xref: /linux/drivers/regulator/core.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56 
57 static struct dentry *debugfs_root;
58 
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65 	struct list_head list;
66 	const char *dev_name;   /* The dev_name() for the consumer */
67 	const char *supply;
68 	struct regulator_dev *regulator;
69 };
70 
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77 	struct device *dev;
78 	struct list_head list;
79 	unsigned int always_on:1;
80 	int uA_load;
81 	int min_uV;
82 	int max_uV;
83 	char *supply_name;
84 	struct device_attribute dev_attr;
85 	struct regulator_dev *rdev;
86 	struct dentry *debugfs;
87 };
88 
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 				  unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 				     int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 					  struct device *dev,
100 					  const char *supply_name);
101 
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104 	if (rdev->constraints && rdev->constraints->name)
105 		return rdev->constraints->name;
106 	else if (rdev->desc->name)
107 		return rdev->desc->name;
108 	else
109 		return "";
110 }
111 
112 /**
113  * of_get_regulator - get a regulator device node based on supply name
114  * @dev: Device pointer for the consumer (of regulator) device
115  * @supply: regulator supply name
116  *
117  * Extract the regulator device node corresponding to the supply name.
118  * retruns the device node corresponding to the regulator if found, else
119  * returns NULL.
120  */
121 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122 {
123 	struct device_node *regnode = NULL;
124 	char prop_name[32]; /* 32 is max size of property name */
125 
126 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127 
128 	snprintf(prop_name, 32, "%s-supply", supply);
129 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130 
131 	if (!regnode) {
132 		dev_dbg(dev, "Looking up %s property in node %s failed",
133 				prop_name, dev->of_node->full_name);
134 		return NULL;
135 	}
136 	return regnode;
137 }
138 
139 static int _regulator_can_change_status(struct regulator_dev *rdev)
140 {
141 	if (!rdev->constraints)
142 		return 0;
143 
144 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145 		return 1;
146 	else
147 		return 0;
148 }
149 
150 /* Platform voltage constraint check */
151 static int regulator_check_voltage(struct regulator_dev *rdev,
152 				   int *min_uV, int *max_uV)
153 {
154 	BUG_ON(*min_uV > *max_uV);
155 
156 	if (!rdev->constraints) {
157 		rdev_err(rdev, "no constraints\n");
158 		return -ENODEV;
159 	}
160 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161 		rdev_err(rdev, "operation not allowed\n");
162 		return -EPERM;
163 	}
164 
165 	if (*max_uV > rdev->constraints->max_uV)
166 		*max_uV = rdev->constraints->max_uV;
167 	if (*min_uV < rdev->constraints->min_uV)
168 		*min_uV = rdev->constraints->min_uV;
169 
170 	if (*min_uV > *max_uV) {
171 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172 			 *min_uV, *max_uV);
173 		return -EINVAL;
174 	}
175 
176 	return 0;
177 }
178 
179 /* Make sure we select a voltage that suits the needs of all
180  * regulator consumers
181  */
182 static int regulator_check_consumers(struct regulator_dev *rdev,
183 				     int *min_uV, int *max_uV)
184 {
185 	struct regulator *regulator;
186 
187 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
188 		/*
189 		 * Assume consumers that didn't say anything are OK
190 		 * with anything in the constraint range.
191 		 */
192 		if (!regulator->min_uV && !regulator->max_uV)
193 			continue;
194 
195 		if (*max_uV > regulator->max_uV)
196 			*max_uV = regulator->max_uV;
197 		if (*min_uV < regulator->min_uV)
198 			*min_uV = regulator->min_uV;
199 	}
200 
201 	if (*min_uV > *max_uV)
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /* current constraint check */
208 static int regulator_check_current_limit(struct regulator_dev *rdev,
209 					int *min_uA, int *max_uA)
210 {
211 	BUG_ON(*min_uA > *max_uA);
212 
213 	if (!rdev->constraints) {
214 		rdev_err(rdev, "no constraints\n");
215 		return -ENODEV;
216 	}
217 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218 		rdev_err(rdev, "operation not allowed\n");
219 		return -EPERM;
220 	}
221 
222 	if (*max_uA > rdev->constraints->max_uA)
223 		*max_uA = rdev->constraints->max_uA;
224 	if (*min_uA < rdev->constraints->min_uA)
225 		*min_uA = rdev->constraints->min_uA;
226 
227 	if (*min_uA > *max_uA) {
228 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229 			 *min_uA, *max_uA);
230 		return -EINVAL;
231 	}
232 
233 	return 0;
234 }
235 
236 /* operating mode constraint check */
237 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238 {
239 	switch (*mode) {
240 	case REGULATOR_MODE_FAST:
241 	case REGULATOR_MODE_NORMAL:
242 	case REGULATOR_MODE_IDLE:
243 	case REGULATOR_MODE_STANDBY:
244 		break;
245 	default:
246 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
247 		return -EINVAL;
248 	}
249 
250 	if (!rdev->constraints) {
251 		rdev_err(rdev, "no constraints\n");
252 		return -ENODEV;
253 	}
254 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255 		rdev_err(rdev, "operation not allowed\n");
256 		return -EPERM;
257 	}
258 
259 	/* The modes are bitmasks, the most power hungry modes having
260 	 * the lowest values. If the requested mode isn't supported
261 	 * try higher modes. */
262 	while (*mode) {
263 		if (rdev->constraints->valid_modes_mask & *mode)
264 			return 0;
265 		*mode /= 2;
266 	}
267 
268 	return -EINVAL;
269 }
270 
271 /* dynamic regulator mode switching constraint check */
272 static int regulator_check_drms(struct regulator_dev *rdev)
273 {
274 	if (!rdev->constraints) {
275 		rdev_err(rdev, "no constraints\n");
276 		return -ENODEV;
277 	}
278 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279 		rdev_err(rdev, "operation not allowed\n");
280 		return -EPERM;
281 	}
282 	return 0;
283 }
284 
285 static ssize_t regulator_uV_show(struct device *dev,
286 				struct device_attribute *attr, char *buf)
287 {
288 	struct regulator_dev *rdev = dev_get_drvdata(dev);
289 	ssize_t ret;
290 
291 	mutex_lock(&rdev->mutex);
292 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293 	mutex_unlock(&rdev->mutex);
294 
295 	return ret;
296 }
297 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298 
299 static ssize_t regulator_uA_show(struct device *dev,
300 				struct device_attribute *attr, char *buf)
301 {
302 	struct regulator_dev *rdev = dev_get_drvdata(dev);
303 
304 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305 }
306 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307 
308 static ssize_t regulator_name_show(struct device *dev,
309 			     struct device_attribute *attr, char *buf)
310 {
311 	struct regulator_dev *rdev = dev_get_drvdata(dev);
312 
313 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
314 }
315 
316 static ssize_t regulator_print_opmode(char *buf, int mode)
317 {
318 	switch (mode) {
319 	case REGULATOR_MODE_FAST:
320 		return sprintf(buf, "fast\n");
321 	case REGULATOR_MODE_NORMAL:
322 		return sprintf(buf, "normal\n");
323 	case REGULATOR_MODE_IDLE:
324 		return sprintf(buf, "idle\n");
325 	case REGULATOR_MODE_STANDBY:
326 		return sprintf(buf, "standby\n");
327 	}
328 	return sprintf(buf, "unknown\n");
329 }
330 
331 static ssize_t regulator_opmode_show(struct device *dev,
332 				    struct device_attribute *attr, char *buf)
333 {
334 	struct regulator_dev *rdev = dev_get_drvdata(dev);
335 
336 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337 }
338 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339 
340 static ssize_t regulator_print_state(char *buf, int state)
341 {
342 	if (state > 0)
343 		return sprintf(buf, "enabled\n");
344 	else if (state == 0)
345 		return sprintf(buf, "disabled\n");
346 	else
347 		return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_state_show(struct device *dev,
351 				   struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 	ssize_t ret;
355 
356 	mutex_lock(&rdev->mutex);
357 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358 	mutex_unlock(&rdev->mutex);
359 
360 	return ret;
361 }
362 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363 
364 static ssize_t regulator_status_show(struct device *dev,
365 				   struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 	int status;
369 	char *label;
370 
371 	status = rdev->desc->ops->get_status(rdev);
372 	if (status < 0)
373 		return status;
374 
375 	switch (status) {
376 	case REGULATOR_STATUS_OFF:
377 		label = "off";
378 		break;
379 	case REGULATOR_STATUS_ON:
380 		label = "on";
381 		break;
382 	case REGULATOR_STATUS_ERROR:
383 		label = "error";
384 		break;
385 	case REGULATOR_STATUS_FAST:
386 		label = "fast";
387 		break;
388 	case REGULATOR_STATUS_NORMAL:
389 		label = "normal";
390 		break;
391 	case REGULATOR_STATUS_IDLE:
392 		label = "idle";
393 		break;
394 	case REGULATOR_STATUS_STANDBY:
395 		label = "standby";
396 		break;
397 	case REGULATOR_STATUS_UNDEFINED:
398 		label = "undefined";
399 		break;
400 	default:
401 		return -ERANGE;
402 	}
403 
404 	return sprintf(buf, "%s\n", label);
405 }
406 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
407 
408 static ssize_t regulator_min_uA_show(struct device *dev,
409 				    struct device_attribute *attr, char *buf)
410 {
411 	struct regulator_dev *rdev = dev_get_drvdata(dev);
412 
413 	if (!rdev->constraints)
414 		return sprintf(buf, "constraint not defined\n");
415 
416 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
417 }
418 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419 
420 static ssize_t regulator_max_uA_show(struct device *dev,
421 				    struct device_attribute *attr, char *buf)
422 {
423 	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 
425 	if (!rdev->constraints)
426 		return sprintf(buf, "constraint not defined\n");
427 
428 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
429 }
430 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431 
432 static ssize_t regulator_min_uV_show(struct device *dev,
433 				    struct device_attribute *attr, char *buf)
434 {
435 	struct regulator_dev *rdev = dev_get_drvdata(dev);
436 
437 	if (!rdev->constraints)
438 		return sprintf(buf, "constraint not defined\n");
439 
440 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
441 }
442 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443 
444 static ssize_t regulator_max_uV_show(struct device *dev,
445 				    struct device_attribute *attr, char *buf)
446 {
447 	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 
449 	if (!rdev->constraints)
450 		return sprintf(buf, "constraint not defined\n");
451 
452 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
453 }
454 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455 
456 static ssize_t regulator_total_uA_show(struct device *dev,
457 				      struct device_attribute *attr, char *buf)
458 {
459 	struct regulator_dev *rdev = dev_get_drvdata(dev);
460 	struct regulator *regulator;
461 	int uA = 0;
462 
463 	mutex_lock(&rdev->mutex);
464 	list_for_each_entry(regulator, &rdev->consumer_list, list)
465 		uA += regulator->uA_load;
466 	mutex_unlock(&rdev->mutex);
467 	return sprintf(buf, "%d\n", uA);
468 }
469 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470 
471 static ssize_t regulator_num_users_show(struct device *dev,
472 				      struct device_attribute *attr, char *buf)
473 {
474 	struct regulator_dev *rdev = dev_get_drvdata(dev);
475 	return sprintf(buf, "%d\n", rdev->use_count);
476 }
477 
478 static ssize_t regulator_type_show(struct device *dev,
479 				  struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	switch (rdev->desc->type) {
484 	case REGULATOR_VOLTAGE:
485 		return sprintf(buf, "voltage\n");
486 	case REGULATOR_CURRENT:
487 		return sprintf(buf, "current\n");
488 	}
489 	return sprintf(buf, "unknown\n");
490 }
491 
492 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493 				struct device_attribute *attr, char *buf)
494 {
495 	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
498 }
499 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500 		regulator_suspend_mem_uV_show, NULL);
501 
502 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503 				struct device_attribute *attr, char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 
507 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
508 }
509 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510 		regulator_suspend_disk_uV_show, NULL);
511 
512 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513 				struct device_attribute *attr, char *buf)
514 {
515 	struct regulator_dev *rdev = dev_get_drvdata(dev);
516 
517 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
518 }
519 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520 		regulator_suspend_standby_uV_show, NULL);
521 
522 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 
527 	return regulator_print_opmode(buf,
528 		rdev->constraints->state_mem.mode);
529 }
530 static DEVICE_ATTR(suspend_mem_mode, 0444,
531 		regulator_suspend_mem_mode_show, NULL);
532 
533 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534 				struct device_attribute *attr, char *buf)
535 {
536 	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 
538 	return regulator_print_opmode(buf,
539 		rdev->constraints->state_disk.mode);
540 }
541 static DEVICE_ATTR(suspend_disk_mode, 0444,
542 		regulator_suspend_disk_mode_show, NULL);
543 
544 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545 				struct device_attribute *attr, char *buf)
546 {
547 	struct regulator_dev *rdev = dev_get_drvdata(dev);
548 
549 	return regulator_print_opmode(buf,
550 		rdev->constraints->state_standby.mode);
551 }
552 static DEVICE_ATTR(suspend_standby_mode, 0444,
553 		regulator_suspend_standby_mode_show, NULL);
554 
555 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556 				   struct device_attribute *attr, char *buf)
557 {
558 	struct regulator_dev *rdev = dev_get_drvdata(dev);
559 
560 	return regulator_print_state(buf,
561 			rdev->constraints->state_mem.enabled);
562 }
563 static DEVICE_ATTR(suspend_mem_state, 0444,
564 		regulator_suspend_mem_state_show, NULL);
565 
566 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567 				   struct device_attribute *attr, char *buf)
568 {
569 	struct regulator_dev *rdev = dev_get_drvdata(dev);
570 
571 	return regulator_print_state(buf,
572 			rdev->constraints->state_disk.enabled);
573 }
574 static DEVICE_ATTR(suspend_disk_state, 0444,
575 		regulator_suspend_disk_state_show, NULL);
576 
577 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578 				   struct device_attribute *attr, char *buf)
579 {
580 	struct regulator_dev *rdev = dev_get_drvdata(dev);
581 
582 	return regulator_print_state(buf,
583 			rdev->constraints->state_standby.enabled);
584 }
585 static DEVICE_ATTR(suspend_standby_state, 0444,
586 		regulator_suspend_standby_state_show, NULL);
587 
588 
589 /*
590  * These are the only attributes are present for all regulators.
591  * Other attributes are a function of regulator functionality.
592  */
593 static struct device_attribute regulator_dev_attrs[] = {
594 	__ATTR(name, 0444, regulator_name_show, NULL),
595 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
596 	__ATTR(type, 0444, regulator_type_show, NULL),
597 	__ATTR_NULL,
598 };
599 
600 static void regulator_dev_release(struct device *dev)
601 {
602 	struct regulator_dev *rdev = dev_get_drvdata(dev);
603 	kfree(rdev);
604 }
605 
606 static struct class regulator_class = {
607 	.name = "regulator",
608 	.dev_release = regulator_dev_release,
609 	.dev_attrs = regulator_dev_attrs,
610 };
611 
612 /* Calculate the new optimum regulator operating mode based on the new total
613  * consumer load. All locks held by caller */
614 static void drms_uA_update(struct regulator_dev *rdev)
615 {
616 	struct regulator *sibling;
617 	int current_uA = 0, output_uV, input_uV, err;
618 	unsigned int mode;
619 
620 	err = regulator_check_drms(rdev);
621 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622 	    (!rdev->desc->ops->get_voltage &&
623 	     !rdev->desc->ops->get_voltage_sel) ||
624 	    !rdev->desc->ops->set_mode)
625 		return;
626 
627 	/* get output voltage */
628 	output_uV = _regulator_get_voltage(rdev);
629 	if (output_uV <= 0)
630 		return;
631 
632 	/* get input voltage */
633 	input_uV = 0;
634 	if (rdev->supply)
635 		input_uV = regulator_get_voltage(rdev->supply);
636 	if (input_uV <= 0)
637 		input_uV = rdev->constraints->input_uV;
638 	if (input_uV <= 0)
639 		return;
640 
641 	/* calc total requested load */
642 	list_for_each_entry(sibling, &rdev->consumer_list, list)
643 		current_uA += sibling->uA_load;
644 
645 	/* now get the optimum mode for our new total regulator load */
646 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647 						  output_uV, current_uA);
648 
649 	/* check the new mode is allowed */
650 	err = regulator_mode_constrain(rdev, &mode);
651 	if (err == 0)
652 		rdev->desc->ops->set_mode(rdev, mode);
653 }
654 
655 static int suspend_set_state(struct regulator_dev *rdev,
656 	struct regulator_state *rstate)
657 {
658 	int ret = 0;
659 
660 	/* If we have no suspend mode configration don't set anything;
661 	 * only warn if the driver implements set_suspend_voltage or
662 	 * set_suspend_mode callback.
663 	 */
664 	if (!rstate->enabled && !rstate->disabled) {
665 		if (rdev->desc->ops->set_suspend_voltage ||
666 		    rdev->desc->ops->set_suspend_mode)
667 			rdev_warn(rdev, "No configuration\n");
668 		return 0;
669 	}
670 
671 	if (rstate->enabled && rstate->disabled) {
672 		rdev_err(rdev, "invalid configuration\n");
673 		return -EINVAL;
674 	}
675 
676 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677 		ret = rdev->desc->ops->set_suspend_enable(rdev);
678 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679 		ret = rdev->desc->ops->set_suspend_disable(rdev);
680 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681 		ret = 0;
682 
683 	if (ret < 0) {
684 		rdev_err(rdev, "failed to enabled/disable\n");
685 		return ret;
686 	}
687 
688 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690 		if (ret < 0) {
691 			rdev_err(rdev, "failed to set voltage\n");
692 			return ret;
693 		}
694 	}
695 
696 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698 		if (ret < 0) {
699 			rdev_err(rdev, "failed to set mode\n");
700 			return ret;
701 		}
702 	}
703 	return ret;
704 }
705 
706 /* locks held by caller */
707 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
708 {
709 	if (!rdev->constraints)
710 		return -EINVAL;
711 
712 	switch (state) {
713 	case PM_SUSPEND_STANDBY:
714 		return suspend_set_state(rdev,
715 			&rdev->constraints->state_standby);
716 	case PM_SUSPEND_MEM:
717 		return suspend_set_state(rdev,
718 			&rdev->constraints->state_mem);
719 	case PM_SUSPEND_MAX:
720 		return suspend_set_state(rdev,
721 			&rdev->constraints->state_disk);
722 	default:
723 		return -EINVAL;
724 	}
725 }
726 
727 static void print_constraints(struct regulator_dev *rdev)
728 {
729 	struct regulation_constraints *constraints = rdev->constraints;
730 	char buf[80] = "";
731 	int count = 0;
732 	int ret;
733 
734 	if (constraints->min_uV && constraints->max_uV) {
735 		if (constraints->min_uV == constraints->max_uV)
736 			count += sprintf(buf + count, "%d mV ",
737 					 constraints->min_uV / 1000);
738 		else
739 			count += sprintf(buf + count, "%d <--> %d mV ",
740 					 constraints->min_uV / 1000,
741 					 constraints->max_uV / 1000);
742 	}
743 
744 	if (!constraints->min_uV ||
745 	    constraints->min_uV != constraints->max_uV) {
746 		ret = _regulator_get_voltage(rdev);
747 		if (ret > 0)
748 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
749 	}
750 
751 	if (constraints->uV_offset)
752 		count += sprintf(buf, "%dmV offset ",
753 				 constraints->uV_offset / 1000);
754 
755 	if (constraints->min_uA && constraints->max_uA) {
756 		if (constraints->min_uA == constraints->max_uA)
757 			count += sprintf(buf + count, "%d mA ",
758 					 constraints->min_uA / 1000);
759 		else
760 			count += sprintf(buf + count, "%d <--> %d mA ",
761 					 constraints->min_uA / 1000,
762 					 constraints->max_uA / 1000);
763 	}
764 
765 	if (!constraints->min_uA ||
766 	    constraints->min_uA != constraints->max_uA) {
767 		ret = _regulator_get_current_limit(rdev);
768 		if (ret > 0)
769 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
770 	}
771 
772 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773 		count += sprintf(buf + count, "fast ");
774 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775 		count += sprintf(buf + count, "normal ");
776 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777 		count += sprintf(buf + count, "idle ");
778 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779 		count += sprintf(buf + count, "standby");
780 
781 	rdev_info(rdev, "%s\n", buf);
782 
783 	if ((constraints->min_uV != constraints->max_uV) &&
784 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
785 		rdev_warn(rdev,
786 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
787 }
788 
789 static int machine_constraints_voltage(struct regulator_dev *rdev,
790 	struct regulation_constraints *constraints)
791 {
792 	struct regulator_ops *ops = rdev->desc->ops;
793 	int ret;
794 
795 	/* do we need to apply the constraint voltage */
796 	if (rdev->constraints->apply_uV &&
797 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
798 		ret = _regulator_do_set_voltage(rdev,
799 						rdev->constraints->min_uV,
800 						rdev->constraints->max_uV);
801 		if (ret < 0) {
802 			rdev_err(rdev, "failed to apply %duV constraint\n",
803 				 rdev->constraints->min_uV);
804 			return ret;
805 		}
806 	}
807 
808 	/* constrain machine-level voltage specs to fit
809 	 * the actual range supported by this regulator.
810 	 */
811 	if (ops->list_voltage && rdev->desc->n_voltages) {
812 		int	count = rdev->desc->n_voltages;
813 		int	i;
814 		int	min_uV = INT_MAX;
815 		int	max_uV = INT_MIN;
816 		int	cmin = constraints->min_uV;
817 		int	cmax = constraints->max_uV;
818 
819 		/* it's safe to autoconfigure fixed-voltage supplies
820 		   and the constraints are used by list_voltage. */
821 		if (count == 1 && !cmin) {
822 			cmin = 1;
823 			cmax = INT_MAX;
824 			constraints->min_uV = cmin;
825 			constraints->max_uV = cmax;
826 		}
827 
828 		/* voltage constraints are optional */
829 		if ((cmin == 0) && (cmax == 0))
830 			return 0;
831 
832 		/* else require explicit machine-level constraints */
833 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
834 			rdev_err(rdev, "invalid voltage constraints\n");
835 			return -EINVAL;
836 		}
837 
838 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
839 		for (i = 0; i < count; i++) {
840 			int	value;
841 
842 			value = ops->list_voltage(rdev, i);
843 			if (value <= 0)
844 				continue;
845 
846 			/* maybe adjust [min_uV..max_uV] */
847 			if (value >= cmin && value < min_uV)
848 				min_uV = value;
849 			if (value <= cmax && value > max_uV)
850 				max_uV = value;
851 		}
852 
853 		/* final: [min_uV..max_uV] valid iff constraints valid */
854 		if (max_uV < min_uV) {
855 			rdev_err(rdev, "unsupportable voltage constraints\n");
856 			return -EINVAL;
857 		}
858 
859 		/* use regulator's subset of machine constraints */
860 		if (constraints->min_uV < min_uV) {
861 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
862 				 constraints->min_uV, min_uV);
863 			constraints->min_uV = min_uV;
864 		}
865 		if (constraints->max_uV > max_uV) {
866 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
867 				 constraints->max_uV, max_uV);
868 			constraints->max_uV = max_uV;
869 		}
870 	}
871 
872 	return 0;
873 }
874 
875 /**
876  * set_machine_constraints - sets regulator constraints
877  * @rdev: regulator source
878  * @constraints: constraints to apply
879  *
880  * Allows platform initialisation code to define and constrain
881  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
882  * Constraints *must* be set by platform code in order for some
883  * regulator operations to proceed i.e. set_voltage, set_current_limit,
884  * set_mode.
885  */
886 static int set_machine_constraints(struct regulator_dev *rdev,
887 	const struct regulation_constraints *constraints)
888 {
889 	int ret = 0;
890 	struct regulator_ops *ops = rdev->desc->ops;
891 
892 	if (constraints)
893 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
894 					    GFP_KERNEL);
895 	else
896 		rdev->constraints = kzalloc(sizeof(*constraints),
897 					    GFP_KERNEL);
898 	if (!rdev->constraints)
899 		return -ENOMEM;
900 
901 	ret = machine_constraints_voltage(rdev, rdev->constraints);
902 	if (ret != 0)
903 		goto out;
904 
905 	/* do we need to setup our suspend state */
906 	if (rdev->constraints->initial_state) {
907 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
908 		if (ret < 0) {
909 			rdev_err(rdev, "failed to set suspend state\n");
910 			goto out;
911 		}
912 	}
913 
914 	if (rdev->constraints->initial_mode) {
915 		if (!ops->set_mode) {
916 			rdev_err(rdev, "no set_mode operation\n");
917 			ret = -EINVAL;
918 			goto out;
919 		}
920 
921 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
922 		if (ret < 0) {
923 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
924 			goto out;
925 		}
926 	}
927 
928 	/* If the constraints say the regulator should be on at this point
929 	 * and we have control then make sure it is enabled.
930 	 */
931 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
932 	    ops->enable) {
933 		ret = ops->enable(rdev);
934 		if (ret < 0) {
935 			rdev_err(rdev, "failed to enable\n");
936 			goto out;
937 		}
938 	}
939 
940 	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
941 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
942 		if (ret < 0) {
943 			rdev_err(rdev, "failed to set ramp_delay\n");
944 			goto out;
945 		}
946 	}
947 
948 	print_constraints(rdev);
949 	return 0;
950 out:
951 	kfree(rdev->constraints);
952 	rdev->constraints = NULL;
953 	return ret;
954 }
955 
956 /**
957  * set_supply - set regulator supply regulator
958  * @rdev: regulator name
959  * @supply_rdev: supply regulator name
960  *
961  * Called by platform initialisation code to set the supply regulator for this
962  * regulator. This ensures that a regulators supply will also be enabled by the
963  * core if it's child is enabled.
964  */
965 static int set_supply(struct regulator_dev *rdev,
966 		      struct regulator_dev *supply_rdev)
967 {
968 	int err;
969 
970 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
971 
972 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
973 	if (rdev->supply == NULL) {
974 		err = -ENOMEM;
975 		return err;
976 	}
977 
978 	return 0;
979 }
980 
981 /**
982  * set_consumer_device_supply - Bind a regulator to a symbolic supply
983  * @rdev:         regulator source
984  * @consumer_dev_name: dev_name() string for device supply applies to
985  * @supply:       symbolic name for supply
986  *
987  * Allows platform initialisation code to map physical regulator
988  * sources to symbolic names for supplies for use by devices.  Devices
989  * should use these symbolic names to request regulators, avoiding the
990  * need to provide board-specific regulator names as platform data.
991  */
992 static int set_consumer_device_supply(struct regulator_dev *rdev,
993 				      const char *consumer_dev_name,
994 				      const char *supply)
995 {
996 	struct regulator_map *node;
997 	int has_dev;
998 
999 	if (supply == NULL)
1000 		return -EINVAL;
1001 
1002 	if (consumer_dev_name != NULL)
1003 		has_dev = 1;
1004 	else
1005 		has_dev = 0;
1006 
1007 	list_for_each_entry(node, &regulator_map_list, list) {
1008 		if (node->dev_name && consumer_dev_name) {
1009 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010 				continue;
1011 		} else if (node->dev_name || consumer_dev_name) {
1012 			continue;
1013 		}
1014 
1015 		if (strcmp(node->supply, supply) != 0)
1016 			continue;
1017 
1018 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019 			 consumer_dev_name,
1020 			 dev_name(&node->regulator->dev),
1021 			 node->regulator->desc->name,
1022 			 supply,
1023 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1024 		return -EBUSY;
1025 	}
1026 
1027 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028 	if (node == NULL)
1029 		return -ENOMEM;
1030 
1031 	node->regulator = rdev;
1032 	node->supply = supply;
1033 
1034 	if (has_dev) {
1035 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036 		if (node->dev_name == NULL) {
1037 			kfree(node);
1038 			return -ENOMEM;
1039 		}
1040 	}
1041 
1042 	list_add(&node->list, &regulator_map_list);
1043 	return 0;
1044 }
1045 
1046 static void unset_regulator_supplies(struct regulator_dev *rdev)
1047 {
1048 	struct regulator_map *node, *n;
1049 
1050 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051 		if (rdev == node->regulator) {
1052 			list_del(&node->list);
1053 			kfree(node->dev_name);
1054 			kfree(node);
1055 		}
1056 	}
1057 }
1058 
1059 #define REG_STR_SIZE	64
1060 
1061 static struct regulator *create_regulator(struct regulator_dev *rdev,
1062 					  struct device *dev,
1063 					  const char *supply_name)
1064 {
1065 	struct regulator *regulator;
1066 	char buf[REG_STR_SIZE];
1067 	int err, size;
1068 
1069 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070 	if (regulator == NULL)
1071 		return NULL;
1072 
1073 	mutex_lock(&rdev->mutex);
1074 	regulator->rdev = rdev;
1075 	list_add(&regulator->list, &rdev->consumer_list);
1076 
1077 	if (dev) {
1078 		regulator->dev = dev;
1079 
1080 		/* Add a link to the device sysfs entry */
1081 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082 				 dev->kobj.name, supply_name);
1083 		if (size >= REG_STR_SIZE)
1084 			goto overflow_err;
1085 
1086 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087 		if (regulator->supply_name == NULL)
1088 			goto overflow_err;
1089 
1090 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091 					buf);
1092 		if (err) {
1093 			rdev_warn(rdev, "could not add device link %s err %d\n",
1094 				  dev->kobj.name, err);
1095 			/* non-fatal */
1096 		}
1097 	} else {
1098 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099 		if (regulator->supply_name == NULL)
1100 			goto overflow_err;
1101 	}
1102 
1103 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104 						rdev->debugfs);
1105 	if (!regulator->debugfs) {
1106 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1107 	} else {
1108 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109 				   &regulator->uA_load);
1110 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111 				   &regulator->min_uV);
1112 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113 				   &regulator->max_uV);
1114 	}
1115 
1116 	/*
1117 	 * Check now if the regulator is an always on regulator - if
1118 	 * it is then we don't need to do nearly so much work for
1119 	 * enable/disable calls.
1120 	 */
1121 	if (!_regulator_can_change_status(rdev) &&
1122 	    _regulator_is_enabled(rdev))
1123 		regulator->always_on = true;
1124 
1125 	mutex_unlock(&rdev->mutex);
1126 	return regulator;
1127 overflow_err:
1128 	list_del(&regulator->list);
1129 	kfree(regulator);
1130 	mutex_unlock(&rdev->mutex);
1131 	return NULL;
1132 }
1133 
1134 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1135 {
1136 	if (!rdev->desc->ops->enable_time)
1137 		return rdev->desc->enable_time;
1138 	return rdev->desc->ops->enable_time(rdev);
1139 }
1140 
1141 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142 						  const char *supply,
1143 						  int *ret)
1144 {
1145 	struct regulator_dev *r;
1146 	struct device_node *node;
1147 	struct regulator_map *map;
1148 	const char *devname = NULL;
1149 
1150 	/* first do a dt based lookup */
1151 	if (dev && dev->of_node) {
1152 		node = of_get_regulator(dev, supply);
1153 		if (node) {
1154 			list_for_each_entry(r, &regulator_list, list)
1155 				if (r->dev.parent &&
1156 					node == r->dev.of_node)
1157 					return r;
1158 		} else {
1159 			/*
1160 			 * If we couldn't even get the node then it's
1161 			 * not just that the device didn't register
1162 			 * yet, there's no node and we'll never
1163 			 * succeed.
1164 			 */
1165 			*ret = -ENODEV;
1166 		}
1167 	}
1168 
1169 	/* if not found, try doing it non-dt way */
1170 	if (dev)
1171 		devname = dev_name(dev);
1172 
1173 	list_for_each_entry(r, &regulator_list, list)
1174 		if (strcmp(rdev_get_name(r), supply) == 0)
1175 			return r;
1176 
1177 	list_for_each_entry(map, &regulator_map_list, list) {
1178 		/* If the mapping has a device set up it must match */
1179 		if (map->dev_name &&
1180 		    (!devname || strcmp(map->dev_name, devname)))
1181 			continue;
1182 
1183 		if (strcmp(map->supply, supply) == 0)
1184 			return map->regulator;
1185 	}
1186 
1187 
1188 	return NULL;
1189 }
1190 
1191 /* Internal regulator request function */
1192 static struct regulator *_regulator_get(struct device *dev, const char *id,
1193 					int exclusive)
1194 {
1195 	struct regulator_dev *rdev;
1196 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197 	const char *devname = NULL;
1198 	int ret;
1199 
1200 	if (id == NULL) {
1201 		pr_err("get() with no identifier\n");
1202 		return regulator;
1203 	}
1204 
1205 	if (dev)
1206 		devname = dev_name(dev);
1207 
1208 	mutex_lock(&regulator_list_mutex);
1209 
1210 	rdev = regulator_dev_lookup(dev, id, &ret);
1211 	if (rdev)
1212 		goto found;
1213 
1214 	if (board_wants_dummy_regulator) {
1215 		rdev = dummy_regulator_rdev;
1216 		goto found;
1217 	}
1218 
1219 #ifdef CONFIG_REGULATOR_DUMMY
1220 	if (!devname)
1221 		devname = "deviceless";
1222 
1223 	/* If the board didn't flag that it was fully constrained then
1224 	 * substitute in a dummy regulator so consumers can continue.
1225 	 */
1226 	if (!has_full_constraints) {
1227 		pr_warn("%s supply %s not found, using dummy regulator\n",
1228 			devname, id);
1229 		rdev = dummy_regulator_rdev;
1230 		goto found;
1231 	}
1232 #endif
1233 
1234 	mutex_unlock(&regulator_list_mutex);
1235 	return regulator;
1236 
1237 found:
1238 	if (rdev->exclusive) {
1239 		regulator = ERR_PTR(-EPERM);
1240 		goto out;
1241 	}
1242 
1243 	if (exclusive && rdev->open_count) {
1244 		regulator = ERR_PTR(-EBUSY);
1245 		goto out;
1246 	}
1247 
1248 	if (!try_module_get(rdev->owner))
1249 		goto out;
1250 
1251 	regulator = create_regulator(rdev, dev, id);
1252 	if (regulator == NULL) {
1253 		regulator = ERR_PTR(-ENOMEM);
1254 		module_put(rdev->owner);
1255 		goto out;
1256 	}
1257 
1258 	rdev->open_count++;
1259 	if (exclusive) {
1260 		rdev->exclusive = 1;
1261 
1262 		ret = _regulator_is_enabled(rdev);
1263 		if (ret > 0)
1264 			rdev->use_count = 1;
1265 		else
1266 			rdev->use_count = 0;
1267 	}
1268 
1269 out:
1270 	mutex_unlock(&regulator_list_mutex);
1271 
1272 	return regulator;
1273 }
1274 
1275 /**
1276  * regulator_get - lookup and obtain a reference to a regulator.
1277  * @dev: device for regulator "consumer"
1278  * @id: Supply name or regulator ID.
1279  *
1280  * Returns a struct regulator corresponding to the regulator producer,
1281  * or IS_ERR() condition containing errno.
1282  *
1283  * Use of supply names configured via regulator_set_device_supply() is
1284  * strongly encouraged.  It is recommended that the supply name used
1285  * should match the name used for the supply and/or the relevant
1286  * device pins in the datasheet.
1287  */
1288 struct regulator *regulator_get(struct device *dev, const char *id)
1289 {
1290 	return _regulator_get(dev, id, 0);
1291 }
1292 EXPORT_SYMBOL_GPL(regulator_get);
1293 
1294 static void devm_regulator_release(struct device *dev, void *res)
1295 {
1296 	regulator_put(*(struct regulator **)res);
1297 }
1298 
1299 /**
1300  * devm_regulator_get - Resource managed regulator_get()
1301  * @dev: device for regulator "consumer"
1302  * @id: Supply name or regulator ID.
1303  *
1304  * Managed regulator_get(). Regulators returned from this function are
1305  * automatically regulator_put() on driver detach. See regulator_get() for more
1306  * information.
1307  */
1308 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1309 {
1310 	struct regulator **ptr, *regulator;
1311 
1312 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313 	if (!ptr)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	regulator = regulator_get(dev, id);
1317 	if (!IS_ERR(regulator)) {
1318 		*ptr = regulator;
1319 		devres_add(dev, ptr);
1320 	} else {
1321 		devres_free(ptr);
1322 	}
1323 
1324 	return regulator;
1325 }
1326 EXPORT_SYMBOL_GPL(devm_regulator_get);
1327 
1328 /**
1329  * regulator_get_exclusive - obtain exclusive access to a regulator.
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Returns a struct regulator corresponding to the regulator producer,
1334  * or IS_ERR() condition containing errno.  Other consumers will be
1335  * unable to obtain this reference is held and the use count for the
1336  * regulator will be initialised to reflect the current state of the
1337  * regulator.
1338  *
1339  * This is intended for use by consumers which cannot tolerate shared
1340  * use of the regulator such as those which need to force the
1341  * regulator off for correct operation of the hardware they are
1342  * controlling.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1350 {
1351 	return _regulator_get(dev, id, 1);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1354 
1355 /**
1356  * regulator_put - "free" the regulator source
1357  * @regulator: regulator source
1358  *
1359  * Note: drivers must ensure that all regulator_enable calls made on this
1360  * regulator source are balanced by regulator_disable calls prior to calling
1361  * this function.
1362  */
1363 void regulator_put(struct regulator *regulator)
1364 {
1365 	struct regulator_dev *rdev;
1366 
1367 	if (regulator == NULL || IS_ERR(regulator))
1368 		return;
1369 
1370 	mutex_lock(&regulator_list_mutex);
1371 	rdev = regulator->rdev;
1372 
1373 	debugfs_remove_recursive(regulator->debugfs);
1374 
1375 	/* remove any sysfs entries */
1376 	if (regulator->dev)
1377 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378 	kfree(regulator->supply_name);
1379 	list_del(&regulator->list);
1380 	kfree(regulator);
1381 
1382 	rdev->open_count--;
1383 	rdev->exclusive = 0;
1384 
1385 	module_put(rdev->owner);
1386 	mutex_unlock(&regulator_list_mutex);
1387 }
1388 EXPORT_SYMBOL_GPL(regulator_put);
1389 
1390 static int devm_regulator_match(struct device *dev, void *res, void *data)
1391 {
1392 	struct regulator **r = res;
1393 	if (!r || !*r) {
1394 		WARN_ON(!r || !*r);
1395 		return 0;
1396 	}
1397 	return *r == data;
1398 }
1399 
1400 /**
1401  * devm_regulator_put - Resource managed regulator_put()
1402  * @regulator: regulator to free
1403  *
1404  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405  * this function will not need to be called and the resource management
1406  * code will ensure that the resource is freed.
1407  */
1408 void devm_regulator_put(struct regulator *regulator)
1409 {
1410 	int rc;
1411 
1412 	rc = devres_release(regulator->dev, devm_regulator_release,
1413 			    devm_regulator_match, regulator);
1414 	if (rc != 0)
1415 		WARN_ON(rc);
1416 }
1417 EXPORT_SYMBOL_GPL(devm_regulator_put);
1418 
1419 static int _regulator_do_enable(struct regulator_dev *rdev)
1420 {
1421 	int ret, delay;
1422 
1423 	/* Query before enabling in case configuration dependent.  */
1424 	ret = _regulator_get_enable_time(rdev);
1425 	if (ret >= 0) {
1426 		delay = ret;
1427 	} else {
1428 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429 		delay = 0;
1430 	}
1431 
1432 	trace_regulator_enable(rdev_get_name(rdev));
1433 
1434 	if (rdev->ena_gpio) {
1435 		gpio_set_value_cansleep(rdev->ena_gpio,
1436 					!rdev->ena_gpio_invert);
1437 		rdev->ena_gpio_state = 1;
1438 	} else if (rdev->desc->ops->enable) {
1439 		ret = rdev->desc->ops->enable(rdev);
1440 		if (ret < 0)
1441 			return ret;
1442 	} else {
1443 		return -EINVAL;
1444 	}
1445 
1446 	/* Allow the regulator to ramp; it would be useful to extend
1447 	 * this for bulk operations so that the regulators can ramp
1448 	 * together.  */
1449 	trace_regulator_enable_delay(rdev_get_name(rdev));
1450 
1451 	if (delay >= 1000) {
1452 		mdelay(delay / 1000);
1453 		udelay(delay % 1000);
1454 	} else if (delay) {
1455 		udelay(delay);
1456 	}
1457 
1458 	trace_regulator_enable_complete(rdev_get_name(rdev));
1459 
1460 	return 0;
1461 }
1462 
1463 /* locks held by regulator_enable() */
1464 static int _regulator_enable(struct regulator_dev *rdev)
1465 {
1466 	int ret;
1467 
1468 	/* check voltage and requested load before enabling */
1469 	if (rdev->constraints &&
1470 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471 		drms_uA_update(rdev);
1472 
1473 	if (rdev->use_count == 0) {
1474 		/* The regulator may on if it's not switchable or left on */
1475 		ret = _regulator_is_enabled(rdev);
1476 		if (ret == -EINVAL || ret == 0) {
1477 			if (!_regulator_can_change_status(rdev))
1478 				return -EPERM;
1479 
1480 			ret = _regulator_do_enable(rdev);
1481 			if (ret < 0)
1482 				return ret;
1483 
1484 		} else if (ret < 0) {
1485 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486 			return ret;
1487 		}
1488 		/* Fallthrough on positive return values - already enabled */
1489 	}
1490 
1491 	rdev->use_count++;
1492 
1493 	return 0;
1494 }
1495 
1496 /**
1497  * regulator_enable - enable regulator output
1498  * @regulator: regulator source
1499  *
1500  * Request that the regulator be enabled with the regulator output at
1501  * the predefined voltage or current value.  Calls to regulator_enable()
1502  * must be balanced with calls to regulator_disable().
1503  *
1504  * NOTE: the output value can be set by other drivers, boot loader or may be
1505  * hardwired in the regulator.
1506  */
1507 int regulator_enable(struct regulator *regulator)
1508 {
1509 	struct regulator_dev *rdev = regulator->rdev;
1510 	int ret = 0;
1511 
1512 	if (regulator->always_on)
1513 		return 0;
1514 
1515 	if (rdev->supply) {
1516 		ret = regulator_enable(rdev->supply);
1517 		if (ret != 0)
1518 			return ret;
1519 	}
1520 
1521 	mutex_lock(&rdev->mutex);
1522 	ret = _regulator_enable(rdev);
1523 	mutex_unlock(&rdev->mutex);
1524 
1525 	if (ret != 0 && rdev->supply)
1526 		regulator_disable(rdev->supply);
1527 
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_enable);
1531 
1532 static int _regulator_do_disable(struct regulator_dev *rdev)
1533 {
1534 	int ret;
1535 
1536 	trace_regulator_disable(rdev_get_name(rdev));
1537 
1538 	if (rdev->ena_gpio) {
1539 		gpio_set_value_cansleep(rdev->ena_gpio,
1540 					rdev->ena_gpio_invert);
1541 		rdev->ena_gpio_state = 0;
1542 
1543 	} else if (rdev->desc->ops->disable) {
1544 		ret = rdev->desc->ops->disable(rdev);
1545 		if (ret != 0)
1546 			return ret;
1547 	}
1548 
1549 	trace_regulator_disable_complete(rdev_get_name(rdev));
1550 
1551 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552 			     NULL);
1553 	return 0;
1554 }
1555 
1556 /* locks held by regulator_disable() */
1557 static int _regulator_disable(struct regulator_dev *rdev)
1558 {
1559 	int ret = 0;
1560 
1561 	if (WARN(rdev->use_count <= 0,
1562 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563 		return -EIO;
1564 
1565 	/* are we the last user and permitted to disable ? */
1566 	if (rdev->use_count == 1 &&
1567 	    (rdev->constraints && !rdev->constraints->always_on)) {
1568 
1569 		/* we are last user */
1570 		if (_regulator_can_change_status(rdev)) {
1571 			ret = _regulator_do_disable(rdev);
1572 			if (ret < 0) {
1573 				rdev_err(rdev, "failed to disable\n");
1574 				return ret;
1575 			}
1576 		}
1577 
1578 		rdev->use_count = 0;
1579 	} else if (rdev->use_count > 1) {
1580 
1581 		if (rdev->constraints &&
1582 			(rdev->constraints->valid_ops_mask &
1583 			REGULATOR_CHANGE_DRMS))
1584 			drms_uA_update(rdev);
1585 
1586 		rdev->use_count--;
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 /**
1593  * regulator_disable - disable regulator output
1594  * @regulator: regulator source
1595  *
1596  * Disable the regulator output voltage or current.  Calls to
1597  * regulator_enable() must be balanced with calls to
1598  * regulator_disable().
1599  *
1600  * NOTE: this will only disable the regulator output if no other consumer
1601  * devices have it enabled, the regulator device supports disabling and
1602  * machine constraints permit this operation.
1603  */
1604 int regulator_disable(struct regulator *regulator)
1605 {
1606 	struct regulator_dev *rdev = regulator->rdev;
1607 	int ret = 0;
1608 
1609 	if (regulator->always_on)
1610 		return 0;
1611 
1612 	mutex_lock(&rdev->mutex);
1613 	ret = _regulator_disable(rdev);
1614 	mutex_unlock(&rdev->mutex);
1615 
1616 	if (ret == 0 && rdev->supply)
1617 		regulator_disable(rdev->supply);
1618 
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regulator_disable);
1622 
1623 /* locks held by regulator_force_disable() */
1624 static int _regulator_force_disable(struct regulator_dev *rdev)
1625 {
1626 	int ret = 0;
1627 
1628 	/* force disable */
1629 	if (rdev->desc->ops->disable) {
1630 		/* ah well, who wants to live forever... */
1631 		ret = rdev->desc->ops->disable(rdev);
1632 		if (ret < 0) {
1633 			rdev_err(rdev, "failed to force disable\n");
1634 			return ret;
1635 		}
1636 		/* notify other consumers that power has been forced off */
1637 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638 			REGULATOR_EVENT_DISABLE, NULL);
1639 	}
1640 
1641 	return ret;
1642 }
1643 
1644 /**
1645  * regulator_force_disable - force disable regulator output
1646  * @regulator: regulator source
1647  *
1648  * Forcibly disable the regulator output voltage or current.
1649  * NOTE: this *will* disable the regulator output even if other consumer
1650  * devices have it enabled. This should be used for situations when device
1651  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1652  */
1653 int regulator_force_disable(struct regulator *regulator)
1654 {
1655 	struct regulator_dev *rdev = regulator->rdev;
1656 	int ret;
1657 
1658 	mutex_lock(&rdev->mutex);
1659 	regulator->uA_load = 0;
1660 	ret = _regulator_force_disable(regulator->rdev);
1661 	mutex_unlock(&rdev->mutex);
1662 
1663 	if (rdev->supply)
1664 		while (rdev->open_count--)
1665 			regulator_disable(rdev->supply);
1666 
1667 	return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(regulator_force_disable);
1670 
1671 static void regulator_disable_work(struct work_struct *work)
1672 {
1673 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674 						  disable_work.work);
1675 	int count, i, ret;
1676 
1677 	mutex_lock(&rdev->mutex);
1678 
1679 	BUG_ON(!rdev->deferred_disables);
1680 
1681 	count = rdev->deferred_disables;
1682 	rdev->deferred_disables = 0;
1683 
1684 	for (i = 0; i < count; i++) {
1685 		ret = _regulator_disable(rdev);
1686 		if (ret != 0)
1687 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1688 	}
1689 
1690 	mutex_unlock(&rdev->mutex);
1691 
1692 	if (rdev->supply) {
1693 		for (i = 0; i < count; i++) {
1694 			ret = regulator_disable(rdev->supply);
1695 			if (ret != 0) {
1696 				rdev_err(rdev,
1697 					 "Supply disable failed: %d\n", ret);
1698 			}
1699 		}
1700 	}
1701 }
1702 
1703 /**
1704  * regulator_disable_deferred - disable regulator output with delay
1705  * @regulator: regulator source
1706  * @ms: miliseconds until the regulator is disabled
1707  *
1708  * Execute regulator_disable() on the regulator after a delay.  This
1709  * is intended for use with devices that require some time to quiesce.
1710  *
1711  * NOTE: this will only disable the regulator output if no other consumer
1712  * devices have it enabled, the regulator device supports disabling and
1713  * machine constraints permit this operation.
1714  */
1715 int regulator_disable_deferred(struct regulator *regulator, int ms)
1716 {
1717 	struct regulator_dev *rdev = regulator->rdev;
1718 	int ret;
1719 
1720 	if (regulator->always_on)
1721 		return 0;
1722 
1723 	mutex_lock(&rdev->mutex);
1724 	rdev->deferred_disables++;
1725 	mutex_unlock(&rdev->mutex);
1726 
1727 	ret = schedule_delayed_work(&rdev->disable_work,
1728 				    msecs_to_jiffies(ms));
1729 	if (ret < 0)
1730 		return ret;
1731 	else
1732 		return 0;
1733 }
1734 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1735 
1736 /**
1737  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1738  *
1739  * @rdev: regulator to operate on
1740  *
1741  * Regulators that use regmap for their register I/O can set the
1742  * enable_reg and enable_mask fields in their descriptor and then use
1743  * this as their is_enabled operation, saving some code.
1744  */
1745 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1746 {
1747 	unsigned int val;
1748 	int ret;
1749 
1750 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751 	if (ret != 0)
1752 		return ret;
1753 
1754 	return (val & rdev->desc->enable_mask) != 0;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1757 
1758 /**
1759  * regulator_enable_regmap - standard enable() for regmap users
1760  *
1761  * @rdev: regulator to operate on
1762  *
1763  * Regulators that use regmap for their register I/O can set the
1764  * enable_reg and enable_mask fields in their descriptor and then use
1765  * this as their enable() operation, saving some code.
1766  */
1767 int regulator_enable_regmap(struct regulator_dev *rdev)
1768 {
1769 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770 				  rdev->desc->enable_mask,
1771 				  rdev->desc->enable_mask);
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1774 
1775 /**
1776  * regulator_disable_regmap - standard disable() for regmap users
1777  *
1778  * @rdev: regulator to operate on
1779  *
1780  * Regulators that use regmap for their register I/O can set the
1781  * enable_reg and enable_mask fields in their descriptor and then use
1782  * this as their disable() operation, saving some code.
1783  */
1784 int regulator_disable_regmap(struct regulator_dev *rdev)
1785 {
1786 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787 				  rdev->desc->enable_mask, 0);
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1790 
1791 static int _regulator_is_enabled(struct regulator_dev *rdev)
1792 {
1793 	/* A GPIO control always takes precedence */
1794 	if (rdev->ena_gpio)
1795 		return rdev->ena_gpio_state;
1796 
1797 	/* If we don't know then assume that the regulator is always on */
1798 	if (!rdev->desc->ops->is_enabled)
1799 		return 1;
1800 
1801 	return rdev->desc->ops->is_enabled(rdev);
1802 }
1803 
1804 /**
1805  * regulator_is_enabled - is the regulator output enabled
1806  * @regulator: regulator source
1807  *
1808  * Returns positive if the regulator driver backing the source/client
1809  * has requested that the device be enabled, zero if it hasn't, else a
1810  * negative errno code.
1811  *
1812  * Note that the device backing this regulator handle can have multiple
1813  * users, so it might be enabled even if regulator_enable() was never
1814  * called for this particular source.
1815  */
1816 int regulator_is_enabled(struct regulator *regulator)
1817 {
1818 	int ret;
1819 
1820 	if (regulator->always_on)
1821 		return 1;
1822 
1823 	mutex_lock(&regulator->rdev->mutex);
1824 	ret = _regulator_is_enabled(regulator->rdev);
1825 	mutex_unlock(&regulator->rdev->mutex);
1826 
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1830 
1831 /**
1832  * regulator_count_voltages - count regulator_list_voltage() selectors
1833  * @regulator: regulator source
1834  *
1835  * Returns number of selectors, or negative errno.  Selectors are
1836  * numbered starting at zero, and typically correspond to bitfields
1837  * in hardware registers.
1838  */
1839 int regulator_count_voltages(struct regulator *regulator)
1840 {
1841 	struct regulator_dev	*rdev = regulator->rdev;
1842 
1843 	return rdev->desc->n_voltages ? : -EINVAL;
1844 }
1845 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1846 
1847 /**
1848  * regulator_list_voltage_linear - List voltages with simple calculation
1849  *
1850  * @rdev: Regulator device
1851  * @selector: Selector to convert into a voltage
1852  *
1853  * Regulators with a simple linear mapping between voltages and
1854  * selectors can set min_uV and uV_step in the regulator descriptor
1855  * and then use this function as their list_voltage() operation,
1856  */
1857 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858 				  unsigned int selector)
1859 {
1860 	if (selector >= rdev->desc->n_voltages)
1861 		return -EINVAL;
1862 
1863 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1864 }
1865 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1866 
1867 /**
1868  * regulator_list_voltage_table - List voltages with table based mapping
1869  *
1870  * @rdev: Regulator device
1871  * @selector: Selector to convert into a voltage
1872  *
1873  * Regulators with table based mapping between voltages and
1874  * selectors can set volt_table in the regulator descriptor
1875  * and then use this function as their list_voltage() operation.
1876  */
1877 int regulator_list_voltage_table(struct regulator_dev *rdev,
1878 				 unsigned int selector)
1879 {
1880 	if (!rdev->desc->volt_table) {
1881 		BUG_ON(!rdev->desc->volt_table);
1882 		return -EINVAL;
1883 	}
1884 
1885 	if (selector >= rdev->desc->n_voltages)
1886 		return -EINVAL;
1887 
1888 	return rdev->desc->volt_table[selector];
1889 }
1890 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1891 
1892 /**
1893  * regulator_list_voltage - enumerate supported voltages
1894  * @regulator: regulator source
1895  * @selector: identify voltage to list
1896  * Context: can sleep
1897  *
1898  * Returns a voltage that can be passed to @regulator_set_voltage(),
1899  * zero if this selector code can't be used on this system, or a
1900  * negative errno.
1901  */
1902 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1903 {
1904 	struct regulator_dev	*rdev = regulator->rdev;
1905 	struct regulator_ops	*ops = rdev->desc->ops;
1906 	int			ret;
1907 
1908 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909 		return -EINVAL;
1910 
1911 	mutex_lock(&rdev->mutex);
1912 	ret = ops->list_voltage(rdev, selector);
1913 	mutex_unlock(&rdev->mutex);
1914 
1915 	if (ret > 0) {
1916 		if (ret < rdev->constraints->min_uV)
1917 			ret = 0;
1918 		else if (ret > rdev->constraints->max_uV)
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1925 
1926 /**
1927  * regulator_is_supported_voltage - check if a voltage range can be supported
1928  *
1929  * @regulator: Regulator to check.
1930  * @min_uV: Minimum required voltage in uV.
1931  * @max_uV: Maximum required voltage in uV.
1932  *
1933  * Returns a boolean or a negative error code.
1934  */
1935 int regulator_is_supported_voltage(struct regulator *regulator,
1936 				   int min_uV, int max_uV)
1937 {
1938 	struct regulator_dev *rdev = regulator->rdev;
1939 	int i, voltages, ret;
1940 
1941 	/* If we can't change voltage check the current voltage */
1942 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943 		ret = regulator_get_voltage(regulator);
1944 		if (ret >= 0)
1945 			return (min_uV >= ret && ret <= max_uV);
1946 		else
1947 			return ret;
1948 	}
1949 
1950 	ret = regulator_count_voltages(regulator);
1951 	if (ret < 0)
1952 		return ret;
1953 	voltages = ret;
1954 
1955 	for (i = 0; i < voltages; i++) {
1956 		ret = regulator_list_voltage(regulator, i);
1957 
1958 		if (ret >= min_uV && ret <= max_uV)
1959 			return 1;
1960 	}
1961 
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1965 
1966 /**
1967  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1968  *
1969  * @rdev: regulator to operate on
1970  *
1971  * Regulators that use regmap for their register I/O can set the
1972  * vsel_reg and vsel_mask fields in their descriptor and then use this
1973  * as their get_voltage_vsel operation, saving some code.
1974  */
1975 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1976 {
1977 	unsigned int val;
1978 	int ret;
1979 
1980 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981 	if (ret != 0)
1982 		return ret;
1983 
1984 	val &= rdev->desc->vsel_mask;
1985 	val >>= ffs(rdev->desc->vsel_mask) - 1;
1986 
1987 	return val;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1990 
1991 /**
1992  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1993  *
1994  * @rdev: regulator to operate on
1995  * @sel: Selector to set
1996  *
1997  * Regulators that use regmap for their register I/O can set the
1998  * vsel_reg and vsel_mask fields in their descriptor and then use this
1999  * as their set_voltage_vsel operation, saving some code.
2000  */
2001 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2002 {
2003 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2004 
2005 	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006 				  rdev->desc->vsel_mask, sel);
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2009 
2010 /**
2011  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2012  *
2013  * @rdev: Regulator to operate on
2014  * @min_uV: Lower bound for voltage
2015  * @max_uV: Upper bound for voltage
2016  *
2017  * Drivers implementing set_voltage_sel() and list_voltage() can use
2018  * this as their map_voltage() operation.  It will find a suitable
2019  * voltage by calling list_voltage() until it gets something in bounds
2020  * for the requested voltages.
2021  */
2022 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023 				  int min_uV, int max_uV)
2024 {
2025 	int best_val = INT_MAX;
2026 	int selector = 0;
2027 	int i, ret;
2028 
2029 	/* Find the smallest voltage that falls within the specified
2030 	 * range.
2031 	 */
2032 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2033 		ret = rdev->desc->ops->list_voltage(rdev, i);
2034 		if (ret < 0)
2035 			continue;
2036 
2037 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038 			best_val = ret;
2039 			selector = i;
2040 		}
2041 	}
2042 
2043 	if (best_val != INT_MAX)
2044 		return selector;
2045 	else
2046 		return -EINVAL;
2047 }
2048 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2049 
2050 /**
2051  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2052  *
2053  * @rdev: Regulator to operate on
2054  * @min_uV: Lower bound for voltage
2055  * @max_uV: Upper bound for voltage
2056  *
2057  * Drivers providing min_uV and uV_step in their regulator_desc can
2058  * use this as their map_voltage() operation.
2059  */
2060 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061 				 int min_uV, int max_uV)
2062 {
2063 	int ret, voltage;
2064 
2065 	/* Allow uV_step to be 0 for fixed voltage */
2066 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068 			return 0;
2069 		else
2070 			return -EINVAL;
2071 	}
2072 
2073 	if (!rdev->desc->uV_step) {
2074 		BUG_ON(!rdev->desc->uV_step);
2075 		return -EINVAL;
2076 	}
2077 
2078 	if (min_uV < rdev->desc->min_uV)
2079 		min_uV = rdev->desc->min_uV;
2080 
2081 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082 	if (ret < 0)
2083 		return ret;
2084 
2085 	/* Map back into a voltage to verify we're still in bounds */
2086 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087 	if (voltage < min_uV || voltage > max_uV)
2088 		return -EINVAL;
2089 
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2093 
2094 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095 				     int min_uV, int max_uV)
2096 {
2097 	int ret;
2098 	int delay = 0;
2099 	int best_val = 0;
2100 	unsigned int selector;
2101 	int old_selector = -1;
2102 
2103 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2104 
2105 	min_uV += rdev->constraints->uV_offset;
2106 	max_uV += rdev->constraints->uV_offset;
2107 
2108 	/*
2109 	 * If we can't obtain the old selector there is not enough
2110 	 * info to call set_voltage_time_sel().
2111 	 */
2112 	if (_regulator_is_enabled(rdev) &&
2113 	    rdev->desc->ops->set_voltage_time_sel &&
2114 	    rdev->desc->ops->get_voltage_sel) {
2115 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116 		if (old_selector < 0)
2117 			return old_selector;
2118 	}
2119 
2120 	if (rdev->desc->ops->set_voltage) {
2121 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122 						   &selector);
2123 
2124 		if (ret >= 0) {
2125 			if (rdev->desc->ops->list_voltage)
2126 				best_val = rdev->desc->ops->list_voltage(rdev,
2127 									 selector);
2128 			else
2129 				best_val = _regulator_get_voltage(rdev);
2130 		}
2131 
2132 	} else if (rdev->desc->ops->set_voltage_sel) {
2133 		if (rdev->desc->ops->map_voltage) {
2134 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135 							   max_uV);
2136 		} else {
2137 			if (rdev->desc->ops->list_voltage ==
2138 			    regulator_list_voltage_linear)
2139 				ret = regulator_map_voltage_linear(rdev,
2140 								min_uV, max_uV);
2141 			else
2142 				ret = regulator_map_voltage_iterate(rdev,
2143 								min_uV, max_uV);
2144 		}
2145 
2146 		if (ret >= 0) {
2147 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148 			if (min_uV <= best_val && max_uV >= best_val) {
2149 				selector = ret;
2150 				ret = rdev->desc->ops->set_voltage_sel(rdev,
2151 								       ret);
2152 			} else {
2153 				ret = -EINVAL;
2154 			}
2155 		}
2156 	} else {
2157 		ret = -EINVAL;
2158 	}
2159 
2160 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2161 	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162 	    rdev->desc->ops->set_voltage_time_sel) {
2163 
2164 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165 						old_selector, selector);
2166 		if (delay < 0) {
2167 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168 				  delay);
2169 			delay = 0;
2170 		}
2171 
2172 		/* Insert any necessary delays */
2173 		if (delay >= 1000) {
2174 			mdelay(delay / 1000);
2175 			udelay(delay % 1000);
2176 		} else if (delay) {
2177 			udelay(delay);
2178 		}
2179 	}
2180 
2181 	if (ret == 0 && best_val >= 0)
2182 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183 				     (void *)best_val);
2184 
2185 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2186 
2187 	return ret;
2188 }
2189 
2190 /**
2191  * regulator_set_voltage - set regulator output voltage
2192  * @regulator: regulator source
2193  * @min_uV: Minimum required voltage in uV
2194  * @max_uV: Maximum acceptable voltage in uV
2195  *
2196  * Sets a voltage regulator to the desired output voltage. This can be set
2197  * during any regulator state. IOW, regulator can be disabled or enabled.
2198  *
2199  * If the regulator is enabled then the voltage will change to the new value
2200  * immediately otherwise if the regulator is disabled the regulator will
2201  * output at the new voltage when enabled.
2202  *
2203  * NOTE: If the regulator is shared between several devices then the lowest
2204  * request voltage that meets the system constraints will be used.
2205  * Regulator system constraints must be set for this regulator before
2206  * calling this function otherwise this call will fail.
2207  */
2208 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2209 {
2210 	struct regulator_dev *rdev = regulator->rdev;
2211 	int ret = 0;
2212 
2213 	mutex_lock(&rdev->mutex);
2214 
2215 	/* If we're setting the same range as last time the change
2216 	 * should be a noop (some cpufreq implementations use the same
2217 	 * voltage for multiple frequencies, for example).
2218 	 */
2219 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220 		goto out;
2221 
2222 	/* sanity check */
2223 	if (!rdev->desc->ops->set_voltage &&
2224 	    !rdev->desc->ops->set_voltage_sel) {
2225 		ret = -EINVAL;
2226 		goto out;
2227 	}
2228 
2229 	/* constraints check */
2230 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231 	if (ret < 0)
2232 		goto out;
2233 	regulator->min_uV = min_uV;
2234 	regulator->max_uV = max_uV;
2235 
2236 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237 	if (ret < 0)
2238 		goto out;
2239 
2240 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2241 
2242 out:
2243 	mutex_unlock(&rdev->mutex);
2244 	return ret;
2245 }
2246 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2247 
2248 /**
2249  * regulator_set_voltage_time - get raise/fall time
2250  * @regulator: regulator source
2251  * @old_uV: starting voltage in microvolts
2252  * @new_uV: target voltage in microvolts
2253  *
2254  * Provided with the starting and ending voltage, this function attempts to
2255  * calculate the time in microseconds required to rise or fall to this new
2256  * voltage.
2257  */
2258 int regulator_set_voltage_time(struct regulator *regulator,
2259 			       int old_uV, int new_uV)
2260 {
2261 	struct regulator_dev	*rdev = regulator->rdev;
2262 	struct regulator_ops	*ops = rdev->desc->ops;
2263 	int old_sel = -1;
2264 	int new_sel = -1;
2265 	int voltage;
2266 	int i;
2267 
2268 	/* Currently requires operations to do this */
2269 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2270 	    || !rdev->desc->n_voltages)
2271 		return -EINVAL;
2272 
2273 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2274 		/* We only look for exact voltage matches here */
2275 		voltage = regulator_list_voltage(regulator, i);
2276 		if (voltage < 0)
2277 			return -EINVAL;
2278 		if (voltage == 0)
2279 			continue;
2280 		if (voltage == old_uV)
2281 			old_sel = i;
2282 		if (voltage == new_uV)
2283 			new_sel = i;
2284 	}
2285 
2286 	if (old_sel < 0 || new_sel < 0)
2287 		return -EINVAL;
2288 
2289 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2292 
2293 /**
2294  *regulator_set_voltage_time_sel - get raise/fall time
2295  * @regulator: regulator source
2296  * @old_selector: selector for starting voltage
2297  * @new_selector: selector for target voltage
2298  *
2299  * Provided with the starting and target voltage selectors, this function
2300  * returns time in microseconds required to rise or fall to this new voltage
2301  *
2302  * Drivers providing ramp_delay in regulation_constraints can use this as their
2303  * set_voltage_time_sel() operation.
2304  */
2305 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306 				   unsigned int old_selector,
2307 				   unsigned int new_selector)
2308 {
2309 	unsigned int ramp_delay = 0;
2310 	int old_volt, new_volt;
2311 
2312 	if (rdev->constraints->ramp_delay)
2313 		ramp_delay = rdev->constraints->ramp_delay;
2314 	else if (rdev->desc->ramp_delay)
2315 		ramp_delay = rdev->desc->ramp_delay;
2316 
2317 	if (ramp_delay == 0) {
2318 		rdev_warn(rdev, "ramp_delay not set\n");
2319 		return 0;
2320 	}
2321 
2322 	/* sanity check */
2323 	if (!rdev->desc->ops->list_voltage)
2324 		return -EINVAL;
2325 
2326 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2328 
2329 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2332 
2333 /**
2334  * regulator_sync_voltage - re-apply last regulator output voltage
2335  * @regulator: regulator source
2336  *
2337  * Re-apply the last configured voltage.  This is intended to be used
2338  * where some external control source the consumer is cooperating with
2339  * has caused the configured voltage to change.
2340  */
2341 int regulator_sync_voltage(struct regulator *regulator)
2342 {
2343 	struct regulator_dev *rdev = regulator->rdev;
2344 	int ret, min_uV, max_uV;
2345 
2346 	mutex_lock(&rdev->mutex);
2347 
2348 	if (!rdev->desc->ops->set_voltage &&
2349 	    !rdev->desc->ops->set_voltage_sel) {
2350 		ret = -EINVAL;
2351 		goto out;
2352 	}
2353 
2354 	/* This is only going to work if we've had a voltage configured. */
2355 	if (!regulator->min_uV && !regulator->max_uV) {
2356 		ret = -EINVAL;
2357 		goto out;
2358 	}
2359 
2360 	min_uV = regulator->min_uV;
2361 	max_uV = regulator->max_uV;
2362 
2363 	/* This should be a paranoia check... */
2364 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365 	if (ret < 0)
2366 		goto out;
2367 
2368 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369 	if (ret < 0)
2370 		goto out;
2371 
2372 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2373 
2374 out:
2375 	mutex_unlock(&rdev->mutex);
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2379 
2380 static int _regulator_get_voltage(struct regulator_dev *rdev)
2381 {
2382 	int sel, ret;
2383 
2384 	if (rdev->desc->ops->get_voltage_sel) {
2385 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2386 		if (sel < 0)
2387 			return sel;
2388 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2389 	} else if (rdev->desc->ops->get_voltage) {
2390 		ret = rdev->desc->ops->get_voltage(rdev);
2391 	} else {
2392 		return -EINVAL;
2393 	}
2394 
2395 	if (ret < 0)
2396 		return ret;
2397 	return ret - rdev->constraints->uV_offset;
2398 }
2399 
2400 /**
2401  * regulator_get_voltage - get regulator output voltage
2402  * @regulator: regulator source
2403  *
2404  * This returns the current regulator voltage in uV.
2405  *
2406  * NOTE: If the regulator is disabled it will return the voltage value. This
2407  * function should not be used to determine regulator state.
2408  */
2409 int regulator_get_voltage(struct regulator *regulator)
2410 {
2411 	int ret;
2412 
2413 	mutex_lock(&regulator->rdev->mutex);
2414 
2415 	ret = _regulator_get_voltage(regulator->rdev);
2416 
2417 	mutex_unlock(&regulator->rdev->mutex);
2418 
2419 	return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2422 
2423 /**
2424  * regulator_set_current_limit - set regulator output current limit
2425  * @regulator: regulator source
2426  * @min_uA: Minimuum supported current in uA
2427  * @max_uA: Maximum supported current in uA
2428  *
2429  * Sets current sink to the desired output current. This can be set during
2430  * any regulator state. IOW, regulator can be disabled or enabled.
2431  *
2432  * If the regulator is enabled then the current will change to the new value
2433  * immediately otherwise if the regulator is disabled the regulator will
2434  * output at the new current when enabled.
2435  *
2436  * NOTE: Regulator system constraints must be set for this regulator before
2437  * calling this function otherwise this call will fail.
2438  */
2439 int regulator_set_current_limit(struct regulator *regulator,
2440 			       int min_uA, int max_uA)
2441 {
2442 	struct regulator_dev *rdev = regulator->rdev;
2443 	int ret;
2444 
2445 	mutex_lock(&rdev->mutex);
2446 
2447 	/* sanity check */
2448 	if (!rdev->desc->ops->set_current_limit) {
2449 		ret = -EINVAL;
2450 		goto out;
2451 	}
2452 
2453 	/* constraints check */
2454 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455 	if (ret < 0)
2456 		goto out;
2457 
2458 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459 out:
2460 	mutex_unlock(&rdev->mutex);
2461 	return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2464 
2465 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2466 {
2467 	int ret;
2468 
2469 	mutex_lock(&rdev->mutex);
2470 
2471 	/* sanity check */
2472 	if (!rdev->desc->ops->get_current_limit) {
2473 		ret = -EINVAL;
2474 		goto out;
2475 	}
2476 
2477 	ret = rdev->desc->ops->get_current_limit(rdev);
2478 out:
2479 	mutex_unlock(&rdev->mutex);
2480 	return ret;
2481 }
2482 
2483 /**
2484  * regulator_get_current_limit - get regulator output current
2485  * @regulator: regulator source
2486  *
2487  * This returns the current supplied by the specified current sink in uA.
2488  *
2489  * NOTE: If the regulator is disabled it will return the current value. This
2490  * function should not be used to determine regulator state.
2491  */
2492 int regulator_get_current_limit(struct regulator *regulator)
2493 {
2494 	return _regulator_get_current_limit(regulator->rdev);
2495 }
2496 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2497 
2498 /**
2499  * regulator_set_mode - set regulator operating mode
2500  * @regulator: regulator source
2501  * @mode: operating mode - one of the REGULATOR_MODE constants
2502  *
2503  * Set regulator operating mode to increase regulator efficiency or improve
2504  * regulation performance.
2505  *
2506  * NOTE: Regulator system constraints must be set for this regulator before
2507  * calling this function otherwise this call will fail.
2508  */
2509 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2510 {
2511 	struct regulator_dev *rdev = regulator->rdev;
2512 	int ret;
2513 	int regulator_curr_mode;
2514 
2515 	mutex_lock(&rdev->mutex);
2516 
2517 	/* sanity check */
2518 	if (!rdev->desc->ops->set_mode) {
2519 		ret = -EINVAL;
2520 		goto out;
2521 	}
2522 
2523 	/* return if the same mode is requested */
2524 	if (rdev->desc->ops->get_mode) {
2525 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526 		if (regulator_curr_mode == mode) {
2527 			ret = 0;
2528 			goto out;
2529 		}
2530 	}
2531 
2532 	/* constraints check */
2533 	ret = regulator_mode_constrain(rdev, &mode);
2534 	if (ret < 0)
2535 		goto out;
2536 
2537 	ret = rdev->desc->ops->set_mode(rdev, mode);
2538 out:
2539 	mutex_unlock(&rdev->mutex);
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regulator_set_mode);
2543 
2544 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2545 {
2546 	int ret;
2547 
2548 	mutex_lock(&rdev->mutex);
2549 
2550 	/* sanity check */
2551 	if (!rdev->desc->ops->get_mode) {
2552 		ret = -EINVAL;
2553 		goto out;
2554 	}
2555 
2556 	ret = rdev->desc->ops->get_mode(rdev);
2557 out:
2558 	mutex_unlock(&rdev->mutex);
2559 	return ret;
2560 }
2561 
2562 /**
2563  * regulator_get_mode - get regulator operating mode
2564  * @regulator: regulator source
2565  *
2566  * Get the current regulator operating mode.
2567  */
2568 unsigned int regulator_get_mode(struct regulator *regulator)
2569 {
2570 	return _regulator_get_mode(regulator->rdev);
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_get_mode);
2573 
2574 /**
2575  * regulator_set_optimum_mode - set regulator optimum operating mode
2576  * @regulator: regulator source
2577  * @uA_load: load current
2578  *
2579  * Notifies the regulator core of a new device load. This is then used by
2580  * DRMS (if enabled by constraints) to set the most efficient regulator
2581  * operating mode for the new regulator loading.
2582  *
2583  * Consumer devices notify their supply regulator of the maximum power
2584  * they will require (can be taken from device datasheet in the power
2585  * consumption tables) when they change operational status and hence power
2586  * state. Examples of operational state changes that can affect power
2587  * consumption are :-
2588  *
2589  *    o Device is opened / closed.
2590  *    o Device I/O is about to begin or has just finished.
2591  *    o Device is idling in between work.
2592  *
2593  * This information is also exported via sysfs to userspace.
2594  *
2595  * DRMS will sum the total requested load on the regulator and change
2596  * to the most efficient operating mode if platform constraints allow.
2597  *
2598  * Returns the new regulator mode or error.
2599  */
2600 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2601 {
2602 	struct regulator_dev *rdev = regulator->rdev;
2603 	struct regulator *consumer;
2604 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605 	unsigned int mode;
2606 
2607 	if (rdev->supply)
2608 		input_uV = regulator_get_voltage(rdev->supply);
2609 
2610 	mutex_lock(&rdev->mutex);
2611 
2612 	/*
2613 	 * first check to see if we can set modes at all, otherwise just
2614 	 * tell the consumer everything is OK.
2615 	 */
2616 	regulator->uA_load = uA_load;
2617 	ret = regulator_check_drms(rdev);
2618 	if (ret < 0) {
2619 		ret = 0;
2620 		goto out;
2621 	}
2622 
2623 	if (!rdev->desc->ops->get_optimum_mode)
2624 		goto out;
2625 
2626 	/*
2627 	 * we can actually do this so any errors are indicators of
2628 	 * potential real failure.
2629 	 */
2630 	ret = -EINVAL;
2631 
2632 	if (!rdev->desc->ops->set_mode)
2633 		goto out;
2634 
2635 	/* get output voltage */
2636 	output_uV = _regulator_get_voltage(rdev);
2637 	if (output_uV <= 0) {
2638 		rdev_err(rdev, "invalid output voltage found\n");
2639 		goto out;
2640 	}
2641 
2642 	/* No supply? Use constraint voltage */
2643 	if (input_uV <= 0)
2644 		input_uV = rdev->constraints->input_uV;
2645 	if (input_uV <= 0) {
2646 		rdev_err(rdev, "invalid input voltage found\n");
2647 		goto out;
2648 	}
2649 
2650 	/* calc total requested load for this regulator */
2651 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2652 		total_uA_load += consumer->uA_load;
2653 
2654 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2655 						 input_uV, output_uV,
2656 						 total_uA_load);
2657 	ret = regulator_mode_constrain(rdev, &mode);
2658 	if (ret < 0) {
2659 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660 			 total_uA_load, input_uV, output_uV);
2661 		goto out;
2662 	}
2663 
2664 	ret = rdev->desc->ops->set_mode(rdev, mode);
2665 	if (ret < 0) {
2666 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667 		goto out;
2668 	}
2669 	ret = mode;
2670 out:
2671 	mutex_unlock(&rdev->mutex);
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2675 
2676 /**
2677  * regulator_register_notifier - register regulator event notifier
2678  * @regulator: regulator source
2679  * @nb: notifier block
2680  *
2681  * Register notifier block to receive regulator events.
2682  */
2683 int regulator_register_notifier(struct regulator *regulator,
2684 			      struct notifier_block *nb)
2685 {
2686 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687 						nb);
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2690 
2691 /**
2692  * regulator_unregister_notifier - unregister regulator event notifier
2693  * @regulator: regulator source
2694  * @nb: notifier block
2695  *
2696  * Unregister regulator event notifier block.
2697  */
2698 int regulator_unregister_notifier(struct regulator *regulator,
2699 				struct notifier_block *nb)
2700 {
2701 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702 						  nb);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2705 
2706 /* notify regulator consumers and downstream regulator consumers.
2707  * Note mutex must be held by caller.
2708  */
2709 static void _notifier_call_chain(struct regulator_dev *rdev,
2710 				  unsigned long event, void *data)
2711 {
2712 	/* call rdev chain first */
2713 	blocking_notifier_call_chain(&rdev->notifier, event, data);
2714 }
2715 
2716 /**
2717  * regulator_bulk_get - get multiple regulator consumers
2718  *
2719  * @dev:           Device to supply
2720  * @num_consumers: Number of consumers to register
2721  * @consumers:     Configuration of consumers; clients are stored here.
2722  *
2723  * @return 0 on success, an errno on failure.
2724  *
2725  * This helper function allows drivers to get several regulator
2726  * consumers in one operation.  If any of the regulators cannot be
2727  * acquired then any regulators that were allocated will be freed
2728  * before returning to the caller.
2729  */
2730 int regulator_bulk_get(struct device *dev, int num_consumers,
2731 		       struct regulator_bulk_data *consumers)
2732 {
2733 	int i;
2734 	int ret;
2735 
2736 	for (i = 0; i < num_consumers; i++)
2737 		consumers[i].consumer = NULL;
2738 
2739 	for (i = 0; i < num_consumers; i++) {
2740 		consumers[i].consumer = regulator_get(dev,
2741 						      consumers[i].supply);
2742 		if (IS_ERR(consumers[i].consumer)) {
2743 			ret = PTR_ERR(consumers[i].consumer);
2744 			dev_err(dev, "Failed to get supply '%s': %d\n",
2745 				consumers[i].supply, ret);
2746 			consumers[i].consumer = NULL;
2747 			goto err;
2748 		}
2749 	}
2750 
2751 	return 0;
2752 
2753 err:
2754 	while (--i >= 0)
2755 		regulator_put(consumers[i].consumer);
2756 
2757 	return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2760 
2761 /**
2762  * devm_regulator_bulk_get - managed get multiple regulator consumers
2763  *
2764  * @dev:           Device to supply
2765  * @num_consumers: Number of consumers to register
2766  * @consumers:     Configuration of consumers; clients are stored here.
2767  *
2768  * @return 0 on success, an errno on failure.
2769  *
2770  * This helper function allows drivers to get several regulator
2771  * consumers in one operation with management, the regulators will
2772  * automatically be freed when the device is unbound.  If any of the
2773  * regulators cannot be acquired then any regulators that were
2774  * allocated will be freed before returning to the caller.
2775  */
2776 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777 			    struct regulator_bulk_data *consumers)
2778 {
2779 	int i;
2780 	int ret;
2781 
2782 	for (i = 0; i < num_consumers; i++)
2783 		consumers[i].consumer = NULL;
2784 
2785 	for (i = 0; i < num_consumers; i++) {
2786 		consumers[i].consumer = devm_regulator_get(dev,
2787 							   consumers[i].supply);
2788 		if (IS_ERR(consumers[i].consumer)) {
2789 			ret = PTR_ERR(consumers[i].consumer);
2790 			dev_err(dev, "Failed to get supply '%s': %d\n",
2791 				consumers[i].supply, ret);
2792 			consumers[i].consumer = NULL;
2793 			goto err;
2794 		}
2795 	}
2796 
2797 	return 0;
2798 
2799 err:
2800 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801 		devm_regulator_put(consumers[i].consumer);
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2806 
2807 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2808 {
2809 	struct regulator_bulk_data *bulk = data;
2810 
2811 	bulk->ret = regulator_enable(bulk->consumer);
2812 }
2813 
2814 /**
2815  * regulator_bulk_enable - enable multiple regulator consumers
2816  *
2817  * @num_consumers: Number of consumers
2818  * @consumers:     Consumer data; clients are stored here.
2819  * @return         0 on success, an errno on failure
2820  *
2821  * This convenience API allows consumers to enable multiple regulator
2822  * clients in a single API call.  If any consumers cannot be enabled
2823  * then any others that were enabled will be disabled again prior to
2824  * return.
2825  */
2826 int regulator_bulk_enable(int num_consumers,
2827 			  struct regulator_bulk_data *consumers)
2828 {
2829 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830 	int i;
2831 	int ret = 0;
2832 
2833 	for (i = 0; i < num_consumers; i++) {
2834 		if (consumers[i].consumer->always_on)
2835 			consumers[i].ret = 0;
2836 		else
2837 			async_schedule_domain(regulator_bulk_enable_async,
2838 					      &consumers[i], &async_domain);
2839 	}
2840 
2841 	async_synchronize_full_domain(&async_domain);
2842 
2843 	/* If any consumer failed we need to unwind any that succeeded */
2844 	for (i = 0; i < num_consumers; i++) {
2845 		if (consumers[i].ret != 0) {
2846 			ret = consumers[i].ret;
2847 			goto err;
2848 		}
2849 	}
2850 
2851 	return 0;
2852 
2853 err:
2854 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855 	while (--i >= 0)
2856 		regulator_disable(consumers[i].consumer);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2861 
2862 /**
2863  * regulator_bulk_disable - disable multiple regulator consumers
2864  *
2865  * @num_consumers: Number of consumers
2866  * @consumers:     Consumer data; clients are stored here.
2867  * @return         0 on success, an errno on failure
2868  *
2869  * This convenience API allows consumers to disable multiple regulator
2870  * clients in a single API call.  If any consumers cannot be disabled
2871  * then any others that were disabled will be enabled again prior to
2872  * return.
2873  */
2874 int regulator_bulk_disable(int num_consumers,
2875 			   struct regulator_bulk_data *consumers)
2876 {
2877 	int i;
2878 	int ret, r;
2879 
2880 	for (i = num_consumers - 1; i >= 0; --i) {
2881 		ret = regulator_disable(consumers[i].consumer);
2882 		if (ret != 0)
2883 			goto err;
2884 	}
2885 
2886 	return 0;
2887 
2888 err:
2889 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890 	for (++i; i < num_consumers; ++i) {
2891 		r = regulator_enable(consumers[i].consumer);
2892 		if (r != 0)
2893 			pr_err("Failed to reename %s: %d\n",
2894 			       consumers[i].supply, r);
2895 	}
2896 
2897 	return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2900 
2901 /**
2902  * regulator_bulk_force_disable - force disable multiple regulator consumers
2903  *
2904  * @num_consumers: Number of consumers
2905  * @consumers:     Consumer data; clients are stored here.
2906  * @return         0 on success, an errno on failure
2907  *
2908  * This convenience API allows consumers to forcibly disable multiple regulator
2909  * clients in a single API call.
2910  * NOTE: This should be used for situations when device damage will
2911  * likely occur if the regulators are not disabled (e.g. over temp).
2912  * Although regulator_force_disable function call for some consumers can
2913  * return error numbers, the function is called for all consumers.
2914  */
2915 int regulator_bulk_force_disable(int num_consumers,
2916 			   struct regulator_bulk_data *consumers)
2917 {
2918 	int i;
2919 	int ret;
2920 
2921 	for (i = 0; i < num_consumers; i++)
2922 		consumers[i].ret =
2923 			    regulator_force_disable(consumers[i].consumer);
2924 
2925 	for (i = 0; i < num_consumers; i++) {
2926 		if (consumers[i].ret != 0) {
2927 			ret = consumers[i].ret;
2928 			goto out;
2929 		}
2930 	}
2931 
2932 	return 0;
2933 out:
2934 	return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2937 
2938 /**
2939  * regulator_bulk_free - free multiple regulator consumers
2940  *
2941  * @num_consumers: Number of consumers
2942  * @consumers:     Consumer data; clients are stored here.
2943  *
2944  * This convenience API allows consumers to free multiple regulator
2945  * clients in a single API call.
2946  */
2947 void regulator_bulk_free(int num_consumers,
2948 			 struct regulator_bulk_data *consumers)
2949 {
2950 	int i;
2951 
2952 	for (i = 0; i < num_consumers; i++) {
2953 		regulator_put(consumers[i].consumer);
2954 		consumers[i].consumer = NULL;
2955 	}
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2958 
2959 /**
2960  * regulator_notifier_call_chain - call regulator event notifier
2961  * @rdev: regulator source
2962  * @event: notifier block
2963  * @data: callback-specific data.
2964  *
2965  * Called by regulator drivers to notify clients a regulator event has
2966  * occurred. We also notify regulator clients downstream.
2967  * Note lock must be held by caller.
2968  */
2969 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970 				  unsigned long event, void *data)
2971 {
2972 	_notifier_call_chain(rdev, event, data);
2973 	return NOTIFY_DONE;
2974 
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2977 
2978 /**
2979  * regulator_mode_to_status - convert a regulator mode into a status
2980  *
2981  * @mode: Mode to convert
2982  *
2983  * Convert a regulator mode into a status.
2984  */
2985 int regulator_mode_to_status(unsigned int mode)
2986 {
2987 	switch (mode) {
2988 	case REGULATOR_MODE_FAST:
2989 		return REGULATOR_STATUS_FAST;
2990 	case REGULATOR_MODE_NORMAL:
2991 		return REGULATOR_STATUS_NORMAL;
2992 	case REGULATOR_MODE_IDLE:
2993 		return REGULATOR_STATUS_IDLE;
2994 	case REGULATOR_MODE_STANDBY:
2995 		return REGULATOR_STATUS_STANDBY;
2996 	default:
2997 		return REGULATOR_STATUS_UNDEFINED;
2998 	}
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3001 
3002 /*
3003  * To avoid cluttering sysfs (and memory) with useless state, only
3004  * create attributes that can be meaningfully displayed.
3005  */
3006 static int add_regulator_attributes(struct regulator_dev *rdev)
3007 {
3008 	struct device		*dev = &rdev->dev;
3009 	struct regulator_ops	*ops = rdev->desc->ops;
3010 	int			status = 0;
3011 
3012 	/* some attributes need specific methods to be displayed */
3013 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015 		status = device_create_file(dev, &dev_attr_microvolts);
3016 		if (status < 0)
3017 			return status;
3018 	}
3019 	if (ops->get_current_limit) {
3020 		status = device_create_file(dev, &dev_attr_microamps);
3021 		if (status < 0)
3022 			return status;
3023 	}
3024 	if (ops->get_mode) {
3025 		status = device_create_file(dev, &dev_attr_opmode);
3026 		if (status < 0)
3027 			return status;
3028 	}
3029 	if (ops->is_enabled) {
3030 		status = device_create_file(dev, &dev_attr_state);
3031 		if (status < 0)
3032 			return status;
3033 	}
3034 	if (ops->get_status) {
3035 		status = device_create_file(dev, &dev_attr_status);
3036 		if (status < 0)
3037 			return status;
3038 	}
3039 
3040 	/* some attributes are type-specific */
3041 	if (rdev->desc->type == REGULATOR_CURRENT) {
3042 		status = device_create_file(dev, &dev_attr_requested_microamps);
3043 		if (status < 0)
3044 			return status;
3045 	}
3046 
3047 	/* all the other attributes exist to support constraints;
3048 	 * don't show them if there are no constraints, or if the
3049 	 * relevant supporting methods are missing.
3050 	 */
3051 	if (!rdev->constraints)
3052 		return status;
3053 
3054 	/* constraints need specific supporting methods */
3055 	if (ops->set_voltage || ops->set_voltage_sel) {
3056 		status = device_create_file(dev, &dev_attr_min_microvolts);
3057 		if (status < 0)
3058 			return status;
3059 		status = device_create_file(dev, &dev_attr_max_microvolts);
3060 		if (status < 0)
3061 			return status;
3062 	}
3063 	if (ops->set_current_limit) {
3064 		status = device_create_file(dev, &dev_attr_min_microamps);
3065 		if (status < 0)
3066 			return status;
3067 		status = device_create_file(dev, &dev_attr_max_microamps);
3068 		if (status < 0)
3069 			return status;
3070 	}
3071 
3072 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073 	if (status < 0)
3074 		return status;
3075 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076 	if (status < 0)
3077 		return status;
3078 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079 	if (status < 0)
3080 		return status;
3081 
3082 	if (ops->set_suspend_voltage) {
3083 		status = device_create_file(dev,
3084 				&dev_attr_suspend_standby_microvolts);
3085 		if (status < 0)
3086 			return status;
3087 		status = device_create_file(dev,
3088 				&dev_attr_suspend_mem_microvolts);
3089 		if (status < 0)
3090 			return status;
3091 		status = device_create_file(dev,
3092 				&dev_attr_suspend_disk_microvolts);
3093 		if (status < 0)
3094 			return status;
3095 	}
3096 
3097 	if (ops->set_suspend_mode) {
3098 		status = device_create_file(dev,
3099 				&dev_attr_suspend_standby_mode);
3100 		if (status < 0)
3101 			return status;
3102 		status = device_create_file(dev,
3103 				&dev_attr_suspend_mem_mode);
3104 		if (status < 0)
3105 			return status;
3106 		status = device_create_file(dev,
3107 				&dev_attr_suspend_disk_mode);
3108 		if (status < 0)
3109 			return status;
3110 	}
3111 
3112 	return status;
3113 }
3114 
3115 static void rdev_init_debugfs(struct regulator_dev *rdev)
3116 {
3117 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118 	if (!rdev->debugfs) {
3119 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3120 		return;
3121 	}
3122 
3123 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124 			   &rdev->use_count);
3125 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126 			   &rdev->open_count);
3127 }
3128 
3129 /**
3130  * regulator_register - register regulator
3131  * @regulator_desc: regulator to register
3132  * @config: runtime configuration for regulator
3133  *
3134  * Called by regulator drivers to register a regulator.
3135  * Returns 0 on success.
3136  */
3137 struct regulator_dev *
3138 regulator_register(const struct regulator_desc *regulator_desc,
3139 		   const struct regulator_config *config)
3140 {
3141 	const struct regulation_constraints *constraints = NULL;
3142 	const struct regulator_init_data *init_data;
3143 	static atomic_t regulator_no = ATOMIC_INIT(0);
3144 	struct regulator_dev *rdev;
3145 	struct device *dev;
3146 	int ret, i;
3147 	const char *supply = NULL;
3148 
3149 	if (regulator_desc == NULL || config == NULL)
3150 		return ERR_PTR(-EINVAL);
3151 
3152 	dev = config->dev;
3153 	WARN_ON(!dev);
3154 
3155 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156 		return ERR_PTR(-EINVAL);
3157 
3158 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159 	    regulator_desc->type != REGULATOR_CURRENT)
3160 		return ERR_PTR(-EINVAL);
3161 
3162 	/* Only one of each should be implemented */
3163 	WARN_ON(regulator_desc->ops->get_voltage &&
3164 		regulator_desc->ops->get_voltage_sel);
3165 	WARN_ON(regulator_desc->ops->set_voltage &&
3166 		regulator_desc->ops->set_voltage_sel);
3167 
3168 	/* If we're using selectors we must implement list_voltage. */
3169 	if (regulator_desc->ops->get_voltage_sel &&
3170 	    !regulator_desc->ops->list_voltage) {
3171 		return ERR_PTR(-EINVAL);
3172 	}
3173 	if (regulator_desc->ops->set_voltage_sel &&
3174 	    !regulator_desc->ops->list_voltage) {
3175 		return ERR_PTR(-EINVAL);
3176 	}
3177 
3178 	init_data = config->init_data;
3179 
3180 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181 	if (rdev == NULL)
3182 		return ERR_PTR(-ENOMEM);
3183 
3184 	mutex_lock(&regulator_list_mutex);
3185 
3186 	mutex_init(&rdev->mutex);
3187 	rdev->reg_data = config->driver_data;
3188 	rdev->owner = regulator_desc->owner;
3189 	rdev->desc = regulator_desc;
3190 	if (config->regmap)
3191 		rdev->regmap = config->regmap;
3192 	else
3193 		rdev->regmap = dev_get_regmap(dev, NULL);
3194 	INIT_LIST_HEAD(&rdev->consumer_list);
3195 	INIT_LIST_HEAD(&rdev->list);
3196 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3198 
3199 	/* preform any regulator specific init */
3200 	if (init_data && init_data->regulator_init) {
3201 		ret = init_data->regulator_init(rdev->reg_data);
3202 		if (ret < 0)
3203 			goto clean;
3204 	}
3205 
3206 	/* register with sysfs */
3207 	rdev->dev.class = &regulator_class;
3208 	rdev->dev.of_node = config->of_node;
3209 	rdev->dev.parent = dev;
3210 	dev_set_name(&rdev->dev, "regulator.%d",
3211 		     atomic_inc_return(&regulator_no) - 1);
3212 	ret = device_register(&rdev->dev);
3213 	if (ret != 0) {
3214 		put_device(&rdev->dev);
3215 		goto clean;
3216 	}
3217 
3218 	dev_set_drvdata(&rdev->dev, rdev);
3219 
3220 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3221 		ret = gpio_request_one(config->ena_gpio,
3222 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3223 				       rdev_get_name(rdev));
3224 		if (ret != 0) {
3225 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226 				 config->ena_gpio, ret);
3227 			goto clean;
3228 		}
3229 
3230 		rdev->ena_gpio = config->ena_gpio;
3231 		rdev->ena_gpio_invert = config->ena_gpio_invert;
3232 
3233 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234 			rdev->ena_gpio_state = 1;
3235 
3236 		if (rdev->ena_gpio_invert)
3237 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3238 	}
3239 
3240 	/* set regulator constraints */
3241 	if (init_data)
3242 		constraints = &init_data->constraints;
3243 
3244 	ret = set_machine_constraints(rdev, constraints);
3245 	if (ret < 0)
3246 		goto scrub;
3247 
3248 	/* add attributes supported by this regulator */
3249 	ret = add_regulator_attributes(rdev);
3250 	if (ret < 0)
3251 		goto scrub;
3252 
3253 	if (init_data && init_data->supply_regulator)
3254 		supply = init_data->supply_regulator;
3255 	else if (regulator_desc->supply_name)
3256 		supply = regulator_desc->supply_name;
3257 
3258 	if (supply) {
3259 		struct regulator_dev *r;
3260 
3261 		r = regulator_dev_lookup(dev, supply, &ret);
3262 
3263 		if (!r) {
3264 			dev_err(dev, "Failed to find supply %s\n", supply);
3265 			ret = -EPROBE_DEFER;
3266 			goto scrub;
3267 		}
3268 
3269 		ret = set_supply(rdev, r);
3270 		if (ret < 0)
3271 			goto scrub;
3272 
3273 		/* Enable supply if rail is enabled */
3274 		if (_regulator_is_enabled(rdev)) {
3275 			ret = regulator_enable(rdev->supply);
3276 			if (ret < 0)
3277 				goto scrub;
3278 		}
3279 	}
3280 
3281 	/* add consumers devices */
3282 	if (init_data) {
3283 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284 			ret = set_consumer_device_supply(rdev,
3285 				init_data->consumer_supplies[i].dev_name,
3286 				init_data->consumer_supplies[i].supply);
3287 			if (ret < 0) {
3288 				dev_err(dev, "Failed to set supply %s\n",
3289 					init_data->consumer_supplies[i].supply);
3290 				goto unset_supplies;
3291 			}
3292 		}
3293 	}
3294 
3295 	list_add(&rdev->list, &regulator_list);
3296 
3297 	rdev_init_debugfs(rdev);
3298 out:
3299 	mutex_unlock(&regulator_list_mutex);
3300 	return rdev;
3301 
3302 unset_supplies:
3303 	unset_regulator_supplies(rdev);
3304 
3305 scrub:
3306 	if (rdev->supply)
3307 		regulator_put(rdev->supply);
3308 	if (rdev->ena_gpio)
3309 		gpio_free(rdev->ena_gpio);
3310 	kfree(rdev->constraints);
3311 	device_unregister(&rdev->dev);
3312 	/* device core frees rdev */
3313 	rdev = ERR_PTR(ret);
3314 	goto out;
3315 
3316 clean:
3317 	kfree(rdev);
3318 	rdev = ERR_PTR(ret);
3319 	goto out;
3320 }
3321 EXPORT_SYMBOL_GPL(regulator_register);
3322 
3323 /**
3324  * regulator_unregister - unregister regulator
3325  * @rdev: regulator to unregister
3326  *
3327  * Called by regulator drivers to unregister a regulator.
3328  */
3329 void regulator_unregister(struct regulator_dev *rdev)
3330 {
3331 	if (rdev == NULL)
3332 		return;
3333 
3334 	if (rdev->supply)
3335 		regulator_put(rdev->supply);
3336 	mutex_lock(&regulator_list_mutex);
3337 	debugfs_remove_recursive(rdev->debugfs);
3338 	flush_work_sync(&rdev->disable_work.work);
3339 	WARN_ON(rdev->open_count);
3340 	unset_regulator_supplies(rdev);
3341 	list_del(&rdev->list);
3342 	kfree(rdev->constraints);
3343 	if (rdev->ena_gpio)
3344 		gpio_free(rdev->ena_gpio);
3345 	device_unregister(&rdev->dev);
3346 	mutex_unlock(&regulator_list_mutex);
3347 }
3348 EXPORT_SYMBOL_GPL(regulator_unregister);
3349 
3350 /**
3351  * regulator_suspend_prepare - prepare regulators for system wide suspend
3352  * @state: system suspend state
3353  *
3354  * Configure each regulator with it's suspend operating parameters for state.
3355  * This will usually be called by machine suspend code prior to supending.
3356  */
3357 int regulator_suspend_prepare(suspend_state_t state)
3358 {
3359 	struct regulator_dev *rdev;
3360 	int ret = 0;
3361 
3362 	/* ON is handled by regulator active state */
3363 	if (state == PM_SUSPEND_ON)
3364 		return -EINVAL;
3365 
3366 	mutex_lock(&regulator_list_mutex);
3367 	list_for_each_entry(rdev, &regulator_list, list) {
3368 
3369 		mutex_lock(&rdev->mutex);
3370 		ret = suspend_prepare(rdev, state);
3371 		mutex_unlock(&rdev->mutex);
3372 
3373 		if (ret < 0) {
3374 			rdev_err(rdev, "failed to prepare\n");
3375 			goto out;
3376 		}
3377 	}
3378 out:
3379 	mutex_unlock(&regulator_list_mutex);
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3383 
3384 /**
3385  * regulator_suspend_finish - resume regulators from system wide suspend
3386  *
3387  * Turn on regulators that might be turned off by regulator_suspend_prepare
3388  * and that should be turned on according to the regulators properties.
3389  */
3390 int regulator_suspend_finish(void)
3391 {
3392 	struct regulator_dev *rdev;
3393 	int ret = 0, error;
3394 
3395 	mutex_lock(&regulator_list_mutex);
3396 	list_for_each_entry(rdev, &regulator_list, list) {
3397 		struct regulator_ops *ops = rdev->desc->ops;
3398 
3399 		mutex_lock(&rdev->mutex);
3400 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3401 				ops->enable) {
3402 			error = ops->enable(rdev);
3403 			if (error)
3404 				ret = error;
3405 		} else {
3406 			if (!has_full_constraints)
3407 				goto unlock;
3408 			if (!ops->disable)
3409 				goto unlock;
3410 			if (!_regulator_is_enabled(rdev))
3411 				goto unlock;
3412 
3413 			error = ops->disable(rdev);
3414 			if (error)
3415 				ret = error;
3416 		}
3417 unlock:
3418 		mutex_unlock(&rdev->mutex);
3419 	}
3420 	mutex_unlock(&regulator_list_mutex);
3421 	return ret;
3422 }
3423 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3424 
3425 /**
3426  * regulator_has_full_constraints - the system has fully specified constraints
3427  *
3428  * Calling this function will cause the regulator API to disable all
3429  * regulators which have a zero use count and don't have an always_on
3430  * constraint in a late_initcall.
3431  *
3432  * The intention is that this will become the default behaviour in a
3433  * future kernel release so users are encouraged to use this facility
3434  * now.
3435  */
3436 void regulator_has_full_constraints(void)
3437 {
3438 	has_full_constraints = 1;
3439 }
3440 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3441 
3442 /**
3443  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3444  *
3445  * Calling this function will cause the regulator API to provide a
3446  * dummy regulator to consumers if no physical regulator is found,
3447  * allowing most consumers to proceed as though a regulator were
3448  * configured.  This allows systems such as those with software
3449  * controllable regulators for the CPU core only to be brought up more
3450  * readily.
3451  */
3452 void regulator_use_dummy_regulator(void)
3453 {
3454 	board_wants_dummy_regulator = true;
3455 }
3456 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3457 
3458 /**
3459  * rdev_get_drvdata - get rdev regulator driver data
3460  * @rdev: regulator
3461  *
3462  * Get rdev regulator driver private data. This call can be used in the
3463  * regulator driver context.
3464  */
3465 void *rdev_get_drvdata(struct regulator_dev *rdev)
3466 {
3467 	return rdev->reg_data;
3468 }
3469 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3470 
3471 /**
3472  * regulator_get_drvdata - get regulator driver data
3473  * @regulator: regulator
3474  *
3475  * Get regulator driver private data. This call can be used in the consumer
3476  * driver context when non API regulator specific functions need to be called.
3477  */
3478 void *regulator_get_drvdata(struct regulator *regulator)
3479 {
3480 	return regulator->rdev->reg_data;
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3483 
3484 /**
3485  * regulator_set_drvdata - set regulator driver data
3486  * @regulator: regulator
3487  * @data: data
3488  */
3489 void regulator_set_drvdata(struct regulator *regulator, void *data)
3490 {
3491 	regulator->rdev->reg_data = data;
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3494 
3495 /**
3496  * regulator_get_id - get regulator ID
3497  * @rdev: regulator
3498  */
3499 int rdev_get_id(struct regulator_dev *rdev)
3500 {
3501 	return rdev->desc->id;
3502 }
3503 EXPORT_SYMBOL_GPL(rdev_get_id);
3504 
3505 struct device *rdev_get_dev(struct regulator_dev *rdev)
3506 {
3507 	return &rdev->dev;
3508 }
3509 EXPORT_SYMBOL_GPL(rdev_get_dev);
3510 
3511 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3512 {
3513 	return reg_init_data->driver_data;
3514 }
3515 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3516 
3517 #ifdef CONFIG_DEBUG_FS
3518 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519 				    size_t count, loff_t *ppos)
3520 {
3521 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522 	ssize_t len, ret = 0;
3523 	struct regulator_map *map;
3524 
3525 	if (!buf)
3526 		return -ENOMEM;
3527 
3528 	list_for_each_entry(map, &regulator_map_list, list) {
3529 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3530 			       "%s -> %s.%s\n",
3531 			       rdev_get_name(map->regulator), map->dev_name,
3532 			       map->supply);
3533 		if (len >= 0)
3534 			ret += len;
3535 		if (ret > PAGE_SIZE) {
3536 			ret = PAGE_SIZE;
3537 			break;
3538 		}
3539 	}
3540 
3541 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3542 
3543 	kfree(buf);
3544 
3545 	return ret;
3546 }
3547 #endif
3548 
3549 static const struct file_operations supply_map_fops = {
3550 #ifdef CONFIG_DEBUG_FS
3551 	.read = supply_map_read_file,
3552 	.llseek = default_llseek,
3553 #endif
3554 };
3555 
3556 static int __init regulator_init(void)
3557 {
3558 	int ret;
3559 
3560 	ret = class_register(&regulator_class);
3561 
3562 	debugfs_root = debugfs_create_dir("regulator", NULL);
3563 	if (!debugfs_root)
3564 		pr_warn("regulator: Failed to create debugfs directory\n");
3565 
3566 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567 			    &supply_map_fops);
3568 
3569 	regulator_dummy_init();
3570 
3571 	return ret;
3572 }
3573 
3574 /* init early to allow our consumers to complete system booting */
3575 core_initcall(regulator_init);
3576 
3577 static int __init regulator_init_complete(void)
3578 {
3579 	struct regulator_dev *rdev;
3580 	struct regulator_ops *ops;
3581 	struct regulation_constraints *c;
3582 	int enabled, ret;
3583 
3584 	/*
3585 	 * Since DT doesn't provide an idiomatic mechanism for
3586 	 * enabling full constraints and since it's much more natural
3587 	 * with DT to provide them just assume that a DT enabled
3588 	 * system has full constraints.
3589 	 */
3590 	if (of_have_populated_dt())
3591 		has_full_constraints = true;
3592 
3593 	mutex_lock(&regulator_list_mutex);
3594 
3595 	/* If we have a full configuration then disable any regulators
3596 	 * which are not in use or always_on.  This will become the
3597 	 * default behaviour in the future.
3598 	 */
3599 	list_for_each_entry(rdev, &regulator_list, list) {
3600 		ops = rdev->desc->ops;
3601 		c = rdev->constraints;
3602 
3603 		if (!ops->disable || (c && c->always_on))
3604 			continue;
3605 
3606 		mutex_lock(&rdev->mutex);
3607 
3608 		if (rdev->use_count)
3609 			goto unlock;
3610 
3611 		/* If we can't read the status assume it's on. */
3612 		if (ops->is_enabled)
3613 			enabled = ops->is_enabled(rdev);
3614 		else
3615 			enabled = 1;
3616 
3617 		if (!enabled)
3618 			goto unlock;
3619 
3620 		if (has_full_constraints) {
3621 			/* We log since this may kill the system if it
3622 			 * goes wrong. */
3623 			rdev_info(rdev, "disabling\n");
3624 			ret = ops->disable(rdev);
3625 			if (ret != 0) {
3626 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3627 			}
3628 		} else {
3629 			/* The intention is that in future we will
3630 			 * assume that full constraints are provided
3631 			 * so warn even if we aren't going to do
3632 			 * anything here.
3633 			 */
3634 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3635 		}
3636 
3637 unlock:
3638 		mutex_unlock(&rdev->mutex);
3639 	}
3640 
3641 	mutex_unlock(&regulator_list_mutex);
3642 
3643 	return 0;
3644 }
3645 late_initcall(regulator_init_complete);
3646