xref: /linux/drivers/regulator/core.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 
36 #define rdev_err(rdev, fmt, ...)					\
37 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)					\
39 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)					\
41 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)					\
43 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50 
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54 
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61 	struct list_head list;
62 	const char *dev_name;   /* The dev_name() for the consumer */
63 	const char *supply;
64 	struct regulator_dev *regulator;
65 };
66 
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73 	struct device *dev;
74 	struct list_head list;
75 	int uA_load;
76 	int min_uV;
77 	int max_uV;
78 	char *supply_name;
79 	struct device_attribute dev_attr;
80 	struct regulator_dev *rdev;
81 };
82 
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 		struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96 	if (rdev->constraints && rdev->constraints->name)
97 		return rdev->constraints->name;
98 	else if (rdev->desc->name)
99 		return rdev->desc->name;
100 	else
101 		return "";
102 }
103 
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107 	struct regulator *regulator = NULL;
108 	struct regulator_dev *rdev;
109 
110 	mutex_lock(&regulator_list_mutex);
111 	list_for_each_entry(rdev, &regulator_list, list) {
112 		mutex_lock(&rdev->mutex);
113 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 			if (regulator->dev == dev) {
115 				mutex_unlock(&rdev->mutex);
116 				mutex_unlock(&regulator_list_mutex);
117 				return regulator;
118 			}
119 		}
120 		mutex_unlock(&rdev->mutex);
121 	}
122 	mutex_unlock(&regulator_list_mutex);
123 	return NULL;
124 }
125 
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 				   int *min_uV, int *max_uV)
129 {
130 	BUG_ON(*min_uV > *max_uV);
131 
132 	if (!rdev->constraints) {
133 		rdev_err(rdev, "no constraints\n");
134 		return -ENODEV;
135 	}
136 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 		rdev_err(rdev, "operation not allowed\n");
138 		return -EPERM;
139 	}
140 
141 	if (*max_uV > rdev->constraints->max_uV)
142 		*max_uV = rdev->constraints->max_uV;
143 	if (*min_uV < rdev->constraints->min_uV)
144 		*min_uV = rdev->constraints->min_uV;
145 
146 	if (*min_uV > *max_uV)
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 				     int *min_uV, int *max_uV)
157 {
158 	struct regulator *regulator;
159 
160 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161 		if (*max_uV > regulator->max_uV)
162 			*max_uV = regulator->max_uV;
163 		if (*min_uV < regulator->min_uV)
164 			*min_uV = regulator->min_uV;
165 	}
166 
167 	if (*min_uV > *max_uV)
168 		return -EINVAL;
169 
170 	return 0;
171 }
172 
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175 					int *min_uA, int *max_uA)
176 {
177 	BUG_ON(*min_uA > *max_uA);
178 
179 	if (!rdev->constraints) {
180 		rdev_err(rdev, "no constraints\n");
181 		return -ENODEV;
182 	}
183 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184 		rdev_err(rdev, "operation not allowed\n");
185 		return -EPERM;
186 	}
187 
188 	if (*max_uA > rdev->constraints->max_uA)
189 		*max_uA = rdev->constraints->max_uA;
190 	if (*min_uA < rdev->constraints->min_uA)
191 		*min_uA = rdev->constraints->min_uA;
192 
193 	if (*min_uA > *max_uA)
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
199 /* operating mode constraint check */
200 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
201 {
202 	switch (mode) {
203 	case REGULATOR_MODE_FAST:
204 	case REGULATOR_MODE_NORMAL:
205 	case REGULATOR_MODE_IDLE:
206 	case REGULATOR_MODE_STANDBY:
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	if (!rdev->constraints) {
213 		rdev_err(rdev, "no constraints\n");
214 		return -ENODEV;
215 	}
216 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217 		rdev_err(rdev, "operation not allowed\n");
218 		return -EPERM;
219 	}
220 	if (!(rdev->constraints->valid_modes_mask & mode)) {
221 		rdev_err(rdev, "invalid mode %x\n", mode);
222 		return -EINVAL;
223 	}
224 	return 0;
225 }
226 
227 /* dynamic regulator mode switching constraint check */
228 static int regulator_check_drms(struct regulator_dev *rdev)
229 {
230 	if (!rdev->constraints) {
231 		rdev_err(rdev, "no constraints\n");
232 		return -ENODEV;
233 	}
234 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235 		rdev_err(rdev, "operation not allowed\n");
236 		return -EPERM;
237 	}
238 	return 0;
239 }
240 
241 static ssize_t device_requested_uA_show(struct device *dev,
242 			     struct device_attribute *attr, char *buf)
243 {
244 	struct regulator *regulator;
245 
246 	regulator = get_device_regulator(dev);
247 	if (regulator == NULL)
248 		return 0;
249 
250 	return sprintf(buf, "%d\n", regulator->uA_load);
251 }
252 
253 static ssize_t regulator_uV_show(struct device *dev,
254 				struct device_attribute *attr, char *buf)
255 {
256 	struct regulator_dev *rdev = dev_get_drvdata(dev);
257 	ssize_t ret;
258 
259 	mutex_lock(&rdev->mutex);
260 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261 	mutex_unlock(&rdev->mutex);
262 
263 	return ret;
264 }
265 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
266 
267 static ssize_t regulator_uA_show(struct device *dev,
268 				struct device_attribute *attr, char *buf)
269 {
270 	struct regulator_dev *rdev = dev_get_drvdata(dev);
271 
272 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
273 }
274 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
275 
276 static ssize_t regulator_name_show(struct device *dev,
277 			     struct device_attribute *attr, char *buf)
278 {
279 	struct regulator_dev *rdev = dev_get_drvdata(dev);
280 
281 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
282 }
283 
284 static ssize_t regulator_print_opmode(char *buf, int mode)
285 {
286 	switch (mode) {
287 	case REGULATOR_MODE_FAST:
288 		return sprintf(buf, "fast\n");
289 	case REGULATOR_MODE_NORMAL:
290 		return sprintf(buf, "normal\n");
291 	case REGULATOR_MODE_IDLE:
292 		return sprintf(buf, "idle\n");
293 	case REGULATOR_MODE_STANDBY:
294 		return sprintf(buf, "standby\n");
295 	}
296 	return sprintf(buf, "unknown\n");
297 }
298 
299 static ssize_t regulator_opmode_show(struct device *dev,
300 				    struct device_attribute *attr, char *buf)
301 {
302 	struct regulator_dev *rdev = dev_get_drvdata(dev);
303 
304 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
305 }
306 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
307 
308 static ssize_t regulator_print_state(char *buf, int state)
309 {
310 	if (state > 0)
311 		return sprintf(buf, "enabled\n");
312 	else if (state == 0)
313 		return sprintf(buf, "disabled\n");
314 	else
315 		return sprintf(buf, "unknown\n");
316 }
317 
318 static ssize_t regulator_state_show(struct device *dev,
319 				   struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 	ssize_t ret;
323 
324 	mutex_lock(&rdev->mutex);
325 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326 	mutex_unlock(&rdev->mutex);
327 
328 	return ret;
329 }
330 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
331 
332 static ssize_t regulator_status_show(struct device *dev,
333 				   struct device_attribute *attr, char *buf)
334 {
335 	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 	int status;
337 	char *label;
338 
339 	status = rdev->desc->ops->get_status(rdev);
340 	if (status < 0)
341 		return status;
342 
343 	switch (status) {
344 	case REGULATOR_STATUS_OFF:
345 		label = "off";
346 		break;
347 	case REGULATOR_STATUS_ON:
348 		label = "on";
349 		break;
350 	case REGULATOR_STATUS_ERROR:
351 		label = "error";
352 		break;
353 	case REGULATOR_STATUS_FAST:
354 		label = "fast";
355 		break;
356 	case REGULATOR_STATUS_NORMAL:
357 		label = "normal";
358 		break;
359 	case REGULATOR_STATUS_IDLE:
360 		label = "idle";
361 		break;
362 	case REGULATOR_STATUS_STANDBY:
363 		label = "standby";
364 		break;
365 	default:
366 		return -ERANGE;
367 	}
368 
369 	return sprintf(buf, "%s\n", label);
370 }
371 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
372 
373 static ssize_t regulator_min_uA_show(struct device *dev,
374 				    struct device_attribute *attr, char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	if (!rdev->constraints)
379 		return sprintf(buf, "constraint not defined\n");
380 
381 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
382 }
383 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
384 
385 static ssize_t regulator_max_uA_show(struct device *dev,
386 				    struct device_attribute *attr, char *buf)
387 {
388 	struct regulator_dev *rdev = dev_get_drvdata(dev);
389 
390 	if (!rdev->constraints)
391 		return sprintf(buf, "constraint not defined\n");
392 
393 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
394 }
395 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
396 
397 static ssize_t regulator_min_uV_show(struct device *dev,
398 				    struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 
402 	if (!rdev->constraints)
403 		return sprintf(buf, "constraint not defined\n");
404 
405 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
406 }
407 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
408 
409 static ssize_t regulator_max_uV_show(struct device *dev,
410 				    struct device_attribute *attr, char *buf)
411 {
412 	struct regulator_dev *rdev = dev_get_drvdata(dev);
413 
414 	if (!rdev->constraints)
415 		return sprintf(buf, "constraint not defined\n");
416 
417 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
418 }
419 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
420 
421 static ssize_t regulator_total_uA_show(struct device *dev,
422 				      struct device_attribute *attr, char *buf)
423 {
424 	struct regulator_dev *rdev = dev_get_drvdata(dev);
425 	struct regulator *regulator;
426 	int uA = 0;
427 
428 	mutex_lock(&rdev->mutex);
429 	list_for_each_entry(regulator, &rdev->consumer_list, list)
430 		uA += regulator->uA_load;
431 	mutex_unlock(&rdev->mutex);
432 	return sprintf(buf, "%d\n", uA);
433 }
434 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
435 
436 static ssize_t regulator_num_users_show(struct device *dev,
437 				      struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 	return sprintf(buf, "%d\n", rdev->use_count);
441 }
442 
443 static ssize_t regulator_type_show(struct device *dev,
444 				  struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	switch (rdev->desc->type) {
449 	case REGULATOR_VOLTAGE:
450 		return sprintf(buf, "voltage\n");
451 	case REGULATOR_CURRENT:
452 		return sprintf(buf, "current\n");
453 	}
454 	return sprintf(buf, "unknown\n");
455 }
456 
457 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458 				struct device_attribute *attr, char *buf)
459 {
460 	struct regulator_dev *rdev = dev_get_drvdata(dev);
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
463 }
464 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465 		regulator_suspend_mem_uV_show, NULL);
466 
467 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468 				struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
473 }
474 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475 		regulator_suspend_disk_uV_show, NULL);
476 
477 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478 				struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
483 }
484 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485 		regulator_suspend_standby_uV_show, NULL);
486 
487 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488 				struct device_attribute *attr, char *buf)
489 {
490 	struct regulator_dev *rdev = dev_get_drvdata(dev);
491 
492 	return regulator_print_opmode(buf,
493 		rdev->constraints->state_mem.mode);
494 }
495 static DEVICE_ATTR(suspend_mem_mode, 0444,
496 		regulator_suspend_mem_mode_show, NULL);
497 
498 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499 				struct device_attribute *attr, char *buf)
500 {
501 	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 
503 	return regulator_print_opmode(buf,
504 		rdev->constraints->state_disk.mode);
505 }
506 static DEVICE_ATTR(suspend_disk_mode, 0444,
507 		regulator_suspend_disk_mode_show, NULL);
508 
509 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510 				struct device_attribute *attr, char *buf)
511 {
512 	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 
514 	return regulator_print_opmode(buf,
515 		rdev->constraints->state_standby.mode);
516 }
517 static DEVICE_ATTR(suspend_standby_mode, 0444,
518 		regulator_suspend_standby_mode_show, NULL);
519 
520 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521 				   struct device_attribute *attr, char *buf)
522 {
523 	struct regulator_dev *rdev = dev_get_drvdata(dev);
524 
525 	return regulator_print_state(buf,
526 			rdev->constraints->state_mem.enabled);
527 }
528 static DEVICE_ATTR(suspend_mem_state, 0444,
529 		regulator_suspend_mem_state_show, NULL);
530 
531 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532 				   struct device_attribute *attr, char *buf)
533 {
534 	struct regulator_dev *rdev = dev_get_drvdata(dev);
535 
536 	return regulator_print_state(buf,
537 			rdev->constraints->state_disk.enabled);
538 }
539 static DEVICE_ATTR(suspend_disk_state, 0444,
540 		regulator_suspend_disk_state_show, NULL);
541 
542 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543 				   struct device_attribute *attr, char *buf)
544 {
545 	struct regulator_dev *rdev = dev_get_drvdata(dev);
546 
547 	return regulator_print_state(buf,
548 			rdev->constraints->state_standby.enabled);
549 }
550 static DEVICE_ATTR(suspend_standby_state, 0444,
551 		regulator_suspend_standby_state_show, NULL);
552 
553 
554 /*
555  * These are the only attributes are present for all regulators.
556  * Other attributes are a function of regulator functionality.
557  */
558 static struct device_attribute regulator_dev_attrs[] = {
559 	__ATTR(name, 0444, regulator_name_show, NULL),
560 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
561 	__ATTR(type, 0444, regulator_type_show, NULL),
562 	__ATTR_NULL,
563 };
564 
565 static void regulator_dev_release(struct device *dev)
566 {
567 	struct regulator_dev *rdev = dev_get_drvdata(dev);
568 	kfree(rdev);
569 }
570 
571 static struct class regulator_class = {
572 	.name = "regulator",
573 	.dev_release = regulator_dev_release,
574 	.dev_attrs = regulator_dev_attrs,
575 };
576 
577 /* Calculate the new optimum regulator operating mode based on the new total
578  * consumer load. All locks held by caller */
579 static void drms_uA_update(struct regulator_dev *rdev)
580 {
581 	struct regulator *sibling;
582 	int current_uA = 0, output_uV, input_uV, err;
583 	unsigned int mode;
584 
585 	err = regulator_check_drms(rdev);
586 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587 	    (!rdev->desc->ops->get_voltage &&
588 	     !rdev->desc->ops->get_voltage_sel) ||
589 	    !rdev->desc->ops->set_mode)
590 		return;
591 
592 	/* get output voltage */
593 	output_uV = _regulator_get_voltage(rdev);
594 	if (output_uV <= 0)
595 		return;
596 
597 	/* get input voltage */
598 	input_uV = 0;
599 	if (rdev->supply)
600 		input_uV = _regulator_get_voltage(rdev);
601 	if (input_uV <= 0)
602 		input_uV = rdev->constraints->input_uV;
603 	if (input_uV <= 0)
604 		return;
605 
606 	/* calc total requested load */
607 	list_for_each_entry(sibling, &rdev->consumer_list, list)
608 		current_uA += sibling->uA_load;
609 
610 	/* now get the optimum mode for our new total regulator load */
611 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612 						  output_uV, current_uA);
613 
614 	/* check the new mode is allowed */
615 	err = regulator_check_mode(rdev, mode);
616 	if (err == 0)
617 		rdev->desc->ops->set_mode(rdev, mode);
618 }
619 
620 static int suspend_set_state(struct regulator_dev *rdev,
621 	struct regulator_state *rstate)
622 {
623 	int ret = 0;
624 	bool can_set_state;
625 
626 	can_set_state = rdev->desc->ops->set_suspend_enable &&
627 		rdev->desc->ops->set_suspend_disable;
628 
629 	/* If we have no suspend mode configration don't set anything;
630 	 * only warn if the driver actually makes the suspend mode
631 	 * configurable.
632 	 */
633 	if (!rstate->enabled && !rstate->disabled) {
634 		if (can_set_state)
635 			rdev_warn(rdev, "No configuration\n");
636 		return 0;
637 	}
638 
639 	if (rstate->enabled && rstate->disabled) {
640 		rdev_err(rdev, "invalid configuration\n");
641 		return -EINVAL;
642 	}
643 
644 	if (!can_set_state) {
645 		rdev_err(rdev, "no way to set suspend state\n");
646 		return -EINVAL;
647 	}
648 
649 	if (rstate->enabled)
650 		ret = rdev->desc->ops->set_suspend_enable(rdev);
651 	else
652 		ret = rdev->desc->ops->set_suspend_disable(rdev);
653 	if (ret < 0) {
654 		rdev_err(rdev, "failed to enabled/disable\n");
655 		return ret;
656 	}
657 
658 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660 		if (ret < 0) {
661 			rdev_err(rdev, "failed to set voltage\n");
662 			return ret;
663 		}
664 	}
665 
666 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668 		if (ret < 0) {
669 			rdev_err(rdev, "failed to set mode\n");
670 			return ret;
671 		}
672 	}
673 	return ret;
674 }
675 
676 /* locks held by caller */
677 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
678 {
679 	if (!rdev->constraints)
680 		return -EINVAL;
681 
682 	switch (state) {
683 	case PM_SUSPEND_STANDBY:
684 		return suspend_set_state(rdev,
685 			&rdev->constraints->state_standby);
686 	case PM_SUSPEND_MEM:
687 		return suspend_set_state(rdev,
688 			&rdev->constraints->state_mem);
689 	case PM_SUSPEND_MAX:
690 		return suspend_set_state(rdev,
691 			&rdev->constraints->state_disk);
692 	default:
693 		return -EINVAL;
694 	}
695 }
696 
697 static void print_constraints(struct regulator_dev *rdev)
698 {
699 	struct regulation_constraints *constraints = rdev->constraints;
700 	char buf[80] = "";
701 	int count = 0;
702 	int ret;
703 
704 	if (constraints->min_uV && constraints->max_uV) {
705 		if (constraints->min_uV == constraints->max_uV)
706 			count += sprintf(buf + count, "%d mV ",
707 					 constraints->min_uV / 1000);
708 		else
709 			count += sprintf(buf + count, "%d <--> %d mV ",
710 					 constraints->min_uV / 1000,
711 					 constraints->max_uV / 1000);
712 	}
713 
714 	if (!constraints->min_uV ||
715 	    constraints->min_uV != constraints->max_uV) {
716 		ret = _regulator_get_voltage(rdev);
717 		if (ret > 0)
718 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
719 	}
720 
721 	if (constraints->min_uA && constraints->max_uA) {
722 		if (constraints->min_uA == constraints->max_uA)
723 			count += sprintf(buf + count, "%d mA ",
724 					 constraints->min_uA / 1000);
725 		else
726 			count += sprintf(buf + count, "%d <--> %d mA ",
727 					 constraints->min_uA / 1000,
728 					 constraints->max_uA / 1000);
729 	}
730 
731 	if (!constraints->min_uA ||
732 	    constraints->min_uA != constraints->max_uA) {
733 		ret = _regulator_get_current_limit(rdev);
734 		if (ret > 0)
735 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
736 	}
737 
738 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739 		count += sprintf(buf + count, "fast ");
740 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741 		count += sprintf(buf + count, "normal ");
742 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743 		count += sprintf(buf + count, "idle ");
744 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745 		count += sprintf(buf + count, "standby");
746 
747 	rdev_info(rdev, "%s\n", buf);
748 }
749 
750 static int machine_constraints_voltage(struct regulator_dev *rdev,
751 	struct regulation_constraints *constraints)
752 {
753 	struct regulator_ops *ops = rdev->desc->ops;
754 	int ret;
755 
756 	/* do we need to apply the constraint voltage */
757 	if (rdev->constraints->apply_uV &&
758 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
759 		ret = _regulator_do_set_voltage(rdev,
760 						rdev->constraints->min_uV,
761 						rdev->constraints->max_uV);
762 		if (ret < 0) {
763 			rdev_err(rdev, "failed to apply %duV constraint\n",
764 				 rdev->constraints->min_uV);
765 			rdev->constraints = NULL;
766 			return ret;
767 		}
768 	}
769 
770 	/* constrain machine-level voltage specs to fit
771 	 * the actual range supported by this regulator.
772 	 */
773 	if (ops->list_voltage && rdev->desc->n_voltages) {
774 		int	count = rdev->desc->n_voltages;
775 		int	i;
776 		int	min_uV = INT_MAX;
777 		int	max_uV = INT_MIN;
778 		int	cmin = constraints->min_uV;
779 		int	cmax = constraints->max_uV;
780 
781 		/* it's safe to autoconfigure fixed-voltage supplies
782 		   and the constraints are used by list_voltage. */
783 		if (count == 1 && !cmin) {
784 			cmin = 1;
785 			cmax = INT_MAX;
786 			constraints->min_uV = cmin;
787 			constraints->max_uV = cmax;
788 		}
789 
790 		/* voltage constraints are optional */
791 		if ((cmin == 0) && (cmax == 0))
792 			return 0;
793 
794 		/* else require explicit machine-level constraints */
795 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796 			rdev_err(rdev, "invalid voltage constraints\n");
797 			return -EINVAL;
798 		}
799 
800 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801 		for (i = 0; i < count; i++) {
802 			int	value;
803 
804 			value = ops->list_voltage(rdev, i);
805 			if (value <= 0)
806 				continue;
807 
808 			/* maybe adjust [min_uV..max_uV] */
809 			if (value >= cmin && value < min_uV)
810 				min_uV = value;
811 			if (value <= cmax && value > max_uV)
812 				max_uV = value;
813 		}
814 
815 		/* final: [min_uV..max_uV] valid iff constraints valid */
816 		if (max_uV < min_uV) {
817 			rdev_err(rdev, "unsupportable voltage constraints\n");
818 			return -EINVAL;
819 		}
820 
821 		/* use regulator's subset of machine constraints */
822 		if (constraints->min_uV < min_uV) {
823 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824 				 constraints->min_uV, min_uV);
825 			constraints->min_uV = min_uV;
826 		}
827 		if (constraints->max_uV > max_uV) {
828 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829 				 constraints->max_uV, max_uV);
830 			constraints->max_uV = max_uV;
831 		}
832 	}
833 
834 	return 0;
835 }
836 
837 /**
838  * set_machine_constraints - sets regulator constraints
839  * @rdev: regulator source
840  * @constraints: constraints to apply
841  *
842  * Allows platform initialisation code to define and constrain
843  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
844  * Constraints *must* be set by platform code in order for some
845  * regulator operations to proceed i.e. set_voltage, set_current_limit,
846  * set_mode.
847  */
848 static int set_machine_constraints(struct regulator_dev *rdev,
849 	const struct regulation_constraints *constraints)
850 {
851 	int ret = 0;
852 	struct regulator_ops *ops = rdev->desc->ops;
853 
854 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855 				    GFP_KERNEL);
856 	if (!rdev->constraints)
857 		return -ENOMEM;
858 
859 	ret = machine_constraints_voltage(rdev, rdev->constraints);
860 	if (ret != 0)
861 		goto out;
862 
863 	/* do we need to setup our suspend state */
864 	if (constraints->initial_state) {
865 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866 		if (ret < 0) {
867 			rdev_err(rdev, "failed to set suspend state\n");
868 			rdev->constraints = NULL;
869 			goto out;
870 		}
871 	}
872 
873 	if (constraints->initial_mode) {
874 		if (!ops->set_mode) {
875 			rdev_err(rdev, "no set_mode operation\n");
876 			ret = -EINVAL;
877 			goto out;
878 		}
879 
880 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881 		if (ret < 0) {
882 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883 			goto out;
884 		}
885 	}
886 
887 	/* If the constraints say the regulator should be on at this point
888 	 * and we have control then make sure it is enabled.
889 	 */
890 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891 	    ops->enable) {
892 		ret = ops->enable(rdev);
893 		if (ret < 0) {
894 			rdev_err(rdev, "failed to enable\n");
895 			rdev->constraints = NULL;
896 			goto out;
897 		}
898 	}
899 
900 	print_constraints(rdev);
901 out:
902 	return ret;
903 }
904 
905 /**
906  * set_supply - set regulator supply regulator
907  * @rdev: regulator name
908  * @supply_rdev: supply regulator name
909  *
910  * Called by platform initialisation code to set the supply regulator for this
911  * regulator. This ensures that a regulators supply will also be enabled by the
912  * core if it's child is enabled.
913  */
914 static int set_supply(struct regulator_dev *rdev,
915 	struct regulator_dev *supply_rdev)
916 {
917 	int err;
918 
919 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920 				"supply");
921 	if (err) {
922 		rdev_err(rdev, "could not add device link %s err %d\n",
923 			 supply_rdev->dev.kobj.name, err);
924 		       goto out;
925 	}
926 	rdev->supply = supply_rdev;
927 	list_add(&rdev->slist, &supply_rdev->supply_list);
928 out:
929 	return err;
930 }
931 
932 /**
933  * set_consumer_device_supply - Bind a regulator to a symbolic supply
934  * @rdev:         regulator source
935  * @consumer_dev: device the supply applies to
936  * @consumer_dev_name: dev_name() string for device supply applies to
937  * @supply:       symbolic name for supply
938  *
939  * Allows platform initialisation code to map physical regulator
940  * sources to symbolic names for supplies for use by devices.  Devices
941  * should use these symbolic names to request regulators, avoiding the
942  * need to provide board-specific regulator names as platform data.
943  *
944  * Only one of consumer_dev and consumer_dev_name may be specified.
945  */
946 static int set_consumer_device_supply(struct regulator_dev *rdev,
947 	struct device *consumer_dev, const char *consumer_dev_name,
948 	const char *supply)
949 {
950 	struct regulator_map *node;
951 	int has_dev;
952 
953 	if (consumer_dev && consumer_dev_name)
954 		return -EINVAL;
955 
956 	if (!consumer_dev_name && consumer_dev)
957 		consumer_dev_name = dev_name(consumer_dev);
958 
959 	if (supply == NULL)
960 		return -EINVAL;
961 
962 	if (consumer_dev_name != NULL)
963 		has_dev = 1;
964 	else
965 		has_dev = 0;
966 
967 	list_for_each_entry(node, &regulator_map_list, list) {
968 		if (node->dev_name && consumer_dev_name) {
969 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
970 				continue;
971 		} else if (node->dev_name || consumer_dev_name) {
972 			continue;
973 		}
974 
975 		if (strcmp(node->supply, supply) != 0)
976 			continue;
977 
978 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979 			dev_name(&node->regulator->dev),
980 			node->regulator->desc->name,
981 			supply,
982 			dev_name(&rdev->dev), rdev_get_name(rdev));
983 		return -EBUSY;
984 	}
985 
986 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987 	if (node == NULL)
988 		return -ENOMEM;
989 
990 	node->regulator = rdev;
991 	node->supply = supply;
992 
993 	if (has_dev) {
994 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995 		if (node->dev_name == NULL) {
996 			kfree(node);
997 			return -ENOMEM;
998 		}
999 	}
1000 
1001 	list_add(&node->list, &regulator_map_list);
1002 	return 0;
1003 }
1004 
1005 static void unset_regulator_supplies(struct regulator_dev *rdev)
1006 {
1007 	struct regulator_map *node, *n;
1008 
1009 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010 		if (rdev == node->regulator) {
1011 			list_del(&node->list);
1012 			kfree(node->dev_name);
1013 			kfree(node);
1014 		}
1015 	}
1016 }
1017 
1018 #define REG_STR_SIZE	32
1019 
1020 static struct regulator *create_regulator(struct regulator_dev *rdev,
1021 					  struct device *dev,
1022 					  const char *supply_name)
1023 {
1024 	struct regulator *regulator;
1025 	char buf[REG_STR_SIZE];
1026 	int err, size;
1027 
1028 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029 	if (regulator == NULL)
1030 		return NULL;
1031 
1032 	mutex_lock(&rdev->mutex);
1033 	regulator->rdev = rdev;
1034 	list_add(&regulator->list, &rdev->consumer_list);
1035 
1036 	if (dev) {
1037 		/* create a 'requested_microamps_name' sysfs entry */
1038 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039 			supply_name);
1040 		if (size >= REG_STR_SIZE)
1041 			goto overflow_err;
1042 
1043 		regulator->dev = dev;
1044 		sysfs_attr_init(&regulator->dev_attr.attr);
1045 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046 		if (regulator->dev_attr.attr.name == NULL)
1047 			goto attr_name_err;
1048 
1049 		regulator->dev_attr.attr.mode = 0444;
1050 		regulator->dev_attr.show = device_requested_uA_show;
1051 		err = device_create_file(dev, &regulator->dev_attr);
1052 		if (err < 0) {
1053 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054 			goto attr_name_err;
1055 		}
1056 
1057 		/* also add a link to the device sysfs entry */
1058 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059 				 dev->kobj.name, supply_name);
1060 		if (size >= REG_STR_SIZE)
1061 			goto attr_err;
1062 
1063 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064 		if (regulator->supply_name == NULL)
1065 			goto attr_err;
1066 
1067 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068 					buf);
1069 		if (err) {
1070 			rdev_warn(rdev, "could not add device link %s err %d\n",
1071 				  dev->kobj.name, err);
1072 			goto link_name_err;
1073 		}
1074 	}
1075 	mutex_unlock(&rdev->mutex);
1076 	return regulator;
1077 link_name_err:
1078 	kfree(regulator->supply_name);
1079 attr_err:
1080 	device_remove_file(regulator->dev, &regulator->dev_attr);
1081 attr_name_err:
1082 	kfree(regulator->dev_attr.attr.name);
1083 overflow_err:
1084 	list_del(&regulator->list);
1085 	kfree(regulator);
1086 	mutex_unlock(&rdev->mutex);
1087 	return NULL;
1088 }
1089 
1090 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091 {
1092 	if (!rdev->desc->ops->enable_time)
1093 		return 0;
1094 	return rdev->desc->ops->enable_time(rdev);
1095 }
1096 
1097 /* Internal regulator request function */
1098 static struct regulator *_regulator_get(struct device *dev, const char *id,
1099 					int exclusive)
1100 {
1101 	struct regulator_dev *rdev;
1102 	struct regulator_map *map;
1103 	struct regulator *regulator = ERR_PTR(-ENODEV);
1104 	const char *devname = NULL;
1105 	int ret;
1106 
1107 	if (id == NULL) {
1108 		pr_err("get() with no identifier\n");
1109 		return regulator;
1110 	}
1111 
1112 	if (dev)
1113 		devname = dev_name(dev);
1114 
1115 	mutex_lock(&regulator_list_mutex);
1116 
1117 	list_for_each_entry(map, &regulator_map_list, list) {
1118 		/* If the mapping has a device set up it must match */
1119 		if (map->dev_name &&
1120 		    (!devname || strcmp(map->dev_name, devname)))
1121 			continue;
1122 
1123 		if (strcmp(map->supply, id) == 0) {
1124 			rdev = map->regulator;
1125 			goto found;
1126 		}
1127 	}
1128 
1129 	if (board_wants_dummy_regulator) {
1130 		rdev = dummy_regulator_rdev;
1131 		goto found;
1132 	}
1133 
1134 #ifdef CONFIG_REGULATOR_DUMMY
1135 	if (!devname)
1136 		devname = "deviceless";
1137 
1138 	/* If the board didn't flag that it was fully constrained then
1139 	 * substitute in a dummy regulator so consumers can continue.
1140 	 */
1141 	if (!has_full_constraints) {
1142 		pr_warn("%s supply %s not found, using dummy regulator\n",
1143 			devname, id);
1144 		rdev = dummy_regulator_rdev;
1145 		goto found;
1146 	}
1147 #endif
1148 
1149 	mutex_unlock(&regulator_list_mutex);
1150 	return regulator;
1151 
1152 found:
1153 	if (rdev->exclusive) {
1154 		regulator = ERR_PTR(-EPERM);
1155 		goto out;
1156 	}
1157 
1158 	if (exclusive && rdev->open_count) {
1159 		regulator = ERR_PTR(-EBUSY);
1160 		goto out;
1161 	}
1162 
1163 	if (!try_module_get(rdev->owner))
1164 		goto out;
1165 
1166 	regulator = create_regulator(rdev, dev, id);
1167 	if (regulator == NULL) {
1168 		regulator = ERR_PTR(-ENOMEM);
1169 		module_put(rdev->owner);
1170 	}
1171 
1172 	rdev->open_count++;
1173 	if (exclusive) {
1174 		rdev->exclusive = 1;
1175 
1176 		ret = _regulator_is_enabled(rdev);
1177 		if (ret > 0)
1178 			rdev->use_count = 1;
1179 		else
1180 			rdev->use_count = 0;
1181 	}
1182 
1183 out:
1184 	mutex_unlock(&regulator_list_mutex);
1185 
1186 	return regulator;
1187 }
1188 
1189 /**
1190  * regulator_get - lookup and obtain a reference to a regulator.
1191  * @dev: device for regulator "consumer"
1192  * @id: Supply name or regulator ID.
1193  *
1194  * Returns a struct regulator corresponding to the regulator producer,
1195  * or IS_ERR() condition containing errno.
1196  *
1197  * Use of supply names configured via regulator_set_device_supply() is
1198  * strongly encouraged.  It is recommended that the supply name used
1199  * should match the name used for the supply and/or the relevant
1200  * device pins in the datasheet.
1201  */
1202 struct regulator *regulator_get(struct device *dev, const char *id)
1203 {
1204 	return _regulator_get(dev, id, 0);
1205 }
1206 EXPORT_SYMBOL_GPL(regulator_get);
1207 
1208 /**
1209  * regulator_get_exclusive - obtain exclusive access to a regulator.
1210  * @dev: device for regulator "consumer"
1211  * @id: Supply name or regulator ID.
1212  *
1213  * Returns a struct regulator corresponding to the regulator producer,
1214  * or IS_ERR() condition containing errno.  Other consumers will be
1215  * unable to obtain this reference is held and the use count for the
1216  * regulator will be initialised to reflect the current state of the
1217  * regulator.
1218  *
1219  * This is intended for use by consumers which cannot tolerate shared
1220  * use of the regulator such as those which need to force the
1221  * regulator off for correct operation of the hardware they are
1222  * controlling.
1223  *
1224  * Use of supply names configured via regulator_set_device_supply() is
1225  * strongly encouraged.  It is recommended that the supply name used
1226  * should match the name used for the supply and/or the relevant
1227  * device pins in the datasheet.
1228  */
1229 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230 {
1231 	return _regulator_get(dev, id, 1);
1232 }
1233 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234 
1235 /**
1236  * regulator_put - "free" the regulator source
1237  * @regulator: regulator source
1238  *
1239  * Note: drivers must ensure that all regulator_enable calls made on this
1240  * regulator source are balanced by regulator_disable calls prior to calling
1241  * this function.
1242  */
1243 void regulator_put(struct regulator *regulator)
1244 {
1245 	struct regulator_dev *rdev;
1246 
1247 	if (regulator == NULL || IS_ERR(regulator))
1248 		return;
1249 
1250 	mutex_lock(&regulator_list_mutex);
1251 	rdev = regulator->rdev;
1252 
1253 	/* remove any sysfs entries */
1254 	if (regulator->dev) {
1255 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256 		kfree(regulator->supply_name);
1257 		device_remove_file(regulator->dev, &regulator->dev_attr);
1258 		kfree(regulator->dev_attr.attr.name);
1259 	}
1260 	list_del(&regulator->list);
1261 	kfree(regulator);
1262 
1263 	rdev->open_count--;
1264 	rdev->exclusive = 0;
1265 
1266 	module_put(rdev->owner);
1267 	mutex_unlock(&regulator_list_mutex);
1268 }
1269 EXPORT_SYMBOL_GPL(regulator_put);
1270 
1271 static int _regulator_can_change_status(struct regulator_dev *rdev)
1272 {
1273 	if (!rdev->constraints)
1274 		return 0;
1275 
1276 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277 		return 1;
1278 	else
1279 		return 0;
1280 }
1281 
1282 /* locks held by regulator_enable() */
1283 static int _regulator_enable(struct regulator_dev *rdev)
1284 {
1285 	int ret, delay;
1286 
1287 	if (rdev->use_count == 0) {
1288 		/* do we need to enable the supply regulator first */
1289 		if (rdev->supply) {
1290 			mutex_lock(&rdev->supply->mutex);
1291 			ret = _regulator_enable(rdev->supply);
1292 			mutex_unlock(&rdev->supply->mutex);
1293 			if (ret < 0) {
1294 				rdev_err(rdev, "failed to enable: %d\n", ret);
1295 				return ret;
1296 			}
1297 		}
1298 	}
1299 
1300 	/* check voltage and requested load before enabling */
1301 	if (rdev->constraints &&
1302 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303 		drms_uA_update(rdev);
1304 
1305 	if (rdev->use_count == 0) {
1306 		/* The regulator may on if it's not switchable or left on */
1307 		ret = _regulator_is_enabled(rdev);
1308 		if (ret == -EINVAL || ret == 0) {
1309 			if (!_regulator_can_change_status(rdev))
1310 				return -EPERM;
1311 
1312 			if (!rdev->desc->ops->enable)
1313 				return -EINVAL;
1314 
1315 			/* Query before enabling in case configuration
1316 			 * dependant.  */
1317 			ret = _regulator_get_enable_time(rdev);
1318 			if (ret >= 0) {
1319 				delay = ret;
1320 			} else {
1321 				rdev_warn(rdev, "enable_time() failed: %d\n",
1322 					   ret);
1323 				delay = 0;
1324 			}
1325 
1326 			trace_regulator_enable(rdev_get_name(rdev));
1327 
1328 			/* Allow the regulator to ramp; it would be useful
1329 			 * to extend this for bulk operations so that the
1330 			 * regulators can ramp together.  */
1331 			ret = rdev->desc->ops->enable(rdev);
1332 			if (ret < 0)
1333 				return ret;
1334 
1335 			trace_regulator_enable_delay(rdev_get_name(rdev));
1336 
1337 			if (delay >= 1000) {
1338 				mdelay(delay / 1000);
1339 				udelay(delay % 1000);
1340 			} else if (delay) {
1341 				udelay(delay);
1342 			}
1343 
1344 			trace_regulator_enable_complete(rdev_get_name(rdev));
1345 
1346 		} else if (ret < 0) {
1347 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348 			return ret;
1349 		}
1350 		/* Fallthrough on positive return values - already enabled */
1351 	}
1352 
1353 	rdev->use_count++;
1354 
1355 	return 0;
1356 }
1357 
1358 /**
1359  * regulator_enable - enable regulator output
1360  * @regulator: regulator source
1361  *
1362  * Request that the regulator be enabled with the regulator output at
1363  * the predefined voltage or current value.  Calls to regulator_enable()
1364  * must be balanced with calls to regulator_disable().
1365  *
1366  * NOTE: the output value can be set by other drivers, boot loader or may be
1367  * hardwired in the regulator.
1368  */
1369 int regulator_enable(struct regulator *regulator)
1370 {
1371 	struct regulator_dev *rdev = regulator->rdev;
1372 	int ret = 0;
1373 
1374 	mutex_lock(&rdev->mutex);
1375 	ret = _regulator_enable(rdev);
1376 	mutex_unlock(&rdev->mutex);
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL_GPL(regulator_enable);
1380 
1381 /* locks held by regulator_disable() */
1382 static int _regulator_disable(struct regulator_dev *rdev,
1383 		struct regulator_dev **supply_rdev_ptr)
1384 {
1385 	int ret = 0;
1386 	*supply_rdev_ptr = NULL;
1387 
1388 	if (WARN(rdev->use_count <= 0,
1389 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390 		return -EIO;
1391 
1392 	/* are we the last user and permitted to disable ? */
1393 	if (rdev->use_count == 1 &&
1394 	    (rdev->constraints && !rdev->constraints->always_on)) {
1395 
1396 		/* we are last user */
1397 		if (_regulator_can_change_status(rdev) &&
1398 		    rdev->desc->ops->disable) {
1399 			trace_regulator_disable(rdev_get_name(rdev));
1400 
1401 			ret = rdev->desc->ops->disable(rdev);
1402 			if (ret < 0) {
1403 				rdev_err(rdev, "failed to disable\n");
1404 				return ret;
1405 			}
1406 
1407 			trace_regulator_disable_complete(rdev_get_name(rdev));
1408 
1409 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410 					     NULL);
1411 		}
1412 
1413 		/* decrease our supplies ref count and disable if required */
1414 		*supply_rdev_ptr = rdev->supply;
1415 
1416 		rdev->use_count = 0;
1417 	} else if (rdev->use_count > 1) {
1418 
1419 		if (rdev->constraints &&
1420 			(rdev->constraints->valid_ops_mask &
1421 			REGULATOR_CHANGE_DRMS))
1422 			drms_uA_update(rdev);
1423 
1424 		rdev->use_count--;
1425 	}
1426 	return ret;
1427 }
1428 
1429 /**
1430  * regulator_disable - disable regulator output
1431  * @regulator: regulator source
1432  *
1433  * Disable the regulator output voltage or current.  Calls to
1434  * regulator_enable() must be balanced with calls to
1435  * regulator_disable().
1436  *
1437  * NOTE: this will only disable the regulator output if no other consumer
1438  * devices have it enabled, the regulator device supports disabling and
1439  * machine constraints permit this operation.
1440  */
1441 int regulator_disable(struct regulator *regulator)
1442 {
1443 	struct regulator_dev *rdev = regulator->rdev;
1444 	struct regulator_dev *supply_rdev = NULL;
1445 	int ret = 0;
1446 
1447 	mutex_lock(&rdev->mutex);
1448 	ret = _regulator_disable(rdev, &supply_rdev);
1449 	mutex_unlock(&rdev->mutex);
1450 
1451 	/* decrease our supplies ref count and disable if required */
1452 	while (supply_rdev != NULL) {
1453 		rdev = supply_rdev;
1454 
1455 		mutex_lock(&rdev->mutex);
1456 		_regulator_disable(rdev, &supply_rdev);
1457 		mutex_unlock(&rdev->mutex);
1458 	}
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(regulator_disable);
1463 
1464 /* locks held by regulator_force_disable() */
1465 static int _regulator_force_disable(struct regulator_dev *rdev,
1466 		struct regulator_dev **supply_rdev_ptr)
1467 {
1468 	int ret = 0;
1469 
1470 	/* force disable */
1471 	if (rdev->desc->ops->disable) {
1472 		/* ah well, who wants to live forever... */
1473 		ret = rdev->desc->ops->disable(rdev);
1474 		if (ret < 0) {
1475 			rdev_err(rdev, "failed to force disable\n");
1476 			return ret;
1477 		}
1478 		/* notify other consumers that power has been forced off */
1479 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480 			REGULATOR_EVENT_DISABLE, NULL);
1481 	}
1482 
1483 	/* decrease our supplies ref count and disable if required */
1484 	*supply_rdev_ptr = rdev->supply;
1485 
1486 	rdev->use_count = 0;
1487 	return ret;
1488 }
1489 
1490 /**
1491  * regulator_force_disable - force disable regulator output
1492  * @regulator: regulator source
1493  *
1494  * Forcibly disable the regulator output voltage or current.
1495  * NOTE: this *will* disable the regulator output even if other consumer
1496  * devices have it enabled. This should be used for situations when device
1497  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498  */
1499 int regulator_force_disable(struct regulator *regulator)
1500 {
1501 	struct regulator_dev *supply_rdev = NULL;
1502 	int ret;
1503 
1504 	mutex_lock(&regulator->rdev->mutex);
1505 	regulator->uA_load = 0;
1506 	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507 	mutex_unlock(&regulator->rdev->mutex);
1508 
1509 	if (supply_rdev)
1510 		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511 
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_force_disable);
1515 
1516 static int _regulator_is_enabled(struct regulator_dev *rdev)
1517 {
1518 	/* If we don't know then assume that the regulator is always on */
1519 	if (!rdev->desc->ops->is_enabled)
1520 		return 1;
1521 
1522 	return rdev->desc->ops->is_enabled(rdev);
1523 }
1524 
1525 /**
1526  * regulator_is_enabled - is the regulator output enabled
1527  * @regulator: regulator source
1528  *
1529  * Returns positive if the regulator driver backing the source/client
1530  * has requested that the device be enabled, zero if it hasn't, else a
1531  * negative errno code.
1532  *
1533  * Note that the device backing this regulator handle can have multiple
1534  * users, so it might be enabled even if regulator_enable() was never
1535  * called for this particular source.
1536  */
1537 int regulator_is_enabled(struct regulator *regulator)
1538 {
1539 	int ret;
1540 
1541 	mutex_lock(&regulator->rdev->mutex);
1542 	ret = _regulator_is_enabled(regulator->rdev);
1543 	mutex_unlock(&regulator->rdev->mutex);
1544 
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548 
1549 /**
1550  * regulator_count_voltages - count regulator_list_voltage() selectors
1551  * @regulator: regulator source
1552  *
1553  * Returns number of selectors, or negative errno.  Selectors are
1554  * numbered starting at zero, and typically correspond to bitfields
1555  * in hardware registers.
1556  */
1557 int regulator_count_voltages(struct regulator *regulator)
1558 {
1559 	struct regulator_dev	*rdev = regulator->rdev;
1560 
1561 	return rdev->desc->n_voltages ? : -EINVAL;
1562 }
1563 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564 
1565 /**
1566  * regulator_list_voltage - enumerate supported voltages
1567  * @regulator: regulator source
1568  * @selector: identify voltage to list
1569  * Context: can sleep
1570  *
1571  * Returns a voltage that can be passed to @regulator_set_voltage(),
1572  * zero if this selector code can't be used on this system, or a
1573  * negative errno.
1574  */
1575 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576 {
1577 	struct regulator_dev	*rdev = regulator->rdev;
1578 	struct regulator_ops	*ops = rdev->desc->ops;
1579 	int			ret;
1580 
1581 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582 		return -EINVAL;
1583 
1584 	mutex_lock(&rdev->mutex);
1585 	ret = ops->list_voltage(rdev, selector);
1586 	mutex_unlock(&rdev->mutex);
1587 
1588 	if (ret > 0) {
1589 		if (ret < rdev->constraints->min_uV)
1590 			ret = 0;
1591 		else if (ret > rdev->constraints->max_uV)
1592 			ret = 0;
1593 	}
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598 
1599 /**
1600  * regulator_is_supported_voltage - check if a voltage range can be supported
1601  *
1602  * @regulator: Regulator to check.
1603  * @min_uV: Minimum required voltage in uV.
1604  * @max_uV: Maximum required voltage in uV.
1605  *
1606  * Returns a boolean or a negative error code.
1607  */
1608 int regulator_is_supported_voltage(struct regulator *regulator,
1609 				   int min_uV, int max_uV)
1610 {
1611 	int i, voltages, ret;
1612 
1613 	ret = regulator_count_voltages(regulator);
1614 	if (ret < 0)
1615 		return ret;
1616 	voltages = ret;
1617 
1618 	for (i = 0; i < voltages; i++) {
1619 		ret = regulator_list_voltage(regulator, i);
1620 
1621 		if (ret >= min_uV && ret <= max_uV)
1622 			return 1;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629 				     int min_uV, int max_uV)
1630 {
1631 	int ret;
1632 	unsigned int selector;
1633 
1634 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1635 
1636 	if (rdev->desc->ops->set_voltage) {
1637 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1638 						   &selector);
1639 
1640 		if (rdev->desc->ops->list_voltage)
1641 			selector = rdev->desc->ops->list_voltage(rdev,
1642 								 selector);
1643 		else
1644 			selector = -1;
1645 	} else if (rdev->desc->ops->set_voltage_sel) {
1646 		int best_val = INT_MAX;
1647 		int i;
1648 
1649 		selector = 0;
1650 
1651 		/* Find the smallest voltage that falls within the specified
1652 		 * range.
1653 		 */
1654 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1655 			ret = rdev->desc->ops->list_voltage(rdev, i);
1656 			if (ret < 0)
1657 				continue;
1658 
1659 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1660 				best_val = ret;
1661 				selector = i;
1662 			}
1663 		}
1664 
1665 		if (best_val != INT_MAX) {
1666 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1667 			selector = best_val;
1668 		} else {
1669 			ret = -EINVAL;
1670 		}
1671 	} else {
1672 		ret = -EINVAL;
1673 	}
1674 
1675 	if (ret == 0)
1676 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1677 				     NULL);
1678 
1679 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1680 
1681 	return ret;
1682 }
1683 
1684 /**
1685  * regulator_set_voltage - set regulator output voltage
1686  * @regulator: regulator source
1687  * @min_uV: Minimum required voltage in uV
1688  * @max_uV: Maximum acceptable voltage in uV
1689  *
1690  * Sets a voltage regulator to the desired output voltage. This can be set
1691  * during any regulator state. IOW, regulator can be disabled or enabled.
1692  *
1693  * If the regulator is enabled then the voltage will change to the new value
1694  * immediately otherwise if the regulator is disabled the regulator will
1695  * output at the new voltage when enabled.
1696  *
1697  * NOTE: If the regulator is shared between several devices then the lowest
1698  * request voltage that meets the system constraints will be used.
1699  * Regulator system constraints must be set for this regulator before
1700  * calling this function otherwise this call will fail.
1701  */
1702 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1703 {
1704 	struct regulator_dev *rdev = regulator->rdev;
1705 	int ret = 0;
1706 
1707 	mutex_lock(&rdev->mutex);
1708 
1709 	/* If we're setting the same range as last time the change
1710 	 * should be a noop (some cpufreq implementations use the same
1711 	 * voltage for multiple frequencies, for example).
1712 	 */
1713 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1714 		goto out;
1715 
1716 	/* sanity check */
1717 	if (!rdev->desc->ops->set_voltage &&
1718 	    !rdev->desc->ops->set_voltage_sel) {
1719 		ret = -EINVAL;
1720 		goto out;
1721 	}
1722 
1723 	/* constraints check */
1724 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1725 	if (ret < 0)
1726 		goto out;
1727 	regulator->min_uV = min_uV;
1728 	regulator->max_uV = max_uV;
1729 
1730 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1731 	if (ret < 0)
1732 		goto out;
1733 
1734 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1735 
1736 out:
1737 	mutex_unlock(&rdev->mutex);
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1741 
1742 /**
1743  * regulator_sync_voltage - re-apply last regulator output voltage
1744  * @regulator: regulator source
1745  *
1746  * Re-apply the last configured voltage.  This is intended to be used
1747  * where some external control source the consumer is cooperating with
1748  * has caused the configured voltage to change.
1749  */
1750 int regulator_sync_voltage(struct regulator *regulator)
1751 {
1752 	struct regulator_dev *rdev = regulator->rdev;
1753 	int ret, min_uV, max_uV;
1754 
1755 	mutex_lock(&rdev->mutex);
1756 
1757 	if (!rdev->desc->ops->set_voltage &&
1758 	    !rdev->desc->ops->set_voltage_sel) {
1759 		ret = -EINVAL;
1760 		goto out;
1761 	}
1762 
1763 	/* This is only going to work if we've had a voltage configured. */
1764 	if (!regulator->min_uV && !regulator->max_uV) {
1765 		ret = -EINVAL;
1766 		goto out;
1767 	}
1768 
1769 	min_uV = regulator->min_uV;
1770 	max_uV = regulator->max_uV;
1771 
1772 	/* This should be a paranoia check... */
1773 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1774 	if (ret < 0)
1775 		goto out;
1776 
1777 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1778 	if (ret < 0)
1779 		goto out;
1780 
1781 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1782 
1783 out:
1784 	mutex_unlock(&rdev->mutex);
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1788 
1789 static int _regulator_get_voltage(struct regulator_dev *rdev)
1790 {
1791 	int sel;
1792 
1793 	if (rdev->desc->ops->get_voltage_sel) {
1794 		sel = rdev->desc->ops->get_voltage_sel(rdev);
1795 		if (sel < 0)
1796 			return sel;
1797 		return rdev->desc->ops->list_voltage(rdev, sel);
1798 	}
1799 	if (rdev->desc->ops->get_voltage)
1800 		return rdev->desc->ops->get_voltage(rdev);
1801 	else
1802 		return -EINVAL;
1803 }
1804 
1805 /**
1806  * regulator_get_voltage - get regulator output voltage
1807  * @regulator: regulator source
1808  *
1809  * This returns the current regulator voltage in uV.
1810  *
1811  * NOTE: If the regulator is disabled it will return the voltage value. This
1812  * function should not be used to determine regulator state.
1813  */
1814 int regulator_get_voltage(struct regulator *regulator)
1815 {
1816 	int ret;
1817 
1818 	mutex_lock(&regulator->rdev->mutex);
1819 
1820 	ret = _regulator_get_voltage(regulator->rdev);
1821 
1822 	mutex_unlock(&regulator->rdev->mutex);
1823 
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1827 
1828 /**
1829  * regulator_set_current_limit - set regulator output current limit
1830  * @regulator: regulator source
1831  * @min_uA: Minimuum supported current in uA
1832  * @max_uA: Maximum supported current in uA
1833  *
1834  * Sets current sink to the desired output current. This can be set during
1835  * any regulator state. IOW, regulator can be disabled or enabled.
1836  *
1837  * If the regulator is enabled then the current will change to the new value
1838  * immediately otherwise if the regulator is disabled the regulator will
1839  * output at the new current when enabled.
1840  *
1841  * NOTE: Regulator system constraints must be set for this regulator before
1842  * calling this function otherwise this call will fail.
1843  */
1844 int regulator_set_current_limit(struct regulator *regulator,
1845 			       int min_uA, int max_uA)
1846 {
1847 	struct regulator_dev *rdev = regulator->rdev;
1848 	int ret;
1849 
1850 	mutex_lock(&rdev->mutex);
1851 
1852 	/* sanity check */
1853 	if (!rdev->desc->ops->set_current_limit) {
1854 		ret = -EINVAL;
1855 		goto out;
1856 	}
1857 
1858 	/* constraints check */
1859 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1860 	if (ret < 0)
1861 		goto out;
1862 
1863 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1864 out:
1865 	mutex_unlock(&rdev->mutex);
1866 	return ret;
1867 }
1868 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1869 
1870 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1871 {
1872 	int ret;
1873 
1874 	mutex_lock(&rdev->mutex);
1875 
1876 	/* sanity check */
1877 	if (!rdev->desc->ops->get_current_limit) {
1878 		ret = -EINVAL;
1879 		goto out;
1880 	}
1881 
1882 	ret = rdev->desc->ops->get_current_limit(rdev);
1883 out:
1884 	mutex_unlock(&rdev->mutex);
1885 	return ret;
1886 }
1887 
1888 /**
1889  * regulator_get_current_limit - get regulator output current
1890  * @regulator: regulator source
1891  *
1892  * This returns the current supplied by the specified current sink in uA.
1893  *
1894  * NOTE: If the regulator is disabled it will return the current value. This
1895  * function should not be used to determine regulator state.
1896  */
1897 int regulator_get_current_limit(struct regulator *regulator)
1898 {
1899 	return _regulator_get_current_limit(regulator->rdev);
1900 }
1901 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1902 
1903 /**
1904  * regulator_set_mode - set regulator operating mode
1905  * @regulator: regulator source
1906  * @mode: operating mode - one of the REGULATOR_MODE constants
1907  *
1908  * Set regulator operating mode to increase regulator efficiency or improve
1909  * regulation performance.
1910  *
1911  * NOTE: Regulator system constraints must be set for this regulator before
1912  * calling this function otherwise this call will fail.
1913  */
1914 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1915 {
1916 	struct regulator_dev *rdev = regulator->rdev;
1917 	int ret;
1918 	int regulator_curr_mode;
1919 
1920 	mutex_lock(&rdev->mutex);
1921 
1922 	/* sanity check */
1923 	if (!rdev->desc->ops->set_mode) {
1924 		ret = -EINVAL;
1925 		goto out;
1926 	}
1927 
1928 	/* return if the same mode is requested */
1929 	if (rdev->desc->ops->get_mode) {
1930 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1931 		if (regulator_curr_mode == mode) {
1932 			ret = 0;
1933 			goto out;
1934 		}
1935 	}
1936 
1937 	/* constraints check */
1938 	ret = regulator_check_mode(rdev, mode);
1939 	if (ret < 0)
1940 		goto out;
1941 
1942 	ret = rdev->desc->ops->set_mode(rdev, mode);
1943 out:
1944 	mutex_unlock(&rdev->mutex);
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(regulator_set_mode);
1948 
1949 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1950 {
1951 	int ret;
1952 
1953 	mutex_lock(&rdev->mutex);
1954 
1955 	/* sanity check */
1956 	if (!rdev->desc->ops->get_mode) {
1957 		ret = -EINVAL;
1958 		goto out;
1959 	}
1960 
1961 	ret = rdev->desc->ops->get_mode(rdev);
1962 out:
1963 	mutex_unlock(&rdev->mutex);
1964 	return ret;
1965 }
1966 
1967 /**
1968  * regulator_get_mode - get regulator operating mode
1969  * @regulator: regulator source
1970  *
1971  * Get the current regulator operating mode.
1972  */
1973 unsigned int regulator_get_mode(struct regulator *regulator)
1974 {
1975 	return _regulator_get_mode(regulator->rdev);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_get_mode);
1978 
1979 /**
1980  * regulator_set_optimum_mode - set regulator optimum operating mode
1981  * @regulator: regulator source
1982  * @uA_load: load current
1983  *
1984  * Notifies the regulator core of a new device load. This is then used by
1985  * DRMS (if enabled by constraints) to set the most efficient regulator
1986  * operating mode for the new regulator loading.
1987  *
1988  * Consumer devices notify their supply regulator of the maximum power
1989  * they will require (can be taken from device datasheet in the power
1990  * consumption tables) when they change operational status and hence power
1991  * state. Examples of operational state changes that can affect power
1992  * consumption are :-
1993  *
1994  *    o Device is opened / closed.
1995  *    o Device I/O is about to begin or has just finished.
1996  *    o Device is idling in between work.
1997  *
1998  * This information is also exported via sysfs to userspace.
1999  *
2000  * DRMS will sum the total requested load on the regulator and change
2001  * to the most efficient operating mode if platform constraints allow.
2002  *
2003  * Returns the new regulator mode or error.
2004  */
2005 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2006 {
2007 	struct regulator_dev *rdev = regulator->rdev;
2008 	struct regulator *consumer;
2009 	int ret, output_uV, input_uV, total_uA_load = 0;
2010 	unsigned int mode;
2011 
2012 	mutex_lock(&rdev->mutex);
2013 
2014 	regulator->uA_load = uA_load;
2015 	ret = regulator_check_drms(rdev);
2016 	if (ret < 0)
2017 		goto out;
2018 	ret = -EINVAL;
2019 
2020 	/* sanity check */
2021 	if (!rdev->desc->ops->get_optimum_mode)
2022 		goto out;
2023 
2024 	/* get output voltage */
2025 	output_uV = _regulator_get_voltage(rdev);
2026 	if (output_uV <= 0) {
2027 		rdev_err(rdev, "invalid output voltage found\n");
2028 		goto out;
2029 	}
2030 
2031 	/* get input voltage */
2032 	input_uV = 0;
2033 	if (rdev->supply)
2034 		input_uV = _regulator_get_voltage(rdev->supply);
2035 	if (input_uV <= 0)
2036 		input_uV = rdev->constraints->input_uV;
2037 	if (input_uV <= 0) {
2038 		rdev_err(rdev, "invalid input voltage found\n");
2039 		goto out;
2040 	}
2041 
2042 	/* calc total requested load for this regulator */
2043 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2044 		total_uA_load += consumer->uA_load;
2045 
2046 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2047 						 input_uV, output_uV,
2048 						 total_uA_load);
2049 	ret = regulator_check_mode(rdev, mode);
2050 	if (ret < 0) {
2051 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2052 			 total_uA_load, input_uV, output_uV);
2053 		goto out;
2054 	}
2055 
2056 	ret = rdev->desc->ops->set_mode(rdev, mode);
2057 	if (ret < 0) {
2058 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2059 		goto out;
2060 	}
2061 	ret = mode;
2062 out:
2063 	mutex_unlock(&rdev->mutex);
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2067 
2068 /**
2069  * regulator_register_notifier - register regulator event notifier
2070  * @regulator: regulator source
2071  * @nb: notifier block
2072  *
2073  * Register notifier block to receive regulator events.
2074  */
2075 int regulator_register_notifier(struct regulator *regulator,
2076 			      struct notifier_block *nb)
2077 {
2078 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2079 						nb);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2082 
2083 /**
2084  * regulator_unregister_notifier - unregister regulator event notifier
2085  * @regulator: regulator source
2086  * @nb: notifier block
2087  *
2088  * Unregister regulator event notifier block.
2089  */
2090 int regulator_unregister_notifier(struct regulator *regulator,
2091 				struct notifier_block *nb)
2092 {
2093 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2094 						  nb);
2095 }
2096 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2097 
2098 /* notify regulator consumers and downstream regulator consumers.
2099  * Note mutex must be held by caller.
2100  */
2101 static void _notifier_call_chain(struct regulator_dev *rdev,
2102 				  unsigned long event, void *data)
2103 {
2104 	struct regulator_dev *_rdev;
2105 
2106 	/* call rdev chain first */
2107 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2108 
2109 	/* now notify regulator we supply */
2110 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2111 		mutex_lock(&_rdev->mutex);
2112 		_notifier_call_chain(_rdev, event, data);
2113 		mutex_unlock(&_rdev->mutex);
2114 	}
2115 }
2116 
2117 /**
2118  * regulator_bulk_get - get multiple regulator consumers
2119  *
2120  * @dev:           Device to supply
2121  * @num_consumers: Number of consumers to register
2122  * @consumers:     Configuration of consumers; clients are stored here.
2123  *
2124  * @return 0 on success, an errno on failure.
2125  *
2126  * This helper function allows drivers to get several regulator
2127  * consumers in one operation.  If any of the regulators cannot be
2128  * acquired then any regulators that were allocated will be freed
2129  * before returning to the caller.
2130  */
2131 int regulator_bulk_get(struct device *dev, int num_consumers,
2132 		       struct regulator_bulk_data *consumers)
2133 {
2134 	int i;
2135 	int ret;
2136 
2137 	for (i = 0; i < num_consumers; i++)
2138 		consumers[i].consumer = NULL;
2139 
2140 	for (i = 0; i < num_consumers; i++) {
2141 		consumers[i].consumer = regulator_get(dev,
2142 						      consumers[i].supply);
2143 		if (IS_ERR(consumers[i].consumer)) {
2144 			ret = PTR_ERR(consumers[i].consumer);
2145 			dev_err(dev, "Failed to get supply '%s': %d\n",
2146 				consumers[i].supply, ret);
2147 			consumers[i].consumer = NULL;
2148 			goto err;
2149 		}
2150 	}
2151 
2152 	return 0;
2153 
2154 err:
2155 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2156 		regulator_put(consumers[i].consumer);
2157 
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2161 
2162 /**
2163  * regulator_bulk_enable - enable multiple regulator consumers
2164  *
2165  * @num_consumers: Number of consumers
2166  * @consumers:     Consumer data; clients are stored here.
2167  * @return         0 on success, an errno on failure
2168  *
2169  * This convenience API allows consumers to enable multiple regulator
2170  * clients in a single API call.  If any consumers cannot be enabled
2171  * then any others that were enabled will be disabled again prior to
2172  * return.
2173  */
2174 int regulator_bulk_enable(int num_consumers,
2175 			  struct regulator_bulk_data *consumers)
2176 {
2177 	int i;
2178 	int ret;
2179 
2180 	for (i = 0; i < num_consumers; i++) {
2181 		ret = regulator_enable(consumers[i].consumer);
2182 		if (ret != 0)
2183 			goto err;
2184 	}
2185 
2186 	return 0;
2187 
2188 err:
2189 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2190 	for (--i; i >= 0; --i)
2191 		regulator_disable(consumers[i].consumer);
2192 
2193 	return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2196 
2197 /**
2198  * regulator_bulk_disable - disable multiple regulator consumers
2199  *
2200  * @num_consumers: Number of consumers
2201  * @consumers:     Consumer data; clients are stored here.
2202  * @return         0 on success, an errno on failure
2203  *
2204  * This convenience API allows consumers to disable multiple regulator
2205  * clients in a single API call.  If any consumers cannot be enabled
2206  * then any others that were disabled will be disabled again prior to
2207  * return.
2208  */
2209 int regulator_bulk_disable(int num_consumers,
2210 			   struct regulator_bulk_data *consumers)
2211 {
2212 	int i;
2213 	int ret;
2214 
2215 	for (i = 0; i < num_consumers; i++) {
2216 		ret = regulator_disable(consumers[i].consumer);
2217 		if (ret != 0)
2218 			goto err;
2219 	}
2220 
2221 	return 0;
2222 
2223 err:
2224 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2225 	for (--i; i >= 0; --i)
2226 		regulator_enable(consumers[i].consumer);
2227 
2228 	return ret;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2231 
2232 /**
2233  * regulator_bulk_free - free multiple regulator consumers
2234  *
2235  * @num_consumers: Number of consumers
2236  * @consumers:     Consumer data; clients are stored here.
2237  *
2238  * This convenience API allows consumers to free multiple regulator
2239  * clients in a single API call.
2240  */
2241 void regulator_bulk_free(int num_consumers,
2242 			 struct regulator_bulk_data *consumers)
2243 {
2244 	int i;
2245 
2246 	for (i = 0; i < num_consumers; i++) {
2247 		regulator_put(consumers[i].consumer);
2248 		consumers[i].consumer = NULL;
2249 	}
2250 }
2251 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2252 
2253 /**
2254  * regulator_notifier_call_chain - call regulator event notifier
2255  * @rdev: regulator source
2256  * @event: notifier block
2257  * @data: callback-specific data.
2258  *
2259  * Called by regulator drivers to notify clients a regulator event has
2260  * occurred. We also notify regulator clients downstream.
2261  * Note lock must be held by caller.
2262  */
2263 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2264 				  unsigned long event, void *data)
2265 {
2266 	_notifier_call_chain(rdev, event, data);
2267 	return NOTIFY_DONE;
2268 
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2271 
2272 /**
2273  * regulator_mode_to_status - convert a regulator mode into a status
2274  *
2275  * @mode: Mode to convert
2276  *
2277  * Convert a regulator mode into a status.
2278  */
2279 int regulator_mode_to_status(unsigned int mode)
2280 {
2281 	switch (mode) {
2282 	case REGULATOR_MODE_FAST:
2283 		return REGULATOR_STATUS_FAST;
2284 	case REGULATOR_MODE_NORMAL:
2285 		return REGULATOR_STATUS_NORMAL;
2286 	case REGULATOR_MODE_IDLE:
2287 		return REGULATOR_STATUS_IDLE;
2288 	case REGULATOR_STATUS_STANDBY:
2289 		return REGULATOR_STATUS_STANDBY;
2290 	default:
2291 		return 0;
2292 	}
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2295 
2296 /*
2297  * To avoid cluttering sysfs (and memory) with useless state, only
2298  * create attributes that can be meaningfully displayed.
2299  */
2300 static int add_regulator_attributes(struct regulator_dev *rdev)
2301 {
2302 	struct device		*dev = &rdev->dev;
2303 	struct regulator_ops	*ops = rdev->desc->ops;
2304 	int			status = 0;
2305 
2306 	/* some attributes need specific methods to be displayed */
2307 	if (ops->get_voltage || ops->get_voltage_sel) {
2308 		status = device_create_file(dev, &dev_attr_microvolts);
2309 		if (status < 0)
2310 			return status;
2311 	}
2312 	if (ops->get_current_limit) {
2313 		status = device_create_file(dev, &dev_attr_microamps);
2314 		if (status < 0)
2315 			return status;
2316 	}
2317 	if (ops->get_mode) {
2318 		status = device_create_file(dev, &dev_attr_opmode);
2319 		if (status < 0)
2320 			return status;
2321 	}
2322 	if (ops->is_enabled) {
2323 		status = device_create_file(dev, &dev_attr_state);
2324 		if (status < 0)
2325 			return status;
2326 	}
2327 	if (ops->get_status) {
2328 		status = device_create_file(dev, &dev_attr_status);
2329 		if (status < 0)
2330 			return status;
2331 	}
2332 
2333 	/* some attributes are type-specific */
2334 	if (rdev->desc->type == REGULATOR_CURRENT) {
2335 		status = device_create_file(dev, &dev_attr_requested_microamps);
2336 		if (status < 0)
2337 			return status;
2338 	}
2339 
2340 	/* all the other attributes exist to support constraints;
2341 	 * don't show them if there are no constraints, or if the
2342 	 * relevant supporting methods are missing.
2343 	 */
2344 	if (!rdev->constraints)
2345 		return status;
2346 
2347 	/* constraints need specific supporting methods */
2348 	if (ops->set_voltage || ops->set_voltage_sel) {
2349 		status = device_create_file(dev, &dev_attr_min_microvolts);
2350 		if (status < 0)
2351 			return status;
2352 		status = device_create_file(dev, &dev_attr_max_microvolts);
2353 		if (status < 0)
2354 			return status;
2355 	}
2356 	if (ops->set_current_limit) {
2357 		status = device_create_file(dev, &dev_attr_min_microamps);
2358 		if (status < 0)
2359 			return status;
2360 		status = device_create_file(dev, &dev_attr_max_microamps);
2361 		if (status < 0)
2362 			return status;
2363 	}
2364 
2365 	/* suspend mode constraints need multiple supporting methods */
2366 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2367 		return status;
2368 
2369 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2370 	if (status < 0)
2371 		return status;
2372 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2373 	if (status < 0)
2374 		return status;
2375 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2376 	if (status < 0)
2377 		return status;
2378 
2379 	if (ops->set_suspend_voltage) {
2380 		status = device_create_file(dev,
2381 				&dev_attr_suspend_standby_microvolts);
2382 		if (status < 0)
2383 			return status;
2384 		status = device_create_file(dev,
2385 				&dev_attr_suspend_mem_microvolts);
2386 		if (status < 0)
2387 			return status;
2388 		status = device_create_file(dev,
2389 				&dev_attr_suspend_disk_microvolts);
2390 		if (status < 0)
2391 			return status;
2392 	}
2393 
2394 	if (ops->set_suspend_mode) {
2395 		status = device_create_file(dev,
2396 				&dev_attr_suspend_standby_mode);
2397 		if (status < 0)
2398 			return status;
2399 		status = device_create_file(dev,
2400 				&dev_attr_suspend_mem_mode);
2401 		if (status < 0)
2402 			return status;
2403 		status = device_create_file(dev,
2404 				&dev_attr_suspend_disk_mode);
2405 		if (status < 0)
2406 			return status;
2407 	}
2408 
2409 	return status;
2410 }
2411 
2412 static void rdev_init_debugfs(struct regulator_dev *rdev)
2413 {
2414 #ifdef CONFIG_DEBUG_FS
2415 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2416 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2417 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2418 		rdev->debugfs = NULL;
2419 		return;
2420 	}
2421 
2422 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2423 			   &rdev->use_count);
2424 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2425 			   &rdev->open_count);
2426 #endif
2427 }
2428 
2429 /**
2430  * regulator_register - register regulator
2431  * @regulator_desc: regulator to register
2432  * @dev: struct device for the regulator
2433  * @init_data: platform provided init data, passed through by driver
2434  * @driver_data: private regulator data
2435  *
2436  * Called by regulator drivers to register a regulator.
2437  * Returns 0 on success.
2438  */
2439 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2440 	struct device *dev, const struct regulator_init_data *init_data,
2441 	void *driver_data)
2442 {
2443 	static atomic_t regulator_no = ATOMIC_INIT(0);
2444 	struct regulator_dev *rdev;
2445 	int ret, i;
2446 
2447 	if (regulator_desc == NULL)
2448 		return ERR_PTR(-EINVAL);
2449 
2450 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2451 		return ERR_PTR(-EINVAL);
2452 
2453 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2454 	    regulator_desc->type != REGULATOR_CURRENT)
2455 		return ERR_PTR(-EINVAL);
2456 
2457 	if (!init_data)
2458 		return ERR_PTR(-EINVAL);
2459 
2460 	/* Only one of each should be implemented */
2461 	WARN_ON(regulator_desc->ops->get_voltage &&
2462 		regulator_desc->ops->get_voltage_sel);
2463 	WARN_ON(regulator_desc->ops->set_voltage &&
2464 		regulator_desc->ops->set_voltage_sel);
2465 
2466 	/* If we're using selectors we must implement list_voltage. */
2467 	if (regulator_desc->ops->get_voltage_sel &&
2468 	    !regulator_desc->ops->list_voltage) {
2469 		return ERR_PTR(-EINVAL);
2470 	}
2471 	if (regulator_desc->ops->set_voltage_sel &&
2472 	    !regulator_desc->ops->list_voltage) {
2473 		return ERR_PTR(-EINVAL);
2474 	}
2475 
2476 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2477 	if (rdev == NULL)
2478 		return ERR_PTR(-ENOMEM);
2479 
2480 	mutex_lock(&regulator_list_mutex);
2481 
2482 	mutex_init(&rdev->mutex);
2483 	rdev->reg_data = driver_data;
2484 	rdev->owner = regulator_desc->owner;
2485 	rdev->desc = regulator_desc;
2486 	INIT_LIST_HEAD(&rdev->consumer_list);
2487 	INIT_LIST_HEAD(&rdev->supply_list);
2488 	INIT_LIST_HEAD(&rdev->list);
2489 	INIT_LIST_HEAD(&rdev->slist);
2490 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2491 
2492 	/* preform any regulator specific init */
2493 	if (init_data->regulator_init) {
2494 		ret = init_data->regulator_init(rdev->reg_data);
2495 		if (ret < 0)
2496 			goto clean;
2497 	}
2498 
2499 	/* register with sysfs */
2500 	rdev->dev.class = &regulator_class;
2501 	rdev->dev.parent = dev;
2502 	dev_set_name(&rdev->dev, "regulator.%d",
2503 		     atomic_inc_return(&regulator_no) - 1);
2504 	ret = device_register(&rdev->dev);
2505 	if (ret != 0) {
2506 		put_device(&rdev->dev);
2507 		goto clean;
2508 	}
2509 
2510 	dev_set_drvdata(&rdev->dev, rdev);
2511 
2512 	/* set regulator constraints */
2513 	ret = set_machine_constraints(rdev, &init_data->constraints);
2514 	if (ret < 0)
2515 		goto scrub;
2516 
2517 	/* add attributes supported by this regulator */
2518 	ret = add_regulator_attributes(rdev);
2519 	if (ret < 0)
2520 		goto scrub;
2521 
2522 	/* set supply regulator if it exists */
2523 	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2524 		dev_err(dev,
2525 			"Supply regulator specified by both name and dev\n");
2526 		ret = -EINVAL;
2527 		goto scrub;
2528 	}
2529 
2530 	if (init_data->supply_regulator) {
2531 		struct regulator_dev *r;
2532 		int found = 0;
2533 
2534 		list_for_each_entry(r, &regulator_list, list) {
2535 			if (strcmp(rdev_get_name(r),
2536 				   init_data->supply_regulator) == 0) {
2537 				found = 1;
2538 				break;
2539 			}
2540 		}
2541 
2542 		if (!found) {
2543 			dev_err(dev, "Failed to find supply %s\n",
2544 				init_data->supply_regulator);
2545 			ret = -ENODEV;
2546 			goto scrub;
2547 		}
2548 
2549 		ret = set_supply(rdev, r);
2550 		if (ret < 0)
2551 			goto scrub;
2552 	}
2553 
2554 	if (init_data->supply_regulator_dev) {
2555 		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2556 		ret = set_supply(rdev,
2557 			dev_get_drvdata(init_data->supply_regulator_dev));
2558 		if (ret < 0)
2559 			goto scrub;
2560 	}
2561 
2562 	/* add consumers devices */
2563 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2564 		ret = set_consumer_device_supply(rdev,
2565 			init_data->consumer_supplies[i].dev,
2566 			init_data->consumer_supplies[i].dev_name,
2567 			init_data->consumer_supplies[i].supply);
2568 		if (ret < 0)
2569 			goto unset_supplies;
2570 	}
2571 
2572 	list_add(&rdev->list, &regulator_list);
2573 
2574 	rdev_init_debugfs(rdev);
2575 out:
2576 	mutex_unlock(&regulator_list_mutex);
2577 	return rdev;
2578 
2579 unset_supplies:
2580 	unset_regulator_supplies(rdev);
2581 
2582 scrub:
2583 	device_unregister(&rdev->dev);
2584 	/* device core frees rdev */
2585 	rdev = ERR_PTR(ret);
2586 	goto out;
2587 
2588 clean:
2589 	kfree(rdev);
2590 	rdev = ERR_PTR(ret);
2591 	goto out;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_register);
2594 
2595 /**
2596  * regulator_unregister - unregister regulator
2597  * @rdev: regulator to unregister
2598  *
2599  * Called by regulator drivers to unregister a regulator.
2600  */
2601 void regulator_unregister(struct regulator_dev *rdev)
2602 {
2603 	if (rdev == NULL)
2604 		return;
2605 
2606 	mutex_lock(&regulator_list_mutex);
2607 #ifdef CONFIG_DEBUG_FS
2608 	debugfs_remove_recursive(rdev->debugfs);
2609 #endif
2610 	WARN_ON(rdev->open_count);
2611 	unset_regulator_supplies(rdev);
2612 	list_del(&rdev->list);
2613 	if (rdev->supply)
2614 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2615 	device_unregister(&rdev->dev);
2616 	kfree(rdev->constraints);
2617 	mutex_unlock(&regulator_list_mutex);
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_unregister);
2620 
2621 /**
2622  * regulator_suspend_prepare - prepare regulators for system wide suspend
2623  * @state: system suspend state
2624  *
2625  * Configure each regulator with it's suspend operating parameters for state.
2626  * This will usually be called by machine suspend code prior to supending.
2627  */
2628 int regulator_suspend_prepare(suspend_state_t state)
2629 {
2630 	struct regulator_dev *rdev;
2631 	int ret = 0;
2632 
2633 	/* ON is handled by regulator active state */
2634 	if (state == PM_SUSPEND_ON)
2635 		return -EINVAL;
2636 
2637 	mutex_lock(&regulator_list_mutex);
2638 	list_for_each_entry(rdev, &regulator_list, list) {
2639 
2640 		mutex_lock(&rdev->mutex);
2641 		ret = suspend_prepare(rdev, state);
2642 		mutex_unlock(&rdev->mutex);
2643 
2644 		if (ret < 0) {
2645 			rdev_err(rdev, "failed to prepare\n");
2646 			goto out;
2647 		}
2648 	}
2649 out:
2650 	mutex_unlock(&regulator_list_mutex);
2651 	return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2654 
2655 /**
2656  * regulator_has_full_constraints - the system has fully specified constraints
2657  *
2658  * Calling this function will cause the regulator API to disable all
2659  * regulators which have a zero use count and don't have an always_on
2660  * constraint in a late_initcall.
2661  *
2662  * The intention is that this will become the default behaviour in a
2663  * future kernel release so users are encouraged to use this facility
2664  * now.
2665  */
2666 void regulator_has_full_constraints(void)
2667 {
2668 	has_full_constraints = 1;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2671 
2672 /**
2673  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2674  *
2675  * Calling this function will cause the regulator API to provide a
2676  * dummy regulator to consumers if no physical regulator is found,
2677  * allowing most consumers to proceed as though a regulator were
2678  * configured.  This allows systems such as those with software
2679  * controllable regulators for the CPU core only to be brought up more
2680  * readily.
2681  */
2682 void regulator_use_dummy_regulator(void)
2683 {
2684 	board_wants_dummy_regulator = true;
2685 }
2686 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2687 
2688 /**
2689  * rdev_get_drvdata - get rdev regulator driver data
2690  * @rdev: regulator
2691  *
2692  * Get rdev regulator driver private data. This call can be used in the
2693  * regulator driver context.
2694  */
2695 void *rdev_get_drvdata(struct regulator_dev *rdev)
2696 {
2697 	return rdev->reg_data;
2698 }
2699 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2700 
2701 /**
2702  * regulator_get_drvdata - get regulator driver data
2703  * @regulator: regulator
2704  *
2705  * Get regulator driver private data. This call can be used in the consumer
2706  * driver context when non API regulator specific functions need to be called.
2707  */
2708 void *regulator_get_drvdata(struct regulator *regulator)
2709 {
2710 	return regulator->rdev->reg_data;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2713 
2714 /**
2715  * regulator_set_drvdata - set regulator driver data
2716  * @regulator: regulator
2717  * @data: data
2718  */
2719 void regulator_set_drvdata(struct regulator *regulator, void *data)
2720 {
2721 	regulator->rdev->reg_data = data;
2722 }
2723 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2724 
2725 /**
2726  * regulator_get_id - get regulator ID
2727  * @rdev: regulator
2728  */
2729 int rdev_get_id(struct regulator_dev *rdev)
2730 {
2731 	return rdev->desc->id;
2732 }
2733 EXPORT_SYMBOL_GPL(rdev_get_id);
2734 
2735 struct device *rdev_get_dev(struct regulator_dev *rdev)
2736 {
2737 	return &rdev->dev;
2738 }
2739 EXPORT_SYMBOL_GPL(rdev_get_dev);
2740 
2741 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2742 {
2743 	return reg_init_data->driver_data;
2744 }
2745 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2746 
2747 static int __init regulator_init(void)
2748 {
2749 	int ret;
2750 
2751 	ret = class_register(&regulator_class);
2752 
2753 #ifdef CONFIG_DEBUG_FS
2754 	debugfs_root = debugfs_create_dir("regulator", NULL);
2755 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2756 		pr_warn("regulator: Failed to create debugfs directory\n");
2757 		debugfs_root = NULL;
2758 	}
2759 #endif
2760 
2761 	regulator_dummy_init();
2762 
2763 	return ret;
2764 }
2765 
2766 /* init early to allow our consumers to complete system booting */
2767 core_initcall(regulator_init);
2768 
2769 static int __init regulator_init_complete(void)
2770 {
2771 	struct regulator_dev *rdev;
2772 	struct regulator_ops *ops;
2773 	struct regulation_constraints *c;
2774 	int enabled, ret;
2775 
2776 	mutex_lock(&regulator_list_mutex);
2777 
2778 	/* If we have a full configuration then disable any regulators
2779 	 * which are not in use or always_on.  This will become the
2780 	 * default behaviour in the future.
2781 	 */
2782 	list_for_each_entry(rdev, &regulator_list, list) {
2783 		ops = rdev->desc->ops;
2784 		c = rdev->constraints;
2785 
2786 		if (!ops->disable || (c && c->always_on))
2787 			continue;
2788 
2789 		mutex_lock(&rdev->mutex);
2790 
2791 		if (rdev->use_count)
2792 			goto unlock;
2793 
2794 		/* If we can't read the status assume it's on. */
2795 		if (ops->is_enabled)
2796 			enabled = ops->is_enabled(rdev);
2797 		else
2798 			enabled = 1;
2799 
2800 		if (!enabled)
2801 			goto unlock;
2802 
2803 		if (has_full_constraints) {
2804 			/* We log since this may kill the system if it
2805 			 * goes wrong. */
2806 			rdev_info(rdev, "disabling\n");
2807 			ret = ops->disable(rdev);
2808 			if (ret != 0) {
2809 				rdev_err(rdev, "couldn't disable: %d\n", ret);
2810 			}
2811 		} else {
2812 			/* The intention is that in future we will
2813 			 * assume that full constraints are provided
2814 			 * so warn even if we aren't going to do
2815 			 * anything here.
2816 			 */
2817 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2818 		}
2819 
2820 unlock:
2821 		mutex_unlock(&rdev->mutex);
2822 	}
2823 
2824 	mutex_unlock(&regulator_list_mutex);
2825 
2826 	return 0;
2827 }
2828 late_initcall(regulator_init_complete);
2829