1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static bool has_full_constraints; 55 static bool board_wants_dummy_regulator; 56 57 static struct dentry *debugfs_root; 58 59 /* 60 * struct regulator_map 61 * 62 * Used to provide symbolic supply names to devices. 63 */ 64 struct regulator_map { 65 struct list_head list; 66 const char *dev_name; /* The dev_name() for the consumer */ 67 const char *supply; 68 struct regulator_dev *regulator; 69 }; 70 71 /* 72 * struct regulator 73 * 74 * One for each consumer device. 75 */ 76 struct regulator { 77 struct device *dev; 78 struct list_head list; 79 unsigned int always_on:1; 80 int uA_load; 81 int min_uV; 82 int max_uV; 83 char *supply_name; 84 struct device_attribute dev_attr; 85 struct regulator_dev *rdev; 86 struct dentry *debugfs; 87 }; 88 89 static int _regulator_is_enabled(struct regulator_dev *rdev); 90 static int _regulator_disable(struct regulator_dev *rdev); 91 static int _regulator_get_voltage(struct regulator_dev *rdev); 92 static int _regulator_get_current_limit(struct regulator_dev *rdev); 93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 94 static void _notifier_call_chain(struct regulator_dev *rdev, 95 unsigned long event, void *data); 96 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 97 int min_uV, int max_uV); 98 static struct regulator *create_regulator(struct regulator_dev *rdev, 99 struct device *dev, 100 const char *supply_name); 101 102 static const char *rdev_get_name(struct regulator_dev *rdev) 103 { 104 if (rdev->constraints && rdev->constraints->name) 105 return rdev->constraints->name; 106 else if (rdev->desc->name) 107 return rdev->desc->name; 108 else 109 return ""; 110 } 111 112 /** 113 * of_get_regulator - get a regulator device node based on supply name 114 * @dev: Device pointer for the consumer (of regulator) device 115 * @supply: regulator supply name 116 * 117 * Extract the regulator device node corresponding to the supply name. 118 * retruns the device node corresponding to the regulator if found, else 119 * returns NULL. 120 */ 121 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 122 { 123 struct device_node *regnode = NULL; 124 char prop_name[32]; /* 32 is max size of property name */ 125 126 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 127 128 snprintf(prop_name, 32, "%s-supply", supply); 129 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 130 131 if (!regnode) { 132 dev_dbg(dev, "Looking up %s property in node %s failed", 133 prop_name, dev->of_node->full_name); 134 return NULL; 135 } 136 return regnode; 137 } 138 139 static int _regulator_can_change_status(struct regulator_dev *rdev) 140 { 141 if (!rdev->constraints) 142 return 0; 143 144 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 145 return 1; 146 else 147 return 0; 148 } 149 150 /* Platform voltage constraint check */ 151 static int regulator_check_voltage(struct regulator_dev *rdev, 152 int *min_uV, int *max_uV) 153 { 154 BUG_ON(*min_uV > *max_uV); 155 156 if (!rdev->constraints) { 157 rdev_err(rdev, "no constraints\n"); 158 return -ENODEV; 159 } 160 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 161 rdev_err(rdev, "operation not allowed\n"); 162 return -EPERM; 163 } 164 165 if (*max_uV > rdev->constraints->max_uV) 166 *max_uV = rdev->constraints->max_uV; 167 if (*min_uV < rdev->constraints->min_uV) 168 *min_uV = rdev->constraints->min_uV; 169 170 if (*min_uV > *max_uV) { 171 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 172 *min_uV, *max_uV); 173 return -EINVAL; 174 } 175 176 return 0; 177 } 178 179 /* Make sure we select a voltage that suits the needs of all 180 * regulator consumers 181 */ 182 static int regulator_check_consumers(struct regulator_dev *rdev, 183 int *min_uV, int *max_uV) 184 { 185 struct regulator *regulator; 186 187 list_for_each_entry(regulator, &rdev->consumer_list, list) { 188 /* 189 * Assume consumers that didn't say anything are OK 190 * with anything in the constraint range. 191 */ 192 if (!regulator->min_uV && !regulator->max_uV) 193 continue; 194 195 if (*max_uV > regulator->max_uV) 196 *max_uV = regulator->max_uV; 197 if (*min_uV < regulator->min_uV) 198 *min_uV = regulator->min_uV; 199 } 200 201 if (*min_uV > *max_uV) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 /* current constraint check */ 208 static int regulator_check_current_limit(struct regulator_dev *rdev, 209 int *min_uA, int *max_uA) 210 { 211 BUG_ON(*min_uA > *max_uA); 212 213 if (!rdev->constraints) { 214 rdev_err(rdev, "no constraints\n"); 215 return -ENODEV; 216 } 217 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 218 rdev_err(rdev, "operation not allowed\n"); 219 return -EPERM; 220 } 221 222 if (*max_uA > rdev->constraints->max_uA) 223 *max_uA = rdev->constraints->max_uA; 224 if (*min_uA < rdev->constraints->min_uA) 225 *min_uA = rdev->constraints->min_uA; 226 227 if (*min_uA > *max_uA) { 228 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 229 *min_uA, *max_uA); 230 return -EINVAL; 231 } 232 233 return 0; 234 } 235 236 /* operating mode constraint check */ 237 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 238 { 239 switch (*mode) { 240 case REGULATOR_MODE_FAST: 241 case REGULATOR_MODE_NORMAL: 242 case REGULATOR_MODE_IDLE: 243 case REGULATOR_MODE_STANDBY: 244 break; 245 default: 246 rdev_err(rdev, "invalid mode %x specified\n", *mode); 247 return -EINVAL; 248 } 249 250 if (!rdev->constraints) { 251 rdev_err(rdev, "no constraints\n"); 252 return -ENODEV; 253 } 254 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 255 rdev_err(rdev, "operation not allowed\n"); 256 return -EPERM; 257 } 258 259 /* The modes are bitmasks, the most power hungry modes having 260 * the lowest values. If the requested mode isn't supported 261 * try higher modes. */ 262 while (*mode) { 263 if (rdev->constraints->valid_modes_mask & *mode) 264 return 0; 265 *mode /= 2; 266 } 267 268 return -EINVAL; 269 } 270 271 /* dynamic regulator mode switching constraint check */ 272 static int regulator_check_drms(struct regulator_dev *rdev) 273 { 274 if (!rdev->constraints) { 275 rdev_err(rdev, "no constraints\n"); 276 return -ENODEV; 277 } 278 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 279 rdev_err(rdev, "operation not allowed\n"); 280 return -EPERM; 281 } 282 return 0; 283 } 284 285 static ssize_t regulator_uV_show(struct device *dev, 286 struct device_attribute *attr, char *buf) 287 { 288 struct regulator_dev *rdev = dev_get_drvdata(dev); 289 ssize_t ret; 290 291 mutex_lock(&rdev->mutex); 292 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 293 mutex_unlock(&rdev->mutex); 294 295 return ret; 296 } 297 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 298 299 static ssize_t regulator_uA_show(struct device *dev, 300 struct device_attribute *attr, char *buf) 301 { 302 struct regulator_dev *rdev = dev_get_drvdata(dev); 303 304 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 305 } 306 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 307 308 static ssize_t regulator_name_show(struct device *dev, 309 struct device_attribute *attr, char *buf) 310 { 311 struct regulator_dev *rdev = dev_get_drvdata(dev); 312 313 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 314 } 315 316 static ssize_t regulator_print_opmode(char *buf, int mode) 317 { 318 switch (mode) { 319 case REGULATOR_MODE_FAST: 320 return sprintf(buf, "fast\n"); 321 case REGULATOR_MODE_NORMAL: 322 return sprintf(buf, "normal\n"); 323 case REGULATOR_MODE_IDLE: 324 return sprintf(buf, "idle\n"); 325 case REGULATOR_MODE_STANDBY: 326 return sprintf(buf, "standby\n"); 327 } 328 return sprintf(buf, "unknown\n"); 329 } 330 331 static ssize_t regulator_opmode_show(struct device *dev, 332 struct device_attribute *attr, char *buf) 333 { 334 struct regulator_dev *rdev = dev_get_drvdata(dev); 335 336 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 337 } 338 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 339 340 static ssize_t regulator_print_state(char *buf, int state) 341 { 342 if (state > 0) 343 return sprintf(buf, "enabled\n"); 344 else if (state == 0) 345 return sprintf(buf, "disabled\n"); 346 else 347 return sprintf(buf, "unknown\n"); 348 } 349 350 static ssize_t regulator_state_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 ssize_t ret; 355 356 mutex_lock(&rdev->mutex); 357 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 358 mutex_unlock(&rdev->mutex); 359 360 return ret; 361 } 362 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 363 364 static ssize_t regulator_status_show(struct device *dev, 365 struct device_attribute *attr, char *buf) 366 { 367 struct regulator_dev *rdev = dev_get_drvdata(dev); 368 int status; 369 char *label; 370 371 status = rdev->desc->ops->get_status(rdev); 372 if (status < 0) 373 return status; 374 375 switch (status) { 376 case REGULATOR_STATUS_OFF: 377 label = "off"; 378 break; 379 case REGULATOR_STATUS_ON: 380 label = "on"; 381 break; 382 case REGULATOR_STATUS_ERROR: 383 label = "error"; 384 break; 385 case REGULATOR_STATUS_FAST: 386 label = "fast"; 387 break; 388 case REGULATOR_STATUS_NORMAL: 389 label = "normal"; 390 break; 391 case REGULATOR_STATUS_IDLE: 392 label = "idle"; 393 break; 394 case REGULATOR_STATUS_STANDBY: 395 label = "standby"; 396 break; 397 case REGULATOR_STATUS_UNDEFINED: 398 label = "undefined"; 399 break; 400 default: 401 return -ERANGE; 402 } 403 404 return sprintf(buf, "%s\n", label); 405 } 406 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 407 408 static ssize_t regulator_min_uA_show(struct device *dev, 409 struct device_attribute *attr, char *buf) 410 { 411 struct regulator_dev *rdev = dev_get_drvdata(dev); 412 413 if (!rdev->constraints) 414 return sprintf(buf, "constraint not defined\n"); 415 416 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 417 } 418 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 419 420 static ssize_t regulator_max_uA_show(struct device *dev, 421 struct device_attribute *attr, char *buf) 422 { 423 struct regulator_dev *rdev = dev_get_drvdata(dev); 424 425 if (!rdev->constraints) 426 return sprintf(buf, "constraint not defined\n"); 427 428 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 429 } 430 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 431 432 static ssize_t regulator_min_uV_show(struct device *dev, 433 struct device_attribute *attr, char *buf) 434 { 435 struct regulator_dev *rdev = dev_get_drvdata(dev); 436 437 if (!rdev->constraints) 438 return sprintf(buf, "constraint not defined\n"); 439 440 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 441 } 442 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 443 444 static ssize_t regulator_max_uV_show(struct device *dev, 445 struct device_attribute *attr, char *buf) 446 { 447 struct regulator_dev *rdev = dev_get_drvdata(dev); 448 449 if (!rdev->constraints) 450 return sprintf(buf, "constraint not defined\n"); 451 452 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 453 } 454 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 455 456 static ssize_t regulator_total_uA_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct regulator_dev *rdev = dev_get_drvdata(dev); 460 struct regulator *regulator; 461 int uA = 0; 462 463 mutex_lock(&rdev->mutex); 464 list_for_each_entry(regulator, &rdev->consumer_list, list) 465 uA += regulator->uA_load; 466 mutex_unlock(&rdev->mutex); 467 return sprintf(buf, "%d\n", uA); 468 } 469 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 470 471 static ssize_t regulator_num_users_show(struct device *dev, 472 struct device_attribute *attr, char *buf) 473 { 474 struct regulator_dev *rdev = dev_get_drvdata(dev); 475 return sprintf(buf, "%d\n", rdev->use_count); 476 } 477 478 static ssize_t regulator_type_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 483 switch (rdev->desc->type) { 484 case REGULATOR_VOLTAGE: 485 return sprintf(buf, "voltage\n"); 486 case REGULATOR_CURRENT: 487 return sprintf(buf, "current\n"); 488 } 489 return sprintf(buf, "unknown\n"); 490 } 491 492 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct regulator_dev *rdev = dev_get_drvdata(dev); 496 497 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 498 } 499 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 500 regulator_suspend_mem_uV_show, NULL); 501 502 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 503 struct device_attribute *attr, char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 507 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 508 } 509 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 510 regulator_suspend_disk_uV_show, NULL); 511 512 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 513 struct device_attribute *attr, char *buf) 514 { 515 struct regulator_dev *rdev = dev_get_drvdata(dev); 516 517 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 518 } 519 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 520 regulator_suspend_standby_uV_show, NULL); 521 522 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 523 struct device_attribute *attr, char *buf) 524 { 525 struct regulator_dev *rdev = dev_get_drvdata(dev); 526 527 return regulator_print_opmode(buf, 528 rdev->constraints->state_mem.mode); 529 } 530 static DEVICE_ATTR(suspend_mem_mode, 0444, 531 regulator_suspend_mem_mode_show, NULL); 532 533 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return regulator_print_opmode(buf, 539 rdev->constraints->state_disk.mode); 540 } 541 static DEVICE_ATTR(suspend_disk_mode, 0444, 542 regulator_suspend_disk_mode_show, NULL); 543 544 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 545 struct device_attribute *attr, char *buf) 546 { 547 struct regulator_dev *rdev = dev_get_drvdata(dev); 548 549 return regulator_print_opmode(buf, 550 rdev->constraints->state_standby.mode); 551 } 552 static DEVICE_ATTR(suspend_standby_mode, 0444, 553 regulator_suspend_standby_mode_show, NULL); 554 555 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 556 struct device_attribute *attr, char *buf) 557 { 558 struct regulator_dev *rdev = dev_get_drvdata(dev); 559 560 return regulator_print_state(buf, 561 rdev->constraints->state_mem.enabled); 562 } 563 static DEVICE_ATTR(suspend_mem_state, 0444, 564 regulator_suspend_mem_state_show, NULL); 565 566 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 567 struct device_attribute *attr, char *buf) 568 { 569 struct regulator_dev *rdev = dev_get_drvdata(dev); 570 571 return regulator_print_state(buf, 572 rdev->constraints->state_disk.enabled); 573 } 574 static DEVICE_ATTR(suspend_disk_state, 0444, 575 regulator_suspend_disk_state_show, NULL); 576 577 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 578 struct device_attribute *attr, char *buf) 579 { 580 struct regulator_dev *rdev = dev_get_drvdata(dev); 581 582 return regulator_print_state(buf, 583 rdev->constraints->state_standby.enabled); 584 } 585 static DEVICE_ATTR(suspend_standby_state, 0444, 586 regulator_suspend_standby_state_show, NULL); 587 588 589 /* 590 * These are the only attributes are present for all regulators. 591 * Other attributes are a function of regulator functionality. 592 */ 593 static struct device_attribute regulator_dev_attrs[] = { 594 __ATTR(name, 0444, regulator_name_show, NULL), 595 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 596 __ATTR(type, 0444, regulator_type_show, NULL), 597 __ATTR_NULL, 598 }; 599 600 static void regulator_dev_release(struct device *dev) 601 { 602 struct regulator_dev *rdev = dev_get_drvdata(dev); 603 kfree(rdev); 604 } 605 606 static struct class regulator_class = { 607 .name = "regulator", 608 .dev_release = regulator_dev_release, 609 .dev_attrs = regulator_dev_attrs, 610 }; 611 612 /* Calculate the new optimum regulator operating mode based on the new total 613 * consumer load. All locks held by caller */ 614 static void drms_uA_update(struct regulator_dev *rdev) 615 { 616 struct regulator *sibling; 617 int current_uA = 0, output_uV, input_uV, err; 618 unsigned int mode; 619 620 err = regulator_check_drms(rdev); 621 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 622 (!rdev->desc->ops->get_voltage && 623 !rdev->desc->ops->get_voltage_sel) || 624 !rdev->desc->ops->set_mode) 625 return; 626 627 /* get output voltage */ 628 output_uV = _regulator_get_voltage(rdev); 629 if (output_uV <= 0) 630 return; 631 632 /* get input voltage */ 633 input_uV = 0; 634 if (rdev->supply) 635 input_uV = regulator_get_voltage(rdev->supply); 636 if (input_uV <= 0) 637 input_uV = rdev->constraints->input_uV; 638 if (input_uV <= 0) 639 return; 640 641 /* calc total requested load */ 642 list_for_each_entry(sibling, &rdev->consumer_list, list) 643 current_uA += sibling->uA_load; 644 645 /* now get the optimum mode for our new total regulator load */ 646 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 647 output_uV, current_uA); 648 649 /* check the new mode is allowed */ 650 err = regulator_mode_constrain(rdev, &mode); 651 if (err == 0) 652 rdev->desc->ops->set_mode(rdev, mode); 653 } 654 655 static int suspend_set_state(struct regulator_dev *rdev, 656 struct regulator_state *rstate) 657 { 658 int ret = 0; 659 660 /* If we have no suspend mode configration don't set anything; 661 * only warn if the driver implements set_suspend_voltage or 662 * set_suspend_mode callback. 663 */ 664 if (!rstate->enabled && !rstate->disabled) { 665 if (rdev->desc->ops->set_suspend_voltage || 666 rdev->desc->ops->set_suspend_mode) 667 rdev_warn(rdev, "No configuration\n"); 668 return 0; 669 } 670 671 if (rstate->enabled && rstate->disabled) { 672 rdev_err(rdev, "invalid configuration\n"); 673 return -EINVAL; 674 } 675 676 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 677 ret = rdev->desc->ops->set_suspend_enable(rdev); 678 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 679 ret = rdev->desc->ops->set_suspend_disable(rdev); 680 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 681 ret = 0; 682 683 if (ret < 0) { 684 rdev_err(rdev, "failed to enabled/disable\n"); 685 return ret; 686 } 687 688 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 689 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 690 if (ret < 0) { 691 rdev_err(rdev, "failed to set voltage\n"); 692 return ret; 693 } 694 } 695 696 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 697 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 698 if (ret < 0) { 699 rdev_err(rdev, "failed to set mode\n"); 700 return ret; 701 } 702 } 703 return ret; 704 } 705 706 /* locks held by caller */ 707 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 708 { 709 if (!rdev->constraints) 710 return -EINVAL; 711 712 switch (state) { 713 case PM_SUSPEND_STANDBY: 714 return suspend_set_state(rdev, 715 &rdev->constraints->state_standby); 716 case PM_SUSPEND_MEM: 717 return suspend_set_state(rdev, 718 &rdev->constraints->state_mem); 719 case PM_SUSPEND_MAX: 720 return suspend_set_state(rdev, 721 &rdev->constraints->state_disk); 722 default: 723 return -EINVAL; 724 } 725 } 726 727 static void print_constraints(struct regulator_dev *rdev) 728 { 729 struct regulation_constraints *constraints = rdev->constraints; 730 char buf[80] = ""; 731 int count = 0; 732 int ret; 733 734 if (constraints->min_uV && constraints->max_uV) { 735 if (constraints->min_uV == constraints->max_uV) 736 count += sprintf(buf + count, "%d mV ", 737 constraints->min_uV / 1000); 738 else 739 count += sprintf(buf + count, "%d <--> %d mV ", 740 constraints->min_uV / 1000, 741 constraints->max_uV / 1000); 742 } 743 744 if (!constraints->min_uV || 745 constraints->min_uV != constraints->max_uV) { 746 ret = _regulator_get_voltage(rdev); 747 if (ret > 0) 748 count += sprintf(buf + count, "at %d mV ", ret / 1000); 749 } 750 751 if (constraints->uV_offset) 752 count += sprintf(buf, "%dmV offset ", 753 constraints->uV_offset / 1000); 754 755 if (constraints->min_uA && constraints->max_uA) { 756 if (constraints->min_uA == constraints->max_uA) 757 count += sprintf(buf + count, "%d mA ", 758 constraints->min_uA / 1000); 759 else 760 count += sprintf(buf + count, "%d <--> %d mA ", 761 constraints->min_uA / 1000, 762 constraints->max_uA / 1000); 763 } 764 765 if (!constraints->min_uA || 766 constraints->min_uA != constraints->max_uA) { 767 ret = _regulator_get_current_limit(rdev); 768 if (ret > 0) 769 count += sprintf(buf + count, "at %d mA ", ret / 1000); 770 } 771 772 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 773 count += sprintf(buf + count, "fast "); 774 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 775 count += sprintf(buf + count, "normal "); 776 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 777 count += sprintf(buf + count, "idle "); 778 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 779 count += sprintf(buf + count, "standby"); 780 781 rdev_info(rdev, "%s\n", buf); 782 783 if ((constraints->min_uV != constraints->max_uV) && 784 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 785 rdev_warn(rdev, 786 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 787 } 788 789 static int machine_constraints_voltage(struct regulator_dev *rdev, 790 struct regulation_constraints *constraints) 791 { 792 struct regulator_ops *ops = rdev->desc->ops; 793 int ret; 794 795 /* do we need to apply the constraint voltage */ 796 if (rdev->constraints->apply_uV && 797 rdev->constraints->min_uV == rdev->constraints->max_uV) { 798 ret = _regulator_do_set_voltage(rdev, 799 rdev->constraints->min_uV, 800 rdev->constraints->max_uV); 801 if (ret < 0) { 802 rdev_err(rdev, "failed to apply %duV constraint\n", 803 rdev->constraints->min_uV); 804 return ret; 805 } 806 } 807 808 /* constrain machine-level voltage specs to fit 809 * the actual range supported by this regulator. 810 */ 811 if (ops->list_voltage && rdev->desc->n_voltages) { 812 int count = rdev->desc->n_voltages; 813 int i; 814 int min_uV = INT_MAX; 815 int max_uV = INT_MIN; 816 int cmin = constraints->min_uV; 817 int cmax = constraints->max_uV; 818 819 /* it's safe to autoconfigure fixed-voltage supplies 820 and the constraints are used by list_voltage. */ 821 if (count == 1 && !cmin) { 822 cmin = 1; 823 cmax = INT_MAX; 824 constraints->min_uV = cmin; 825 constraints->max_uV = cmax; 826 } 827 828 /* voltage constraints are optional */ 829 if ((cmin == 0) && (cmax == 0)) 830 return 0; 831 832 /* else require explicit machine-level constraints */ 833 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 834 rdev_err(rdev, "invalid voltage constraints\n"); 835 return -EINVAL; 836 } 837 838 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 839 for (i = 0; i < count; i++) { 840 int value; 841 842 value = ops->list_voltage(rdev, i); 843 if (value <= 0) 844 continue; 845 846 /* maybe adjust [min_uV..max_uV] */ 847 if (value >= cmin && value < min_uV) 848 min_uV = value; 849 if (value <= cmax && value > max_uV) 850 max_uV = value; 851 } 852 853 /* final: [min_uV..max_uV] valid iff constraints valid */ 854 if (max_uV < min_uV) { 855 rdev_err(rdev, "unsupportable voltage constraints\n"); 856 return -EINVAL; 857 } 858 859 /* use regulator's subset of machine constraints */ 860 if (constraints->min_uV < min_uV) { 861 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 862 constraints->min_uV, min_uV); 863 constraints->min_uV = min_uV; 864 } 865 if (constraints->max_uV > max_uV) { 866 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 867 constraints->max_uV, max_uV); 868 constraints->max_uV = max_uV; 869 } 870 } 871 872 return 0; 873 } 874 875 /** 876 * set_machine_constraints - sets regulator constraints 877 * @rdev: regulator source 878 * @constraints: constraints to apply 879 * 880 * Allows platform initialisation code to define and constrain 881 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 882 * Constraints *must* be set by platform code in order for some 883 * regulator operations to proceed i.e. set_voltage, set_current_limit, 884 * set_mode. 885 */ 886 static int set_machine_constraints(struct regulator_dev *rdev, 887 const struct regulation_constraints *constraints) 888 { 889 int ret = 0; 890 struct regulator_ops *ops = rdev->desc->ops; 891 892 if (constraints) 893 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 894 GFP_KERNEL); 895 else 896 rdev->constraints = kzalloc(sizeof(*constraints), 897 GFP_KERNEL); 898 if (!rdev->constraints) 899 return -ENOMEM; 900 901 ret = machine_constraints_voltage(rdev, rdev->constraints); 902 if (ret != 0) 903 goto out; 904 905 /* do we need to setup our suspend state */ 906 if (rdev->constraints->initial_state) { 907 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 908 if (ret < 0) { 909 rdev_err(rdev, "failed to set suspend state\n"); 910 goto out; 911 } 912 } 913 914 if (rdev->constraints->initial_mode) { 915 if (!ops->set_mode) { 916 rdev_err(rdev, "no set_mode operation\n"); 917 ret = -EINVAL; 918 goto out; 919 } 920 921 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 922 if (ret < 0) { 923 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 924 goto out; 925 } 926 } 927 928 /* If the constraints say the regulator should be on at this point 929 * and we have control then make sure it is enabled. 930 */ 931 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 932 ops->enable) { 933 ret = ops->enable(rdev); 934 if (ret < 0) { 935 rdev_err(rdev, "failed to enable\n"); 936 goto out; 937 } 938 } 939 940 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 941 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 942 if (ret < 0) { 943 rdev_err(rdev, "failed to set ramp_delay\n"); 944 goto out; 945 } 946 } 947 948 print_constraints(rdev); 949 return 0; 950 out: 951 kfree(rdev->constraints); 952 rdev->constraints = NULL; 953 return ret; 954 } 955 956 /** 957 * set_supply - set regulator supply regulator 958 * @rdev: regulator name 959 * @supply_rdev: supply regulator name 960 * 961 * Called by platform initialisation code to set the supply regulator for this 962 * regulator. This ensures that a regulators supply will also be enabled by the 963 * core if it's child is enabled. 964 */ 965 static int set_supply(struct regulator_dev *rdev, 966 struct regulator_dev *supply_rdev) 967 { 968 int err; 969 970 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 971 972 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 973 if (rdev->supply == NULL) { 974 err = -ENOMEM; 975 return err; 976 } 977 978 return 0; 979 } 980 981 /** 982 * set_consumer_device_supply - Bind a regulator to a symbolic supply 983 * @rdev: regulator source 984 * @consumer_dev_name: dev_name() string for device supply applies to 985 * @supply: symbolic name for supply 986 * 987 * Allows platform initialisation code to map physical regulator 988 * sources to symbolic names for supplies for use by devices. Devices 989 * should use these symbolic names to request regulators, avoiding the 990 * need to provide board-specific regulator names as platform data. 991 */ 992 static int set_consumer_device_supply(struct regulator_dev *rdev, 993 const char *consumer_dev_name, 994 const char *supply) 995 { 996 struct regulator_map *node; 997 int has_dev; 998 999 if (supply == NULL) 1000 return -EINVAL; 1001 1002 if (consumer_dev_name != NULL) 1003 has_dev = 1; 1004 else 1005 has_dev = 0; 1006 1007 list_for_each_entry(node, ®ulator_map_list, list) { 1008 if (node->dev_name && consumer_dev_name) { 1009 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1010 continue; 1011 } else if (node->dev_name || consumer_dev_name) { 1012 continue; 1013 } 1014 1015 if (strcmp(node->supply, supply) != 0) 1016 continue; 1017 1018 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1019 consumer_dev_name, 1020 dev_name(&node->regulator->dev), 1021 node->regulator->desc->name, 1022 supply, 1023 dev_name(&rdev->dev), rdev_get_name(rdev)); 1024 return -EBUSY; 1025 } 1026 1027 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1028 if (node == NULL) 1029 return -ENOMEM; 1030 1031 node->regulator = rdev; 1032 node->supply = supply; 1033 1034 if (has_dev) { 1035 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1036 if (node->dev_name == NULL) { 1037 kfree(node); 1038 return -ENOMEM; 1039 } 1040 } 1041 1042 list_add(&node->list, ®ulator_map_list); 1043 return 0; 1044 } 1045 1046 static void unset_regulator_supplies(struct regulator_dev *rdev) 1047 { 1048 struct regulator_map *node, *n; 1049 1050 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1051 if (rdev == node->regulator) { 1052 list_del(&node->list); 1053 kfree(node->dev_name); 1054 kfree(node); 1055 } 1056 } 1057 } 1058 1059 #define REG_STR_SIZE 64 1060 1061 static struct regulator *create_regulator(struct regulator_dev *rdev, 1062 struct device *dev, 1063 const char *supply_name) 1064 { 1065 struct regulator *regulator; 1066 char buf[REG_STR_SIZE]; 1067 int err, size; 1068 1069 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1070 if (regulator == NULL) 1071 return NULL; 1072 1073 mutex_lock(&rdev->mutex); 1074 regulator->rdev = rdev; 1075 list_add(®ulator->list, &rdev->consumer_list); 1076 1077 if (dev) { 1078 regulator->dev = dev; 1079 1080 /* Add a link to the device sysfs entry */ 1081 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1082 dev->kobj.name, supply_name); 1083 if (size >= REG_STR_SIZE) 1084 goto overflow_err; 1085 1086 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1087 if (regulator->supply_name == NULL) 1088 goto overflow_err; 1089 1090 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1091 buf); 1092 if (err) { 1093 rdev_warn(rdev, "could not add device link %s err %d\n", 1094 dev->kobj.name, err); 1095 /* non-fatal */ 1096 } 1097 } else { 1098 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1099 if (regulator->supply_name == NULL) 1100 goto overflow_err; 1101 } 1102 1103 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1104 rdev->debugfs); 1105 if (!regulator->debugfs) { 1106 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1107 } else { 1108 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1109 ®ulator->uA_load); 1110 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1111 ®ulator->min_uV); 1112 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1113 ®ulator->max_uV); 1114 } 1115 1116 /* 1117 * Check now if the regulator is an always on regulator - if 1118 * it is then we don't need to do nearly so much work for 1119 * enable/disable calls. 1120 */ 1121 if (!_regulator_can_change_status(rdev) && 1122 _regulator_is_enabled(rdev)) 1123 regulator->always_on = true; 1124 1125 mutex_unlock(&rdev->mutex); 1126 return regulator; 1127 overflow_err: 1128 list_del(®ulator->list); 1129 kfree(regulator); 1130 mutex_unlock(&rdev->mutex); 1131 return NULL; 1132 } 1133 1134 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1135 { 1136 if (!rdev->desc->ops->enable_time) 1137 return rdev->desc->enable_time; 1138 return rdev->desc->ops->enable_time(rdev); 1139 } 1140 1141 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1142 const char *supply, 1143 int *ret) 1144 { 1145 struct regulator_dev *r; 1146 struct device_node *node; 1147 struct regulator_map *map; 1148 const char *devname = NULL; 1149 1150 /* first do a dt based lookup */ 1151 if (dev && dev->of_node) { 1152 node = of_get_regulator(dev, supply); 1153 if (node) { 1154 list_for_each_entry(r, ®ulator_list, list) 1155 if (r->dev.parent && 1156 node == r->dev.of_node) 1157 return r; 1158 } else { 1159 /* 1160 * If we couldn't even get the node then it's 1161 * not just that the device didn't register 1162 * yet, there's no node and we'll never 1163 * succeed. 1164 */ 1165 *ret = -ENODEV; 1166 } 1167 } 1168 1169 /* if not found, try doing it non-dt way */ 1170 if (dev) 1171 devname = dev_name(dev); 1172 1173 list_for_each_entry(r, ®ulator_list, list) 1174 if (strcmp(rdev_get_name(r), supply) == 0) 1175 return r; 1176 1177 list_for_each_entry(map, ®ulator_map_list, list) { 1178 /* If the mapping has a device set up it must match */ 1179 if (map->dev_name && 1180 (!devname || strcmp(map->dev_name, devname))) 1181 continue; 1182 1183 if (strcmp(map->supply, supply) == 0) 1184 return map->regulator; 1185 } 1186 1187 1188 return NULL; 1189 } 1190 1191 /* Internal regulator request function */ 1192 static struct regulator *_regulator_get(struct device *dev, const char *id, 1193 int exclusive) 1194 { 1195 struct regulator_dev *rdev; 1196 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1197 const char *devname = NULL; 1198 int ret; 1199 1200 if (id == NULL) { 1201 pr_err("get() with no identifier\n"); 1202 return regulator; 1203 } 1204 1205 if (dev) 1206 devname = dev_name(dev); 1207 1208 mutex_lock(®ulator_list_mutex); 1209 1210 rdev = regulator_dev_lookup(dev, id, &ret); 1211 if (rdev) 1212 goto found; 1213 1214 if (board_wants_dummy_regulator) { 1215 rdev = dummy_regulator_rdev; 1216 goto found; 1217 } 1218 1219 #ifdef CONFIG_REGULATOR_DUMMY 1220 if (!devname) 1221 devname = "deviceless"; 1222 1223 /* If the board didn't flag that it was fully constrained then 1224 * substitute in a dummy regulator so consumers can continue. 1225 */ 1226 if (!has_full_constraints) { 1227 pr_warn("%s supply %s not found, using dummy regulator\n", 1228 devname, id); 1229 rdev = dummy_regulator_rdev; 1230 goto found; 1231 } 1232 #endif 1233 1234 mutex_unlock(®ulator_list_mutex); 1235 return regulator; 1236 1237 found: 1238 if (rdev->exclusive) { 1239 regulator = ERR_PTR(-EPERM); 1240 goto out; 1241 } 1242 1243 if (exclusive && rdev->open_count) { 1244 regulator = ERR_PTR(-EBUSY); 1245 goto out; 1246 } 1247 1248 if (!try_module_get(rdev->owner)) 1249 goto out; 1250 1251 regulator = create_regulator(rdev, dev, id); 1252 if (regulator == NULL) { 1253 regulator = ERR_PTR(-ENOMEM); 1254 module_put(rdev->owner); 1255 goto out; 1256 } 1257 1258 rdev->open_count++; 1259 if (exclusive) { 1260 rdev->exclusive = 1; 1261 1262 ret = _regulator_is_enabled(rdev); 1263 if (ret > 0) 1264 rdev->use_count = 1; 1265 else 1266 rdev->use_count = 0; 1267 } 1268 1269 out: 1270 mutex_unlock(®ulator_list_mutex); 1271 1272 return regulator; 1273 } 1274 1275 /** 1276 * regulator_get - lookup and obtain a reference to a regulator. 1277 * @dev: device for regulator "consumer" 1278 * @id: Supply name or regulator ID. 1279 * 1280 * Returns a struct regulator corresponding to the regulator producer, 1281 * or IS_ERR() condition containing errno. 1282 * 1283 * Use of supply names configured via regulator_set_device_supply() is 1284 * strongly encouraged. It is recommended that the supply name used 1285 * should match the name used for the supply and/or the relevant 1286 * device pins in the datasheet. 1287 */ 1288 struct regulator *regulator_get(struct device *dev, const char *id) 1289 { 1290 return _regulator_get(dev, id, 0); 1291 } 1292 EXPORT_SYMBOL_GPL(regulator_get); 1293 1294 static void devm_regulator_release(struct device *dev, void *res) 1295 { 1296 regulator_put(*(struct regulator **)res); 1297 } 1298 1299 /** 1300 * devm_regulator_get - Resource managed regulator_get() 1301 * @dev: device for regulator "consumer" 1302 * @id: Supply name or regulator ID. 1303 * 1304 * Managed regulator_get(). Regulators returned from this function are 1305 * automatically regulator_put() on driver detach. See regulator_get() for more 1306 * information. 1307 */ 1308 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1309 { 1310 struct regulator **ptr, *regulator; 1311 1312 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1313 if (!ptr) 1314 return ERR_PTR(-ENOMEM); 1315 1316 regulator = regulator_get(dev, id); 1317 if (!IS_ERR(regulator)) { 1318 *ptr = regulator; 1319 devres_add(dev, ptr); 1320 } else { 1321 devres_free(ptr); 1322 } 1323 1324 return regulator; 1325 } 1326 EXPORT_SYMBOL_GPL(devm_regulator_get); 1327 1328 /** 1329 * regulator_get_exclusive - obtain exclusive access to a regulator. 1330 * @dev: device for regulator "consumer" 1331 * @id: Supply name or regulator ID. 1332 * 1333 * Returns a struct regulator corresponding to the regulator producer, 1334 * or IS_ERR() condition containing errno. Other consumers will be 1335 * unable to obtain this reference is held and the use count for the 1336 * regulator will be initialised to reflect the current state of the 1337 * regulator. 1338 * 1339 * This is intended for use by consumers which cannot tolerate shared 1340 * use of the regulator such as those which need to force the 1341 * regulator off for correct operation of the hardware they are 1342 * controlling. 1343 * 1344 * Use of supply names configured via regulator_set_device_supply() is 1345 * strongly encouraged. It is recommended that the supply name used 1346 * should match the name used for the supply and/or the relevant 1347 * device pins in the datasheet. 1348 */ 1349 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1350 { 1351 return _regulator_get(dev, id, 1); 1352 } 1353 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1354 1355 /** 1356 * regulator_put - "free" the regulator source 1357 * @regulator: regulator source 1358 * 1359 * Note: drivers must ensure that all regulator_enable calls made on this 1360 * regulator source are balanced by regulator_disable calls prior to calling 1361 * this function. 1362 */ 1363 void regulator_put(struct regulator *regulator) 1364 { 1365 struct regulator_dev *rdev; 1366 1367 if (regulator == NULL || IS_ERR(regulator)) 1368 return; 1369 1370 mutex_lock(®ulator_list_mutex); 1371 rdev = regulator->rdev; 1372 1373 debugfs_remove_recursive(regulator->debugfs); 1374 1375 /* remove any sysfs entries */ 1376 if (regulator->dev) 1377 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1378 kfree(regulator->supply_name); 1379 list_del(®ulator->list); 1380 kfree(regulator); 1381 1382 rdev->open_count--; 1383 rdev->exclusive = 0; 1384 1385 module_put(rdev->owner); 1386 mutex_unlock(®ulator_list_mutex); 1387 } 1388 EXPORT_SYMBOL_GPL(regulator_put); 1389 1390 static int devm_regulator_match(struct device *dev, void *res, void *data) 1391 { 1392 struct regulator **r = res; 1393 if (!r || !*r) { 1394 WARN_ON(!r || !*r); 1395 return 0; 1396 } 1397 return *r == data; 1398 } 1399 1400 /** 1401 * devm_regulator_put - Resource managed regulator_put() 1402 * @regulator: regulator to free 1403 * 1404 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1405 * this function will not need to be called and the resource management 1406 * code will ensure that the resource is freed. 1407 */ 1408 void devm_regulator_put(struct regulator *regulator) 1409 { 1410 int rc; 1411 1412 rc = devres_release(regulator->dev, devm_regulator_release, 1413 devm_regulator_match, regulator); 1414 if (rc != 0) 1415 WARN_ON(rc); 1416 } 1417 EXPORT_SYMBOL_GPL(devm_regulator_put); 1418 1419 static int _regulator_do_enable(struct regulator_dev *rdev) 1420 { 1421 int ret, delay; 1422 1423 /* Query before enabling in case configuration dependent. */ 1424 ret = _regulator_get_enable_time(rdev); 1425 if (ret >= 0) { 1426 delay = ret; 1427 } else { 1428 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1429 delay = 0; 1430 } 1431 1432 trace_regulator_enable(rdev_get_name(rdev)); 1433 1434 if (rdev->ena_gpio) { 1435 gpio_set_value_cansleep(rdev->ena_gpio, 1436 !rdev->ena_gpio_invert); 1437 rdev->ena_gpio_state = 1; 1438 } else if (rdev->desc->ops->enable) { 1439 ret = rdev->desc->ops->enable(rdev); 1440 if (ret < 0) 1441 return ret; 1442 } else { 1443 return -EINVAL; 1444 } 1445 1446 /* Allow the regulator to ramp; it would be useful to extend 1447 * this for bulk operations so that the regulators can ramp 1448 * together. */ 1449 trace_regulator_enable_delay(rdev_get_name(rdev)); 1450 1451 if (delay >= 1000) { 1452 mdelay(delay / 1000); 1453 udelay(delay % 1000); 1454 } else if (delay) { 1455 udelay(delay); 1456 } 1457 1458 trace_regulator_enable_complete(rdev_get_name(rdev)); 1459 1460 return 0; 1461 } 1462 1463 /* locks held by regulator_enable() */ 1464 static int _regulator_enable(struct regulator_dev *rdev) 1465 { 1466 int ret; 1467 1468 /* check voltage and requested load before enabling */ 1469 if (rdev->constraints && 1470 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1471 drms_uA_update(rdev); 1472 1473 if (rdev->use_count == 0) { 1474 /* The regulator may on if it's not switchable or left on */ 1475 ret = _regulator_is_enabled(rdev); 1476 if (ret == -EINVAL || ret == 0) { 1477 if (!_regulator_can_change_status(rdev)) 1478 return -EPERM; 1479 1480 ret = _regulator_do_enable(rdev); 1481 if (ret < 0) 1482 return ret; 1483 1484 } else if (ret < 0) { 1485 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1486 return ret; 1487 } 1488 /* Fallthrough on positive return values - already enabled */ 1489 } 1490 1491 rdev->use_count++; 1492 1493 return 0; 1494 } 1495 1496 /** 1497 * regulator_enable - enable regulator output 1498 * @regulator: regulator source 1499 * 1500 * Request that the regulator be enabled with the regulator output at 1501 * the predefined voltage or current value. Calls to regulator_enable() 1502 * must be balanced with calls to regulator_disable(). 1503 * 1504 * NOTE: the output value can be set by other drivers, boot loader or may be 1505 * hardwired in the regulator. 1506 */ 1507 int regulator_enable(struct regulator *regulator) 1508 { 1509 struct regulator_dev *rdev = regulator->rdev; 1510 int ret = 0; 1511 1512 if (regulator->always_on) 1513 return 0; 1514 1515 if (rdev->supply) { 1516 ret = regulator_enable(rdev->supply); 1517 if (ret != 0) 1518 return ret; 1519 } 1520 1521 mutex_lock(&rdev->mutex); 1522 ret = _regulator_enable(rdev); 1523 mutex_unlock(&rdev->mutex); 1524 1525 if (ret != 0 && rdev->supply) 1526 regulator_disable(rdev->supply); 1527 1528 return ret; 1529 } 1530 EXPORT_SYMBOL_GPL(regulator_enable); 1531 1532 static int _regulator_do_disable(struct regulator_dev *rdev) 1533 { 1534 int ret; 1535 1536 trace_regulator_disable(rdev_get_name(rdev)); 1537 1538 if (rdev->ena_gpio) { 1539 gpio_set_value_cansleep(rdev->ena_gpio, 1540 rdev->ena_gpio_invert); 1541 rdev->ena_gpio_state = 0; 1542 1543 } else if (rdev->desc->ops->disable) { 1544 ret = rdev->desc->ops->disable(rdev); 1545 if (ret != 0) 1546 return ret; 1547 } 1548 1549 trace_regulator_disable_complete(rdev_get_name(rdev)); 1550 1551 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1552 NULL); 1553 return 0; 1554 } 1555 1556 /* locks held by regulator_disable() */ 1557 static int _regulator_disable(struct regulator_dev *rdev) 1558 { 1559 int ret = 0; 1560 1561 if (WARN(rdev->use_count <= 0, 1562 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1563 return -EIO; 1564 1565 /* are we the last user and permitted to disable ? */ 1566 if (rdev->use_count == 1 && 1567 (rdev->constraints && !rdev->constraints->always_on)) { 1568 1569 /* we are last user */ 1570 if (_regulator_can_change_status(rdev)) { 1571 ret = _regulator_do_disable(rdev); 1572 if (ret < 0) { 1573 rdev_err(rdev, "failed to disable\n"); 1574 return ret; 1575 } 1576 } 1577 1578 rdev->use_count = 0; 1579 } else if (rdev->use_count > 1) { 1580 1581 if (rdev->constraints && 1582 (rdev->constraints->valid_ops_mask & 1583 REGULATOR_CHANGE_DRMS)) 1584 drms_uA_update(rdev); 1585 1586 rdev->use_count--; 1587 } 1588 1589 return ret; 1590 } 1591 1592 /** 1593 * regulator_disable - disable regulator output 1594 * @regulator: regulator source 1595 * 1596 * Disable the regulator output voltage or current. Calls to 1597 * regulator_enable() must be balanced with calls to 1598 * regulator_disable(). 1599 * 1600 * NOTE: this will only disable the regulator output if no other consumer 1601 * devices have it enabled, the regulator device supports disabling and 1602 * machine constraints permit this operation. 1603 */ 1604 int regulator_disable(struct regulator *regulator) 1605 { 1606 struct regulator_dev *rdev = regulator->rdev; 1607 int ret = 0; 1608 1609 if (regulator->always_on) 1610 return 0; 1611 1612 mutex_lock(&rdev->mutex); 1613 ret = _regulator_disable(rdev); 1614 mutex_unlock(&rdev->mutex); 1615 1616 if (ret == 0 && rdev->supply) 1617 regulator_disable(rdev->supply); 1618 1619 return ret; 1620 } 1621 EXPORT_SYMBOL_GPL(regulator_disable); 1622 1623 /* locks held by regulator_force_disable() */ 1624 static int _regulator_force_disable(struct regulator_dev *rdev) 1625 { 1626 int ret = 0; 1627 1628 /* force disable */ 1629 if (rdev->desc->ops->disable) { 1630 /* ah well, who wants to live forever... */ 1631 ret = rdev->desc->ops->disable(rdev); 1632 if (ret < 0) { 1633 rdev_err(rdev, "failed to force disable\n"); 1634 return ret; 1635 } 1636 /* notify other consumers that power has been forced off */ 1637 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1638 REGULATOR_EVENT_DISABLE, NULL); 1639 } 1640 1641 return ret; 1642 } 1643 1644 /** 1645 * regulator_force_disable - force disable regulator output 1646 * @regulator: regulator source 1647 * 1648 * Forcibly disable the regulator output voltage or current. 1649 * NOTE: this *will* disable the regulator output even if other consumer 1650 * devices have it enabled. This should be used for situations when device 1651 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1652 */ 1653 int regulator_force_disable(struct regulator *regulator) 1654 { 1655 struct regulator_dev *rdev = regulator->rdev; 1656 int ret; 1657 1658 mutex_lock(&rdev->mutex); 1659 regulator->uA_load = 0; 1660 ret = _regulator_force_disable(regulator->rdev); 1661 mutex_unlock(&rdev->mutex); 1662 1663 if (rdev->supply) 1664 while (rdev->open_count--) 1665 regulator_disable(rdev->supply); 1666 1667 return ret; 1668 } 1669 EXPORT_SYMBOL_GPL(regulator_force_disable); 1670 1671 static void regulator_disable_work(struct work_struct *work) 1672 { 1673 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1674 disable_work.work); 1675 int count, i, ret; 1676 1677 mutex_lock(&rdev->mutex); 1678 1679 BUG_ON(!rdev->deferred_disables); 1680 1681 count = rdev->deferred_disables; 1682 rdev->deferred_disables = 0; 1683 1684 for (i = 0; i < count; i++) { 1685 ret = _regulator_disable(rdev); 1686 if (ret != 0) 1687 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1688 } 1689 1690 mutex_unlock(&rdev->mutex); 1691 1692 if (rdev->supply) { 1693 for (i = 0; i < count; i++) { 1694 ret = regulator_disable(rdev->supply); 1695 if (ret != 0) { 1696 rdev_err(rdev, 1697 "Supply disable failed: %d\n", ret); 1698 } 1699 } 1700 } 1701 } 1702 1703 /** 1704 * regulator_disable_deferred - disable regulator output with delay 1705 * @regulator: regulator source 1706 * @ms: miliseconds until the regulator is disabled 1707 * 1708 * Execute regulator_disable() on the regulator after a delay. This 1709 * is intended for use with devices that require some time to quiesce. 1710 * 1711 * NOTE: this will only disable the regulator output if no other consumer 1712 * devices have it enabled, the regulator device supports disabling and 1713 * machine constraints permit this operation. 1714 */ 1715 int regulator_disable_deferred(struct regulator *regulator, int ms) 1716 { 1717 struct regulator_dev *rdev = regulator->rdev; 1718 int ret; 1719 1720 if (regulator->always_on) 1721 return 0; 1722 1723 mutex_lock(&rdev->mutex); 1724 rdev->deferred_disables++; 1725 mutex_unlock(&rdev->mutex); 1726 1727 ret = schedule_delayed_work(&rdev->disable_work, 1728 msecs_to_jiffies(ms)); 1729 if (ret < 0) 1730 return ret; 1731 else 1732 return 0; 1733 } 1734 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1735 1736 /** 1737 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1738 * 1739 * @rdev: regulator to operate on 1740 * 1741 * Regulators that use regmap for their register I/O can set the 1742 * enable_reg and enable_mask fields in their descriptor and then use 1743 * this as their is_enabled operation, saving some code. 1744 */ 1745 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1746 { 1747 unsigned int val; 1748 int ret; 1749 1750 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1751 if (ret != 0) 1752 return ret; 1753 1754 return (val & rdev->desc->enable_mask) != 0; 1755 } 1756 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1757 1758 /** 1759 * regulator_enable_regmap - standard enable() for regmap users 1760 * 1761 * @rdev: regulator to operate on 1762 * 1763 * Regulators that use regmap for their register I/O can set the 1764 * enable_reg and enable_mask fields in their descriptor and then use 1765 * this as their enable() operation, saving some code. 1766 */ 1767 int regulator_enable_regmap(struct regulator_dev *rdev) 1768 { 1769 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1770 rdev->desc->enable_mask, 1771 rdev->desc->enable_mask); 1772 } 1773 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1774 1775 /** 1776 * regulator_disable_regmap - standard disable() for regmap users 1777 * 1778 * @rdev: regulator to operate on 1779 * 1780 * Regulators that use regmap for their register I/O can set the 1781 * enable_reg and enable_mask fields in their descriptor and then use 1782 * this as their disable() operation, saving some code. 1783 */ 1784 int regulator_disable_regmap(struct regulator_dev *rdev) 1785 { 1786 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1787 rdev->desc->enable_mask, 0); 1788 } 1789 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1790 1791 static int _regulator_is_enabled(struct regulator_dev *rdev) 1792 { 1793 /* A GPIO control always takes precedence */ 1794 if (rdev->ena_gpio) 1795 return rdev->ena_gpio_state; 1796 1797 /* If we don't know then assume that the regulator is always on */ 1798 if (!rdev->desc->ops->is_enabled) 1799 return 1; 1800 1801 return rdev->desc->ops->is_enabled(rdev); 1802 } 1803 1804 /** 1805 * regulator_is_enabled - is the regulator output enabled 1806 * @regulator: regulator source 1807 * 1808 * Returns positive if the regulator driver backing the source/client 1809 * has requested that the device be enabled, zero if it hasn't, else a 1810 * negative errno code. 1811 * 1812 * Note that the device backing this regulator handle can have multiple 1813 * users, so it might be enabled even if regulator_enable() was never 1814 * called for this particular source. 1815 */ 1816 int regulator_is_enabled(struct regulator *regulator) 1817 { 1818 int ret; 1819 1820 if (regulator->always_on) 1821 return 1; 1822 1823 mutex_lock(®ulator->rdev->mutex); 1824 ret = _regulator_is_enabled(regulator->rdev); 1825 mutex_unlock(®ulator->rdev->mutex); 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(regulator_is_enabled); 1830 1831 /** 1832 * regulator_count_voltages - count regulator_list_voltage() selectors 1833 * @regulator: regulator source 1834 * 1835 * Returns number of selectors, or negative errno. Selectors are 1836 * numbered starting at zero, and typically correspond to bitfields 1837 * in hardware registers. 1838 */ 1839 int regulator_count_voltages(struct regulator *regulator) 1840 { 1841 struct regulator_dev *rdev = regulator->rdev; 1842 1843 return rdev->desc->n_voltages ? : -EINVAL; 1844 } 1845 EXPORT_SYMBOL_GPL(regulator_count_voltages); 1846 1847 /** 1848 * regulator_list_voltage_linear - List voltages with simple calculation 1849 * 1850 * @rdev: Regulator device 1851 * @selector: Selector to convert into a voltage 1852 * 1853 * Regulators with a simple linear mapping between voltages and 1854 * selectors can set min_uV and uV_step in the regulator descriptor 1855 * and then use this function as their list_voltage() operation, 1856 */ 1857 int regulator_list_voltage_linear(struct regulator_dev *rdev, 1858 unsigned int selector) 1859 { 1860 if (selector >= rdev->desc->n_voltages) 1861 return -EINVAL; 1862 1863 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 1864 } 1865 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 1866 1867 /** 1868 * regulator_list_voltage_table - List voltages with table based mapping 1869 * 1870 * @rdev: Regulator device 1871 * @selector: Selector to convert into a voltage 1872 * 1873 * Regulators with table based mapping between voltages and 1874 * selectors can set volt_table in the regulator descriptor 1875 * and then use this function as their list_voltage() operation. 1876 */ 1877 int regulator_list_voltage_table(struct regulator_dev *rdev, 1878 unsigned int selector) 1879 { 1880 if (!rdev->desc->volt_table) { 1881 BUG_ON(!rdev->desc->volt_table); 1882 return -EINVAL; 1883 } 1884 1885 if (selector >= rdev->desc->n_voltages) 1886 return -EINVAL; 1887 1888 return rdev->desc->volt_table[selector]; 1889 } 1890 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 1891 1892 /** 1893 * regulator_list_voltage - enumerate supported voltages 1894 * @regulator: regulator source 1895 * @selector: identify voltage to list 1896 * Context: can sleep 1897 * 1898 * Returns a voltage that can be passed to @regulator_set_voltage(), 1899 * zero if this selector code can't be used on this system, or a 1900 * negative errno. 1901 */ 1902 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 1903 { 1904 struct regulator_dev *rdev = regulator->rdev; 1905 struct regulator_ops *ops = rdev->desc->ops; 1906 int ret; 1907 1908 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 1909 return -EINVAL; 1910 1911 mutex_lock(&rdev->mutex); 1912 ret = ops->list_voltage(rdev, selector); 1913 mutex_unlock(&rdev->mutex); 1914 1915 if (ret > 0) { 1916 if (ret < rdev->constraints->min_uV) 1917 ret = 0; 1918 else if (ret > rdev->constraints->max_uV) 1919 ret = 0; 1920 } 1921 1922 return ret; 1923 } 1924 EXPORT_SYMBOL_GPL(regulator_list_voltage); 1925 1926 /** 1927 * regulator_is_supported_voltage - check if a voltage range can be supported 1928 * 1929 * @regulator: Regulator to check. 1930 * @min_uV: Minimum required voltage in uV. 1931 * @max_uV: Maximum required voltage in uV. 1932 * 1933 * Returns a boolean or a negative error code. 1934 */ 1935 int regulator_is_supported_voltage(struct regulator *regulator, 1936 int min_uV, int max_uV) 1937 { 1938 struct regulator_dev *rdev = regulator->rdev; 1939 int i, voltages, ret; 1940 1941 /* If we can't change voltage check the current voltage */ 1942 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 1943 ret = regulator_get_voltage(regulator); 1944 if (ret >= 0) 1945 return (min_uV >= ret && ret <= max_uV); 1946 else 1947 return ret; 1948 } 1949 1950 ret = regulator_count_voltages(regulator); 1951 if (ret < 0) 1952 return ret; 1953 voltages = ret; 1954 1955 for (i = 0; i < voltages; i++) { 1956 ret = regulator_list_voltage(regulator, i); 1957 1958 if (ret >= min_uV && ret <= max_uV) 1959 return 1; 1960 } 1961 1962 return 0; 1963 } 1964 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 1965 1966 /** 1967 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 1968 * 1969 * @rdev: regulator to operate on 1970 * 1971 * Regulators that use regmap for their register I/O can set the 1972 * vsel_reg and vsel_mask fields in their descriptor and then use this 1973 * as their get_voltage_vsel operation, saving some code. 1974 */ 1975 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 1976 { 1977 unsigned int val; 1978 int ret; 1979 1980 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 1981 if (ret != 0) 1982 return ret; 1983 1984 val &= rdev->desc->vsel_mask; 1985 val >>= ffs(rdev->desc->vsel_mask) - 1; 1986 1987 return val; 1988 } 1989 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 1990 1991 /** 1992 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 1993 * 1994 * @rdev: regulator to operate on 1995 * @sel: Selector to set 1996 * 1997 * Regulators that use regmap for their register I/O can set the 1998 * vsel_reg and vsel_mask fields in their descriptor and then use this 1999 * as their set_voltage_vsel operation, saving some code. 2000 */ 2001 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2002 { 2003 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2004 2005 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2006 rdev->desc->vsel_mask, sel); 2007 } 2008 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2009 2010 /** 2011 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2012 * 2013 * @rdev: Regulator to operate on 2014 * @min_uV: Lower bound for voltage 2015 * @max_uV: Upper bound for voltage 2016 * 2017 * Drivers implementing set_voltage_sel() and list_voltage() can use 2018 * this as their map_voltage() operation. It will find a suitable 2019 * voltage by calling list_voltage() until it gets something in bounds 2020 * for the requested voltages. 2021 */ 2022 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2023 int min_uV, int max_uV) 2024 { 2025 int best_val = INT_MAX; 2026 int selector = 0; 2027 int i, ret; 2028 2029 /* Find the smallest voltage that falls within the specified 2030 * range. 2031 */ 2032 for (i = 0; i < rdev->desc->n_voltages; i++) { 2033 ret = rdev->desc->ops->list_voltage(rdev, i); 2034 if (ret < 0) 2035 continue; 2036 2037 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2038 best_val = ret; 2039 selector = i; 2040 } 2041 } 2042 2043 if (best_val != INT_MAX) 2044 return selector; 2045 else 2046 return -EINVAL; 2047 } 2048 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2049 2050 /** 2051 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2052 * 2053 * @rdev: Regulator to operate on 2054 * @min_uV: Lower bound for voltage 2055 * @max_uV: Upper bound for voltage 2056 * 2057 * Drivers providing min_uV and uV_step in their regulator_desc can 2058 * use this as their map_voltage() operation. 2059 */ 2060 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2061 int min_uV, int max_uV) 2062 { 2063 int ret, voltage; 2064 2065 /* Allow uV_step to be 0 for fixed voltage */ 2066 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2067 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2068 return 0; 2069 else 2070 return -EINVAL; 2071 } 2072 2073 if (!rdev->desc->uV_step) { 2074 BUG_ON(!rdev->desc->uV_step); 2075 return -EINVAL; 2076 } 2077 2078 if (min_uV < rdev->desc->min_uV) 2079 min_uV = rdev->desc->min_uV; 2080 2081 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2082 if (ret < 0) 2083 return ret; 2084 2085 /* Map back into a voltage to verify we're still in bounds */ 2086 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2087 if (voltage < min_uV || voltage > max_uV) 2088 return -EINVAL; 2089 2090 return ret; 2091 } 2092 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2093 2094 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2095 int min_uV, int max_uV) 2096 { 2097 int ret; 2098 int delay = 0; 2099 int best_val = 0; 2100 unsigned int selector; 2101 int old_selector = -1; 2102 2103 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2104 2105 min_uV += rdev->constraints->uV_offset; 2106 max_uV += rdev->constraints->uV_offset; 2107 2108 /* 2109 * If we can't obtain the old selector there is not enough 2110 * info to call set_voltage_time_sel(). 2111 */ 2112 if (_regulator_is_enabled(rdev) && 2113 rdev->desc->ops->set_voltage_time_sel && 2114 rdev->desc->ops->get_voltage_sel) { 2115 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2116 if (old_selector < 0) 2117 return old_selector; 2118 } 2119 2120 if (rdev->desc->ops->set_voltage) { 2121 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2122 &selector); 2123 2124 if (ret >= 0) { 2125 if (rdev->desc->ops->list_voltage) 2126 best_val = rdev->desc->ops->list_voltage(rdev, 2127 selector); 2128 else 2129 best_val = _regulator_get_voltage(rdev); 2130 } 2131 2132 } else if (rdev->desc->ops->set_voltage_sel) { 2133 if (rdev->desc->ops->map_voltage) { 2134 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2135 max_uV); 2136 } else { 2137 if (rdev->desc->ops->list_voltage == 2138 regulator_list_voltage_linear) 2139 ret = regulator_map_voltage_linear(rdev, 2140 min_uV, max_uV); 2141 else 2142 ret = regulator_map_voltage_iterate(rdev, 2143 min_uV, max_uV); 2144 } 2145 2146 if (ret >= 0) { 2147 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2148 if (min_uV <= best_val && max_uV >= best_val) { 2149 selector = ret; 2150 ret = rdev->desc->ops->set_voltage_sel(rdev, 2151 ret); 2152 } else { 2153 ret = -EINVAL; 2154 } 2155 } 2156 } else { 2157 ret = -EINVAL; 2158 } 2159 2160 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2161 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2162 rdev->desc->ops->set_voltage_time_sel) { 2163 2164 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2165 old_selector, selector); 2166 if (delay < 0) { 2167 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2168 delay); 2169 delay = 0; 2170 } 2171 2172 /* Insert any necessary delays */ 2173 if (delay >= 1000) { 2174 mdelay(delay / 1000); 2175 udelay(delay % 1000); 2176 } else if (delay) { 2177 udelay(delay); 2178 } 2179 } 2180 2181 if (ret == 0 && best_val >= 0) 2182 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2183 (void *)best_val); 2184 2185 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2186 2187 return ret; 2188 } 2189 2190 /** 2191 * regulator_set_voltage - set regulator output voltage 2192 * @regulator: regulator source 2193 * @min_uV: Minimum required voltage in uV 2194 * @max_uV: Maximum acceptable voltage in uV 2195 * 2196 * Sets a voltage regulator to the desired output voltage. This can be set 2197 * during any regulator state. IOW, regulator can be disabled or enabled. 2198 * 2199 * If the regulator is enabled then the voltage will change to the new value 2200 * immediately otherwise if the regulator is disabled the regulator will 2201 * output at the new voltage when enabled. 2202 * 2203 * NOTE: If the regulator is shared between several devices then the lowest 2204 * request voltage that meets the system constraints will be used. 2205 * Regulator system constraints must be set for this regulator before 2206 * calling this function otherwise this call will fail. 2207 */ 2208 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2209 { 2210 struct regulator_dev *rdev = regulator->rdev; 2211 int ret = 0; 2212 2213 mutex_lock(&rdev->mutex); 2214 2215 /* If we're setting the same range as last time the change 2216 * should be a noop (some cpufreq implementations use the same 2217 * voltage for multiple frequencies, for example). 2218 */ 2219 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2220 goto out; 2221 2222 /* sanity check */ 2223 if (!rdev->desc->ops->set_voltage && 2224 !rdev->desc->ops->set_voltage_sel) { 2225 ret = -EINVAL; 2226 goto out; 2227 } 2228 2229 /* constraints check */ 2230 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2231 if (ret < 0) 2232 goto out; 2233 regulator->min_uV = min_uV; 2234 regulator->max_uV = max_uV; 2235 2236 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2237 if (ret < 0) 2238 goto out; 2239 2240 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2241 2242 out: 2243 mutex_unlock(&rdev->mutex); 2244 return ret; 2245 } 2246 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2247 2248 /** 2249 * regulator_set_voltage_time - get raise/fall time 2250 * @regulator: regulator source 2251 * @old_uV: starting voltage in microvolts 2252 * @new_uV: target voltage in microvolts 2253 * 2254 * Provided with the starting and ending voltage, this function attempts to 2255 * calculate the time in microseconds required to rise or fall to this new 2256 * voltage. 2257 */ 2258 int regulator_set_voltage_time(struct regulator *regulator, 2259 int old_uV, int new_uV) 2260 { 2261 struct regulator_dev *rdev = regulator->rdev; 2262 struct regulator_ops *ops = rdev->desc->ops; 2263 int old_sel = -1; 2264 int new_sel = -1; 2265 int voltage; 2266 int i; 2267 2268 /* Currently requires operations to do this */ 2269 if (!ops->list_voltage || !ops->set_voltage_time_sel 2270 || !rdev->desc->n_voltages) 2271 return -EINVAL; 2272 2273 for (i = 0; i < rdev->desc->n_voltages; i++) { 2274 /* We only look for exact voltage matches here */ 2275 voltage = regulator_list_voltage(regulator, i); 2276 if (voltage < 0) 2277 return -EINVAL; 2278 if (voltage == 0) 2279 continue; 2280 if (voltage == old_uV) 2281 old_sel = i; 2282 if (voltage == new_uV) 2283 new_sel = i; 2284 } 2285 2286 if (old_sel < 0 || new_sel < 0) 2287 return -EINVAL; 2288 2289 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2290 } 2291 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2292 2293 /** 2294 *regulator_set_voltage_time_sel - get raise/fall time 2295 * @regulator: regulator source 2296 * @old_selector: selector for starting voltage 2297 * @new_selector: selector for target voltage 2298 * 2299 * Provided with the starting and target voltage selectors, this function 2300 * returns time in microseconds required to rise or fall to this new voltage 2301 * 2302 * Drivers providing ramp_delay in regulation_constraints can use this as their 2303 * set_voltage_time_sel() operation. 2304 */ 2305 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2306 unsigned int old_selector, 2307 unsigned int new_selector) 2308 { 2309 unsigned int ramp_delay = 0; 2310 int old_volt, new_volt; 2311 2312 if (rdev->constraints->ramp_delay) 2313 ramp_delay = rdev->constraints->ramp_delay; 2314 else if (rdev->desc->ramp_delay) 2315 ramp_delay = rdev->desc->ramp_delay; 2316 2317 if (ramp_delay == 0) { 2318 rdev_warn(rdev, "ramp_delay not set\n"); 2319 return 0; 2320 } 2321 2322 /* sanity check */ 2323 if (!rdev->desc->ops->list_voltage) 2324 return -EINVAL; 2325 2326 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2327 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2328 2329 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2330 } 2331 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2332 2333 /** 2334 * regulator_sync_voltage - re-apply last regulator output voltage 2335 * @regulator: regulator source 2336 * 2337 * Re-apply the last configured voltage. This is intended to be used 2338 * where some external control source the consumer is cooperating with 2339 * has caused the configured voltage to change. 2340 */ 2341 int regulator_sync_voltage(struct regulator *regulator) 2342 { 2343 struct regulator_dev *rdev = regulator->rdev; 2344 int ret, min_uV, max_uV; 2345 2346 mutex_lock(&rdev->mutex); 2347 2348 if (!rdev->desc->ops->set_voltage && 2349 !rdev->desc->ops->set_voltage_sel) { 2350 ret = -EINVAL; 2351 goto out; 2352 } 2353 2354 /* This is only going to work if we've had a voltage configured. */ 2355 if (!regulator->min_uV && !regulator->max_uV) { 2356 ret = -EINVAL; 2357 goto out; 2358 } 2359 2360 min_uV = regulator->min_uV; 2361 max_uV = regulator->max_uV; 2362 2363 /* This should be a paranoia check... */ 2364 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2365 if (ret < 0) 2366 goto out; 2367 2368 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2369 if (ret < 0) 2370 goto out; 2371 2372 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2373 2374 out: 2375 mutex_unlock(&rdev->mutex); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2379 2380 static int _regulator_get_voltage(struct regulator_dev *rdev) 2381 { 2382 int sel, ret; 2383 2384 if (rdev->desc->ops->get_voltage_sel) { 2385 sel = rdev->desc->ops->get_voltage_sel(rdev); 2386 if (sel < 0) 2387 return sel; 2388 ret = rdev->desc->ops->list_voltage(rdev, sel); 2389 } else if (rdev->desc->ops->get_voltage) { 2390 ret = rdev->desc->ops->get_voltage(rdev); 2391 } else { 2392 return -EINVAL; 2393 } 2394 2395 if (ret < 0) 2396 return ret; 2397 return ret - rdev->constraints->uV_offset; 2398 } 2399 2400 /** 2401 * regulator_get_voltage - get regulator output voltage 2402 * @regulator: regulator source 2403 * 2404 * This returns the current regulator voltage in uV. 2405 * 2406 * NOTE: If the regulator is disabled it will return the voltage value. This 2407 * function should not be used to determine regulator state. 2408 */ 2409 int regulator_get_voltage(struct regulator *regulator) 2410 { 2411 int ret; 2412 2413 mutex_lock(®ulator->rdev->mutex); 2414 2415 ret = _regulator_get_voltage(regulator->rdev); 2416 2417 mutex_unlock(®ulator->rdev->mutex); 2418 2419 return ret; 2420 } 2421 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2422 2423 /** 2424 * regulator_set_current_limit - set regulator output current limit 2425 * @regulator: regulator source 2426 * @min_uA: Minimuum supported current in uA 2427 * @max_uA: Maximum supported current in uA 2428 * 2429 * Sets current sink to the desired output current. This can be set during 2430 * any regulator state. IOW, regulator can be disabled or enabled. 2431 * 2432 * If the regulator is enabled then the current will change to the new value 2433 * immediately otherwise if the regulator is disabled the regulator will 2434 * output at the new current when enabled. 2435 * 2436 * NOTE: Regulator system constraints must be set for this regulator before 2437 * calling this function otherwise this call will fail. 2438 */ 2439 int regulator_set_current_limit(struct regulator *regulator, 2440 int min_uA, int max_uA) 2441 { 2442 struct regulator_dev *rdev = regulator->rdev; 2443 int ret; 2444 2445 mutex_lock(&rdev->mutex); 2446 2447 /* sanity check */ 2448 if (!rdev->desc->ops->set_current_limit) { 2449 ret = -EINVAL; 2450 goto out; 2451 } 2452 2453 /* constraints check */ 2454 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2455 if (ret < 0) 2456 goto out; 2457 2458 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2459 out: 2460 mutex_unlock(&rdev->mutex); 2461 return ret; 2462 } 2463 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2464 2465 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2466 { 2467 int ret; 2468 2469 mutex_lock(&rdev->mutex); 2470 2471 /* sanity check */ 2472 if (!rdev->desc->ops->get_current_limit) { 2473 ret = -EINVAL; 2474 goto out; 2475 } 2476 2477 ret = rdev->desc->ops->get_current_limit(rdev); 2478 out: 2479 mutex_unlock(&rdev->mutex); 2480 return ret; 2481 } 2482 2483 /** 2484 * regulator_get_current_limit - get regulator output current 2485 * @regulator: regulator source 2486 * 2487 * This returns the current supplied by the specified current sink in uA. 2488 * 2489 * NOTE: If the regulator is disabled it will return the current value. This 2490 * function should not be used to determine regulator state. 2491 */ 2492 int regulator_get_current_limit(struct regulator *regulator) 2493 { 2494 return _regulator_get_current_limit(regulator->rdev); 2495 } 2496 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2497 2498 /** 2499 * regulator_set_mode - set regulator operating mode 2500 * @regulator: regulator source 2501 * @mode: operating mode - one of the REGULATOR_MODE constants 2502 * 2503 * Set regulator operating mode to increase regulator efficiency or improve 2504 * regulation performance. 2505 * 2506 * NOTE: Regulator system constraints must be set for this regulator before 2507 * calling this function otherwise this call will fail. 2508 */ 2509 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2510 { 2511 struct regulator_dev *rdev = regulator->rdev; 2512 int ret; 2513 int regulator_curr_mode; 2514 2515 mutex_lock(&rdev->mutex); 2516 2517 /* sanity check */ 2518 if (!rdev->desc->ops->set_mode) { 2519 ret = -EINVAL; 2520 goto out; 2521 } 2522 2523 /* return if the same mode is requested */ 2524 if (rdev->desc->ops->get_mode) { 2525 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2526 if (regulator_curr_mode == mode) { 2527 ret = 0; 2528 goto out; 2529 } 2530 } 2531 2532 /* constraints check */ 2533 ret = regulator_mode_constrain(rdev, &mode); 2534 if (ret < 0) 2535 goto out; 2536 2537 ret = rdev->desc->ops->set_mode(rdev, mode); 2538 out: 2539 mutex_unlock(&rdev->mutex); 2540 return ret; 2541 } 2542 EXPORT_SYMBOL_GPL(regulator_set_mode); 2543 2544 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2545 { 2546 int ret; 2547 2548 mutex_lock(&rdev->mutex); 2549 2550 /* sanity check */ 2551 if (!rdev->desc->ops->get_mode) { 2552 ret = -EINVAL; 2553 goto out; 2554 } 2555 2556 ret = rdev->desc->ops->get_mode(rdev); 2557 out: 2558 mutex_unlock(&rdev->mutex); 2559 return ret; 2560 } 2561 2562 /** 2563 * regulator_get_mode - get regulator operating mode 2564 * @regulator: regulator source 2565 * 2566 * Get the current regulator operating mode. 2567 */ 2568 unsigned int regulator_get_mode(struct regulator *regulator) 2569 { 2570 return _regulator_get_mode(regulator->rdev); 2571 } 2572 EXPORT_SYMBOL_GPL(regulator_get_mode); 2573 2574 /** 2575 * regulator_set_optimum_mode - set regulator optimum operating mode 2576 * @regulator: regulator source 2577 * @uA_load: load current 2578 * 2579 * Notifies the regulator core of a new device load. This is then used by 2580 * DRMS (if enabled by constraints) to set the most efficient regulator 2581 * operating mode for the new regulator loading. 2582 * 2583 * Consumer devices notify their supply regulator of the maximum power 2584 * they will require (can be taken from device datasheet in the power 2585 * consumption tables) when they change operational status and hence power 2586 * state. Examples of operational state changes that can affect power 2587 * consumption are :- 2588 * 2589 * o Device is opened / closed. 2590 * o Device I/O is about to begin or has just finished. 2591 * o Device is idling in between work. 2592 * 2593 * This information is also exported via sysfs to userspace. 2594 * 2595 * DRMS will sum the total requested load on the regulator and change 2596 * to the most efficient operating mode if platform constraints allow. 2597 * 2598 * Returns the new regulator mode or error. 2599 */ 2600 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2601 { 2602 struct regulator_dev *rdev = regulator->rdev; 2603 struct regulator *consumer; 2604 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2605 unsigned int mode; 2606 2607 if (rdev->supply) 2608 input_uV = regulator_get_voltage(rdev->supply); 2609 2610 mutex_lock(&rdev->mutex); 2611 2612 /* 2613 * first check to see if we can set modes at all, otherwise just 2614 * tell the consumer everything is OK. 2615 */ 2616 regulator->uA_load = uA_load; 2617 ret = regulator_check_drms(rdev); 2618 if (ret < 0) { 2619 ret = 0; 2620 goto out; 2621 } 2622 2623 if (!rdev->desc->ops->get_optimum_mode) 2624 goto out; 2625 2626 /* 2627 * we can actually do this so any errors are indicators of 2628 * potential real failure. 2629 */ 2630 ret = -EINVAL; 2631 2632 if (!rdev->desc->ops->set_mode) 2633 goto out; 2634 2635 /* get output voltage */ 2636 output_uV = _regulator_get_voltage(rdev); 2637 if (output_uV <= 0) { 2638 rdev_err(rdev, "invalid output voltage found\n"); 2639 goto out; 2640 } 2641 2642 /* No supply? Use constraint voltage */ 2643 if (input_uV <= 0) 2644 input_uV = rdev->constraints->input_uV; 2645 if (input_uV <= 0) { 2646 rdev_err(rdev, "invalid input voltage found\n"); 2647 goto out; 2648 } 2649 2650 /* calc total requested load for this regulator */ 2651 list_for_each_entry(consumer, &rdev->consumer_list, list) 2652 total_uA_load += consumer->uA_load; 2653 2654 mode = rdev->desc->ops->get_optimum_mode(rdev, 2655 input_uV, output_uV, 2656 total_uA_load); 2657 ret = regulator_mode_constrain(rdev, &mode); 2658 if (ret < 0) { 2659 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2660 total_uA_load, input_uV, output_uV); 2661 goto out; 2662 } 2663 2664 ret = rdev->desc->ops->set_mode(rdev, mode); 2665 if (ret < 0) { 2666 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2667 goto out; 2668 } 2669 ret = mode; 2670 out: 2671 mutex_unlock(&rdev->mutex); 2672 return ret; 2673 } 2674 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2675 2676 /** 2677 * regulator_register_notifier - register regulator event notifier 2678 * @regulator: regulator source 2679 * @nb: notifier block 2680 * 2681 * Register notifier block to receive regulator events. 2682 */ 2683 int regulator_register_notifier(struct regulator *regulator, 2684 struct notifier_block *nb) 2685 { 2686 return blocking_notifier_chain_register(®ulator->rdev->notifier, 2687 nb); 2688 } 2689 EXPORT_SYMBOL_GPL(regulator_register_notifier); 2690 2691 /** 2692 * regulator_unregister_notifier - unregister regulator event notifier 2693 * @regulator: regulator source 2694 * @nb: notifier block 2695 * 2696 * Unregister regulator event notifier block. 2697 */ 2698 int regulator_unregister_notifier(struct regulator *regulator, 2699 struct notifier_block *nb) 2700 { 2701 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 2702 nb); 2703 } 2704 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 2705 2706 /* notify regulator consumers and downstream regulator consumers. 2707 * Note mutex must be held by caller. 2708 */ 2709 static void _notifier_call_chain(struct regulator_dev *rdev, 2710 unsigned long event, void *data) 2711 { 2712 /* call rdev chain first */ 2713 blocking_notifier_call_chain(&rdev->notifier, event, data); 2714 } 2715 2716 /** 2717 * regulator_bulk_get - get multiple regulator consumers 2718 * 2719 * @dev: Device to supply 2720 * @num_consumers: Number of consumers to register 2721 * @consumers: Configuration of consumers; clients are stored here. 2722 * 2723 * @return 0 on success, an errno on failure. 2724 * 2725 * This helper function allows drivers to get several regulator 2726 * consumers in one operation. If any of the regulators cannot be 2727 * acquired then any regulators that were allocated will be freed 2728 * before returning to the caller. 2729 */ 2730 int regulator_bulk_get(struct device *dev, int num_consumers, 2731 struct regulator_bulk_data *consumers) 2732 { 2733 int i; 2734 int ret; 2735 2736 for (i = 0; i < num_consumers; i++) 2737 consumers[i].consumer = NULL; 2738 2739 for (i = 0; i < num_consumers; i++) { 2740 consumers[i].consumer = regulator_get(dev, 2741 consumers[i].supply); 2742 if (IS_ERR(consumers[i].consumer)) { 2743 ret = PTR_ERR(consumers[i].consumer); 2744 dev_err(dev, "Failed to get supply '%s': %d\n", 2745 consumers[i].supply, ret); 2746 consumers[i].consumer = NULL; 2747 goto err; 2748 } 2749 } 2750 2751 return 0; 2752 2753 err: 2754 while (--i >= 0) 2755 regulator_put(consumers[i].consumer); 2756 2757 return ret; 2758 } 2759 EXPORT_SYMBOL_GPL(regulator_bulk_get); 2760 2761 /** 2762 * devm_regulator_bulk_get - managed get multiple regulator consumers 2763 * 2764 * @dev: Device to supply 2765 * @num_consumers: Number of consumers to register 2766 * @consumers: Configuration of consumers; clients are stored here. 2767 * 2768 * @return 0 on success, an errno on failure. 2769 * 2770 * This helper function allows drivers to get several regulator 2771 * consumers in one operation with management, the regulators will 2772 * automatically be freed when the device is unbound. If any of the 2773 * regulators cannot be acquired then any regulators that were 2774 * allocated will be freed before returning to the caller. 2775 */ 2776 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 2777 struct regulator_bulk_data *consumers) 2778 { 2779 int i; 2780 int ret; 2781 2782 for (i = 0; i < num_consumers; i++) 2783 consumers[i].consumer = NULL; 2784 2785 for (i = 0; i < num_consumers; i++) { 2786 consumers[i].consumer = devm_regulator_get(dev, 2787 consumers[i].supply); 2788 if (IS_ERR(consumers[i].consumer)) { 2789 ret = PTR_ERR(consumers[i].consumer); 2790 dev_err(dev, "Failed to get supply '%s': %d\n", 2791 consumers[i].supply, ret); 2792 consumers[i].consumer = NULL; 2793 goto err; 2794 } 2795 } 2796 2797 return 0; 2798 2799 err: 2800 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 2801 devm_regulator_put(consumers[i].consumer); 2802 2803 return ret; 2804 } 2805 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 2806 2807 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 2808 { 2809 struct regulator_bulk_data *bulk = data; 2810 2811 bulk->ret = regulator_enable(bulk->consumer); 2812 } 2813 2814 /** 2815 * regulator_bulk_enable - enable multiple regulator consumers 2816 * 2817 * @num_consumers: Number of consumers 2818 * @consumers: Consumer data; clients are stored here. 2819 * @return 0 on success, an errno on failure 2820 * 2821 * This convenience API allows consumers to enable multiple regulator 2822 * clients in a single API call. If any consumers cannot be enabled 2823 * then any others that were enabled will be disabled again prior to 2824 * return. 2825 */ 2826 int regulator_bulk_enable(int num_consumers, 2827 struct regulator_bulk_data *consumers) 2828 { 2829 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 2830 int i; 2831 int ret = 0; 2832 2833 for (i = 0; i < num_consumers; i++) { 2834 if (consumers[i].consumer->always_on) 2835 consumers[i].ret = 0; 2836 else 2837 async_schedule_domain(regulator_bulk_enable_async, 2838 &consumers[i], &async_domain); 2839 } 2840 2841 async_synchronize_full_domain(&async_domain); 2842 2843 /* If any consumer failed we need to unwind any that succeeded */ 2844 for (i = 0; i < num_consumers; i++) { 2845 if (consumers[i].ret != 0) { 2846 ret = consumers[i].ret; 2847 goto err; 2848 } 2849 } 2850 2851 return 0; 2852 2853 err: 2854 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret); 2855 while (--i >= 0) 2856 regulator_disable(consumers[i].consumer); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 2861 2862 /** 2863 * regulator_bulk_disable - disable multiple regulator consumers 2864 * 2865 * @num_consumers: Number of consumers 2866 * @consumers: Consumer data; clients are stored here. 2867 * @return 0 on success, an errno on failure 2868 * 2869 * This convenience API allows consumers to disable multiple regulator 2870 * clients in a single API call. If any consumers cannot be disabled 2871 * then any others that were disabled will be enabled again prior to 2872 * return. 2873 */ 2874 int regulator_bulk_disable(int num_consumers, 2875 struct regulator_bulk_data *consumers) 2876 { 2877 int i; 2878 int ret, r; 2879 2880 for (i = num_consumers - 1; i >= 0; --i) { 2881 ret = regulator_disable(consumers[i].consumer); 2882 if (ret != 0) 2883 goto err; 2884 } 2885 2886 return 0; 2887 2888 err: 2889 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 2890 for (++i; i < num_consumers; ++i) { 2891 r = regulator_enable(consumers[i].consumer); 2892 if (r != 0) 2893 pr_err("Failed to reename %s: %d\n", 2894 consumers[i].supply, r); 2895 } 2896 2897 return ret; 2898 } 2899 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 2900 2901 /** 2902 * regulator_bulk_force_disable - force disable multiple regulator consumers 2903 * 2904 * @num_consumers: Number of consumers 2905 * @consumers: Consumer data; clients are stored here. 2906 * @return 0 on success, an errno on failure 2907 * 2908 * This convenience API allows consumers to forcibly disable multiple regulator 2909 * clients in a single API call. 2910 * NOTE: This should be used for situations when device damage will 2911 * likely occur if the regulators are not disabled (e.g. over temp). 2912 * Although regulator_force_disable function call for some consumers can 2913 * return error numbers, the function is called for all consumers. 2914 */ 2915 int regulator_bulk_force_disable(int num_consumers, 2916 struct regulator_bulk_data *consumers) 2917 { 2918 int i; 2919 int ret; 2920 2921 for (i = 0; i < num_consumers; i++) 2922 consumers[i].ret = 2923 regulator_force_disable(consumers[i].consumer); 2924 2925 for (i = 0; i < num_consumers; i++) { 2926 if (consumers[i].ret != 0) { 2927 ret = consumers[i].ret; 2928 goto out; 2929 } 2930 } 2931 2932 return 0; 2933 out: 2934 return ret; 2935 } 2936 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 2937 2938 /** 2939 * regulator_bulk_free - free multiple regulator consumers 2940 * 2941 * @num_consumers: Number of consumers 2942 * @consumers: Consumer data; clients are stored here. 2943 * 2944 * This convenience API allows consumers to free multiple regulator 2945 * clients in a single API call. 2946 */ 2947 void regulator_bulk_free(int num_consumers, 2948 struct regulator_bulk_data *consumers) 2949 { 2950 int i; 2951 2952 for (i = 0; i < num_consumers; i++) { 2953 regulator_put(consumers[i].consumer); 2954 consumers[i].consumer = NULL; 2955 } 2956 } 2957 EXPORT_SYMBOL_GPL(regulator_bulk_free); 2958 2959 /** 2960 * regulator_notifier_call_chain - call regulator event notifier 2961 * @rdev: regulator source 2962 * @event: notifier block 2963 * @data: callback-specific data. 2964 * 2965 * Called by regulator drivers to notify clients a regulator event has 2966 * occurred. We also notify regulator clients downstream. 2967 * Note lock must be held by caller. 2968 */ 2969 int regulator_notifier_call_chain(struct regulator_dev *rdev, 2970 unsigned long event, void *data) 2971 { 2972 _notifier_call_chain(rdev, event, data); 2973 return NOTIFY_DONE; 2974 2975 } 2976 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 2977 2978 /** 2979 * regulator_mode_to_status - convert a regulator mode into a status 2980 * 2981 * @mode: Mode to convert 2982 * 2983 * Convert a regulator mode into a status. 2984 */ 2985 int regulator_mode_to_status(unsigned int mode) 2986 { 2987 switch (mode) { 2988 case REGULATOR_MODE_FAST: 2989 return REGULATOR_STATUS_FAST; 2990 case REGULATOR_MODE_NORMAL: 2991 return REGULATOR_STATUS_NORMAL; 2992 case REGULATOR_MODE_IDLE: 2993 return REGULATOR_STATUS_IDLE; 2994 case REGULATOR_MODE_STANDBY: 2995 return REGULATOR_STATUS_STANDBY; 2996 default: 2997 return REGULATOR_STATUS_UNDEFINED; 2998 } 2999 } 3000 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3001 3002 /* 3003 * To avoid cluttering sysfs (and memory) with useless state, only 3004 * create attributes that can be meaningfully displayed. 3005 */ 3006 static int add_regulator_attributes(struct regulator_dev *rdev) 3007 { 3008 struct device *dev = &rdev->dev; 3009 struct regulator_ops *ops = rdev->desc->ops; 3010 int status = 0; 3011 3012 /* some attributes need specific methods to be displayed */ 3013 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3014 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) { 3015 status = device_create_file(dev, &dev_attr_microvolts); 3016 if (status < 0) 3017 return status; 3018 } 3019 if (ops->get_current_limit) { 3020 status = device_create_file(dev, &dev_attr_microamps); 3021 if (status < 0) 3022 return status; 3023 } 3024 if (ops->get_mode) { 3025 status = device_create_file(dev, &dev_attr_opmode); 3026 if (status < 0) 3027 return status; 3028 } 3029 if (ops->is_enabled) { 3030 status = device_create_file(dev, &dev_attr_state); 3031 if (status < 0) 3032 return status; 3033 } 3034 if (ops->get_status) { 3035 status = device_create_file(dev, &dev_attr_status); 3036 if (status < 0) 3037 return status; 3038 } 3039 3040 /* some attributes are type-specific */ 3041 if (rdev->desc->type == REGULATOR_CURRENT) { 3042 status = device_create_file(dev, &dev_attr_requested_microamps); 3043 if (status < 0) 3044 return status; 3045 } 3046 3047 /* all the other attributes exist to support constraints; 3048 * don't show them if there are no constraints, or if the 3049 * relevant supporting methods are missing. 3050 */ 3051 if (!rdev->constraints) 3052 return status; 3053 3054 /* constraints need specific supporting methods */ 3055 if (ops->set_voltage || ops->set_voltage_sel) { 3056 status = device_create_file(dev, &dev_attr_min_microvolts); 3057 if (status < 0) 3058 return status; 3059 status = device_create_file(dev, &dev_attr_max_microvolts); 3060 if (status < 0) 3061 return status; 3062 } 3063 if (ops->set_current_limit) { 3064 status = device_create_file(dev, &dev_attr_min_microamps); 3065 if (status < 0) 3066 return status; 3067 status = device_create_file(dev, &dev_attr_max_microamps); 3068 if (status < 0) 3069 return status; 3070 } 3071 3072 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3073 if (status < 0) 3074 return status; 3075 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3076 if (status < 0) 3077 return status; 3078 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3079 if (status < 0) 3080 return status; 3081 3082 if (ops->set_suspend_voltage) { 3083 status = device_create_file(dev, 3084 &dev_attr_suspend_standby_microvolts); 3085 if (status < 0) 3086 return status; 3087 status = device_create_file(dev, 3088 &dev_attr_suspend_mem_microvolts); 3089 if (status < 0) 3090 return status; 3091 status = device_create_file(dev, 3092 &dev_attr_suspend_disk_microvolts); 3093 if (status < 0) 3094 return status; 3095 } 3096 3097 if (ops->set_suspend_mode) { 3098 status = device_create_file(dev, 3099 &dev_attr_suspend_standby_mode); 3100 if (status < 0) 3101 return status; 3102 status = device_create_file(dev, 3103 &dev_attr_suspend_mem_mode); 3104 if (status < 0) 3105 return status; 3106 status = device_create_file(dev, 3107 &dev_attr_suspend_disk_mode); 3108 if (status < 0) 3109 return status; 3110 } 3111 3112 return status; 3113 } 3114 3115 static void rdev_init_debugfs(struct regulator_dev *rdev) 3116 { 3117 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3118 if (!rdev->debugfs) { 3119 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3120 return; 3121 } 3122 3123 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3124 &rdev->use_count); 3125 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3126 &rdev->open_count); 3127 } 3128 3129 /** 3130 * regulator_register - register regulator 3131 * @regulator_desc: regulator to register 3132 * @config: runtime configuration for regulator 3133 * 3134 * Called by regulator drivers to register a regulator. 3135 * Returns 0 on success. 3136 */ 3137 struct regulator_dev * 3138 regulator_register(const struct regulator_desc *regulator_desc, 3139 const struct regulator_config *config) 3140 { 3141 const struct regulation_constraints *constraints = NULL; 3142 const struct regulator_init_data *init_data; 3143 static atomic_t regulator_no = ATOMIC_INIT(0); 3144 struct regulator_dev *rdev; 3145 struct device *dev; 3146 int ret, i; 3147 const char *supply = NULL; 3148 3149 if (regulator_desc == NULL || config == NULL) 3150 return ERR_PTR(-EINVAL); 3151 3152 dev = config->dev; 3153 WARN_ON(!dev); 3154 3155 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3156 return ERR_PTR(-EINVAL); 3157 3158 if (regulator_desc->type != REGULATOR_VOLTAGE && 3159 regulator_desc->type != REGULATOR_CURRENT) 3160 return ERR_PTR(-EINVAL); 3161 3162 /* Only one of each should be implemented */ 3163 WARN_ON(regulator_desc->ops->get_voltage && 3164 regulator_desc->ops->get_voltage_sel); 3165 WARN_ON(regulator_desc->ops->set_voltage && 3166 regulator_desc->ops->set_voltage_sel); 3167 3168 /* If we're using selectors we must implement list_voltage. */ 3169 if (regulator_desc->ops->get_voltage_sel && 3170 !regulator_desc->ops->list_voltage) { 3171 return ERR_PTR(-EINVAL); 3172 } 3173 if (regulator_desc->ops->set_voltage_sel && 3174 !regulator_desc->ops->list_voltage) { 3175 return ERR_PTR(-EINVAL); 3176 } 3177 3178 init_data = config->init_data; 3179 3180 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3181 if (rdev == NULL) 3182 return ERR_PTR(-ENOMEM); 3183 3184 mutex_lock(®ulator_list_mutex); 3185 3186 mutex_init(&rdev->mutex); 3187 rdev->reg_data = config->driver_data; 3188 rdev->owner = regulator_desc->owner; 3189 rdev->desc = regulator_desc; 3190 if (config->regmap) 3191 rdev->regmap = config->regmap; 3192 else 3193 rdev->regmap = dev_get_regmap(dev, NULL); 3194 INIT_LIST_HEAD(&rdev->consumer_list); 3195 INIT_LIST_HEAD(&rdev->list); 3196 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3197 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3198 3199 /* preform any regulator specific init */ 3200 if (init_data && init_data->regulator_init) { 3201 ret = init_data->regulator_init(rdev->reg_data); 3202 if (ret < 0) 3203 goto clean; 3204 } 3205 3206 /* register with sysfs */ 3207 rdev->dev.class = ®ulator_class; 3208 rdev->dev.of_node = config->of_node; 3209 rdev->dev.parent = dev; 3210 dev_set_name(&rdev->dev, "regulator.%d", 3211 atomic_inc_return(®ulator_no) - 1); 3212 ret = device_register(&rdev->dev); 3213 if (ret != 0) { 3214 put_device(&rdev->dev); 3215 goto clean; 3216 } 3217 3218 dev_set_drvdata(&rdev->dev, rdev); 3219 3220 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3221 ret = gpio_request_one(config->ena_gpio, 3222 GPIOF_DIR_OUT | config->ena_gpio_flags, 3223 rdev_get_name(rdev)); 3224 if (ret != 0) { 3225 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3226 config->ena_gpio, ret); 3227 goto clean; 3228 } 3229 3230 rdev->ena_gpio = config->ena_gpio; 3231 rdev->ena_gpio_invert = config->ena_gpio_invert; 3232 3233 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3234 rdev->ena_gpio_state = 1; 3235 3236 if (rdev->ena_gpio_invert) 3237 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3238 } 3239 3240 /* set regulator constraints */ 3241 if (init_data) 3242 constraints = &init_data->constraints; 3243 3244 ret = set_machine_constraints(rdev, constraints); 3245 if (ret < 0) 3246 goto scrub; 3247 3248 /* add attributes supported by this regulator */ 3249 ret = add_regulator_attributes(rdev); 3250 if (ret < 0) 3251 goto scrub; 3252 3253 if (init_data && init_data->supply_regulator) 3254 supply = init_data->supply_regulator; 3255 else if (regulator_desc->supply_name) 3256 supply = regulator_desc->supply_name; 3257 3258 if (supply) { 3259 struct regulator_dev *r; 3260 3261 r = regulator_dev_lookup(dev, supply, &ret); 3262 3263 if (!r) { 3264 dev_err(dev, "Failed to find supply %s\n", supply); 3265 ret = -EPROBE_DEFER; 3266 goto scrub; 3267 } 3268 3269 ret = set_supply(rdev, r); 3270 if (ret < 0) 3271 goto scrub; 3272 3273 /* Enable supply if rail is enabled */ 3274 if (_regulator_is_enabled(rdev)) { 3275 ret = regulator_enable(rdev->supply); 3276 if (ret < 0) 3277 goto scrub; 3278 } 3279 } 3280 3281 /* add consumers devices */ 3282 if (init_data) { 3283 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3284 ret = set_consumer_device_supply(rdev, 3285 init_data->consumer_supplies[i].dev_name, 3286 init_data->consumer_supplies[i].supply); 3287 if (ret < 0) { 3288 dev_err(dev, "Failed to set supply %s\n", 3289 init_data->consumer_supplies[i].supply); 3290 goto unset_supplies; 3291 } 3292 } 3293 } 3294 3295 list_add(&rdev->list, ®ulator_list); 3296 3297 rdev_init_debugfs(rdev); 3298 out: 3299 mutex_unlock(®ulator_list_mutex); 3300 return rdev; 3301 3302 unset_supplies: 3303 unset_regulator_supplies(rdev); 3304 3305 scrub: 3306 if (rdev->supply) 3307 regulator_put(rdev->supply); 3308 if (rdev->ena_gpio) 3309 gpio_free(rdev->ena_gpio); 3310 kfree(rdev->constraints); 3311 device_unregister(&rdev->dev); 3312 /* device core frees rdev */ 3313 rdev = ERR_PTR(ret); 3314 goto out; 3315 3316 clean: 3317 kfree(rdev); 3318 rdev = ERR_PTR(ret); 3319 goto out; 3320 } 3321 EXPORT_SYMBOL_GPL(regulator_register); 3322 3323 /** 3324 * regulator_unregister - unregister regulator 3325 * @rdev: regulator to unregister 3326 * 3327 * Called by regulator drivers to unregister a regulator. 3328 */ 3329 void regulator_unregister(struct regulator_dev *rdev) 3330 { 3331 if (rdev == NULL) 3332 return; 3333 3334 if (rdev->supply) 3335 regulator_put(rdev->supply); 3336 mutex_lock(®ulator_list_mutex); 3337 debugfs_remove_recursive(rdev->debugfs); 3338 flush_work_sync(&rdev->disable_work.work); 3339 WARN_ON(rdev->open_count); 3340 unset_regulator_supplies(rdev); 3341 list_del(&rdev->list); 3342 kfree(rdev->constraints); 3343 if (rdev->ena_gpio) 3344 gpio_free(rdev->ena_gpio); 3345 device_unregister(&rdev->dev); 3346 mutex_unlock(®ulator_list_mutex); 3347 } 3348 EXPORT_SYMBOL_GPL(regulator_unregister); 3349 3350 /** 3351 * regulator_suspend_prepare - prepare regulators for system wide suspend 3352 * @state: system suspend state 3353 * 3354 * Configure each regulator with it's suspend operating parameters for state. 3355 * This will usually be called by machine suspend code prior to supending. 3356 */ 3357 int regulator_suspend_prepare(suspend_state_t state) 3358 { 3359 struct regulator_dev *rdev; 3360 int ret = 0; 3361 3362 /* ON is handled by regulator active state */ 3363 if (state == PM_SUSPEND_ON) 3364 return -EINVAL; 3365 3366 mutex_lock(®ulator_list_mutex); 3367 list_for_each_entry(rdev, ®ulator_list, list) { 3368 3369 mutex_lock(&rdev->mutex); 3370 ret = suspend_prepare(rdev, state); 3371 mutex_unlock(&rdev->mutex); 3372 3373 if (ret < 0) { 3374 rdev_err(rdev, "failed to prepare\n"); 3375 goto out; 3376 } 3377 } 3378 out: 3379 mutex_unlock(®ulator_list_mutex); 3380 return ret; 3381 } 3382 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3383 3384 /** 3385 * regulator_suspend_finish - resume regulators from system wide suspend 3386 * 3387 * Turn on regulators that might be turned off by regulator_suspend_prepare 3388 * and that should be turned on according to the regulators properties. 3389 */ 3390 int regulator_suspend_finish(void) 3391 { 3392 struct regulator_dev *rdev; 3393 int ret = 0, error; 3394 3395 mutex_lock(®ulator_list_mutex); 3396 list_for_each_entry(rdev, ®ulator_list, list) { 3397 struct regulator_ops *ops = rdev->desc->ops; 3398 3399 mutex_lock(&rdev->mutex); 3400 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3401 ops->enable) { 3402 error = ops->enable(rdev); 3403 if (error) 3404 ret = error; 3405 } else { 3406 if (!has_full_constraints) 3407 goto unlock; 3408 if (!ops->disable) 3409 goto unlock; 3410 if (!_regulator_is_enabled(rdev)) 3411 goto unlock; 3412 3413 error = ops->disable(rdev); 3414 if (error) 3415 ret = error; 3416 } 3417 unlock: 3418 mutex_unlock(&rdev->mutex); 3419 } 3420 mutex_unlock(®ulator_list_mutex); 3421 return ret; 3422 } 3423 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3424 3425 /** 3426 * regulator_has_full_constraints - the system has fully specified constraints 3427 * 3428 * Calling this function will cause the regulator API to disable all 3429 * regulators which have a zero use count and don't have an always_on 3430 * constraint in a late_initcall. 3431 * 3432 * The intention is that this will become the default behaviour in a 3433 * future kernel release so users are encouraged to use this facility 3434 * now. 3435 */ 3436 void regulator_has_full_constraints(void) 3437 { 3438 has_full_constraints = 1; 3439 } 3440 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3441 3442 /** 3443 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3444 * 3445 * Calling this function will cause the regulator API to provide a 3446 * dummy regulator to consumers if no physical regulator is found, 3447 * allowing most consumers to proceed as though a regulator were 3448 * configured. This allows systems such as those with software 3449 * controllable regulators for the CPU core only to be brought up more 3450 * readily. 3451 */ 3452 void regulator_use_dummy_regulator(void) 3453 { 3454 board_wants_dummy_regulator = true; 3455 } 3456 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3457 3458 /** 3459 * rdev_get_drvdata - get rdev regulator driver data 3460 * @rdev: regulator 3461 * 3462 * Get rdev regulator driver private data. This call can be used in the 3463 * regulator driver context. 3464 */ 3465 void *rdev_get_drvdata(struct regulator_dev *rdev) 3466 { 3467 return rdev->reg_data; 3468 } 3469 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3470 3471 /** 3472 * regulator_get_drvdata - get regulator driver data 3473 * @regulator: regulator 3474 * 3475 * Get regulator driver private data. This call can be used in the consumer 3476 * driver context when non API regulator specific functions need to be called. 3477 */ 3478 void *regulator_get_drvdata(struct regulator *regulator) 3479 { 3480 return regulator->rdev->reg_data; 3481 } 3482 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3483 3484 /** 3485 * regulator_set_drvdata - set regulator driver data 3486 * @regulator: regulator 3487 * @data: data 3488 */ 3489 void regulator_set_drvdata(struct regulator *regulator, void *data) 3490 { 3491 regulator->rdev->reg_data = data; 3492 } 3493 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3494 3495 /** 3496 * regulator_get_id - get regulator ID 3497 * @rdev: regulator 3498 */ 3499 int rdev_get_id(struct regulator_dev *rdev) 3500 { 3501 return rdev->desc->id; 3502 } 3503 EXPORT_SYMBOL_GPL(rdev_get_id); 3504 3505 struct device *rdev_get_dev(struct regulator_dev *rdev) 3506 { 3507 return &rdev->dev; 3508 } 3509 EXPORT_SYMBOL_GPL(rdev_get_dev); 3510 3511 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3512 { 3513 return reg_init_data->driver_data; 3514 } 3515 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3516 3517 #ifdef CONFIG_DEBUG_FS 3518 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3519 size_t count, loff_t *ppos) 3520 { 3521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3522 ssize_t len, ret = 0; 3523 struct regulator_map *map; 3524 3525 if (!buf) 3526 return -ENOMEM; 3527 3528 list_for_each_entry(map, ®ulator_map_list, list) { 3529 len = snprintf(buf + ret, PAGE_SIZE - ret, 3530 "%s -> %s.%s\n", 3531 rdev_get_name(map->regulator), map->dev_name, 3532 map->supply); 3533 if (len >= 0) 3534 ret += len; 3535 if (ret > PAGE_SIZE) { 3536 ret = PAGE_SIZE; 3537 break; 3538 } 3539 } 3540 3541 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3542 3543 kfree(buf); 3544 3545 return ret; 3546 } 3547 #endif 3548 3549 static const struct file_operations supply_map_fops = { 3550 #ifdef CONFIG_DEBUG_FS 3551 .read = supply_map_read_file, 3552 .llseek = default_llseek, 3553 #endif 3554 }; 3555 3556 static int __init regulator_init(void) 3557 { 3558 int ret; 3559 3560 ret = class_register(®ulator_class); 3561 3562 debugfs_root = debugfs_create_dir("regulator", NULL); 3563 if (!debugfs_root) 3564 pr_warn("regulator: Failed to create debugfs directory\n"); 3565 3566 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3567 &supply_map_fops); 3568 3569 regulator_dummy_init(); 3570 3571 return ret; 3572 } 3573 3574 /* init early to allow our consumers to complete system booting */ 3575 core_initcall(regulator_init); 3576 3577 static int __init regulator_init_complete(void) 3578 { 3579 struct regulator_dev *rdev; 3580 struct regulator_ops *ops; 3581 struct regulation_constraints *c; 3582 int enabled, ret; 3583 3584 /* 3585 * Since DT doesn't provide an idiomatic mechanism for 3586 * enabling full constraints and since it's much more natural 3587 * with DT to provide them just assume that a DT enabled 3588 * system has full constraints. 3589 */ 3590 if (of_have_populated_dt()) 3591 has_full_constraints = true; 3592 3593 mutex_lock(®ulator_list_mutex); 3594 3595 /* If we have a full configuration then disable any regulators 3596 * which are not in use or always_on. This will become the 3597 * default behaviour in the future. 3598 */ 3599 list_for_each_entry(rdev, ®ulator_list, list) { 3600 ops = rdev->desc->ops; 3601 c = rdev->constraints; 3602 3603 if (!ops->disable || (c && c->always_on)) 3604 continue; 3605 3606 mutex_lock(&rdev->mutex); 3607 3608 if (rdev->use_count) 3609 goto unlock; 3610 3611 /* If we can't read the status assume it's on. */ 3612 if (ops->is_enabled) 3613 enabled = ops->is_enabled(rdev); 3614 else 3615 enabled = 1; 3616 3617 if (!enabled) 3618 goto unlock; 3619 3620 if (has_full_constraints) { 3621 /* We log since this may kill the system if it 3622 * goes wrong. */ 3623 rdev_info(rdev, "disabling\n"); 3624 ret = ops->disable(rdev); 3625 if (ret != 0) { 3626 rdev_err(rdev, "couldn't disable: %d\n", ret); 3627 } 3628 } else { 3629 /* The intention is that in future we will 3630 * assume that full constraints are provided 3631 * so warn even if we aren't going to do 3632 * anything here. 3633 */ 3634 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 3635 } 3636 3637 unlock: 3638 mutex_unlock(&rdev->mutex); 3639 } 3640 3641 mutex_unlock(®ulator_list_mutex); 3642 3643 return 0; 3644 } 3645 late_initcall(regulator_init_complete); 3646