) 1339 goto overflow_err; 1340 1341 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1342 buf); 1343 if (err) { 1344 rdev_dbg(rdev, "could not add device link %s err %d\n", 1345 dev->kobj.name, err); 1346 /* non-fatal */ 1347 } 1348 } else { 1349 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1350 if (regulator->supply_name == NULL) 1351 goto overflow_err; 1352 } 1353 1354 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1355 rdev->debugfs); 1356 if (!regulator->debugfs) { 1357 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1358 } else { 1359 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1360 ®ulator->uA_load); 1361 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1362 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1363 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1364 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1365 debugfs_create_file("constraint_flags", 0444, 1366 regulator->debugfs, regulator, 1367 &constraint_flags_fops); 1368 } 1369 1370 /* 1371 * Check now if the regulator is an always on regulator - if 1372 * it is then we don't need to do nearly so much work for 1373 * enable/disable calls. 1374 */ 1375 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1376 _regulator_is_enabled(rdev)) 1377 regulator->always_on = true; 1378 1379 mutex_unlock(&rdev->mutex); 1380 return regulator; 1381 overflow_err: 1382 list_del(®ulator->list); 1383 kfree(regulator); 1384 mutex_unlock(&rdev->mutex); 1385 return NULL; 1386 } 1387 1388 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1389 { 1390 if (rdev->constraints && rdev->constraints->enable_time) 1391 return rdev->constraints->enable_time; 1392 if (!rdev->desc->ops->enable_time) 1393 return rdev->desc->enable_time; 1394 return rdev->desc->ops->enable_time(rdev); 1395 } 1396 1397 static struct regulator_supply_alias *regulator_find_supply_alias( 1398 struct device *dev, const char *supply) 1399 { 1400 struct regulator_supply_alias *map; 1401 1402 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1403 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1404 return map; 1405 1406 return NULL; 1407 } 1408 1409 static void regulator_supply_alias(struct device **dev, const char **supply) 1410 { 1411 struct regulator_supply_alias *map; 1412 1413 map = regulator_find_supply_alias(*dev, *supply); 1414 if (map) { 1415 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1416 *supply, map->alias_supply, 1417 dev_name(map->alias_dev)); 1418 *dev = map->alias_dev; 1419 *supply = map->alias_supply; 1420 } 1421 } 1422 1423 static int regulator_match(struct device *dev, const void *data) 1424 { 1425 struct regulator_dev *r = dev_to_rdev(dev); 1426 1427 return strcmp(rdev_get_name(r), data) == 0; 1428 } 1429 1430 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1431 { 1432 struct device *dev; 1433 1434 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1435 1436 return dev ? dev_to_rdev(dev) : NULL; 1437 } 1438 1439 /** 1440 * regulator_dev_lookup - lookup a regulator device. 1441 * @dev: device for regulator "consumer". 1442 * @supply: Supply name or regulator ID. 1443 * 1444 * If successful, returns a struct regulator_dev that corresponds to the name 1445 * @supply and with the embedded struct device refcount incremented by one. 1446 * The refcount must be dropped by calling put_device(). 1447 * On failure one of the following ERR-PTR-encoded values is returned: 1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1449 * in the future. 1450 */ 1451 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1452 const char *supply) 1453 { 1454 struct regulator_dev *r = NULL; 1455 struct device_node *node; 1456 struct regulator_map *map; 1457 const char *devname = NULL; 1458 1459 regulator_supply_alias(&dev, &supply); 1460 1461 /* first do a dt based lookup */ 1462 if (dev && dev->of_node) { 1463 node = of_get_regulator(dev, supply); 1464 if (node) { 1465 r = of_find_regulator_by_node(node); 1466 if (r) 1467 return r; 1468 1469 /* 1470 * We have a node, but there is no device. 1471 * assume it has not registered yet. 1472 */ 1473 return ERR_PTR(-EPROBE_DEFER); 1474 } 1475 } 1476 1477 /* if not found, try doing it non-dt way */ 1478 if (dev) 1479 devname = dev_name(dev); 1480 1481 mutex_lock(®ulator_list_mutex); 1482 list_for_each_entry(map, ®ulator_map_list, list) { 1483 /* If the mapping has a device set up it must match */ 1484 if (map->dev_name && 1485 (!devname || strcmp(map->dev_name, devname))) 1486 continue; 1487 1488 if (strcmp(map->supply, supply) == 0 && 1489 get_device(&map->regulator->dev)) { 1490 r = map->regulator; 1491 break; 1492 } 1493 } 1494 mutex_unlock(®ulator_list_mutex); 1495 1496 if (r) 1497 return r; 1498 1499 r = regulator_lookup_by_name(supply); 1500 if (r) 1501 return r; 1502 1503 return ERR_PTR(-ENODEV); 1504 } 1505 1506 static int regulator_resolve_supply(struct regulator_dev *rdev) 1507 { 1508 struct regulator_dev *r; 1509 struct device *dev = rdev->dev.parent; 1510 int ret; 1511 1512 /* No supply to resovle? */ 1513 if (!rdev->supply_name) 1514 return 0; 1515 1516 /* Supply already resolved? */ 1517 if (rdev->supply) 1518 return 0; 1519 1520 r = regulator_dev_lookup(dev, rdev->supply_name); 1521 if (IS_ERR(r)) { 1522 ret = PTR_ERR(r); 1523 1524 /* Did the lookup explicitly defer for us? */ 1525 if (ret == -EPROBE_DEFER) 1526 return ret; 1527 1528 if (have_full_constraints()) { 1529 r = dummy_regulator_rdev; 1530 get_device(&r->dev); 1531 } else { 1532 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1533 rdev->supply_name, rdev->desc->name); 1534 return -EPROBE_DEFER; 1535 } 1536 } 1537 1538 /* 1539 * If the supply's parent device is not the same as the 1540 * regulator's parent device, then ensure the parent device 1541 * is bound before we resolve the supply, in case the parent 1542 * device get probe deferred and unregisters the supply. 1543 */ 1544 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 1545 if (!device_is_bound(r->dev.parent)) { 1546 put_device(&r->dev); 1547 return -EPROBE_DEFER; 1548 } 1549 } 1550 1551 /* Recursively resolve the supply of the supply */ 1552 ret = regulator_resolve_supply(r); 1553 if (ret < 0) { 1554 put_device(&r->dev); 1555 return ret; 1556 } 1557 1558 ret = set_supply(rdev, r); 1559 if (ret < 0) { 1560 put_device(&r->dev); 1561 return ret; 1562 } 1563 1564 /* Cascade always-on state to supply */ 1565 if (_regulator_is_enabled(rdev)) { 1566 ret = regulator_enable(rdev->supply); 1567 if (ret < 0) { 1568 _regulator_put(rdev->supply); 1569 rdev->supply = NULL; 1570 return ret; 1571 } 1572 } 1573 1574 return 0; 1575 } 1576 1577 /* Internal regulator request function */ 1578 struct regulator *_regulator_get(struct device *dev, const char *id, 1579 enum regulator_get_type get_type) 1580 { 1581 struct regulator_dev *rdev; 1582 struct regulator *regulator; 1583 const char *devname = dev ? dev_name(dev) : "deviceless"; 1584 int ret; 1585 1586 if (get_type >= MAX_GET_TYPE) { 1587 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 1588 return ERR_PTR(-EINVAL); 1589 } 1590 1591 if (id == NULL) { 1592 pr_err("get() with no identifier\n"); 1593 return ERR_PTR(-EINVAL); 1594 } 1595 1596 rdev = regulator_dev_lookup(dev, id); 1597 if (IS_ERR(rdev)) { 1598 ret = PTR_ERR(rdev); 1599 1600 /* 1601 * If regulator_dev_lookup() fails with error other 1602 * than -ENODEV our job here is done, we simply return it. 1603 */ 1604 if (ret != -ENODEV) 1605 return ERR_PTR(ret); 1606 1607 if (!have_full_constraints()) { 1608 dev_warn(dev, 1609 "incomplete constraints, dummy supplies not allowed\n"); 1610 return ERR_PTR(-ENODEV); 1611 } 1612 1613 switch (get_type) { 1614 case NORMAL_GET: 1615 /* 1616 * Assume that a regulator is physically present and 1617 * enabled, even if it isn't hooked up, and just 1618 * provide a dummy. 1619 */ 1620 dev_warn(dev, 1621 "%s supply %s not found, using dummy regulator\n", 1622 devname, id); 1623 rdev = dummy_regulator_rdev; 1624 get_device(&rdev->dev); 1625 break; 1626 1627 case EXCLUSIVE_GET: 1628 dev_warn(dev, 1629 "dummy supplies not allowed for exclusive requests\n"); 1630 /* fall through */ 1631 1632 default: 1633 return ERR_PTR(-ENODEV); 1634 } 1635 } 1636 1637 if (rdev->exclusive) { 1638 regulator = ERR_PTR(-EPERM); 1639 put_device(&rdev->dev); 1640 return regulator; 1641 } 1642 1643 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 1644 regulator = ERR_PTR(-EBUSY); 1645 put_device(&rdev->dev); 1646 return regulator; 1647 } 1648 1649 ret = regulator_resolve_supply(rdev); 1650 if (ret < 0) { 1651 regulator = ERR_PTR(ret); 1652 put_device(&rdev->dev); 1653 return regulator; 1654 } 1655 1656 if (!try_module_get(rdev->owner)) { 1657 regulator = ERR_PTR(-EPROBE_DEFER); 1658 put_device(&rdev->dev); 1659 return regulator; 1660 } 1661 1662 regulator = create_regulator(rdev, dev, id); 1663 if (regulator == NULL) { 1664 regulator = ERR_PTR(-ENOMEM); 1665 put_device(&rdev->dev); 1666 module_put(rdev->owner); 1667 return regulator; 1668 } 1669 1670 rdev->open_count++; 1671 if (get_type == EXCLUSIVE_GET) { 1672 rdev->exclusive = 1; 1673 1674 ret = _regulator_is_enabled(rdev); 1675 if (ret > 0) 1676 rdev->use_count = 1; 1677 else 1678 rdev->use_count = 0; 1679 } 1680 1681 return regulator; 1682 } 1683 1684 /** 1685 * regulator_get - lookup and obtain a reference to a regulator. 1686 * @dev: device for regulator "consumer" 1687 * @id: Supply name or regulator ID. 1688 * 1689 * Returns a struct regulator corresponding to the regulator producer, 1690 * or IS_ERR() condition containing errno. 1691 * 1692 * Use of supply names configured via regulator_set_device_supply() is 1693 * strongly encouraged. It is recommended that the supply name used 1694 * should match the name used for the supply and/or the relevant 1695 * device pins in the datasheet. 1696 */ 1697 struct regulator *regulator_get(struct device *dev, const char *id) 1698 { 1699 return _regulator_get(dev, id, NORMAL_GET); 1700 } 1701 EXPORT_SYMBOL_GPL(regulator_get); 1702 1703 /** 1704 * regulator_get_exclusive - obtain exclusive access to a regulator. 1705 * @dev: device for regulator "consumer" 1706 * @id: Supply name or regulator ID. 1707 * 1708 * Returns a struct regulator corresponding to the regulator producer, 1709 * or IS_ERR() condition containing errno. Other consumers will be 1710 * unable to obtain this regulator while this reference is held and the 1711 * use count for the regulator will be initialised to reflect the current 1712 * state of the regulator. 1713 * 1714 * This is intended for use by consumers which cannot tolerate shared 1715 * use of the regulator such as those which need to force the 1716 * regulator off for correct operation of the hardware they are 1717 * controlling. 1718 * 1719 * Use of supply names configured via regulator_set_device_supply() is 1720 * strongly encouraged. It is recommended that the supply name used 1721 * should match the name used for the supply and/or the relevant 1722 * device pins in the datasheet. 1723 */ 1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1725 { 1726 return _regulator_get(dev, id, EXCLUSIVE_GET); 1727 } 1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1729 1730 /** 1731 * regulator_get_optional - obtain optional access to a regulator. 1732 * @dev: device for regulator "consumer" 1733 * @id: Supply name or regulator ID. 1734 * 1735 * Returns a struct regulator corresponding to the regulator producer, 1736 * or IS_ERR() condition containing errno. 1737 * 1738 * This is intended for use by consumers for devices which can have 1739 * some supplies unconnected in normal use, such as some MMC devices. 1740 * It can allow the regulator core to provide stub supplies for other 1741 * supplies requested using normal regulator_get() calls without 1742 * disrupting the operation of drivers that can handle absent 1743 * supplies. 1744 * 1745 * Use of supply names configured via regulator_set_device_supply() is 1746 * strongly encouraged. It is recommended that the supply name used 1747 * should match the name used for the supply and/or the relevant 1748 * device pins in the datasheet. 1749 */ 1750 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1751 { 1752 return _regulator_get(dev, id, OPTIONAL_GET); 1753 } 1754 EXPORT_SYMBOL_GPL(regulator_get_optional); 1755 1756 /* regulator_list_mutex lock held by regulator_put() */ 1757 static void _regulator_put(struct regulator *regulator) 1758 { 1759 struct regulator_dev *rdev; 1760 1761 if (IS_ERR_OR_NULL(regulator)) 1762 return; 1763 1764 lockdep_assert_held_once(®ulator_list_mutex); 1765 1766 rdev = regulator->rdev; 1767 1768 debugfs_remove_recursive(regulator->debugfs); 1769 1770 /* remove any sysfs entries */ 1771 if (regulator->dev) 1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1773 mutex_lock(&rdev->mutex); 1774 list_del(®ulator->list); 1775 1776 rdev->open_count--; 1777 rdev->exclusive = 0; 1778 put_device(&rdev->dev); 1779 mutex_unlock(&rdev->mutex); 1780 1781 kfree_const(regulator->supply_name); 1782 kfree(regulator); 1783 1784 module_put(rdev->owner); 1785 } 1786 1787 /** 1788 * regulator_put - "free" the regulator source 1789 * @regulator: regulator source 1790 * 1791 * Note: drivers must ensure that all regulator_enable calls made on this 1792 * regulator source are balanced by regulator_disable calls prior to calling 1793 * this function. 1794 */ 1795 void regulator_put(struct regulator *regulator) 1796 { 1797 mutex_lock(®ulator_list_mutex); 1798 _regulator_put(regulator); 1799 mutex_unlock(®ulator_list_mutex); 1800 } 1801 EXPORT_SYMBOL_GPL(regulator_put); 1802 1803 /** 1804 * regulator_register_supply_alias - Provide device alias for supply lookup 1805 * 1806 * @dev: device that will be given as the regulator "consumer" 1807 * @id: Supply name or regulator ID 1808 * @alias_dev: device that should be used to lookup the supply 1809 * @alias_id: Supply name or regulator ID that should be used to lookup the 1810 * supply 1811 * 1812 * All lookups for id on dev will instead be conducted for alias_id on 1813 * alias_dev. 1814 */ 1815 int regulator_register_supply_alias(struct device *dev, const char *id, 1816 struct device *alias_dev, 1817 const char *alias_id) 1818 { 1819 struct regulator_supply_alias *map; 1820 1821 map = regulator_find_supply_alias(dev, id); 1822 if (map) 1823 return -EEXIST; 1824 1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1826 if (!map) 1827 return -ENOMEM; 1828 1829 map->src_dev = dev; 1830 map->src_supply = id; 1831 map->alias_dev = alias_dev; 1832 map->alias_supply = alias_id; 1833 1834 list_add(&map->list, ®ulator_supply_alias_list); 1835 1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1837 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1842 1843 /** 1844 * regulator_unregister_supply_alias - Remove device alias 1845 * 1846 * @dev: device that will be given as the regulator "consumer" 1847 * @id: Supply name or regulator ID 1848 * 1849 * Remove a lookup alias if one exists for id on dev. 1850 */ 1851 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1852 { 1853 struct regulator_supply_alias *map; 1854 1855 map = regulator_find_supply_alias(dev, id); 1856 if (map) { 1857 list_del(&map->list); 1858 kfree(map); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1862 1863 /** 1864 * regulator_bulk_register_supply_alias - register multiple aliases 1865 * 1866 * @dev: device that will be given as the regulator "consumer" 1867 * @id: List of supply names or regulator IDs 1868 * @alias_dev: device that should be used to lookup the supply 1869 * @alias_id: List of supply names or regulator IDs that should be used to 1870 * lookup the supply 1871 * @num_id: Number of aliases to register 1872 * 1873 * @return 0 on success, an errno on failure. 1874 * 1875 * This helper function allows drivers to register several supply 1876 * aliases in one operation. If any of the aliases cannot be 1877 * registered any aliases that were registered will be removed 1878 * before returning to the caller. 1879 */ 1880 int regulator_bulk_register_supply_alias(struct device *dev, 1881 const char *const *id, 1882 struct device *alias_dev, 1883 const char *const *alias_id, 1884 int num_id) 1885 { 1886 int i; 1887 int ret; 1888 1889 for (i = 0; i < num_id; ++i) { 1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1891 alias_id[i]); 1892 if (ret < 0) 1893 goto err; 1894 } 1895 1896 return 0; 1897 1898 err: 1899 dev_err(dev, 1900 "Failed to create supply alias %s,%s -> %s,%s\n", 1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1902 1903 while (--i >= 0) 1904 regulator_unregister_supply_alias(dev, id[i]); 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1909 1910 /** 1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1912 * 1913 * @dev: device that will be given as the regulator "consumer" 1914 * @id: List of supply names or regulator IDs 1915 * @num_id: Number of aliases to unregister 1916 * 1917 * This helper function allows drivers to unregister several supply 1918 * aliases in one operation. 1919 */ 1920 void regulator_bulk_unregister_supply_alias(struct device *dev, 1921 const char *const *id, 1922 int num_id) 1923 { 1924 int i; 1925 1926 for (i = 0; i < num_id; ++i) 1927 regulator_unregister_supply_alias(dev, id[i]); 1928 } 1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1930 1931 1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1934 const struct regulator_config *config) 1935 { 1936 struct regulator_enable_gpio *pin; 1937 struct gpio_desc *gpiod; 1938 int ret; 1939 1940 gpiod = gpio_to_desc(config->ena_gpio); 1941 1942 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1943 if (pin->gpiod == gpiod) { 1944 rdev_dbg(rdev, "GPIO %d is already used\n", 1945 config->ena_gpio); 1946 goto update_ena_gpio_to_rdev; 1947 } 1948 } 1949 1950 ret = gpio_request_one(config->ena_gpio, 1951 GPIOF_DIR_OUT | config->ena_gpio_flags, 1952 rdev_get_name(rdev)); 1953 if (ret) 1954 return ret; 1955 1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1957 if (pin == NULL) { 1958 gpio_free(config->ena_gpio); 1959 return -ENOMEM; 1960 } 1961 1962 pin->gpiod = gpiod; 1963 pin->ena_gpio_invert = config->ena_gpio_invert; 1964 list_add(&pin->list, ®ulator_ena_gpio_list); 1965 1966 update_ena_gpio_to_rdev: 1967 pin->request_count++; 1968 rdev->ena_pin = pin; 1969 return 0; 1970 } 1971 1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1973 { 1974 struct regulator_enable_gpio *pin, *n; 1975 1976 if (!rdev->ena_pin) 1977 return; 1978 1979 /* Free the GPIO only in case of no use */ 1980 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1981 if (pin->gpiod == rdev->ena_pin->gpiod) { 1982 if (pin->request_count <= 1) { 1983 pin->request_count = 0; 1984 gpiod_put(pin->gpiod); 1985 list_del(&pin->list); 1986 kfree(pin); 1987 rdev->ena_pin = NULL; 1988 return; 1989 } else { 1990 pin->request_count--; 1991 } 1992 } 1993 } 1994 } 1995 1996 /** 1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1998 * @rdev: regulator_dev structure 1999 * @enable: enable GPIO at initial use? 2000 * 2001 * GPIO is enabled in case of initial use. (enable_count is 0) 2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2003 */ 2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2005 { 2006 struct regulator_enable_gpio *pin = rdev->ena_pin; 2007 2008 if (!pin) 2009 return -EINVAL; 2010 2011 if (enable) { 2012 /* Enable GPIO at initial use */ 2013 if (pin->enable_count == 0) 2014 gpiod_set_value_cansleep(pin->gpiod, 2015 !pin->ena_gpio_invert); 2016 2017 pin->enable_count++; 2018 } else { 2019 if (pin->enable_count > 1) { 2020 pin->enable_count--; 2021 return 0; 2022 } 2023 2024 /* Disable GPIO if not used */ 2025 if (pin->enable_count <= 1) { 2026 gpiod_set_value_cansleep(pin->gpiod, 2027 pin->ena_gpio_invert); 2028 pin->enable_count = 0; 2029 } 2030 } 2031 2032 return 0; 2033 } 2034 2035 /** 2036 * _regulator_enable_delay - a delay helper function 2037 * @delay: time to delay in microseconds 2038 * 2039 * Delay for the requested amount of time as per the guidelines in: 2040 * 2041 * Documentation/timers/timers-howto.txt 2042 * 2043 * The assumption here is that regulators will never be enabled in 2044 * atomic context and therefore sleeping functions can be used. 2045 */ 2046 static void _regulator_enable_delay(unsigned int delay) 2047 { 2048 unsigned int ms = delay / 1000; 2049 unsigned int us = delay % 1000; 2050 2051 if (ms > 0) { 2052 /* 2053 * For small enough values, handle super-millisecond 2054 * delays in the usleep_range() call below. 2055 */ 2056 if (ms < 20) 2057 us += ms * 1000; 2058 else 2059 msleep(ms); 2060 } 2061 2062 /* 2063 * Give the scheduler some room to coalesce with any other 2064 * wakeup sources. For delays shorter than 10 us, don't even 2065 * bother setting up high-resolution timers and just busy- 2066 * loop. 2067 */ 2068 if (us >= 10) 2069 usleep_range(us, us + 100); 2070 else 2071 udelay(us); 2072 } 2073 2074 static int _regulator_do_enable(struct regulator_dev *rdev) 2075 { 2076 int ret, delay; 2077 2078 /* Query before enabling in case configuration dependent. */ 2079 ret = _regulator_get_enable_time(rdev); 2080 if (ret >= 0) { 2081 delay = ret; 2082 } else { 2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2084 delay = 0; 2085 } 2086 2087 trace_regulator_enable(rdev_get_name(rdev)); 2088 2089 if (rdev->desc->off_on_delay) { 2090 /* if needed, keep a distance of off_on_delay from last time 2091 * this regulator was disabled. 2092 */ 2093 unsigned long start_jiffy = jiffies; 2094 unsigned long intended, max_delay, remaining; 2095 2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2097 intended = rdev->last_off_jiffy + max_delay; 2098 2099 if (time_before(start_jiffy, intended)) { 2100 /* calc remaining jiffies to deal with one-time 2101 * timer wrapping. 2102 * in case of multiple timer wrapping, either it can be 2103 * detected by out-of-range remaining, or it cannot be 2104 * detected and we gets a panelty of 2105 * _regulator_enable_delay(). 2106 */ 2107 remaining = intended - start_jiffy; 2108 if (remaining <= max_delay) 2109 _regulator_enable_delay( 2110 jiffies_to_usecs(remaining)); 2111 } 2112 } 2113 2114 if (rdev->ena_pin) { 2115 if (!rdev->ena_gpio_state) { 2116 ret = regulator_ena_gpio_ctrl(rdev, true); 2117 if (ret < 0) 2118 return ret; 2119 rdev->ena_gpio_state = 1; 2120 } 2121 } else if (rdev->desc->ops->enable) { 2122 ret = rdev->desc->ops->enable(rdev); 2123 if (ret < 0) 2124 return ret; 2125 } else { 2126 return -EINVAL; 2127 } 2128 2129 /* Allow the regulator to ramp; it would be useful to extend 2130 * this for bulk operations so that the regulators can ramp 2131 * together. */ 2132 trace_regulator_enable_delay(rdev_get_name(rdev)); 2133 2134 _regulator_enable_delay(delay); 2135 2136 trace_regulator_enable_complete(rdev_get_name(rdev)); 2137 2138 return 0; 2139 } 2140 2141 /* locks held by regulator_enable() */ 2142 static int _regulator_enable(struct regulator_dev *rdev) 2143 { 2144 int ret; 2145 2146 lockdep_assert_held_once(&rdev->mutex); 2147 2148 /* check voltage and requested load before enabling */ 2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2150 drms_uA_update(rdev); 2151 2152 if (rdev->use_count == 0) { 2153 /* The regulator may on if it's not switchable or left on */ 2154 ret = _regulator_is_enabled(rdev); 2155 if (ret == -EINVAL || ret == 0) { 2156 if (!regulator_ops_is_valid(rdev, 2157 REGULATOR_CHANGE_STATUS)) 2158 return -EPERM; 2159 2160 ret = _regulator_do_enable(rdev); 2161 if (ret < 0) 2162 return ret; 2163 2164 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2165 NULL); 2166 } else if (ret < 0) { 2167 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2168 return ret; 2169 } 2170 /* Fallthrough on positive return values - already enabled */ 2171 } 2172 2173 rdev->use_count++; 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * regulator_enable - enable regulator output 2180 * @regulator: regulator source 2181 * 2182 * Request that the regulator be enabled with the regulator output at 2183 * the predefined voltage or current value. Calls to regulator_enable() 2184 * must be balanced with calls to regulator_disable(). 2185 * 2186 * NOTE: the output value can be set by other drivers, boot loader or may be 2187 * hardwired in the regulator. 2188 */ 2189 int regulator_enable(struct regulator *regulator) 2190 { 2191 struct regulator_dev *rdev = regulator->rdev; 2192 int ret = 0; 2193 2194 if (regulator->always_on) 2195 return 0; 2196 2197 if (rdev->supply) { 2198 ret = regulator_enable(rdev->supply); 2199 if (ret != 0) 2200 return ret; 2201 } 2202 2203 mutex_lock(&rdev->mutex); 2204 ret = _regulator_enable(rdev); 2205 mutex_unlock(&rdev->mutex); 2206 2207 if (ret != 0 && rdev->supply) 2208 regulator_disable(rdev->supply); 2209 2210 return ret; 2211 } 2212 EXPORT_SYMBOL_GPL(regulator_enable); 2213 2214 static int _regulator_do_disable(struct regulator_dev *rdev) 2215 { 2216 int ret; 2217 2218 trace_regulator_disable(rdev_get_name(rdev)); 2219 2220 if (rdev->ena_pin) { 2221 if (rdev->ena_gpio_state) { 2222 ret = regulator_ena_gpio_ctrl(rdev, false); 2223 if (ret < 0) 2224 return ret; 2225 rdev->ena_gpio_state = 0; 2226 } 2227 2228 } else if (rdev->desc->ops->disable) { 2229 ret = rdev->desc->ops->disable(rdev); 2230 if (ret != 0) 2231 return ret; 2232 } 2233 2234 /* cares about last_off_jiffy only if off_on_delay is required by 2235 * device. 2236 */ 2237 if (rdev->desc->off_on_delay) 2238 rdev->last_off_jiffy = jiffies; 2239 2240 trace_regulator_disable_complete(rdev_get_name(rdev)); 2241 2242 return 0; 2243 } 2244 2245 /* locks held by regulator_disable() */ 2246 static int _regulator_disable(struct regulator_dev *rdev) 2247 { 2248 int ret = 0; 2249 2250 lockdep_assert_held_once(&rdev->mutex); 2251 2252 if (WARN(rdev->use_count <= 0, 2253 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2254 return -EIO; 2255 2256 /* are we the last user and permitted to disable ? */ 2257 if (rdev->use_count == 1 && 2258 (rdev->constraints && !rdev->constraints->always_on)) { 2259 2260 /* we are last user */ 2261 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2262 ret = _notifier_call_chain(rdev, 2263 REGULATOR_EVENT_PRE_DISABLE, 2264 NULL); 2265 if (ret & NOTIFY_STOP_MASK) 2266 return -EINVAL; 2267 2268 ret = _regulator_do_disable(rdev); 2269 if (ret < 0) { 2270 rdev_err(rdev, "failed to disable\n"); 2271 _notifier_call_chain(rdev, 2272 REGULATOR_EVENT_ABORT_DISABLE, 2273 NULL); 2274 return ret; 2275 } 2276 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2277 NULL); 2278 } 2279 2280 rdev->use_count = 0; 2281 } else if (rdev->use_count > 1) { 2282 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2283 drms_uA_update(rdev); 2284 2285 rdev->use_count--; 2286 } 2287 2288 return ret; 2289 } 2290 2291 /** 2292 * regulator_disable - disable regulator output 2293 * @regulator: regulator source 2294 * 2295 * Disable the regulator output voltage or current. Calls to 2296 * regulator_enable() must be balanced with calls to 2297 * regulator_disable(). 2298 * 2299 * NOTE: this will only disable the regulator output if no other consumer 2300 * devices have it enabled, the regulator device supports disabling and 2301 * machine constraints permit this operation. 2302 */ 2303 int regulator_disable(struct regulator *regulator) 2304 { 2305 struct regulator_dev *rdev = regulator->rdev; 2306 int ret = 0; 2307 2308 if (regulator->always_on) 2309 return 0; 2310 2311 mutex_lock(&rdev->mutex); 2312 ret = _regulator_disable(rdev); 2313 mutex_unlock(&rdev->mutex); 2314 2315 if (ret == 0 && rdev->supply) 2316 regulator_disable(rdev->supply); 2317 2318 return ret; 2319 } 2320 EXPORT_SYMBOL_GPL(regulator_disable); 2321 2322 /* locks held by regulator_force_disable() */ 2323 static int _regulator_force_disable(struct regulator_dev *rdev) 2324 { 2325 int ret = 0; 2326 2327 lockdep_assert_held_once(&rdev->mutex); 2328 2329 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2330 REGULATOR_EVENT_PRE_DISABLE, NULL); 2331 if (ret & NOTIFY_STOP_MASK) 2332 return -EINVAL; 2333 2334 ret = _regulator_do_disable(rdev); 2335 if (ret < 0) { 2336 rdev_err(rdev, "failed to force disable\n"); 2337 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2338 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2339 return ret; 2340 } 2341 2342 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2343 REGULATOR_EVENT_DISABLE, NULL); 2344 2345 return 0; 2346 } 2347 2348 /** 2349 * regulator_force_disable - force disable regulator output 2350 * @regulator: regulator source 2351 * 2352 * Forcibly disable the regulator output voltage or current. 2353 * NOTE: this *will* disable the regulator output even if other consumer 2354 * devices have it enabled. This should be used for situations when device 2355 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2356 */ 2357 int regulator_force_disable(struct regulator *regulator) 2358 { 2359 struct regulator_dev *rdev = regulator->rdev; 2360 int ret; 2361 2362 mutex_lock(&rdev->mutex); 2363 regulator->uA_load = 0; 2364 ret = _regulator_force_disable(regulator->rdev); 2365 mutex_unlock(&rdev->mutex); 2366 2367 if (rdev->supply) 2368 while (rdev->open_count--) 2369 regulator_disable(rdev->supply); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(regulator_force_disable); 2374 2375 static void regulator_disable_work(struct work_struct *work) 2376 { 2377 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2378 disable_work.work); 2379 int count, i, ret; 2380 2381 mutex_lock(&rdev->mutex); 2382 2383 BUG_ON(!rdev->deferred_disables); 2384 2385 count = rdev->deferred_disables; 2386 rdev->deferred_disables = 0; 2387 2388 /* 2389 * Workqueue functions queue the new work instance while the previous 2390 * work instance is being processed. Cancel the queued work instance 2391 * as the work instance under processing does the job of the queued 2392 * work instance. 2393 */ 2394 cancel_delayed_work(&rdev->disable_work); 2395 2396 for (i = 0; i < count; i++) { 2397 ret = _regulator_disable(rdev); 2398 if (ret != 0) 2399 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2400 } 2401 2402 mutex_unlock(&rdev->mutex); 2403 2404 if (rdev->supply) { 2405 for (i = 0; i < count; i++) { 2406 ret = regulator_disable(rdev->supply); 2407 if (ret != 0) { 2408 rdev_err(rdev, 2409 "Supply disable failed: %d\n", ret); 2410 } 2411 } 2412 } 2413 } 2414 2415 /** 2416 * regulator_disable_deferred - disable regulator output with delay 2417 * @regulator: regulator source 2418 * @ms: miliseconds until the regulator is disabled 2419 * 2420 * Execute regulator_disable() on the regulator after a delay. This 2421 * is intended for use with devices that require some time to quiesce. 2422 * 2423 * NOTE: this will only disable the regulator output if no other consumer 2424 * devices have it enabled, the regulator device supports disabling and 2425 * machine constraints permit this operation. 2426 */ 2427 int regulator_disable_deferred(struct regulator *regulator, int ms) 2428 { 2429 struct regulator_dev *rdev = regulator->rdev; 2430 2431 if (regulator->always_on) 2432 return 0; 2433 2434 if (!ms) 2435 return regulator_disable(regulator); 2436 2437 mutex_lock(&rdev->mutex); 2438 rdev->deferred_disables++; 2439 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2440 msecs_to_jiffies(ms)); 2441 mutex_unlock(&rdev->mutex); 2442 2443 return 0; 2444 } 2445 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2446 2447 static int _regulator_is_enabled(struct regulator_dev *rdev) 2448 { 2449 /* A GPIO control always takes precedence */ 2450 if (rdev->ena_pin) 2451 return rdev->ena_gpio_state; 2452 2453 /* If we don't know then assume that the regulator is always on */ 2454 if (!rdev->desc->ops->is_enabled) 2455 return 1; 2456 2457 return rdev->desc->ops->is_enabled(rdev); 2458 } 2459 2460 static int _regulator_list_voltage(struct regulator_dev *rdev, 2461 unsigned selector, int lock) 2462 { 2463 const struct regulator_ops *ops = rdev->desc->ops; 2464 int ret; 2465 2466 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2467 return rdev->desc->fixed_uV; 2468 2469 if (ops->list_voltage) { 2470 if (selector >= rdev->desc->n_voltages) 2471 return -EINVAL; 2472 if (lock) 2473 mutex_lock(&rdev->mutex); 2474 ret = ops->list_voltage(rdev, selector); 2475 if (lock) 2476 mutex_unlock(&rdev->mutex); 2477 } else if (rdev->is_switch && rdev->supply) { 2478 ret = _regulator_list_voltage(rdev->supply->rdev, 2479 selector, lock); 2480 } else { 2481 return -EINVAL; 2482 } 2483 2484 if (ret > 0) { 2485 if (ret < rdev->constraints->min_uV) 2486 ret = 0; 2487 else if (ret > rdev->constraints->max_uV) 2488 ret = 0; 2489 } 2490 2491 return ret; 2492 } 2493 2494 /** 2495 * regulator_is_enabled - is the regulator output enabled 2496 * @regulator: regulator source 2497 * 2498 * Returns positive if the regulator driver backing the source/client 2499 * has requested that the device be enabled, zero if it hasn't, else a 2500 * negative errno code. 2501 * 2502 * Note that the device backing this regulator handle can have multiple 2503 * users, so it might be enabled even if regulator_enable() was never 2504 * called for this particular source. 2505 */ 2506 int regulator_is_enabled(struct regulator *regulator) 2507 { 2508 int ret; 2509 2510 if (regulator->always_on) 2511 return 1; 2512 2513 mutex_lock(®ulator->rdev->mutex); 2514 ret = _regulator_is_enabled(regulator->rdev); 2515 mutex_unlock(®ulator->rdev->mutex); 2516 2517 return ret; 2518 } 2519 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2520 2521 /** 2522 * regulator_count_voltages - count regulator_list_voltage() selectors 2523 * @regulator: regulator source 2524 * 2525 * Returns number of selectors, or negative errno. Selectors are 2526 * numbered starting at zero, and typically correspond to bitfields 2527 * in hardware registers. 2528 */ 2529 int regulator_count_voltages(struct regulator *regulator) 2530 { 2531 struct regulator_dev *rdev = regulator->rdev; 2532 2533 if (rdev->desc->n_voltages) 2534 return rdev->desc->n_voltages; 2535 2536 if (!rdev->is_switch || !rdev->supply) 2537 return -EINVAL; 2538 2539 return regulator_count_voltages(rdev->supply); 2540 } 2541 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2542 2543 /** 2544 * regulator_list_voltage - enumerate supported voltages 2545 * @regulator: regulator source 2546 * @selector: identify voltage to list 2547 * Context: can sleep 2548 * 2549 * Returns a voltage that can be passed to @regulator_set_voltage(), 2550 * zero if this selector code can't be used on this system, or a 2551 * negative errno. 2552 */ 2553 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2554 { 2555 return _regulator_list_voltage(regulator->rdev, selector, 1); 2556 } 2557 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2558 2559 /** 2560 * regulator_get_regmap - get the regulator's register map 2561 * @regulator: regulator source 2562 * 2563 * Returns the register map for the given regulator, or an ERR_PTR value 2564 * if the regulator doesn't use regmap. 2565 */ 2566 struct regmap *regulator_get_regmap(struct regulator *regulator) 2567 { 2568 struct regmap *map = regulator->rdev->regmap; 2569 2570 return map ? map : ERR_PTR(-EOPNOTSUPP); 2571 } 2572 2573 /** 2574 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2575 * @regulator: regulator source 2576 * @vsel_reg: voltage selector register, output parameter 2577 * @vsel_mask: mask for voltage selector bitfield, output parameter 2578 * 2579 * Returns the hardware register offset and bitmask used for setting the 2580 * regulator voltage. This might be useful when configuring voltage-scaling 2581 * hardware or firmware that can make I2C requests behind the kernel's back, 2582 * for example. 2583 * 2584 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2585 * and 0 is returned, otherwise a negative errno is returned. 2586 */ 2587 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2588 unsigned *vsel_reg, 2589 unsigned *vsel_mask) 2590 { 2591 struct regulator_dev *rdev = regulator->rdev; 2592 const struct regulator_ops *ops = rdev->desc->ops; 2593 2594 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2595 return -EOPNOTSUPP; 2596 2597 *vsel_reg = rdev->desc->vsel_reg; 2598 *vsel_mask = rdev->desc->vsel_mask; 2599 2600 return 0; 2601 } 2602 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2603 2604 /** 2605 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2606 * @regulator: regulator source 2607 * @selector: identify voltage to list 2608 * 2609 * Converts the selector to a hardware-specific voltage selector that can be 2610 * directly written to the regulator registers. The address of the voltage 2611 * register can be determined by calling @regulator_get_hardware_vsel_register. 2612 * 2613 * On error a negative errno is returned. 2614 */ 2615 int regulator_list_hardware_vsel(struct regulator *regulator, 2616 unsigned selector) 2617 { 2618 struct regulator_dev *rdev = regulator->rdev; 2619 const struct regulator_ops *ops = rdev->desc->ops; 2620 2621 if (selector >= rdev->desc->n_voltages) 2622 return -EINVAL; 2623 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2624 return -EOPNOTSUPP; 2625 2626 return selector; 2627 } 2628 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2629 2630 /** 2631 * regulator_get_linear_step - return the voltage step size between VSEL values 2632 * @regulator: regulator source 2633 * 2634 * Returns the voltage step size between VSEL values for linear 2635 * regulators, or return 0 if the regulator isn't a linear regulator. 2636 */ 2637 unsigned int regulator_get_linear_step(struct regulator *regulator) 2638 { 2639 struct regulator_dev *rdev = regulator->rdev; 2640 2641 return rdev->desc->uV_step; 2642 } 2643 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2644 2645 /** 2646 * regulator_is_supported_voltage - check if a voltage range can be supported 2647 * 2648 * @regulator: Regulator to check. 2649 * @min_uV: Minimum required voltage in uV. 2650 * @max_uV: Maximum required voltage in uV. 2651 * 2652 * Returns a boolean or a negative error code. 2653 */ 2654 int regulator_is_supported_voltage(struct regulator *regulator, 2655 int min_uV, int max_uV) 2656 { 2657 struct regulator_dev *rdev = regulator->rdev; 2658 int i, voltages, ret; 2659 2660 /* If we can't change voltage check the current voltage */ 2661 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2662 ret = regulator_get_voltage(regulator); 2663 if (ret >= 0) 2664 return min_uV <= ret && ret <= max_uV; 2665 else 2666 return ret; 2667 } 2668 2669 /* Any voltage within constrains range is fine? */ 2670 if (rdev->desc->continuous_voltage_range) 2671 return min_uV >= rdev->constraints->min_uV && 2672 max_uV <= rdev->constraints->max_uV; 2673 2674 ret = regulator_count_voltages(regulator); 2675 if (ret < 0) 2676 return ret; 2677 voltages = ret; 2678 2679 for (i = 0; i < voltages; i++) { 2680 ret = regulator_list_voltage(regulator, i); 2681 2682 if (ret >= min_uV && ret <= max_uV) 2683 return 1; 2684 } 2685 2686 return 0; 2687 } 2688 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2689 2690 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2691 int max_uV) 2692 { 2693 const struct regulator_desc *desc = rdev->desc; 2694 2695 if (desc->ops->map_voltage) 2696 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2697 2698 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2699 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2700 2701 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2702 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2703 2704 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2705 } 2706 2707 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2708 int min_uV, int max_uV, 2709 unsigned *selector) 2710 { 2711 struct pre_voltage_change_data data; 2712 int ret; 2713 2714 data.old_uV = _regulator_get_voltage(rdev); 2715 data.min_uV = min_uV; 2716 data.max_uV = max_uV; 2717 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2718 &data); 2719 if (ret & NOTIFY_STOP_MASK) 2720 return -EINVAL; 2721 2722 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2723 if (ret >= 0) 2724 return ret; 2725 2726 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2727 (void *)data.old_uV); 2728 2729 return ret; 2730 } 2731 2732 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2733 int uV, unsigned selector) 2734 { 2735 struct pre_voltage_change_data data; 2736 int ret; 2737 2738 data.old_uV = _regulator_get_voltage(rdev); 2739 data.min_uV = uV; 2740 data.max_uV = uV; 2741 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2742 &data); 2743 if (ret & NOTIFY_STOP_MASK) 2744 return -EINVAL; 2745 2746 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2747 if (ret >= 0) 2748 return ret; 2749 2750 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2751 (void *)data.old_uV); 2752 2753 return ret; 2754 } 2755 2756 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2757 int old_uV, int new_uV) 2758 { 2759 unsigned int ramp_delay = 0; 2760 2761 if (rdev->constraints->ramp_delay) 2762 ramp_delay = rdev->constraints->ramp_delay; 2763 else if (rdev->desc->ramp_delay) 2764 ramp_delay = rdev->desc->ramp_delay; 2765 else if (rdev->constraints->settling_time) 2766 return rdev->constraints->settling_time; 2767 else if (rdev->constraints->settling_time_up && 2768 (new_uV > old_uV)) 2769 return rdev->constraints->settling_time_up; 2770 else if (rdev->constraints->settling_time_down && 2771 (new_uV < old_uV)) 2772 return rdev->constraints->settling_time_down; 2773 2774 if (ramp_delay == 0) { 2775 rdev_dbg(rdev, "ramp_delay not set\n"); 2776 return 0; 2777 } 2778 2779 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2780 } 2781 2782 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2783 int min_uV, int max_uV) 2784 { 2785 int ret; 2786 int delay = 0; 2787 int best_val = 0; 2788 unsigned int selector; 2789 int old_selector = -1; 2790 const struct regulator_ops *ops = rdev->desc->ops; 2791 int old_uV = _regulator_get_voltage(rdev); 2792 2793 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2794 2795 min_uV += rdev->constraints->uV_offset; 2796 max_uV += rdev->constraints->uV_offset; 2797 2798 /* 2799 * If we can't obtain the old selector there is not enough 2800 * info to call set_voltage_time_sel(). 2801 */ 2802 if (_regulator_is_enabled(rdev) && 2803 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2804 old_selector = ops->get_voltage_sel(rdev); 2805 if (old_selector < 0) 2806 return old_selector; 2807 } 2808 2809 if (ops->set_voltage) { 2810 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2811 &selector); 2812 2813 if (ret >= 0) { 2814 if (ops->list_voltage) 2815 best_val = ops->list_voltage(rdev, 2816 selector); 2817 else 2818 best_val = _regulator_get_voltage(rdev); 2819 } 2820 2821 } else if (ops->set_voltage_sel) { 2822 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2823 if (ret >= 0) { 2824 best_val = ops->list_voltage(rdev, ret); 2825 if (min_uV <= best_val && max_uV >= best_val) { 2826 selector = ret; 2827 if (old_selector == selector) 2828 ret = 0; 2829 else 2830 ret = _regulator_call_set_voltage_sel( 2831 rdev, best_val, selector); 2832 } else { 2833 ret = -EINVAL; 2834 } 2835 } 2836 } else { 2837 ret = -EINVAL; 2838 } 2839 2840 if (ret) 2841 goto out; 2842 2843 if (ops->set_voltage_time_sel) { 2844 /* 2845 * Call set_voltage_time_sel if successfully obtained 2846 * old_selector 2847 */ 2848 if (old_selector >= 0 && old_selector != selector) 2849 delay = ops->set_voltage_time_sel(rdev, old_selector, 2850 selector); 2851 } else { 2852 if (old_uV != best_val) { 2853 if (ops->set_voltage_time) 2854 delay = ops->set_voltage_time(rdev, old_uV, 2855 best_val); 2856 else 2857 delay = _regulator_set_voltage_time(rdev, 2858 old_uV, 2859 best_val); 2860 } 2861 } 2862 2863 if (delay < 0) { 2864 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2865 delay = 0; 2866 } 2867 2868 /* Insert any necessary delays */ 2869 if (delay >= 1000) { 2870 mdelay(delay / 1000); 2871 udelay(delay % 1000); 2872 } else if (delay) { 2873 udelay(delay); 2874 } 2875 2876 if (best_val >= 0) { 2877 unsigned long data = best_val; 2878 2879 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2880 (void *)data); 2881 } 2882 2883 out: 2884 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2885 2886 return ret; 2887 } 2888 2889 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 2890 int min_uV, int max_uV, suspend_state_t state) 2891 { 2892 struct regulator_state *rstate; 2893 int uV, sel; 2894 2895 rstate = regulator_get_suspend_state(rdev, state); 2896 if (rstate == NULL) 2897 return -EINVAL; 2898 2899 if (min_uV < rstate->min_uV) 2900 min_uV = rstate->min_uV; 2901 if (max_uV > rstate->max_uV) 2902 max_uV = rstate->max_uV; 2903 2904 sel = regulator_map_voltage(rdev, min_uV, max_uV); 2905 if (sel < 0) 2906 return sel; 2907 2908 uV = rdev->desc->ops->list_voltage(rdev, sel); 2909 if (uV >= min_uV && uV <= max_uV) 2910 rstate->uV = uV; 2911 2912 return 0; 2913 } 2914 2915 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2916 int min_uV, int max_uV, 2917 suspend_state_t state) 2918 { 2919 struct regulator_dev *rdev = regulator->rdev; 2920 struct regulator_voltage *voltage = ®ulator->voltage[state]; 2921 int ret = 0; 2922 int old_min_uV, old_max_uV; 2923 int current_uV; 2924 int best_supply_uV = 0; 2925 int supply_change_uV = 0; 2926 2927 /* If we're setting the same range as last time the change 2928 * should be a noop (some cpufreq implementations use the same 2929 * voltage for multiple frequencies, for example). 2930 */ 2931 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 2932 goto out; 2933 2934 /* If we're trying to set a range that overlaps the current voltage, 2935 * return successfully even though the regulator does not support 2936 * changing the voltage. 2937 */ 2938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2939 current_uV = _regulator_get_voltage(rdev); 2940 if (min_uV <= current_uV && current_uV <= max_uV) { 2941 voltage->min_uV = min_uV; 2942 voltage->max_uV = max_uV; 2943 goto out; 2944 } 2945 } 2946 2947 /* sanity check */ 2948 if (!rdev->desc->ops->set_voltage && 2949 !rdev->desc->ops->set_voltage_sel) { 2950 ret = -EINVAL; 2951 goto out; 2952 } 2953 2954 /* constraints check */ 2955 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2956 if (ret < 0) 2957 goto out; 2958 2959 /* restore original values in case of error */ 2960 old_min_uV = voltage->min_uV; 2961 old_max_uV = voltage->max_uV; 2962 voltage->min_uV = min_uV; 2963 voltage->max_uV = max_uV; 2964 2965 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state); 2966 if (ret < 0) 2967 goto out2; 2968 2969 if (rdev->supply && 2970 regulator_ops_is_valid(rdev->supply->rdev, 2971 REGULATOR_CHANGE_VOLTAGE) && 2972 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 2973 rdev->desc->ops->get_voltage_sel))) { 2974 int current_supply_uV; 2975 int selector; 2976 2977 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2978 if (selector < 0) { 2979 ret = selector; 2980 goto out2; 2981 } 2982 2983 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 2984 if (best_supply_uV < 0) { 2985 ret = best_supply_uV; 2986 goto out2; 2987 } 2988 2989 best_supply_uV += rdev->desc->min_dropout_uV; 2990 2991 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2992 if (current_supply_uV < 0) { 2993 ret = current_supply_uV; 2994 goto out2; 2995 } 2996 2997 supply_change_uV = best_supply_uV - current_supply_uV; 2998 } 2999 3000 if (supply_change_uV > 0) { 3001 ret = regulator_set_voltage_unlocked(rdev->supply, 3002 best_supply_uV, INT_MAX, state); 3003 if (ret) { 3004 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 3005 ret); 3006 goto out2; 3007 } 3008 } 3009 3010 if (state == PM_SUSPEND_ON) 3011 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3012 else 3013 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3014 max_uV, state); 3015 if (ret < 0) 3016 goto out2; 3017 3018 if (supply_change_uV < 0) { 3019 ret = regulator_set_voltage_unlocked(rdev->supply, 3020 best_supply_uV, INT_MAX, state); 3021 if (ret) 3022 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 3023 ret); 3024 /* No need to fail here */ 3025 ret = 0; 3026 } 3027 3028 out: 3029 return ret; 3030 out2: 3031 voltage->min_uV = old_min_uV; 3032 voltage->max_uV = old_max_uV; 3033 3034 return ret; 3035 } 3036 3037 /** 3038 * regulator_set_voltage - set regulator output voltage 3039 * @regulator: regulator source 3040 * @min_uV: Minimum required voltage in uV 3041 * @max_uV: Maximum acceptable voltage in uV 3042 * 3043 * Sets a voltage regulator to the desired output voltage. This can be set 3044 * during any regulator state. IOW, regulator can be disabled or enabled. 3045 * 3046 * If the regulator is enabled then the voltage will change to the new value 3047 * immediately otherwise if the regulator is disabled the regulator will 3048 * output at the new voltage when enabled. 3049 * 3050 * NOTE: If the regulator is shared between several devices then the lowest 3051 * request voltage that meets the system constraints will be used. 3052 * Regulator system constraints must be set for this regulator before 3053 * calling this function otherwise this call will fail. 3054 */ 3055 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3056 { 3057 int ret = 0; 3058 3059 regulator_lock_supply(regulator->rdev); 3060 3061 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 3062 PM_SUSPEND_ON); 3063 3064 regulator_unlock_supply(regulator->rdev); 3065 3066 return ret; 3067 } 3068 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3069 3070 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 3071 suspend_state_t state, bool en) 3072 { 3073 struct regulator_state *rstate; 3074 3075 rstate = regulator_get_suspend_state(rdev, state); 3076 if (rstate == NULL) 3077 return -EINVAL; 3078 3079 if (!rstate->changeable) 3080 return -EPERM; 3081 3082 rstate->enabled = en; 3083 3084 return 0; 3085 } 3086 3087 int regulator_suspend_enable(struct regulator_dev *rdev, 3088 suspend_state_t state) 3089 { 3090 return regulator_suspend_toggle(rdev, state, true); 3091 } 3092 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 3093 3094 int regulator_suspend_disable(struct regulator_dev *rdev, 3095 suspend_state_t state) 3096 { 3097 struct regulator *regulator; 3098 struct regulator_voltage *voltage; 3099 3100 /* 3101 * if any consumer wants this regulator device keeping on in 3102 * suspend states, don't set it as disabled. 3103 */ 3104 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3105 voltage = ®ulator->voltage[state]; 3106 if (voltage->min_uV || voltage->max_uV) 3107 return 0; 3108 } 3109 3110 return regulator_suspend_toggle(rdev, state, false); 3111 } 3112 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 3113 3114 static int _regulator_set_suspend_voltage(struct regulator *regulator, 3115 int min_uV, int max_uV, 3116 suspend_state_t state) 3117 { 3118 struct regulator_dev *rdev = regulator->rdev; 3119 struct regulator_state *rstate; 3120 3121 rstate = regulator_get_suspend_state(rdev, state); 3122 if (rstate == NULL) 3123 return -EINVAL; 3124 3125 if (rstate->min_uV == rstate->max_uV) { 3126 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 3127 return -EPERM; 3128 } 3129 3130 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 3131 } 3132 3133 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 3134 int max_uV, suspend_state_t state) 3135 { 3136 int ret = 0; 3137 3138 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 3139 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 3140 return -EINVAL; 3141 3142 regulator_lock_supply(regulator->rdev); 3143 3144 ret = _regulator_set_suspend_voltage(regulator, min_uV, 3145 max_uV, state); 3146 3147 regulator_unlock_supply(regulator->rdev); 3148 3149 return ret; 3150 } 3151 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 3152 3153 /** 3154 * regulator_set_voltage_time - get raise/fall time 3155 * @regulator: regulator source 3156 * @old_uV: starting voltage in microvolts 3157 * @new_uV: target voltage in microvolts 3158 * 3159 * Provided with the starting and ending voltage, this function attempts to 3160 * calculate the time in microseconds required to rise or fall to this new 3161 * voltage. 3162 */ 3163 int regulator_set_voltage_time(struct regulator *regulator, 3164 int old_uV, int new_uV) 3165 { 3166 struct regulator_dev *rdev = regulator->rdev; 3167 const struct regulator_ops *ops = rdev->desc->ops; 3168 int old_sel = -1; 3169 int new_sel = -1; 3170 int voltage; 3171 int i; 3172 3173 if (ops->set_voltage_time) 3174 return ops->set_voltage_time(rdev, old_uV, new_uV); 3175 else if (!ops->set_voltage_time_sel) 3176 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3177 3178 /* Currently requires operations to do this */ 3179 if (!ops->list_voltage || !rdev->desc->n_voltages) 3180 return -EINVAL; 3181 3182 for (i = 0; i < rdev->desc->n_voltages; i++) { 3183 /* We only look for exact voltage matches here */ 3184 voltage = regulator_list_voltage(regulator, i); 3185 if (voltage < 0) 3186 return -EINVAL; 3187 if (voltage == 0) 3188 continue; 3189 if (voltage == old_uV) 3190 old_sel = i; 3191 if (voltage == new_uV) 3192 new_sel = i; 3193 } 3194 3195 if (old_sel < 0 || new_sel < 0) 3196 return -EINVAL; 3197 3198 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3199 } 3200 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3201 3202 /** 3203 * regulator_set_voltage_time_sel - get raise/fall time 3204 * @rdev: regulator source device 3205 * @old_selector: selector for starting voltage 3206 * @new_selector: selector for target voltage 3207 * 3208 * Provided with the starting and target voltage selectors, this function 3209 * returns time in microseconds required to rise or fall to this new voltage 3210 * 3211 * Drivers providing ramp_delay in regulation_constraints can use this as their 3212 * set_voltage_time_sel() operation. 3213 */ 3214 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3215 unsigned int old_selector, 3216 unsigned int new_selector) 3217 { 3218 int old_volt, new_volt; 3219 3220 /* sanity check */ 3221 if (!rdev->desc->ops->list_voltage) 3222 return -EINVAL; 3223 3224 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3225 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3226 3227 if (rdev->desc->ops->set_voltage_time) 3228 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3229 new_volt); 3230 else 3231 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3232 } 3233 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3234 3235 /** 3236 * regulator_sync_voltage - re-apply last regulator output voltage 3237 * @regulator: regulator source 3238 * 3239 * Re-apply the last configured voltage. This is intended to be used 3240 * where some external control source the consumer is cooperating with 3241 * has caused the configured voltage to change. 3242 */ 3243 int regulator_sync_voltage(struct regulator *regulator) 3244 { 3245 struct regulator_dev *rdev = regulator->rdev; 3246 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 3247 int ret, min_uV, max_uV; 3248 3249 mutex_lock(&rdev->mutex); 3250 3251 if (!rdev->desc->ops->set_voltage && 3252 !rdev->desc->ops->set_voltage_sel) { 3253 ret = -EINVAL; 3254 goto out; 3255 } 3256 3257 /* This is only going to work if we've had a voltage configured. */ 3258 if (!voltage->min_uV && !voltage->max_uV) { 3259 ret = -EINVAL; 3260 goto out; 3261 } 3262 3263 min_uV = voltage->min_uV; 3264 max_uV = voltage->max_uV; 3265 3266 /* This should be a paranoia check... */ 3267 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3268 if (ret < 0) 3269 goto out; 3270 3271 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 3272 if (ret < 0) 3273 goto out; 3274 3275 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3276 3277 out: 3278 mutex_unlock(&rdev->mutex); 3279 return ret; 3280 } 3281 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3282 3283 static int _regulator_get_voltage(struct regulator_dev *rdev) 3284 { 3285 int sel, ret; 3286 bool bypassed; 3287 3288 if (rdev->desc->ops->get_bypass) { 3289 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3290 if (ret < 0) 3291 return ret; 3292 if (bypassed) { 3293 /* if bypassed the regulator must have a supply */ 3294 if (!rdev->supply) { 3295 rdev_err(rdev, 3296 "bypassed regulator has no supply!\n"); 3297 return -EPROBE_DEFER; 3298 } 3299 3300 return _regulator_get_voltage(rdev->supply->rdev); 3301 } 3302 } 3303 3304 if (rdev->desc->ops->get_voltage_sel) { 3305 sel = rdev->desc->ops->get_voltage_sel(rdev); 3306 if (sel < 0) 3307 return sel; 3308 ret = rdev->desc->ops->list_voltage(rdev, sel); 3309 } else if (rdev->desc->ops->get_voltage) { 3310 ret = rdev->desc->ops->get_voltage(rdev); 3311 } else if (rdev->desc->ops->list_voltage) { 3312 ret = rdev->desc->ops->list_voltage(rdev, 0); 3313 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3314 ret = rdev->desc->fixed_uV; 3315 } else if (rdev->supply) { 3316 ret = _regulator_get_voltage(rdev->supply->rdev); 3317 } else { 3318 return -EINVAL; 3319 } 3320 3321 if (ret < 0) 3322 return ret; 3323 return ret - rdev->constraints->uV_offset; 3324 } 3325 3326 /** 3327 * regulator_get_voltage - get regulator output voltage 3328 * @regulator: regulator source 3329 * 3330 * This returns the current regulator voltage in uV. 3331 * 3332 * NOTE: If the regulator is disabled it will return the voltage value. This 3333 * function should not be used to determine regulator state. 3334 */ 3335 int regulator_get_voltage(struct regulator *regulator) 3336 { 3337 int ret; 3338 3339 regulator_lock_supply(regulator->rdev); 3340 3341 ret = _regulator_get_voltage(regulator->rdev); 3342 3343 regulator_unlock_supply(regulator->rdev); 3344 3345 return ret; 3346 } 3347 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3348 3349 /** 3350 * regulator_set_current_limit - set regulator output current limit 3351 * @regulator: regulator source 3352 * @min_uA: Minimum supported current in uA 3353 * @max_uA: Maximum supported current in uA 3354 * 3355 * Sets current sink to the desired output current. This can be set during 3356 * any regulator state. IOW, regulator can be disabled or enabled. 3357 * 3358 * If the regulator is enabled then the current will change to the new value 3359 * immediately otherwise if the regulator is disabled the regulator will 3360 * output at the new current when enabled. 3361 * 3362 * NOTE: Regulator system constraints must be set for this regulator before 3363 * calling this function otherwise this call will fail. 3364 */ 3365 int regulator_set_current_limit(struct regulator *regulator, 3366 int min_uA, int max_uA) 3367 { 3368 struct regulator_dev *rdev = regulator->rdev; 3369 int ret; 3370 3371 mutex_lock(&rdev->mutex); 3372 3373 /* sanity check */ 3374 if (!rdev->desc->ops->set_current_limit) { 3375 ret = -EINVAL; 3376 goto out; 3377 } 3378 3379 /* constraints check */ 3380 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3381 if (ret < 0) 3382 goto out; 3383 3384 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3385 out: 3386 mutex_unlock(&rdev->mutex); 3387 return ret; 3388 } 3389 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3390 3391 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3392 { 3393 int ret; 3394 3395 mutex_lock(&rdev->mutex); 3396 3397 /* sanity check */ 3398 if (!rdev->desc->ops->get_current_limit) { 3399 ret = -EINVAL; 3400 goto out; 3401 } 3402 3403 ret = rdev->desc->ops->get_current_limit(rdev); 3404 out: 3405 mutex_unlock(&rdev->mutex); 3406 return ret; 3407 } 3408 3409 /** 3410 * regulator_get_current_limit - get regulator output current 3411 * @regulator: regulator source 3412 * 3413 * This returns the current supplied by the specified current sink in uA. 3414 * 3415 * NOTE: If the regulator is disabled it will return the current value. This 3416 * function should not be used to determine regulator state. 3417 */ 3418 int regulator_get_current_limit(struct regulator *regulator) 3419 { 3420 return _regulator_get_current_limit(regulator->rdev); 3421 } 3422 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3423 3424 /** 3425 * regulator_set_mode - set regulator operating mode 3426 * @regulator: regulator source 3427 * @mode: operating mode - one of the REGULATOR_MODE constants 3428 * 3429 * Set regulator operating mode to increase regulator efficiency or improve 3430 * regulation performance. 3431 * 3432 * NOTE: Regulator system constraints must be set for this regulator before 3433 * calling this function otherwise this call will fail. 3434 */ 3435 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3436 { 3437 struct regulator_dev *rdev = regulator->rdev; 3438 int ret; 3439 int regulator_curr_mode; 3440 3441 mutex_lock(&rdev->mutex); 3442 3443 /* sanity check */ 3444 if (!rdev->desc->ops->set_mode) { 3445 ret = -EINVAL; 3446 goto out; 3447 } 3448 3449 /* return if the same mode is requested */ 3450 if (rdev->desc->ops->get_mode) { 3451 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3452 if (regulator_curr_mode == mode) { 3453 ret = 0; 3454 goto out; 3455 } 3456 } 3457 3458 /* constraints check */ 3459 ret = regulator_mode_constrain(rdev, &mode); 3460 if (ret < 0) 3461 goto out; 3462 3463 ret = rdev->desc->ops->set_mode(rdev, mode); 3464 out: 3465 mutex_unlock(&rdev->mutex); 3466 return ret; 3467 } 3468 EXPORT_SYMBOL_GPL(regulator_set_mode); 3469 3470 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3471 { 3472 int ret; 3473 3474 mutex_lock(&rdev->mutex); 3475 3476 /* sanity check */ 3477 if (!rdev->desc->ops->get_mode) { 3478 ret = -EINVAL; 3479 goto out; 3480 } 3481 3482 ret = rdev->desc->ops->get_mode(rdev); 3483 out: 3484 mutex_unlock(&rdev->mutex); 3485 return ret; 3486 } 3487 3488 /** 3489 * regulator_get_mode - get regulator operating mode 3490 * @regulator: regulator source 3491 * 3492 * Get the current regulator operating mode. 3493 */ 3494 unsigned int regulator_get_mode(struct regulator *regulator) 3495 { 3496 return _regulator_get_mode(regulator->rdev); 3497 } 3498 EXPORT_SYMBOL_GPL(regulator_get_mode); 3499 3500 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3501 unsigned int *flags) 3502 { 3503 int ret; 3504 3505 mutex_lock(&rdev->mutex); 3506 3507 /* sanity check */ 3508 if (!rdev->desc->ops->get_error_flags) { 3509 ret = -EINVAL; 3510 goto out; 3511 } 3512 3513 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3514 out: 3515 mutex_unlock(&rdev->mutex); 3516 return ret; 3517 } 3518 3519 /** 3520 * regulator_get_error_flags - get regulator error information 3521 * @regulator: regulator source 3522 * @flags: pointer to store error flags 3523 * 3524 * Get the current regulator error information. 3525 */ 3526 int regulator_get_error_flags(struct regulator *regulator, 3527 unsigned int *flags) 3528 { 3529 return _regulator_get_error_flags(regulator->rdev, flags); 3530 } 3531 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3532 3533 /** 3534 * regulator_set_load - set regulator load 3535 * @regulator: regulator source 3536 * @uA_load: load current 3537 * 3538 * Notifies the regulator core of a new device load. This is then used by 3539 * DRMS (if enabled by constraints) to set the most efficient regulator 3540 * operating mode for the new regulator loading. 3541 * 3542 * Consumer devices notify their supply regulator of the maximum power 3543 * they will require (can be taken from device datasheet in the power 3544 * consumption tables) when they change operational status and hence power 3545 * state. Examples of operational state changes that can affect power 3546 * consumption are :- 3547 * 3548 * o Device is opened / closed. 3549 * o Device I/O is about to begin or has just finished. 3550 * o Device is idling in between work. 3551 * 3552 * This information is also exported via sysfs to userspace. 3553 * 3554 * DRMS will sum the total requested load on the regulator and change 3555 * to the most efficient operating mode if platform constraints allow. 3556 * 3557 * On error a negative errno is returned. 3558 */ 3559 int regulator_set_load(struct regulator *regulator, int uA_load) 3560 { 3561 struct regulator_dev *rdev = regulator->rdev; 3562 int ret; 3563 3564 mutex_lock(&rdev->mutex); 3565 regulator->uA_load = uA_load; 3566 ret = drms_uA_update(rdev); 3567 mutex_unlock(&rdev->mutex); 3568 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(regulator_set_load); 3572 3573 /** 3574 * regulator_allow_bypass - allow the regulator to go into bypass mode 3575 * 3576 * @regulator: Regulator to configure 3577 * @enable: enable or disable bypass mode 3578 * 3579 * Allow the regulator to go into bypass mode if all other consumers 3580 * for the regulator also enable bypass mode and the machine 3581 * constraints allow this. Bypass mode means that the regulator is 3582 * simply passing the input directly to the output with no regulation. 3583 */ 3584 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3585 { 3586 struct regulator_dev *rdev = regulator->rdev; 3587 int ret = 0; 3588 3589 if (!rdev->desc->ops->set_bypass) 3590 return 0; 3591 3592 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3593 return 0; 3594 3595 mutex_lock(&rdev->mutex); 3596 3597 if (enable && !regulator->bypass) { 3598 rdev->bypass_count++; 3599 3600 if (rdev->bypass_count == rdev->open_count) { 3601 ret = rdev->desc->ops->set_bypass(rdev, enable); 3602 if (ret != 0) 3603 rdev->bypass_count--; 3604 } 3605 3606 } else if (!enable && regulator->bypass) { 3607 rdev->bypass_count--; 3608 3609 if (rdev->bypass_count != rdev->open_count) { 3610 ret = rdev->desc->ops->set_bypass(rdev, enable); 3611 if (ret != 0) 3612 rdev->bypass_count++; 3613 } 3614 } 3615 3616 if (ret == 0) 3617 regulator->bypass = enable; 3618 3619 mutex_unlock(&rdev->mutex); 3620 3621 return ret; 3622 } 3623 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3624 3625 /** 3626 * regulator_register_notifier - register regulator event notifier 3627 * @regulator: regulator source 3628 * @nb: notifier block 3629 * 3630 * Register notifier block to receive regulator events. 3631 */ 3632 int regulator_register_notifier(struct regulator *regulator, 3633 struct notifier_block *nb) 3634 { 3635 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3636 nb); 3637 } 3638 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3639 3640 /** 3641 * regulator_unregister_notifier - unregister regulator event notifier 3642 * @regulator: regulator source 3643 * @nb: notifier block 3644 * 3645 * Unregister regulator event notifier block. 3646 */ 3647 int regulator_unregister_notifier(struct regulator *regulator, 3648 struct notifier_block *nb) 3649 { 3650 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3651 nb); 3652 } 3653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3654 3655 /* notify regulator consumers and downstream regulator consumers. 3656 * Note mutex must be held by caller. 3657 */ 3658 static int _notifier_call_chain(struct regulator_dev *rdev, 3659 unsigned long event, void *data) 3660 { 3661 /* call rdev chain first */ 3662 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3663 } 3664 3665 /** 3666 * regulator_bulk_get - get multiple regulator consumers 3667 * 3668 * @dev: Device to supply 3669 * @num_consumers: Number of consumers to register 3670 * @consumers: Configuration of consumers; clients are stored here. 3671 * 3672 * @return 0 on success, an errno on failure. 3673 * 3674 * This helper function allows drivers to get several regulator 3675 * consumers in one operation. If any of the regulators cannot be 3676 * acquired then any regulators that were allocated will be freed 3677 * before returning to the caller. 3678 */ 3679 int regulator_bulk_get(struct device *dev, int num_consumers, 3680 struct regulator_bulk_data *consumers) 3681 { 3682 int i; 3683 int ret; 3684 3685 for (i = 0; i < num_consumers; i++) 3686 consumers[i].consumer = NULL; 3687 3688 for (i = 0; i < num_consumers; i++) { 3689 consumers[i].consumer = regulator_get(dev, 3690 consumers[i].supply); 3691 if (IS_ERR(consumers[i].consumer)) { 3692 ret = PTR_ERR(consumers[i].consumer); 3693 dev_err(dev, "Failed to get supply '%s': %d\n", 3694 consumers[i].supply, ret); 3695 consumers[i].consumer = NULL; 3696 goto err; 3697 } 3698 } 3699 3700 return 0; 3701 3702 err: 3703 while (--i >= 0) 3704 regulator_put(consumers[i].consumer); 3705 3706 return ret; 3707 } 3708 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3709 3710 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3711 { 3712 struct regulator_bulk_data *bulk = data; 3713 3714 bulk->ret = regulator_enable(bulk->consumer); 3715 } 3716 3717 /** 3718 * regulator_bulk_enable - enable multiple regulator consumers 3719 * 3720 * @num_consumers: Number of consumers 3721 * @consumers: Consumer data; clients are stored here. 3722 * @return 0 on success, an errno on failure 3723 * 3724 * This convenience API allows consumers to enable multiple regulator 3725 * clients in a single API call. If any consumers cannot be enabled 3726 * then any others that were enabled will be disabled again prior to 3727 * return. 3728 */ 3729 int regulator_bulk_enable(int num_consumers, 3730 struct regulator_bulk_data *consumers) 3731 { 3732 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3733 int i; 3734 int ret = 0; 3735 3736 for (i = 0; i < num_consumers; i++) { 3737 if (consumers[i].consumer->always_on) 3738 consumers[i].ret = 0; 3739 else 3740 async_schedule_domain(regulator_bulk_enable_async, 3741 &consumers[i], &async_domain); 3742 } 3743 3744 async_synchronize_full_domain(&async_domain); 3745 3746 /* If any consumer failed we need to unwind any that succeeded */ 3747 for (i = 0; i < num_consumers; i++) { 3748 if (consumers[i].ret != 0) { 3749 ret = consumers[i].ret; 3750 goto err; 3751 } 3752 } 3753 3754 return 0; 3755 3756 err: 3757 for (i = 0; i < num_consumers; i++) { 3758 if (consumers[i].ret < 0) 3759 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3760 consumers[i].ret); 3761 else 3762 regulator_disable(consumers[i].consumer); 3763 } 3764 3765 return ret; 3766 } 3767 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3768 3769 /** 3770 * regulator_bulk_disable - disable multiple regulator consumers 3771 * 3772 * @num_consumers: Number of consumers 3773 * @consumers: Consumer data; clients are stored here. 3774 * @return 0 on success, an errno on failure 3775 * 3776 * This convenience API allows consumers to disable multiple regulator 3777 * clients in a single API call. If any consumers cannot be disabled 3778 * then any others that were disabled will be enabled again prior to 3779 * return. 3780 */ 3781 int regulator_bulk_disable(int num_consumers, 3782 struct regulator_bulk_data *consumers) 3783 { 3784 int i; 3785 int ret, r; 3786 3787 for (i = num_consumers - 1; i >= 0; --i) { 3788 ret = regulator_disable(consumers[i].consumer); 3789 if (ret != 0) 3790 goto err; 3791 } 3792 3793 return 0; 3794 3795 err: 3796 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3797 for (++i; i < num_consumers; ++i) { 3798 r = regulator_enable(consumers[i].consumer); 3799 if (r != 0) 3800 pr_err("Failed to re-enable %s: %d\n", 3801 consumers[i].supply, r); 3802 } 3803 3804 return ret; 3805 } 3806 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3807 3808 /** 3809 * regulator_bulk_force_disable - force disable multiple regulator consumers 3810 * 3811 * @num_consumers: Number of consumers 3812 * @consumers: Consumer data; clients are stored here. 3813 * @return 0 on success, an errno on failure 3814 * 3815 * This convenience API allows consumers to forcibly disable multiple regulator 3816 * clients in a single API call. 3817 * NOTE: This should be used for situations when device damage will 3818 * likely occur if the regulators are not disabled (e.g. over temp). 3819 * Although regulator_force_disable function call for some consumers can 3820 * return error numbers, the function is called for all consumers. 3821 */ 3822 int regulator_bulk_force_disable(int num_consumers, 3823 struct regulator_bulk_data *consumers) 3824 { 3825 int i; 3826 int ret = 0; 3827 3828 for (i = 0; i < num_consumers; i++) { 3829 consumers[i].ret = 3830 regulator_force_disable(consumers[i].consumer); 3831 3832 /* Store first error for reporting */ 3833 if (consumers[i].ret && !ret) 3834 ret = consumers[i].ret; 3835 } 3836 3837 return ret; 3838 } 3839 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3840 3841 /** 3842 * regulator_bulk_free - free multiple regulator consumers 3843 * 3844 * @num_consumers: Number of consumers 3845 * @consumers: Consumer data; clients are stored here. 3846 * 3847 * This convenience API allows consumers to free multiple regulator 3848 * clients in a single API call. 3849 */ 3850 void regulator_bulk_free(int num_consumers, 3851 struct regulator_bulk_data *consumers) 3852 { 3853 int i; 3854 3855 for (i = 0; i < num_consumers; i++) { 3856 regulator_put(consumers[i].consumer); 3857 consumers[i].consumer = NULL; 3858 } 3859 } 3860 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3861 3862 /** 3863 * regulator_notifier_call_chain - call regulator event notifier 3864 * @rdev: regulator source 3865 * @event: notifier block 3866 * @data: callback-specific data. 3867 * 3868 * Called by regulator drivers to notify clients a regulator event has 3869 * occurred. We also notify regulator clients downstream. 3870 * Note lock must be held by caller. 3871 */ 3872 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3873 unsigned long event, void *data) 3874 { 3875 lockdep_assert_held_once(&rdev->mutex); 3876 3877 _notifier_call_chain(rdev, event, data); 3878 return NOTIFY_DONE; 3879 3880 } 3881 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3882 3883 /** 3884 * regulator_mode_to_status - convert a regulator mode into a status 3885 * 3886 * @mode: Mode to convert 3887 * 3888 * Convert a regulator mode into a status. 3889 */ 3890 int regulator_mode_to_status(unsigned int mode) 3891 { 3892 switch (mode) { 3893 case REGULATOR_MODE_FAST: 3894 return REGULATOR_STATUS_FAST; 3895 case REGULATOR_MODE_NORMAL: 3896 return REGULATOR_STATUS_NORMAL; 3897 case REGULATOR_MODE_IDLE: 3898 return REGULATOR_STATUS_IDLE; 3899 case REGULATOR_MODE_STANDBY: 3900 return REGULATOR_STATUS_STANDBY; 3901 default: 3902 return REGULATOR_STATUS_UNDEFINED; 3903 } 3904 } 3905 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3906 3907 static struct attribute *regulator_dev_attrs[] = { 3908 &dev_attr_name.attr, 3909 &dev_attr_num_users.attr, 3910 &dev_attr_type.attr, 3911 &dev_attr_microvolts.attr, 3912 &dev_attr_microamps.attr, 3913 &dev_attr_opmode.attr, 3914 &dev_attr_state.attr, 3915 &dev_attr_status.attr, 3916 &dev_attr_bypass.attr, 3917 &dev_attr_requested_microamps.attr, 3918 &dev_attr_min_microvolts.attr, 3919 &dev_attr_max_microvolts.attr, 3920 &dev_attr_min_microamps.attr, 3921 &dev_attr_max_microamps.attr, 3922 &dev_attr_suspend_standby_state.attr, 3923 &dev_attr_suspend_mem_state.attr, 3924 &dev_attr_suspend_disk_state.attr, 3925 &dev_attr_suspend_standby_microvolts.attr, 3926 &dev_attr_suspend_mem_microvolts.attr, 3927 &dev_attr_suspend_disk_microvolts.attr, 3928 &dev_attr_suspend_standby_mode.attr, 3929 &dev_attr_suspend_mem_mode.attr, 3930 &dev_attr_suspend_disk_mode.attr, 3931 NULL 3932 }; 3933 3934 /* 3935 * To avoid cluttering sysfs (and memory) with useless state, only 3936 * create attributes that can be meaningfully displayed. 3937 */ 3938 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3939 struct attribute *attr, int idx) 3940 { 3941 struct device *dev = kobj_to_dev(kobj); 3942 struct regulator_dev *rdev = dev_to_rdev(dev); 3943 const struct regulator_ops *ops = rdev->desc->ops; 3944 umode_t mode = attr->mode; 3945 3946 /* these three are always present */ 3947 if (attr == &dev_attr_name.attr || 3948 attr == &dev_attr_num_users.attr || 3949 attr == &dev_attr_type.attr) 3950 return mode; 3951 3952 /* some attributes need specific methods to be displayed */ 3953 if (attr == &dev_attr_microvolts.attr) { 3954 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3955 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3956 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3957 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3958 return mode; 3959 return 0; 3960 } 3961 3962 if (attr == &dev_attr_microamps.attr) 3963 return ops->get_current_limit ? mode : 0; 3964 3965 if (attr == &dev_attr_opmode.attr) 3966 return ops->get_mode ? mode : 0; 3967 3968 if (attr == &dev_attr_state.attr) 3969 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3970 3971 if (attr == &dev_attr_status.attr) 3972 return ops->get_status ? mode : 0; 3973 3974 if (attr == &dev_attr_bypass.attr) 3975 return ops->get_bypass ? mode : 0; 3976 3977 /* some attributes are type-specific */ 3978 if (attr == &dev_attr_requested_microamps.attr) 3979 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3980 3981 /* constraints need specific supporting methods */ 3982 if (attr == &dev_attr_min_microvolts.attr || 3983 attr == &dev_attr_max_microvolts.attr) 3984 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3985 3986 if (attr == &dev_attr_min_microamps.attr || 3987 attr == &dev_attr_max_microamps.attr) 3988 return ops->set_current_limit ? mode : 0; 3989 3990 if (attr == &dev_attr_suspend_standby_state.attr || 3991 attr == &dev_attr_suspend_mem_state.attr || 3992 attr == &dev_attr_suspend_disk_state.attr) 3993 return mode; 3994 3995 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3996 attr == &dev_attr_suspend_mem_microvolts.attr || 3997 attr == &dev_attr_suspend_disk_microvolts.attr) 3998 return ops->set_suspend_voltage ? mode : 0; 3999 4000 if (attr == &dev_attr_suspend_standby_mode.attr || 4001 attr == &dev_attr_suspend_mem_mode.attr || 4002 attr == &dev_attr_suspend_disk_mode.attr) 4003 return ops->set_suspend_mode ? mode : 0; 4004 4005 return mode; 4006 } 4007 4008 static const struct attribute_group regulator_dev_group = { 4009 .attrs = regulator_dev_attrs, 4010 .is_visible = regulator_attr_is_visible, 4011 }; 4012 4013 static const struct attribute_group *regulator_dev_groups[] = { 4014 ®ulator_dev_group, 4015 NULL 4016 }; 4017 4018 static void regulator_dev_release(struct device *dev) 4019 { 4020 struct regulator_dev *rdev = dev_get_drvdata(dev); 4021 4022 kfree(rdev->constraints); 4023 of_node_put(rdev->dev.of_node); 4024 kfree(rdev); 4025 } 4026 4027 static void rdev_init_debugfs(struct regulator_dev *rdev) 4028 { 4029 struct device *parent = rdev->dev.parent; 4030 const char *rname = rdev_get_name(rdev); 4031 char name[NAME_MAX]; 4032 4033 /* Avoid duplicate debugfs directory names */ 4034 if (parent && rname == rdev->desc->name) { 4035 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4036 rname); 4037 rname = name; 4038 } 4039 4040 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 4041 if (!rdev->debugfs) { 4042 rdev_warn(rdev, "Failed to create debugfs directory\n"); 4043 return; 4044 } 4045 4046 debugfs_create_u32("use_count", 0444, rdev->debugfs, 4047 &rdev->use_count); 4048 debugfs_create_u32("open_count", 0444, rdev->debugfs, 4049 &rdev->open_count); 4050 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 4051 &rdev->bypass_count); 4052 } 4053 4054 static int regulator_register_resolve_supply(struct device *dev, void *data) 4055 { 4056 struct regulator_dev *rdev = dev_to_rdev(dev); 4057 4058 if (regulator_resolve_supply(rdev)) 4059 rdev_dbg(rdev, "unable to resolve supply\n"); 4060 4061 return 0; 4062 } 4063 4064 /** 4065 * regulator_register - register regulator 4066 * @regulator_desc: regulator to register 4067 * @cfg: runtime configuration for regulator 4068 * 4069 * Called by regulator drivers to register a regulator. 4070 * Returns a valid pointer to struct regulator_dev on success 4071 * or an ERR_PTR() on error. 4072 */ 4073 struct regulator_dev * 4074 regulator_register(const struct regulator_desc *regulator_desc, 4075 const struct regulator_config *cfg) 4076 { 4077 const struct regulation_constraints *constraints = NULL; 4078 const struct regulator_init_data *init_data; 4079 struct regulator_config *config = NULL; 4080 static atomic_t regulator_no = ATOMIC_INIT(-1); 4081 struct regulator_dev *rdev; 4082 struct device *dev; 4083 int ret, i; 4084 4085 if (regulator_desc == NULL || cfg == NULL) 4086 return ERR_PTR(-EINVAL); 4087 4088 dev = cfg->dev; 4089 WARN_ON(!dev); 4090 4091 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 4092 return ERR_PTR(-EINVAL); 4093 4094 if (regulator_desc->type != REGULATOR_VOLTAGE && 4095 regulator_desc->type != REGULATOR_CURRENT) 4096 return ERR_PTR(-EINVAL); 4097 4098 /* Only one of each should be implemented */ 4099 WARN_ON(regulator_desc->ops->get_voltage && 4100 regulator_desc->ops->get_voltage_sel); 4101 WARN_ON(regulator_desc->ops->set_voltage && 4102 regulator_desc->ops->set_voltage_sel); 4103 4104 /* If we're using selectors we must implement list_voltage. */ 4105 if (regulator_desc->ops->get_voltage_sel && 4106 !regulator_desc->ops->list_voltage) { 4107 return ERR_PTR(-EINVAL); 4108 } 4109 if (regulator_desc->ops->set_voltage_sel && 4110 !regulator_desc->ops->list_voltage) { 4111 return ERR_PTR(-EINVAL); 4112 } 4113 4114 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 4115 if (rdev == NULL) 4116 return ERR_PTR(-ENOMEM); 4117 4118 /* 4119 * Duplicate the config so the driver could override it after 4120 * parsing init data. 4121 */ 4122 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 4123 if (config == NULL) { 4124 kfree(rdev); 4125 return ERR_PTR(-ENOMEM); 4126 } 4127 4128 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4129 &rdev->dev.of_node); 4130 if (!init_data) { 4131 init_data = config->init_data; 4132 rdev->dev.of_node = of_node_get(config->of_node); 4133 } 4134 4135 mutex_init(&rdev->mutex); 4136 rdev->reg_data = config->driver_data; 4137 rdev->owner = regulator_desc->owner; 4138 rdev->desc = regulator_desc; 4139 if (config->regmap) 4140 rdev->regmap = config->regmap; 4141 else if (dev_get_regmap(dev, NULL)) 4142 rdev->regmap = dev_get_regmap(dev, NULL); 4143 else if (dev->parent) 4144 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4145 INIT_LIST_HEAD(&rdev->consumer_list); 4146 INIT_LIST_HEAD(&rdev->list); 4147 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4148 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4149 4150 /* preform any regulator specific init */ 4151 if (init_data && init_data->regulator_init) { 4152 ret = init_data->regulator_init(rdev->reg_data); 4153 if (ret < 0) 4154 goto clean; 4155 } 4156 4157 if ((config->ena_gpio || config->ena_gpio_initialized) && 4158 gpio_is_valid(config->ena_gpio)) { 4159 mutex_lock(®ulator_list_mutex); 4160 ret = regulator_ena_gpio_request(rdev, config); 4161 mutex_unlock(®ulator_list_mutex); 4162 if (ret != 0) { 4163 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4164 config->ena_gpio, ret); 4165 goto clean; 4166 } 4167 } 4168 4169 /* register with sysfs */ 4170 rdev->dev.class = ®ulator_class; 4171 rdev->dev.parent = dev; 4172 dev_set_name(&rdev->dev, "regulator.%lu", 4173 (unsigned long) atomic_inc_return(®ulator_no)); 4174 4175 /* set regulator constraints */ 4176 if (init_data) 4177 constraints = &init_data->constraints; 4178 4179 if (init_data && init_data->supply_regulator) 4180 rdev->supply_name = init_data->supply_regulator; 4181 else if (regulator_desc->supply_name) 4182 rdev->supply_name = regulator_desc->supply_name; 4183 4184 /* 4185 * Attempt to resolve the regulator supply, if specified, 4186 * but don't return an error if we fail because we will try 4187 * to resolve it again later as more regulators are added. 4188 */ 4189 if (regulator_resolve_supply(rdev)) 4190 rdev_dbg(rdev, "unable to resolve supply\n"); 4191 4192 ret = set_machine_constraints(rdev, constraints); 4193 if (ret < 0) 4194 goto wash; 4195 4196 /* add consumers devices */ 4197 if (init_data) { 4198 mutex_lock(®ulator_list_mutex); 4199 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4200 ret = set_consumer_device_supply(rdev, 4201 init_data->consumer_supplies[i].dev_name, 4202 init_data->consumer_supplies[i].supply); 4203 if (ret < 0) { 4204 mutex_unlock(®ulator_list_mutex); 4205 dev_err(dev, "Failed to set supply %s\n", 4206 init_data->consumer_supplies[i].supply); 4207 goto unset_supplies; 4208 } 4209 } 4210 mutex_unlock(®ulator_list_mutex); 4211 } 4212 4213 if (!rdev->desc->ops->get_voltage && 4214 !rdev->desc->ops->list_voltage && 4215 !rdev->desc->fixed_uV) 4216 rdev->is_switch = true; 4217 4218 ret = device_register(&rdev->dev); 4219 if (ret != 0) { 4220 put_device(&rdev->dev); 4221 goto unset_supplies; 4222 } 4223 4224 dev_set_drvdata(&rdev->dev, rdev); 4225 rdev_init_debugfs(rdev); 4226 4227 /* try to resolve regulators supply since a new one was registered */ 4228 class_for_each_device(®ulator_class, NULL, NULL, 4229 regulator_register_resolve_supply); 4230 kfree(config); 4231 return rdev; 4232 4233 unset_supplies: 4234 mutex_lock(®ulator_list_mutex); 4235 unset_regulator_supplies(rdev); 4236 mutex_unlock(®ulator_list_mutex); 4237 wash: 4238 kfree(rdev->constraints); 4239 mutex_lock(®ulator_list_mutex); 4240 regulator_ena_gpio_free(rdev); 4241 mutex_unlock(®ulator_list_mutex); 4242 clean: 4243 kfree(rdev); 4244 kfree(config); 4245 return ERR_PTR(ret); 4246 } 4247 EXPORT_SYMBOL_GPL(regulator_register); 4248 4249 /** 4250 * regulator_unregister - unregister regulator 4251 * @rdev: regulator to unregister 4252 * 4253 * Called by regulator drivers to unregister a regulator. 4254 */ 4255 void regulator_unregister(struct regulator_dev *rdev) 4256 { 4257 if (rdev == NULL) 4258 return; 4259 4260 if (rdev->supply) { 4261 while (rdev->use_count--) 4262 regulator_disable(rdev->supply); 4263 regulator_put(rdev->supply); 4264 } 4265 mutex_lock(®ulator_list_mutex); 4266 debugfs_remove_recursive(rdev->debugfs); 4267 flush_work(&rdev->disable_work.work); 4268 WARN_ON(rdev->open_count); 4269 unset_regulator_supplies(rdev); 4270 list_del(&rdev->list); 4271 regulator_ena_gpio_free(rdev); 4272 mutex_unlock(®ulator_list_mutex); 4273 device_unregister(&rdev->dev); 4274 } 4275 EXPORT_SYMBOL_GPL(regulator_unregister); 4276 4277 #ifdef CONFIG_SUSPEND 4278 static int _regulator_suspend_late(struct device *dev, void *data) 4279 { 4280 struct regulator_dev *rdev = dev_to_rdev(dev); 4281 suspend_state_t *state = data; 4282 int ret; 4283 4284 mutex_lock(&rdev->mutex); 4285 ret = suspend_set_state(rdev, *state); 4286 mutex_unlock(&rdev->mutex); 4287 4288 return ret; 4289 } 4290 4291 /** 4292 * regulator_suspend_late - prepare regulators for system wide suspend 4293 * @state: system suspend state 4294 * 4295 * Configure each regulator with it's suspend operating parameters for state. 4296 */ 4297 static int regulator_suspend_late(struct device *dev) 4298 { 4299 suspend_state_t state = pm_suspend_target_state; 4300 4301 return class_for_each_device(®ulator_class, NULL, &state, 4302 _regulator_suspend_late); 4303 } 4304 static int _regulator_resume_early(struct device *dev, void *data) 4305 { 4306 int ret = 0; 4307 struct regulator_dev *rdev = dev_to_rdev(dev); 4308 suspend_state_t *state = data; 4309 struct regulator_state *rstate; 4310 4311 rstate = regulator_get_suspend_state(rdev, *state); 4312 if (rstate == NULL) 4313 return -EINVAL; 4314 4315 mutex_lock(&rdev->mutex); 4316 4317 if (rdev->desc->ops->resume_early && 4318 (rstate->enabled == ENABLE_IN_SUSPEND || 4319 rstate->enabled == DISABLE_IN_SUSPEND)) 4320 ret = rdev->desc->ops->resume_early(rdev); 4321 4322 mutex_unlock(&rdev->mutex); 4323 4324 return ret; 4325 } 4326 4327 static int regulator_resume_early(struct device *dev) 4328 { 4329 suspend_state_t state = pm_suspend_target_state; 4330 4331 return class_for_each_device(®ulator_class, NULL, &state, 4332 _regulator_resume_early); 4333 } 4334 4335 #else /* !CONFIG_SUSPEND */ 4336 4337 #define regulator_suspend_late NULL 4338 #define regulator_resume_early NULL 4339 4340 #endif /* !CONFIG_SUSPEND */ 4341 4342 #ifdef CONFIG_PM 4343 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 4344 .suspend_late = regulator_suspend_late, 4345 .resume_early = regulator_resume_early, 4346 }; 4347 #endif 4348 4349 struct class regulator_class = { 4350 .name = "regulator", 4351 .dev_release = regulator_dev_release, 4352 .dev_groups = regulator_dev_groups, 4353 #ifdef CONFIG_PM 4354 .pm = ®ulator_pm_ops, 4355 #endif 4356 }; 4357 /** 4358 * regulator_has_full_constraints - the system has fully specified constraints 4359 * 4360 * Calling this function will cause the regulator API to disable all 4361 * regulators which have a zero use count and don't have an always_on 4362 * constraint in a late_initcall. 4363 * 4364 * The intention is that this will become the default behaviour in a 4365 * future kernel release so users are encouraged to use this facility 4366 * now. 4367 */ 4368 void regulator_has_full_constraints(void) 4369 { 4370 has_full_constraints = 1; 4371 } 4372 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4373 4374 /** 4375 * rdev_get_drvdata - get rdev regulator driver data 4376 * @rdev: regulator 4377 * 4378 * Get rdev regulator driver private data. This call can be used in the 4379 * regulator driver context. 4380 */ 4381 void *rdev_get_drvdata(struct regulator_dev *rdev) 4382 { 4383 return rdev->reg_data; 4384 } 4385 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4386 4387 /** 4388 * regulator_get_drvdata - get regulator driver data 4389 * @regulator: regulator 4390 * 4391 * Get regulator driver private data. This call can be used in the consumer 4392 * driver context when non API regulator specific functions need to be called. 4393 */ 4394 void *regulator_get_drvdata(struct regulator *regulator) 4395 { 4396 return regulator->rdev->reg_data; 4397 } 4398 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4399 4400 /** 4401 * regulator_set_drvdata - set regulator driver data 4402 * @regulator: regulator 4403 * @data: data 4404 */ 4405 void regulator_set_drvdata(struct regulator *regulator, void *data) 4406 { 4407 regulator->rdev->reg_data = data; 4408 } 4409 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4410 4411 /** 4412 * regulator_get_id - get regulator ID 4413 * @rdev: regulator 4414 */ 4415 int rdev_get_id(struct regulator_dev *rdev) 4416 { 4417 return rdev->desc->id; 4418 } 4419 EXPORT_SYMBOL_GPL(rdev_get_id); 4420 4421 struct device *rdev_get_dev(struct regulator_dev *rdev) 4422 { 4423 return &rdev->dev; 4424 } 4425 EXPORT_SYMBOL_GPL(rdev_get_dev); 4426 4427 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4428 { 4429 return reg_init_data->driver_data; 4430 } 4431 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4432 4433 #ifdef CONFIG_DEBUG_FS 4434 static int supply_map_show(struct seq_file *sf, void *data) 4435 { 4436 struct regulator_map *map; 4437 4438 list_for_each_entry(map, ®ulator_map_list, list) { 4439 seq_printf(sf, "%s -> %s.%s\n", 4440 rdev_get_name(map->regulator), map->dev_name, 4441 map->supply); 4442 } 4443 4444 return 0; 4445 } 4446 4447 static int supply_map_open(struct inode *inode, struct file *file) 4448 { 4449 return single_open(file, supply_map_show, inode->i_private); 4450 } 4451 #endif 4452 4453 static const struct file_operations supply_map_fops = { 4454 #ifdef CONFIG_DEBUG_FS 4455 .open = supply_map_open, 4456 .read = seq_read, 4457 .llseek = seq_lseek, 4458 .release = single_release, 4459 #endif 4460 }; 4461 4462 #ifdef CONFIG_DEBUG_FS 4463 struct summary_data { 4464 struct seq_file *s; 4465 struct regulator_dev *parent; 4466 int level; 4467 }; 4468 4469 static void regulator_summary_show_subtree(struct seq_file *s, 4470 struct regulator_dev *rdev, 4471 int level); 4472 4473 static int regulator_summary_show_children(struct device *dev, void *data) 4474 { 4475 struct regulator_dev *rdev = dev_to_rdev(dev); 4476 struct summary_data *summary_data = data; 4477 4478 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4479 regulator_summary_show_subtree(summary_data->s, rdev, 4480 summary_data->level + 1); 4481 4482 return 0; 4483 } 4484 4485 static void regulator_summary_show_subtree(struct seq_file *s, 4486 struct regulator_dev *rdev, 4487 int level) 4488 { 4489 struct regulation_constraints *c; 4490 struct regulator *consumer; 4491 struct summary_data summary_data; 4492 4493 if (!rdev) 4494 return; 4495 4496 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4497 level * 3 + 1, "", 4498 30 - level * 3, rdev_get_name(rdev), 4499 rdev->use_count, rdev->open_count, rdev->bypass_count); 4500 4501 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4502 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4503 4504 c = rdev->constraints; 4505 if (c) { 4506 switch (rdev->desc->type) { 4507 case REGULATOR_VOLTAGE: 4508 seq_printf(s, "%5dmV %5dmV ", 4509 c->min_uV / 1000, c->max_uV / 1000); 4510 break; 4511 case REGULATOR_CURRENT: 4512 seq_printf(s, "%5dmA %5dmA ", 4513 c->min_uA / 1000, c->max_uA / 1000); 4514 break; 4515 } 4516 } 4517 4518 seq_puts(s, "\n"); 4519 4520 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4521 if (consumer->dev && consumer->dev->class == ®ulator_class) 4522 continue; 4523 4524 seq_printf(s, "%*s%-*s ", 4525 (level + 1) * 3 + 1, "", 4526 30 - (level + 1) * 3, 4527 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 4528 4529 switch (rdev->desc->type) { 4530 case REGULATOR_VOLTAGE: 4531 seq_printf(s, "%37dmV %5dmV", 4532 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 4533 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 4534 break; 4535 case REGULATOR_CURRENT: 4536 break; 4537 } 4538 4539 seq_puts(s, "\n"); 4540 } 4541 4542 summary_data.s = s; 4543 summary_data.level = level; 4544 summary_data.parent = rdev; 4545 4546 class_for_each_device(®ulator_class, NULL, &summary_data, 4547 regulator_summary_show_children); 4548 } 4549 4550 static int regulator_summary_show_roots(struct device *dev, void *data) 4551 { 4552 struct regulator_dev *rdev = dev_to_rdev(dev); 4553 struct seq_file *s = data; 4554 4555 if (!rdev->supply) 4556 regulator_summary_show_subtree(s, rdev, 0); 4557 4558 return 0; 4559 } 4560 4561 static int regulator_summary_show(struct seq_file *s, void *data) 4562 { 4563 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4564 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4565 4566 class_for_each_device(®ulator_class, NULL, s, 4567 regulator_summary_show_roots); 4568 4569 return 0; 4570 } 4571 4572 static int regulator_summary_open(struct inode *inode, struct file *file) 4573 { 4574 return single_open(file, regulator_summary_show, inode->i_private); 4575 } 4576 #endif 4577 4578 static const struct file_operations regulator_summary_fops = { 4579 #ifdef CONFIG_DEBUG_FS 4580 .open = regulator_summary_open, 4581 .read = seq_read, 4582 .llseek = seq_lseek, 4583 .release = single_release, 4584 #endif 4585 }; 4586 4587 static int __init regulator_init(void) 4588 { 4589 int ret; 4590 4591 ret = class_register(®ulator_class); 4592 4593 debugfs_root = debugfs_create_dir("regulator", NULL); 4594 if (!debugfs_root) 4595 pr_warn("regulator: Failed to create debugfs directory\n"); 4596 4597 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4598 &supply_map_fops); 4599 4600 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4601 NULL, ®ulator_summary_fops); 4602 4603 regulator_dummy_init(); 4604 4605 return ret; 4606 } 4607 4608 /* init early to allow our consumers to complete system booting */ 4609 core_initcall(regulator_init); 4610 4611 static int __init regulator_late_cleanup(struct device *dev, void *data) 4612 { 4613 struct regulator_dev *rdev = dev_to_rdev(dev); 4614 const struct regulator_ops *ops = rdev->desc->ops; 4615 struct regulation_constraints *c = rdev->constraints; 4616 int enabled, ret; 4617 4618 if (c && c->always_on) 4619 return 0; 4620 4621 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4622 return 0; 4623 4624 mutex_lock(&rdev->mutex); 4625 4626 if (rdev->use_count) 4627 goto unlock; 4628 4629 /* If we can't read the status assume it's on. */ 4630 if (ops->is_enabled) 4631 enabled = ops->is_enabled(rdev); 4632 else 4633 enabled = 1; 4634 4635 if (!enabled) 4636 goto unlock; 4637 4638 if (have_full_constraints()) { 4639 /* We log since this may kill the system if it goes 4640 * wrong. */ 4641 rdev_info(rdev, "disabling\n"); 4642 ret = _regulator_do_disable(rdev); 4643 if (ret != 0) 4644 rdev_err(rdev, "couldn't disable: %d\n", ret); 4645 } else { 4646 /* The intention is that in future we will 4647 * assume that full constraints are provided 4648 * so warn even if we aren't going to do 4649 * anything here. 4650 */ 4651 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4652 } 4653 4654 unlock: 4655 mutex_unlock(&rdev->mutex); 4656 4657 return 0; 4658 } 4659 4660 static int __init regulator_init_complete(void) 4661 { 4662 /* 4663 * Since DT doesn't provide an idiomatic mechanism for 4664 * enabling full constraints and since it's much more natural 4665 * with DT to provide them just assume that a DT enabled 4666 * system has full constraints. 4667 */ 4668 if (of_have_populated_dt()) 4669 has_full_constraints = true; 4670 4671 /* 4672 * Regulators may had failed to resolve their input supplies 4673 * when were registered, either because the input supply was 4674 * not registered yet or because its parent device was not 4675 * bound yet. So attempt to resolve the input supplies for 4676 * pending regulators before trying to disable unused ones. 4677 */ 4678 class_for_each_device(®ulator_class, NULL, NULL, 4679 regulator_register_resolve_supply); 4680 4681 /* If we have a full configuration then disable any regulators 4682 * we have permission to change the status for and which are 4683 * not in use or always_on. This is effectively the default 4684 * for DT and ACPI as they have full constraints. 4685 */ 4686 class_for_each_device(®ulator_class, NULL, NULL, 4687 regulator_late_cleanup); 4688 4689 return 0; 4690 } 4691 late_initcall_sync(regulator_init_complete); 4692