xref: /linux/drivers/regulator/core.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110 
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 	if (rdev->constraints && rdev->constraints->name)
114 		return rdev->constraints->name;
115 	else if (rdev->desc->name)
116 		return rdev->desc->name;
117 	else
118 		return "";
119 }
120 
121 static bool have_full_constraints(void)
122 {
123 	return has_full_constraints || of_have_populated_dt();
124 }
125 
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 	if (!rdev->constraints) {
129 		rdev_err(rdev, "no constraints\n");
130 		return false;
131 	}
132 
133 	if (rdev->constraints->valid_ops_mask & ops)
134 		return true;
135 
136 	return false;
137 }
138 
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:		regulator source
142  * @ww_ctx:		w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 					struct ww_acquire_ctx *ww_ctx)
152 {
153 	bool lock = false;
154 	int ret = 0;
155 
156 	mutex_lock(&regulator_nesting_mutex);
157 
158 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 		if (rdev->mutex_owner == current)
160 			rdev->ref_cnt++;
161 		else
162 			lock = true;
163 
164 		if (lock) {
165 			mutex_unlock(&regulator_nesting_mutex);
166 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 			mutex_lock(&regulator_nesting_mutex);
168 		}
169 	} else {
170 		lock = true;
171 	}
172 
173 	if (lock && ret != -EDEADLK) {
174 		rdev->ref_cnt++;
175 		rdev->mutex_owner = current;
176 	}
177 
178 	mutex_unlock(&regulator_nesting_mutex);
179 
180 	return ret;
181 }
182 
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:		regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 void regulator_lock(struct regulator_dev *rdev)
194 {
195 	regulator_lock_nested(rdev, NULL);
196 }
197 EXPORT_SYMBOL_GPL(regulator_lock);
198 
199 /**
200  * regulator_unlock - unlock a single regulator
201  * @rdev:		regulator_source
202  *
203  * This function unlocks the mutex when the
204  * reference counter reaches 0.
205  */
206 void regulator_unlock(struct regulator_dev *rdev)
207 {
208 	mutex_lock(&regulator_nesting_mutex);
209 
210 	if (--rdev->ref_cnt == 0) {
211 		rdev->mutex_owner = NULL;
212 		ww_mutex_unlock(&rdev->mutex);
213 	}
214 
215 	WARN_ON_ONCE(rdev->ref_cnt < 0);
216 
217 	mutex_unlock(&regulator_nesting_mutex);
218 }
219 EXPORT_SYMBOL_GPL(regulator_unlock);
220 
221 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222 {
223 	struct regulator_dev *c_rdev;
224 	int i;
225 
226 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228 
229 		if (rdev->supply->rdev == c_rdev)
230 			return true;
231 	}
232 
233 	return false;
234 }
235 
236 static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 				       unsigned int n_coupled)
238 {
239 	struct regulator_dev *c_rdev;
240 	int i;
241 
242 	for (i = n_coupled; i > 0; i--) {
243 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 
245 		if (!c_rdev)
246 			continue;
247 
248 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249 			regulator_unlock_recursive(
250 					c_rdev->supply->rdev,
251 					c_rdev->coupling_desc.n_coupled);
252 
253 		regulator_unlock(c_rdev);
254 	}
255 }
256 
257 static int regulator_lock_recursive(struct regulator_dev *rdev,
258 				    struct regulator_dev **new_contended_rdev,
259 				    struct regulator_dev **old_contended_rdev,
260 				    struct ww_acquire_ctx *ww_ctx)
261 {
262 	struct regulator_dev *c_rdev;
263 	int i, err;
264 
265 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
266 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267 
268 		if (!c_rdev)
269 			continue;
270 
271 		if (c_rdev != *old_contended_rdev) {
272 			err = regulator_lock_nested(c_rdev, ww_ctx);
273 			if (err) {
274 				if (err == -EDEADLK) {
275 					*new_contended_rdev = c_rdev;
276 					goto err_unlock;
277 				}
278 
279 				/* shouldn't happen */
280 				WARN_ON_ONCE(err != -EALREADY);
281 			}
282 		} else {
283 			*old_contended_rdev = NULL;
284 		}
285 
286 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287 			err = regulator_lock_recursive(c_rdev->supply->rdev,
288 						       new_contended_rdev,
289 						       old_contended_rdev,
290 						       ww_ctx);
291 			if (err) {
292 				regulator_unlock(c_rdev);
293 				goto err_unlock;
294 			}
295 		}
296 	}
297 
298 	return 0;
299 
300 err_unlock:
301 	regulator_unlock_recursive(rdev, i);
302 
303 	return err;
304 }
305 
306 /**
307  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308  *				regulators
309  * @rdev:			regulator source
310  * @ww_ctx:			w/w mutex acquire context
311  *
312  * Unlock all regulators related with rdev by coupling or supplying.
313  */
314 static void regulator_unlock_dependent(struct regulator_dev *rdev,
315 				       struct ww_acquire_ctx *ww_ctx)
316 {
317 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
318 	ww_acquire_fini(ww_ctx);
319 }
320 
321 /**
322  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
323  * @rdev:			regulator source
324  * @ww_ctx:			w/w mutex acquire context
325  *
326  * This function as a wrapper on regulator_lock_recursive(), which locks
327  * all regulators related with rdev by coupling or supplying.
328  */
329 static void regulator_lock_dependent(struct regulator_dev *rdev,
330 				     struct ww_acquire_ctx *ww_ctx)
331 {
332 	struct regulator_dev *new_contended_rdev = NULL;
333 	struct regulator_dev *old_contended_rdev = NULL;
334 	int err;
335 
336 	mutex_lock(&regulator_list_mutex);
337 
338 	ww_acquire_init(ww_ctx, &regulator_ww_class);
339 
340 	do {
341 		if (new_contended_rdev) {
342 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
343 			old_contended_rdev = new_contended_rdev;
344 			old_contended_rdev->ref_cnt++;
345 		}
346 
347 		err = regulator_lock_recursive(rdev,
348 					       &new_contended_rdev,
349 					       &old_contended_rdev,
350 					       ww_ctx);
351 
352 		if (old_contended_rdev)
353 			regulator_unlock(old_contended_rdev);
354 
355 	} while (err == -EDEADLK);
356 
357 	ww_acquire_done(ww_ctx);
358 
359 	mutex_unlock(&regulator_list_mutex);
360 }
361 
362 /**
363  * of_get_child_regulator - get a child regulator device node
364  * based on supply name
365  * @parent: Parent device node
366  * @prop_name: Combination regulator supply name and "-supply"
367  *
368  * Traverse all child nodes.
369  * Extract the child regulator device node corresponding to the supply name.
370  * returns the device node corresponding to the regulator if found, else
371  * returns NULL.
372  */
373 static struct device_node *of_get_child_regulator(struct device_node *parent,
374 						  const char *prop_name)
375 {
376 	struct device_node *regnode = NULL;
377 	struct device_node *child = NULL;
378 
379 	for_each_child_of_node(parent, child) {
380 		regnode = of_parse_phandle(child, prop_name, 0);
381 
382 		if (!regnode) {
383 			regnode = of_get_child_regulator(child, prop_name);
384 			if (regnode)
385 				goto err_node_put;
386 		} else {
387 			goto err_node_put;
388 		}
389 	}
390 	return NULL;
391 
392 err_node_put:
393 	of_node_put(child);
394 	return regnode;
395 }
396 
397 /**
398  * of_get_regulator - get a regulator device node based on supply name
399  * @dev: Device pointer for the consumer (of regulator) device
400  * @supply: regulator supply name
401  *
402  * Extract the regulator device node corresponding to the supply name.
403  * returns the device node corresponding to the regulator if found, else
404  * returns NULL.
405  */
406 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
407 {
408 	struct device_node *regnode = NULL;
409 	char prop_name[32]; /* 32 is max size of property name */
410 
411 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
412 
413 	snprintf(prop_name, 32, "%s-supply", supply);
414 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
415 
416 	if (!regnode) {
417 		regnode = of_get_child_regulator(dev->of_node, prop_name);
418 		if (regnode)
419 			return regnode;
420 
421 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
422 				prop_name, dev->of_node);
423 		return NULL;
424 	}
425 	return regnode;
426 }
427 
428 /* Platform voltage constraint check */
429 int regulator_check_voltage(struct regulator_dev *rdev,
430 			    int *min_uV, int *max_uV)
431 {
432 	BUG_ON(*min_uV > *max_uV);
433 
434 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435 		rdev_err(rdev, "voltage operation not allowed\n");
436 		return -EPERM;
437 	}
438 
439 	if (*max_uV > rdev->constraints->max_uV)
440 		*max_uV = rdev->constraints->max_uV;
441 	if (*min_uV < rdev->constraints->min_uV)
442 		*min_uV = rdev->constraints->min_uV;
443 
444 	if (*min_uV > *max_uV) {
445 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446 			 *min_uV, *max_uV);
447 		return -EINVAL;
448 	}
449 
450 	return 0;
451 }
452 
453 /* return 0 if the state is valid */
454 static int regulator_check_states(suspend_state_t state)
455 {
456 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
457 }
458 
459 /* Make sure we select a voltage that suits the needs of all
460  * regulator consumers
461  */
462 int regulator_check_consumers(struct regulator_dev *rdev,
463 			      int *min_uV, int *max_uV,
464 			      suspend_state_t state)
465 {
466 	struct regulator *regulator;
467 	struct regulator_voltage *voltage;
468 
469 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
470 		voltage = &regulator->voltage[state];
471 		/*
472 		 * Assume consumers that didn't say anything are OK
473 		 * with anything in the constraint range.
474 		 */
475 		if (!voltage->min_uV && !voltage->max_uV)
476 			continue;
477 
478 		if (*max_uV > voltage->max_uV)
479 			*max_uV = voltage->max_uV;
480 		if (*min_uV < voltage->min_uV)
481 			*min_uV = voltage->min_uV;
482 	}
483 
484 	if (*min_uV > *max_uV) {
485 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
486 			*min_uV, *max_uV);
487 		return -EINVAL;
488 	}
489 
490 	return 0;
491 }
492 
493 /* current constraint check */
494 static int regulator_check_current_limit(struct regulator_dev *rdev,
495 					int *min_uA, int *max_uA)
496 {
497 	BUG_ON(*min_uA > *max_uA);
498 
499 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500 		rdev_err(rdev, "current operation not allowed\n");
501 		return -EPERM;
502 	}
503 
504 	if (*max_uA > rdev->constraints->max_uA)
505 		*max_uA = rdev->constraints->max_uA;
506 	if (*min_uA < rdev->constraints->min_uA)
507 		*min_uA = rdev->constraints->min_uA;
508 
509 	if (*min_uA > *max_uA) {
510 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511 			 *min_uA, *max_uA);
512 		return -EINVAL;
513 	}
514 
515 	return 0;
516 }
517 
518 /* operating mode constraint check */
519 static int regulator_mode_constrain(struct regulator_dev *rdev,
520 				    unsigned int *mode)
521 {
522 	switch (*mode) {
523 	case REGULATOR_MODE_FAST:
524 	case REGULATOR_MODE_NORMAL:
525 	case REGULATOR_MODE_IDLE:
526 	case REGULATOR_MODE_STANDBY:
527 		break;
528 	default:
529 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
530 		return -EINVAL;
531 	}
532 
533 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534 		rdev_err(rdev, "mode operation not allowed\n");
535 		return -EPERM;
536 	}
537 
538 	/* The modes are bitmasks, the most power hungry modes having
539 	 * the lowest values. If the requested mode isn't supported
540 	 * try higher modes. */
541 	while (*mode) {
542 		if (rdev->constraints->valid_modes_mask & *mode)
543 			return 0;
544 		*mode /= 2;
545 	}
546 
547 	return -EINVAL;
548 }
549 
550 static inline struct regulator_state *
551 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
552 {
553 	if (rdev->constraints == NULL)
554 		return NULL;
555 
556 	switch (state) {
557 	case PM_SUSPEND_STANDBY:
558 		return &rdev->constraints->state_standby;
559 	case PM_SUSPEND_MEM:
560 		return &rdev->constraints->state_mem;
561 	case PM_SUSPEND_MAX:
562 		return &rdev->constraints->state_disk;
563 	default:
564 		return NULL;
565 	}
566 }
567 
568 static ssize_t regulator_uV_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 	int uV;
573 
574 	regulator_lock(rdev);
575 	uV = regulator_get_voltage_rdev(rdev);
576 	regulator_unlock(rdev);
577 
578 	if (uV < 0)
579 		return uV;
580 	return sprintf(buf, "%d\n", uV);
581 }
582 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 
584 static ssize_t regulator_uA_show(struct device *dev,
585 				struct device_attribute *attr, char *buf)
586 {
587 	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 
589 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
590 }
591 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592 
593 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
594 			 char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 
598 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
599 }
600 static DEVICE_ATTR_RO(name);
601 
602 static const char *regulator_opmode_to_str(int mode)
603 {
604 	switch (mode) {
605 	case REGULATOR_MODE_FAST:
606 		return "fast";
607 	case REGULATOR_MODE_NORMAL:
608 		return "normal";
609 	case REGULATOR_MODE_IDLE:
610 		return "idle";
611 	case REGULATOR_MODE_STANDBY:
612 		return "standby";
613 	}
614 	return "unknown";
615 }
616 
617 static ssize_t regulator_print_opmode(char *buf, int mode)
618 {
619 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
620 }
621 
622 static ssize_t regulator_opmode_show(struct device *dev,
623 				    struct device_attribute *attr, char *buf)
624 {
625 	struct regulator_dev *rdev = dev_get_drvdata(dev);
626 
627 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
628 }
629 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
630 
631 static ssize_t regulator_print_state(char *buf, int state)
632 {
633 	if (state > 0)
634 		return sprintf(buf, "enabled\n");
635 	else if (state == 0)
636 		return sprintf(buf, "disabled\n");
637 	else
638 		return sprintf(buf, "unknown\n");
639 }
640 
641 static ssize_t regulator_state_show(struct device *dev,
642 				   struct device_attribute *attr, char *buf)
643 {
644 	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 	ssize_t ret;
646 
647 	regulator_lock(rdev);
648 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
649 	regulator_unlock(rdev);
650 
651 	return ret;
652 }
653 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
654 
655 static ssize_t regulator_status_show(struct device *dev,
656 				   struct device_attribute *attr, char *buf)
657 {
658 	struct regulator_dev *rdev = dev_get_drvdata(dev);
659 	int status;
660 	char *label;
661 
662 	status = rdev->desc->ops->get_status(rdev);
663 	if (status < 0)
664 		return status;
665 
666 	switch (status) {
667 	case REGULATOR_STATUS_OFF:
668 		label = "off";
669 		break;
670 	case REGULATOR_STATUS_ON:
671 		label = "on";
672 		break;
673 	case REGULATOR_STATUS_ERROR:
674 		label = "error";
675 		break;
676 	case REGULATOR_STATUS_FAST:
677 		label = "fast";
678 		break;
679 	case REGULATOR_STATUS_NORMAL:
680 		label = "normal";
681 		break;
682 	case REGULATOR_STATUS_IDLE:
683 		label = "idle";
684 		break;
685 	case REGULATOR_STATUS_STANDBY:
686 		label = "standby";
687 		break;
688 	case REGULATOR_STATUS_BYPASS:
689 		label = "bypass";
690 		break;
691 	case REGULATOR_STATUS_UNDEFINED:
692 		label = "undefined";
693 		break;
694 	default:
695 		return -ERANGE;
696 	}
697 
698 	return sprintf(buf, "%s\n", label);
699 }
700 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
701 
702 static ssize_t regulator_min_uA_show(struct device *dev,
703 				    struct device_attribute *attr, char *buf)
704 {
705 	struct regulator_dev *rdev = dev_get_drvdata(dev);
706 
707 	if (!rdev->constraints)
708 		return sprintf(buf, "constraint not defined\n");
709 
710 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
711 }
712 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 
714 static ssize_t regulator_max_uA_show(struct device *dev,
715 				    struct device_attribute *attr, char *buf)
716 {
717 	struct regulator_dev *rdev = dev_get_drvdata(dev);
718 
719 	if (!rdev->constraints)
720 		return sprintf(buf, "constraint not defined\n");
721 
722 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
723 }
724 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 
726 static ssize_t regulator_min_uV_show(struct device *dev,
727 				    struct device_attribute *attr, char *buf)
728 {
729 	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 
731 	if (!rdev->constraints)
732 		return sprintf(buf, "constraint not defined\n");
733 
734 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
735 }
736 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 
738 static ssize_t regulator_max_uV_show(struct device *dev,
739 				    struct device_attribute *attr, char *buf)
740 {
741 	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 
743 	if (!rdev->constraints)
744 		return sprintf(buf, "constraint not defined\n");
745 
746 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
747 }
748 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 
750 static ssize_t regulator_total_uA_show(struct device *dev,
751 				      struct device_attribute *attr, char *buf)
752 {
753 	struct regulator_dev *rdev = dev_get_drvdata(dev);
754 	struct regulator *regulator;
755 	int uA = 0;
756 
757 	regulator_lock(rdev);
758 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
759 		if (regulator->enable_count)
760 			uA += regulator->uA_load;
761 	}
762 	regulator_unlock(rdev);
763 	return sprintf(buf, "%d\n", uA);
764 }
765 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766 
767 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
768 			      char *buf)
769 {
770 	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 	return sprintf(buf, "%d\n", rdev->use_count);
772 }
773 static DEVICE_ATTR_RO(num_users);
774 
775 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
776 			 char *buf)
777 {
778 	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 
780 	switch (rdev->desc->type) {
781 	case REGULATOR_VOLTAGE:
782 		return sprintf(buf, "voltage\n");
783 	case REGULATOR_CURRENT:
784 		return sprintf(buf, "current\n");
785 	}
786 	return sprintf(buf, "unknown\n");
787 }
788 static DEVICE_ATTR_RO(type);
789 
790 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
791 				struct device_attribute *attr, char *buf)
792 {
793 	struct regulator_dev *rdev = dev_get_drvdata(dev);
794 
795 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
796 }
797 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
798 		regulator_suspend_mem_uV_show, NULL);
799 
800 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
801 				struct device_attribute *attr, char *buf)
802 {
803 	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 
805 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
806 }
807 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
808 		regulator_suspend_disk_uV_show, NULL);
809 
810 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
811 				struct device_attribute *attr, char *buf)
812 {
813 	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 
815 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
816 }
817 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
818 		regulator_suspend_standby_uV_show, NULL);
819 
820 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
821 				struct device_attribute *attr, char *buf)
822 {
823 	struct regulator_dev *rdev = dev_get_drvdata(dev);
824 
825 	return regulator_print_opmode(buf,
826 		rdev->constraints->state_mem.mode);
827 }
828 static DEVICE_ATTR(suspend_mem_mode, 0444,
829 		regulator_suspend_mem_mode_show, NULL);
830 
831 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
832 				struct device_attribute *attr, char *buf)
833 {
834 	struct regulator_dev *rdev = dev_get_drvdata(dev);
835 
836 	return regulator_print_opmode(buf,
837 		rdev->constraints->state_disk.mode);
838 }
839 static DEVICE_ATTR(suspend_disk_mode, 0444,
840 		regulator_suspend_disk_mode_show, NULL);
841 
842 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
843 				struct device_attribute *attr, char *buf)
844 {
845 	struct regulator_dev *rdev = dev_get_drvdata(dev);
846 
847 	return regulator_print_opmode(buf,
848 		rdev->constraints->state_standby.mode);
849 }
850 static DEVICE_ATTR(suspend_standby_mode, 0444,
851 		regulator_suspend_standby_mode_show, NULL);
852 
853 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
854 				   struct device_attribute *attr, char *buf)
855 {
856 	struct regulator_dev *rdev = dev_get_drvdata(dev);
857 
858 	return regulator_print_state(buf,
859 			rdev->constraints->state_mem.enabled);
860 }
861 static DEVICE_ATTR(suspend_mem_state, 0444,
862 		regulator_suspend_mem_state_show, NULL);
863 
864 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
865 				   struct device_attribute *attr, char *buf)
866 {
867 	struct regulator_dev *rdev = dev_get_drvdata(dev);
868 
869 	return regulator_print_state(buf,
870 			rdev->constraints->state_disk.enabled);
871 }
872 static DEVICE_ATTR(suspend_disk_state, 0444,
873 		regulator_suspend_disk_state_show, NULL);
874 
875 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
876 				   struct device_attribute *attr, char *buf)
877 {
878 	struct regulator_dev *rdev = dev_get_drvdata(dev);
879 
880 	return regulator_print_state(buf,
881 			rdev->constraints->state_standby.enabled);
882 }
883 static DEVICE_ATTR(suspend_standby_state, 0444,
884 		regulator_suspend_standby_state_show, NULL);
885 
886 static ssize_t regulator_bypass_show(struct device *dev,
887 				     struct device_attribute *attr, char *buf)
888 {
889 	struct regulator_dev *rdev = dev_get_drvdata(dev);
890 	const char *report;
891 	bool bypass;
892 	int ret;
893 
894 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
895 
896 	if (ret != 0)
897 		report = "unknown";
898 	else if (bypass)
899 		report = "enabled";
900 	else
901 		report = "disabled";
902 
903 	return sprintf(buf, "%s\n", report);
904 }
905 static DEVICE_ATTR(bypass, 0444,
906 		   regulator_bypass_show, NULL);
907 
908 /* Calculate the new optimum regulator operating mode based on the new total
909  * consumer load. All locks held by caller */
910 static int drms_uA_update(struct regulator_dev *rdev)
911 {
912 	struct regulator *sibling;
913 	int current_uA = 0, output_uV, input_uV, err;
914 	unsigned int mode;
915 
916 	/*
917 	 * first check to see if we can set modes at all, otherwise just
918 	 * tell the consumer everything is OK.
919 	 */
920 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
921 		rdev_dbg(rdev, "DRMS operation not allowed\n");
922 		return 0;
923 	}
924 
925 	if (!rdev->desc->ops->get_optimum_mode &&
926 	    !rdev->desc->ops->set_load)
927 		return 0;
928 
929 	if (!rdev->desc->ops->set_mode &&
930 	    !rdev->desc->ops->set_load)
931 		return -EINVAL;
932 
933 	/* calc total requested load */
934 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
935 		if (sibling->enable_count)
936 			current_uA += sibling->uA_load;
937 	}
938 
939 	current_uA += rdev->constraints->system_load;
940 
941 	if (rdev->desc->ops->set_load) {
942 		/* set the optimum mode for our new total regulator load */
943 		err = rdev->desc->ops->set_load(rdev, current_uA);
944 		if (err < 0)
945 			rdev_err(rdev, "failed to set load %d\n", current_uA);
946 	} else {
947 		/* get output voltage */
948 		output_uV = regulator_get_voltage_rdev(rdev);
949 		if (output_uV <= 0) {
950 			rdev_err(rdev, "invalid output voltage found\n");
951 			return -EINVAL;
952 		}
953 
954 		/* get input voltage */
955 		input_uV = 0;
956 		if (rdev->supply)
957 			input_uV = regulator_get_voltage(rdev->supply);
958 		if (input_uV <= 0)
959 			input_uV = rdev->constraints->input_uV;
960 		if (input_uV <= 0) {
961 			rdev_err(rdev, "invalid input voltage found\n");
962 			return -EINVAL;
963 		}
964 
965 		/* now get the optimum mode for our new total regulator load */
966 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
967 							 output_uV, current_uA);
968 
969 		/* check the new mode is allowed */
970 		err = regulator_mode_constrain(rdev, &mode);
971 		if (err < 0) {
972 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
973 				 current_uA, input_uV, output_uV);
974 			return err;
975 		}
976 
977 		err = rdev->desc->ops->set_mode(rdev, mode);
978 		if (err < 0)
979 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
980 	}
981 
982 	return err;
983 }
984 
985 static int suspend_set_state(struct regulator_dev *rdev,
986 				    suspend_state_t state)
987 {
988 	int ret = 0;
989 	struct regulator_state *rstate;
990 
991 	rstate = regulator_get_suspend_state(rdev, state);
992 	if (rstate == NULL)
993 		return 0;
994 
995 	/* If we have no suspend mode configuration don't set anything;
996 	 * only warn if the driver implements set_suspend_voltage or
997 	 * set_suspend_mode callback.
998 	 */
999 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1000 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1001 		if (rdev->desc->ops->set_suspend_voltage ||
1002 		    rdev->desc->ops->set_suspend_mode)
1003 			rdev_warn(rdev, "No configuration\n");
1004 		return 0;
1005 	}
1006 
1007 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1008 		rdev->desc->ops->set_suspend_enable)
1009 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1010 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1011 		rdev->desc->ops->set_suspend_disable)
1012 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1013 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1014 		ret = 0;
1015 
1016 	if (ret < 0) {
1017 		rdev_err(rdev, "failed to enabled/disable\n");
1018 		return ret;
1019 	}
1020 
1021 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1022 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1023 		if (ret < 0) {
1024 			rdev_err(rdev, "failed to set voltage\n");
1025 			return ret;
1026 		}
1027 	}
1028 
1029 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1030 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1031 		if (ret < 0) {
1032 			rdev_err(rdev, "failed to set mode\n");
1033 			return ret;
1034 		}
1035 	}
1036 
1037 	return ret;
1038 }
1039 
1040 static void print_constraints(struct regulator_dev *rdev)
1041 {
1042 	struct regulation_constraints *constraints = rdev->constraints;
1043 	char buf[160] = "";
1044 	size_t len = sizeof(buf) - 1;
1045 	int count = 0;
1046 	int ret;
1047 
1048 	if (constraints->min_uV && constraints->max_uV) {
1049 		if (constraints->min_uV == constraints->max_uV)
1050 			count += scnprintf(buf + count, len - count, "%d mV ",
1051 					   constraints->min_uV / 1000);
1052 		else
1053 			count += scnprintf(buf + count, len - count,
1054 					   "%d <--> %d mV ",
1055 					   constraints->min_uV / 1000,
1056 					   constraints->max_uV / 1000);
1057 	}
1058 
1059 	if (!constraints->min_uV ||
1060 	    constraints->min_uV != constraints->max_uV) {
1061 		ret = regulator_get_voltage_rdev(rdev);
1062 		if (ret > 0)
1063 			count += scnprintf(buf + count, len - count,
1064 					   "at %d mV ", ret / 1000);
1065 	}
1066 
1067 	if (constraints->uV_offset)
1068 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1069 				   constraints->uV_offset / 1000);
1070 
1071 	if (constraints->min_uA && constraints->max_uA) {
1072 		if (constraints->min_uA == constraints->max_uA)
1073 			count += scnprintf(buf + count, len - count, "%d mA ",
1074 					   constraints->min_uA / 1000);
1075 		else
1076 			count += scnprintf(buf + count, len - count,
1077 					   "%d <--> %d mA ",
1078 					   constraints->min_uA / 1000,
1079 					   constraints->max_uA / 1000);
1080 	}
1081 
1082 	if (!constraints->min_uA ||
1083 	    constraints->min_uA != constraints->max_uA) {
1084 		ret = _regulator_get_current_limit(rdev);
1085 		if (ret > 0)
1086 			count += scnprintf(buf + count, len - count,
1087 					   "at %d mA ", ret / 1000);
1088 	}
1089 
1090 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1091 		count += scnprintf(buf + count, len - count, "fast ");
1092 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1093 		count += scnprintf(buf + count, len - count, "normal ");
1094 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1095 		count += scnprintf(buf + count, len - count, "idle ");
1096 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1097 		count += scnprintf(buf + count, len - count, "standby");
1098 
1099 	if (!count)
1100 		scnprintf(buf, len, "no parameters");
1101 
1102 	rdev_dbg(rdev, "%s\n", buf);
1103 
1104 	if ((constraints->min_uV != constraints->max_uV) &&
1105 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106 		rdev_warn(rdev,
1107 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1108 }
1109 
1110 static int machine_constraints_voltage(struct regulator_dev *rdev,
1111 	struct regulation_constraints *constraints)
1112 {
1113 	const struct regulator_ops *ops = rdev->desc->ops;
1114 	int ret;
1115 
1116 	/* do we need to apply the constraint voltage */
1117 	if (rdev->constraints->apply_uV &&
1118 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1119 		int target_min, target_max;
1120 		int current_uV = regulator_get_voltage_rdev(rdev);
1121 
1122 		if (current_uV == -ENOTRECOVERABLE) {
1123 			/* This regulator can't be read and must be initialized */
1124 			rdev_info(rdev, "Setting %d-%duV\n",
1125 				  rdev->constraints->min_uV,
1126 				  rdev->constraints->max_uV);
1127 			_regulator_do_set_voltage(rdev,
1128 						  rdev->constraints->min_uV,
1129 						  rdev->constraints->max_uV);
1130 			current_uV = regulator_get_voltage_rdev(rdev);
1131 		}
1132 
1133 		if (current_uV < 0) {
1134 			rdev_err(rdev,
1135 				 "failed to get the current voltage(%d)\n",
1136 				 current_uV);
1137 			return current_uV;
1138 		}
1139 
1140 		/*
1141 		 * If we're below the minimum voltage move up to the
1142 		 * minimum voltage, if we're above the maximum voltage
1143 		 * then move down to the maximum.
1144 		 */
1145 		target_min = current_uV;
1146 		target_max = current_uV;
1147 
1148 		if (current_uV < rdev->constraints->min_uV) {
1149 			target_min = rdev->constraints->min_uV;
1150 			target_max = rdev->constraints->min_uV;
1151 		}
1152 
1153 		if (current_uV > rdev->constraints->max_uV) {
1154 			target_min = rdev->constraints->max_uV;
1155 			target_max = rdev->constraints->max_uV;
1156 		}
1157 
1158 		if (target_min != current_uV || target_max != current_uV) {
1159 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1160 				  current_uV, target_min, target_max);
1161 			ret = _regulator_do_set_voltage(
1162 				rdev, target_min, target_max);
1163 			if (ret < 0) {
1164 				rdev_err(rdev,
1165 					"failed to apply %d-%duV constraint(%d)\n",
1166 					target_min, target_max, ret);
1167 				return ret;
1168 			}
1169 		}
1170 	}
1171 
1172 	/* constrain machine-level voltage specs to fit
1173 	 * the actual range supported by this regulator.
1174 	 */
1175 	if (ops->list_voltage && rdev->desc->n_voltages) {
1176 		int	count = rdev->desc->n_voltages;
1177 		int	i;
1178 		int	min_uV = INT_MAX;
1179 		int	max_uV = INT_MIN;
1180 		int	cmin = constraints->min_uV;
1181 		int	cmax = constraints->max_uV;
1182 
1183 		/* it's safe to autoconfigure fixed-voltage supplies
1184 		   and the constraints are used by list_voltage. */
1185 		if (count == 1 && !cmin) {
1186 			cmin = 1;
1187 			cmax = INT_MAX;
1188 			constraints->min_uV = cmin;
1189 			constraints->max_uV = cmax;
1190 		}
1191 
1192 		/* voltage constraints are optional */
1193 		if ((cmin == 0) && (cmax == 0))
1194 			return 0;
1195 
1196 		/* else require explicit machine-level constraints */
1197 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1198 			rdev_err(rdev, "invalid voltage constraints\n");
1199 			return -EINVAL;
1200 		}
1201 
1202 		/* no need to loop voltages if range is continuous */
1203 		if (rdev->desc->continuous_voltage_range)
1204 			return 0;
1205 
1206 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1207 		for (i = 0; i < count; i++) {
1208 			int	value;
1209 
1210 			value = ops->list_voltage(rdev, i);
1211 			if (value <= 0)
1212 				continue;
1213 
1214 			/* maybe adjust [min_uV..max_uV] */
1215 			if (value >= cmin && value < min_uV)
1216 				min_uV = value;
1217 			if (value <= cmax && value > max_uV)
1218 				max_uV = value;
1219 		}
1220 
1221 		/* final: [min_uV..max_uV] valid iff constraints valid */
1222 		if (max_uV < min_uV) {
1223 			rdev_err(rdev,
1224 				 "unsupportable voltage constraints %u-%uuV\n",
1225 				 min_uV, max_uV);
1226 			return -EINVAL;
1227 		}
1228 
1229 		/* use regulator's subset of machine constraints */
1230 		if (constraints->min_uV < min_uV) {
1231 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1232 				 constraints->min_uV, min_uV);
1233 			constraints->min_uV = min_uV;
1234 		}
1235 		if (constraints->max_uV > max_uV) {
1236 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1237 				 constraints->max_uV, max_uV);
1238 			constraints->max_uV = max_uV;
1239 		}
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int machine_constraints_current(struct regulator_dev *rdev,
1246 	struct regulation_constraints *constraints)
1247 {
1248 	const struct regulator_ops *ops = rdev->desc->ops;
1249 	int ret;
1250 
1251 	if (!constraints->min_uA && !constraints->max_uA)
1252 		return 0;
1253 
1254 	if (constraints->min_uA > constraints->max_uA) {
1255 		rdev_err(rdev, "Invalid current constraints\n");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (!ops->set_current_limit || !ops->get_current_limit) {
1260 		rdev_warn(rdev, "Operation of current configuration missing\n");
1261 		return 0;
1262 	}
1263 
1264 	/* Set regulator current in constraints range */
1265 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1266 			constraints->max_uA);
1267 	if (ret < 0) {
1268 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1269 		return ret;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 static int _regulator_do_enable(struct regulator_dev *rdev);
1276 
1277 /**
1278  * set_machine_constraints - sets regulator constraints
1279  * @rdev: regulator source
1280  * @constraints: constraints to apply
1281  *
1282  * Allows platform initialisation code to define and constrain
1283  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1284  * Constraints *must* be set by platform code in order for some
1285  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1286  * set_mode.
1287  */
1288 static int set_machine_constraints(struct regulator_dev *rdev,
1289 	const struct regulation_constraints *constraints)
1290 {
1291 	int ret = 0;
1292 	const struct regulator_ops *ops = rdev->desc->ops;
1293 
1294 	if (constraints)
1295 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1296 					    GFP_KERNEL);
1297 	else
1298 		rdev->constraints = kzalloc(sizeof(*constraints),
1299 					    GFP_KERNEL);
1300 	if (!rdev->constraints)
1301 		return -ENOMEM;
1302 
1303 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1304 	if (ret != 0)
1305 		return ret;
1306 
1307 	ret = machine_constraints_current(rdev, rdev->constraints);
1308 	if (ret != 0)
1309 		return ret;
1310 
1311 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1312 		ret = ops->set_input_current_limit(rdev,
1313 						   rdev->constraints->ilim_uA);
1314 		if (ret < 0) {
1315 			rdev_err(rdev, "failed to set input limit\n");
1316 			return ret;
1317 		}
1318 	}
1319 
1320 	/* do we need to setup our suspend state */
1321 	if (rdev->constraints->initial_state) {
1322 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1323 		if (ret < 0) {
1324 			rdev_err(rdev, "failed to set suspend state\n");
1325 			return ret;
1326 		}
1327 	}
1328 
1329 	if (rdev->constraints->initial_mode) {
1330 		if (!ops->set_mode) {
1331 			rdev_err(rdev, "no set_mode operation\n");
1332 			return -EINVAL;
1333 		}
1334 
1335 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1336 		if (ret < 0) {
1337 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1338 			return ret;
1339 		}
1340 	} else if (rdev->constraints->system_load) {
1341 		/*
1342 		 * We'll only apply the initial system load if an
1343 		 * initial mode wasn't specified.
1344 		 */
1345 		drms_uA_update(rdev);
1346 	}
1347 
1348 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1349 		&& ops->set_ramp_delay) {
1350 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1351 		if (ret < 0) {
1352 			rdev_err(rdev, "failed to set ramp_delay\n");
1353 			return ret;
1354 		}
1355 	}
1356 
1357 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1358 		ret = ops->set_pull_down(rdev);
1359 		if (ret < 0) {
1360 			rdev_err(rdev, "failed to set pull down\n");
1361 			return ret;
1362 		}
1363 	}
1364 
1365 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1366 		ret = ops->set_soft_start(rdev);
1367 		if (ret < 0) {
1368 			rdev_err(rdev, "failed to set soft start\n");
1369 			return ret;
1370 		}
1371 	}
1372 
1373 	if (rdev->constraints->over_current_protection
1374 		&& ops->set_over_current_protection) {
1375 		ret = ops->set_over_current_protection(rdev);
1376 		if (ret < 0) {
1377 			rdev_err(rdev, "failed to set over current protection\n");
1378 			return ret;
1379 		}
1380 	}
1381 
1382 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1383 		bool ad_state = (rdev->constraints->active_discharge ==
1384 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1385 
1386 		ret = ops->set_active_discharge(rdev, ad_state);
1387 		if (ret < 0) {
1388 			rdev_err(rdev, "failed to set active discharge\n");
1389 			return ret;
1390 		}
1391 	}
1392 
1393 	/* If the constraints say the regulator should be on at this point
1394 	 * and we have control then make sure it is enabled.
1395 	 */
1396 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1397 		if (rdev->supply) {
1398 			ret = regulator_enable(rdev->supply);
1399 			if (ret < 0) {
1400 				_regulator_put(rdev->supply);
1401 				rdev->supply = NULL;
1402 				return ret;
1403 			}
1404 		}
1405 
1406 		ret = _regulator_do_enable(rdev);
1407 		if (ret < 0 && ret != -EINVAL) {
1408 			rdev_err(rdev, "failed to enable\n");
1409 			return ret;
1410 		}
1411 
1412 		if (rdev->constraints->always_on)
1413 			rdev->use_count++;
1414 	}
1415 
1416 	print_constraints(rdev);
1417 	return 0;
1418 }
1419 
1420 /**
1421  * set_supply - set regulator supply regulator
1422  * @rdev: regulator name
1423  * @supply_rdev: supply regulator name
1424  *
1425  * Called by platform initialisation code to set the supply regulator for this
1426  * regulator. This ensures that a regulators supply will also be enabled by the
1427  * core if it's child is enabled.
1428  */
1429 static int set_supply(struct regulator_dev *rdev,
1430 		      struct regulator_dev *supply_rdev)
1431 {
1432 	int err;
1433 
1434 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1435 
1436 	if (!try_module_get(supply_rdev->owner))
1437 		return -ENODEV;
1438 
1439 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1440 	if (rdev->supply == NULL) {
1441 		err = -ENOMEM;
1442 		return err;
1443 	}
1444 	supply_rdev->open_count++;
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1451  * @rdev:         regulator source
1452  * @consumer_dev_name: dev_name() string for device supply applies to
1453  * @supply:       symbolic name for supply
1454  *
1455  * Allows platform initialisation code to map physical regulator
1456  * sources to symbolic names for supplies for use by devices.  Devices
1457  * should use these symbolic names to request regulators, avoiding the
1458  * need to provide board-specific regulator names as platform data.
1459  */
1460 static int set_consumer_device_supply(struct regulator_dev *rdev,
1461 				      const char *consumer_dev_name,
1462 				      const char *supply)
1463 {
1464 	struct regulator_map *node;
1465 	int has_dev;
1466 
1467 	if (supply == NULL)
1468 		return -EINVAL;
1469 
1470 	if (consumer_dev_name != NULL)
1471 		has_dev = 1;
1472 	else
1473 		has_dev = 0;
1474 
1475 	list_for_each_entry(node, &regulator_map_list, list) {
1476 		if (node->dev_name && consumer_dev_name) {
1477 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1478 				continue;
1479 		} else if (node->dev_name || consumer_dev_name) {
1480 			continue;
1481 		}
1482 
1483 		if (strcmp(node->supply, supply) != 0)
1484 			continue;
1485 
1486 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1487 			 consumer_dev_name,
1488 			 dev_name(&node->regulator->dev),
1489 			 node->regulator->desc->name,
1490 			 supply,
1491 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1492 		return -EBUSY;
1493 	}
1494 
1495 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1496 	if (node == NULL)
1497 		return -ENOMEM;
1498 
1499 	node->regulator = rdev;
1500 	node->supply = supply;
1501 
1502 	if (has_dev) {
1503 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1504 		if (node->dev_name == NULL) {
1505 			kfree(node);
1506 			return -ENOMEM;
1507 		}
1508 	}
1509 
1510 	list_add(&node->list, &regulator_map_list);
1511 	return 0;
1512 }
1513 
1514 static void unset_regulator_supplies(struct regulator_dev *rdev)
1515 {
1516 	struct regulator_map *node, *n;
1517 
1518 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1519 		if (rdev == node->regulator) {
1520 			list_del(&node->list);
1521 			kfree(node->dev_name);
1522 			kfree(node);
1523 		}
1524 	}
1525 }
1526 
1527 #ifdef CONFIG_DEBUG_FS
1528 static ssize_t constraint_flags_read_file(struct file *file,
1529 					  char __user *user_buf,
1530 					  size_t count, loff_t *ppos)
1531 {
1532 	const struct regulator *regulator = file->private_data;
1533 	const struct regulation_constraints *c = regulator->rdev->constraints;
1534 	char *buf;
1535 	ssize_t ret;
1536 
1537 	if (!c)
1538 		return 0;
1539 
1540 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1541 	if (!buf)
1542 		return -ENOMEM;
1543 
1544 	ret = snprintf(buf, PAGE_SIZE,
1545 			"always_on: %u\n"
1546 			"boot_on: %u\n"
1547 			"apply_uV: %u\n"
1548 			"ramp_disable: %u\n"
1549 			"soft_start: %u\n"
1550 			"pull_down: %u\n"
1551 			"over_current_protection: %u\n",
1552 			c->always_on,
1553 			c->boot_on,
1554 			c->apply_uV,
1555 			c->ramp_disable,
1556 			c->soft_start,
1557 			c->pull_down,
1558 			c->over_current_protection);
1559 
1560 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1561 	kfree(buf);
1562 
1563 	return ret;
1564 }
1565 
1566 #endif
1567 
1568 static const struct file_operations constraint_flags_fops = {
1569 #ifdef CONFIG_DEBUG_FS
1570 	.open = simple_open,
1571 	.read = constraint_flags_read_file,
1572 	.llseek = default_llseek,
1573 #endif
1574 };
1575 
1576 #define REG_STR_SIZE	64
1577 
1578 static struct regulator *create_regulator(struct regulator_dev *rdev,
1579 					  struct device *dev,
1580 					  const char *supply_name)
1581 {
1582 	struct regulator *regulator;
1583 	char buf[REG_STR_SIZE];
1584 	int err, size;
1585 
1586 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1587 	if (regulator == NULL)
1588 		return NULL;
1589 
1590 	regulator_lock(rdev);
1591 	regulator->rdev = rdev;
1592 	list_add(&regulator->list, &rdev->consumer_list);
1593 
1594 	if (dev) {
1595 		regulator->dev = dev;
1596 
1597 		/* Add a link to the device sysfs entry */
1598 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1599 				dev->kobj.name, supply_name);
1600 		if (size >= REG_STR_SIZE)
1601 			goto overflow_err;
1602 
1603 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1604 		if (regulator->supply_name == NULL)
1605 			goto overflow_err;
1606 
1607 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1608 					buf);
1609 		if (err) {
1610 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1611 				  dev->kobj.name, err);
1612 			/* non-fatal */
1613 		}
1614 	} else {
1615 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1616 		if (regulator->supply_name == NULL)
1617 			goto overflow_err;
1618 	}
1619 
1620 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1621 						rdev->debugfs);
1622 	if (!regulator->debugfs) {
1623 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1624 	} else {
1625 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1626 				   &regulator->uA_load);
1627 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1628 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1629 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1630 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1631 		debugfs_create_file("constraint_flags", 0444,
1632 				    regulator->debugfs, regulator,
1633 				    &constraint_flags_fops);
1634 	}
1635 
1636 	/*
1637 	 * Check now if the regulator is an always on regulator - if
1638 	 * it is then we don't need to do nearly so much work for
1639 	 * enable/disable calls.
1640 	 */
1641 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1642 	    _regulator_is_enabled(rdev))
1643 		regulator->always_on = true;
1644 
1645 	regulator_unlock(rdev);
1646 	return regulator;
1647 overflow_err:
1648 	list_del(&regulator->list);
1649 	kfree(regulator);
1650 	regulator_unlock(rdev);
1651 	return NULL;
1652 }
1653 
1654 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1655 {
1656 	if (rdev->constraints && rdev->constraints->enable_time)
1657 		return rdev->constraints->enable_time;
1658 	if (rdev->desc->ops->enable_time)
1659 		return rdev->desc->ops->enable_time(rdev);
1660 	return rdev->desc->enable_time;
1661 }
1662 
1663 static struct regulator_supply_alias *regulator_find_supply_alias(
1664 		struct device *dev, const char *supply)
1665 {
1666 	struct regulator_supply_alias *map;
1667 
1668 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1669 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1670 			return map;
1671 
1672 	return NULL;
1673 }
1674 
1675 static void regulator_supply_alias(struct device **dev, const char **supply)
1676 {
1677 	struct regulator_supply_alias *map;
1678 
1679 	map = regulator_find_supply_alias(*dev, *supply);
1680 	if (map) {
1681 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1682 				*supply, map->alias_supply,
1683 				dev_name(map->alias_dev));
1684 		*dev = map->alias_dev;
1685 		*supply = map->alias_supply;
1686 	}
1687 }
1688 
1689 static int regulator_match(struct device *dev, const void *data)
1690 {
1691 	struct regulator_dev *r = dev_to_rdev(dev);
1692 
1693 	return strcmp(rdev_get_name(r), data) == 0;
1694 }
1695 
1696 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1697 {
1698 	struct device *dev;
1699 
1700 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1701 
1702 	return dev ? dev_to_rdev(dev) : NULL;
1703 }
1704 
1705 /**
1706  * regulator_dev_lookup - lookup a regulator device.
1707  * @dev: device for regulator "consumer".
1708  * @supply: Supply name or regulator ID.
1709  *
1710  * If successful, returns a struct regulator_dev that corresponds to the name
1711  * @supply and with the embedded struct device refcount incremented by one.
1712  * The refcount must be dropped by calling put_device().
1713  * On failure one of the following ERR-PTR-encoded values is returned:
1714  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1715  * in the future.
1716  */
1717 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1718 						  const char *supply)
1719 {
1720 	struct regulator_dev *r = NULL;
1721 	struct device_node *node;
1722 	struct regulator_map *map;
1723 	const char *devname = NULL;
1724 
1725 	regulator_supply_alias(&dev, &supply);
1726 
1727 	/* first do a dt based lookup */
1728 	if (dev && dev->of_node) {
1729 		node = of_get_regulator(dev, supply);
1730 		if (node) {
1731 			r = of_find_regulator_by_node(node);
1732 			if (r)
1733 				return r;
1734 
1735 			/*
1736 			 * We have a node, but there is no device.
1737 			 * assume it has not registered yet.
1738 			 */
1739 			return ERR_PTR(-EPROBE_DEFER);
1740 		}
1741 	}
1742 
1743 	/* if not found, try doing it non-dt way */
1744 	if (dev)
1745 		devname = dev_name(dev);
1746 
1747 	mutex_lock(&regulator_list_mutex);
1748 	list_for_each_entry(map, &regulator_map_list, list) {
1749 		/* If the mapping has a device set up it must match */
1750 		if (map->dev_name &&
1751 		    (!devname || strcmp(map->dev_name, devname)))
1752 			continue;
1753 
1754 		if (strcmp(map->supply, supply) == 0 &&
1755 		    get_device(&map->regulator->dev)) {
1756 			r = map->regulator;
1757 			break;
1758 		}
1759 	}
1760 	mutex_unlock(&regulator_list_mutex);
1761 
1762 	if (r)
1763 		return r;
1764 
1765 	r = regulator_lookup_by_name(supply);
1766 	if (r)
1767 		return r;
1768 
1769 	return ERR_PTR(-ENODEV);
1770 }
1771 
1772 static int regulator_resolve_supply(struct regulator_dev *rdev)
1773 {
1774 	struct regulator_dev *r;
1775 	struct device *dev = rdev->dev.parent;
1776 	int ret;
1777 
1778 	/* No supply to resolve? */
1779 	if (!rdev->supply_name)
1780 		return 0;
1781 
1782 	/* Supply already resolved? */
1783 	if (rdev->supply)
1784 		return 0;
1785 
1786 	r = regulator_dev_lookup(dev, rdev->supply_name);
1787 	if (IS_ERR(r)) {
1788 		ret = PTR_ERR(r);
1789 
1790 		/* Did the lookup explicitly defer for us? */
1791 		if (ret == -EPROBE_DEFER)
1792 			return ret;
1793 
1794 		if (have_full_constraints()) {
1795 			r = dummy_regulator_rdev;
1796 			get_device(&r->dev);
1797 		} else {
1798 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1799 				rdev->supply_name, rdev->desc->name);
1800 			return -EPROBE_DEFER;
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * If the supply's parent device is not the same as the
1806 	 * regulator's parent device, then ensure the parent device
1807 	 * is bound before we resolve the supply, in case the parent
1808 	 * device get probe deferred and unregisters the supply.
1809 	 */
1810 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1811 		if (!device_is_bound(r->dev.parent)) {
1812 			put_device(&r->dev);
1813 			return -EPROBE_DEFER;
1814 		}
1815 	}
1816 
1817 	/* Recursively resolve the supply of the supply */
1818 	ret = regulator_resolve_supply(r);
1819 	if (ret < 0) {
1820 		put_device(&r->dev);
1821 		return ret;
1822 	}
1823 
1824 	ret = set_supply(rdev, r);
1825 	if (ret < 0) {
1826 		put_device(&r->dev);
1827 		return ret;
1828 	}
1829 
1830 	/*
1831 	 * In set_machine_constraints() we may have turned this regulator on
1832 	 * but we couldn't propagate to the supply if it hadn't been resolved
1833 	 * yet.  Do it now.
1834 	 */
1835 	if (rdev->use_count) {
1836 		ret = regulator_enable(rdev->supply);
1837 		if (ret < 0) {
1838 			_regulator_put(rdev->supply);
1839 			rdev->supply = NULL;
1840 			return ret;
1841 		}
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 /* Internal regulator request function */
1848 struct regulator *_regulator_get(struct device *dev, const char *id,
1849 				 enum regulator_get_type get_type)
1850 {
1851 	struct regulator_dev *rdev;
1852 	struct regulator *regulator;
1853 	struct device_link *link;
1854 	int ret;
1855 
1856 	if (get_type >= MAX_GET_TYPE) {
1857 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1858 		return ERR_PTR(-EINVAL);
1859 	}
1860 
1861 	if (id == NULL) {
1862 		pr_err("get() with no identifier\n");
1863 		return ERR_PTR(-EINVAL);
1864 	}
1865 
1866 	rdev = regulator_dev_lookup(dev, id);
1867 	if (IS_ERR(rdev)) {
1868 		ret = PTR_ERR(rdev);
1869 
1870 		/*
1871 		 * If regulator_dev_lookup() fails with error other
1872 		 * than -ENODEV our job here is done, we simply return it.
1873 		 */
1874 		if (ret != -ENODEV)
1875 			return ERR_PTR(ret);
1876 
1877 		if (!have_full_constraints()) {
1878 			dev_warn(dev,
1879 				 "incomplete constraints, dummy supplies not allowed\n");
1880 			return ERR_PTR(-ENODEV);
1881 		}
1882 
1883 		switch (get_type) {
1884 		case NORMAL_GET:
1885 			/*
1886 			 * Assume that a regulator is physically present and
1887 			 * enabled, even if it isn't hooked up, and just
1888 			 * provide a dummy.
1889 			 */
1890 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1891 			rdev = dummy_regulator_rdev;
1892 			get_device(&rdev->dev);
1893 			break;
1894 
1895 		case EXCLUSIVE_GET:
1896 			dev_warn(dev,
1897 				 "dummy supplies not allowed for exclusive requests\n");
1898 			/* fall through */
1899 
1900 		default:
1901 			return ERR_PTR(-ENODEV);
1902 		}
1903 	}
1904 
1905 	if (rdev->exclusive) {
1906 		regulator = ERR_PTR(-EPERM);
1907 		put_device(&rdev->dev);
1908 		return regulator;
1909 	}
1910 
1911 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1912 		regulator = ERR_PTR(-EBUSY);
1913 		put_device(&rdev->dev);
1914 		return regulator;
1915 	}
1916 
1917 	mutex_lock(&regulator_list_mutex);
1918 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1919 	mutex_unlock(&regulator_list_mutex);
1920 
1921 	if (ret != 0) {
1922 		regulator = ERR_PTR(-EPROBE_DEFER);
1923 		put_device(&rdev->dev);
1924 		return regulator;
1925 	}
1926 
1927 	ret = regulator_resolve_supply(rdev);
1928 	if (ret < 0) {
1929 		regulator = ERR_PTR(ret);
1930 		put_device(&rdev->dev);
1931 		return regulator;
1932 	}
1933 
1934 	if (!try_module_get(rdev->owner)) {
1935 		regulator = ERR_PTR(-EPROBE_DEFER);
1936 		put_device(&rdev->dev);
1937 		return regulator;
1938 	}
1939 
1940 	regulator = create_regulator(rdev, dev, id);
1941 	if (regulator == NULL) {
1942 		regulator = ERR_PTR(-ENOMEM);
1943 		module_put(rdev->owner);
1944 		put_device(&rdev->dev);
1945 		return regulator;
1946 	}
1947 
1948 	rdev->open_count++;
1949 	if (get_type == EXCLUSIVE_GET) {
1950 		rdev->exclusive = 1;
1951 
1952 		ret = _regulator_is_enabled(rdev);
1953 		if (ret > 0)
1954 			rdev->use_count = 1;
1955 		else
1956 			rdev->use_count = 0;
1957 	}
1958 
1959 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1960 	if (!IS_ERR_OR_NULL(link))
1961 		regulator->device_link = true;
1962 
1963 	return regulator;
1964 }
1965 
1966 /**
1967  * regulator_get - lookup and obtain a reference to a regulator.
1968  * @dev: device for regulator "consumer"
1969  * @id: Supply name or regulator ID.
1970  *
1971  * Returns a struct regulator corresponding to the regulator producer,
1972  * or IS_ERR() condition containing errno.
1973  *
1974  * Use of supply names configured via regulator_set_device_supply() is
1975  * strongly encouraged.  It is recommended that the supply name used
1976  * should match the name used for the supply and/or the relevant
1977  * device pins in the datasheet.
1978  */
1979 struct regulator *regulator_get(struct device *dev, const char *id)
1980 {
1981 	return _regulator_get(dev, id, NORMAL_GET);
1982 }
1983 EXPORT_SYMBOL_GPL(regulator_get);
1984 
1985 /**
1986  * regulator_get_exclusive - obtain exclusive access to a regulator.
1987  * @dev: device for regulator "consumer"
1988  * @id: Supply name or regulator ID.
1989  *
1990  * Returns a struct regulator corresponding to the regulator producer,
1991  * or IS_ERR() condition containing errno.  Other consumers will be
1992  * unable to obtain this regulator while this reference is held and the
1993  * use count for the regulator will be initialised to reflect the current
1994  * state of the regulator.
1995  *
1996  * This is intended for use by consumers which cannot tolerate shared
1997  * use of the regulator such as those which need to force the
1998  * regulator off for correct operation of the hardware they are
1999  * controlling.
2000  *
2001  * Use of supply names configured via regulator_set_device_supply() is
2002  * strongly encouraged.  It is recommended that the supply name used
2003  * should match the name used for the supply and/or the relevant
2004  * device pins in the datasheet.
2005  */
2006 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2007 {
2008 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2009 }
2010 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2011 
2012 /**
2013  * regulator_get_optional - obtain optional access to a regulator.
2014  * @dev: device for regulator "consumer"
2015  * @id: Supply name or regulator ID.
2016  *
2017  * Returns a struct regulator corresponding to the regulator producer,
2018  * or IS_ERR() condition containing errno.
2019  *
2020  * This is intended for use by consumers for devices which can have
2021  * some supplies unconnected in normal use, such as some MMC devices.
2022  * It can allow the regulator core to provide stub supplies for other
2023  * supplies requested using normal regulator_get() calls without
2024  * disrupting the operation of drivers that can handle absent
2025  * supplies.
2026  *
2027  * Use of supply names configured via regulator_set_device_supply() is
2028  * strongly encouraged.  It is recommended that the supply name used
2029  * should match the name used for the supply and/or the relevant
2030  * device pins in the datasheet.
2031  */
2032 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2033 {
2034 	return _regulator_get(dev, id, OPTIONAL_GET);
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_get_optional);
2037 
2038 static void destroy_regulator(struct regulator *regulator)
2039 {
2040 	struct regulator_dev *rdev = regulator->rdev;
2041 
2042 	debugfs_remove_recursive(regulator->debugfs);
2043 
2044 	if (regulator->dev) {
2045 		if (regulator->device_link)
2046 			device_link_remove(regulator->dev, &rdev->dev);
2047 
2048 		/* remove any sysfs entries */
2049 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2050 	}
2051 
2052 	regulator_lock(rdev);
2053 	list_del(&regulator->list);
2054 
2055 	rdev->open_count--;
2056 	rdev->exclusive = 0;
2057 	regulator_unlock(rdev);
2058 
2059 	kfree_const(regulator->supply_name);
2060 	kfree(regulator);
2061 }
2062 
2063 /* regulator_list_mutex lock held by regulator_put() */
2064 static void _regulator_put(struct regulator *regulator)
2065 {
2066 	struct regulator_dev *rdev;
2067 
2068 	if (IS_ERR_OR_NULL(regulator))
2069 		return;
2070 
2071 	lockdep_assert_held_once(&regulator_list_mutex);
2072 
2073 	/* Docs say you must disable before calling regulator_put() */
2074 	WARN_ON(regulator->enable_count);
2075 
2076 	rdev = regulator->rdev;
2077 
2078 	destroy_regulator(regulator);
2079 
2080 	module_put(rdev->owner);
2081 	put_device(&rdev->dev);
2082 }
2083 
2084 /**
2085  * regulator_put - "free" the regulator source
2086  * @regulator: regulator source
2087  *
2088  * Note: drivers must ensure that all regulator_enable calls made on this
2089  * regulator source are balanced by regulator_disable calls prior to calling
2090  * this function.
2091  */
2092 void regulator_put(struct regulator *regulator)
2093 {
2094 	mutex_lock(&regulator_list_mutex);
2095 	_regulator_put(regulator);
2096 	mutex_unlock(&regulator_list_mutex);
2097 }
2098 EXPORT_SYMBOL_GPL(regulator_put);
2099 
2100 /**
2101  * regulator_register_supply_alias - Provide device alias for supply lookup
2102  *
2103  * @dev: device that will be given as the regulator "consumer"
2104  * @id: Supply name or regulator ID
2105  * @alias_dev: device that should be used to lookup the supply
2106  * @alias_id: Supply name or regulator ID that should be used to lookup the
2107  * supply
2108  *
2109  * All lookups for id on dev will instead be conducted for alias_id on
2110  * alias_dev.
2111  */
2112 int regulator_register_supply_alias(struct device *dev, const char *id,
2113 				    struct device *alias_dev,
2114 				    const char *alias_id)
2115 {
2116 	struct regulator_supply_alias *map;
2117 
2118 	map = regulator_find_supply_alias(dev, id);
2119 	if (map)
2120 		return -EEXIST;
2121 
2122 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2123 	if (!map)
2124 		return -ENOMEM;
2125 
2126 	map->src_dev = dev;
2127 	map->src_supply = id;
2128 	map->alias_dev = alias_dev;
2129 	map->alias_supply = alias_id;
2130 
2131 	list_add(&map->list, &regulator_supply_alias_list);
2132 
2133 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2134 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2135 
2136 	return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2139 
2140 /**
2141  * regulator_unregister_supply_alias - Remove device alias
2142  *
2143  * @dev: device that will be given as the regulator "consumer"
2144  * @id: Supply name or regulator ID
2145  *
2146  * Remove a lookup alias if one exists for id on dev.
2147  */
2148 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2149 {
2150 	struct regulator_supply_alias *map;
2151 
2152 	map = regulator_find_supply_alias(dev, id);
2153 	if (map) {
2154 		list_del(&map->list);
2155 		kfree(map);
2156 	}
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2159 
2160 /**
2161  * regulator_bulk_register_supply_alias - register multiple aliases
2162  *
2163  * @dev: device that will be given as the regulator "consumer"
2164  * @id: List of supply names or regulator IDs
2165  * @alias_dev: device that should be used to lookup the supply
2166  * @alias_id: List of supply names or regulator IDs that should be used to
2167  * lookup the supply
2168  * @num_id: Number of aliases to register
2169  *
2170  * @return 0 on success, an errno on failure.
2171  *
2172  * This helper function allows drivers to register several supply
2173  * aliases in one operation.  If any of the aliases cannot be
2174  * registered any aliases that were registered will be removed
2175  * before returning to the caller.
2176  */
2177 int regulator_bulk_register_supply_alias(struct device *dev,
2178 					 const char *const *id,
2179 					 struct device *alias_dev,
2180 					 const char *const *alias_id,
2181 					 int num_id)
2182 {
2183 	int i;
2184 	int ret;
2185 
2186 	for (i = 0; i < num_id; ++i) {
2187 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2188 						      alias_id[i]);
2189 		if (ret < 0)
2190 			goto err;
2191 	}
2192 
2193 	return 0;
2194 
2195 err:
2196 	dev_err(dev,
2197 		"Failed to create supply alias %s,%s -> %s,%s\n",
2198 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2199 
2200 	while (--i >= 0)
2201 		regulator_unregister_supply_alias(dev, id[i]);
2202 
2203 	return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2206 
2207 /**
2208  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2209  *
2210  * @dev: device that will be given as the regulator "consumer"
2211  * @id: List of supply names or regulator IDs
2212  * @num_id: Number of aliases to unregister
2213  *
2214  * This helper function allows drivers to unregister several supply
2215  * aliases in one operation.
2216  */
2217 void regulator_bulk_unregister_supply_alias(struct device *dev,
2218 					    const char *const *id,
2219 					    int num_id)
2220 {
2221 	int i;
2222 
2223 	for (i = 0; i < num_id; ++i)
2224 		regulator_unregister_supply_alias(dev, id[i]);
2225 }
2226 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2227 
2228 
2229 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2230 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2231 				const struct regulator_config *config)
2232 {
2233 	struct regulator_enable_gpio *pin;
2234 	struct gpio_desc *gpiod;
2235 
2236 	gpiod = config->ena_gpiod;
2237 
2238 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2239 		if (pin->gpiod == gpiod) {
2240 			rdev_dbg(rdev, "GPIO is already used\n");
2241 			goto update_ena_gpio_to_rdev;
2242 		}
2243 	}
2244 
2245 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2246 	if (pin == NULL)
2247 		return -ENOMEM;
2248 
2249 	pin->gpiod = gpiod;
2250 	list_add(&pin->list, &regulator_ena_gpio_list);
2251 
2252 update_ena_gpio_to_rdev:
2253 	pin->request_count++;
2254 	rdev->ena_pin = pin;
2255 	return 0;
2256 }
2257 
2258 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2259 {
2260 	struct regulator_enable_gpio *pin, *n;
2261 
2262 	if (!rdev->ena_pin)
2263 		return;
2264 
2265 	/* Free the GPIO only in case of no use */
2266 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2267 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2268 			if (pin->request_count <= 1) {
2269 				pin->request_count = 0;
2270 				gpiod_put(pin->gpiod);
2271 				list_del(&pin->list);
2272 				kfree(pin);
2273 				rdev->ena_pin = NULL;
2274 				return;
2275 			} else {
2276 				pin->request_count--;
2277 			}
2278 		}
2279 	}
2280 }
2281 
2282 /**
2283  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2284  * @rdev: regulator_dev structure
2285  * @enable: enable GPIO at initial use?
2286  *
2287  * GPIO is enabled in case of initial use. (enable_count is 0)
2288  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2289  */
2290 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2291 {
2292 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2293 
2294 	if (!pin)
2295 		return -EINVAL;
2296 
2297 	if (enable) {
2298 		/* Enable GPIO at initial use */
2299 		if (pin->enable_count == 0)
2300 			gpiod_set_value_cansleep(pin->gpiod, 1);
2301 
2302 		pin->enable_count++;
2303 	} else {
2304 		if (pin->enable_count > 1) {
2305 			pin->enable_count--;
2306 			return 0;
2307 		}
2308 
2309 		/* Disable GPIO if not used */
2310 		if (pin->enable_count <= 1) {
2311 			gpiod_set_value_cansleep(pin->gpiod, 0);
2312 			pin->enable_count = 0;
2313 		}
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 /**
2320  * _regulator_enable_delay - a delay helper function
2321  * @delay: time to delay in microseconds
2322  *
2323  * Delay for the requested amount of time as per the guidelines in:
2324  *
2325  *     Documentation/timers/timers-howto.rst
2326  *
2327  * The assumption here is that regulators will never be enabled in
2328  * atomic context and therefore sleeping functions can be used.
2329  */
2330 static void _regulator_enable_delay(unsigned int delay)
2331 {
2332 	unsigned int ms = delay / 1000;
2333 	unsigned int us = delay % 1000;
2334 
2335 	if (ms > 0) {
2336 		/*
2337 		 * For small enough values, handle super-millisecond
2338 		 * delays in the usleep_range() call below.
2339 		 */
2340 		if (ms < 20)
2341 			us += ms * 1000;
2342 		else
2343 			msleep(ms);
2344 	}
2345 
2346 	/*
2347 	 * Give the scheduler some room to coalesce with any other
2348 	 * wakeup sources. For delays shorter than 10 us, don't even
2349 	 * bother setting up high-resolution timers and just busy-
2350 	 * loop.
2351 	 */
2352 	if (us >= 10)
2353 		usleep_range(us, us + 100);
2354 	else
2355 		udelay(us);
2356 }
2357 
2358 /**
2359  * _regulator_check_status_enabled
2360  *
2361  * A helper function to check if the regulator status can be interpreted
2362  * as 'regulator is enabled'.
2363  * @rdev: the regulator device to check
2364  *
2365  * Return:
2366  * * 1			- if status shows regulator is in enabled state
2367  * * 0			- if not enabled state
2368  * * Error Value	- as received from ops->get_status()
2369  */
2370 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2371 {
2372 	int ret = rdev->desc->ops->get_status(rdev);
2373 
2374 	if (ret < 0) {
2375 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2376 		return ret;
2377 	}
2378 
2379 	switch (ret) {
2380 	case REGULATOR_STATUS_OFF:
2381 	case REGULATOR_STATUS_ERROR:
2382 	case REGULATOR_STATUS_UNDEFINED:
2383 		return 0;
2384 	default:
2385 		return 1;
2386 	}
2387 }
2388 
2389 static int _regulator_do_enable(struct regulator_dev *rdev)
2390 {
2391 	int ret, delay;
2392 
2393 	/* Query before enabling in case configuration dependent.  */
2394 	ret = _regulator_get_enable_time(rdev);
2395 	if (ret >= 0) {
2396 		delay = ret;
2397 	} else {
2398 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2399 		delay = 0;
2400 	}
2401 
2402 	trace_regulator_enable(rdev_get_name(rdev));
2403 
2404 	if (rdev->desc->off_on_delay) {
2405 		/* if needed, keep a distance of off_on_delay from last time
2406 		 * this regulator was disabled.
2407 		 */
2408 		unsigned long start_jiffy = jiffies;
2409 		unsigned long intended, max_delay, remaining;
2410 
2411 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2412 		intended = rdev->last_off_jiffy + max_delay;
2413 
2414 		if (time_before(start_jiffy, intended)) {
2415 			/* calc remaining jiffies to deal with one-time
2416 			 * timer wrapping.
2417 			 * in case of multiple timer wrapping, either it can be
2418 			 * detected by out-of-range remaining, or it cannot be
2419 			 * detected and we get a penalty of
2420 			 * _regulator_enable_delay().
2421 			 */
2422 			remaining = intended - start_jiffy;
2423 			if (remaining <= max_delay)
2424 				_regulator_enable_delay(
2425 						jiffies_to_usecs(remaining));
2426 		}
2427 	}
2428 
2429 	if (rdev->ena_pin) {
2430 		if (!rdev->ena_gpio_state) {
2431 			ret = regulator_ena_gpio_ctrl(rdev, true);
2432 			if (ret < 0)
2433 				return ret;
2434 			rdev->ena_gpio_state = 1;
2435 		}
2436 	} else if (rdev->desc->ops->enable) {
2437 		ret = rdev->desc->ops->enable(rdev);
2438 		if (ret < 0)
2439 			return ret;
2440 	} else {
2441 		return -EINVAL;
2442 	}
2443 
2444 	/* Allow the regulator to ramp; it would be useful to extend
2445 	 * this for bulk operations so that the regulators can ramp
2446 	 * together.  */
2447 	trace_regulator_enable_delay(rdev_get_name(rdev));
2448 
2449 	/* If poll_enabled_time is set, poll upto the delay calculated
2450 	 * above, delaying poll_enabled_time uS to check if the regulator
2451 	 * actually got enabled.
2452 	 * If the regulator isn't enabled after enable_delay has
2453 	 * expired, return -ETIMEDOUT.
2454 	 */
2455 	if (rdev->desc->poll_enabled_time) {
2456 		unsigned int time_remaining = delay;
2457 
2458 		while (time_remaining > 0) {
2459 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2460 
2461 			if (rdev->desc->ops->get_status) {
2462 				ret = _regulator_check_status_enabled(rdev);
2463 				if (ret < 0)
2464 					return ret;
2465 				else if (ret)
2466 					break;
2467 			} else if (rdev->desc->ops->is_enabled(rdev))
2468 				break;
2469 
2470 			time_remaining -= rdev->desc->poll_enabled_time;
2471 		}
2472 
2473 		if (time_remaining <= 0) {
2474 			rdev_err(rdev, "Enabled check timed out\n");
2475 			return -ETIMEDOUT;
2476 		}
2477 	} else {
2478 		_regulator_enable_delay(delay);
2479 	}
2480 
2481 	trace_regulator_enable_complete(rdev_get_name(rdev));
2482 
2483 	return 0;
2484 }
2485 
2486 /**
2487  * _regulator_handle_consumer_enable - handle that a consumer enabled
2488  * @regulator: regulator source
2489  *
2490  * Some things on a regulator consumer (like the contribution towards total
2491  * load on the regulator) only have an effect when the consumer wants the
2492  * regulator enabled.  Explained in example with two consumers of the same
2493  * regulator:
2494  *   consumer A: set_load(100);       => total load = 0
2495  *   consumer A: regulator_enable();  => total load = 100
2496  *   consumer B: set_load(1000);      => total load = 100
2497  *   consumer B: regulator_enable();  => total load = 1100
2498  *   consumer A: regulator_disable(); => total_load = 1000
2499  *
2500  * This function (together with _regulator_handle_consumer_disable) is
2501  * responsible for keeping track of the refcount for a given regulator consumer
2502  * and applying / unapplying these things.
2503  *
2504  * Returns 0 upon no error; -error upon error.
2505  */
2506 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2507 {
2508 	struct regulator_dev *rdev = regulator->rdev;
2509 
2510 	lockdep_assert_held_once(&rdev->mutex.base);
2511 
2512 	regulator->enable_count++;
2513 	if (regulator->uA_load && regulator->enable_count == 1)
2514 		return drms_uA_update(rdev);
2515 
2516 	return 0;
2517 }
2518 
2519 /**
2520  * _regulator_handle_consumer_disable - handle that a consumer disabled
2521  * @regulator: regulator source
2522  *
2523  * The opposite of _regulator_handle_consumer_enable().
2524  *
2525  * Returns 0 upon no error; -error upon error.
2526  */
2527 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2528 {
2529 	struct regulator_dev *rdev = regulator->rdev;
2530 
2531 	lockdep_assert_held_once(&rdev->mutex.base);
2532 
2533 	if (!regulator->enable_count) {
2534 		rdev_err(rdev, "Underflow of regulator enable count\n");
2535 		return -EINVAL;
2536 	}
2537 
2538 	regulator->enable_count--;
2539 	if (regulator->uA_load && regulator->enable_count == 0)
2540 		return drms_uA_update(rdev);
2541 
2542 	return 0;
2543 }
2544 
2545 /* locks held by regulator_enable() */
2546 static int _regulator_enable(struct regulator *regulator)
2547 {
2548 	struct regulator_dev *rdev = regulator->rdev;
2549 	int ret;
2550 
2551 	lockdep_assert_held_once(&rdev->mutex.base);
2552 
2553 	if (rdev->use_count == 0 && rdev->supply) {
2554 		ret = _regulator_enable(rdev->supply);
2555 		if (ret < 0)
2556 			return ret;
2557 	}
2558 
2559 	/* balance only if there are regulators coupled */
2560 	if (rdev->coupling_desc.n_coupled > 1) {
2561 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2562 		if (ret < 0)
2563 			goto err_disable_supply;
2564 	}
2565 
2566 	ret = _regulator_handle_consumer_enable(regulator);
2567 	if (ret < 0)
2568 		goto err_disable_supply;
2569 
2570 	if (rdev->use_count == 0) {
2571 		/* The regulator may on if it's not switchable or left on */
2572 		ret = _regulator_is_enabled(rdev);
2573 		if (ret == -EINVAL || ret == 0) {
2574 			if (!regulator_ops_is_valid(rdev,
2575 					REGULATOR_CHANGE_STATUS)) {
2576 				ret = -EPERM;
2577 				goto err_consumer_disable;
2578 			}
2579 
2580 			ret = _regulator_do_enable(rdev);
2581 			if (ret < 0)
2582 				goto err_consumer_disable;
2583 
2584 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2585 					     NULL);
2586 		} else if (ret < 0) {
2587 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2588 			goto err_consumer_disable;
2589 		}
2590 		/* Fallthrough on positive return values - already enabled */
2591 	}
2592 
2593 	rdev->use_count++;
2594 
2595 	return 0;
2596 
2597 err_consumer_disable:
2598 	_regulator_handle_consumer_disable(regulator);
2599 
2600 err_disable_supply:
2601 	if (rdev->use_count == 0 && rdev->supply)
2602 		_regulator_disable(rdev->supply);
2603 
2604 	return ret;
2605 }
2606 
2607 /**
2608  * regulator_enable - enable regulator output
2609  * @regulator: regulator source
2610  *
2611  * Request that the regulator be enabled with the regulator output at
2612  * the predefined voltage or current value.  Calls to regulator_enable()
2613  * must be balanced with calls to regulator_disable().
2614  *
2615  * NOTE: the output value can be set by other drivers, boot loader or may be
2616  * hardwired in the regulator.
2617  */
2618 int regulator_enable(struct regulator *regulator)
2619 {
2620 	struct regulator_dev *rdev = regulator->rdev;
2621 	struct ww_acquire_ctx ww_ctx;
2622 	int ret;
2623 
2624 	regulator_lock_dependent(rdev, &ww_ctx);
2625 	ret = _regulator_enable(regulator);
2626 	regulator_unlock_dependent(rdev, &ww_ctx);
2627 
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(regulator_enable);
2631 
2632 static int _regulator_do_disable(struct regulator_dev *rdev)
2633 {
2634 	int ret;
2635 
2636 	trace_regulator_disable(rdev_get_name(rdev));
2637 
2638 	if (rdev->ena_pin) {
2639 		if (rdev->ena_gpio_state) {
2640 			ret = regulator_ena_gpio_ctrl(rdev, false);
2641 			if (ret < 0)
2642 				return ret;
2643 			rdev->ena_gpio_state = 0;
2644 		}
2645 
2646 	} else if (rdev->desc->ops->disable) {
2647 		ret = rdev->desc->ops->disable(rdev);
2648 		if (ret != 0)
2649 			return ret;
2650 	}
2651 
2652 	/* cares about last_off_jiffy only if off_on_delay is required by
2653 	 * device.
2654 	 */
2655 	if (rdev->desc->off_on_delay)
2656 		rdev->last_off_jiffy = jiffies;
2657 
2658 	trace_regulator_disable_complete(rdev_get_name(rdev));
2659 
2660 	return 0;
2661 }
2662 
2663 /* locks held by regulator_disable() */
2664 static int _regulator_disable(struct regulator *regulator)
2665 {
2666 	struct regulator_dev *rdev = regulator->rdev;
2667 	int ret = 0;
2668 
2669 	lockdep_assert_held_once(&rdev->mutex.base);
2670 
2671 	if (WARN(rdev->use_count <= 0,
2672 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2673 		return -EIO;
2674 
2675 	/* are we the last user and permitted to disable ? */
2676 	if (rdev->use_count == 1 &&
2677 	    (rdev->constraints && !rdev->constraints->always_on)) {
2678 
2679 		/* we are last user */
2680 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2681 			ret = _notifier_call_chain(rdev,
2682 						   REGULATOR_EVENT_PRE_DISABLE,
2683 						   NULL);
2684 			if (ret & NOTIFY_STOP_MASK)
2685 				return -EINVAL;
2686 
2687 			ret = _regulator_do_disable(rdev);
2688 			if (ret < 0) {
2689 				rdev_err(rdev, "failed to disable\n");
2690 				_notifier_call_chain(rdev,
2691 						REGULATOR_EVENT_ABORT_DISABLE,
2692 						NULL);
2693 				return ret;
2694 			}
2695 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2696 					NULL);
2697 		}
2698 
2699 		rdev->use_count = 0;
2700 	} else if (rdev->use_count > 1) {
2701 		rdev->use_count--;
2702 	}
2703 
2704 	if (ret == 0)
2705 		ret = _regulator_handle_consumer_disable(regulator);
2706 
2707 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2708 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2709 
2710 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2711 		ret = _regulator_disable(rdev->supply);
2712 
2713 	return ret;
2714 }
2715 
2716 /**
2717  * regulator_disable - disable regulator output
2718  * @regulator: regulator source
2719  *
2720  * Disable the regulator output voltage or current.  Calls to
2721  * regulator_enable() must be balanced with calls to
2722  * regulator_disable().
2723  *
2724  * NOTE: this will only disable the regulator output if no other consumer
2725  * devices have it enabled, the regulator device supports disabling and
2726  * machine constraints permit this operation.
2727  */
2728 int regulator_disable(struct regulator *regulator)
2729 {
2730 	struct regulator_dev *rdev = regulator->rdev;
2731 	struct ww_acquire_ctx ww_ctx;
2732 	int ret;
2733 
2734 	regulator_lock_dependent(rdev, &ww_ctx);
2735 	ret = _regulator_disable(regulator);
2736 	regulator_unlock_dependent(rdev, &ww_ctx);
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(regulator_disable);
2741 
2742 /* locks held by regulator_force_disable() */
2743 static int _regulator_force_disable(struct regulator_dev *rdev)
2744 {
2745 	int ret = 0;
2746 
2747 	lockdep_assert_held_once(&rdev->mutex.base);
2748 
2749 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2750 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2751 	if (ret & NOTIFY_STOP_MASK)
2752 		return -EINVAL;
2753 
2754 	ret = _regulator_do_disable(rdev);
2755 	if (ret < 0) {
2756 		rdev_err(rdev, "failed to force disable\n");
2757 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2758 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2759 		return ret;
2760 	}
2761 
2762 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2763 			REGULATOR_EVENT_DISABLE, NULL);
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * regulator_force_disable - force disable regulator output
2770  * @regulator: regulator source
2771  *
2772  * Forcibly disable the regulator output voltage or current.
2773  * NOTE: this *will* disable the regulator output even if other consumer
2774  * devices have it enabled. This should be used for situations when device
2775  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2776  */
2777 int regulator_force_disable(struct regulator *regulator)
2778 {
2779 	struct regulator_dev *rdev = regulator->rdev;
2780 	struct ww_acquire_ctx ww_ctx;
2781 	int ret;
2782 
2783 	regulator_lock_dependent(rdev, &ww_ctx);
2784 
2785 	ret = _regulator_force_disable(regulator->rdev);
2786 
2787 	if (rdev->coupling_desc.n_coupled > 1)
2788 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789 
2790 	if (regulator->uA_load) {
2791 		regulator->uA_load = 0;
2792 		ret = drms_uA_update(rdev);
2793 	}
2794 
2795 	if (rdev->use_count != 0 && rdev->supply)
2796 		_regulator_disable(rdev->supply);
2797 
2798 	regulator_unlock_dependent(rdev, &ww_ctx);
2799 
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_force_disable);
2803 
2804 static void regulator_disable_work(struct work_struct *work)
2805 {
2806 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2807 						  disable_work.work);
2808 	struct ww_acquire_ctx ww_ctx;
2809 	int count, i, ret;
2810 	struct regulator *regulator;
2811 	int total_count = 0;
2812 
2813 	regulator_lock_dependent(rdev, &ww_ctx);
2814 
2815 	/*
2816 	 * Workqueue functions queue the new work instance while the previous
2817 	 * work instance is being processed. Cancel the queued work instance
2818 	 * as the work instance under processing does the job of the queued
2819 	 * work instance.
2820 	 */
2821 	cancel_delayed_work(&rdev->disable_work);
2822 
2823 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2824 		count = regulator->deferred_disables;
2825 
2826 		if (!count)
2827 			continue;
2828 
2829 		total_count += count;
2830 		regulator->deferred_disables = 0;
2831 
2832 		for (i = 0; i < count; i++) {
2833 			ret = _regulator_disable(regulator);
2834 			if (ret != 0)
2835 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2836 		}
2837 	}
2838 	WARN_ON(!total_count);
2839 
2840 	if (rdev->coupling_desc.n_coupled > 1)
2841 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2842 
2843 	regulator_unlock_dependent(rdev, &ww_ctx);
2844 }
2845 
2846 /**
2847  * regulator_disable_deferred - disable regulator output with delay
2848  * @regulator: regulator source
2849  * @ms: milliseconds until the regulator is disabled
2850  *
2851  * Execute regulator_disable() on the regulator after a delay.  This
2852  * is intended for use with devices that require some time to quiesce.
2853  *
2854  * NOTE: this will only disable the regulator output if no other consumer
2855  * devices have it enabled, the regulator device supports disabling and
2856  * machine constraints permit this operation.
2857  */
2858 int regulator_disable_deferred(struct regulator *regulator, int ms)
2859 {
2860 	struct regulator_dev *rdev = regulator->rdev;
2861 
2862 	if (!ms)
2863 		return regulator_disable(regulator);
2864 
2865 	regulator_lock(rdev);
2866 	regulator->deferred_disables++;
2867 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2868 			 msecs_to_jiffies(ms));
2869 	regulator_unlock(rdev);
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2874 
2875 static int _regulator_is_enabled(struct regulator_dev *rdev)
2876 {
2877 	/* A GPIO control always takes precedence */
2878 	if (rdev->ena_pin)
2879 		return rdev->ena_gpio_state;
2880 
2881 	/* If we don't know then assume that the regulator is always on */
2882 	if (!rdev->desc->ops->is_enabled)
2883 		return 1;
2884 
2885 	return rdev->desc->ops->is_enabled(rdev);
2886 }
2887 
2888 static int _regulator_list_voltage(struct regulator_dev *rdev,
2889 				   unsigned selector, int lock)
2890 {
2891 	const struct regulator_ops *ops = rdev->desc->ops;
2892 	int ret;
2893 
2894 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2895 		return rdev->desc->fixed_uV;
2896 
2897 	if (ops->list_voltage) {
2898 		if (selector >= rdev->desc->n_voltages)
2899 			return -EINVAL;
2900 		if (lock)
2901 			regulator_lock(rdev);
2902 		ret = ops->list_voltage(rdev, selector);
2903 		if (lock)
2904 			regulator_unlock(rdev);
2905 	} else if (rdev->is_switch && rdev->supply) {
2906 		ret = _regulator_list_voltage(rdev->supply->rdev,
2907 					      selector, lock);
2908 	} else {
2909 		return -EINVAL;
2910 	}
2911 
2912 	if (ret > 0) {
2913 		if (ret < rdev->constraints->min_uV)
2914 			ret = 0;
2915 		else if (ret > rdev->constraints->max_uV)
2916 			ret = 0;
2917 	}
2918 
2919 	return ret;
2920 }
2921 
2922 /**
2923  * regulator_is_enabled - is the regulator output enabled
2924  * @regulator: regulator source
2925  *
2926  * Returns positive if the regulator driver backing the source/client
2927  * has requested that the device be enabled, zero if it hasn't, else a
2928  * negative errno code.
2929  *
2930  * Note that the device backing this regulator handle can have multiple
2931  * users, so it might be enabled even if regulator_enable() was never
2932  * called for this particular source.
2933  */
2934 int regulator_is_enabled(struct regulator *regulator)
2935 {
2936 	int ret;
2937 
2938 	if (regulator->always_on)
2939 		return 1;
2940 
2941 	regulator_lock(regulator->rdev);
2942 	ret = _regulator_is_enabled(regulator->rdev);
2943 	regulator_unlock(regulator->rdev);
2944 
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2948 
2949 /**
2950  * regulator_count_voltages - count regulator_list_voltage() selectors
2951  * @regulator: regulator source
2952  *
2953  * Returns number of selectors, or negative errno.  Selectors are
2954  * numbered starting at zero, and typically correspond to bitfields
2955  * in hardware registers.
2956  */
2957 int regulator_count_voltages(struct regulator *regulator)
2958 {
2959 	struct regulator_dev	*rdev = regulator->rdev;
2960 
2961 	if (rdev->desc->n_voltages)
2962 		return rdev->desc->n_voltages;
2963 
2964 	if (!rdev->is_switch || !rdev->supply)
2965 		return -EINVAL;
2966 
2967 	return regulator_count_voltages(rdev->supply);
2968 }
2969 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2970 
2971 /**
2972  * regulator_list_voltage - enumerate supported voltages
2973  * @regulator: regulator source
2974  * @selector: identify voltage to list
2975  * Context: can sleep
2976  *
2977  * Returns a voltage that can be passed to @regulator_set_voltage(),
2978  * zero if this selector code can't be used on this system, or a
2979  * negative errno.
2980  */
2981 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2982 {
2983 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2986 
2987 /**
2988  * regulator_get_regmap - get the regulator's register map
2989  * @regulator: regulator source
2990  *
2991  * Returns the register map for the given regulator, or an ERR_PTR value
2992  * if the regulator doesn't use regmap.
2993  */
2994 struct regmap *regulator_get_regmap(struct regulator *regulator)
2995 {
2996 	struct regmap *map = regulator->rdev->regmap;
2997 
2998 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2999 }
3000 
3001 /**
3002  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3003  * @regulator: regulator source
3004  * @vsel_reg: voltage selector register, output parameter
3005  * @vsel_mask: mask for voltage selector bitfield, output parameter
3006  *
3007  * Returns the hardware register offset and bitmask used for setting the
3008  * regulator voltage. This might be useful when configuring voltage-scaling
3009  * hardware or firmware that can make I2C requests behind the kernel's back,
3010  * for example.
3011  *
3012  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3013  * and 0 is returned, otherwise a negative errno is returned.
3014  */
3015 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3016 					 unsigned *vsel_reg,
3017 					 unsigned *vsel_mask)
3018 {
3019 	struct regulator_dev *rdev = regulator->rdev;
3020 	const struct regulator_ops *ops = rdev->desc->ops;
3021 
3022 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3023 		return -EOPNOTSUPP;
3024 
3025 	*vsel_reg = rdev->desc->vsel_reg;
3026 	*vsel_mask = rdev->desc->vsel_mask;
3027 
3028 	 return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3031 
3032 /**
3033  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3034  * @regulator: regulator source
3035  * @selector: identify voltage to list
3036  *
3037  * Converts the selector to a hardware-specific voltage selector that can be
3038  * directly written to the regulator registers. The address of the voltage
3039  * register can be determined by calling @regulator_get_hardware_vsel_register.
3040  *
3041  * On error a negative errno is returned.
3042  */
3043 int regulator_list_hardware_vsel(struct regulator *regulator,
3044 				 unsigned selector)
3045 {
3046 	struct regulator_dev *rdev = regulator->rdev;
3047 	const struct regulator_ops *ops = rdev->desc->ops;
3048 
3049 	if (selector >= rdev->desc->n_voltages)
3050 		return -EINVAL;
3051 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3052 		return -EOPNOTSUPP;
3053 
3054 	return selector;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3057 
3058 /**
3059  * regulator_get_linear_step - return the voltage step size between VSEL values
3060  * @regulator: regulator source
3061  *
3062  * Returns the voltage step size between VSEL values for linear
3063  * regulators, or return 0 if the regulator isn't a linear regulator.
3064  */
3065 unsigned int regulator_get_linear_step(struct regulator *regulator)
3066 {
3067 	struct regulator_dev *rdev = regulator->rdev;
3068 
3069 	return rdev->desc->uV_step;
3070 }
3071 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3072 
3073 /**
3074  * regulator_is_supported_voltage - check if a voltage range can be supported
3075  *
3076  * @regulator: Regulator to check.
3077  * @min_uV: Minimum required voltage in uV.
3078  * @max_uV: Maximum required voltage in uV.
3079  *
3080  * Returns a boolean.
3081  */
3082 int regulator_is_supported_voltage(struct regulator *regulator,
3083 				   int min_uV, int max_uV)
3084 {
3085 	struct regulator_dev *rdev = regulator->rdev;
3086 	int i, voltages, ret;
3087 
3088 	/* If we can't change voltage check the current voltage */
3089 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3090 		ret = regulator_get_voltage(regulator);
3091 		if (ret >= 0)
3092 			return min_uV <= ret && ret <= max_uV;
3093 		else
3094 			return ret;
3095 	}
3096 
3097 	/* Any voltage within constrains range is fine? */
3098 	if (rdev->desc->continuous_voltage_range)
3099 		return min_uV >= rdev->constraints->min_uV &&
3100 				max_uV <= rdev->constraints->max_uV;
3101 
3102 	ret = regulator_count_voltages(regulator);
3103 	if (ret < 0)
3104 		return 0;
3105 	voltages = ret;
3106 
3107 	for (i = 0; i < voltages; i++) {
3108 		ret = regulator_list_voltage(regulator, i);
3109 
3110 		if (ret >= min_uV && ret <= max_uV)
3111 			return 1;
3112 	}
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3117 
3118 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3119 				 int max_uV)
3120 {
3121 	const struct regulator_desc *desc = rdev->desc;
3122 
3123 	if (desc->ops->map_voltage)
3124 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3125 
3126 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3127 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3128 
3129 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3130 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3131 
3132 	if (desc->ops->list_voltage ==
3133 		regulator_list_voltage_pickable_linear_range)
3134 		return regulator_map_voltage_pickable_linear_range(rdev,
3135 							min_uV, max_uV);
3136 
3137 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3138 }
3139 
3140 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3141 				       int min_uV, int max_uV,
3142 				       unsigned *selector)
3143 {
3144 	struct pre_voltage_change_data data;
3145 	int ret;
3146 
3147 	data.old_uV = regulator_get_voltage_rdev(rdev);
3148 	data.min_uV = min_uV;
3149 	data.max_uV = max_uV;
3150 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3151 				   &data);
3152 	if (ret & NOTIFY_STOP_MASK)
3153 		return -EINVAL;
3154 
3155 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3156 	if (ret >= 0)
3157 		return ret;
3158 
3159 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3160 			     (void *)data.old_uV);
3161 
3162 	return ret;
3163 }
3164 
3165 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3166 					   int uV, unsigned selector)
3167 {
3168 	struct pre_voltage_change_data data;
3169 	int ret;
3170 
3171 	data.old_uV = regulator_get_voltage_rdev(rdev);
3172 	data.min_uV = uV;
3173 	data.max_uV = uV;
3174 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3175 				   &data);
3176 	if (ret & NOTIFY_STOP_MASK)
3177 		return -EINVAL;
3178 
3179 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3180 	if (ret >= 0)
3181 		return ret;
3182 
3183 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3184 			     (void *)data.old_uV);
3185 
3186 	return ret;
3187 }
3188 
3189 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3190 					   int uV, int new_selector)
3191 {
3192 	const struct regulator_ops *ops = rdev->desc->ops;
3193 	int diff, old_sel, curr_sel, ret;
3194 
3195 	/* Stepping is only needed if the regulator is enabled. */
3196 	if (!_regulator_is_enabled(rdev))
3197 		goto final_set;
3198 
3199 	if (!ops->get_voltage_sel)
3200 		return -EINVAL;
3201 
3202 	old_sel = ops->get_voltage_sel(rdev);
3203 	if (old_sel < 0)
3204 		return old_sel;
3205 
3206 	diff = new_selector - old_sel;
3207 	if (diff == 0)
3208 		return 0; /* No change needed. */
3209 
3210 	if (diff > 0) {
3211 		/* Stepping up. */
3212 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3213 		     curr_sel < new_selector;
3214 		     curr_sel += rdev->desc->vsel_step) {
3215 			/*
3216 			 * Call the callback directly instead of using
3217 			 * _regulator_call_set_voltage_sel() as we don't
3218 			 * want to notify anyone yet. Same in the branch
3219 			 * below.
3220 			 */
3221 			ret = ops->set_voltage_sel(rdev, curr_sel);
3222 			if (ret)
3223 				goto try_revert;
3224 		}
3225 	} else {
3226 		/* Stepping down. */
3227 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3228 		     curr_sel > new_selector;
3229 		     curr_sel -= rdev->desc->vsel_step) {
3230 			ret = ops->set_voltage_sel(rdev, curr_sel);
3231 			if (ret)
3232 				goto try_revert;
3233 		}
3234 	}
3235 
3236 final_set:
3237 	/* The final selector will trigger the notifiers. */
3238 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3239 
3240 try_revert:
3241 	/*
3242 	 * At least try to return to the previous voltage if setting a new
3243 	 * one failed.
3244 	 */
3245 	(void)ops->set_voltage_sel(rdev, old_sel);
3246 	return ret;
3247 }
3248 
3249 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3250 				       int old_uV, int new_uV)
3251 {
3252 	unsigned int ramp_delay = 0;
3253 
3254 	if (rdev->constraints->ramp_delay)
3255 		ramp_delay = rdev->constraints->ramp_delay;
3256 	else if (rdev->desc->ramp_delay)
3257 		ramp_delay = rdev->desc->ramp_delay;
3258 	else if (rdev->constraints->settling_time)
3259 		return rdev->constraints->settling_time;
3260 	else if (rdev->constraints->settling_time_up &&
3261 		 (new_uV > old_uV))
3262 		return rdev->constraints->settling_time_up;
3263 	else if (rdev->constraints->settling_time_down &&
3264 		 (new_uV < old_uV))
3265 		return rdev->constraints->settling_time_down;
3266 
3267 	if (ramp_delay == 0) {
3268 		rdev_dbg(rdev, "ramp_delay not set\n");
3269 		return 0;
3270 	}
3271 
3272 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3273 }
3274 
3275 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3276 				     int min_uV, int max_uV)
3277 {
3278 	int ret;
3279 	int delay = 0;
3280 	int best_val = 0;
3281 	unsigned int selector;
3282 	int old_selector = -1;
3283 	const struct regulator_ops *ops = rdev->desc->ops;
3284 	int old_uV = regulator_get_voltage_rdev(rdev);
3285 
3286 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3287 
3288 	min_uV += rdev->constraints->uV_offset;
3289 	max_uV += rdev->constraints->uV_offset;
3290 
3291 	/*
3292 	 * If we can't obtain the old selector there is not enough
3293 	 * info to call set_voltage_time_sel().
3294 	 */
3295 	if (_regulator_is_enabled(rdev) &&
3296 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3297 		old_selector = ops->get_voltage_sel(rdev);
3298 		if (old_selector < 0)
3299 			return old_selector;
3300 	}
3301 
3302 	if (ops->set_voltage) {
3303 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3304 						  &selector);
3305 
3306 		if (ret >= 0) {
3307 			if (ops->list_voltage)
3308 				best_val = ops->list_voltage(rdev,
3309 							     selector);
3310 			else
3311 				best_val = regulator_get_voltage_rdev(rdev);
3312 		}
3313 
3314 	} else if (ops->set_voltage_sel) {
3315 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3316 		if (ret >= 0) {
3317 			best_val = ops->list_voltage(rdev, ret);
3318 			if (min_uV <= best_val && max_uV >= best_val) {
3319 				selector = ret;
3320 				if (old_selector == selector)
3321 					ret = 0;
3322 				else if (rdev->desc->vsel_step)
3323 					ret = _regulator_set_voltage_sel_step(
3324 						rdev, best_val, selector);
3325 				else
3326 					ret = _regulator_call_set_voltage_sel(
3327 						rdev, best_val, selector);
3328 			} else {
3329 				ret = -EINVAL;
3330 			}
3331 		}
3332 	} else {
3333 		ret = -EINVAL;
3334 	}
3335 
3336 	if (ret)
3337 		goto out;
3338 
3339 	if (ops->set_voltage_time_sel) {
3340 		/*
3341 		 * Call set_voltage_time_sel if successfully obtained
3342 		 * old_selector
3343 		 */
3344 		if (old_selector >= 0 && old_selector != selector)
3345 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3346 							  selector);
3347 	} else {
3348 		if (old_uV != best_val) {
3349 			if (ops->set_voltage_time)
3350 				delay = ops->set_voltage_time(rdev, old_uV,
3351 							      best_val);
3352 			else
3353 				delay = _regulator_set_voltage_time(rdev,
3354 								    old_uV,
3355 								    best_val);
3356 		}
3357 	}
3358 
3359 	if (delay < 0) {
3360 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3361 		delay = 0;
3362 	}
3363 
3364 	/* Insert any necessary delays */
3365 	if (delay >= 1000) {
3366 		mdelay(delay / 1000);
3367 		udelay(delay % 1000);
3368 	} else if (delay) {
3369 		udelay(delay);
3370 	}
3371 
3372 	if (best_val >= 0) {
3373 		unsigned long data = best_val;
3374 
3375 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3376 				     (void *)data);
3377 	}
3378 
3379 out:
3380 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3381 
3382 	return ret;
3383 }
3384 
3385 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3386 				  int min_uV, int max_uV, suspend_state_t state)
3387 {
3388 	struct regulator_state *rstate;
3389 	int uV, sel;
3390 
3391 	rstate = regulator_get_suspend_state(rdev, state);
3392 	if (rstate == NULL)
3393 		return -EINVAL;
3394 
3395 	if (min_uV < rstate->min_uV)
3396 		min_uV = rstate->min_uV;
3397 	if (max_uV > rstate->max_uV)
3398 		max_uV = rstate->max_uV;
3399 
3400 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3401 	if (sel < 0)
3402 		return sel;
3403 
3404 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3405 	if (uV >= min_uV && uV <= max_uV)
3406 		rstate->uV = uV;
3407 
3408 	return 0;
3409 }
3410 
3411 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3412 					  int min_uV, int max_uV,
3413 					  suspend_state_t state)
3414 {
3415 	struct regulator_dev *rdev = regulator->rdev;
3416 	struct regulator_voltage *voltage = &regulator->voltage[state];
3417 	int ret = 0;
3418 	int old_min_uV, old_max_uV;
3419 	int current_uV;
3420 
3421 	/* If we're setting the same range as last time the change
3422 	 * should be a noop (some cpufreq implementations use the same
3423 	 * voltage for multiple frequencies, for example).
3424 	 */
3425 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3426 		goto out;
3427 
3428 	/* If we're trying to set a range that overlaps the current voltage,
3429 	 * return successfully even though the regulator does not support
3430 	 * changing the voltage.
3431 	 */
3432 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3433 		current_uV = regulator_get_voltage_rdev(rdev);
3434 		if (min_uV <= current_uV && current_uV <= max_uV) {
3435 			voltage->min_uV = min_uV;
3436 			voltage->max_uV = max_uV;
3437 			goto out;
3438 		}
3439 	}
3440 
3441 	/* sanity check */
3442 	if (!rdev->desc->ops->set_voltage &&
3443 	    !rdev->desc->ops->set_voltage_sel) {
3444 		ret = -EINVAL;
3445 		goto out;
3446 	}
3447 
3448 	/* constraints check */
3449 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3450 	if (ret < 0)
3451 		goto out;
3452 
3453 	/* restore original values in case of error */
3454 	old_min_uV = voltage->min_uV;
3455 	old_max_uV = voltage->max_uV;
3456 	voltage->min_uV = min_uV;
3457 	voltage->max_uV = max_uV;
3458 
3459 	/* for not coupled regulators this will just set the voltage */
3460 	ret = regulator_balance_voltage(rdev, state);
3461 	if (ret < 0) {
3462 		voltage->min_uV = old_min_uV;
3463 		voltage->max_uV = old_max_uV;
3464 	}
3465 
3466 out:
3467 	return ret;
3468 }
3469 
3470 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3471 			       int max_uV, suspend_state_t state)
3472 {
3473 	int best_supply_uV = 0;
3474 	int supply_change_uV = 0;
3475 	int ret;
3476 
3477 	if (rdev->supply &&
3478 	    regulator_ops_is_valid(rdev->supply->rdev,
3479 				   REGULATOR_CHANGE_VOLTAGE) &&
3480 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3481 					   rdev->desc->ops->get_voltage_sel))) {
3482 		int current_supply_uV;
3483 		int selector;
3484 
3485 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3486 		if (selector < 0) {
3487 			ret = selector;
3488 			goto out;
3489 		}
3490 
3491 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3492 		if (best_supply_uV < 0) {
3493 			ret = best_supply_uV;
3494 			goto out;
3495 		}
3496 
3497 		best_supply_uV += rdev->desc->min_dropout_uV;
3498 
3499 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3500 		if (current_supply_uV < 0) {
3501 			ret = current_supply_uV;
3502 			goto out;
3503 		}
3504 
3505 		supply_change_uV = best_supply_uV - current_supply_uV;
3506 	}
3507 
3508 	if (supply_change_uV > 0) {
3509 		ret = regulator_set_voltage_unlocked(rdev->supply,
3510 				best_supply_uV, INT_MAX, state);
3511 		if (ret) {
3512 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3513 					ret);
3514 			goto out;
3515 		}
3516 	}
3517 
3518 	if (state == PM_SUSPEND_ON)
3519 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3520 	else
3521 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3522 							max_uV, state);
3523 	if (ret < 0)
3524 		goto out;
3525 
3526 	if (supply_change_uV < 0) {
3527 		ret = regulator_set_voltage_unlocked(rdev->supply,
3528 				best_supply_uV, INT_MAX, state);
3529 		if (ret)
3530 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3531 					ret);
3532 		/* No need to fail here */
3533 		ret = 0;
3534 	}
3535 
3536 out:
3537 	return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3540 
3541 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3542 					int *current_uV, int *min_uV)
3543 {
3544 	struct regulation_constraints *constraints = rdev->constraints;
3545 
3546 	/* Limit voltage change only if necessary */
3547 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3548 		return 1;
3549 
3550 	if (*current_uV < 0) {
3551 		*current_uV = regulator_get_voltage_rdev(rdev);
3552 
3553 		if (*current_uV < 0)
3554 			return *current_uV;
3555 	}
3556 
3557 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3558 		return 1;
3559 
3560 	/* Clamp target voltage within the given step */
3561 	if (*current_uV < *min_uV)
3562 		*min_uV = min(*current_uV + constraints->max_uV_step,
3563 			      *min_uV);
3564 	else
3565 		*min_uV = max(*current_uV - constraints->max_uV_step,
3566 			      *min_uV);
3567 
3568 	return 0;
3569 }
3570 
3571 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3572 					 int *current_uV,
3573 					 int *min_uV, int *max_uV,
3574 					 suspend_state_t state,
3575 					 int n_coupled)
3576 {
3577 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3578 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3579 	struct regulation_constraints *constraints = rdev->constraints;
3580 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3581 	int max_current_uV = 0, min_current_uV = INT_MAX;
3582 	int highest_min_uV = 0, target_uV, possible_uV;
3583 	int i, ret, max_spread;
3584 	bool done;
3585 
3586 	*current_uV = -1;
3587 
3588 	/*
3589 	 * If there are no coupled regulators, simply set the voltage
3590 	 * demanded by consumers.
3591 	 */
3592 	if (n_coupled == 1) {
3593 		/*
3594 		 * If consumers don't provide any demands, set voltage
3595 		 * to min_uV
3596 		 */
3597 		desired_min_uV = constraints->min_uV;
3598 		desired_max_uV = constraints->max_uV;
3599 
3600 		ret = regulator_check_consumers(rdev,
3601 						&desired_min_uV,
3602 						&desired_max_uV, state);
3603 		if (ret < 0)
3604 			return ret;
3605 
3606 		possible_uV = desired_min_uV;
3607 		done = true;
3608 
3609 		goto finish;
3610 	}
3611 
3612 	/* Find highest min desired voltage */
3613 	for (i = 0; i < n_coupled; i++) {
3614 		int tmp_min = 0;
3615 		int tmp_max = INT_MAX;
3616 
3617 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3618 
3619 		ret = regulator_check_consumers(c_rdevs[i],
3620 						&tmp_min,
3621 						&tmp_max, state);
3622 		if (ret < 0)
3623 			return ret;
3624 
3625 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3626 		if (ret < 0)
3627 			return ret;
3628 
3629 		highest_min_uV = max(highest_min_uV, tmp_min);
3630 
3631 		if (i == 0) {
3632 			desired_min_uV = tmp_min;
3633 			desired_max_uV = tmp_max;
3634 		}
3635 	}
3636 
3637 	max_spread = constraints->max_spread[0];
3638 
3639 	/*
3640 	 * Let target_uV be equal to the desired one if possible.
3641 	 * If not, set it to minimum voltage, allowed by other coupled
3642 	 * regulators.
3643 	 */
3644 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3645 
3646 	/*
3647 	 * Find min and max voltages, which currently aren't violating
3648 	 * max_spread.
3649 	 */
3650 	for (i = 1; i < n_coupled; i++) {
3651 		int tmp_act;
3652 
3653 		if (!_regulator_is_enabled(c_rdevs[i]))
3654 			continue;
3655 
3656 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3657 		if (tmp_act < 0)
3658 			return tmp_act;
3659 
3660 		min_current_uV = min(tmp_act, min_current_uV);
3661 		max_current_uV = max(tmp_act, max_current_uV);
3662 	}
3663 
3664 	/* There aren't any other regulators enabled */
3665 	if (max_current_uV == 0) {
3666 		possible_uV = target_uV;
3667 	} else {
3668 		/*
3669 		 * Correct target voltage, so as it currently isn't
3670 		 * violating max_spread
3671 		 */
3672 		possible_uV = max(target_uV, max_current_uV - max_spread);
3673 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3674 	}
3675 
3676 	if (possible_uV > desired_max_uV)
3677 		return -EINVAL;
3678 
3679 	done = (possible_uV == target_uV);
3680 	desired_min_uV = possible_uV;
3681 
3682 finish:
3683 	/* Apply max_uV_step constraint if necessary */
3684 	if (state == PM_SUSPEND_ON) {
3685 		ret = regulator_limit_voltage_step(rdev, current_uV,
3686 						   &desired_min_uV);
3687 		if (ret < 0)
3688 			return ret;
3689 
3690 		if (ret == 0)
3691 			done = false;
3692 	}
3693 
3694 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3695 	if (n_coupled > 1 && *current_uV == -1) {
3696 
3697 		if (_regulator_is_enabled(rdev)) {
3698 			ret = regulator_get_voltage_rdev(rdev);
3699 			if (ret < 0)
3700 				return ret;
3701 
3702 			*current_uV = ret;
3703 		} else {
3704 			*current_uV = desired_min_uV;
3705 		}
3706 	}
3707 
3708 	*min_uV = desired_min_uV;
3709 	*max_uV = desired_max_uV;
3710 
3711 	return done;
3712 }
3713 
3714 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3715 				 suspend_state_t state, bool skip_coupled)
3716 {
3717 	struct regulator_dev **c_rdevs;
3718 	struct regulator_dev *best_rdev;
3719 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3720 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3721 	unsigned int delta, best_delta;
3722 	unsigned long c_rdev_done = 0;
3723 	bool best_c_rdev_done;
3724 
3725 	c_rdevs = c_desc->coupled_rdevs;
3726 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3727 
3728 	/*
3729 	 * Find the best possible voltage change on each loop. Leave the loop
3730 	 * if there isn't any possible change.
3731 	 */
3732 	do {
3733 		best_c_rdev_done = false;
3734 		best_delta = 0;
3735 		best_min_uV = 0;
3736 		best_max_uV = 0;
3737 		best_c_rdev = 0;
3738 		best_rdev = NULL;
3739 
3740 		/*
3741 		 * Find highest difference between optimal voltage
3742 		 * and current voltage.
3743 		 */
3744 		for (i = 0; i < n_coupled; i++) {
3745 			/*
3746 			 * optimal_uV is the best voltage that can be set for
3747 			 * i-th regulator at the moment without violating
3748 			 * max_spread constraint in order to balance
3749 			 * the coupled voltages.
3750 			 */
3751 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3752 
3753 			if (test_bit(i, &c_rdev_done))
3754 				continue;
3755 
3756 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3757 							    &current_uV,
3758 							    &optimal_uV,
3759 							    &optimal_max_uV,
3760 							    state, n_coupled);
3761 			if (ret < 0)
3762 				goto out;
3763 
3764 			delta = abs(optimal_uV - current_uV);
3765 
3766 			if (delta && best_delta <= delta) {
3767 				best_c_rdev_done = ret;
3768 				best_delta = delta;
3769 				best_rdev = c_rdevs[i];
3770 				best_min_uV = optimal_uV;
3771 				best_max_uV = optimal_max_uV;
3772 				best_c_rdev = i;
3773 			}
3774 		}
3775 
3776 		/* Nothing to change, return successfully */
3777 		if (!best_rdev) {
3778 			ret = 0;
3779 			goto out;
3780 		}
3781 
3782 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3783 						 best_max_uV, state);
3784 
3785 		if (ret < 0)
3786 			goto out;
3787 
3788 		if (best_c_rdev_done)
3789 			set_bit(best_c_rdev, &c_rdev_done);
3790 
3791 	} while (n_coupled > 1);
3792 
3793 out:
3794 	return ret;
3795 }
3796 
3797 static int regulator_balance_voltage(struct regulator_dev *rdev,
3798 				     suspend_state_t state)
3799 {
3800 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3801 	struct regulator_coupler *coupler = c_desc->coupler;
3802 	bool skip_coupled = false;
3803 
3804 	/*
3805 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3806 	 * other coupled regulators.
3807 	 */
3808 	if (state != PM_SUSPEND_ON)
3809 		skip_coupled = true;
3810 
3811 	if (c_desc->n_resolved < c_desc->n_coupled) {
3812 		rdev_err(rdev, "Not all coupled regulators registered\n");
3813 		return -EPERM;
3814 	}
3815 
3816 	/* Invoke custom balancer for customized couplers */
3817 	if (coupler && coupler->balance_voltage)
3818 		return coupler->balance_voltage(coupler, rdev, state);
3819 
3820 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3821 }
3822 
3823 /**
3824  * regulator_set_voltage - set regulator output voltage
3825  * @regulator: regulator source
3826  * @min_uV: Minimum required voltage in uV
3827  * @max_uV: Maximum acceptable voltage in uV
3828  *
3829  * Sets a voltage regulator to the desired output voltage. This can be set
3830  * during any regulator state. IOW, regulator can be disabled or enabled.
3831  *
3832  * If the regulator is enabled then the voltage will change to the new value
3833  * immediately otherwise if the regulator is disabled the regulator will
3834  * output at the new voltage when enabled.
3835  *
3836  * NOTE: If the regulator is shared between several devices then the lowest
3837  * request voltage that meets the system constraints will be used.
3838  * Regulator system constraints must be set for this regulator before
3839  * calling this function otherwise this call will fail.
3840  */
3841 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3842 {
3843 	struct ww_acquire_ctx ww_ctx;
3844 	int ret;
3845 
3846 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3847 
3848 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3849 					     PM_SUSPEND_ON);
3850 
3851 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3852 
3853 	return ret;
3854 }
3855 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3856 
3857 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3858 					   suspend_state_t state, bool en)
3859 {
3860 	struct regulator_state *rstate;
3861 
3862 	rstate = regulator_get_suspend_state(rdev, state);
3863 	if (rstate == NULL)
3864 		return -EINVAL;
3865 
3866 	if (!rstate->changeable)
3867 		return -EPERM;
3868 
3869 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3870 
3871 	return 0;
3872 }
3873 
3874 int regulator_suspend_enable(struct regulator_dev *rdev,
3875 				    suspend_state_t state)
3876 {
3877 	return regulator_suspend_toggle(rdev, state, true);
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3880 
3881 int regulator_suspend_disable(struct regulator_dev *rdev,
3882 				     suspend_state_t state)
3883 {
3884 	struct regulator *regulator;
3885 	struct regulator_voltage *voltage;
3886 
3887 	/*
3888 	 * if any consumer wants this regulator device keeping on in
3889 	 * suspend states, don't set it as disabled.
3890 	 */
3891 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3892 		voltage = &regulator->voltage[state];
3893 		if (voltage->min_uV || voltage->max_uV)
3894 			return 0;
3895 	}
3896 
3897 	return regulator_suspend_toggle(rdev, state, false);
3898 }
3899 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3900 
3901 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3902 					  int min_uV, int max_uV,
3903 					  suspend_state_t state)
3904 {
3905 	struct regulator_dev *rdev = regulator->rdev;
3906 	struct regulator_state *rstate;
3907 
3908 	rstate = regulator_get_suspend_state(rdev, state);
3909 	if (rstate == NULL)
3910 		return -EINVAL;
3911 
3912 	if (rstate->min_uV == rstate->max_uV) {
3913 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3914 		return -EPERM;
3915 	}
3916 
3917 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3918 }
3919 
3920 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3921 				  int max_uV, suspend_state_t state)
3922 {
3923 	struct ww_acquire_ctx ww_ctx;
3924 	int ret;
3925 
3926 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3927 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3928 		return -EINVAL;
3929 
3930 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3931 
3932 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3933 					     max_uV, state);
3934 
3935 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3936 
3937 	return ret;
3938 }
3939 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3940 
3941 /**
3942  * regulator_set_voltage_time - get raise/fall time
3943  * @regulator: regulator source
3944  * @old_uV: starting voltage in microvolts
3945  * @new_uV: target voltage in microvolts
3946  *
3947  * Provided with the starting and ending voltage, this function attempts to
3948  * calculate the time in microseconds required to rise or fall to this new
3949  * voltage.
3950  */
3951 int regulator_set_voltage_time(struct regulator *regulator,
3952 			       int old_uV, int new_uV)
3953 {
3954 	struct regulator_dev *rdev = regulator->rdev;
3955 	const struct regulator_ops *ops = rdev->desc->ops;
3956 	int old_sel = -1;
3957 	int new_sel = -1;
3958 	int voltage;
3959 	int i;
3960 
3961 	if (ops->set_voltage_time)
3962 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3963 	else if (!ops->set_voltage_time_sel)
3964 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3965 
3966 	/* Currently requires operations to do this */
3967 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3968 		return -EINVAL;
3969 
3970 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3971 		/* We only look for exact voltage matches here */
3972 		voltage = regulator_list_voltage(regulator, i);
3973 		if (voltage < 0)
3974 			return -EINVAL;
3975 		if (voltage == 0)
3976 			continue;
3977 		if (voltage == old_uV)
3978 			old_sel = i;
3979 		if (voltage == new_uV)
3980 			new_sel = i;
3981 	}
3982 
3983 	if (old_sel < 0 || new_sel < 0)
3984 		return -EINVAL;
3985 
3986 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3987 }
3988 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3989 
3990 /**
3991  * regulator_set_voltage_time_sel - get raise/fall time
3992  * @rdev: regulator source device
3993  * @old_selector: selector for starting voltage
3994  * @new_selector: selector for target voltage
3995  *
3996  * Provided with the starting and target voltage selectors, this function
3997  * returns time in microseconds required to rise or fall to this new voltage
3998  *
3999  * Drivers providing ramp_delay in regulation_constraints can use this as their
4000  * set_voltage_time_sel() operation.
4001  */
4002 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4003 				   unsigned int old_selector,
4004 				   unsigned int new_selector)
4005 {
4006 	int old_volt, new_volt;
4007 
4008 	/* sanity check */
4009 	if (!rdev->desc->ops->list_voltage)
4010 		return -EINVAL;
4011 
4012 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4013 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4014 
4015 	if (rdev->desc->ops->set_voltage_time)
4016 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4017 							 new_volt);
4018 	else
4019 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4020 }
4021 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4022 
4023 /**
4024  * regulator_sync_voltage - re-apply last regulator output voltage
4025  * @regulator: regulator source
4026  *
4027  * Re-apply the last configured voltage.  This is intended to be used
4028  * where some external control source the consumer is cooperating with
4029  * has caused the configured voltage to change.
4030  */
4031 int regulator_sync_voltage(struct regulator *regulator)
4032 {
4033 	struct regulator_dev *rdev = regulator->rdev;
4034 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4035 	int ret, min_uV, max_uV;
4036 
4037 	regulator_lock(rdev);
4038 
4039 	if (!rdev->desc->ops->set_voltage &&
4040 	    !rdev->desc->ops->set_voltage_sel) {
4041 		ret = -EINVAL;
4042 		goto out;
4043 	}
4044 
4045 	/* This is only going to work if we've had a voltage configured. */
4046 	if (!voltage->min_uV && !voltage->max_uV) {
4047 		ret = -EINVAL;
4048 		goto out;
4049 	}
4050 
4051 	min_uV = voltage->min_uV;
4052 	max_uV = voltage->max_uV;
4053 
4054 	/* This should be a paranoia check... */
4055 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4056 	if (ret < 0)
4057 		goto out;
4058 
4059 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4060 	if (ret < 0)
4061 		goto out;
4062 
4063 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4064 
4065 out:
4066 	regulator_unlock(rdev);
4067 	return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4070 
4071 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4072 {
4073 	int sel, ret;
4074 	bool bypassed;
4075 
4076 	if (rdev->desc->ops->get_bypass) {
4077 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4078 		if (ret < 0)
4079 			return ret;
4080 		if (bypassed) {
4081 			/* if bypassed the regulator must have a supply */
4082 			if (!rdev->supply) {
4083 				rdev_err(rdev,
4084 					 "bypassed regulator has no supply!\n");
4085 				return -EPROBE_DEFER;
4086 			}
4087 
4088 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4089 		}
4090 	}
4091 
4092 	if (rdev->desc->ops->get_voltage_sel) {
4093 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4094 		if (sel < 0)
4095 			return sel;
4096 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4097 	} else if (rdev->desc->ops->get_voltage) {
4098 		ret = rdev->desc->ops->get_voltage(rdev);
4099 	} else if (rdev->desc->ops->list_voltage) {
4100 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4101 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4102 		ret = rdev->desc->fixed_uV;
4103 	} else if (rdev->supply) {
4104 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4105 	} else {
4106 		return -EINVAL;
4107 	}
4108 
4109 	if (ret < 0)
4110 		return ret;
4111 	return ret - rdev->constraints->uV_offset;
4112 }
4113 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4114 
4115 /**
4116  * regulator_get_voltage - get regulator output voltage
4117  * @regulator: regulator source
4118  *
4119  * This returns the current regulator voltage in uV.
4120  *
4121  * NOTE: If the regulator is disabled it will return the voltage value. This
4122  * function should not be used to determine regulator state.
4123  */
4124 int regulator_get_voltage(struct regulator *regulator)
4125 {
4126 	struct ww_acquire_ctx ww_ctx;
4127 	int ret;
4128 
4129 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4130 	ret = regulator_get_voltage_rdev(regulator->rdev);
4131 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4132 
4133 	return ret;
4134 }
4135 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4136 
4137 /**
4138  * regulator_set_current_limit - set regulator output current limit
4139  * @regulator: regulator source
4140  * @min_uA: Minimum supported current in uA
4141  * @max_uA: Maximum supported current in uA
4142  *
4143  * Sets current sink to the desired output current. This can be set during
4144  * any regulator state. IOW, regulator can be disabled or enabled.
4145  *
4146  * If the regulator is enabled then the current will change to the new value
4147  * immediately otherwise if the regulator is disabled the regulator will
4148  * output at the new current when enabled.
4149  *
4150  * NOTE: Regulator system constraints must be set for this regulator before
4151  * calling this function otherwise this call will fail.
4152  */
4153 int regulator_set_current_limit(struct regulator *regulator,
4154 			       int min_uA, int max_uA)
4155 {
4156 	struct regulator_dev *rdev = regulator->rdev;
4157 	int ret;
4158 
4159 	regulator_lock(rdev);
4160 
4161 	/* sanity check */
4162 	if (!rdev->desc->ops->set_current_limit) {
4163 		ret = -EINVAL;
4164 		goto out;
4165 	}
4166 
4167 	/* constraints check */
4168 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4169 	if (ret < 0)
4170 		goto out;
4171 
4172 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4173 out:
4174 	regulator_unlock(rdev);
4175 	return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4178 
4179 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4180 {
4181 	/* sanity check */
4182 	if (!rdev->desc->ops->get_current_limit)
4183 		return -EINVAL;
4184 
4185 	return rdev->desc->ops->get_current_limit(rdev);
4186 }
4187 
4188 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4189 {
4190 	int ret;
4191 
4192 	regulator_lock(rdev);
4193 	ret = _regulator_get_current_limit_unlocked(rdev);
4194 	regulator_unlock(rdev);
4195 
4196 	return ret;
4197 }
4198 
4199 /**
4200  * regulator_get_current_limit - get regulator output current
4201  * @regulator: regulator source
4202  *
4203  * This returns the current supplied by the specified current sink in uA.
4204  *
4205  * NOTE: If the regulator is disabled it will return the current value. This
4206  * function should not be used to determine regulator state.
4207  */
4208 int regulator_get_current_limit(struct regulator *regulator)
4209 {
4210 	return _regulator_get_current_limit(regulator->rdev);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4213 
4214 /**
4215  * regulator_set_mode - set regulator operating mode
4216  * @regulator: regulator source
4217  * @mode: operating mode - one of the REGULATOR_MODE constants
4218  *
4219  * Set regulator operating mode to increase regulator efficiency or improve
4220  * regulation performance.
4221  *
4222  * NOTE: Regulator system constraints must be set for this regulator before
4223  * calling this function otherwise this call will fail.
4224  */
4225 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4226 {
4227 	struct regulator_dev *rdev = regulator->rdev;
4228 	int ret;
4229 	int regulator_curr_mode;
4230 
4231 	regulator_lock(rdev);
4232 
4233 	/* sanity check */
4234 	if (!rdev->desc->ops->set_mode) {
4235 		ret = -EINVAL;
4236 		goto out;
4237 	}
4238 
4239 	/* return if the same mode is requested */
4240 	if (rdev->desc->ops->get_mode) {
4241 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4242 		if (regulator_curr_mode == mode) {
4243 			ret = 0;
4244 			goto out;
4245 		}
4246 	}
4247 
4248 	/* constraints check */
4249 	ret = regulator_mode_constrain(rdev, &mode);
4250 	if (ret < 0)
4251 		goto out;
4252 
4253 	ret = rdev->desc->ops->set_mode(rdev, mode);
4254 out:
4255 	regulator_unlock(rdev);
4256 	return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(regulator_set_mode);
4259 
4260 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4261 {
4262 	/* sanity check */
4263 	if (!rdev->desc->ops->get_mode)
4264 		return -EINVAL;
4265 
4266 	return rdev->desc->ops->get_mode(rdev);
4267 }
4268 
4269 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4270 {
4271 	int ret;
4272 
4273 	regulator_lock(rdev);
4274 	ret = _regulator_get_mode_unlocked(rdev);
4275 	regulator_unlock(rdev);
4276 
4277 	return ret;
4278 }
4279 
4280 /**
4281  * regulator_get_mode - get regulator operating mode
4282  * @regulator: regulator source
4283  *
4284  * Get the current regulator operating mode.
4285  */
4286 unsigned int regulator_get_mode(struct regulator *regulator)
4287 {
4288 	return _regulator_get_mode(regulator->rdev);
4289 }
4290 EXPORT_SYMBOL_GPL(regulator_get_mode);
4291 
4292 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4293 					unsigned int *flags)
4294 {
4295 	int ret;
4296 
4297 	regulator_lock(rdev);
4298 
4299 	/* sanity check */
4300 	if (!rdev->desc->ops->get_error_flags) {
4301 		ret = -EINVAL;
4302 		goto out;
4303 	}
4304 
4305 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4306 out:
4307 	regulator_unlock(rdev);
4308 	return ret;
4309 }
4310 
4311 /**
4312  * regulator_get_error_flags - get regulator error information
4313  * @regulator: regulator source
4314  * @flags: pointer to store error flags
4315  *
4316  * Get the current regulator error information.
4317  */
4318 int regulator_get_error_flags(struct regulator *regulator,
4319 				unsigned int *flags)
4320 {
4321 	return _regulator_get_error_flags(regulator->rdev, flags);
4322 }
4323 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4324 
4325 /**
4326  * regulator_set_load - set regulator load
4327  * @regulator: regulator source
4328  * @uA_load: load current
4329  *
4330  * Notifies the regulator core of a new device load. This is then used by
4331  * DRMS (if enabled by constraints) to set the most efficient regulator
4332  * operating mode for the new regulator loading.
4333  *
4334  * Consumer devices notify their supply regulator of the maximum power
4335  * they will require (can be taken from device datasheet in the power
4336  * consumption tables) when they change operational status and hence power
4337  * state. Examples of operational state changes that can affect power
4338  * consumption are :-
4339  *
4340  *    o Device is opened / closed.
4341  *    o Device I/O is about to begin or has just finished.
4342  *    o Device is idling in between work.
4343  *
4344  * This information is also exported via sysfs to userspace.
4345  *
4346  * DRMS will sum the total requested load on the regulator and change
4347  * to the most efficient operating mode if platform constraints allow.
4348  *
4349  * NOTE: when a regulator consumer requests to have a regulator
4350  * disabled then any load that consumer requested no longer counts
4351  * toward the total requested load.  If the regulator is re-enabled
4352  * then the previously requested load will start counting again.
4353  *
4354  * If a regulator is an always-on regulator then an individual consumer's
4355  * load will still be removed if that consumer is fully disabled.
4356  *
4357  * On error a negative errno is returned.
4358  */
4359 int regulator_set_load(struct regulator *regulator, int uA_load)
4360 {
4361 	struct regulator_dev *rdev = regulator->rdev;
4362 	int old_uA_load;
4363 	int ret = 0;
4364 
4365 	regulator_lock(rdev);
4366 	old_uA_load = regulator->uA_load;
4367 	regulator->uA_load = uA_load;
4368 	if (regulator->enable_count && old_uA_load != uA_load) {
4369 		ret = drms_uA_update(rdev);
4370 		if (ret < 0)
4371 			regulator->uA_load = old_uA_load;
4372 	}
4373 	regulator_unlock(rdev);
4374 
4375 	return ret;
4376 }
4377 EXPORT_SYMBOL_GPL(regulator_set_load);
4378 
4379 /**
4380  * regulator_allow_bypass - allow the regulator to go into bypass mode
4381  *
4382  * @regulator: Regulator to configure
4383  * @enable: enable or disable bypass mode
4384  *
4385  * Allow the regulator to go into bypass mode if all other consumers
4386  * for the regulator also enable bypass mode and the machine
4387  * constraints allow this.  Bypass mode means that the regulator is
4388  * simply passing the input directly to the output with no regulation.
4389  */
4390 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4391 {
4392 	struct regulator_dev *rdev = regulator->rdev;
4393 	const char *name = rdev_get_name(rdev);
4394 	int ret = 0;
4395 
4396 	if (!rdev->desc->ops->set_bypass)
4397 		return 0;
4398 
4399 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4400 		return 0;
4401 
4402 	regulator_lock(rdev);
4403 
4404 	if (enable && !regulator->bypass) {
4405 		rdev->bypass_count++;
4406 
4407 		if (rdev->bypass_count == rdev->open_count) {
4408 			trace_regulator_bypass_enable(name);
4409 
4410 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4411 			if (ret != 0)
4412 				rdev->bypass_count--;
4413 			else
4414 				trace_regulator_bypass_enable_complete(name);
4415 		}
4416 
4417 	} else if (!enable && regulator->bypass) {
4418 		rdev->bypass_count--;
4419 
4420 		if (rdev->bypass_count != rdev->open_count) {
4421 			trace_regulator_bypass_disable(name);
4422 
4423 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4424 			if (ret != 0)
4425 				rdev->bypass_count++;
4426 			else
4427 				trace_regulator_bypass_disable_complete(name);
4428 		}
4429 	}
4430 
4431 	if (ret == 0)
4432 		regulator->bypass = enable;
4433 
4434 	regulator_unlock(rdev);
4435 
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4439 
4440 /**
4441  * regulator_register_notifier - register regulator event notifier
4442  * @regulator: regulator source
4443  * @nb: notifier block
4444  *
4445  * Register notifier block to receive regulator events.
4446  */
4447 int regulator_register_notifier(struct regulator *regulator,
4448 			      struct notifier_block *nb)
4449 {
4450 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4451 						nb);
4452 }
4453 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4454 
4455 /**
4456  * regulator_unregister_notifier - unregister regulator event notifier
4457  * @regulator: regulator source
4458  * @nb: notifier block
4459  *
4460  * Unregister regulator event notifier block.
4461  */
4462 int regulator_unregister_notifier(struct regulator *regulator,
4463 				struct notifier_block *nb)
4464 {
4465 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4466 						  nb);
4467 }
4468 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4469 
4470 /* notify regulator consumers and downstream regulator consumers.
4471  * Note mutex must be held by caller.
4472  */
4473 static int _notifier_call_chain(struct regulator_dev *rdev,
4474 				  unsigned long event, void *data)
4475 {
4476 	/* call rdev chain first */
4477 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4478 }
4479 
4480 /**
4481  * regulator_bulk_get - get multiple regulator consumers
4482  *
4483  * @dev:           Device to supply
4484  * @num_consumers: Number of consumers to register
4485  * @consumers:     Configuration of consumers; clients are stored here.
4486  *
4487  * @return 0 on success, an errno on failure.
4488  *
4489  * This helper function allows drivers to get several regulator
4490  * consumers in one operation.  If any of the regulators cannot be
4491  * acquired then any regulators that were allocated will be freed
4492  * before returning to the caller.
4493  */
4494 int regulator_bulk_get(struct device *dev, int num_consumers,
4495 		       struct regulator_bulk_data *consumers)
4496 {
4497 	int i;
4498 	int ret;
4499 
4500 	for (i = 0; i < num_consumers; i++)
4501 		consumers[i].consumer = NULL;
4502 
4503 	for (i = 0; i < num_consumers; i++) {
4504 		consumers[i].consumer = regulator_get(dev,
4505 						      consumers[i].supply);
4506 		if (IS_ERR(consumers[i].consumer)) {
4507 			ret = PTR_ERR(consumers[i].consumer);
4508 			consumers[i].consumer = NULL;
4509 			goto err;
4510 		}
4511 	}
4512 
4513 	return 0;
4514 
4515 err:
4516 	if (ret != -EPROBE_DEFER)
4517 		dev_err(dev, "Failed to get supply '%s': %d\n",
4518 			consumers[i].supply, ret);
4519 	else
4520 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4521 			consumers[i].supply);
4522 
4523 	while (--i >= 0)
4524 		regulator_put(consumers[i].consumer);
4525 
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4529 
4530 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4531 {
4532 	struct regulator_bulk_data *bulk = data;
4533 
4534 	bulk->ret = regulator_enable(bulk->consumer);
4535 }
4536 
4537 /**
4538  * regulator_bulk_enable - enable multiple regulator consumers
4539  *
4540  * @num_consumers: Number of consumers
4541  * @consumers:     Consumer data; clients are stored here.
4542  * @return         0 on success, an errno on failure
4543  *
4544  * This convenience API allows consumers to enable multiple regulator
4545  * clients in a single API call.  If any consumers cannot be enabled
4546  * then any others that were enabled will be disabled again prior to
4547  * return.
4548  */
4549 int regulator_bulk_enable(int num_consumers,
4550 			  struct regulator_bulk_data *consumers)
4551 {
4552 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4553 	int i;
4554 	int ret = 0;
4555 
4556 	for (i = 0; i < num_consumers; i++) {
4557 		async_schedule_domain(regulator_bulk_enable_async,
4558 				      &consumers[i], &async_domain);
4559 	}
4560 
4561 	async_synchronize_full_domain(&async_domain);
4562 
4563 	/* If any consumer failed we need to unwind any that succeeded */
4564 	for (i = 0; i < num_consumers; i++) {
4565 		if (consumers[i].ret != 0) {
4566 			ret = consumers[i].ret;
4567 			goto err;
4568 		}
4569 	}
4570 
4571 	return 0;
4572 
4573 err:
4574 	for (i = 0; i < num_consumers; i++) {
4575 		if (consumers[i].ret < 0)
4576 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4577 			       consumers[i].ret);
4578 		else
4579 			regulator_disable(consumers[i].consumer);
4580 	}
4581 
4582 	return ret;
4583 }
4584 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4585 
4586 /**
4587  * regulator_bulk_disable - disable multiple regulator consumers
4588  *
4589  * @num_consumers: Number of consumers
4590  * @consumers:     Consumer data; clients are stored here.
4591  * @return         0 on success, an errno on failure
4592  *
4593  * This convenience API allows consumers to disable multiple regulator
4594  * clients in a single API call.  If any consumers cannot be disabled
4595  * then any others that were disabled will be enabled again prior to
4596  * return.
4597  */
4598 int regulator_bulk_disable(int num_consumers,
4599 			   struct regulator_bulk_data *consumers)
4600 {
4601 	int i;
4602 	int ret, r;
4603 
4604 	for (i = num_consumers - 1; i >= 0; --i) {
4605 		ret = regulator_disable(consumers[i].consumer);
4606 		if (ret != 0)
4607 			goto err;
4608 	}
4609 
4610 	return 0;
4611 
4612 err:
4613 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4614 	for (++i; i < num_consumers; ++i) {
4615 		r = regulator_enable(consumers[i].consumer);
4616 		if (r != 0)
4617 			pr_err("Failed to re-enable %s: %d\n",
4618 			       consumers[i].supply, r);
4619 	}
4620 
4621 	return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4624 
4625 /**
4626  * regulator_bulk_force_disable - force disable multiple regulator consumers
4627  *
4628  * @num_consumers: Number of consumers
4629  * @consumers:     Consumer data; clients are stored here.
4630  * @return         0 on success, an errno on failure
4631  *
4632  * This convenience API allows consumers to forcibly disable multiple regulator
4633  * clients in a single API call.
4634  * NOTE: This should be used for situations when device damage will
4635  * likely occur if the regulators are not disabled (e.g. over temp).
4636  * Although regulator_force_disable function call for some consumers can
4637  * return error numbers, the function is called for all consumers.
4638  */
4639 int regulator_bulk_force_disable(int num_consumers,
4640 			   struct regulator_bulk_data *consumers)
4641 {
4642 	int i;
4643 	int ret = 0;
4644 
4645 	for (i = 0; i < num_consumers; i++) {
4646 		consumers[i].ret =
4647 			    regulator_force_disable(consumers[i].consumer);
4648 
4649 		/* Store first error for reporting */
4650 		if (consumers[i].ret && !ret)
4651 			ret = consumers[i].ret;
4652 	}
4653 
4654 	return ret;
4655 }
4656 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4657 
4658 /**
4659  * regulator_bulk_free - free multiple regulator consumers
4660  *
4661  * @num_consumers: Number of consumers
4662  * @consumers:     Consumer data; clients are stored here.
4663  *
4664  * This convenience API allows consumers to free multiple regulator
4665  * clients in a single API call.
4666  */
4667 void regulator_bulk_free(int num_consumers,
4668 			 struct regulator_bulk_data *consumers)
4669 {
4670 	int i;
4671 
4672 	for (i = 0; i < num_consumers; i++) {
4673 		regulator_put(consumers[i].consumer);
4674 		consumers[i].consumer = NULL;
4675 	}
4676 }
4677 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4678 
4679 /**
4680  * regulator_notifier_call_chain - call regulator event notifier
4681  * @rdev: regulator source
4682  * @event: notifier block
4683  * @data: callback-specific data.
4684  *
4685  * Called by regulator drivers to notify clients a regulator event has
4686  * occurred. We also notify regulator clients downstream.
4687  * Note lock must be held by caller.
4688  */
4689 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4690 				  unsigned long event, void *data)
4691 {
4692 	lockdep_assert_held_once(&rdev->mutex.base);
4693 
4694 	_notifier_call_chain(rdev, event, data);
4695 	return NOTIFY_DONE;
4696 
4697 }
4698 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4699 
4700 /**
4701  * regulator_mode_to_status - convert a regulator mode into a status
4702  *
4703  * @mode: Mode to convert
4704  *
4705  * Convert a regulator mode into a status.
4706  */
4707 int regulator_mode_to_status(unsigned int mode)
4708 {
4709 	switch (mode) {
4710 	case REGULATOR_MODE_FAST:
4711 		return REGULATOR_STATUS_FAST;
4712 	case REGULATOR_MODE_NORMAL:
4713 		return REGULATOR_STATUS_NORMAL;
4714 	case REGULATOR_MODE_IDLE:
4715 		return REGULATOR_STATUS_IDLE;
4716 	case REGULATOR_MODE_STANDBY:
4717 		return REGULATOR_STATUS_STANDBY;
4718 	default:
4719 		return REGULATOR_STATUS_UNDEFINED;
4720 	}
4721 }
4722 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4723 
4724 static struct attribute *regulator_dev_attrs[] = {
4725 	&dev_attr_name.attr,
4726 	&dev_attr_num_users.attr,
4727 	&dev_attr_type.attr,
4728 	&dev_attr_microvolts.attr,
4729 	&dev_attr_microamps.attr,
4730 	&dev_attr_opmode.attr,
4731 	&dev_attr_state.attr,
4732 	&dev_attr_status.attr,
4733 	&dev_attr_bypass.attr,
4734 	&dev_attr_requested_microamps.attr,
4735 	&dev_attr_min_microvolts.attr,
4736 	&dev_attr_max_microvolts.attr,
4737 	&dev_attr_min_microamps.attr,
4738 	&dev_attr_max_microamps.attr,
4739 	&dev_attr_suspend_standby_state.attr,
4740 	&dev_attr_suspend_mem_state.attr,
4741 	&dev_attr_suspend_disk_state.attr,
4742 	&dev_attr_suspend_standby_microvolts.attr,
4743 	&dev_attr_suspend_mem_microvolts.attr,
4744 	&dev_attr_suspend_disk_microvolts.attr,
4745 	&dev_attr_suspend_standby_mode.attr,
4746 	&dev_attr_suspend_mem_mode.attr,
4747 	&dev_attr_suspend_disk_mode.attr,
4748 	NULL
4749 };
4750 
4751 /*
4752  * To avoid cluttering sysfs (and memory) with useless state, only
4753  * create attributes that can be meaningfully displayed.
4754  */
4755 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4756 					 struct attribute *attr, int idx)
4757 {
4758 	struct device *dev = kobj_to_dev(kobj);
4759 	struct regulator_dev *rdev = dev_to_rdev(dev);
4760 	const struct regulator_ops *ops = rdev->desc->ops;
4761 	umode_t mode = attr->mode;
4762 
4763 	/* these three are always present */
4764 	if (attr == &dev_attr_name.attr ||
4765 	    attr == &dev_attr_num_users.attr ||
4766 	    attr == &dev_attr_type.attr)
4767 		return mode;
4768 
4769 	/* some attributes need specific methods to be displayed */
4770 	if (attr == &dev_attr_microvolts.attr) {
4771 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4772 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4773 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4774 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4775 			return mode;
4776 		return 0;
4777 	}
4778 
4779 	if (attr == &dev_attr_microamps.attr)
4780 		return ops->get_current_limit ? mode : 0;
4781 
4782 	if (attr == &dev_attr_opmode.attr)
4783 		return ops->get_mode ? mode : 0;
4784 
4785 	if (attr == &dev_attr_state.attr)
4786 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4787 
4788 	if (attr == &dev_attr_status.attr)
4789 		return ops->get_status ? mode : 0;
4790 
4791 	if (attr == &dev_attr_bypass.attr)
4792 		return ops->get_bypass ? mode : 0;
4793 
4794 	/* constraints need specific supporting methods */
4795 	if (attr == &dev_attr_min_microvolts.attr ||
4796 	    attr == &dev_attr_max_microvolts.attr)
4797 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4798 
4799 	if (attr == &dev_attr_min_microamps.attr ||
4800 	    attr == &dev_attr_max_microamps.attr)
4801 		return ops->set_current_limit ? mode : 0;
4802 
4803 	if (attr == &dev_attr_suspend_standby_state.attr ||
4804 	    attr == &dev_attr_suspend_mem_state.attr ||
4805 	    attr == &dev_attr_suspend_disk_state.attr)
4806 		return mode;
4807 
4808 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4809 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4810 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4811 		return ops->set_suspend_voltage ? mode : 0;
4812 
4813 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4814 	    attr == &dev_attr_suspend_mem_mode.attr ||
4815 	    attr == &dev_attr_suspend_disk_mode.attr)
4816 		return ops->set_suspend_mode ? mode : 0;
4817 
4818 	return mode;
4819 }
4820 
4821 static const struct attribute_group regulator_dev_group = {
4822 	.attrs = regulator_dev_attrs,
4823 	.is_visible = regulator_attr_is_visible,
4824 };
4825 
4826 static const struct attribute_group *regulator_dev_groups[] = {
4827 	&regulator_dev_group,
4828 	NULL
4829 };
4830 
4831 static void regulator_dev_release(struct device *dev)
4832 {
4833 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4834 
4835 	kfree(rdev->constraints);
4836 	of_node_put(rdev->dev.of_node);
4837 	kfree(rdev);
4838 }
4839 
4840 static void rdev_init_debugfs(struct regulator_dev *rdev)
4841 {
4842 	struct device *parent = rdev->dev.parent;
4843 	const char *rname = rdev_get_name(rdev);
4844 	char name[NAME_MAX];
4845 
4846 	/* Avoid duplicate debugfs directory names */
4847 	if (parent && rname == rdev->desc->name) {
4848 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4849 			 rname);
4850 		rname = name;
4851 	}
4852 
4853 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4854 	if (!rdev->debugfs) {
4855 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4856 		return;
4857 	}
4858 
4859 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4860 			   &rdev->use_count);
4861 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4862 			   &rdev->open_count);
4863 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4864 			   &rdev->bypass_count);
4865 }
4866 
4867 static int regulator_register_resolve_supply(struct device *dev, void *data)
4868 {
4869 	struct regulator_dev *rdev = dev_to_rdev(dev);
4870 
4871 	if (regulator_resolve_supply(rdev))
4872 		rdev_dbg(rdev, "unable to resolve supply\n");
4873 
4874 	return 0;
4875 }
4876 
4877 int regulator_coupler_register(struct regulator_coupler *coupler)
4878 {
4879 	mutex_lock(&regulator_list_mutex);
4880 	list_add_tail(&coupler->list, &regulator_coupler_list);
4881 	mutex_unlock(&regulator_list_mutex);
4882 
4883 	return 0;
4884 }
4885 
4886 static struct regulator_coupler *
4887 regulator_find_coupler(struct regulator_dev *rdev)
4888 {
4889 	struct regulator_coupler *coupler;
4890 	int err;
4891 
4892 	/*
4893 	 * Note that regulators are appended to the list and the generic
4894 	 * coupler is registered first, hence it will be attached at last
4895 	 * if nobody cared.
4896 	 */
4897 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4898 		err = coupler->attach_regulator(coupler, rdev);
4899 		if (!err) {
4900 			if (!coupler->balance_voltage &&
4901 			    rdev->coupling_desc.n_coupled > 2)
4902 				goto err_unsupported;
4903 
4904 			return coupler;
4905 		}
4906 
4907 		if (err < 0)
4908 			return ERR_PTR(err);
4909 
4910 		if (err == 1)
4911 			continue;
4912 
4913 		break;
4914 	}
4915 
4916 	return ERR_PTR(-EINVAL);
4917 
4918 err_unsupported:
4919 	if (coupler->detach_regulator)
4920 		coupler->detach_regulator(coupler, rdev);
4921 
4922 	rdev_err(rdev,
4923 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4924 
4925 	return ERR_PTR(-EPERM);
4926 }
4927 
4928 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4929 {
4930 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4931 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4932 	int n_coupled = c_desc->n_coupled;
4933 	struct regulator_dev *c_rdev;
4934 	int i;
4935 
4936 	for (i = 1; i < n_coupled; i++) {
4937 		/* already resolved */
4938 		if (c_desc->coupled_rdevs[i])
4939 			continue;
4940 
4941 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4942 
4943 		if (!c_rdev)
4944 			continue;
4945 
4946 		if (c_rdev->coupling_desc.coupler != coupler) {
4947 			rdev_err(rdev, "coupler mismatch with %s\n",
4948 				 rdev_get_name(c_rdev));
4949 			return;
4950 		}
4951 
4952 		regulator_lock(c_rdev);
4953 
4954 		c_desc->coupled_rdevs[i] = c_rdev;
4955 		c_desc->n_resolved++;
4956 
4957 		regulator_unlock(c_rdev);
4958 
4959 		regulator_resolve_coupling(c_rdev);
4960 	}
4961 }
4962 
4963 static void regulator_remove_coupling(struct regulator_dev *rdev)
4964 {
4965 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4966 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4967 	struct regulator_dev *__c_rdev, *c_rdev;
4968 	unsigned int __n_coupled, n_coupled;
4969 	int i, k;
4970 	int err;
4971 
4972 	n_coupled = c_desc->n_coupled;
4973 
4974 	for (i = 1; i < n_coupled; i++) {
4975 		c_rdev = c_desc->coupled_rdevs[i];
4976 
4977 		if (!c_rdev)
4978 			continue;
4979 
4980 		regulator_lock(c_rdev);
4981 
4982 		__c_desc = &c_rdev->coupling_desc;
4983 		__n_coupled = __c_desc->n_coupled;
4984 
4985 		for (k = 1; k < __n_coupled; k++) {
4986 			__c_rdev = __c_desc->coupled_rdevs[k];
4987 
4988 			if (__c_rdev == rdev) {
4989 				__c_desc->coupled_rdevs[k] = NULL;
4990 				__c_desc->n_resolved--;
4991 				break;
4992 			}
4993 		}
4994 
4995 		regulator_unlock(c_rdev);
4996 
4997 		c_desc->coupled_rdevs[i] = NULL;
4998 		c_desc->n_resolved--;
4999 	}
5000 
5001 	if (coupler && coupler->detach_regulator) {
5002 		err = coupler->detach_regulator(coupler, rdev);
5003 		if (err)
5004 			rdev_err(rdev, "failed to detach from coupler: %d\n",
5005 				 err);
5006 	}
5007 
5008 	kfree(rdev->coupling_desc.coupled_rdevs);
5009 	rdev->coupling_desc.coupled_rdevs = NULL;
5010 }
5011 
5012 static int regulator_init_coupling(struct regulator_dev *rdev)
5013 {
5014 	int err, n_phandles;
5015 	size_t alloc_size;
5016 
5017 	if (!IS_ENABLED(CONFIG_OF))
5018 		n_phandles = 0;
5019 	else
5020 		n_phandles = of_get_n_coupled(rdev);
5021 
5022 	alloc_size = sizeof(*rdev) * (n_phandles + 1);
5023 
5024 	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5025 	if (!rdev->coupling_desc.coupled_rdevs)
5026 		return -ENOMEM;
5027 
5028 	/*
5029 	 * Every regulator should always have coupling descriptor filled with
5030 	 * at least pointer to itself.
5031 	 */
5032 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5033 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5034 	rdev->coupling_desc.n_resolved++;
5035 
5036 	/* regulator isn't coupled */
5037 	if (n_phandles == 0)
5038 		return 0;
5039 
5040 	if (!of_check_coupling_data(rdev))
5041 		return -EPERM;
5042 
5043 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5044 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5045 		err = PTR_ERR(rdev->coupling_desc.coupler);
5046 		rdev_err(rdev, "failed to get coupler: %d\n", err);
5047 		return err;
5048 	}
5049 
5050 	return 0;
5051 }
5052 
5053 static int generic_coupler_attach(struct regulator_coupler *coupler,
5054 				  struct regulator_dev *rdev)
5055 {
5056 	if (rdev->coupling_desc.n_coupled > 2) {
5057 		rdev_err(rdev,
5058 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5059 		return -EPERM;
5060 	}
5061 
5062 	if (!rdev->constraints->always_on) {
5063 		rdev_err(rdev,
5064 			 "Coupling of a non always-on regulator is unimplemented\n");
5065 		return -ENOTSUPP;
5066 	}
5067 
5068 	return 0;
5069 }
5070 
5071 static struct regulator_coupler generic_regulator_coupler = {
5072 	.attach_regulator = generic_coupler_attach,
5073 };
5074 
5075 /**
5076  * regulator_register - register regulator
5077  * @regulator_desc: regulator to register
5078  * @cfg: runtime configuration for regulator
5079  *
5080  * Called by regulator drivers to register a regulator.
5081  * Returns a valid pointer to struct regulator_dev on success
5082  * or an ERR_PTR() on error.
5083  */
5084 struct regulator_dev *
5085 regulator_register(const struct regulator_desc *regulator_desc,
5086 		   const struct regulator_config *cfg)
5087 {
5088 	const struct regulation_constraints *constraints = NULL;
5089 	const struct regulator_init_data *init_data;
5090 	struct regulator_config *config = NULL;
5091 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5092 	struct regulator_dev *rdev;
5093 	bool dangling_cfg_gpiod = false;
5094 	bool dangling_of_gpiod = false;
5095 	struct device *dev;
5096 	int ret, i;
5097 
5098 	if (cfg == NULL)
5099 		return ERR_PTR(-EINVAL);
5100 	if (cfg->ena_gpiod)
5101 		dangling_cfg_gpiod = true;
5102 	if (regulator_desc == NULL) {
5103 		ret = -EINVAL;
5104 		goto rinse;
5105 	}
5106 
5107 	dev = cfg->dev;
5108 	WARN_ON(!dev);
5109 
5110 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5111 		ret = -EINVAL;
5112 		goto rinse;
5113 	}
5114 
5115 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5116 	    regulator_desc->type != REGULATOR_CURRENT) {
5117 		ret = -EINVAL;
5118 		goto rinse;
5119 	}
5120 
5121 	/* Only one of each should be implemented */
5122 	WARN_ON(regulator_desc->ops->get_voltage &&
5123 		regulator_desc->ops->get_voltage_sel);
5124 	WARN_ON(regulator_desc->ops->set_voltage &&
5125 		regulator_desc->ops->set_voltage_sel);
5126 
5127 	/* If we're using selectors we must implement list_voltage. */
5128 	if (regulator_desc->ops->get_voltage_sel &&
5129 	    !regulator_desc->ops->list_voltage) {
5130 		ret = -EINVAL;
5131 		goto rinse;
5132 	}
5133 	if (regulator_desc->ops->set_voltage_sel &&
5134 	    !regulator_desc->ops->list_voltage) {
5135 		ret = -EINVAL;
5136 		goto rinse;
5137 	}
5138 
5139 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5140 	if (rdev == NULL) {
5141 		ret = -ENOMEM;
5142 		goto rinse;
5143 	}
5144 
5145 	/*
5146 	 * Duplicate the config so the driver could override it after
5147 	 * parsing init data.
5148 	 */
5149 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5150 	if (config == NULL) {
5151 		kfree(rdev);
5152 		ret = -ENOMEM;
5153 		goto rinse;
5154 	}
5155 
5156 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5157 					       &rdev->dev.of_node);
5158 
5159 	/*
5160 	 * Sometimes not all resources are probed already so we need to take
5161 	 * that into account. This happens most the time if the ena_gpiod comes
5162 	 * from a gpio extender or something else.
5163 	 */
5164 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5165 		kfree(config);
5166 		kfree(rdev);
5167 		ret = -EPROBE_DEFER;
5168 		goto rinse;
5169 	}
5170 
5171 	/*
5172 	 * We need to keep track of any GPIO descriptor coming from the
5173 	 * device tree until we have handled it over to the core. If the
5174 	 * config that was passed in to this function DOES NOT contain
5175 	 * a descriptor, and the config after this call DOES contain
5176 	 * a descriptor, we definitely got one from parsing the device
5177 	 * tree.
5178 	 */
5179 	if (!cfg->ena_gpiod && config->ena_gpiod)
5180 		dangling_of_gpiod = true;
5181 	if (!init_data) {
5182 		init_data = config->init_data;
5183 		rdev->dev.of_node = of_node_get(config->of_node);
5184 	}
5185 
5186 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5187 	rdev->reg_data = config->driver_data;
5188 	rdev->owner = regulator_desc->owner;
5189 	rdev->desc = regulator_desc;
5190 	if (config->regmap)
5191 		rdev->regmap = config->regmap;
5192 	else if (dev_get_regmap(dev, NULL))
5193 		rdev->regmap = dev_get_regmap(dev, NULL);
5194 	else if (dev->parent)
5195 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5196 	INIT_LIST_HEAD(&rdev->consumer_list);
5197 	INIT_LIST_HEAD(&rdev->list);
5198 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5199 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5200 
5201 	/* preform any regulator specific init */
5202 	if (init_data && init_data->regulator_init) {
5203 		ret = init_data->regulator_init(rdev->reg_data);
5204 		if (ret < 0)
5205 			goto clean;
5206 	}
5207 
5208 	if (config->ena_gpiod) {
5209 		mutex_lock(&regulator_list_mutex);
5210 		ret = regulator_ena_gpio_request(rdev, config);
5211 		mutex_unlock(&regulator_list_mutex);
5212 		if (ret != 0) {
5213 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5214 				 ret);
5215 			goto clean;
5216 		}
5217 		/* The regulator core took over the GPIO descriptor */
5218 		dangling_cfg_gpiod = false;
5219 		dangling_of_gpiod = false;
5220 	}
5221 
5222 	/* register with sysfs */
5223 	device_initialize(&rdev->dev);
5224 	rdev->dev.class = &regulator_class;
5225 	rdev->dev.parent = dev;
5226 	dev_set_name(&rdev->dev, "regulator.%lu",
5227 		    (unsigned long) atomic_inc_return(&regulator_no));
5228 	dev_set_drvdata(&rdev->dev, rdev);
5229 
5230 	/* set regulator constraints */
5231 	if (init_data)
5232 		constraints = &init_data->constraints;
5233 
5234 	if (init_data && init_data->supply_regulator)
5235 		rdev->supply_name = init_data->supply_regulator;
5236 	else if (regulator_desc->supply_name)
5237 		rdev->supply_name = regulator_desc->supply_name;
5238 
5239 	/*
5240 	 * Attempt to resolve the regulator supply, if specified,
5241 	 * but don't return an error if we fail because we will try
5242 	 * to resolve it again later as more regulators are added.
5243 	 */
5244 	if (regulator_resolve_supply(rdev))
5245 		rdev_dbg(rdev, "unable to resolve supply\n");
5246 
5247 	ret = set_machine_constraints(rdev, constraints);
5248 	if (ret < 0)
5249 		goto wash;
5250 
5251 	mutex_lock(&regulator_list_mutex);
5252 	ret = regulator_init_coupling(rdev);
5253 	mutex_unlock(&regulator_list_mutex);
5254 	if (ret < 0)
5255 		goto wash;
5256 
5257 	/* add consumers devices */
5258 	if (init_data) {
5259 		mutex_lock(&regulator_list_mutex);
5260 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5261 			ret = set_consumer_device_supply(rdev,
5262 				init_data->consumer_supplies[i].dev_name,
5263 				init_data->consumer_supplies[i].supply);
5264 			if (ret < 0) {
5265 				mutex_unlock(&regulator_list_mutex);
5266 				dev_err(dev, "Failed to set supply %s\n",
5267 					init_data->consumer_supplies[i].supply);
5268 				goto unset_supplies;
5269 			}
5270 		}
5271 		mutex_unlock(&regulator_list_mutex);
5272 	}
5273 
5274 	if (!rdev->desc->ops->get_voltage &&
5275 	    !rdev->desc->ops->list_voltage &&
5276 	    !rdev->desc->fixed_uV)
5277 		rdev->is_switch = true;
5278 
5279 	ret = device_add(&rdev->dev);
5280 	if (ret != 0)
5281 		goto unset_supplies;
5282 
5283 	rdev_init_debugfs(rdev);
5284 
5285 	/* try to resolve regulators coupling since a new one was registered */
5286 	mutex_lock(&regulator_list_mutex);
5287 	regulator_resolve_coupling(rdev);
5288 	mutex_unlock(&regulator_list_mutex);
5289 
5290 	/* try to resolve regulators supply since a new one was registered */
5291 	class_for_each_device(&regulator_class, NULL, NULL,
5292 			      regulator_register_resolve_supply);
5293 	kfree(config);
5294 	return rdev;
5295 
5296 unset_supplies:
5297 	mutex_lock(&regulator_list_mutex);
5298 	unset_regulator_supplies(rdev);
5299 	regulator_remove_coupling(rdev);
5300 	mutex_unlock(&regulator_list_mutex);
5301 wash:
5302 	kfree(rdev->coupling_desc.coupled_rdevs);
5303 	mutex_lock(&regulator_list_mutex);
5304 	regulator_ena_gpio_free(rdev);
5305 	mutex_unlock(&regulator_list_mutex);
5306 	put_device(&rdev->dev);
5307 	rdev = NULL;
5308 clean:
5309 	if (dangling_of_gpiod)
5310 		gpiod_put(config->ena_gpiod);
5311 	kfree(rdev);
5312 	kfree(config);
5313 rinse:
5314 	if (dangling_cfg_gpiod)
5315 		gpiod_put(cfg->ena_gpiod);
5316 	return ERR_PTR(ret);
5317 }
5318 EXPORT_SYMBOL_GPL(regulator_register);
5319 
5320 /**
5321  * regulator_unregister - unregister regulator
5322  * @rdev: regulator to unregister
5323  *
5324  * Called by regulator drivers to unregister a regulator.
5325  */
5326 void regulator_unregister(struct regulator_dev *rdev)
5327 {
5328 	if (rdev == NULL)
5329 		return;
5330 
5331 	if (rdev->supply) {
5332 		while (rdev->use_count--)
5333 			regulator_disable(rdev->supply);
5334 		regulator_put(rdev->supply);
5335 	}
5336 
5337 	flush_work(&rdev->disable_work.work);
5338 
5339 	mutex_lock(&regulator_list_mutex);
5340 
5341 	debugfs_remove_recursive(rdev->debugfs);
5342 	WARN_ON(rdev->open_count);
5343 	regulator_remove_coupling(rdev);
5344 	unset_regulator_supplies(rdev);
5345 	list_del(&rdev->list);
5346 	regulator_ena_gpio_free(rdev);
5347 	device_unregister(&rdev->dev);
5348 
5349 	mutex_unlock(&regulator_list_mutex);
5350 }
5351 EXPORT_SYMBOL_GPL(regulator_unregister);
5352 
5353 #ifdef CONFIG_SUSPEND
5354 /**
5355  * regulator_suspend - prepare regulators for system wide suspend
5356  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5357  *
5358  * Configure each regulator with it's suspend operating parameters for state.
5359  */
5360 static int regulator_suspend(struct device *dev)
5361 {
5362 	struct regulator_dev *rdev = dev_to_rdev(dev);
5363 	suspend_state_t state = pm_suspend_target_state;
5364 	int ret;
5365 
5366 	regulator_lock(rdev);
5367 	ret = suspend_set_state(rdev, state);
5368 	regulator_unlock(rdev);
5369 
5370 	return ret;
5371 }
5372 
5373 static int regulator_resume(struct device *dev)
5374 {
5375 	suspend_state_t state = pm_suspend_target_state;
5376 	struct regulator_dev *rdev = dev_to_rdev(dev);
5377 	struct regulator_state *rstate;
5378 	int ret = 0;
5379 
5380 	rstate = regulator_get_suspend_state(rdev, state);
5381 	if (rstate == NULL)
5382 		return 0;
5383 
5384 	regulator_lock(rdev);
5385 
5386 	if (rdev->desc->ops->resume &&
5387 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5388 	     rstate->enabled == DISABLE_IN_SUSPEND))
5389 		ret = rdev->desc->ops->resume(rdev);
5390 
5391 	regulator_unlock(rdev);
5392 
5393 	return ret;
5394 }
5395 #else /* !CONFIG_SUSPEND */
5396 
5397 #define regulator_suspend	NULL
5398 #define regulator_resume	NULL
5399 
5400 #endif /* !CONFIG_SUSPEND */
5401 
5402 #ifdef CONFIG_PM
5403 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5404 	.suspend	= regulator_suspend,
5405 	.resume		= regulator_resume,
5406 };
5407 #endif
5408 
5409 struct class regulator_class = {
5410 	.name = "regulator",
5411 	.dev_release = regulator_dev_release,
5412 	.dev_groups = regulator_dev_groups,
5413 #ifdef CONFIG_PM
5414 	.pm = &regulator_pm_ops,
5415 #endif
5416 };
5417 /**
5418  * regulator_has_full_constraints - the system has fully specified constraints
5419  *
5420  * Calling this function will cause the regulator API to disable all
5421  * regulators which have a zero use count and don't have an always_on
5422  * constraint in a late_initcall.
5423  *
5424  * The intention is that this will become the default behaviour in a
5425  * future kernel release so users are encouraged to use this facility
5426  * now.
5427  */
5428 void regulator_has_full_constraints(void)
5429 {
5430 	has_full_constraints = 1;
5431 }
5432 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5433 
5434 /**
5435  * rdev_get_drvdata - get rdev regulator driver data
5436  * @rdev: regulator
5437  *
5438  * Get rdev regulator driver private data. This call can be used in the
5439  * regulator driver context.
5440  */
5441 void *rdev_get_drvdata(struct regulator_dev *rdev)
5442 {
5443 	return rdev->reg_data;
5444 }
5445 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5446 
5447 /**
5448  * regulator_get_drvdata - get regulator driver data
5449  * @regulator: regulator
5450  *
5451  * Get regulator driver private data. This call can be used in the consumer
5452  * driver context when non API regulator specific functions need to be called.
5453  */
5454 void *regulator_get_drvdata(struct regulator *regulator)
5455 {
5456 	return regulator->rdev->reg_data;
5457 }
5458 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5459 
5460 /**
5461  * regulator_set_drvdata - set regulator driver data
5462  * @regulator: regulator
5463  * @data: data
5464  */
5465 void regulator_set_drvdata(struct regulator *regulator, void *data)
5466 {
5467 	regulator->rdev->reg_data = data;
5468 }
5469 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5470 
5471 /**
5472  * regulator_get_id - get regulator ID
5473  * @rdev: regulator
5474  */
5475 int rdev_get_id(struct regulator_dev *rdev)
5476 {
5477 	return rdev->desc->id;
5478 }
5479 EXPORT_SYMBOL_GPL(rdev_get_id);
5480 
5481 struct device *rdev_get_dev(struct regulator_dev *rdev)
5482 {
5483 	return &rdev->dev;
5484 }
5485 EXPORT_SYMBOL_GPL(rdev_get_dev);
5486 
5487 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5488 {
5489 	return rdev->regmap;
5490 }
5491 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5492 
5493 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5494 {
5495 	return reg_init_data->driver_data;
5496 }
5497 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5498 
5499 #ifdef CONFIG_DEBUG_FS
5500 static int supply_map_show(struct seq_file *sf, void *data)
5501 {
5502 	struct regulator_map *map;
5503 
5504 	list_for_each_entry(map, &regulator_map_list, list) {
5505 		seq_printf(sf, "%s -> %s.%s\n",
5506 				rdev_get_name(map->regulator), map->dev_name,
5507 				map->supply);
5508 	}
5509 
5510 	return 0;
5511 }
5512 DEFINE_SHOW_ATTRIBUTE(supply_map);
5513 
5514 struct summary_data {
5515 	struct seq_file *s;
5516 	struct regulator_dev *parent;
5517 	int level;
5518 };
5519 
5520 static void regulator_summary_show_subtree(struct seq_file *s,
5521 					   struct regulator_dev *rdev,
5522 					   int level);
5523 
5524 static int regulator_summary_show_children(struct device *dev, void *data)
5525 {
5526 	struct regulator_dev *rdev = dev_to_rdev(dev);
5527 	struct summary_data *summary_data = data;
5528 
5529 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5530 		regulator_summary_show_subtree(summary_data->s, rdev,
5531 					       summary_data->level + 1);
5532 
5533 	return 0;
5534 }
5535 
5536 static void regulator_summary_show_subtree(struct seq_file *s,
5537 					   struct regulator_dev *rdev,
5538 					   int level)
5539 {
5540 	struct regulation_constraints *c;
5541 	struct regulator *consumer;
5542 	struct summary_data summary_data;
5543 	unsigned int opmode;
5544 
5545 	if (!rdev)
5546 		return;
5547 
5548 	opmode = _regulator_get_mode_unlocked(rdev);
5549 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5550 		   level * 3 + 1, "",
5551 		   30 - level * 3, rdev_get_name(rdev),
5552 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5553 		   regulator_opmode_to_str(opmode));
5554 
5555 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5556 	seq_printf(s, "%5dmA ",
5557 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5558 
5559 	c = rdev->constraints;
5560 	if (c) {
5561 		switch (rdev->desc->type) {
5562 		case REGULATOR_VOLTAGE:
5563 			seq_printf(s, "%5dmV %5dmV ",
5564 				   c->min_uV / 1000, c->max_uV / 1000);
5565 			break;
5566 		case REGULATOR_CURRENT:
5567 			seq_printf(s, "%5dmA %5dmA ",
5568 				   c->min_uA / 1000, c->max_uA / 1000);
5569 			break;
5570 		}
5571 	}
5572 
5573 	seq_puts(s, "\n");
5574 
5575 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5576 		if (consumer->dev && consumer->dev->class == &regulator_class)
5577 			continue;
5578 
5579 		seq_printf(s, "%*s%-*s ",
5580 			   (level + 1) * 3 + 1, "",
5581 			   30 - (level + 1) * 3,
5582 			   consumer->supply_name ? consumer->supply_name :
5583 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5584 
5585 		switch (rdev->desc->type) {
5586 		case REGULATOR_VOLTAGE:
5587 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5588 				   consumer->enable_count,
5589 				   consumer->uA_load / 1000,
5590 				   consumer->uA_load && !consumer->enable_count ?
5591 				   '*' : ' ',
5592 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5593 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5594 			break;
5595 		case REGULATOR_CURRENT:
5596 			break;
5597 		}
5598 
5599 		seq_puts(s, "\n");
5600 	}
5601 
5602 	summary_data.s = s;
5603 	summary_data.level = level;
5604 	summary_data.parent = rdev;
5605 
5606 	class_for_each_device(&regulator_class, NULL, &summary_data,
5607 			      regulator_summary_show_children);
5608 }
5609 
5610 struct summary_lock_data {
5611 	struct ww_acquire_ctx *ww_ctx;
5612 	struct regulator_dev **new_contended_rdev;
5613 	struct regulator_dev **old_contended_rdev;
5614 };
5615 
5616 static int regulator_summary_lock_one(struct device *dev, void *data)
5617 {
5618 	struct regulator_dev *rdev = dev_to_rdev(dev);
5619 	struct summary_lock_data *lock_data = data;
5620 	int ret = 0;
5621 
5622 	if (rdev != *lock_data->old_contended_rdev) {
5623 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5624 
5625 		if (ret == -EDEADLK)
5626 			*lock_data->new_contended_rdev = rdev;
5627 		else
5628 			WARN_ON_ONCE(ret);
5629 	} else {
5630 		*lock_data->old_contended_rdev = NULL;
5631 	}
5632 
5633 	return ret;
5634 }
5635 
5636 static int regulator_summary_unlock_one(struct device *dev, void *data)
5637 {
5638 	struct regulator_dev *rdev = dev_to_rdev(dev);
5639 	struct summary_lock_data *lock_data = data;
5640 
5641 	if (lock_data) {
5642 		if (rdev == *lock_data->new_contended_rdev)
5643 			return -EDEADLK;
5644 	}
5645 
5646 	regulator_unlock(rdev);
5647 
5648 	return 0;
5649 }
5650 
5651 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5652 				      struct regulator_dev **new_contended_rdev,
5653 				      struct regulator_dev **old_contended_rdev)
5654 {
5655 	struct summary_lock_data lock_data;
5656 	int ret;
5657 
5658 	lock_data.ww_ctx = ww_ctx;
5659 	lock_data.new_contended_rdev = new_contended_rdev;
5660 	lock_data.old_contended_rdev = old_contended_rdev;
5661 
5662 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5663 				    regulator_summary_lock_one);
5664 	if (ret)
5665 		class_for_each_device(&regulator_class, NULL, &lock_data,
5666 				      regulator_summary_unlock_one);
5667 
5668 	return ret;
5669 }
5670 
5671 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5672 {
5673 	struct regulator_dev *new_contended_rdev = NULL;
5674 	struct regulator_dev *old_contended_rdev = NULL;
5675 	int err;
5676 
5677 	mutex_lock(&regulator_list_mutex);
5678 
5679 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5680 
5681 	do {
5682 		if (new_contended_rdev) {
5683 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5684 			old_contended_rdev = new_contended_rdev;
5685 			old_contended_rdev->ref_cnt++;
5686 		}
5687 
5688 		err = regulator_summary_lock_all(ww_ctx,
5689 						 &new_contended_rdev,
5690 						 &old_contended_rdev);
5691 
5692 		if (old_contended_rdev)
5693 			regulator_unlock(old_contended_rdev);
5694 
5695 	} while (err == -EDEADLK);
5696 
5697 	ww_acquire_done(ww_ctx);
5698 }
5699 
5700 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5701 {
5702 	class_for_each_device(&regulator_class, NULL, NULL,
5703 			      regulator_summary_unlock_one);
5704 	ww_acquire_fini(ww_ctx);
5705 
5706 	mutex_unlock(&regulator_list_mutex);
5707 }
5708 
5709 static int regulator_summary_show_roots(struct device *dev, void *data)
5710 {
5711 	struct regulator_dev *rdev = dev_to_rdev(dev);
5712 	struct seq_file *s = data;
5713 
5714 	if (!rdev->supply)
5715 		regulator_summary_show_subtree(s, rdev, 0);
5716 
5717 	return 0;
5718 }
5719 
5720 static int regulator_summary_show(struct seq_file *s, void *data)
5721 {
5722 	struct ww_acquire_ctx ww_ctx;
5723 
5724 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5725 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5726 
5727 	regulator_summary_lock(&ww_ctx);
5728 
5729 	class_for_each_device(&regulator_class, NULL, s,
5730 			      regulator_summary_show_roots);
5731 
5732 	regulator_summary_unlock(&ww_ctx);
5733 
5734 	return 0;
5735 }
5736 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5737 #endif /* CONFIG_DEBUG_FS */
5738 
5739 static int __init regulator_init(void)
5740 {
5741 	int ret;
5742 
5743 	ret = class_register(&regulator_class);
5744 
5745 	debugfs_root = debugfs_create_dir("regulator", NULL);
5746 	if (!debugfs_root)
5747 		pr_warn("regulator: Failed to create debugfs directory\n");
5748 
5749 #ifdef CONFIG_DEBUG_FS
5750 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5751 			    &supply_map_fops);
5752 
5753 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5754 			    NULL, &regulator_summary_fops);
5755 #endif
5756 	regulator_dummy_init();
5757 
5758 	regulator_coupler_register(&generic_regulator_coupler);
5759 
5760 	return ret;
5761 }
5762 
5763 /* init early to allow our consumers to complete system booting */
5764 core_initcall(regulator_init);
5765 
5766 static int regulator_late_cleanup(struct device *dev, void *data)
5767 {
5768 	struct regulator_dev *rdev = dev_to_rdev(dev);
5769 	const struct regulator_ops *ops = rdev->desc->ops;
5770 	struct regulation_constraints *c = rdev->constraints;
5771 	int enabled, ret;
5772 
5773 	if (c && c->always_on)
5774 		return 0;
5775 
5776 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5777 		return 0;
5778 
5779 	regulator_lock(rdev);
5780 
5781 	if (rdev->use_count)
5782 		goto unlock;
5783 
5784 	/* If we can't read the status assume it's on. */
5785 	if (ops->is_enabled)
5786 		enabled = ops->is_enabled(rdev);
5787 	else
5788 		enabled = 1;
5789 
5790 	if (!enabled)
5791 		goto unlock;
5792 
5793 	if (have_full_constraints()) {
5794 		/* We log since this may kill the system if it goes
5795 		 * wrong. */
5796 		rdev_info(rdev, "disabling\n");
5797 		ret = _regulator_do_disable(rdev);
5798 		if (ret != 0)
5799 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5800 	} else {
5801 		/* The intention is that in future we will
5802 		 * assume that full constraints are provided
5803 		 * so warn even if we aren't going to do
5804 		 * anything here.
5805 		 */
5806 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5807 	}
5808 
5809 unlock:
5810 	regulator_unlock(rdev);
5811 
5812 	return 0;
5813 }
5814 
5815 static void regulator_init_complete_work_function(struct work_struct *work)
5816 {
5817 	/*
5818 	 * Regulators may had failed to resolve their input supplies
5819 	 * when were registered, either because the input supply was
5820 	 * not registered yet or because its parent device was not
5821 	 * bound yet. So attempt to resolve the input supplies for
5822 	 * pending regulators before trying to disable unused ones.
5823 	 */
5824 	class_for_each_device(&regulator_class, NULL, NULL,
5825 			      regulator_register_resolve_supply);
5826 
5827 	/* If we have a full configuration then disable any regulators
5828 	 * we have permission to change the status for and which are
5829 	 * not in use or always_on.  This is effectively the default
5830 	 * for DT and ACPI as they have full constraints.
5831 	 */
5832 	class_for_each_device(&regulator_class, NULL, NULL,
5833 			      regulator_late_cleanup);
5834 }
5835 
5836 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5837 			    regulator_init_complete_work_function);
5838 
5839 static int __init regulator_init_complete(void)
5840 {
5841 	/*
5842 	 * Since DT doesn't provide an idiomatic mechanism for
5843 	 * enabling full constraints and since it's much more natural
5844 	 * with DT to provide them just assume that a DT enabled
5845 	 * system has full constraints.
5846 	 */
5847 	if (of_have_populated_dt())
5848 		has_full_constraints = true;
5849 
5850 	/*
5851 	 * We punt completion for an arbitrary amount of time since
5852 	 * systems like distros will load many drivers from userspace
5853 	 * so consumers might not always be ready yet, this is
5854 	 * particularly an issue with laptops where this might bounce
5855 	 * the display off then on.  Ideally we'd get a notification
5856 	 * from userspace when this happens but we don't so just wait
5857 	 * a bit and hope we waited long enough.  It'd be better if
5858 	 * we'd only do this on systems that need it, and a kernel
5859 	 * command line option might be useful.
5860 	 */
5861 	schedule_delayed_work(&regulator_init_complete_work,
5862 			      msecs_to_jiffies(30000));
5863 
5864 	return 0;
5865 }
5866 late_initcall_sync(regulator_init_complete);
5867