1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_map_list); 55 static LIST_HEAD(regulator_ena_gpio_list); 56 static LIST_HEAD(regulator_supply_alias_list); 57 static bool has_full_constraints; 58 59 static struct dentry *debugfs_root; 60 61 static struct class regulator_class; 62 63 /* 64 * struct regulator_map 65 * 66 * Used to provide symbolic supply names to devices. 67 */ 68 struct regulator_map { 69 struct list_head list; 70 const char *dev_name; /* The dev_name() for the consumer */ 71 const char *supply; 72 struct regulator_dev *regulator; 73 }; 74 75 /* 76 * struct regulator_enable_gpio 77 * 78 * Management for shared enable GPIO pin 79 */ 80 struct regulator_enable_gpio { 81 struct list_head list; 82 struct gpio_desc *gpiod; 83 u32 enable_count; /* a number of enabled shared GPIO */ 84 u32 request_count; /* a number of requested shared GPIO */ 85 unsigned int ena_gpio_invert:1; 86 }; 87 88 /* 89 * struct regulator_supply_alias 90 * 91 * Used to map lookups for a supply onto an alternative device. 92 */ 93 struct regulator_supply_alias { 94 struct list_head list; 95 struct device *src_dev; 96 const char *src_supply; 97 struct device *alias_dev; 98 const char *alias_supply; 99 }; 100 101 static int _regulator_is_enabled(struct regulator_dev *rdev); 102 static int _regulator_disable(struct regulator_dev *rdev); 103 static int _regulator_get_voltage(struct regulator_dev *rdev); 104 static int _regulator_get_current_limit(struct regulator_dev *rdev); 105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 106 static int _notifier_call_chain(struct regulator_dev *rdev, 107 unsigned long event, void *data); 108 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 109 int min_uV, int max_uV); 110 static struct regulator *create_regulator(struct regulator_dev *rdev, 111 struct device *dev, 112 const char *supply_name); 113 static void _regulator_put(struct regulator *regulator); 114 115 static struct regulator_dev *dev_to_rdev(struct device *dev) 116 { 117 return container_of(dev, struct regulator_dev, dev); 118 } 119 120 static const char *rdev_get_name(struct regulator_dev *rdev) 121 { 122 if (rdev->constraints && rdev->constraints->name) 123 return rdev->constraints->name; 124 else if (rdev->desc->name) 125 return rdev->desc->name; 126 else 127 return ""; 128 } 129 130 static bool have_full_constraints(void) 131 { 132 return has_full_constraints || of_have_populated_dt(); 133 } 134 135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 136 { 137 if (!rdev->constraints) { 138 rdev_err(rdev, "no constraints\n"); 139 return false; 140 } 141 142 if (rdev->constraints->valid_ops_mask & ops) 143 return true; 144 145 return false; 146 } 147 148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev) 149 { 150 if (rdev && rdev->supply) 151 return rdev->supply->rdev; 152 153 return NULL; 154 } 155 156 /** 157 * regulator_lock_supply - lock a regulator and its supplies 158 * @rdev: regulator source 159 */ 160 static void regulator_lock_supply(struct regulator_dev *rdev) 161 { 162 int i; 163 164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++) 165 mutex_lock_nested(&rdev->mutex, i); 166 } 167 168 /** 169 * regulator_unlock_supply - unlock a regulator and its supplies 170 * @rdev: regulator source 171 */ 172 static void regulator_unlock_supply(struct regulator_dev *rdev) 173 { 174 struct regulator *supply; 175 176 while (1) { 177 mutex_unlock(&rdev->mutex); 178 supply = rdev->supply; 179 180 if (!rdev->supply) 181 return; 182 183 rdev = supply->rdev; 184 } 185 } 186 187 /** 188 * of_get_regulator - get a regulator device node based on supply name 189 * @dev: Device pointer for the consumer (of regulator) device 190 * @supply: regulator supply name 191 * 192 * Extract the regulator device node corresponding to the supply name. 193 * returns the device node corresponding to the regulator if found, else 194 * returns NULL. 195 */ 196 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 197 { 198 struct device_node *regnode = NULL; 199 char prop_name[32]; /* 32 is max size of property name */ 200 201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 202 203 snprintf(prop_name, 32, "%s-supply", supply); 204 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 205 206 if (!regnode) { 207 dev_dbg(dev, "Looking up %s property in node %s failed\n", 208 prop_name, dev->of_node->full_name); 209 return NULL; 210 } 211 return regnode; 212 } 213 214 /* Platform voltage constraint check */ 215 static int regulator_check_voltage(struct regulator_dev *rdev, 216 int *min_uV, int *max_uV) 217 { 218 BUG_ON(*min_uV > *max_uV); 219 220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 221 rdev_err(rdev, "voltage operation not allowed\n"); 222 return -EPERM; 223 } 224 225 if (*max_uV > rdev->constraints->max_uV) 226 *max_uV = rdev->constraints->max_uV; 227 if (*min_uV < rdev->constraints->min_uV) 228 *min_uV = rdev->constraints->min_uV; 229 230 if (*min_uV > *max_uV) { 231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 232 *min_uV, *max_uV); 233 return -EINVAL; 234 } 235 236 return 0; 237 } 238 239 /* Make sure we select a voltage that suits the needs of all 240 * regulator consumers 241 */ 242 static int regulator_check_consumers(struct regulator_dev *rdev, 243 int *min_uV, int *max_uV) 244 { 245 struct regulator *regulator; 246 247 list_for_each_entry(regulator, &rdev->consumer_list, list) { 248 /* 249 * Assume consumers that didn't say anything are OK 250 * with anything in the constraint range. 251 */ 252 if (!regulator->min_uV && !regulator->max_uV) 253 continue; 254 255 if (*max_uV > regulator->max_uV) 256 *max_uV = regulator->max_uV; 257 if (*min_uV < regulator->min_uV) 258 *min_uV = regulator->min_uV; 259 } 260 261 if (*min_uV > *max_uV) { 262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 263 *min_uV, *max_uV); 264 return -EINVAL; 265 } 266 267 return 0; 268 } 269 270 /* current constraint check */ 271 static int regulator_check_current_limit(struct regulator_dev *rdev, 272 int *min_uA, int *max_uA) 273 { 274 BUG_ON(*min_uA > *max_uA); 275 276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 277 rdev_err(rdev, "current operation not allowed\n"); 278 return -EPERM; 279 } 280 281 if (*max_uA > rdev->constraints->max_uA) 282 *max_uA = rdev->constraints->max_uA; 283 if (*min_uA < rdev->constraints->min_uA) 284 *min_uA = rdev->constraints->min_uA; 285 286 if (*min_uA > *max_uA) { 287 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 288 *min_uA, *max_uA); 289 return -EINVAL; 290 } 291 292 return 0; 293 } 294 295 /* operating mode constraint check */ 296 static int regulator_mode_constrain(struct regulator_dev *rdev, 297 unsigned int *mode) 298 { 299 switch (*mode) { 300 case REGULATOR_MODE_FAST: 301 case REGULATOR_MODE_NORMAL: 302 case REGULATOR_MODE_IDLE: 303 case REGULATOR_MODE_STANDBY: 304 break; 305 default: 306 rdev_err(rdev, "invalid mode %x specified\n", *mode); 307 return -EINVAL; 308 } 309 310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 311 rdev_err(rdev, "mode operation not allowed\n"); 312 return -EPERM; 313 } 314 315 /* The modes are bitmasks, the most power hungry modes having 316 * the lowest values. If the requested mode isn't supported 317 * try higher modes. */ 318 while (*mode) { 319 if (rdev->constraints->valid_modes_mask & *mode) 320 return 0; 321 *mode /= 2; 322 } 323 324 return -EINVAL; 325 } 326 327 static ssize_t regulator_uV_show(struct device *dev, 328 struct device_attribute *attr, char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 ssize_t ret; 332 333 mutex_lock(&rdev->mutex); 334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 335 mutex_unlock(&rdev->mutex); 336 337 return ret; 338 } 339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 340 341 static ssize_t regulator_uA_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct regulator_dev *rdev = dev_get_drvdata(dev); 345 346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 347 } 348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 349 350 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 351 char *buf) 352 { 353 struct regulator_dev *rdev = dev_get_drvdata(dev); 354 355 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 356 } 357 static DEVICE_ATTR_RO(name); 358 359 static ssize_t regulator_print_opmode(char *buf, int mode) 360 { 361 switch (mode) { 362 case REGULATOR_MODE_FAST: 363 return sprintf(buf, "fast\n"); 364 case REGULATOR_MODE_NORMAL: 365 return sprintf(buf, "normal\n"); 366 case REGULATOR_MODE_IDLE: 367 return sprintf(buf, "idle\n"); 368 case REGULATOR_MODE_STANDBY: 369 return sprintf(buf, "standby\n"); 370 } 371 return sprintf(buf, "unknown\n"); 372 } 373 374 static ssize_t regulator_opmode_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct regulator_dev *rdev = dev_get_drvdata(dev); 378 379 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 380 } 381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 382 383 static ssize_t regulator_print_state(char *buf, int state) 384 { 385 if (state > 0) 386 return sprintf(buf, "enabled\n"); 387 else if (state == 0) 388 return sprintf(buf, "disabled\n"); 389 else 390 return sprintf(buf, "unknown\n"); 391 } 392 393 static ssize_t regulator_state_show(struct device *dev, 394 struct device_attribute *attr, char *buf) 395 { 396 struct regulator_dev *rdev = dev_get_drvdata(dev); 397 ssize_t ret; 398 399 mutex_lock(&rdev->mutex); 400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 401 mutex_unlock(&rdev->mutex); 402 403 return ret; 404 } 405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 406 407 static ssize_t regulator_status_show(struct device *dev, 408 struct device_attribute *attr, char *buf) 409 { 410 struct regulator_dev *rdev = dev_get_drvdata(dev); 411 int status; 412 char *label; 413 414 status = rdev->desc->ops->get_status(rdev); 415 if (status < 0) 416 return status; 417 418 switch (status) { 419 case REGULATOR_STATUS_OFF: 420 label = "off"; 421 break; 422 case REGULATOR_STATUS_ON: 423 label = "on"; 424 break; 425 case REGULATOR_STATUS_ERROR: 426 label = "error"; 427 break; 428 case REGULATOR_STATUS_FAST: 429 label = "fast"; 430 break; 431 case REGULATOR_STATUS_NORMAL: 432 label = "normal"; 433 break; 434 case REGULATOR_STATUS_IDLE: 435 label = "idle"; 436 break; 437 case REGULATOR_STATUS_STANDBY: 438 label = "standby"; 439 break; 440 case REGULATOR_STATUS_BYPASS: 441 label = "bypass"; 442 break; 443 case REGULATOR_STATUS_UNDEFINED: 444 label = "undefined"; 445 break; 446 default: 447 return -ERANGE; 448 } 449 450 return sprintf(buf, "%s\n", label); 451 } 452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 453 454 static ssize_t regulator_min_uA_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct regulator_dev *rdev = dev_get_drvdata(dev); 458 459 if (!rdev->constraints) 460 return sprintf(buf, "constraint not defined\n"); 461 462 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 463 } 464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 465 466 static ssize_t regulator_max_uA_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct regulator_dev *rdev = dev_get_drvdata(dev); 470 471 if (!rdev->constraints) 472 return sprintf(buf, "constraint not defined\n"); 473 474 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 475 } 476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 477 478 static ssize_t regulator_min_uV_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 struct regulator_dev *rdev = dev_get_drvdata(dev); 482 483 if (!rdev->constraints) 484 return sprintf(buf, "constraint not defined\n"); 485 486 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 487 } 488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 489 490 static ssize_t regulator_max_uV_show(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct regulator_dev *rdev = dev_get_drvdata(dev); 494 495 if (!rdev->constraints) 496 return sprintf(buf, "constraint not defined\n"); 497 498 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 499 } 500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 501 502 static ssize_t regulator_total_uA_show(struct device *dev, 503 struct device_attribute *attr, char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 struct regulator *regulator; 507 int uA = 0; 508 509 mutex_lock(&rdev->mutex); 510 list_for_each_entry(regulator, &rdev->consumer_list, list) 511 uA += regulator->uA_load; 512 mutex_unlock(&rdev->mutex); 513 return sprintf(buf, "%d\n", uA); 514 } 515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 516 517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 518 char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 return sprintf(buf, "%d\n", rdev->use_count); 522 } 523 static DEVICE_ATTR_RO(num_users); 524 525 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 526 char *buf) 527 { 528 struct regulator_dev *rdev = dev_get_drvdata(dev); 529 530 switch (rdev->desc->type) { 531 case REGULATOR_VOLTAGE: 532 return sprintf(buf, "voltage\n"); 533 case REGULATOR_CURRENT: 534 return sprintf(buf, "current\n"); 535 } 536 return sprintf(buf, "unknown\n"); 537 } 538 static DEVICE_ATTR_RO(type); 539 540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 541 struct device_attribute *attr, char *buf) 542 { 543 struct regulator_dev *rdev = dev_get_drvdata(dev); 544 545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 546 } 547 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 548 regulator_suspend_mem_uV_show, NULL); 549 550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 551 struct device_attribute *attr, char *buf) 552 { 553 struct regulator_dev *rdev = dev_get_drvdata(dev); 554 555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 556 } 557 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 558 regulator_suspend_disk_uV_show, NULL); 559 560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct regulator_dev *rdev = dev_get_drvdata(dev); 564 565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 566 } 567 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 568 regulator_suspend_standby_uV_show, NULL); 569 570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct regulator_dev *rdev = dev_get_drvdata(dev); 574 575 return regulator_print_opmode(buf, 576 rdev->constraints->state_mem.mode); 577 } 578 static DEVICE_ATTR(suspend_mem_mode, 0444, 579 regulator_suspend_mem_mode_show, NULL); 580 581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct regulator_dev *rdev = dev_get_drvdata(dev); 585 586 return regulator_print_opmode(buf, 587 rdev->constraints->state_disk.mode); 588 } 589 static DEVICE_ATTR(suspend_disk_mode, 0444, 590 regulator_suspend_disk_mode_show, NULL); 591 592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 593 struct device_attribute *attr, char *buf) 594 { 595 struct regulator_dev *rdev = dev_get_drvdata(dev); 596 597 return regulator_print_opmode(buf, 598 rdev->constraints->state_standby.mode); 599 } 600 static DEVICE_ATTR(suspend_standby_mode, 0444, 601 regulator_suspend_standby_mode_show, NULL); 602 603 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 604 struct device_attribute *attr, char *buf) 605 { 606 struct regulator_dev *rdev = dev_get_drvdata(dev); 607 608 return regulator_print_state(buf, 609 rdev->constraints->state_mem.enabled); 610 } 611 static DEVICE_ATTR(suspend_mem_state, 0444, 612 regulator_suspend_mem_state_show, NULL); 613 614 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 615 struct device_attribute *attr, char *buf) 616 { 617 struct regulator_dev *rdev = dev_get_drvdata(dev); 618 619 return regulator_print_state(buf, 620 rdev->constraints->state_disk.enabled); 621 } 622 static DEVICE_ATTR(suspend_disk_state, 0444, 623 regulator_suspend_disk_state_show, NULL); 624 625 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 626 struct device_attribute *attr, char *buf) 627 { 628 struct regulator_dev *rdev = dev_get_drvdata(dev); 629 630 return regulator_print_state(buf, 631 rdev->constraints->state_standby.enabled); 632 } 633 static DEVICE_ATTR(suspend_standby_state, 0444, 634 regulator_suspend_standby_state_show, NULL); 635 636 static ssize_t regulator_bypass_show(struct device *dev, 637 struct device_attribute *attr, char *buf) 638 { 639 struct regulator_dev *rdev = dev_get_drvdata(dev); 640 const char *report; 641 bool bypass; 642 int ret; 643 644 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 645 646 if (ret != 0) 647 report = "unknown"; 648 else if (bypass) 649 report = "enabled"; 650 else 651 report = "disabled"; 652 653 return sprintf(buf, "%s\n", report); 654 } 655 static DEVICE_ATTR(bypass, 0444, 656 regulator_bypass_show, NULL); 657 658 /* Calculate the new optimum regulator operating mode based on the new total 659 * consumer load. All locks held by caller */ 660 static int drms_uA_update(struct regulator_dev *rdev) 661 { 662 struct regulator *sibling; 663 int current_uA = 0, output_uV, input_uV, err; 664 unsigned int mode; 665 666 lockdep_assert_held_once(&rdev->mutex); 667 668 /* 669 * first check to see if we can set modes at all, otherwise just 670 * tell the consumer everything is OK. 671 */ 672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 673 return 0; 674 675 if (!rdev->desc->ops->get_optimum_mode && 676 !rdev->desc->ops->set_load) 677 return 0; 678 679 if (!rdev->desc->ops->set_mode && 680 !rdev->desc->ops->set_load) 681 return -EINVAL; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 current_uA += rdev->constraints->system_load; 688 689 if (rdev->desc->ops->set_load) { 690 /* set the optimum mode for our new total regulator load */ 691 err = rdev->desc->ops->set_load(rdev, current_uA); 692 if (err < 0) 693 rdev_err(rdev, "failed to set load %d\n", current_uA); 694 } else { 695 /* get output voltage */ 696 output_uV = _regulator_get_voltage(rdev); 697 if (output_uV <= 0) { 698 rdev_err(rdev, "invalid output voltage found\n"); 699 return -EINVAL; 700 } 701 702 /* get input voltage */ 703 input_uV = 0; 704 if (rdev->supply) 705 input_uV = regulator_get_voltage(rdev->supply); 706 if (input_uV <= 0) 707 input_uV = rdev->constraints->input_uV; 708 if (input_uV <= 0) { 709 rdev_err(rdev, "invalid input voltage found\n"); 710 return -EINVAL; 711 } 712 713 /* now get the optimum mode for our new total regulator load */ 714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 715 output_uV, current_uA); 716 717 /* check the new mode is allowed */ 718 err = regulator_mode_constrain(rdev, &mode); 719 if (err < 0) { 720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 721 current_uA, input_uV, output_uV); 722 return err; 723 } 724 725 err = rdev->desc->ops->set_mode(rdev, mode); 726 if (err < 0) 727 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 728 } 729 730 return err; 731 } 732 733 static int suspend_set_state(struct regulator_dev *rdev, 734 struct regulator_state *rstate) 735 { 736 int ret = 0; 737 738 /* If we have no suspend mode configration don't set anything; 739 * only warn if the driver implements set_suspend_voltage or 740 * set_suspend_mode callback. 741 */ 742 if (!rstate->enabled && !rstate->disabled) { 743 if (rdev->desc->ops->set_suspend_voltage || 744 rdev->desc->ops->set_suspend_mode) 745 rdev_warn(rdev, "No configuration\n"); 746 return 0; 747 } 748 749 if (rstate->enabled && rstate->disabled) { 750 rdev_err(rdev, "invalid configuration\n"); 751 return -EINVAL; 752 } 753 754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 755 ret = rdev->desc->ops->set_suspend_enable(rdev); 756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 757 ret = rdev->desc->ops->set_suspend_disable(rdev); 758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 759 ret = 0; 760 761 if (ret < 0) { 762 rdev_err(rdev, "failed to enabled/disable\n"); 763 return ret; 764 } 765 766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 768 if (ret < 0) { 769 rdev_err(rdev, "failed to set voltage\n"); 770 return ret; 771 } 772 } 773 774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 776 if (ret < 0) { 777 rdev_err(rdev, "failed to set mode\n"); 778 return ret; 779 } 780 } 781 return ret; 782 } 783 784 /* locks held by caller */ 785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 786 { 787 if (!rdev->constraints) 788 return -EINVAL; 789 790 switch (state) { 791 case PM_SUSPEND_STANDBY: 792 return suspend_set_state(rdev, 793 &rdev->constraints->state_standby); 794 case PM_SUSPEND_MEM: 795 return suspend_set_state(rdev, 796 &rdev->constraints->state_mem); 797 case PM_SUSPEND_MAX: 798 return suspend_set_state(rdev, 799 &rdev->constraints->state_disk); 800 default: 801 return -EINVAL; 802 } 803 } 804 805 static void print_constraints(struct regulator_dev *rdev) 806 { 807 struct regulation_constraints *constraints = rdev->constraints; 808 char buf[160] = ""; 809 size_t len = sizeof(buf) - 1; 810 int count = 0; 811 int ret; 812 813 if (constraints->min_uV && constraints->max_uV) { 814 if (constraints->min_uV == constraints->max_uV) 815 count += scnprintf(buf + count, len - count, "%d mV ", 816 constraints->min_uV / 1000); 817 else 818 count += scnprintf(buf + count, len - count, 819 "%d <--> %d mV ", 820 constraints->min_uV / 1000, 821 constraints->max_uV / 1000); 822 } 823 824 if (!constraints->min_uV || 825 constraints->min_uV != constraints->max_uV) { 826 ret = _regulator_get_voltage(rdev); 827 if (ret > 0) 828 count += scnprintf(buf + count, len - count, 829 "at %d mV ", ret / 1000); 830 } 831 832 if (constraints->uV_offset) 833 count += scnprintf(buf + count, len - count, "%dmV offset ", 834 constraints->uV_offset / 1000); 835 836 if (constraints->min_uA && constraints->max_uA) { 837 if (constraints->min_uA == constraints->max_uA) 838 count += scnprintf(buf + count, len - count, "%d mA ", 839 constraints->min_uA / 1000); 840 else 841 count += scnprintf(buf + count, len - count, 842 "%d <--> %d mA ", 843 constraints->min_uA / 1000, 844 constraints->max_uA / 1000); 845 } 846 847 if (!constraints->min_uA || 848 constraints->min_uA != constraints->max_uA) { 849 ret = _regulator_get_current_limit(rdev); 850 if (ret > 0) 851 count += scnprintf(buf + count, len - count, 852 "at %d mA ", ret / 1000); 853 } 854 855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 856 count += scnprintf(buf + count, len - count, "fast "); 857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 858 count += scnprintf(buf + count, len - count, "normal "); 859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 860 count += scnprintf(buf + count, len - count, "idle "); 861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 862 count += scnprintf(buf + count, len - count, "standby"); 863 864 if (!count) 865 scnprintf(buf, len, "no parameters"); 866 867 rdev_dbg(rdev, "%s\n", buf); 868 869 if ((constraints->min_uV != constraints->max_uV) && 870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 871 rdev_warn(rdev, 872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 873 } 874 875 static int machine_constraints_voltage(struct regulator_dev *rdev, 876 struct regulation_constraints *constraints) 877 { 878 const struct regulator_ops *ops = rdev->desc->ops; 879 int ret; 880 881 /* do we need to apply the constraint voltage */ 882 if (rdev->constraints->apply_uV && 883 rdev->constraints->min_uV && rdev->constraints->max_uV) { 884 int target_min, target_max; 885 int current_uV = _regulator_get_voltage(rdev); 886 if (current_uV < 0) { 887 rdev_err(rdev, 888 "failed to get the current voltage(%d)\n", 889 current_uV); 890 return current_uV; 891 } 892 893 /* 894 * If we're below the minimum voltage move up to the 895 * minimum voltage, if we're above the maximum voltage 896 * then move down to the maximum. 897 */ 898 target_min = current_uV; 899 target_max = current_uV; 900 901 if (current_uV < rdev->constraints->min_uV) { 902 target_min = rdev->constraints->min_uV; 903 target_max = rdev->constraints->min_uV; 904 } 905 906 if (current_uV > rdev->constraints->max_uV) { 907 target_min = rdev->constraints->max_uV; 908 target_max = rdev->constraints->max_uV; 909 } 910 911 if (target_min != current_uV || target_max != current_uV) { 912 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 913 current_uV, target_min, target_max); 914 ret = _regulator_do_set_voltage( 915 rdev, target_min, target_max); 916 if (ret < 0) { 917 rdev_err(rdev, 918 "failed to apply %d-%duV constraint(%d)\n", 919 target_min, target_max, ret); 920 return ret; 921 } 922 } 923 } 924 925 /* constrain machine-level voltage specs to fit 926 * the actual range supported by this regulator. 927 */ 928 if (ops->list_voltage && rdev->desc->n_voltages) { 929 int count = rdev->desc->n_voltages; 930 int i; 931 int min_uV = INT_MAX; 932 int max_uV = INT_MIN; 933 int cmin = constraints->min_uV; 934 int cmax = constraints->max_uV; 935 936 /* it's safe to autoconfigure fixed-voltage supplies 937 and the constraints are used by list_voltage. */ 938 if (count == 1 && !cmin) { 939 cmin = 1; 940 cmax = INT_MAX; 941 constraints->min_uV = cmin; 942 constraints->max_uV = cmax; 943 } 944 945 /* voltage constraints are optional */ 946 if ((cmin == 0) && (cmax == 0)) 947 return 0; 948 949 /* else require explicit machine-level constraints */ 950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 951 rdev_err(rdev, "invalid voltage constraints\n"); 952 return -EINVAL; 953 } 954 955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 956 for (i = 0; i < count; i++) { 957 int value; 958 959 value = ops->list_voltage(rdev, i); 960 if (value <= 0) 961 continue; 962 963 /* maybe adjust [min_uV..max_uV] */ 964 if (value >= cmin && value < min_uV) 965 min_uV = value; 966 if (value <= cmax && value > max_uV) 967 max_uV = value; 968 } 969 970 /* final: [min_uV..max_uV] valid iff constraints valid */ 971 if (max_uV < min_uV) { 972 rdev_err(rdev, 973 "unsupportable voltage constraints %u-%uuV\n", 974 min_uV, max_uV); 975 return -EINVAL; 976 } 977 978 /* use regulator's subset of machine constraints */ 979 if (constraints->min_uV < min_uV) { 980 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 981 constraints->min_uV, min_uV); 982 constraints->min_uV = min_uV; 983 } 984 if (constraints->max_uV > max_uV) { 985 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 986 constraints->max_uV, max_uV); 987 constraints->max_uV = max_uV; 988 } 989 } 990 991 return 0; 992 } 993 994 static int machine_constraints_current(struct regulator_dev *rdev, 995 struct regulation_constraints *constraints) 996 { 997 const struct regulator_ops *ops = rdev->desc->ops; 998 int ret; 999 1000 if (!constraints->min_uA && !constraints->max_uA) 1001 return 0; 1002 1003 if (constraints->min_uA > constraints->max_uA) { 1004 rdev_err(rdev, "Invalid current constraints\n"); 1005 return -EINVAL; 1006 } 1007 1008 if (!ops->set_current_limit || !ops->get_current_limit) { 1009 rdev_warn(rdev, "Operation of current configuration missing\n"); 1010 return 0; 1011 } 1012 1013 /* Set regulator current in constraints range */ 1014 ret = ops->set_current_limit(rdev, constraints->min_uA, 1015 constraints->max_uA); 1016 if (ret < 0) { 1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1018 return ret; 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int _regulator_do_enable(struct regulator_dev *rdev); 1025 1026 /** 1027 * set_machine_constraints - sets regulator constraints 1028 * @rdev: regulator source 1029 * @constraints: constraints to apply 1030 * 1031 * Allows platform initialisation code to define and constrain 1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1033 * Constraints *must* be set by platform code in order for some 1034 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1035 * set_mode. 1036 */ 1037 static int set_machine_constraints(struct regulator_dev *rdev, 1038 const struct regulation_constraints *constraints) 1039 { 1040 int ret = 0; 1041 const struct regulator_ops *ops = rdev->desc->ops; 1042 1043 if (constraints) 1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1045 GFP_KERNEL); 1046 else 1047 rdev->constraints = kzalloc(sizeof(*constraints), 1048 GFP_KERNEL); 1049 if (!rdev->constraints) 1050 return -ENOMEM; 1051 1052 ret = machine_constraints_voltage(rdev, rdev->constraints); 1053 if (ret != 0) 1054 return ret; 1055 1056 ret = machine_constraints_current(rdev, rdev->constraints); 1057 if (ret != 0) 1058 return ret; 1059 1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1061 ret = ops->set_input_current_limit(rdev, 1062 rdev->constraints->ilim_uA); 1063 if (ret < 0) { 1064 rdev_err(rdev, "failed to set input limit\n"); 1065 return ret; 1066 } 1067 } 1068 1069 /* do we need to setup our suspend state */ 1070 if (rdev->constraints->initial_state) { 1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1072 if (ret < 0) { 1073 rdev_err(rdev, "failed to set suspend state\n"); 1074 return ret; 1075 } 1076 } 1077 1078 if (rdev->constraints->initial_mode) { 1079 if (!ops->set_mode) { 1080 rdev_err(rdev, "no set_mode operation\n"); 1081 return -EINVAL; 1082 } 1083 1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1085 if (ret < 0) { 1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1087 return ret; 1088 } 1089 } 1090 1091 /* If the constraints say the regulator should be on at this point 1092 * and we have control then make sure it is enabled. 1093 */ 1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1095 ret = _regulator_do_enable(rdev); 1096 if (ret < 0 && ret != -EINVAL) { 1097 rdev_err(rdev, "failed to enable\n"); 1098 return ret; 1099 } 1100 } 1101 1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1103 && ops->set_ramp_delay) { 1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1105 if (ret < 0) { 1106 rdev_err(rdev, "failed to set ramp_delay\n"); 1107 return ret; 1108 } 1109 } 1110 1111 if (rdev->constraints->pull_down && ops->set_pull_down) { 1112 ret = ops->set_pull_down(rdev); 1113 if (ret < 0) { 1114 rdev_err(rdev, "failed to set pull down\n"); 1115 return ret; 1116 } 1117 } 1118 1119 if (rdev->constraints->soft_start && ops->set_soft_start) { 1120 ret = ops->set_soft_start(rdev); 1121 if (ret < 0) { 1122 rdev_err(rdev, "failed to set soft start\n"); 1123 return ret; 1124 } 1125 } 1126 1127 if (rdev->constraints->over_current_protection 1128 && ops->set_over_current_protection) { 1129 ret = ops->set_over_current_protection(rdev); 1130 if (ret < 0) { 1131 rdev_err(rdev, "failed to set over current protection\n"); 1132 return ret; 1133 } 1134 } 1135 1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1137 bool ad_state = (rdev->constraints->active_discharge == 1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1139 1140 ret = ops->set_active_discharge(rdev, ad_state); 1141 if (ret < 0) { 1142 rdev_err(rdev, "failed to set active discharge\n"); 1143 return ret; 1144 } 1145 } 1146 1147 print_constraints(rdev); 1148 return 0; 1149 } 1150 1151 /** 1152 * set_supply - set regulator supply regulator 1153 * @rdev: regulator name 1154 * @supply_rdev: supply regulator name 1155 * 1156 * Called by platform initialisation code to set the supply regulator for this 1157 * regulator. This ensures that a regulators supply will also be enabled by the 1158 * core if it's child is enabled. 1159 */ 1160 static int set_supply(struct regulator_dev *rdev, 1161 struct regulator_dev *supply_rdev) 1162 { 1163 int err; 1164 1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1166 1167 if (!try_module_get(supply_rdev->owner)) 1168 return -ENODEV; 1169 1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1171 if (rdev->supply == NULL) { 1172 err = -ENOMEM; 1173 return err; 1174 } 1175 supply_rdev->open_count++; 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1182 * @rdev: regulator source 1183 * @consumer_dev_name: dev_name() string for device supply applies to 1184 * @supply: symbolic name for supply 1185 * 1186 * Allows platform initialisation code to map physical regulator 1187 * sources to symbolic names for supplies for use by devices. Devices 1188 * should use these symbolic names to request regulators, avoiding the 1189 * need to provide board-specific regulator names as platform data. 1190 */ 1191 static int set_consumer_device_supply(struct regulator_dev *rdev, 1192 const char *consumer_dev_name, 1193 const char *supply) 1194 { 1195 struct regulator_map *node; 1196 int has_dev; 1197 1198 if (supply == NULL) 1199 return -EINVAL; 1200 1201 if (consumer_dev_name != NULL) 1202 has_dev = 1; 1203 else 1204 has_dev = 0; 1205 1206 list_for_each_entry(node, ®ulator_map_list, list) { 1207 if (node->dev_name && consumer_dev_name) { 1208 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1209 continue; 1210 } else if (node->dev_name || consumer_dev_name) { 1211 continue; 1212 } 1213 1214 if (strcmp(node->supply, supply) != 0) 1215 continue; 1216 1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1218 consumer_dev_name, 1219 dev_name(&node->regulator->dev), 1220 node->regulator->desc->name, 1221 supply, 1222 dev_name(&rdev->dev), rdev_get_name(rdev)); 1223 return -EBUSY; 1224 } 1225 1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1227 if (node == NULL) 1228 return -ENOMEM; 1229 1230 node->regulator = rdev; 1231 node->supply = supply; 1232 1233 if (has_dev) { 1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1235 if (node->dev_name == NULL) { 1236 kfree(node); 1237 return -ENOMEM; 1238 } 1239 } 1240 1241 list_add(&node->list, ®ulator_map_list); 1242 return 0; 1243 } 1244 1245 static void unset_regulator_supplies(struct regulator_dev *rdev) 1246 { 1247 struct regulator_map *node, *n; 1248 1249 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1250 if (rdev == node->regulator) { 1251 list_del(&node->list); 1252 kfree(node->dev_name); 1253 kfree(node); 1254 } 1255 } 1256 } 1257 1258 #ifdef CONFIG_DEBUG_FS 1259 static ssize_t constraint_flags_read_file(struct file *file, 1260 char __user *user_buf, 1261 size_t count, loff_t *ppos) 1262 { 1263 const struct regulator *regulator = file->private_data; 1264 const struct regulation_constraints *c = regulator->rdev->constraints; 1265 char *buf; 1266 ssize_t ret; 1267 1268 if (!c) 1269 return 0; 1270 1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1272 if (!buf) 1273 return -ENOMEM; 1274 1275 ret = snprintf(buf, PAGE_SIZE, 1276 "always_on: %u\n" 1277 "boot_on: %u\n" 1278 "apply_uV: %u\n" 1279 "ramp_disable: %u\n" 1280 "soft_start: %u\n" 1281 "pull_down: %u\n" 1282 "over_current_protection: %u\n", 1283 c->always_on, 1284 c->boot_on, 1285 c->apply_uV, 1286 c->ramp_disable, 1287 c->soft_start, 1288 c->pull_down, 1289 c->over_current_protection); 1290 1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1292 kfree(buf); 1293 1294 return ret; 1295 } 1296 1297 #endif 1298 1299 static const struct file_operations constraint_flags_fops = { 1300 #ifdef CONFIG_DEBUG_FS 1301 .open = simple_open, 1302 .read = constraint_flags_read_file, 1303 .llseek = default_llseek, 1304 #endif 1305 }; 1306 1307 #define REG_STR_SIZE 64 1308 1309 static struct regulator *create_regulator(struct regulator_dev *rdev, 1310 struct device *dev, 1311 const char *supply_name) 1312 { 1313 struct regulator *regulator; 1314 char buf[REG_STR_SIZE]; 1315 int err, size; 1316 1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1318 if (regulator == NULL) 1319 return NULL; 1320 1321 mutex_lock(&rdev->mutex); 1322 regulator->rdev = rdev; 1323 list_add(®ulator->list, &rdev->consumer_list); 1324 1325 if (dev) { 1326 regulator->dev = dev; 1327 1328 /* Add a link to the device sysfs entry */ 1329 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1330 dev->kobj.name, supply_name); 1331 if (size >= REG_STR_SIZE) 1332 goto overflow_err; 1333 1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1335 if (regulator->supply_name == NULL) 1336 goto overflow_err; 1337 1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1339 buf); 1340 if (err) { 1341 rdev_dbg(rdev, "could not add device link %s err %d\n", 1342 dev->kobj.name, err); 1343 /* non-fatal */ 1344 } 1345 } else { 1346 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1347 if (regulator->supply_name == NULL) 1348 goto overflow_err; 1349 } 1350 1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1352 rdev->debugfs); 1353 if (!regulator->debugfs) { 1354 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1355 } else { 1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1357 ®ulator->uA_load); 1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1359 ®ulator->min_uV); 1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1361 ®ulator->max_uV); 1362 debugfs_create_file("constraint_flags", 0444, 1363 regulator->debugfs, regulator, 1364 &constraint_flags_fops); 1365 } 1366 1367 /* 1368 * Check now if the regulator is an always on regulator - if 1369 * it is then we don't need to do nearly so much work for 1370 * enable/disable calls. 1371 */ 1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1373 _regulator_is_enabled(rdev)) 1374 regulator->always_on = true; 1375 1376 mutex_unlock(&rdev->mutex); 1377 return regulator; 1378 overflow_err: 1379 list_del(®ulator->list); 1380 kfree(regulator); 1381 mutex_unlock(&rdev->mutex); 1382 return NULL; 1383 } 1384 1385 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1386 { 1387 if (rdev->constraints && rdev->constraints->enable_time) 1388 return rdev->constraints->enable_time; 1389 if (!rdev->desc->ops->enable_time) 1390 return rdev->desc->enable_time; 1391 return rdev->desc->ops->enable_time(rdev); 1392 } 1393 1394 static struct regulator_supply_alias *regulator_find_supply_alias( 1395 struct device *dev, const char *supply) 1396 { 1397 struct regulator_supply_alias *map; 1398 1399 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1401 return map; 1402 1403 return NULL; 1404 } 1405 1406 static void regulator_supply_alias(struct device **dev, const char **supply) 1407 { 1408 struct regulator_supply_alias *map; 1409 1410 map = regulator_find_supply_alias(*dev, *supply); 1411 if (map) { 1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1413 *supply, map->alias_supply, 1414 dev_name(map->alias_dev)); 1415 *dev = map->alias_dev; 1416 *supply = map->alias_supply; 1417 } 1418 } 1419 1420 static int of_node_match(struct device *dev, const void *data) 1421 { 1422 return dev->of_node == data; 1423 } 1424 1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 1426 { 1427 struct device *dev; 1428 1429 dev = class_find_device(®ulator_class, NULL, np, of_node_match); 1430 1431 return dev ? dev_to_rdev(dev) : NULL; 1432 } 1433 1434 static int regulator_match(struct device *dev, const void *data) 1435 { 1436 struct regulator_dev *r = dev_to_rdev(dev); 1437 1438 return strcmp(rdev_get_name(r), data) == 0; 1439 } 1440 1441 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1442 { 1443 struct device *dev; 1444 1445 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1446 1447 return dev ? dev_to_rdev(dev) : NULL; 1448 } 1449 1450 /** 1451 * regulator_dev_lookup - lookup a regulator device. 1452 * @dev: device for regulator "consumer". 1453 * @supply: Supply name or regulator ID. 1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if 1455 * lookup could succeed in the future. 1456 * 1457 * If successful, returns a struct regulator_dev that corresponds to the name 1458 * @supply and with the embedded struct device refcount incremented by one, 1459 * or NULL on failure. The refcount must be dropped by calling put_device(). 1460 */ 1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1462 const char *supply, 1463 int *ret) 1464 { 1465 struct regulator_dev *r; 1466 struct device_node *node; 1467 struct regulator_map *map; 1468 const char *devname = NULL; 1469 1470 regulator_supply_alias(&dev, &supply); 1471 1472 /* first do a dt based lookup */ 1473 if (dev && dev->of_node) { 1474 node = of_get_regulator(dev, supply); 1475 if (node) { 1476 r = of_find_regulator_by_node(node); 1477 if (r) 1478 return r; 1479 *ret = -EPROBE_DEFER; 1480 return NULL; 1481 } else { 1482 /* 1483 * If we couldn't even get the node then it's 1484 * not just that the device didn't register 1485 * yet, there's no node and we'll never 1486 * succeed. 1487 */ 1488 *ret = -ENODEV; 1489 } 1490 } 1491 1492 /* if not found, try doing it non-dt way */ 1493 if (dev) 1494 devname = dev_name(dev); 1495 1496 r = regulator_lookup_by_name(supply); 1497 if (r) 1498 return r; 1499 1500 mutex_lock(®ulator_list_mutex); 1501 list_for_each_entry(map, ®ulator_map_list, list) { 1502 /* If the mapping has a device set up it must match */ 1503 if (map->dev_name && 1504 (!devname || strcmp(map->dev_name, devname))) 1505 continue; 1506 1507 if (strcmp(map->supply, supply) == 0 && 1508 get_device(&map->regulator->dev)) { 1509 mutex_unlock(®ulator_list_mutex); 1510 return map->regulator; 1511 } 1512 } 1513 mutex_unlock(®ulator_list_mutex); 1514 1515 return NULL; 1516 } 1517 1518 static int regulator_resolve_supply(struct regulator_dev *rdev) 1519 { 1520 struct regulator_dev *r; 1521 struct device *dev = rdev->dev.parent; 1522 int ret; 1523 1524 /* No supply to resovle? */ 1525 if (!rdev->supply_name) 1526 return 0; 1527 1528 /* Supply already resolved? */ 1529 if (rdev->supply) 1530 return 0; 1531 1532 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1533 if (!r) { 1534 if (ret == -ENODEV) { 1535 /* 1536 * No supply was specified for this regulator and 1537 * there will never be one. 1538 */ 1539 return 0; 1540 } 1541 1542 /* Did the lookup explicitly defer for us? */ 1543 if (ret == -EPROBE_DEFER) 1544 return ret; 1545 1546 if (have_full_constraints()) { 1547 r = dummy_regulator_rdev; 1548 get_device(&r->dev); 1549 } else { 1550 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1551 rdev->supply_name, rdev->desc->name); 1552 return -EPROBE_DEFER; 1553 } 1554 } 1555 1556 /* Recursively resolve the supply of the supply */ 1557 ret = regulator_resolve_supply(r); 1558 if (ret < 0) { 1559 put_device(&r->dev); 1560 return ret; 1561 } 1562 1563 ret = set_supply(rdev, r); 1564 if (ret < 0) { 1565 put_device(&r->dev); 1566 return ret; 1567 } 1568 1569 /* Cascade always-on state to supply */ 1570 if (_regulator_is_enabled(rdev)) { 1571 ret = regulator_enable(rdev->supply); 1572 if (ret < 0) { 1573 _regulator_put(rdev->supply); 1574 rdev->supply = NULL; 1575 return ret; 1576 } 1577 } 1578 1579 return 0; 1580 } 1581 1582 /* Internal regulator request function */ 1583 static struct regulator *_regulator_get(struct device *dev, const char *id, 1584 bool exclusive, bool allow_dummy) 1585 { 1586 struct regulator_dev *rdev; 1587 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1588 const char *devname = NULL; 1589 int ret; 1590 1591 if (id == NULL) { 1592 pr_err("get() with no identifier\n"); 1593 return ERR_PTR(-EINVAL); 1594 } 1595 1596 if (dev) 1597 devname = dev_name(dev); 1598 1599 if (have_full_constraints()) 1600 ret = -ENODEV; 1601 else 1602 ret = -EPROBE_DEFER; 1603 1604 rdev = regulator_dev_lookup(dev, id, &ret); 1605 if (rdev) 1606 goto found; 1607 1608 regulator = ERR_PTR(ret); 1609 1610 /* 1611 * If we have return value from dev_lookup fail, we do not expect to 1612 * succeed, so, quit with appropriate error value 1613 */ 1614 if (ret && ret != -ENODEV) 1615 return regulator; 1616 1617 if (!devname) 1618 devname = "deviceless"; 1619 1620 /* 1621 * Assume that a regulator is physically present and enabled 1622 * even if it isn't hooked up and just provide a dummy. 1623 */ 1624 if (have_full_constraints() && allow_dummy) { 1625 pr_warn("%s supply %s not found, using dummy regulator\n", 1626 devname, id); 1627 1628 rdev = dummy_regulator_rdev; 1629 get_device(&rdev->dev); 1630 goto found; 1631 /* Don't log an error when called from regulator_get_optional() */ 1632 } else if (!have_full_constraints() || exclusive) { 1633 dev_warn(dev, "dummy supplies not allowed\n"); 1634 } 1635 1636 return regulator; 1637 1638 found: 1639 if (rdev->exclusive) { 1640 regulator = ERR_PTR(-EPERM); 1641 put_device(&rdev->dev); 1642 return regulator; 1643 } 1644 1645 if (exclusive && rdev->open_count) { 1646 regulator = ERR_PTR(-EBUSY); 1647 put_device(&rdev->dev); 1648 return regulator; 1649 } 1650 1651 ret = regulator_resolve_supply(rdev); 1652 if (ret < 0) { 1653 regulator = ERR_PTR(ret); 1654 put_device(&rdev->dev); 1655 return regulator; 1656 } 1657 1658 if (!try_module_get(rdev->owner)) { 1659 put_device(&rdev->dev); 1660 return regulator; 1661 } 1662 1663 regulator = create_regulator(rdev, dev, id); 1664 if (regulator == NULL) { 1665 regulator = ERR_PTR(-ENOMEM); 1666 put_device(&rdev->dev); 1667 module_put(rdev->owner); 1668 return regulator; 1669 } 1670 1671 rdev->open_count++; 1672 if (exclusive) { 1673 rdev->exclusive = 1; 1674 1675 ret = _regulator_is_enabled(rdev); 1676 if (ret > 0) 1677 rdev->use_count = 1; 1678 else 1679 rdev->use_count = 0; 1680 } 1681 1682 return regulator; 1683 } 1684 1685 /** 1686 * regulator_get - lookup and obtain a reference to a regulator. 1687 * @dev: device for regulator "consumer" 1688 * @id: Supply name or regulator ID. 1689 * 1690 * Returns a struct regulator corresponding to the regulator producer, 1691 * or IS_ERR() condition containing errno. 1692 * 1693 * Use of supply names configured via regulator_set_device_supply() is 1694 * strongly encouraged. It is recommended that the supply name used 1695 * should match the name used for the supply and/or the relevant 1696 * device pins in the datasheet. 1697 */ 1698 struct regulator *regulator_get(struct device *dev, const char *id) 1699 { 1700 return _regulator_get(dev, id, false, true); 1701 } 1702 EXPORT_SYMBOL_GPL(regulator_get); 1703 1704 /** 1705 * regulator_get_exclusive - obtain exclusive access to a regulator. 1706 * @dev: device for regulator "consumer" 1707 * @id: Supply name or regulator ID. 1708 * 1709 * Returns a struct regulator corresponding to the regulator producer, 1710 * or IS_ERR() condition containing errno. Other consumers will be 1711 * unable to obtain this regulator while this reference is held and the 1712 * use count for the regulator will be initialised to reflect the current 1713 * state of the regulator. 1714 * 1715 * This is intended for use by consumers which cannot tolerate shared 1716 * use of the regulator such as those which need to force the 1717 * regulator off for correct operation of the hardware they are 1718 * controlling. 1719 * 1720 * Use of supply names configured via regulator_set_device_supply() is 1721 * strongly encouraged. It is recommended that the supply name used 1722 * should match the name used for the supply and/or the relevant 1723 * device pins in the datasheet. 1724 */ 1725 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1726 { 1727 return _regulator_get(dev, id, true, false); 1728 } 1729 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1730 1731 /** 1732 * regulator_get_optional - obtain optional access to a regulator. 1733 * @dev: device for regulator "consumer" 1734 * @id: Supply name or regulator ID. 1735 * 1736 * Returns a struct regulator corresponding to the regulator producer, 1737 * or IS_ERR() condition containing errno. 1738 * 1739 * This is intended for use by consumers for devices which can have 1740 * some supplies unconnected in normal use, such as some MMC devices. 1741 * It can allow the regulator core to provide stub supplies for other 1742 * supplies requested using normal regulator_get() calls without 1743 * disrupting the operation of drivers that can handle absent 1744 * supplies. 1745 * 1746 * Use of supply names configured via regulator_set_device_supply() is 1747 * strongly encouraged. It is recommended that the supply name used 1748 * should match the name used for the supply and/or the relevant 1749 * device pins in the datasheet. 1750 */ 1751 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1752 { 1753 return _regulator_get(dev, id, false, false); 1754 } 1755 EXPORT_SYMBOL_GPL(regulator_get_optional); 1756 1757 /* regulator_list_mutex lock held by regulator_put() */ 1758 static void _regulator_put(struct regulator *regulator) 1759 { 1760 struct regulator_dev *rdev; 1761 1762 if (IS_ERR_OR_NULL(regulator)) 1763 return; 1764 1765 lockdep_assert_held_once(®ulator_list_mutex); 1766 1767 rdev = regulator->rdev; 1768 1769 debugfs_remove_recursive(regulator->debugfs); 1770 1771 /* remove any sysfs entries */ 1772 if (regulator->dev) 1773 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1774 mutex_lock(&rdev->mutex); 1775 list_del(®ulator->list); 1776 1777 rdev->open_count--; 1778 rdev->exclusive = 0; 1779 put_device(&rdev->dev); 1780 mutex_unlock(&rdev->mutex); 1781 1782 kfree(regulator->supply_name); 1783 kfree(regulator); 1784 1785 module_put(rdev->owner); 1786 } 1787 1788 /** 1789 * regulator_put - "free" the regulator source 1790 * @regulator: regulator source 1791 * 1792 * Note: drivers must ensure that all regulator_enable calls made on this 1793 * regulator source are balanced by regulator_disable calls prior to calling 1794 * this function. 1795 */ 1796 void regulator_put(struct regulator *regulator) 1797 { 1798 mutex_lock(®ulator_list_mutex); 1799 _regulator_put(regulator); 1800 mutex_unlock(®ulator_list_mutex); 1801 } 1802 EXPORT_SYMBOL_GPL(regulator_put); 1803 1804 /** 1805 * regulator_register_supply_alias - Provide device alias for supply lookup 1806 * 1807 * @dev: device that will be given as the regulator "consumer" 1808 * @id: Supply name or regulator ID 1809 * @alias_dev: device that should be used to lookup the supply 1810 * @alias_id: Supply name or regulator ID that should be used to lookup the 1811 * supply 1812 * 1813 * All lookups for id on dev will instead be conducted for alias_id on 1814 * alias_dev. 1815 */ 1816 int regulator_register_supply_alias(struct device *dev, const char *id, 1817 struct device *alias_dev, 1818 const char *alias_id) 1819 { 1820 struct regulator_supply_alias *map; 1821 1822 map = regulator_find_supply_alias(dev, id); 1823 if (map) 1824 return -EEXIST; 1825 1826 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1827 if (!map) 1828 return -ENOMEM; 1829 1830 map->src_dev = dev; 1831 map->src_supply = id; 1832 map->alias_dev = alias_dev; 1833 map->alias_supply = alias_id; 1834 1835 list_add(&map->list, ®ulator_supply_alias_list); 1836 1837 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1838 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1839 1840 return 0; 1841 } 1842 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1843 1844 /** 1845 * regulator_unregister_supply_alias - Remove device alias 1846 * 1847 * @dev: device that will be given as the regulator "consumer" 1848 * @id: Supply name or regulator ID 1849 * 1850 * Remove a lookup alias if one exists for id on dev. 1851 */ 1852 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1853 { 1854 struct regulator_supply_alias *map; 1855 1856 map = regulator_find_supply_alias(dev, id); 1857 if (map) { 1858 list_del(&map->list); 1859 kfree(map); 1860 } 1861 } 1862 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1863 1864 /** 1865 * regulator_bulk_register_supply_alias - register multiple aliases 1866 * 1867 * @dev: device that will be given as the regulator "consumer" 1868 * @id: List of supply names or regulator IDs 1869 * @alias_dev: device that should be used to lookup the supply 1870 * @alias_id: List of supply names or regulator IDs that should be used to 1871 * lookup the supply 1872 * @num_id: Number of aliases to register 1873 * 1874 * @return 0 on success, an errno on failure. 1875 * 1876 * This helper function allows drivers to register several supply 1877 * aliases in one operation. If any of the aliases cannot be 1878 * registered any aliases that were registered will be removed 1879 * before returning to the caller. 1880 */ 1881 int regulator_bulk_register_supply_alias(struct device *dev, 1882 const char *const *id, 1883 struct device *alias_dev, 1884 const char *const *alias_id, 1885 int num_id) 1886 { 1887 int i; 1888 int ret; 1889 1890 for (i = 0; i < num_id; ++i) { 1891 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1892 alias_id[i]); 1893 if (ret < 0) 1894 goto err; 1895 } 1896 1897 return 0; 1898 1899 err: 1900 dev_err(dev, 1901 "Failed to create supply alias %s,%s -> %s,%s\n", 1902 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1903 1904 while (--i >= 0) 1905 regulator_unregister_supply_alias(dev, id[i]); 1906 1907 return ret; 1908 } 1909 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1910 1911 /** 1912 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1913 * 1914 * @dev: device that will be given as the regulator "consumer" 1915 * @id: List of supply names or regulator IDs 1916 * @num_id: Number of aliases to unregister 1917 * 1918 * This helper function allows drivers to unregister several supply 1919 * aliases in one operation. 1920 */ 1921 void regulator_bulk_unregister_supply_alias(struct device *dev, 1922 const char *const *id, 1923 int num_id) 1924 { 1925 int i; 1926 1927 for (i = 0; i < num_id; ++i) 1928 regulator_unregister_supply_alias(dev, id[i]); 1929 } 1930 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1931 1932 1933 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1934 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1935 const struct regulator_config *config) 1936 { 1937 struct regulator_enable_gpio *pin; 1938 struct gpio_desc *gpiod; 1939 int ret; 1940 1941 gpiod = gpio_to_desc(config->ena_gpio); 1942 1943 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1944 if (pin->gpiod == gpiod) { 1945 rdev_dbg(rdev, "GPIO %d is already used\n", 1946 config->ena_gpio); 1947 goto update_ena_gpio_to_rdev; 1948 } 1949 } 1950 1951 ret = gpio_request_one(config->ena_gpio, 1952 GPIOF_DIR_OUT | config->ena_gpio_flags, 1953 rdev_get_name(rdev)); 1954 if (ret) 1955 return ret; 1956 1957 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1958 if (pin == NULL) { 1959 gpio_free(config->ena_gpio); 1960 return -ENOMEM; 1961 } 1962 1963 pin->gpiod = gpiod; 1964 pin->ena_gpio_invert = config->ena_gpio_invert; 1965 list_add(&pin->list, ®ulator_ena_gpio_list); 1966 1967 update_ena_gpio_to_rdev: 1968 pin->request_count++; 1969 rdev->ena_pin = pin; 1970 return 0; 1971 } 1972 1973 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1974 { 1975 struct regulator_enable_gpio *pin, *n; 1976 1977 if (!rdev->ena_pin) 1978 return; 1979 1980 /* Free the GPIO only in case of no use */ 1981 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1982 if (pin->gpiod == rdev->ena_pin->gpiod) { 1983 if (pin->request_count <= 1) { 1984 pin->request_count = 0; 1985 gpiod_put(pin->gpiod); 1986 list_del(&pin->list); 1987 kfree(pin); 1988 rdev->ena_pin = NULL; 1989 return; 1990 } else { 1991 pin->request_count--; 1992 } 1993 } 1994 } 1995 } 1996 1997 /** 1998 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1999 * @rdev: regulator_dev structure 2000 * @enable: enable GPIO at initial use? 2001 * 2002 * GPIO is enabled in case of initial use. (enable_count is 0) 2003 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2004 */ 2005 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2006 { 2007 struct regulator_enable_gpio *pin = rdev->ena_pin; 2008 2009 if (!pin) 2010 return -EINVAL; 2011 2012 if (enable) { 2013 /* Enable GPIO at initial use */ 2014 if (pin->enable_count == 0) 2015 gpiod_set_value_cansleep(pin->gpiod, 2016 !pin->ena_gpio_invert); 2017 2018 pin->enable_count++; 2019 } else { 2020 if (pin->enable_count > 1) { 2021 pin->enable_count--; 2022 return 0; 2023 } 2024 2025 /* Disable GPIO if not used */ 2026 if (pin->enable_count <= 1) { 2027 gpiod_set_value_cansleep(pin->gpiod, 2028 pin->ena_gpio_invert); 2029 pin->enable_count = 0; 2030 } 2031 } 2032 2033 return 0; 2034 } 2035 2036 /** 2037 * _regulator_enable_delay - a delay helper function 2038 * @delay: time to delay in microseconds 2039 * 2040 * Delay for the requested amount of time as per the guidelines in: 2041 * 2042 * Documentation/timers/timers-howto.txt 2043 * 2044 * The assumption here is that regulators will never be enabled in 2045 * atomic context and therefore sleeping functions can be used. 2046 */ 2047 static void _regulator_enable_delay(unsigned int delay) 2048 { 2049 unsigned int ms = delay / 1000; 2050 unsigned int us = delay % 1000; 2051 2052 if (ms > 0) { 2053 /* 2054 * For small enough values, handle super-millisecond 2055 * delays in the usleep_range() call below. 2056 */ 2057 if (ms < 20) 2058 us += ms * 1000; 2059 else 2060 msleep(ms); 2061 } 2062 2063 /* 2064 * Give the scheduler some room to coalesce with any other 2065 * wakeup sources. For delays shorter than 10 us, don't even 2066 * bother setting up high-resolution timers and just busy- 2067 * loop. 2068 */ 2069 if (us >= 10) 2070 usleep_range(us, us + 100); 2071 else 2072 udelay(us); 2073 } 2074 2075 static int _regulator_do_enable(struct regulator_dev *rdev) 2076 { 2077 int ret, delay; 2078 2079 /* Query before enabling in case configuration dependent. */ 2080 ret = _regulator_get_enable_time(rdev); 2081 if (ret >= 0) { 2082 delay = ret; 2083 } else { 2084 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 2085 delay = 0; 2086 } 2087 2088 trace_regulator_enable(rdev_get_name(rdev)); 2089 2090 if (rdev->desc->off_on_delay) { 2091 /* if needed, keep a distance of off_on_delay from last time 2092 * this regulator was disabled. 2093 */ 2094 unsigned long start_jiffy = jiffies; 2095 unsigned long intended, max_delay, remaining; 2096 2097 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 2098 intended = rdev->last_off_jiffy + max_delay; 2099 2100 if (time_before(start_jiffy, intended)) { 2101 /* calc remaining jiffies to deal with one-time 2102 * timer wrapping. 2103 * in case of multiple timer wrapping, either it can be 2104 * detected by out-of-range remaining, or it cannot be 2105 * detected and we gets a panelty of 2106 * _regulator_enable_delay(). 2107 */ 2108 remaining = intended - start_jiffy; 2109 if (remaining <= max_delay) 2110 _regulator_enable_delay( 2111 jiffies_to_usecs(remaining)); 2112 } 2113 } 2114 2115 if (rdev->ena_pin) { 2116 if (!rdev->ena_gpio_state) { 2117 ret = regulator_ena_gpio_ctrl(rdev, true); 2118 if (ret < 0) 2119 return ret; 2120 rdev->ena_gpio_state = 1; 2121 } 2122 } else if (rdev->desc->ops->enable) { 2123 ret = rdev->desc->ops->enable(rdev); 2124 if (ret < 0) 2125 return ret; 2126 } else { 2127 return -EINVAL; 2128 } 2129 2130 /* Allow the regulator to ramp; it would be useful to extend 2131 * this for bulk operations so that the regulators can ramp 2132 * together. */ 2133 trace_regulator_enable_delay(rdev_get_name(rdev)); 2134 2135 _regulator_enable_delay(delay); 2136 2137 trace_regulator_enable_complete(rdev_get_name(rdev)); 2138 2139 return 0; 2140 } 2141 2142 /* locks held by regulator_enable() */ 2143 static int _regulator_enable(struct regulator_dev *rdev) 2144 { 2145 int ret; 2146 2147 lockdep_assert_held_once(&rdev->mutex); 2148 2149 /* check voltage and requested load before enabling */ 2150 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2151 drms_uA_update(rdev); 2152 2153 if (rdev->use_count == 0) { 2154 /* The regulator may on if it's not switchable or left on */ 2155 ret = _regulator_is_enabled(rdev); 2156 if (ret == -EINVAL || ret == 0) { 2157 if (!regulator_ops_is_valid(rdev, 2158 REGULATOR_CHANGE_STATUS)) 2159 return -EPERM; 2160 2161 ret = _regulator_do_enable(rdev); 2162 if (ret < 0) 2163 return ret; 2164 2165 } else if (ret < 0) { 2166 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 2167 return ret; 2168 } 2169 /* Fallthrough on positive return values - already enabled */ 2170 } 2171 2172 rdev->use_count++; 2173 2174 return 0; 2175 } 2176 2177 /** 2178 * regulator_enable - enable regulator output 2179 * @regulator: regulator source 2180 * 2181 * Request that the regulator be enabled with the regulator output at 2182 * the predefined voltage or current value. Calls to regulator_enable() 2183 * must be balanced with calls to regulator_disable(). 2184 * 2185 * NOTE: the output value can be set by other drivers, boot loader or may be 2186 * hardwired in the regulator. 2187 */ 2188 int regulator_enable(struct regulator *regulator) 2189 { 2190 struct regulator_dev *rdev = regulator->rdev; 2191 int ret = 0; 2192 2193 if (regulator->always_on) 2194 return 0; 2195 2196 if (rdev->supply) { 2197 ret = regulator_enable(rdev->supply); 2198 if (ret != 0) 2199 return ret; 2200 } 2201 2202 mutex_lock(&rdev->mutex); 2203 ret = _regulator_enable(rdev); 2204 mutex_unlock(&rdev->mutex); 2205 2206 if (ret != 0 && rdev->supply) 2207 regulator_disable(rdev->supply); 2208 2209 return ret; 2210 } 2211 EXPORT_SYMBOL_GPL(regulator_enable); 2212 2213 static int _regulator_do_disable(struct regulator_dev *rdev) 2214 { 2215 int ret; 2216 2217 trace_regulator_disable(rdev_get_name(rdev)); 2218 2219 if (rdev->ena_pin) { 2220 if (rdev->ena_gpio_state) { 2221 ret = regulator_ena_gpio_ctrl(rdev, false); 2222 if (ret < 0) 2223 return ret; 2224 rdev->ena_gpio_state = 0; 2225 } 2226 2227 } else if (rdev->desc->ops->disable) { 2228 ret = rdev->desc->ops->disable(rdev); 2229 if (ret != 0) 2230 return ret; 2231 } 2232 2233 /* cares about last_off_jiffy only if off_on_delay is required by 2234 * device. 2235 */ 2236 if (rdev->desc->off_on_delay) 2237 rdev->last_off_jiffy = jiffies; 2238 2239 trace_regulator_disable_complete(rdev_get_name(rdev)); 2240 2241 return 0; 2242 } 2243 2244 /* locks held by regulator_disable() */ 2245 static int _regulator_disable(struct regulator_dev *rdev) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held_once(&rdev->mutex); 2250 2251 if (WARN(rdev->use_count <= 0, 2252 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2253 return -EIO; 2254 2255 /* are we the last user and permitted to disable ? */ 2256 if (rdev->use_count == 1 && 2257 (rdev->constraints && !rdev->constraints->always_on)) { 2258 2259 /* we are last user */ 2260 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2261 ret = _notifier_call_chain(rdev, 2262 REGULATOR_EVENT_PRE_DISABLE, 2263 NULL); 2264 if (ret & NOTIFY_STOP_MASK) 2265 return -EINVAL; 2266 2267 ret = _regulator_do_disable(rdev); 2268 if (ret < 0) { 2269 rdev_err(rdev, "failed to disable\n"); 2270 _notifier_call_chain(rdev, 2271 REGULATOR_EVENT_ABORT_DISABLE, 2272 NULL); 2273 return ret; 2274 } 2275 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2276 NULL); 2277 } 2278 2279 rdev->use_count = 0; 2280 } else if (rdev->use_count > 1) { 2281 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) 2282 drms_uA_update(rdev); 2283 2284 rdev->use_count--; 2285 } 2286 2287 return ret; 2288 } 2289 2290 /** 2291 * regulator_disable - disable regulator output 2292 * @regulator: regulator source 2293 * 2294 * Disable the regulator output voltage or current. Calls to 2295 * regulator_enable() must be balanced with calls to 2296 * regulator_disable(). 2297 * 2298 * NOTE: this will only disable the regulator output if no other consumer 2299 * devices have it enabled, the regulator device supports disabling and 2300 * machine constraints permit this operation. 2301 */ 2302 int regulator_disable(struct regulator *regulator) 2303 { 2304 struct regulator_dev *rdev = regulator->rdev; 2305 int ret = 0; 2306 2307 if (regulator->always_on) 2308 return 0; 2309 2310 mutex_lock(&rdev->mutex); 2311 ret = _regulator_disable(rdev); 2312 mutex_unlock(&rdev->mutex); 2313 2314 if (ret == 0 && rdev->supply) 2315 regulator_disable(rdev->supply); 2316 2317 return ret; 2318 } 2319 EXPORT_SYMBOL_GPL(regulator_disable); 2320 2321 /* locks held by regulator_force_disable() */ 2322 static int _regulator_force_disable(struct regulator_dev *rdev) 2323 { 2324 int ret = 0; 2325 2326 lockdep_assert_held_once(&rdev->mutex); 2327 2328 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2329 REGULATOR_EVENT_PRE_DISABLE, NULL); 2330 if (ret & NOTIFY_STOP_MASK) 2331 return -EINVAL; 2332 2333 ret = _regulator_do_disable(rdev); 2334 if (ret < 0) { 2335 rdev_err(rdev, "failed to force disable\n"); 2336 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2337 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2338 return ret; 2339 } 2340 2341 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2342 REGULATOR_EVENT_DISABLE, NULL); 2343 2344 return 0; 2345 } 2346 2347 /** 2348 * regulator_force_disable - force disable regulator output 2349 * @regulator: regulator source 2350 * 2351 * Forcibly disable the regulator output voltage or current. 2352 * NOTE: this *will* disable the regulator output even if other consumer 2353 * devices have it enabled. This should be used for situations when device 2354 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2355 */ 2356 int regulator_force_disable(struct regulator *regulator) 2357 { 2358 struct regulator_dev *rdev = regulator->rdev; 2359 int ret; 2360 2361 mutex_lock(&rdev->mutex); 2362 regulator->uA_load = 0; 2363 ret = _regulator_force_disable(regulator->rdev); 2364 mutex_unlock(&rdev->mutex); 2365 2366 if (rdev->supply) 2367 while (rdev->open_count--) 2368 regulator_disable(rdev->supply); 2369 2370 return ret; 2371 } 2372 EXPORT_SYMBOL_GPL(regulator_force_disable); 2373 2374 static void regulator_disable_work(struct work_struct *work) 2375 { 2376 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2377 disable_work.work); 2378 int count, i, ret; 2379 2380 mutex_lock(&rdev->mutex); 2381 2382 BUG_ON(!rdev->deferred_disables); 2383 2384 count = rdev->deferred_disables; 2385 rdev->deferred_disables = 0; 2386 2387 for (i = 0; i < count; i++) { 2388 ret = _regulator_disable(rdev); 2389 if (ret != 0) 2390 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2391 } 2392 2393 mutex_unlock(&rdev->mutex); 2394 2395 if (rdev->supply) { 2396 for (i = 0; i < count; i++) { 2397 ret = regulator_disable(rdev->supply); 2398 if (ret != 0) { 2399 rdev_err(rdev, 2400 "Supply disable failed: %d\n", ret); 2401 } 2402 } 2403 } 2404 } 2405 2406 /** 2407 * regulator_disable_deferred - disable regulator output with delay 2408 * @regulator: regulator source 2409 * @ms: miliseconds until the regulator is disabled 2410 * 2411 * Execute regulator_disable() on the regulator after a delay. This 2412 * is intended for use with devices that require some time to quiesce. 2413 * 2414 * NOTE: this will only disable the regulator output if no other consumer 2415 * devices have it enabled, the regulator device supports disabling and 2416 * machine constraints permit this operation. 2417 */ 2418 int regulator_disable_deferred(struct regulator *regulator, int ms) 2419 { 2420 struct regulator_dev *rdev = regulator->rdev; 2421 2422 if (regulator->always_on) 2423 return 0; 2424 2425 if (!ms) 2426 return regulator_disable(regulator); 2427 2428 mutex_lock(&rdev->mutex); 2429 rdev->deferred_disables++; 2430 mutex_unlock(&rdev->mutex); 2431 2432 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work, 2433 msecs_to_jiffies(ms)); 2434 return 0; 2435 } 2436 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2437 2438 static int _regulator_is_enabled(struct regulator_dev *rdev) 2439 { 2440 /* A GPIO control always takes precedence */ 2441 if (rdev->ena_pin) 2442 return rdev->ena_gpio_state; 2443 2444 /* If we don't know then assume that the regulator is always on */ 2445 if (!rdev->desc->ops->is_enabled) 2446 return 1; 2447 2448 return rdev->desc->ops->is_enabled(rdev); 2449 } 2450 2451 static int _regulator_list_voltage(struct regulator *regulator, 2452 unsigned selector, int lock) 2453 { 2454 struct regulator_dev *rdev = regulator->rdev; 2455 const struct regulator_ops *ops = rdev->desc->ops; 2456 int ret; 2457 2458 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2459 return rdev->desc->fixed_uV; 2460 2461 if (ops->list_voltage) { 2462 if (selector >= rdev->desc->n_voltages) 2463 return -EINVAL; 2464 if (lock) 2465 mutex_lock(&rdev->mutex); 2466 ret = ops->list_voltage(rdev, selector); 2467 if (lock) 2468 mutex_unlock(&rdev->mutex); 2469 } else if (rdev->supply) { 2470 ret = _regulator_list_voltage(rdev->supply, selector, lock); 2471 } else { 2472 return -EINVAL; 2473 } 2474 2475 if (ret > 0) { 2476 if (ret < rdev->constraints->min_uV) 2477 ret = 0; 2478 else if (ret > rdev->constraints->max_uV) 2479 ret = 0; 2480 } 2481 2482 return ret; 2483 } 2484 2485 /** 2486 * regulator_is_enabled - is the regulator output enabled 2487 * @regulator: regulator source 2488 * 2489 * Returns positive if the regulator driver backing the source/client 2490 * has requested that the device be enabled, zero if it hasn't, else a 2491 * negative errno code. 2492 * 2493 * Note that the device backing this regulator handle can have multiple 2494 * users, so it might be enabled even if regulator_enable() was never 2495 * called for this particular source. 2496 */ 2497 int regulator_is_enabled(struct regulator *regulator) 2498 { 2499 int ret; 2500 2501 if (regulator->always_on) 2502 return 1; 2503 2504 mutex_lock(®ulator->rdev->mutex); 2505 ret = _regulator_is_enabled(regulator->rdev); 2506 mutex_unlock(®ulator->rdev->mutex); 2507 2508 return ret; 2509 } 2510 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2511 2512 /** 2513 * regulator_count_voltages - count regulator_list_voltage() selectors 2514 * @regulator: regulator source 2515 * 2516 * Returns number of selectors, or negative errno. Selectors are 2517 * numbered starting at zero, and typically correspond to bitfields 2518 * in hardware registers. 2519 */ 2520 int regulator_count_voltages(struct regulator *regulator) 2521 { 2522 struct regulator_dev *rdev = regulator->rdev; 2523 2524 if (rdev->desc->n_voltages) 2525 return rdev->desc->n_voltages; 2526 2527 if (!rdev->supply) 2528 return -EINVAL; 2529 2530 return regulator_count_voltages(rdev->supply); 2531 } 2532 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2533 2534 /** 2535 * regulator_list_voltage - enumerate supported voltages 2536 * @regulator: regulator source 2537 * @selector: identify voltage to list 2538 * Context: can sleep 2539 * 2540 * Returns a voltage that can be passed to @regulator_set_voltage(), 2541 * zero if this selector code can't be used on this system, or a 2542 * negative errno. 2543 */ 2544 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2545 { 2546 return _regulator_list_voltage(regulator, selector, 1); 2547 } 2548 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2549 2550 /** 2551 * regulator_get_regmap - get the regulator's register map 2552 * @regulator: regulator source 2553 * 2554 * Returns the register map for the given regulator, or an ERR_PTR value 2555 * if the regulator doesn't use regmap. 2556 */ 2557 struct regmap *regulator_get_regmap(struct regulator *regulator) 2558 { 2559 struct regmap *map = regulator->rdev->regmap; 2560 2561 return map ? map : ERR_PTR(-EOPNOTSUPP); 2562 } 2563 2564 /** 2565 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2566 * @regulator: regulator source 2567 * @vsel_reg: voltage selector register, output parameter 2568 * @vsel_mask: mask for voltage selector bitfield, output parameter 2569 * 2570 * Returns the hardware register offset and bitmask used for setting the 2571 * regulator voltage. This might be useful when configuring voltage-scaling 2572 * hardware or firmware that can make I2C requests behind the kernel's back, 2573 * for example. 2574 * 2575 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2576 * and 0 is returned, otherwise a negative errno is returned. 2577 */ 2578 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2579 unsigned *vsel_reg, 2580 unsigned *vsel_mask) 2581 { 2582 struct regulator_dev *rdev = regulator->rdev; 2583 const struct regulator_ops *ops = rdev->desc->ops; 2584 2585 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2586 return -EOPNOTSUPP; 2587 2588 *vsel_reg = rdev->desc->vsel_reg; 2589 *vsel_mask = rdev->desc->vsel_mask; 2590 2591 return 0; 2592 } 2593 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2594 2595 /** 2596 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2597 * @regulator: regulator source 2598 * @selector: identify voltage to list 2599 * 2600 * Converts the selector to a hardware-specific voltage selector that can be 2601 * directly written to the regulator registers. The address of the voltage 2602 * register can be determined by calling @regulator_get_hardware_vsel_register. 2603 * 2604 * On error a negative errno is returned. 2605 */ 2606 int regulator_list_hardware_vsel(struct regulator *regulator, 2607 unsigned selector) 2608 { 2609 struct regulator_dev *rdev = regulator->rdev; 2610 const struct regulator_ops *ops = rdev->desc->ops; 2611 2612 if (selector >= rdev->desc->n_voltages) 2613 return -EINVAL; 2614 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2615 return -EOPNOTSUPP; 2616 2617 return selector; 2618 } 2619 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2620 2621 /** 2622 * regulator_get_linear_step - return the voltage step size between VSEL values 2623 * @regulator: regulator source 2624 * 2625 * Returns the voltage step size between VSEL values for linear 2626 * regulators, or return 0 if the regulator isn't a linear regulator. 2627 */ 2628 unsigned int regulator_get_linear_step(struct regulator *regulator) 2629 { 2630 struct regulator_dev *rdev = regulator->rdev; 2631 2632 return rdev->desc->uV_step; 2633 } 2634 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2635 2636 /** 2637 * regulator_is_supported_voltage - check if a voltage range can be supported 2638 * 2639 * @regulator: Regulator to check. 2640 * @min_uV: Minimum required voltage in uV. 2641 * @max_uV: Maximum required voltage in uV. 2642 * 2643 * Returns a boolean or a negative error code. 2644 */ 2645 int regulator_is_supported_voltage(struct regulator *regulator, 2646 int min_uV, int max_uV) 2647 { 2648 struct regulator_dev *rdev = regulator->rdev; 2649 int i, voltages, ret; 2650 2651 /* If we can't change voltage check the current voltage */ 2652 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2653 ret = regulator_get_voltage(regulator); 2654 if (ret >= 0) 2655 return min_uV <= ret && ret <= max_uV; 2656 else 2657 return ret; 2658 } 2659 2660 /* Any voltage within constrains range is fine? */ 2661 if (rdev->desc->continuous_voltage_range) 2662 return min_uV >= rdev->constraints->min_uV && 2663 max_uV <= rdev->constraints->max_uV; 2664 2665 ret = regulator_count_voltages(regulator); 2666 if (ret < 0) 2667 return ret; 2668 voltages = ret; 2669 2670 for (i = 0; i < voltages; i++) { 2671 ret = regulator_list_voltage(regulator, i); 2672 2673 if (ret >= min_uV && ret <= max_uV) 2674 return 1; 2675 } 2676 2677 return 0; 2678 } 2679 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2680 2681 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 2682 int max_uV) 2683 { 2684 const struct regulator_desc *desc = rdev->desc; 2685 2686 if (desc->ops->map_voltage) 2687 return desc->ops->map_voltage(rdev, min_uV, max_uV); 2688 2689 if (desc->ops->list_voltage == regulator_list_voltage_linear) 2690 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 2691 2692 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 2693 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 2694 2695 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 2696 } 2697 2698 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2699 int min_uV, int max_uV, 2700 unsigned *selector) 2701 { 2702 struct pre_voltage_change_data data; 2703 int ret; 2704 2705 data.old_uV = _regulator_get_voltage(rdev); 2706 data.min_uV = min_uV; 2707 data.max_uV = max_uV; 2708 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2709 &data); 2710 if (ret & NOTIFY_STOP_MASK) 2711 return -EINVAL; 2712 2713 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2714 if (ret >= 0) 2715 return ret; 2716 2717 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2718 (void *)data.old_uV); 2719 2720 return ret; 2721 } 2722 2723 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2724 int uV, unsigned selector) 2725 { 2726 struct pre_voltage_change_data data; 2727 int ret; 2728 2729 data.old_uV = _regulator_get_voltage(rdev); 2730 data.min_uV = uV; 2731 data.max_uV = uV; 2732 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2733 &data); 2734 if (ret & NOTIFY_STOP_MASK) 2735 return -EINVAL; 2736 2737 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2738 if (ret >= 0) 2739 return ret; 2740 2741 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2742 (void *)data.old_uV); 2743 2744 return ret; 2745 } 2746 2747 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 2748 int old_uV, int new_uV) 2749 { 2750 unsigned int ramp_delay = 0; 2751 2752 if (rdev->constraints->ramp_delay) 2753 ramp_delay = rdev->constraints->ramp_delay; 2754 else if (rdev->desc->ramp_delay) 2755 ramp_delay = rdev->desc->ramp_delay; 2756 2757 if (ramp_delay == 0) { 2758 rdev_dbg(rdev, "ramp_delay not set\n"); 2759 return 0; 2760 } 2761 2762 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 2763 } 2764 2765 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2766 int min_uV, int max_uV) 2767 { 2768 int ret; 2769 int delay = 0; 2770 int best_val = 0; 2771 unsigned int selector; 2772 int old_selector = -1; 2773 const struct regulator_ops *ops = rdev->desc->ops; 2774 int old_uV = _regulator_get_voltage(rdev); 2775 2776 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2777 2778 min_uV += rdev->constraints->uV_offset; 2779 max_uV += rdev->constraints->uV_offset; 2780 2781 /* 2782 * If we can't obtain the old selector there is not enough 2783 * info to call set_voltage_time_sel(). 2784 */ 2785 if (_regulator_is_enabled(rdev) && 2786 ops->set_voltage_time_sel && ops->get_voltage_sel) { 2787 old_selector = ops->get_voltage_sel(rdev); 2788 if (old_selector < 0) 2789 return old_selector; 2790 } 2791 2792 if (ops->set_voltage) { 2793 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2794 &selector); 2795 2796 if (ret >= 0) { 2797 if (ops->list_voltage) 2798 best_val = ops->list_voltage(rdev, 2799 selector); 2800 else 2801 best_val = _regulator_get_voltage(rdev); 2802 } 2803 2804 } else if (ops->set_voltage_sel) { 2805 ret = regulator_map_voltage(rdev, min_uV, max_uV); 2806 if (ret >= 0) { 2807 best_val = ops->list_voltage(rdev, ret); 2808 if (min_uV <= best_val && max_uV >= best_val) { 2809 selector = ret; 2810 if (old_selector == selector) 2811 ret = 0; 2812 else 2813 ret = _regulator_call_set_voltage_sel( 2814 rdev, best_val, selector); 2815 } else { 2816 ret = -EINVAL; 2817 } 2818 } 2819 } else { 2820 ret = -EINVAL; 2821 } 2822 2823 if (ret) 2824 goto out; 2825 2826 if (ops->set_voltage_time_sel) { 2827 /* 2828 * Call set_voltage_time_sel if successfully obtained 2829 * old_selector 2830 */ 2831 if (old_selector >= 0 && old_selector != selector) 2832 delay = ops->set_voltage_time_sel(rdev, old_selector, 2833 selector); 2834 } else { 2835 if (old_uV != best_val) { 2836 if (ops->set_voltage_time) 2837 delay = ops->set_voltage_time(rdev, old_uV, 2838 best_val); 2839 else 2840 delay = _regulator_set_voltage_time(rdev, 2841 old_uV, 2842 best_val); 2843 } 2844 } 2845 2846 if (delay < 0) { 2847 rdev_warn(rdev, "failed to get delay: %d\n", delay); 2848 delay = 0; 2849 } 2850 2851 /* Insert any necessary delays */ 2852 if (delay >= 1000) { 2853 mdelay(delay / 1000); 2854 udelay(delay % 1000); 2855 } else if (delay) { 2856 udelay(delay); 2857 } 2858 2859 if (best_val >= 0) { 2860 unsigned long data = best_val; 2861 2862 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2863 (void *)data); 2864 } 2865 2866 out: 2867 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2868 2869 return ret; 2870 } 2871 2872 static int regulator_set_voltage_unlocked(struct regulator *regulator, 2873 int min_uV, int max_uV) 2874 { 2875 struct regulator_dev *rdev = regulator->rdev; 2876 int ret = 0; 2877 int old_min_uV, old_max_uV; 2878 int current_uV; 2879 int best_supply_uV = 0; 2880 int supply_change_uV = 0; 2881 2882 /* If we're setting the same range as last time the change 2883 * should be a noop (some cpufreq implementations use the same 2884 * voltage for multiple frequencies, for example). 2885 */ 2886 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2887 goto out; 2888 2889 /* If we're trying to set a range that overlaps the current voltage, 2890 * return successfully even though the regulator does not support 2891 * changing the voltage. 2892 */ 2893 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 2894 current_uV = _regulator_get_voltage(rdev); 2895 if (min_uV <= current_uV && current_uV <= max_uV) { 2896 regulator->min_uV = min_uV; 2897 regulator->max_uV = max_uV; 2898 goto out; 2899 } 2900 } 2901 2902 /* sanity check */ 2903 if (!rdev->desc->ops->set_voltage && 2904 !rdev->desc->ops->set_voltage_sel) { 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 /* constraints check */ 2910 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2911 if (ret < 0) 2912 goto out; 2913 2914 /* restore original values in case of error */ 2915 old_min_uV = regulator->min_uV; 2916 old_max_uV = regulator->max_uV; 2917 regulator->min_uV = min_uV; 2918 regulator->max_uV = max_uV; 2919 2920 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2921 if (ret < 0) 2922 goto out2; 2923 2924 if (rdev->supply && (rdev->desc->min_dropout_uV || 2925 !rdev->desc->ops->get_voltage)) { 2926 int current_supply_uV; 2927 int selector; 2928 2929 selector = regulator_map_voltage(rdev, min_uV, max_uV); 2930 if (selector < 0) { 2931 ret = selector; 2932 goto out2; 2933 } 2934 2935 best_supply_uV = _regulator_list_voltage(regulator, selector, 0); 2936 if (best_supply_uV < 0) { 2937 ret = best_supply_uV; 2938 goto out2; 2939 } 2940 2941 best_supply_uV += rdev->desc->min_dropout_uV; 2942 2943 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev); 2944 if (current_supply_uV < 0) { 2945 ret = current_supply_uV; 2946 goto out2; 2947 } 2948 2949 supply_change_uV = best_supply_uV - current_supply_uV; 2950 } 2951 2952 if (supply_change_uV > 0) { 2953 ret = regulator_set_voltage_unlocked(rdev->supply, 2954 best_supply_uV, INT_MAX); 2955 if (ret) { 2956 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n", 2957 ret); 2958 goto out2; 2959 } 2960 } 2961 2962 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2963 if (ret < 0) 2964 goto out2; 2965 2966 if (supply_change_uV < 0) { 2967 ret = regulator_set_voltage_unlocked(rdev->supply, 2968 best_supply_uV, INT_MAX); 2969 if (ret) 2970 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n", 2971 ret); 2972 /* No need to fail here */ 2973 ret = 0; 2974 } 2975 2976 out: 2977 return ret; 2978 out2: 2979 regulator->min_uV = old_min_uV; 2980 regulator->max_uV = old_max_uV; 2981 2982 return ret; 2983 } 2984 2985 /** 2986 * regulator_set_voltage - set regulator output voltage 2987 * @regulator: regulator source 2988 * @min_uV: Minimum required voltage in uV 2989 * @max_uV: Maximum acceptable voltage in uV 2990 * 2991 * Sets a voltage regulator to the desired output voltage. This can be set 2992 * during any regulator state. IOW, regulator can be disabled or enabled. 2993 * 2994 * If the regulator is enabled then the voltage will change to the new value 2995 * immediately otherwise if the regulator is disabled the regulator will 2996 * output at the new voltage when enabled. 2997 * 2998 * NOTE: If the regulator is shared between several devices then the lowest 2999 * request voltage that meets the system constraints will be used. 3000 * Regulator system constraints must be set for this regulator before 3001 * calling this function otherwise this call will fail. 3002 */ 3003 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 3004 { 3005 int ret = 0; 3006 3007 regulator_lock_supply(regulator->rdev); 3008 3009 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV); 3010 3011 regulator_unlock_supply(regulator->rdev); 3012 3013 return ret; 3014 } 3015 EXPORT_SYMBOL_GPL(regulator_set_voltage); 3016 3017 /** 3018 * regulator_set_voltage_time - get raise/fall time 3019 * @regulator: regulator source 3020 * @old_uV: starting voltage in microvolts 3021 * @new_uV: target voltage in microvolts 3022 * 3023 * Provided with the starting and ending voltage, this function attempts to 3024 * calculate the time in microseconds required to rise or fall to this new 3025 * voltage. 3026 */ 3027 int regulator_set_voltage_time(struct regulator *regulator, 3028 int old_uV, int new_uV) 3029 { 3030 struct regulator_dev *rdev = regulator->rdev; 3031 const struct regulator_ops *ops = rdev->desc->ops; 3032 int old_sel = -1; 3033 int new_sel = -1; 3034 int voltage; 3035 int i; 3036 3037 if (ops->set_voltage_time) 3038 return ops->set_voltage_time(rdev, old_uV, new_uV); 3039 else if (!ops->set_voltage_time_sel) 3040 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 3041 3042 /* Currently requires operations to do this */ 3043 if (!ops->list_voltage || !rdev->desc->n_voltages) 3044 return -EINVAL; 3045 3046 for (i = 0; i < rdev->desc->n_voltages; i++) { 3047 /* We only look for exact voltage matches here */ 3048 voltage = regulator_list_voltage(regulator, i); 3049 if (voltage < 0) 3050 return -EINVAL; 3051 if (voltage == 0) 3052 continue; 3053 if (voltage == old_uV) 3054 old_sel = i; 3055 if (voltage == new_uV) 3056 new_sel = i; 3057 } 3058 3059 if (old_sel < 0 || new_sel < 0) 3060 return -EINVAL; 3061 3062 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 3063 } 3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 3065 3066 /** 3067 * regulator_set_voltage_time_sel - get raise/fall time 3068 * @rdev: regulator source device 3069 * @old_selector: selector for starting voltage 3070 * @new_selector: selector for target voltage 3071 * 3072 * Provided with the starting and target voltage selectors, this function 3073 * returns time in microseconds required to rise or fall to this new voltage 3074 * 3075 * Drivers providing ramp_delay in regulation_constraints can use this as their 3076 * set_voltage_time_sel() operation. 3077 */ 3078 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 3079 unsigned int old_selector, 3080 unsigned int new_selector) 3081 { 3082 int old_volt, new_volt; 3083 3084 /* sanity check */ 3085 if (!rdev->desc->ops->list_voltage) 3086 return -EINVAL; 3087 3088 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 3089 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 3090 3091 if (rdev->desc->ops->set_voltage_time) 3092 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 3093 new_volt); 3094 else 3095 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 3096 } 3097 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 3098 3099 /** 3100 * regulator_sync_voltage - re-apply last regulator output voltage 3101 * @regulator: regulator source 3102 * 3103 * Re-apply the last configured voltage. This is intended to be used 3104 * where some external control source the consumer is cooperating with 3105 * has caused the configured voltage to change. 3106 */ 3107 int regulator_sync_voltage(struct regulator *regulator) 3108 { 3109 struct regulator_dev *rdev = regulator->rdev; 3110 int ret, min_uV, max_uV; 3111 3112 mutex_lock(&rdev->mutex); 3113 3114 if (!rdev->desc->ops->set_voltage && 3115 !rdev->desc->ops->set_voltage_sel) { 3116 ret = -EINVAL; 3117 goto out; 3118 } 3119 3120 /* This is only going to work if we've had a voltage configured. */ 3121 if (!regulator->min_uV && !regulator->max_uV) { 3122 ret = -EINVAL; 3123 goto out; 3124 } 3125 3126 min_uV = regulator->min_uV; 3127 max_uV = regulator->max_uV; 3128 3129 /* This should be a paranoia check... */ 3130 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3131 if (ret < 0) 3132 goto out; 3133 3134 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 3135 if (ret < 0) 3136 goto out; 3137 3138 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3139 3140 out: 3141 mutex_unlock(&rdev->mutex); 3142 return ret; 3143 } 3144 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 3145 3146 static int _regulator_get_voltage(struct regulator_dev *rdev) 3147 { 3148 int sel, ret; 3149 bool bypassed; 3150 3151 if (rdev->desc->ops->get_bypass) { 3152 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 3153 if (ret < 0) 3154 return ret; 3155 if (bypassed) { 3156 /* if bypassed the regulator must have a supply */ 3157 if (!rdev->supply) { 3158 rdev_err(rdev, 3159 "bypassed regulator has no supply!\n"); 3160 return -EPROBE_DEFER; 3161 } 3162 3163 return _regulator_get_voltage(rdev->supply->rdev); 3164 } 3165 } 3166 3167 if (rdev->desc->ops->get_voltage_sel) { 3168 sel = rdev->desc->ops->get_voltage_sel(rdev); 3169 if (sel < 0) 3170 return sel; 3171 ret = rdev->desc->ops->list_voltage(rdev, sel); 3172 } else if (rdev->desc->ops->get_voltage) { 3173 ret = rdev->desc->ops->get_voltage(rdev); 3174 } else if (rdev->desc->ops->list_voltage) { 3175 ret = rdev->desc->ops->list_voltage(rdev, 0); 3176 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 3177 ret = rdev->desc->fixed_uV; 3178 } else if (rdev->supply) { 3179 ret = _regulator_get_voltage(rdev->supply->rdev); 3180 } else { 3181 return -EINVAL; 3182 } 3183 3184 if (ret < 0) 3185 return ret; 3186 return ret - rdev->constraints->uV_offset; 3187 } 3188 3189 /** 3190 * regulator_get_voltage - get regulator output voltage 3191 * @regulator: regulator source 3192 * 3193 * This returns the current regulator voltage in uV. 3194 * 3195 * NOTE: If the regulator is disabled it will return the voltage value. This 3196 * function should not be used to determine regulator state. 3197 */ 3198 int regulator_get_voltage(struct regulator *regulator) 3199 { 3200 int ret; 3201 3202 regulator_lock_supply(regulator->rdev); 3203 3204 ret = _regulator_get_voltage(regulator->rdev); 3205 3206 regulator_unlock_supply(regulator->rdev); 3207 3208 return ret; 3209 } 3210 EXPORT_SYMBOL_GPL(regulator_get_voltage); 3211 3212 /** 3213 * regulator_set_current_limit - set regulator output current limit 3214 * @regulator: regulator source 3215 * @min_uA: Minimum supported current in uA 3216 * @max_uA: Maximum supported current in uA 3217 * 3218 * Sets current sink to the desired output current. This can be set during 3219 * any regulator state. IOW, regulator can be disabled or enabled. 3220 * 3221 * If the regulator is enabled then the current will change to the new value 3222 * immediately otherwise if the regulator is disabled the regulator will 3223 * output at the new current when enabled. 3224 * 3225 * NOTE: Regulator system constraints must be set for this regulator before 3226 * calling this function otherwise this call will fail. 3227 */ 3228 int regulator_set_current_limit(struct regulator *regulator, 3229 int min_uA, int max_uA) 3230 { 3231 struct regulator_dev *rdev = regulator->rdev; 3232 int ret; 3233 3234 mutex_lock(&rdev->mutex); 3235 3236 /* sanity check */ 3237 if (!rdev->desc->ops->set_current_limit) { 3238 ret = -EINVAL; 3239 goto out; 3240 } 3241 3242 /* constraints check */ 3243 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 3244 if (ret < 0) 3245 goto out; 3246 3247 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 3248 out: 3249 mutex_unlock(&rdev->mutex); 3250 return ret; 3251 } 3252 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 3253 3254 static int _regulator_get_current_limit(struct regulator_dev *rdev) 3255 { 3256 int ret; 3257 3258 mutex_lock(&rdev->mutex); 3259 3260 /* sanity check */ 3261 if (!rdev->desc->ops->get_current_limit) { 3262 ret = -EINVAL; 3263 goto out; 3264 } 3265 3266 ret = rdev->desc->ops->get_current_limit(rdev); 3267 out: 3268 mutex_unlock(&rdev->mutex); 3269 return ret; 3270 } 3271 3272 /** 3273 * regulator_get_current_limit - get regulator output current 3274 * @regulator: regulator source 3275 * 3276 * This returns the current supplied by the specified current sink in uA. 3277 * 3278 * NOTE: If the regulator is disabled it will return the current value. This 3279 * function should not be used to determine regulator state. 3280 */ 3281 int regulator_get_current_limit(struct regulator *regulator) 3282 { 3283 return _regulator_get_current_limit(regulator->rdev); 3284 } 3285 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3286 3287 /** 3288 * regulator_set_mode - set regulator operating mode 3289 * @regulator: regulator source 3290 * @mode: operating mode - one of the REGULATOR_MODE constants 3291 * 3292 * Set regulator operating mode to increase regulator efficiency or improve 3293 * regulation performance. 3294 * 3295 * NOTE: Regulator system constraints must be set for this regulator before 3296 * calling this function otherwise this call will fail. 3297 */ 3298 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3299 { 3300 struct regulator_dev *rdev = regulator->rdev; 3301 int ret; 3302 int regulator_curr_mode; 3303 3304 mutex_lock(&rdev->mutex); 3305 3306 /* sanity check */ 3307 if (!rdev->desc->ops->set_mode) { 3308 ret = -EINVAL; 3309 goto out; 3310 } 3311 3312 /* return if the same mode is requested */ 3313 if (rdev->desc->ops->get_mode) { 3314 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3315 if (regulator_curr_mode == mode) { 3316 ret = 0; 3317 goto out; 3318 } 3319 } 3320 3321 /* constraints check */ 3322 ret = regulator_mode_constrain(rdev, &mode); 3323 if (ret < 0) 3324 goto out; 3325 3326 ret = rdev->desc->ops->set_mode(rdev, mode); 3327 out: 3328 mutex_unlock(&rdev->mutex); 3329 return ret; 3330 } 3331 EXPORT_SYMBOL_GPL(regulator_set_mode); 3332 3333 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3334 { 3335 int ret; 3336 3337 mutex_lock(&rdev->mutex); 3338 3339 /* sanity check */ 3340 if (!rdev->desc->ops->get_mode) { 3341 ret = -EINVAL; 3342 goto out; 3343 } 3344 3345 ret = rdev->desc->ops->get_mode(rdev); 3346 out: 3347 mutex_unlock(&rdev->mutex); 3348 return ret; 3349 } 3350 3351 /** 3352 * regulator_get_mode - get regulator operating mode 3353 * @regulator: regulator source 3354 * 3355 * Get the current regulator operating mode. 3356 */ 3357 unsigned int regulator_get_mode(struct regulator *regulator) 3358 { 3359 return _regulator_get_mode(regulator->rdev); 3360 } 3361 EXPORT_SYMBOL_GPL(regulator_get_mode); 3362 3363 static int _regulator_get_error_flags(struct regulator_dev *rdev, 3364 unsigned int *flags) 3365 { 3366 int ret; 3367 3368 mutex_lock(&rdev->mutex); 3369 3370 /* sanity check */ 3371 if (!rdev->desc->ops->get_error_flags) { 3372 ret = -EINVAL; 3373 goto out; 3374 } 3375 3376 ret = rdev->desc->ops->get_error_flags(rdev, flags); 3377 out: 3378 mutex_unlock(&rdev->mutex); 3379 return ret; 3380 } 3381 3382 /** 3383 * regulator_get_error_flags - get regulator error information 3384 * @regulator: regulator source 3385 * @flags: pointer to store error flags 3386 * 3387 * Get the current regulator error information. 3388 */ 3389 int regulator_get_error_flags(struct regulator *regulator, 3390 unsigned int *flags) 3391 { 3392 return _regulator_get_error_flags(regulator->rdev, flags); 3393 } 3394 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 3395 3396 /** 3397 * regulator_set_load - set regulator load 3398 * @regulator: regulator source 3399 * @uA_load: load current 3400 * 3401 * Notifies the regulator core of a new device load. This is then used by 3402 * DRMS (if enabled by constraints) to set the most efficient regulator 3403 * operating mode for the new regulator loading. 3404 * 3405 * Consumer devices notify their supply regulator of the maximum power 3406 * they will require (can be taken from device datasheet in the power 3407 * consumption tables) when they change operational status and hence power 3408 * state. Examples of operational state changes that can affect power 3409 * consumption are :- 3410 * 3411 * o Device is opened / closed. 3412 * o Device I/O is about to begin or has just finished. 3413 * o Device is idling in between work. 3414 * 3415 * This information is also exported via sysfs to userspace. 3416 * 3417 * DRMS will sum the total requested load on the regulator and change 3418 * to the most efficient operating mode if platform constraints allow. 3419 * 3420 * On error a negative errno is returned. 3421 */ 3422 int regulator_set_load(struct regulator *regulator, int uA_load) 3423 { 3424 struct regulator_dev *rdev = regulator->rdev; 3425 int ret; 3426 3427 mutex_lock(&rdev->mutex); 3428 regulator->uA_load = uA_load; 3429 ret = drms_uA_update(rdev); 3430 mutex_unlock(&rdev->mutex); 3431 3432 return ret; 3433 } 3434 EXPORT_SYMBOL_GPL(regulator_set_load); 3435 3436 /** 3437 * regulator_allow_bypass - allow the regulator to go into bypass mode 3438 * 3439 * @regulator: Regulator to configure 3440 * @enable: enable or disable bypass mode 3441 * 3442 * Allow the regulator to go into bypass mode if all other consumers 3443 * for the regulator also enable bypass mode and the machine 3444 * constraints allow this. Bypass mode means that the regulator is 3445 * simply passing the input directly to the output with no regulation. 3446 */ 3447 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3448 { 3449 struct regulator_dev *rdev = regulator->rdev; 3450 int ret = 0; 3451 3452 if (!rdev->desc->ops->set_bypass) 3453 return 0; 3454 3455 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 3456 return 0; 3457 3458 mutex_lock(&rdev->mutex); 3459 3460 if (enable && !regulator->bypass) { 3461 rdev->bypass_count++; 3462 3463 if (rdev->bypass_count == rdev->open_count) { 3464 ret = rdev->desc->ops->set_bypass(rdev, enable); 3465 if (ret != 0) 3466 rdev->bypass_count--; 3467 } 3468 3469 } else if (!enable && regulator->bypass) { 3470 rdev->bypass_count--; 3471 3472 if (rdev->bypass_count != rdev->open_count) { 3473 ret = rdev->desc->ops->set_bypass(rdev, enable); 3474 if (ret != 0) 3475 rdev->bypass_count++; 3476 } 3477 } 3478 3479 if (ret == 0) 3480 regulator->bypass = enable; 3481 3482 mutex_unlock(&rdev->mutex); 3483 3484 return ret; 3485 } 3486 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3487 3488 /** 3489 * regulator_register_notifier - register regulator event notifier 3490 * @regulator: regulator source 3491 * @nb: notifier block 3492 * 3493 * Register notifier block to receive regulator events. 3494 */ 3495 int regulator_register_notifier(struct regulator *regulator, 3496 struct notifier_block *nb) 3497 { 3498 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3499 nb); 3500 } 3501 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3502 3503 /** 3504 * regulator_unregister_notifier - unregister regulator event notifier 3505 * @regulator: regulator source 3506 * @nb: notifier block 3507 * 3508 * Unregister regulator event notifier block. 3509 */ 3510 int regulator_unregister_notifier(struct regulator *regulator, 3511 struct notifier_block *nb) 3512 { 3513 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3514 nb); 3515 } 3516 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3517 3518 /* notify regulator consumers and downstream regulator consumers. 3519 * Note mutex must be held by caller. 3520 */ 3521 static int _notifier_call_chain(struct regulator_dev *rdev, 3522 unsigned long event, void *data) 3523 { 3524 /* call rdev chain first */ 3525 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3526 } 3527 3528 /** 3529 * regulator_bulk_get - get multiple regulator consumers 3530 * 3531 * @dev: Device to supply 3532 * @num_consumers: Number of consumers to register 3533 * @consumers: Configuration of consumers; clients are stored here. 3534 * 3535 * @return 0 on success, an errno on failure. 3536 * 3537 * This helper function allows drivers to get several regulator 3538 * consumers in one operation. If any of the regulators cannot be 3539 * acquired then any regulators that were allocated will be freed 3540 * before returning to the caller. 3541 */ 3542 int regulator_bulk_get(struct device *dev, int num_consumers, 3543 struct regulator_bulk_data *consumers) 3544 { 3545 int i; 3546 int ret; 3547 3548 for (i = 0; i < num_consumers; i++) 3549 consumers[i].consumer = NULL; 3550 3551 for (i = 0; i < num_consumers; i++) { 3552 consumers[i].consumer = regulator_get(dev, 3553 consumers[i].supply); 3554 if (IS_ERR(consumers[i].consumer)) { 3555 ret = PTR_ERR(consumers[i].consumer); 3556 dev_err(dev, "Failed to get supply '%s': %d\n", 3557 consumers[i].supply, ret); 3558 consumers[i].consumer = NULL; 3559 goto err; 3560 } 3561 } 3562 3563 return 0; 3564 3565 err: 3566 while (--i >= 0) 3567 regulator_put(consumers[i].consumer); 3568 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3572 3573 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3574 { 3575 struct regulator_bulk_data *bulk = data; 3576 3577 bulk->ret = regulator_enable(bulk->consumer); 3578 } 3579 3580 /** 3581 * regulator_bulk_enable - enable multiple regulator consumers 3582 * 3583 * @num_consumers: Number of consumers 3584 * @consumers: Consumer data; clients are stored here. 3585 * @return 0 on success, an errno on failure 3586 * 3587 * This convenience API allows consumers to enable multiple regulator 3588 * clients in a single API call. If any consumers cannot be enabled 3589 * then any others that were enabled will be disabled again prior to 3590 * return. 3591 */ 3592 int regulator_bulk_enable(int num_consumers, 3593 struct regulator_bulk_data *consumers) 3594 { 3595 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3596 int i; 3597 int ret = 0; 3598 3599 for (i = 0; i < num_consumers; i++) { 3600 if (consumers[i].consumer->always_on) 3601 consumers[i].ret = 0; 3602 else 3603 async_schedule_domain(regulator_bulk_enable_async, 3604 &consumers[i], &async_domain); 3605 } 3606 3607 async_synchronize_full_domain(&async_domain); 3608 3609 /* If any consumer failed we need to unwind any that succeeded */ 3610 for (i = 0; i < num_consumers; i++) { 3611 if (consumers[i].ret != 0) { 3612 ret = consumers[i].ret; 3613 goto err; 3614 } 3615 } 3616 3617 return 0; 3618 3619 err: 3620 for (i = 0; i < num_consumers; i++) { 3621 if (consumers[i].ret < 0) 3622 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3623 consumers[i].ret); 3624 else 3625 regulator_disable(consumers[i].consumer); 3626 } 3627 3628 return ret; 3629 } 3630 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3631 3632 /** 3633 * regulator_bulk_disable - disable multiple regulator consumers 3634 * 3635 * @num_consumers: Number of consumers 3636 * @consumers: Consumer data; clients are stored here. 3637 * @return 0 on success, an errno on failure 3638 * 3639 * This convenience API allows consumers to disable multiple regulator 3640 * clients in a single API call. If any consumers cannot be disabled 3641 * then any others that were disabled will be enabled again prior to 3642 * return. 3643 */ 3644 int regulator_bulk_disable(int num_consumers, 3645 struct regulator_bulk_data *consumers) 3646 { 3647 int i; 3648 int ret, r; 3649 3650 for (i = num_consumers - 1; i >= 0; --i) { 3651 ret = regulator_disable(consumers[i].consumer); 3652 if (ret != 0) 3653 goto err; 3654 } 3655 3656 return 0; 3657 3658 err: 3659 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3660 for (++i; i < num_consumers; ++i) { 3661 r = regulator_enable(consumers[i].consumer); 3662 if (r != 0) 3663 pr_err("Failed to reename %s: %d\n", 3664 consumers[i].supply, r); 3665 } 3666 3667 return ret; 3668 } 3669 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3670 3671 /** 3672 * regulator_bulk_force_disable - force disable multiple regulator consumers 3673 * 3674 * @num_consumers: Number of consumers 3675 * @consumers: Consumer data; clients are stored here. 3676 * @return 0 on success, an errno on failure 3677 * 3678 * This convenience API allows consumers to forcibly disable multiple regulator 3679 * clients in a single API call. 3680 * NOTE: This should be used for situations when device damage will 3681 * likely occur if the regulators are not disabled (e.g. over temp). 3682 * Although regulator_force_disable function call for some consumers can 3683 * return error numbers, the function is called for all consumers. 3684 */ 3685 int regulator_bulk_force_disable(int num_consumers, 3686 struct regulator_bulk_data *consumers) 3687 { 3688 int i; 3689 int ret; 3690 3691 for (i = 0; i < num_consumers; i++) 3692 consumers[i].ret = 3693 regulator_force_disable(consumers[i].consumer); 3694 3695 for (i = 0; i < num_consumers; i++) { 3696 if (consumers[i].ret != 0) { 3697 ret = consumers[i].ret; 3698 goto out; 3699 } 3700 } 3701 3702 return 0; 3703 out: 3704 return ret; 3705 } 3706 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3707 3708 /** 3709 * regulator_bulk_free - free multiple regulator consumers 3710 * 3711 * @num_consumers: Number of consumers 3712 * @consumers: Consumer data; clients are stored here. 3713 * 3714 * This convenience API allows consumers to free multiple regulator 3715 * clients in a single API call. 3716 */ 3717 void regulator_bulk_free(int num_consumers, 3718 struct regulator_bulk_data *consumers) 3719 { 3720 int i; 3721 3722 for (i = 0; i < num_consumers; i++) { 3723 regulator_put(consumers[i].consumer); 3724 consumers[i].consumer = NULL; 3725 } 3726 } 3727 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3728 3729 /** 3730 * regulator_notifier_call_chain - call regulator event notifier 3731 * @rdev: regulator source 3732 * @event: notifier block 3733 * @data: callback-specific data. 3734 * 3735 * Called by regulator drivers to notify clients a regulator event has 3736 * occurred. We also notify regulator clients downstream. 3737 * Note lock must be held by caller. 3738 */ 3739 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3740 unsigned long event, void *data) 3741 { 3742 lockdep_assert_held_once(&rdev->mutex); 3743 3744 _notifier_call_chain(rdev, event, data); 3745 return NOTIFY_DONE; 3746 3747 } 3748 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3749 3750 /** 3751 * regulator_mode_to_status - convert a regulator mode into a status 3752 * 3753 * @mode: Mode to convert 3754 * 3755 * Convert a regulator mode into a status. 3756 */ 3757 int regulator_mode_to_status(unsigned int mode) 3758 { 3759 switch (mode) { 3760 case REGULATOR_MODE_FAST: 3761 return REGULATOR_STATUS_FAST; 3762 case REGULATOR_MODE_NORMAL: 3763 return REGULATOR_STATUS_NORMAL; 3764 case REGULATOR_MODE_IDLE: 3765 return REGULATOR_STATUS_IDLE; 3766 case REGULATOR_MODE_STANDBY: 3767 return REGULATOR_STATUS_STANDBY; 3768 default: 3769 return REGULATOR_STATUS_UNDEFINED; 3770 } 3771 } 3772 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3773 3774 static struct attribute *regulator_dev_attrs[] = { 3775 &dev_attr_name.attr, 3776 &dev_attr_num_users.attr, 3777 &dev_attr_type.attr, 3778 &dev_attr_microvolts.attr, 3779 &dev_attr_microamps.attr, 3780 &dev_attr_opmode.attr, 3781 &dev_attr_state.attr, 3782 &dev_attr_status.attr, 3783 &dev_attr_bypass.attr, 3784 &dev_attr_requested_microamps.attr, 3785 &dev_attr_min_microvolts.attr, 3786 &dev_attr_max_microvolts.attr, 3787 &dev_attr_min_microamps.attr, 3788 &dev_attr_max_microamps.attr, 3789 &dev_attr_suspend_standby_state.attr, 3790 &dev_attr_suspend_mem_state.attr, 3791 &dev_attr_suspend_disk_state.attr, 3792 &dev_attr_suspend_standby_microvolts.attr, 3793 &dev_attr_suspend_mem_microvolts.attr, 3794 &dev_attr_suspend_disk_microvolts.attr, 3795 &dev_attr_suspend_standby_mode.attr, 3796 &dev_attr_suspend_mem_mode.attr, 3797 &dev_attr_suspend_disk_mode.attr, 3798 NULL 3799 }; 3800 3801 /* 3802 * To avoid cluttering sysfs (and memory) with useless state, only 3803 * create attributes that can be meaningfully displayed. 3804 */ 3805 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3806 struct attribute *attr, int idx) 3807 { 3808 struct device *dev = kobj_to_dev(kobj); 3809 struct regulator_dev *rdev = dev_to_rdev(dev); 3810 const struct regulator_ops *ops = rdev->desc->ops; 3811 umode_t mode = attr->mode; 3812 3813 /* these three are always present */ 3814 if (attr == &dev_attr_name.attr || 3815 attr == &dev_attr_num_users.attr || 3816 attr == &dev_attr_type.attr) 3817 return mode; 3818 3819 /* some attributes need specific methods to be displayed */ 3820 if (attr == &dev_attr_microvolts.attr) { 3821 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3822 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3823 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3824 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3825 return mode; 3826 return 0; 3827 } 3828 3829 if (attr == &dev_attr_microamps.attr) 3830 return ops->get_current_limit ? mode : 0; 3831 3832 if (attr == &dev_attr_opmode.attr) 3833 return ops->get_mode ? mode : 0; 3834 3835 if (attr == &dev_attr_state.attr) 3836 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3837 3838 if (attr == &dev_attr_status.attr) 3839 return ops->get_status ? mode : 0; 3840 3841 if (attr == &dev_attr_bypass.attr) 3842 return ops->get_bypass ? mode : 0; 3843 3844 /* some attributes are type-specific */ 3845 if (attr == &dev_attr_requested_microamps.attr) 3846 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3847 3848 /* constraints need specific supporting methods */ 3849 if (attr == &dev_attr_min_microvolts.attr || 3850 attr == &dev_attr_max_microvolts.attr) 3851 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3852 3853 if (attr == &dev_attr_min_microamps.attr || 3854 attr == &dev_attr_max_microamps.attr) 3855 return ops->set_current_limit ? mode : 0; 3856 3857 if (attr == &dev_attr_suspend_standby_state.attr || 3858 attr == &dev_attr_suspend_mem_state.attr || 3859 attr == &dev_attr_suspend_disk_state.attr) 3860 return mode; 3861 3862 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3863 attr == &dev_attr_suspend_mem_microvolts.attr || 3864 attr == &dev_attr_suspend_disk_microvolts.attr) 3865 return ops->set_suspend_voltage ? mode : 0; 3866 3867 if (attr == &dev_attr_suspend_standby_mode.attr || 3868 attr == &dev_attr_suspend_mem_mode.attr || 3869 attr == &dev_attr_suspend_disk_mode.attr) 3870 return ops->set_suspend_mode ? mode : 0; 3871 3872 return mode; 3873 } 3874 3875 static const struct attribute_group regulator_dev_group = { 3876 .attrs = regulator_dev_attrs, 3877 .is_visible = regulator_attr_is_visible, 3878 }; 3879 3880 static const struct attribute_group *regulator_dev_groups[] = { 3881 ®ulator_dev_group, 3882 NULL 3883 }; 3884 3885 static void regulator_dev_release(struct device *dev) 3886 { 3887 struct regulator_dev *rdev = dev_get_drvdata(dev); 3888 3889 kfree(rdev->constraints); 3890 of_node_put(rdev->dev.of_node); 3891 kfree(rdev); 3892 } 3893 3894 static struct class regulator_class = { 3895 .name = "regulator", 3896 .dev_release = regulator_dev_release, 3897 .dev_groups = regulator_dev_groups, 3898 }; 3899 3900 static void rdev_init_debugfs(struct regulator_dev *rdev) 3901 { 3902 struct device *parent = rdev->dev.parent; 3903 const char *rname = rdev_get_name(rdev); 3904 char name[NAME_MAX]; 3905 3906 /* Avoid duplicate debugfs directory names */ 3907 if (parent && rname == rdev->desc->name) { 3908 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3909 rname); 3910 rname = name; 3911 } 3912 3913 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3914 if (!rdev->debugfs) { 3915 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3916 return; 3917 } 3918 3919 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3920 &rdev->use_count); 3921 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3922 &rdev->open_count); 3923 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3924 &rdev->bypass_count); 3925 } 3926 3927 static int regulator_register_resolve_supply(struct device *dev, void *data) 3928 { 3929 struct regulator_dev *rdev = dev_to_rdev(dev); 3930 3931 if (regulator_resolve_supply(rdev)) 3932 rdev_dbg(rdev, "unable to resolve supply\n"); 3933 3934 return 0; 3935 } 3936 3937 /** 3938 * regulator_register - register regulator 3939 * @regulator_desc: regulator to register 3940 * @cfg: runtime configuration for regulator 3941 * 3942 * Called by regulator drivers to register a regulator. 3943 * Returns a valid pointer to struct regulator_dev on success 3944 * or an ERR_PTR() on error. 3945 */ 3946 struct regulator_dev * 3947 regulator_register(const struct regulator_desc *regulator_desc, 3948 const struct regulator_config *cfg) 3949 { 3950 const struct regulation_constraints *constraints = NULL; 3951 const struct regulator_init_data *init_data; 3952 struct regulator_config *config = NULL; 3953 static atomic_t regulator_no = ATOMIC_INIT(-1); 3954 struct regulator_dev *rdev; 3955 struct device *dev; 3956 int ret, i; 3957 3958 if (regulator_desc == NULL || cfg == NULL) 3959 return ERR_PTR(-EINVAL); 3960 3961 dev = cfg->dev; 3962 WARN_ON(!dev); 3963 3964 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3965 return ERR_PTR(-EINVAL); 3966 3967 if (regulator_desc->type != REGULATOR_VOLTAGE && 3968 regulator_desc->type != REGULATOR_CURRENT) 3969 return ERR_PTR(-EINVAL); 3970 3971 /* Only one of each should be implemented */ 3972 WARN_ON(regulator_desc->ops->get_voltage && 3973 regulator_desc->ops->get_voltage_sel); 3974 WARN_ON(regulator_desc->ops->set_voltage && 3975 regulator_desc->ops->set_voltage_sel); 3976 3977 /* If we're using selectors we must implement list_voltage. */ 3978 if (regulator_desc->ops->get_voltage_sel && 3979 !regulator_desc->ops->list_voltage) { 3980 return ERR_PTR(-EINVAL); 3981 } 3982 if (regulator_desc->ops->set_voltage_sel && 3983 !regulator_desc->ops->list_voltage) { 3984 return ERR_PTR(-EINVAL); 3985 } 3986 3987 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3988 if (rdev == NULL) 3989 return ERR_PTR(-ENOMEM); 3990 3991 /* 3992 * Duplicate the config so the driver could override it after 3993 * parsing init data. 3994 */ 3995 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3996 if (config == NULL) { 3997 kfree(rdev); 3998 return ERR_PTR(-ENOMEM); 3999 } 4000 4001 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 4002 &rdev->dev.of_node); 4003 if (!init_data) { 4004 init_data = config->init_data; 4005 rdev->dev.of_node = of_node_get(config->of_node); 4006 } 4007 4008 mutex_init(&rdev->mutex); 4009 rdev->reg_data = config->driver_data; 4010 rdev->owner = regulator_desc->owner; 4011 rdev->desc = regulator_desc; 4012 if (config->regmap) 4013 rdev->regmap = config->regmap; 4014 else if (dev_get_regmap(dev, NULL)) 4015 rdev->regmap = dev_get_regmap(dev, NULL); 4016 else if (dev->parent) 4017 rdev->regmap = dev_get_regmap(dev->parent, NULL); 4018 INIT_LIST_HEAD(&rdev->consumer_list); 4019 INIT_LIST_HEAD(&rdev->list); 4020 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 4021 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 4022 4023 /* preform any regulator specific init */ 4024 if (init_data && init_data->regulator_init) { 4025 ret = init_data->regulator_init(rdev->reg_data); 4026 if (ret < 0) 4027 goto clean; 4028 } 4029 4030 if ((config->ena_gpio || config->ena_gpio_initialized) && 4031 gpio_is_valid(config->ena_gpio)) { 4032 mutex_lock(®ulator_list_mutex); 4033 ret = regulator_ena_gpio_request(rdev, config); 4034 mutex_unlock(®ulator_list_mutex); 4035 if (ret != 0) { 4036 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 4037 config->ena_gpio, ret); 4038 goto clean; 4039 } 4040 } 4041 4042 /* register with sysfs */ 4043 rdev->dev.class = ®ulator_class; 4044 rdev->dev.parent = dev; 4045 dev_set_name(&rdev->dev, "regulator.%lu", 4046 (unsigned long) atomic_inc_return(®ulator_no)); 4047 4048 /* set regulator constraints */ 4049 if (init_data) 4050 constraints = &init_data->constraints; 4051 4052 if (init_data && init_data->supply_regulator) 4053 rdev->supply_name = init_data->supply_regulator; 4054 else if (regulator_desc->supply_name) 4055 rdev->supply_name = regulator_desc->supply_name; 4056 4057 /* 4058 * Attempt to resolve the regulator supply, if specified, 4059 * but don't return an error if we fail because we will try 4060 * to resolve it again later as more regulators are added. 4061 */ 4062 if (regulator_resolve_supply(rdev)) 4063 rdev_dbg(rdev, "unable to resolve supply\n"); 4064 4065 ret = set_machine_constraints(rdev, constraints); 4066 if (ret < 0) 4067 goto wash; 4068 4069 /* add consumers devices */ 4070 if (init_data) { 4071 mutex_lock(®ulator_list_mutex); 4072 for (i = 0; i < init_data->num_consumer_supplies; i++) { 4073 ret = set_consumer_device_supply(rdev, 4074 init_data->consumer_supplies[i].dev_name, 4075 init_data->consumer_supplies[i].supply); 4076 if (ret < 0) { 4077 mutex_unlock(®ulator_list_mutex); 4078 dev_err(dev, "Failed to set supply %s\n", 4079 init_data->consumer_supplies[i].supply); 4080 goto unset_supplies; 4081 } 4082 } 4083 mutex_unlock(®ulator_list_mutex); 4084 } 4085 4086 ret = device_register(&rdev->dev); 4087 if (ret != 0) { 4088 put_device(&rdev->dev); 4089 goto unset_supplies; 4090 } 4091 4092 dev_set_drvdata(&rdev->dev, rdev); 4093 rdev_init_debugfs(rdev); 4094 4095 /* try to resolve regulators supply since a new one was registered */ 4096 class_for_each_device(®ulator_class, NULL, NULL, 4097 regulator_register_resolve_supply); 4098 kfree(config); 4099 return rdev; 4100 4101 unset_supplies: 4102 mutex_lock(®ulator_list_mutex); 4103 unset_regulator_supplies(rdev); 4104 mutex_unlock(®ulator_list_mutex); 4105 wash: 4106 kfree(rdev->constraints); 4107 mutex_lock(®ulator_list_mutex); 4108 regulator_ena_gpio_free(rdev); 4109 mutex_unlock(®ulator_list_mutex); 4110 clean: 4111 kfree(rdev); 4112 kfree(config); 4113 return ERR_PTR(ret); 4114 } 4115 EXPORT_SYMBOL_GPL(regulator_register); 4116 4117 /** 4118 * regulator_unregister - unregister regulator 4119 * @rdev: regulator to unregister 4120 * 4121 * Called by regulator drivers to unregister a regulator. 4122 */ 4123 void regulator_unregister(struct regulator_dev *rdev) 4124 { 4125 if (rdev == NULL) 4126 return; 4127 4128 if (rdev->supply) { 4129 while (rdev->use_count--) 4130 regulator_disable(rdev->supply); 4131 regulator_put(rdev->supply); 4132 } 4133 mutex_lock(®ulator_list_mutex); 4134 debugfs_remove_recursive(rdev->debugfs); 4135 flush_work(&rdev->disable_work.work); 4136 WARN_ON(rdev->open_count); 4137 unset_regulator_supplies(rdev); 4138 list_del(&rdev->list); 4139 regulator_ena_gpio_free(rdev); 4140 mutex_unlock(®ulator_list_mutex); 4141 device_unregister(&rdev->dev); 4142 } 4143 EXPORT_SYMBOL_GPL(regulator_unregister); 4144 4145 static int _regulator_suspend_prepare(struct device *dev, void *data) 4146 { 4147 struct regulator_dev *rdev = dev_to_rdev(dev); 4148 const suspend_state_t *state = data; 4149 int ret; 4150 4151 mutex_lock(&rdev->mutex); 4152 ret = suspend_prepare(rdev, *state); 4153 mutex_unlock(&rdev->mutex); 4154 4155 return ret; 4156 } 4157 4158 /** 4159 * regulator_suspend_prepare - prepare regulators for system wide suspend 4160 * @state: system suspend state 4161 * 4162 * Configure each regulator with it's suspend operating parameters for state. 4163 * This will usually be called by machine suspend code prior to supending. 4164 */ 4165 int regulator_suspend_prepare(suspend_state_t state) 4166 { 4167 /* ON is handled by regulator active state */ 4168 if (state == PM_SUSPEND_ON) 4169 return -EINVAL; 4170 4171 return class_for_each_device(®ulator_class, NULL, &state, 4172 _regulator_suspend_prepare); 4173 } 4174 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 4175 4176 static int _regulator_suspend_finish(struct device *dev, void *data) 4177 { 4178 struct regulator_dev *rdev = dev_to_rdev(dev); 4179 int ret; 4180 4181 mutex_lock(&rdev->mutex); 4182 if (rdev->use_count > 0 || rdev->constraints->always_on) { 4183 if (!_regulator_is_enabled(rdev)) { 4184 ret = _regulator_do_enable(rdev); 4185 if (ret) 4186 dev_err(dev, 4187 "Failed to resume regulator %d\n", 4188 ret); 4189 } 4190 } else { 4191 if (!have_full_constraints()) 4192 goto unlock; 4193 if (!_regulator_is_enabled(rdev)) 4194 goto unlock; 4195 4196 ret = _regulator_do_disable(rdev); 4197 if (ret) 4198 dev_err(dev, "Failed to suspend regulator %d\n", ret); 4199 } 4200 unlock: 4201 mutex_unlock(&rdev->mutex); 4202 4203 /* Keep processing regulators in spite of any errors */ 4204 return 0; 4205 } 4206 4207 /** 4208 * regulator_suspend_finish - resume regulators from system wide suspend 4209 * 4210 * Turn on regulators that might be turned off by regulator_suspend_prepare 4211 * and that should be turned on according to the regulators properties. 4212 */ 4213 int regulator_suspend_finish(void) 4214 { 4215 return class_for_each_device(®ulator_class, NULL, NULL, 4216 _regulator_suspend_finish); 4217 } 4218 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 4219 4220 /** 4221 * regulator_has_full_constraints - the system has fully specified constraints 4222 * 4223 * Calling this function will cause the regulator API to disable all 4224 * regulators which have a zero use count and don't have an always_on 4225 * constraint in a late_initcall. 4226 * 4227 * The intention is that this will become the default behaviour in a 4228 * future kernel release so users are encouraged to use this facility 4229 * now. 4230 */ 4231 void regulator_has_full_constraints(void) 4232 { 4233 has_full_constraints = 1; 4234 } 4235 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 4236 4237 /** 4238 * rdev_get_drvdata - get rdev regulator driver data 4239 * @rdev: regulator 4240 * 4241 * Get rdev regulator driver private data. This call can be used in the 4242 * regulator driver context. 4243 */ 4244 void *rdev_get_drvdata(struct regulator_dev *rdev) 4245 { 4246 return rdev->reg_data; 4247 } 4248 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 4249 4250 /** 4251 * regulator_get_drvdata - get regulator driver data 4252 * @regulator: regulator 4253 * 4254 * Get regulator driver private data. This call can be used in the consumer 4255 * driver context when non API regulator specific functions need to be called. 4256 */ 4257 void *regulator_get_drvdata(struct regulator *regulator) 4258 { 4259 return regulator->rdev->reg_data; 4260 } 4261 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 4262 4263 /** 4264 * regulator_set_drvdata - set regulator driver data 4265 * @regulator: regulator 4266 * @data: data 4267 */ 4268 void regulator_set_drvdata(struct regulator *regulator, void *data) 4269 { 4270 regulator->rdev->reg_data = data; 4271 } 4272 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 4273 4274 /** 4275 * regulator_get_id - get regulator ID 4276 * @rdev: regulator 4277 */ 4278 int rdev_get_id(struct regulator_dev *rdev) 4279 { 4280 return rdev->desc->id; 4281 } 4282 EXPORT_SYMBOL_GPL(rdev_get_id); 4283 4284 struct device *rdev_get_dev(struct regulator_dev *rdev) 4285 { 4286 return &rdev->dev; 4287 } 4288 EXPORT_SYMBOL_GPL(rdev_get_dev); 4289 4290 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 4291 { 4292 return reg_init_data->driver_data; 4293 } 4294 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 4295 4296 #ifdef CONFIG_DEBUG_FS 4297 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 4298 size_t count, loff_t *ppos) 4299 { 4300 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 4301 ssize_t len, ret = 0; 4302 struct regulator_map *map; 4303 4304 if (!buf) 4305 return -ENOMEM; 4306 4307 list_for_each_entry(map, ®ulator_map_list, list) { 4308 len = snprintf(buf + ret, PAGE_SIZE - ret, 4309 "%s -> %s.%s\n", 4310 rdev_get_name(map->regulator), map->dev_name, 4311 map->supply); 4312 if (len >= 0) 4313 ret += len; 4314 if (ret > PAGE_SIZE) { 4315 ret = PAGE_SIZE; 4316 break; 4317 } 4318 } 4319 4320 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 4321 4322 kfree(buf); 4323 4324 return ret; 4325 } 4326 #endif 4327 4328 static const struct file_operations supply_map_fops = { 4329 #ifdef CONFIG_DEBUG_FS 4330 .read = supply_map_read_file, 4331 .llseek = default_llseek, 4332 #endif 4333 }; 4334 4335 #ifdef CONFIG_DEBUG_FS 4336 struct summary_data { 4337 struct seq_file *s; 4338 struct regulator_dev *parent; 4339 int level; 4340 }; 4341 4342 static void regulator_summary_show_subtree(struct seq_file *s, 4343 struct regulator_dev *rdev, 4344 int level); 4345 4346 static int regulator_summary_show_children(struct device *dev, void *data) 4347 { 4348 struct regulator_dev *rdev = dev_to_rdev(dev); 4349 struct summary_data *summary_data = data; 4350 4351 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 4352 regulator_summary_show_subtree(summary_data->s, rdev, 4353 summary_data->level + 1); 4354 4355 return 0; 4356 } 4357 4358 static void regulator_summary_show_subtree(struct seq_file *s, 4359 struct regulator_dev *rdev, 4360 int level) 4361 { 4362 struct regulation_constraints *c; 4363 struct regulator *consumer; 4364 struct summary_data summary_data; 4365 4366 if (!rdev) 4367 return; 4368 4369 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4370 level * 3 + 1, "", 4371 30 - level * 3, rdev_get_name(rdev), 4372 rdev->use_count, rdev->open_count, rdev->bypass_count); 4373 4374 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4375 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4376 4377 c = rdev->constraints; 4378 if (c) { 4379 switch (rdev->desc->type) { 4380 case REGULATOR_VOLTAGE: 4381 seq_printf(s, "%5dmV %5dmV ", 4382 c->min_uV / 1000, c->max_uV / 1000); 4383 break; 4384 case REGULATOR_CURRENT: 4385 seq_printf(s, "%5dmA %5dmA ", 4386 c->min_uA / 1000, c->max_uA / 1000); 4387 break; 4388 } 4389 } 4390 4391 seq_puts(s, "\n"); 4392 4393 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4394 if (consumer->dev->class == ®ulator_class) 4395 continue; 4396 4397 seq_printf(s, "%*s%-*s ", 4398 (level + 1) * 3 + 1, "", 4399 30 - (level + 1) * 3, dev_name(consumer->dev)); 4400 4401 switch (rdev->desc->type) { 4402 case REGULATOR_VOLTAGE: 4403 seq_printf(s, "%37dmV %5dmV", 4404 consumer->min_uV / 1000, 4405 consumer->max_uV / 1000); 4406 break; 4407 case REGULATOR_CURRENT: 4408 break; 4409 } 4410 4411 seq_puts(s, "\n"); 4412 } 4413 4414 summary_data.s = s; 4415 summary_data.level = level; 4416 summary_data.parent = rdev; 4417 4418 class_for_each_device(®ulator_class, NULL, &summary_data, 4419 regulator_summary_show_children); 4420 } 4421 4422 static int regulator_summary_show_roots(struct device *dev, void *data) 4423 { 4424 struct regulator_dev *rdev = dev_to_rdev(dev); 4425 struct seq_file *s = data; 4426 4427 if (!rdev->supply) 4428 regulator_summary_show_subtree(s, rdev, 0); 4429 4430 return 0; 4431 } 4432 4433 static int regulator_summary_show(struct seq_file *s, void *data) 4434 { 4435 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4436 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4437 4438 class_for_each_device(®ulator_class, NULL, s, 4439 regulator_summary_show_roots); 4440 4441 return 0; 4442 } 4443 4444 static int regulator_summary_open(struct inode *inode, struct file *file) 4445 { 4446 return single_open(file, regulator_summary_show, inode->i_private); 4447 } 4448 #endif 4449 4450 static const struct file_operations regulator_summary_fops = { 4451 #ifdef CONFIG_DEBUG_FS 4452 .open = regulator_summary_open, 4453 .read = seq_read, 4454 .llseek = seq_lseek, 4455 .release = single_release, 4456 #endif 4457 }; 4458 4459 static int __init regulator_init(void) 4460 { 4461 int ret; 4462 4463 ret = class_register(®ulator_class); 4464 4465 debugfs_root = debugfs_create_dir("regulator", NULL); 4466 if (!debugfs_root) 4467 pr_warn("regulator: Failed to create debugfs directory\n"); 4468 4469 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4470 &supply_map_fops); 4471 4472 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4473 NULL, ®ulator_summary_fops); 4474 4475 regulator_dummy_init(); 4476 4477 return ret; 4478 } 4479 4480 /* init early to allow our consumers to complete system booting */ 4481 core_initcall(regulator_init); 4482 4483 static int __init regulator_late_cleanup(struct device *dev, void *data) 4484 { 4485 struct regulator_dev *rdev = dev_to_rdev(dev); 4486 const struct regulator_ops *ops = rdev->desc->ops; 4487 struct regulation_constraints *c = rdev->constraints; 4488 int enabled, ret; 4489 4490 if (c && c->always_on) 4491 return 0; 4492 4493 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 4494 return 0; 4495 4496 mutex_lock(&rdev->mutex); 4497 4498 if (rdev->use_count) 4499 goto unlock; 4500 4501 /* If we can't read the status assume it's on. */ 4502 if (ops->is_enabled) 4503 enabled = ops->is_enabled(rdev); 4504 else 4505 enabled = 1; 4506 4507 if (!enabled) 4508 goto unlock; 4509 4510 if (have_full_constraints()) { 4511 /* We log since this may kill the system if it goes 4512 * wrong. */ 4513 rdev_info(rdev, "disabling\n"); 4514 ret = _regulator_do_disable(rdev); 4515 if (ret != 0) 4516 rdev_err(rdev, "couldn't disable: %d\n", ret); 4517 } else { 4518 /* The intention is that in future we will 4519 * assume that full constraints are provided 4520 * so warn even if we aren't going to do 4521 * anything here. 4522 */ 4523 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4524 } 4525 4526 unlock: 4527 mutex_unlock(&rdev->mutex); 4528 4529 return 0; 4530 } 4531 4532 static int __init regulator_init_complete(void) 4533 { 4534 /* 4535 * Since DT doesn't provide an idiomatic mechanism for 4536 * enabling full constraints and since it's much more natural 4537 * with DT to provide them just assume that a DT enabled 4538 * system has full constraints. 4539 */ 4540 if (of_have_populated_dt()) 4541 has_full_constraints = true; 4542 4543 /* If we have a full configuration then disable any regulators 4544 * we have permission to change the status for and which are 4545 * not in use or always_on. This is effectively the default 4546 * for DT and ACPI as they have full constraints. 4547 */ 4548 class_for_each_device(®ulator_class, NULL, NULL, 4549 regulator_late_cleanup); 4550 4551 return 0; 4552 } 4553 late_initcall_sync(regulator_init_complete); 4554