xref: /linux/drivers/regulator/core.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 	int i;
163 
164 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 		mutex_lock_nested(&rdev->mutex, i);
166 }
167 
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 	struct regulator *supply;
175 
176 	while (1) {
177 		mutex_unlock(&rdev->mutex);
178 		supply = rdev->supply;
179 
180 		if (!rdev->supply)
181 			return;
182 
183 		rdev = supply->rdev;
184 	}
185 }
186 
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 	struct device_node *regnode = NULL;
199 	char prop_name[32]; /* 32 is max size of property name */
200 
201 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202 
203 	snprintf(prop_name, 32, "%s-supply", supply);
204 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205 
206 	if (!regnode) {
207 		dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 				prop_name, dev->of_node->full_name);
209 		return NULL;
210 	}
211 	return regnode;
212 }
213 
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 				   int *min_uV, int *max_uV)
217 {
218 	BUG_ON(*min_uV > *max_uV);
219 
220 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 		rdev_err(rdev, "voltage operation not allowed\n");
222 		return -EPERM;
223 	}
224 
225 	if (*max_uV > rdev->constraints->max_uV)
226 		*max_uV = rdev->constraints->max_uV;
227 	if (*min_uV < rdev->constraints->min_uV)
228 		*min_uV = rdev->constraints->min_uV;
229 
230 	if (*min_uV > *max_uV) {
231 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 			 *min_uV, *max_uV);
233 		return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 				     int *min_uV, int *max_uV)
244 {
245 	struct regulator *regulator;
246 
247 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 		/*
249 		 * Assume consumers that didn't say anything are OK
250 		 * with anything in the constraint range.
251 		 */
252 		if (!regulator->min_uV && !regulator->max_uV)
253 			continue;
254 
255 		if (*max_uV > regulator->max_uV)
256 			*max_uV = regulator->max_uV;
257 		if (*min_uV < regulator->min_uV)
258 			*min_uV = regulator->min_uV;
259 	}
260 
261 	if (*min_uV > *max_uV) {
262 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 			*min_uV, *max_uV);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 					int *min_uA, int *max_uA)
273 {
274 	BUG_ON(*min_uA > *max_uA);
275 
276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 		rdev_err(rdev, "current operation not allowed\n");
278 		return -EPERM;
279 	}
280 
281 	if (*max_uA > rdev->constraints->max_uA)
282 		*max_uA = rdev->constraints->max_uA;
283 	if (*min_uA < rdev->constraints->min_uA)
284 		*min_uA = rdev->constraints->min_uA;
285 
286 	if (*min_uA > *max_uA) {
287 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 			 *min_uA, *max_uA);
289 		return -EINVAL;
290 	}
291 
292 	return 0;
293 }
294 
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297 				    unsigned int *mode)
298 {
299 	switch (*mode) {
300 	case REGULATOR_MODE_FAST:
301 	case REGULATOR_MODE_NORMAL:
302 	case REGULATOR_MODE_IDLE:
303 	case REGULATOR_MODE_STANDBY:
304 		break;
305 	default:
306 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 		return -EINVAL;
308 	}
309 
310 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 		rdev_err(rdev, "mode operation not allowed\n");
312 		return -EPERM;
313 	}
314 
315 	/* The modes are bitmasks, the most power hungry modes having
316 	 * the lowest values. If the requested mode isn't supported
317 	 * try higher modes. */
318 	while (*mode) {
319 		if (rdev->constraints->valid_modes_mask & *mode)
320 			return 0;
321 		*mode /= 2;
322 	}
323 
324 	return -EINVAL;
325 }
326 
327 static ssize_t regulator_uV_show(struct device *dev,
328 				struct device_attribute *attr, char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 	ssize_t ret;
332 
333 	mutex_lock(&rdev->mutex);
334 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 	mutex_unlock(&rdev->mutex);
336 
337 	return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340 
341 static ssize_t regulator_uA_show(struct device *dev,
342 				struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349 
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351 			 char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358 
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361 	switch (mode) {
362 	case REGULATOR_MODE_FAST:
363 		return sprintf(buf, "fast\n");
364 	case REGULATOR_MODE_NORMAL:
365 		return sprintf(buf, "normal\n");
366 	case REGULATOR_MODE_IDLE:
367 		return sprintf(buf, "idle\n");
368 	case REGULATOR_MODE_STANDBY:
369 		return sprintf(buf, "standby\n");
370 	}
371 	return sprintf(buf, "unknown\n");
372 }
373 
374 static ssize_t regulator_opmode_show(struct device *dev,
375 				    struct device_attribute *attr, char *buf)
376 {
377 	struct regulator_dev *rdev = dev_get_drvdata(dev);
378 
379 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382 
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385 	if (state > 0)
386 		return sprintf(buf, "enabled\n");
387 	else if (state == 0)
388 		return sprintf(buf, "disabled\n");
389 	else
390 		return sprintf(buf, "unknown\n");
391 }
392 
393 static ssize_t regulator_state_show(struct device *dev,
394 				   struct device_attribute *attr, char *buf)
395 {
396 	struct regulator_dev *rdev = dev_get_drvdata(dev);
397 	ssize_t ret;
398 
399 	mutex_lock(&rdev->mutex);
400 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 	mutex_unlock(&rdev->mutex);
402 
403 	return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406 
407 static ssize_t regulator_status_show(struct device *dev,
408 				   struct device_attribute *attr, char *buf)
409 {
410 	struct regulator_dev *rdev = dev_get_drvdata(dev);
411 	int status;
412 	char *label;
413 
414 	status = rdev->desc->ops->get_status(rdev);
415 	if (status < 0)
416 		return status;
417 
418 	switch (status) {
419 	case REGULATOR_STATUS_OFF:
420 		label = "off";
421 		break;
422 	case REGULATOR_STATUS_ON:
423 		label = "on";
424 		break;
425 	case REGULATOR_STATUS_ERROR:
426 		label = "error";
427 		break;
428 	case REGULATOR_STATUS_FAST:
429 		label = "fast";
430 		break;
431 	case REGULATOR_STATUS_NORMAL:
432 		label = "normal";
433 		break;
434 	case REGULATOR_STATUS_IDLE:
435 		label = "idle";
436 		break;
437 	case REGULATOR_STATUS_STANDBY:
438 		label = "standby";
439 		break;
440 	case REGULATOR_STATUS_BYPASS:
441 		label = "bypass";
442 		break;
443 	case REGULATOR_STATUS_UNDEFINED:
444 		label = "undefined";
445 		break;
446 	default:
447 		return -ERANGE;
448 	}
449 
450 	return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453 
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465 
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477 
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 				    struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	if (!rdev->constraints)
484 		return sprintf(buf, "constraint not defined\n");
485 
486 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489 
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 				    struct device_attribute *attr, char *buf)
492 {
493 	struct regulator_dev *rdev = dev_get_drvdata(dev);
494 
495 	if (!rdev->constraints)
496 		return sprintf(buf, "constraint not defined\n");
497 
498 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501 
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 				      struct device_attribute *attr, char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 	struct regulator *regulator;
507 	int uA = 0;
508 
509 	mutex_lock(&rdev->mutex);
510 	list_for_each_entry(regulator, &rdev->consumer_list, list)
511 		uA += regulator->uA_load;
512 	mutex_unlock(&rdev->mutex);
513 	return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516 
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518 			      char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 	return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524 
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526 			 char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 
530 	switch (rdev->desc->type) {
531 	case REGULATOR_VOLTAGE:
532 		return sprintf(buf, "voltage\n");
533 	case REGULATOR_CURRENT:
534 		return sprintf(buf, "current\n");
535 	}
536 	return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539 
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 				struct device_attribute *attr, char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 
545 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 		regulator_suspend_mem_uV_show, NULL);
549 
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 				struct device_attribute *attr, char *buf)
552 {
553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 
555 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 		regulator_suspend_disk_uV_show, NULL);
559 
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 				struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 		regulator_suspend_standby_uV_show, NULL);
569 
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 				struct device_attribute *attr, char *buf)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 
575 	return regulator_print_opmode(buf,
576 		rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 		regulator_suspend_mem_mode_show, NULL);
580 
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 				struct device_attribute *attr, char *buf)
583 {
584 	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 
586 	return regulator_print_opmode(buf,
587 		rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 		regulator_suspend_disk_mode_show, NULL);
591 
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 				struct device_attribute *attr, char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 
597 	return regulator_print_opmode(buf,
598 		rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 		regulator_suspend_standby_mode_show, NULL);
602 
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 				   struct device_attribute *attr, char *buf)
605 {
606 	struct regulator_dev *rdev = dev_get_drvdata(dev);
607 
608 	return regulator_print_state(buf,
609 			rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 		regulator_suspend_mem_state_show, NULL);
613 
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 				   struct device_attribute *attr, char *buf)
616 {
617 	struct regulator_dev *rdev = dev_get_drvdata(dev);
618 
619 	return regulator_print_state(buf,
620 			rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 		regulator_suspend_disk_state_show, NULL);
624 
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 				   struct device_attribute *attr, char *buf)
627 {
628 	struct regulator_dev *rdev = dev_get_drvdata(dev);
629 
630 	return regulator_print_state(buf,
631 			rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 		regulator_suspend_standby_state_show, NULL);
635 
636 static ssize_t regulator_bypass_show(struct device *dev,
637 				     struct device_attribute *attr, char *buf)
638 {
639 	struct regulator_dev *rdev = dev_get_drvdata(dev);
640 	const char *report;
641 	bool bypass;
642 	int ret;
643 
644 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645 
646 	if (ret != 0)
647 		report = "unknown";
648 	else if (bypass)
649 		report = "enabled";
650 	else
651 		report = "disabled";
652 
653 	return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656 		   regulator_bypass_show, NULL);
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	lockdep_assert_held_once(&rdev->mutex);
667 
668 	/*
669 	 * first check to see if we can set modes at all, otherwise just
670 	 * tell the consumer everything is OK.
671 	 */
672 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 		return 0;
674 
675 	if (!rdev->desc->ops->get_optimum_mode &&
676 	    !rdev->desc->ops->set_load)
677 		return 0;
678 
679 	if (!rdev->desc->ops->set_mode &&
680 	    !rdev->desc->ops->set_load)
681 		return -EINVAL;
682 
683 	/* calc total requested load */
684 	list_for_each_entry(sibling, &rdev->consumer_list, list)
685 		current_uA += sibling->uA_load;
686 
687 	current_uA += rdev->constraints->system_load;
688 
689 	if (rdev->desc->ops->set_load) {
690 		/* set the optimum mode for our new total regulator load */
691 		err = rdev->desc->ops->set_load(rdev, current_uA);
692 		if (err < 0)
693 			rdev_err(rdev, "failed to set load %d\n", current_uA);
694 	} else {
695 		/* get output voltage */
696 		output_uV = _regulator_get_voltage(rdev);
697 		if (output_uV <= 0) {
698 			rdev_err(rdev, "invalid output voltage found\n");
699 			return -EINVAL;
700 		}
701 
702 		/* get input voltage */
703 		input_uV = 0;
704 		if (rdev->supply)
705 			input_uV = regulator_get_voltage(rdev->supply);
706 		if (input_uV <= 0)
707 			input_uV = rdev->constraints->input_uV;
708 		if (input_uV <= 0) {
709 			rdev_err(rdev, "invalid input voltage found\n");
710 			return -EINVAL;
711 		}
712 
713 		/* now get the optimum mode for our new total regulator load */
714 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 							 output_uV, current_uA);
716 
717 		/* check the new mode is allowed */
718 		err = regulator_mode_constrain(rdev, &mode);
719 		if (err < 0) {
720 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 				 current_uA, input_uV, output_uV);
722 			return err;
723 		}
724 
725 		err = rdev->desc->ops->set_mode(rdev, mode);
726 		if (err < 0)
727 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 	}
729 
730 	return err;
731 }
732 
733 static int suspend_set_state(struct regulator_dev *rdev,
734 	struct regulator_state *rstate)
735 {
736 	int ret = 0;
737 
738 	/* If we have no suspend mode configration don't set anything;
739 	 * only warn if the driver implements set_suspend_voltage or
740 	 * set_suspend_mode callback.
741 	 */
742 	if (!rstate->enabled && !rstate->disabled) {
743 		if (rdev->desc->ops->set_suspend_voltage ||
744 		    rdev->desc->ops->set_suspend_mode)
745 			rdev_warn(rdev, "No configuration\n");
746 		return 0;
747 	}
748 
749 	if (rstate->enabled && rstate->disabled) {
750 		rdev_err(rdev, "invalid configuration\n");
751 		return -EINVAL;
752 	}
753 
754 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 		ret = rdev->desc->ops->set_suspend_enable(rdev);
756 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 		ret = rdev->desc->ops->set_suspend_disable(rdev);
758 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759 		ret = 0;
760 
761 	if (ret < 0) {
762 		rdev_err(rdev, "failed to enabled/disable\n");
763 		return ret;
764 	}
765 
766 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768 		if (ret < 0) {
769 			rdev_err(rdev, "failed to set voltage\n");
770 			return ret;
771 		}
772 	}
773 
774 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776 		if (ret < 0) {
777 			rdev_err(rdev, "failed to set mode\n");
778 			return ret;
779 		}
780 	}
781 	return ret;
782 }
783 
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787 	if (!rdev->constraints)
788 		return -EINVAL;
789 
790 	switch (state) {
791 	case PM_SUSPEND_STANDBY:
792 		return suspend_set_state(rdev,
793 			&rdev->constraints->state_standby);
794 	case PM_SUSPEND_MEM:
795 		return suspend_set_state(rdev,
796 			&rdev->constraints->state_mem);
797 	case PM_SUSPEND_MAX:
798 		return suspend_set_state(rdev,
799 			&rdev->constraints->state_disk);
800 	default:
801 		return -EINVAL;
802 	}
803 }
804 
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807 	struct regulation_constraints *constraints = rdev->constraints;
808 	char buf[160] = "";
809 	size_t len = sizeof(buf) - 1;
810 	int count = 0;
811 	int ret;
812 
813 	if (constraints->min_uV && constraints->max_uV) {
814 		if (constraints->min_uV == constraints->max_uV)
815 			count += scnprintf(buf + count, len - count, "%d mV ",
816 					   constraints->min_uV / 1000);
817 		else
818 			count += scnprintf(buf + count, len - count,
819 					   "%d <--> %d mV ",
820 					   constraints->min_uV / 1000,
821 					   constraints->max_uV / 1000);
822 	}
823 
824 	if (!constraints->min_uV ||
825 	    constraints->min_uV != constraints->max_uV) {
826 		ret = _regulator_get_voltage(rdev);
827 		if (ret > 0)
828 			count += scnprintf(buf + count, len - count,
829 					   "at %d mV ", ret / 1000);
830 	}
831 
832 	if (constraints->uV_offset)
833 		count += scnprintf(buf + count, len - count, "%dmV offset ",
834 				   constraints->uV_offset / 1000);
835 
836 	if (constraints->min_uA && constraints->max_uA) {
837 		if (constraints->min_uA == constraints->max_uA)
838 			count += scnprintf(buf + count, len - count, "%d mA ",
839 					   constraints->min_uA / 1000);
840 		else
841 			count += scnprintf(buf + count, len - count,
842 					   "%d <--> %d mA ",
843 					   constraints->min_uA / 1000,
844 					   constraints->max_uA / 1000);
845 	}
846 
847 	if (!constraints->min_uA ||
848 	    constraints->min_uA != constraints->max_uA) {
849 		ret = _regulator_get_current_limit(rdev);
850 		if (ret > 0)
851 			count += scnprintf(buf + count, len - count,
852 					   "at %d mA ", ret / 1000);
853 	}
854 
855 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 		count += scnprintf(buf + count, len - count, "fast ");
857 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 		count += scnprintf(buf + count, len - count, "normal ");
859 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 		count += scnprintf(buf + count, len - count, "idle ");
861 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 		count += scnprintf(buf + count, len - count, "standby");
863 
864 	if (!count)
865 		scnprintf(buf, len, "no parameters");
866 
867 	rdev_dbg(rdev, "%s\n", buf);
868 
869 	if ((constraints->min_uV != constraints->max_uV) &&
870 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 		rdev_warn(rdev,
872 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874 
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 	struct regulation_constraints *constraints)
877 {
878 	const struct regulator_ops *ops = rdev->desc->ops;
879 	int ret;
880 
881 	/* do we need to apply the constraint voltage */
882 	if (rdev->constraints->apply_uV &&
883 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 		int target_min, target_max;
885 		int current_uV = _regulator_get_voltage(rdev);
886 		if (current_uV < 0) {
887 			rdev_err(rdev,
888 				 "failed to get the current voltage(%d)\n",
889 				 current_uV);
890 			return current_uV;
891 		}
892 
893 		/*
894 		 * If we're below the minimum voltage move up to the
895 		 * minimum voltage, if we're above the maximum voltage
896 		 * then move down to the maximum.
897 		 */
898 		target_min = current_uV;
899 		target_max = current_uV;
900 
901 		if (current_uV < rdev->constraints->min_uV) {
902 			target_min = rdev->constraints->min_uV;
903 			target_max = rdev->constraints->min_uV;
904 		}
905 
906 		if (current_uV > rdev->constraints->max_uV) {
907 			target_min = rdev->constraints->max_uV;
908 			target_max = rdev->constraints->max_uV;
909 		}
910 
911 		if (target_min != current_uV || target_max != current_uV) {
912 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 				  current_uV, target_min, target_max);
914 			ret = _regulator_do_set_voltage(
915 				rdev, target_min, target_max);
916 			if (ret < 0) {
917 				rdev_err(rdev,
918 					"failed to apply %d-%duV constraint(%d)\n",
919 					target_min, target_max, ret);
920 				return ret;
921 			}
922 		}
923 	}
924 
925 	/* constrain machine-level voltage specs to fit
926 	 * the actual range supported by this regulator.
927 	 */
928 	if (ops->list_voltage && rdev->desc->n_voltages) {
929 		int	count = rdev->desc->n_voltages;
930 		int	i;
931 		int	min_uV = INT_MAX;
932 		int	max_uV = INT_MIN;
933 		int	cmin = constraints->min_uV;
934 		int	cmax = constraints->max_uV;
935 
936 		/* it's safe to autoconfigure fixed-voltage supplies
937 		   and the constraints are used by list_voltage. */
938 		if (count == 1 && !cmin) {
939 			cmin = 1;
940 			cmax = INT_MAX;
941 			constraints->min_uV = cmin;
942 			constraints->max_uV = cmax;
943 		}
944 
945 		/* voltage constraints are optional */
946 		if ((cmin == 0) && (cmax == 0))
947 			return 0;
948 
949 		/* else require explicit machine-level constraints */
950 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 			rdev_err(rdev, "invalid voltage constraints\n");
952 			return -EINVAL;
953 		}
954 
955 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 		for (i = 0; i < count; i++) {
957 			int	value;
958 
959 			value = ops->list_voltage(rdev, i);
960 			if (value <= 0)
961 				continue;
962 
963 			/* maybe adjust [min_uV..max_uV] */
964 			if (value >= cmin && value < min_uV)
965 				min_uV = value;
966 			if (value <= cmax && value > max_uV)
967 				max_uV = value;
968 		}
969 
970 		/* final: [min_uV..max_uV] valid iff constraints valid */
971 		if (max_uV < min_uV) {
972 			rdev_err(rdev,
973 				 "unsupportable voltage constraints %u-%uuV\n",
974 				 min_uV, max_uV);
975 			return -EINVAL;
976 		}
977 
978 		/* use regulator's subset of machine constraints */
979 		if (constraints->min_uV < min_uV) {
980 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 				 constraints->min_uV, min_uV);
982 			constraints->min_uV = min_uV;
983 		}
984 		if (constraints->max_uV > max_uV) {
985 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 				 constraints->max_uV, max_uV);
987 			constraints->max_uV = max_uV;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 	struct regulation_constraints *constraints)
996 {
997 	const struct regulator_ops *ops = rdev->desc->ops;
998 	int ret;
999 
1000 	if (!constraints->min_uA && !constraints->max_uA)
1001 		return 0;
1002 
1003 	if (constraints->min_uA > constraints->max_uA) {
1004 		rdev_err(rdev, "Invalid current constraints\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	if (!ops->set_current_limit || !ops->get_current_limit) {
1009 		rdev_warn(rdev, "Operation of current configuration missing\n");
1010 		return 0;
1011 	}
1012 
1013 	/* Set regulator current in constraints range */
1014 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 			constraints->max_uA);
1016 	if (ret < 0) {
1017 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018 		return ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025 
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 	const struct regulation_constraints *constraints)
1039 {
1040 	int ret = 0;
1041 	const struct regulator_ops *ops = rdev->desc->ops;
1042 
1043 	if (constraints)
1044 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045 					    GFP_KERNEL);
1046 	else
1047 		rdev->constraints = kzalloc(sizeof(*constraints),
1048 					    GFP_KERNEL);
1049 	if (!rdev->constraints)
1050 		return -ENOMEM;
1051 
1052 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053 	if (ret != 0)
1054 		return ret;
1055 
1056 	ret = machine_constraints_current(rdev, rdev->constraints);
1057 	if (ret != 0)
1058 		return ret;
1059 
1060 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 		ret = ops->set_input_current_limit(rdev,
1062 						   rdev->constraints->ilim_uA);
1063 		if (ret < 0) {
1064 			rdev_err(rdev, "failed to set input limit\n");
1065 			return ret;
1066 		}
1067 	}
1068 
1069 	/* do we need to setup our suspend state */
1070 	if (rdev->constraints->initial_state) {
1071 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072 		if (ret < 0) {
1073 			rdev_err(rdev, "failed to set suspend state\n");
1074 			return ret;
1075 		}
1076 	}
1077 
1078 	if (rdev->constraints->initial_mode) {
1079 		if (!ops->set_mode) {
1080 			rdev_err(rdev, "no set_mode operation\n");
1081 			return -EINVAL;
1082 		}
1083 
1084 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085 		if (ret < 0) {
1086 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 			return ret;
1088 		}
1089 	}
1090 
1091 	/* If the constraints say the regulator should be on at this point
1092 	 * and we have control then make sure it is enabled.
1093 	 */
1094 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 		ret = _regulator_do_enable(rdev);
1096 		if (ret < 0 && ret != -EINVAL) {
1097 			rdev_err(rdev, "failed to enable\n");
1098 			return ret;
1099 		}
1100 	}
1101 
1102 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 		&& ops->set_ramp_delay) {
1104 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105 		if (ret < 0) {
1106 			rdev_err(rdev, "failed to set ramp_delay\n");
1107 			return ret;
1108 		}
1109 	}
1110 
1111 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 		ret = ops->set_pull_down(rdev);
1113 		if (ret < 0) {
1114 			rdev_err(rdev, "failed to set pull down\n");
1115 			return ret;
1116 		}
1117 	}
1118 
1119 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 		ret = ops->set_soft_start(rdev);
1121 		if (ret < 0) {
1122 			rdev_err(rdev, "failed to set soft start\n");
1123 			return ret;
1124 		}
1125 	}
1126 
1127 	if (rdev->constraints->over_current_protection
1128 		&& ops->set_over_current_protection) {
1129 		ret = ops->set_over_current_protection(rdev);
1130 		if (ret < 0) {
1131 			rdev_err(rdev, "failed to set over current protection\n");
1132 			return ret;
1133 		}
1134 	}
1135 
1136 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 		bool ad_state = (rdev->constraints->active_discharge ==
1138 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139 
1140 		ret = ops->set_active_discharge(rdev, ad_state);
1141 		if (ret < 0) {
1142 			rdev_err(rdev, "failed to set active discharge\n");
1143 			return ret;
1144 		}
1145 	}
1146 
1147 	print_constraints(rdev);
1148 	return 0;
1149 }
1150 
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161 		      struct regulator_dev *supply_rdev)
1162 {
1163 	int err;
1164 
1165 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166 
1167 	if (!try_module_get(supply_rdev->owner))
1168 		return -ENODEV;
1169 
1170 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 	if (rdev->supply == NULL) {
1172 		err = -ENOMEM;
1173 		return err;
1174 	}
1175 	supply_rdev->open_count++;
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 				      const char *consumer_dev_name,
1193 				      const char *supply)
1194 {
1195 	struct regulator_map *node;
1196 	int has_dev;
1197 
1198 	if (supply == NULL)
1199 		return -EINVAL;
1200 
1201 	if (consumer_dev_name != NULL)
1202 		has_dev = 1;
1203 	else
1204 		has_dev = 0;
1205 
1206 	list_for_each_entry(node, &regulator_map_list, list) {
1207 		if (node->dev_name && consumer_dev_name) {
1208 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209 				continue;
1210 		} else if (node->dev_name || consumer_dev_name) {
1211 			continue;
1212 		}
1213 
1214 		if (strcmp(node->supply, supply) != 0)
1215 			continue;
1216 
1217 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218 			 consumer_dev_name,
1219 			 dev_name(&node->regulator->dev),
1220 			 node->regulator->desc->name,
1221 			 supply,
1222 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 		return -EBUSY;
1224 	}
1225 
1226 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 	if (node == NULL)
1228 		return -ENOMEM;
1229 
1230 	node->regulator = rdev;
1231 	node->supply = supply;
1232 
1233 	if (has_dev) {
1234 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 		if (node->dev_name == NULL) {
1236 			kfree(node);
1237 			return -ENOMEM;
1238 		}
1239 	}
1240 
1241 	list_add(&node->list, &regulator_map_list);
1242 	return 0;
1243 }
1244 
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247 	struct regulator_map *node, *n;
1248 
1249 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250 		if (rdev == node->regulator) {
1251 			list_del(&node->list);
1252 			kfree(node->dev_name);
1253 			kfree(node);
1254 		}
1255 	}
1256 }
1257 
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 					  char __user *user_buf,
1261 					  size_t count, loff_t *ppos)
1262 {
1263 	const struct regulator *regulator = file->private_data;
1264 	const struct regulation_constraints *c = regulator->rdev->constraints;
1265 	char *buf;
1266 	ssize_t ret;
1267 
1268 	if (!c)
1269 		return 0;
1270 
1271 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272 	if (!buf)
1273 		return -ENOMEM;
1274 
1275 	ret = snprintf(buf, PAGE_SIZE,
1276 			"always_on: %u\n"
1277 			"boot_on: %u\n"
1278 			"apply_uV: %u\n"
1279 			"ramp_disable: %u\n"
1280 			"soft_start: %u\n"
1281 			"pull_down: %u\n"
1282 			"over_current_protection: %u\n",
1283 			c->always_on,
1284 			c->boot_on,
1285 			c->apply_uV,
1286 			c->ramp_disable,
1287 			c->soft_start,
1288 			c->pull_down,
1289 			c->over_current_protection);
1290 
1291 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292 	kfree(buf);
1293 
1294 	return ret;
1295 }
1296 
1297 #endif
1298 
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 	.open = simple_open,
1302 	.read = constraint_flags_read_file,
1303 	.llseek = default_llseek,
1304 #endif
1305 };
1306 
1307 #define REG_STR_SIZE	64
1308 
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310 					  struct device *dev,
1311 					  const char *supply_name)
1312 {
1313 	struct regulator *regulator;
1314 	char buf[REG_STR_SIZE];
1315 	int err, size;
1316 
1317 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 	if (regulator == NULL)
1319 		return NULL;
1320 
1321 	mutex_lock(&rdev->mutex);
1322 	regulator->rdev = rdev;
1323 	list_add(&regulator->list, &rdev->consumer_list);
1324 
1325 	if (dev) {
1326 		regulator->dev = dev;
1327 
1328 		/* Add a link to the device sysfs entry */
1329 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330 				 dev->kobj.name, supply_name);
1331 		if (size >= REG_STR_SIZE)
1332 			goto overflow_err;
1333 
1334 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 		if (regulator->supply_name == NULL)
1336 			goto overflow_err;
1337 
1338 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 					buf);
1340 		if (err) {
1341 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 				  dev->kobj.name, err);
1343 			/* non-fatal */
1344 		}
1345 	} else {
1346 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347 		if (regulator->supply_name == NULL)
1348 			goto overflow_err;
1349 	}
1350 
1351 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352 						rdev->debugfs);
1353 	if (!regulator->debugfs) {
1354 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 	} else {
1356 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 				   &regulator->uA_load);
1358 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 				   &regulator->min_uV);
1360 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 				   &regulator->max_uV);
1362 		debugfs_create_file("constraint_flags", 0444,
1363 				    regulator->debugfs, regulator,
1364 				    &constraint_flags_fops);
1365 	}
1366 
1367 	/*
1368 	 * Check now if the regulator is an always on regulator - if
1369 	 * it is then we don't need to do nearly so much work for
1370 	 * enable/disable calls.
1371 	 */
1372 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 	    _regulator_is_enabled(rdev))
1374 		regulator->always_on = true;
1375 
1376 	mutex_unlock(&rdev->mutex);
1377 	return regulator;
1378 overflow_err:
1379 	list_del(&regulator->list);
1380 	kfree(regulator);
1381 	mutex_unlock(&rdev->mutex);
1382 	return NULL;
1383 }
1384 
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387 	if (rdev->constraints && rdev->constraints->enable_time)
1388 		return rdev->constraints->enable_time;
1389 	if (!rdev->desc->ops->enable_time)
1390 		return rdev->desc->enable_time;
1391 	return rdev->desc->ops->enable_time(rdev);
1392 }
1393 
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 		struct device *dev, const char *supply)
1396 {
1397 	struct regulator_supply_alias *map;
1398 
1399 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401 			return map;
1402 
1403 	return NULL;
1404 }
1405 
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408 	struct regulator_supply_alias *map;
1409 
1410 	map = regulator_find_supply_alias(*dev, *supply);
1411 	if (map) {
1412 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 				*supply, map->alias_supply,
1414 				dev_name(map->alias_dev));
1415 		*dev = map->alias_dev;
1416 		*supply = map->alias_supply;
1417 	}
1418 }
1419 
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422 	return dev->of_node == data;
1423 }
1424 
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427 	struct device *dev;
1428 
1429 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430 
1431 	return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433 
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436 	struct regulator_dev *r = dev_to_rdev(dev);
1437 
1438 	return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440 
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443 	struct device *dev;
1444 
1445 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446 
1447 	return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449 
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one,
1459  * or NULL on failure. The refcount must be dropped by calling put_device().
1460  */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462 						  const char *supply,
1463 						  int *ret)
1464 {
1465 	struct regulator_dev *r;
1466 	struct device_node *node;
1467 	struct regulator_map *map;
1468 	const char *devname = NULL;
1469 
1470 	regulator_supply_alias(&dev, &supply);
1471 
1472 	/* first do a dt based lookup */
1473 	if (dev && dev->of_node) {
1474 		node = of_get_regulator(dev, supply);
1475 		if (node) {
1476 			r = of_find_regulator_by_node(node);
1477 			if (r)
1478 				return r;
1479 			*ret = -EPROBE_DEFER;
1480 			return NULL;
1481 		} else {
1482 			/*
1483 			 * If we couldn't even get the node then it's
1484 			 * not just that the device didn't register
1485 			 * yet, there's no node and we'll never
1486 			 * succeed.
1487 			 */
1488 			*ret = -ENODEV;
1489 		}
1490 	}
1491 
1492 	/* if not found, try doing it non-dt way */
1493 	if (dev)
1494 		devname = dev_name(dev);
1495 
1496 	r = regulator_lookup_by_name(supply);
1497 	if (r)
1498 		return r;
1499 
1500 	mutex_lock(&regulator_list_mutex);
1501 	list_for_each_entry(map, &regulator_map_list, list) {
1502 		/* If the mapping has a device set up it must match */
1503 		if (map->dev_name &&
1504 		    (!devname || strcmp(map->dev_name, devname)))
1505 			continue;
1506 
1507 		if (strcmp(map->supply, supply) == 0 &&
1508 		    get_device(&map->regulator->dev)) {
1509 			mutex_unlock(&regulator_list_mutex);
1510 			return map->regulator;
1511 		}
1512 	}
1513 	mutex_unlock(&regulator_list_mutex);
1514 
1515 	return NULL;
1516 }
1517 
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520 	struct regulator_dev *r;
1521 	struct device *dev = rdev->dev.parent;
1522 	int ret;
1523 
1524 	/* No supply to resovle? */
1525 	if (!rdev->supply_name)
1526 		return 0;
1527 
1528 	/* Supply already resolved? */
1529 	if (rdev->supply)
1530 		return 0;
1531 
1532 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533 	if (!r) {
1534 		if (ret == -ENODEV) {
1535 			/*
1536 			 * No supply was specified for this regulator and
1537 			 * there will never be one.
1538 			 */
1539 			return 0;
1540 		}
1541 
1542 		/* Did the lookup explicitly defer for us? */
1543 		if (ret == -EPROBE_DEFER)
1544 			return ret;
1545 
1546 		if (have_full_constraints()) {
1547 			r = dummy_regulator_rdev;
1548 			get_device(&r->dev);
1549 		} else {
1550 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551 				rdev->supply_name, rdev->desc->name);
1552 			return -EPROBE_DEFER;
1553 		}
1554 	}
1555 
1556 	/* Recursively resolve the supply of the supply */
1557 	ret = regulator_resolve_supply(r);
1558 	if (ret < 0) {
1559 		put_device(&r->dev);
1560 		return ret;
1561 	}
1562 
1563 	ret = set_supply(rdev, r);
1564 	if (ret < 0) {
1565 		put_device(&r->dev);
1566 		return ret;
1567 	}
1568 
1569 	/* Cascade always-on state to supply */
1570 	if (_regulator_is_enabled(rdev)) {
1571 		ret = regulator_enable(rdev->supply);
1572 		if (ret < 0) {
1573 			_regulator_put(rdev->supply);
1574 			rdev->supply = NULL;
1575 			return ret;
1576 		}
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /* Internal regulator request function */
1583 static struct regulator *_regulator_get(struct device *dev, const char *id,
1584 					bool exclusive, bool allow_dummy)
1585 {
1586 	struct regulator_dev *rdev;
1587 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588 	const char *devname = NULL;
1589 	int ret;
1590 
1591 	if (id == NULL) {
1592 		pr_err("get() with no identifier\n");
1593 		return ERR_PTR(-EINVAL);
1594 	}
1595 
1596 	if (dev)
1597 		devname = dev_name(dev);
1598 
1599 	if (have_full_constraints())
1600 		ret = -ENODEV;
1601 	else
1602 		ret = -EPROBE_DEFER;
1603 
1604 	rdev = regulator_dev_lookup(dev, id, &ret);
1605 	if (rdev)
1606 		goto found;
1607 
1608 	regulator = ERR_PTR(ret);
1609 
1610 	/*
1611 	 * If we have return value from dev_lookup fail, we do not expect to
1612 	 * succeed, so, quit with appropriate error value
1613 	 */
1614 	if (ret && ret != -ENODEV)
1615 		return regulator;
1616 
1617 	if (!devname)
1618 		devname = "deviceless";
1619 
1620 	/*
1621 	 * Assume that a regulator is physically present and enabled
1622 	 * even if it isn't hooked up and just provide a dummy.
1623 	 */
1624 	if (have_full_constraints() && allow_dummy) {
1625 		pr_warn("%s supply %s not found, using dummy regulator\n",
1626 			devname, id);
1627 
1628 		rdev = dummy_regulator_rdev;
1629 		get_device(&rdev->dev);
1630 		goto found;
1631 	/* Don't log an error when called from regulator_get_optional() */
1632 	} else if (!have_full_constraints() || exclusive) {
1633 		dev_warn(dev, "dummy supplies not allowed\n");
1634 	}
1635 
1636 	return regulator;
1637 
1638 found:
1639 	if (rdev->exclusive) {
1640 		regulator = ERR_PTR(-EPERM);
1641 		put_device(&rdev->dev);
1642 		return regulator;
1643 	}
1644 
1645 	if (exclusive && rdev->open_count) {
1646 		regulator = ERR_PTR(-EBUSY);
1647 		put_device(&rdev->dev);
1648 		return regulator;
1649 	}
1650 
1651 	ret = regulator_resolve_supply(rdev);
1652 	if (ret < 0) {
1653 		regulator = ERR_PTR(ret);
1654 		put_device(&rdev->dev);
1655 		return regulator;
1656 	}
1657 
1658 	if (!try_module_get(rdev->owner)) {
1659 		put_device(&rdev->dev);
1660 		return regulator;
1661 	}
1662 
1663 	regulator = create_regulator(rdev, dev, id);
1664 	if (regulator == NULL) {
1665 		regulator = ERR_PTR(-ENOMEM);
1666 		put_device(&rdev->dev);
1667 		module_put(rdev->owner);
1668 		return regulator;
1669 	}
1670 
1671 	rdev->open_count++;
1672 	if (exclusive) {
1673 		rdev->exclusive = 1;
1674 
1675 		ret = _regulator_is_enabled(rdev);
1676 		if (ret > 0)
1677 			rdev->use_count = 1;
1678 		else
1679 			rdev->use_count = 0;
1680 	}
1681 
1682 	return regulator;
1683 }
1684 
1685 /**
1686  * regulator_get - lookup and obtain a reference to a regulator.
1687  * @dev: device for regulator "consumer"
1688  * @id: Supply name or regulator ID.
1689  *
1690  * Returns a struct regulator corresponding to the regulator producer,
1691  * or IS_ERR() condition containing errno.
1692  *
1693  * Use of supply names configured via regulator_set_device_supply() is
1694  * strongly encouraged.  It is recommended that the supply name used
1695  * should match the name used for the supply and/or the relevant
1696  * device pins in the datasheet.
1697  */
1698 struct regulator *regulator_get(struct device *dev, const char *id)
1699 {
1700 	return _regulator_get(dev, id, false, true);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get);
1703 
1704 /**
1705  * regulator_get_exclusive - obtain exclusive access to a regulator.
1706  * @dev: device for regulator "consumer"
1707  * @id: Supply name or regulator ID.
1708  *
1709  * Returns a struct regulator corresponding to the regulator producer,
1710  * or IS_ERR() condition containing errno.  Other consumers will be
1711  * unable to obtain this regulator while this reference is held and the
1712  * use count for the regulator will be initialised to reflect the current
1713  * state of the regulator.
1714  *
1715  * This is intended for use by consumers which cannot tolerate shared
1716  * use of the regulator such as those which need to force the
1717  * regulator off for correct operation of the hardware they are
1718  * controlling.
1719  *
1720  * Use of supply names configured via regulator_set_device_supply() is
1721  * strongly encouraged.  It is recommended that the supply name used
1722  * should match the name used for the supply and/or the relevant
1723  * device pins in the datasheet.
1724  */
1725 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726 {
1727 	return _regulator_get(dev, id, true, false);
1728 }
1729 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730 
1731 /**
1732  * regulator_get_optional - obtain optional access to a regulator.
1733  * @dev: device for regulator "consumer"
1734  * @id: Supply name or regulator ID.
1735  *
1736  * Returns a struct regulator corresponding to the regulator producer,
1737  * or IS_ERR() condition containing errno.
1738  *
1739  * This is intended for use by consumers for devices which can have
1740  * some supplies unconnected in normal use, such as some MMC devices.
1741  * It can allow the regulator core to provide stub supplies for other
1742  * supplies requested using normal regulator_get() calls without
1743  * disrupting the operation of drivers that can handle absent
1744  * supplies.
1745  *
1746  * Use of supply names configured via regulator_set_device_supply() is
1747  * strongly encouraged.  It is recommended that the supply name used
1748  * should match the name used for the supply and/or the relevant
1749  * device pins in the datasheet.
1750  */
1751 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752 {
1753 	return _regulator_get(dev, id, false, false);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_get_optional);
1756 
1757 /* regulator_list_mutex lock held by regulator_put() */
1758 static void _regulator_put(struct regulator *regulator)
1759 {
1760 	struct regulator_dev *rdev;
1761 
1762 	if (IS_ERR_OR_NULL(regulator))
1763 		return;
1764 
1765 	lockdep_assert_held_once(&regulator_list_mutex);
1766 
1767 	rdev = regulator->rdev;
1768 
1769 	debugfs_remove_recursive(regulator->debugfs);
1770 
1771 	/* remove any sysfs entries */
1772 	if (regulator->dev)
1773 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774 	mutex_lock(&rdev->mutex);
1775 	list_del(&regulator->list);
1776 
1777 	rdev->open_count--;
1778 	rdev->exclusive = 0;
1779 	put_device(&rdev->dev);
1780 	mutex_unlock(&rdev->mutex);
1781 
1782 	kfree(regulator->supply_name);
1783 	kfree(regulator);
1784 
1785 	module_put(rdev->owner);
1786 }
1787 
1788 /**
1789  * regulator_put - "free" the regulator source
1790  * @regulator: regulator source
1791  *
1792  * Note: drivers must ensure that all regulator_enable calls made on this
1793  * regulator source are balanced by regulator_disable calls prior to calling
1794  * this function.
1795  */
1796 void regulator_put(struct regulator *regulator)
1797 {
1798 	mutex_lock(&regulator_list_mutex);
1799 	_regulator_put(regulator);
1800 	mutex_unlock(&regulator_list_mutex);
1801 }
1802 EXPORT_SYMBOL_GPL(regulator_put);
1803 
1804 /**
1805  * regulator_register_supply_alias - Provide device alias for supply lookup
1806  *
1807  * @dev: device that will be given as the regulator "consumer"
1808  * @id: Supply name or regulator ID
1809  * @alias_dev: device that should be used to lookup the supply
1810  * @alias_id: Supply name or regulator ID that should be used to lookup the
1811  * supply
1812  *
1813  * All lookups for id on dev will instead be conducted for alias_id on
1814  * alias_dev.
1815  */
1816 int regulator_register_supply_alias(struct device *dev, const char *id,
1817 				    struct device *alias_dev,
1818 				    const char *alias_id)
1819 {
1820 	struct regulator_supply_alias *map;
1821 
1822 	map = regulator_find_supply_alias(dev, id);
1823 	if (map)
1824 		return -EEXIST;
1825 
1826 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827 	if (!map)
1828 		return -ENOMEM;
1829 
1830 	map->src_dev = dev;
1831 	map->src_supply = id;
1832 	map->alias_dev = alias_dev;
1833 	map->alias_supply = alias_id;
1834 
1835 	list_add(&map->list, &regulator_supply_alias_list);
1836 
1837 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1839 
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843 
1844 /**
1845  * regulator_unregister_supply_alias - Remove device alias
1846  *
1847  * @dev: device that will be given as the regulator "consumer"
1848  * @id: Supply name or regulator ID
1849  *
1850  * Remove a lookup alias if one exists for id on dev.
1851  */
1852 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853 {
1854 	struct regulator_supply_alias *map;
1855 
1856 	map = regulator_find_supply_alias(dev, id);
1857 	if (map) {
1858 		list_del(&map->list);
1859 		kfree(map);
1860 	}
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863 
1864 /**
1865  * regulator_bulk_register_supply_alias - register multiple aliases
1866  *
1867  * @dev: device that will be given as the regulator "consumer"
1868  * @id: List of supply names or regulator IDs
1869  * @alias_dev: device that should be used to lookup the supply
1870  * @alias_id: List of supply names or regulator IDs that should be used to
1871  * lookup the supply
1872  * @num_id: Number of aliases to register
1873  *
1874  * @return 0 on success, an errno on failure.
1875  *
1876  * This helper function allows drivers to register several supply
1877  * aliases in one operation.  If any of the aliases cannot be
1878  * registered any aliases that were registered will be removed
1879  * before returning to the caller.
1880  */
1881 int regulator_bulk_register_supply_alias(struct device *dev,
1882 					 const char *const *id,
1883 					 struct device *alias_dev,
1884 					 const char *const *alias_id,
1885 					 int num_id)
1886 {
1887 	int i;
1888 	int ret;
1889 
1890 	for (i = 0; i < num_id; ++i) {
1891 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892 						      alias_id[i]);
1893 		if (ret < 0)
1894 			goto err;
1895 	}
1896 
1897 	return 0;
1898 
1899 err:
1900 	dev_err(dev,
1901 		"Failed to create supply alias %s,%s -> %s,%s\n",
1902 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903 
1904 	while (--i >= 0)
1905 		regulator_unregister_supply_alias(dev, id[i]);
1906 
1907 	return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910 
1911 /**
1912  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913  *
1914  * @dev: device that will be given as the regulator "consumer"
1915  * @id: List of supply names or regulator IDs
1916  * @num_id: Number of aliases to unregister
1917  *
1918  * This helper function allows drivers to unregister several supply
1919  * aliases in one operation.
1920  */
1921 void regulator_bulk_unregister_supply_alias(struct device *dev,
1922 					    const char *const *id,
1923 					    int num_id)
1924 {
1925 	int i;
1926 
1927 	for (i = 0; i < num_id; ++i)
1928 		regulator_unregister_supply_alias(dev, id[i]);
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931 
1932 
1933 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935 				const struct regulator_config *config)
1936 {
1937 	struct regulator_enable_gpio *pin;
1938 	struct gpio_desc *gpiod;
1939 	int ret;
1940 
1941 	gpiod = gpio_to_desc(config->ena_gpio);
1942 
1943 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944 		if (pin->gpiod == gpiod) {
1945 			rdev_dbg(rdev, "GPIO %d is already used\n",
1946 				config->ena_gpio);
1947 			goto update_ena_gpio_to_rdev;
1948 		}
1949 	}
1950 
1951 	ret = gpio_request_one(config->ena_gpio,
1952 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1953 				rdev_get_name(rdev));
1954 	if (ret)
1955 		return ret;
1956 
1957 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958 	if (pin == NULL) {
1959 		gpio_free(config->ena_gpio);
1960 		return -ENOMEM;
1961 	}
1962 
1963 	pin->gpiod = gpiod;
1964 	pin->ena_gpio_invert = config->ena_gpio_invert;
1965 	list_add(&pin->list, &regulator_ena_gpio_list);
1966 
1967 update_ena_gpio_to_rdev:
1968 	pin->request_count++;
1969 	rdev->ena_pin = pin;
1970 	return 0;
1971 }
1972 
1973 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974 {
1975 	struct regulator_enable_gpio *pin, *n;
1976 
1977 	if (!rdev->ena_pin)
1978 		return;
1979 
1980 	/* Free the GPIO only in case of no use */
1981 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1983 			if (pin->request_count <= 1) {
1984 				pin->request_count = 0;
1985 				gpiod_put(pin->gpiod);
1986 				list_del(&pin->list);
1987 				kfree(pin);
1988 				rdev->ena_pin = NULL;
1989 				return;
1990 			} else {
1991 				pin->request_count--;
1992 			}
1993 		}
1994 	}
1995 }
1996 
1997 /**
1998  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999  * @rdev: regulator_dev structure
2000  * @enable: enable GPIO at initial use?
2001  *
2002  * GPIO is enabled in case of initial use. (enable_count is 0)
2003  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004  */
2005 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006 {
2007 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2008 
2009 	if (!pin)
2010 		return -EINVAL;
2011 
2012 	if (enable) {
2013 		/* Enable GPIO at initial use */
2014 		if (pin->enable_count == 0)
2015 			gpiod_set_value_cansleep(pin->gpiod,
2016 						 !pin->ena_gpio_invert);
2017 
2018 		pin->enable_count++;
2019 	} else {
2020 		if (pin->enable_count > 1) {
2021 			pin->enable_count--;
2022 			return 0;
2023 		}
2024 
2025 		/* Disable GPIO if not used */
2026 		if (pin->enable_count <= 1) {
2027 			gpiod_set_value_cansleep(pin->gpiod,
2028 						 pin->ena_gpio_invert);
2029 			pin->enable_count = 0;
2030 		}
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 /**
2037  * _regulator_enable_delay - a delay helper function
2038  * @delay: time to delay in microseconds
2039  *
2040  * Delay for the requested amount of time as per the guidelines in:
2041  *
2042  *     Documentation/timers/timers-howto.txt
2043  *
2044  * The assumption here is that regulators will never be enabled in
2045  * atomic context and therefore sleeping functions can be used.
2046  */
2047 static void _regulator_enable_delay(unsigned int delay)
2048 {
2049 	unsigned int ms = delay / 1000;
2050 	unsigned int us = delay % 1000;
2051 
2052 	if (ms > 0) {
2053 		/*
2054 		 * For small enough values, handle super-millisecond
2055 		 * delays in the usleep_range() call below.
2056 		 */
2057 		if (ms < 20)
2058 			us += ms * 1000;
2059 		else
2060 			msleep(ms);
2061 	}
2062 
2063 	/*
2064 	 * Give the scheduler some room to coalesce with any other
2065 	 * wakeup sources. For delays shorter than 10 us, don't even
2066 	 * bother setting up high-resolution timers and just busy-
2067 	 * loop.
2068 	 */
2069 	if (us >= 10)
2070 		usleep_range(us, us + 100);
2071 	else
2072 		udelay(us);
2073 }
2074 
2075 static int _regulator_do_enable(struct regulator_dev *rdev)
2076 {
2077 	int ret, delay;
2078 
2079 	/* Query before enabling in case configuration dependent.  */
2080 	ret = _regulator_get_enable_time(rdev);
2081 	if (ret >= 0) {
2082 		delay = ret;
2083 	} else {
2084 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085 		delay = 0;
2086 	}
2087 
2088 	trace_regulator_enable(rdev_get_name(rdev));
2089 
2090 	if (rdev->desc->off_on_delay) {
2091 		/* if needed, keep a distance of off_on_delay from last time
2092 		 * this regulator was disabled.
2093 		 */
2094 		unsigned long start_jiffy = jiffies;
2095 		unsigned long intended, max_delay, remaining;
2096 
2097 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098 		intended = rdev->last_off_jiffy + max_delay;
2099 
2100 		if (time_before(start_jiffy, intended)) {
2101 			/* calc remaining jiffies to deal with one-time
2102 			 * timer wrapping.
2103 			 * in case of multiple timer wrapping, either it can be
2104 			 * detected by out-of-range remaining, or it cannot be
2105 			 * detected and we gets a panelty of
2106 			 * _regulator_enable_delay().
2107 			 */
2108 			remaining = intended - start_jiffy;
2109 			if (remaining <= max_delay)
2110 				_regulator_enable_delay(
2111 						jiffies_to_usecs(remaining));
2112 		}
2113 	}
2114 
2115 	if (rdev->ena_pin) {
2116 		if (!rdev->ena_gpio_state) {
2117 			ret = regulator_ena_gpio_ctrl(rdev, true);
2118 			if (ret < 0)
2119 				return ret;
2120 			rdev->ena_gpio_state = 1;
2121 		}
2122 	} else if (rdev->desc->ops->enable) {
2123 		ret = rdev->desc->ops->enable(rdev);
2124 		if (ret < 0)
2125 			return ret;
2126 	} else {
2127 		return -EINVAL;
2128 	}
2129 
2130 	/* Allow the regulator to ramp; it would be useful to extend
2131 	 * this for bulk operations so that the regulators can ramp
2132 	 * together.  */
2133 	trace_regulator_enable_delay(rdev_get_name(rdev));
2134 
2135 	_regulator_enable_delay(delay);
2136 
2137 	trace_regulator_enable_complete(rdev_get_name(rdev));
2138 
2139 	return 0;
2140 }
2141 
2142 /* locks held by regulator_enable() */
2143 static int _regulator_enable(struct regulator_dev *rdev)
2144 {
2145 	int ret;
2146 
2147 	lockdep_assert_held_once(&rdev->mutex);
2148 
2149 	/* check voltage and requested load before enabling */
2150 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2151 		drms_uA_update(rdev);
2152 
2153 	if (rdev->use_count == 0) {
2154 		/* The regulator may on if it's not switchable or left on */
2155 		ret = _regulator_is_enabled(rdev);
2156 		if (ret == -EINVAL || ret == 0) {
2157 			if (!regulator_ops_is_valid(rdev,
2158 					REGULATOR_CHANGE_STATUS))
2159 				return -EPERM;
2160 
2161 			ret = _regulator_do_enable(rdev);
2162 			if (ret < 0)
2163 				return ret;
2164 
2165 		} else if (ret < 0) {
2166 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167 			return ret;
2168 		}
2169 		/* Fallthrough on positive return values - already enabled */
2170 	}
2171 
2172 	rdev->use_count++;
2173 
2174 	return 0;
2175 }
2176 
2177 /**
2178  * regulator_enable - enable regulator output
2179  * @regulator: regulator source
2180  *
2181  * Request that the regulator be enabled with the regulator output at
2182  * the predefined voltage or current value.  Calls to regulator_enable()
2183  * must be balanced with calls to regulator_disable().
2184  *
2185  * NOTE: the output value can be set by other drivers, boot loader or may be
2186  * hardwired in the regulator.
2187  */
2188 int regulator_enable(struct regulator *regulator)
2189 {
2190 	struct regulator_dev *rdev = regulator->rdev;
2191 	int ret = 0;
2192 
2193 	if (regulator->always_on)
2194 		return 0;
2195 
2196 	if (rdev->supply) {
2197 		ret = regulator_enable(rdev->supply);
2198 		if (ret != 0)
2199 			return ret;
2200 	}
2201 
2202 	mutex_lock(&rdev->mutex);
2203 	ret = _regulator_enable(rdev);
2204 	mutex_unlock(&rdev->mutex);
2205 
2206 	if (ret != 0 && rdev->supply)
2207 		regulator_disable(rdev->supply);
2208 
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_enable);
2212 
2213 static int _regulator_do_disable(struct regulator_dev *rdev)
2214 {
2215 	int ret;
2216 
2217 	trace_regulator_disable(rdev_get_name(rdev));
2218 
2219 	if (rdev->ena_pin) {
2220 		if (rdev->ena_gpio_state) {
2221 			ret = regulator_ena_gpio_ctrl(rdev, false);
2222 			if (ret < 0)
2223 				return ret;
2224 			rdev->ena_gpio_state = 0;
2225 		}
2226 
2227 	} else if (rdev->desc->ops->disable) {
2228 		ret = rdev->desc->ops->disable(rdev);
2229 		if (ret != 0)
2230 			return ret;
2231 	}
2232 
2233 	/* cares about last_off_jiffy only if off_on_delay is required by
2234 	 * device.
2235 	 */
2236 	if (rdev->desc->off_on_delay)
2237 		rdev->last_off_jiffy = jiffies;
2238 
2239 	trace_regulator_disable_complete(rdev_get_name(rdev));
2240 
2241 	return 0;
2242 }
2243 
2244 /* locks held by regulator_disable() */
2245 static int _regulator_disable(struct regulator_dev *rdev)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held_once(&rdev->mutex);
2250 
2251 	if (WARN(rdev->use_count <= 0,
2252 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253 		return -EIO;
2254 
2255 	/* are we the last user and permitted to disable ? */
2256 	if (rdev->use_count == 1 &&
2257 	    (rdev->constraints && !rdev->constraints->always_on)) {
2258 
2259 		/* we are last user */
2260 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261 			ret = _notifier_call_chain(rdev,
2262 						   REGULATOR_EVENT_PRE_DISABLE,
2263 						   NULL);
2264 			if (ret & NOTIFY_STOP_MASK)
2265 				return -EINVAL;
2266 
2267 			ret = _regulator_do_disable(rdev);
2268 			if (ret < 0) {
2269 				rdev_err(rdev, "failed to disable\n");
2270 				_notifier_call_chain(rdev,
2271 						REGULATOR_EVENT_ABORT_DISABLE,
2272 						NULL);
2273 				return ret;
2274 			}
2275 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276 					NULL);
2277 		}
2278 
2279 		rdev->use_count = 0;
2280 	} else if (rdev->use_count > 1) {
2281 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2282 			drms_uA_update(rdev);
2283 
2284 		rdev->use_count--;
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 /**
2291  * regulator_disable - disable regulator output
2292  * @regulator: regulator source
2293  *
2294  * Disable the regulator output voltage or current.  Calls to
2295  * regulator_enable() must be balanced with calls to
2296  * regulator_disable().
2297  *
2298  * NOTE: this will only disable the regulator output if no other consumer
2299  * devices have it enabled, the regulator device supports disabling and
2300  * machine constraints permit this operation.
2301  */
2302 int regulator_disable(struct regulator *regulator)
2303 {
2304 	struct regulator_dev *rdev = regulator->rdev;
2305 	int ret = 0;
2306 
2307 	if (regulator->always_on)
2308 		return 0;
2309 
2310 	mutex_lock(&rdev->mutex);
2311 	ret = _regulator_disable(rdev);
2312 	mutex_unlock(&rdev->mutex);
2313 
2314 	if (ret == 0 && rdev->supply)
2315 		regulator_disable(rdev->supply);
2316 
2317 	return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(regulator_disable);
2320 
2321 /* locks held by regulator_force_disable() */
2322 static int _regulator_force_disable(struct regulator_dev *rdev)
2323 {
2324 	int ret = 0;
2325 
2326 	lockdep_assert_held_once(&rdev->mutex);
2327 
2328 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2330 	if (ret & NOTIFY_STOP_MASK)
2331 		return -EINVAL;
2332 
2333 	ret = _regulator_do_disable(rdev);
2334 	if (ret < 0) {
2335 		rdev_err(rdev, "failed to force disable\n");
2336 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338 		return ret;
2339 	}
2340 
2341 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342 			REGULATOR_EVENT_DISABLE, NULL);
2343 
2344 	return 0;
2345 }
2346 
2347 /**
2348  * regulator_force_disable - force disable regulator output
2349  * @regulator: regulator source
2350  *
2351  * Forcibly disable the regulator output voltage or current.
2352  * NOTE: this *will* disable the regulator output even if other consumer
2353  * devices have it enabled. This should be used for situations when device
2354  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355  */
2356 int regulator_force_disable(struct regulator *regulator)
2357 {
2358 	struct regulator_dev *rdev = regulator->rdev;
2359 	int ret;
2360 
2361 	mutex_lock(&rdev->mutex);
2362 	regulator->uA_load = 0;
2363 	ret = _regulator_force_disable(regulator->rdev);
2364 	mutex_unlock(&rdev->mutex);
2365 
2366 	if (rdev->supply)
2367 		while (rdev->open_count--)
2368 			regulator_disable(rdev->supply);
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_force_disable);
2373 
2374 static void regulator_disable_work(struct work_struct *work)
2375 {
2376 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377 						  disable_work.work);
2378 	int count, i, ret;
2379 
2380 	mutex_lock(&rdev->mutex);
2381 
2382 	BUG_ON(!rdev->deferred_disables);
2383 
2384 	count = rdev->deferred_disables;
2385 	rdev->deferred_disables = 0;
2386 
2387 	for (i = 0; i < count; i++) {
2388 		ret = _regulator_disable(rdev);
2389 		if (ret != 0)
2390 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391 	}
2392 
2393 	mutex_unlock(&rdev->mutex);
2394 
2395 	if (rdev->supply) {
2396 		for (i = 0; i < count; i++) {
2397 			ret = regulator_disable(rdev->supply);
2398 			if (ret != 0) {
2399 				rdev_err(rdev,
2400 					 "Supply disable failed: %d\n", ret);
2401 			}
2402 		}
2403 	}
2404 }
2405 
2406 /**
2407  * regulator_disable_deferred - disable regulator output with delay
2408  * @regulator: regulator source
2409  * @ms: miliseconds until the regulator is disabled
2410  *
2411  * Execute regulator_disable() on the regulator after a delay.  This
2412  * is intended for use with devices that require some time to quiesce.
2413  *
2414  * NOTE: this will only disable the regulator output if no other consumer
2415  * devices have it enabled, the regulator device supports disabling and
2416  * machine constraints permit this operation.
2417  */
2418 int regulator_disable_deferred(struct regulator *regulator, int ms)
2419 {
2420 	struct regulator_dev *rdev = regulator->rdev;
2421 
2422 	if (regulator->always_on)
2423 		return 0;
2424 
2425 	if (!ms)
2426 		return regulator_disable(regulator);
2427 
2428 	mutex_lock(&rdev->mutex);
2429 	rdev->deferred_disables++;
2430 	mutex_unlock(&rdev->mutex);
2431 
2432 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433 			   msecs_to_jiffies(ms));
2434 	return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437 
2438 static int _regulator_is_enabled(struct regulator_dev *rdev)
2439 {
2440 	/* A GPIO control always takes precedence */
2441 	if (rdev->ena_pin)
2442 		return rdev->ena_gpio_state;
2443 
2444 	/* If we don't know then assume that the regulator is always on */
2445 	if (!rdev->desc->ops->is_enabled)
2446 		return 1;
2447 
2448 	return rdev->desc->ops->is_enabled(rdev);
2449 }
2450 
2451 static int _regulator_list_voltage(struct regulator *regulator,
2452 				    unsigned selector, int lock)
2453 {
2454 	struct regulator_dev *rdev = regulator->rdev;
2455 	const struct regulator_ops *ops = rdev->desc->ops;
2456 	int ret;
2457 
2458 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459 		return rdev->desc->fixed_uV;
2460 
2461 	if (ops->list_voltage) {
2462 		if (selector >= rdev->desc->n_voltages)
2463 			return -EINVAL;
2464 		if (lock)
2465 			mutex_lock(&rdev->mutex);
2466 		ret = ops->list_voltage(rdev, selector);
2467 		if (lock)
2468 			mutex_unlock(&rdev->mutex);
2469 	} else if (rdev->supply) {
2470 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2471 	} else {
2472 		return -EINVAL;
2473 	}
2474 
2475 	if (ret > 0) {
2476 		if (ret < rdev->constraints->min_uV)
2477 			ret = 0;
2478 		else if (ret > rdev->constraints->max_uV)
2479 			ret = 0;
2480 	}
2481 
2482 	return ret;
2483 }
2484 
2485 /**
2486  * regulator_is_enabled - is the regulator output enabled
2487  * @regulator: regulator source
2488  *
2489  * Returns positive if the regulator driver backing the source/client
2490  * has requested that the device be enabled, zero if it hasn't, else a
2491  * negative errno code.
2492  *
2493  * Note that the device backing this regulator handle can have multiple
2494  * users, so it might be enabled even if regulator_enable() was never
2495  * called for this particular source.
2496  */
2497 int regulator_is_enabled(struct regulator *regulator)
2498 {
2499 	int ret;
2500 
2501 	if (regulator->always_on)
2502 		return 1;
2503 
2504 	mutex_lock(&regulator->rdev->mutex);
2505 	ret = _regulator_is_enabled(regulator->rdev);
2506 	mutex_unlock(&regulator->rdev->mutex);
2507 
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511 
2512 /**
2513  * regulator_count_voltages - count regulator_list_voltage() selectors
2514  * @regulator: regulator source
2515  *
2516  * Returns number of selectors, or negative errno.  Selectors are
2517  * numbered starting at zero, and typically correspond to bitfields
2518  * in hardware registers.
2519  */
2520 int regulator_count_voltages(struct regulator *regulator)
2521 {
2522 	struct regulator_dev	*rdev = regulator->rdev;
2523 
2524 	if (rdev->desc->n_voltages)
2525 		return rdev->desc->n_voltages;
2526 
2527 	if (!rdev->supply)
2528 		return -EINVAL;
2529 
2530 	return regulator_count_voltages(rdev->supply);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533 
2534 /**
2535  * regulator_list_voltage - enumerate supported voltages
2536  * @regulator: regulator source
2537  * @selector: identify voltage to list
2538  * Context: can sleep
2539  *
2540  * Returns a voltage that can be passed to @regulator_set_voltage(),
2541  * zero if this selector code can't be used on this system, or a
2542  * negative errno.
2543  */
2544 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545 {
2546 	return _regulator_list_voltage(regulator, selector, 1);
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549 
2550 /**
2551  * regulator_get_regmap - get the regulator's register map
2552  * @regulator: regulator source
2553  *
2554  * Returns the register map for the given regulator, or an ERR_PTR value
2555  * if the regulator doesn't use regmap.
2556  */
2557 struct regmap *regulator_get_regmap(struct regulator *regulator)
2558 {
2559 	struct regmap *map = regulator->rdev->regmap;
2560 
2561 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2562 }
2563 
2564 /**
2565  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566  * @regulator: regulator source
2567  * @vsel_reg: voltage selector register, output parameter
2568  * @vsel_mask: mask for voltage selector bitfield, output parameter
2569  *
2570  * Returns the hardware register offset and bitmask used for setting the
2571  * regulator voltage. This might be useful when configuring voltage-scaling
2572  * hardware or firmware that can make I2C requests behind the kernel's back,
2573  * for example.
2574  *
2575  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576  * and 0 is returned, otherwise a negative errno is returned.
2577  */
2578 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579 					 unsigned *vsel_reg,
2580 					 unsigned *vsel_mask)
2581 {
2582 	struct regulator_dev *rdev = regulator->rdev;
2583 	const struct regulator_ops *ops = rdev->desc->ops;
2584 
2585 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586 		return -EOPNOTSUPP;
2587 
2588 	 *vsel_reg = rdev->desc->vsel_reg;
2589 	 *vsel_mask = rdev->desc->vsel_mask;
2590 
2591 	 return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594 
2595 /**
2596  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597  * @regulator: regulator source
2598  * @selector: identify voltage to list
2599  *
2600  * Converts the selector to a hardware-specific voltage selector that can be
2601  * directly written to the regulator registers. The address of the voltage
2602  * register can be determined by calling @regulator_get_hardware_vsel_register.
2603  *
2604  * On error a negative errno is returned.
2605  */
2606 int regulator_list_hardware_vsel(struct regulator *regulator,
2607 				 unsigned selector)
2608 {
2609 	struct regulator_dev *rdev = regulator->rdev;
2610 	const struct regulator_ops *ops = rdev->desc->ops;
2611 
2612 	if (selector >= rdev->desc->n_voltages)
2613 		return -EINVAL;
2614 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615 		return -EOPNOTSUPP;
2616 
2617 	return selector;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620 
2621 /**
2622  * regulator_get_linear_step - return the voltage step size between VSEL values
2623  * @regulator: regulator source
2624  *
2625  * Returns the voltage step size between VSEL values for linear
2626  * regulators, or return 0 if the regulator isn't a linear regulator.
2627  */
2628 unsigned int regulator_get_linear_step(struct regulator *regulator)
2629 {
2630 	struct regulator_dev *rdev = regulator->rdev;
2631 
2632 	return rdev->desc->uV_step;
2633 }
2634 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635 
2636 /**
2637  * regulator_is_supported_voltage - check if a voltage range can be supported
2638  *
2639  * @regulator: Regulator to check.
2640  * @min_uV: Minimum required voltage in uV.
2641  * @max_uV: Maximum required voltage in uV.
2642  *
2643  * Returns a boolean or a negative error code.
2644  */
2645 int regulator_is_supported_voltage(struct regulator *regulator,
2646 				   int min_uV, int max_uV)
2647 {
2648 	struct regulator_dev *rdev = regulator->rdev;
2649 	int i, voltages, ret;
2650 
2651 	/* If we can't change voltage check the current voltage */
2652 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653 		ret = regulator_get_voltage(regulator);
2654 		if (ret >= 0)
2655 			return min_uV <= ret && ret <= max_uV;
2656 		else
2657 			return ret;
2658 	}
2659 
2660 	/* Any voltage within constrains range is fine? */
2661 	if (rdev->desc->continuous_voltage_range)
2662 		return min_uV >= rdev->constraints->min_uV &&
2663 				max_uV <= rdev->constraints->max_uV;
2664 
2665 	ret = regulator_count_voltages(regulator);
2666 	if (ret < 0)
2667 		return ret;
2668 	voltages = ret;
2669 
2670 	for (i = 0; i < voltages; i++) {
2671 		ret = regulator_list_voltage(regulator, i);
2672 
2673 		if (ret >= min_uV && ret <= max_uV)
2674 			return 1;
2675 	}
2676 
2677 	return 0;
2678 }
2679 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680 
2681 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682 				 int max_uV)
2683 {
2684 	const struct regulator_desc *desc = rdev->desc;
2685 
2686 	if (desc->ops->map_voltage)
2687 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688 
2689 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691 
2692 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694 
2695 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696 }
2697 
2698 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699 				       int min_uV, int max_uV,
2700 				       unsigned *selector)
2701 {
2702 	struct pre_voltage_change_data data;
2703 	int ret;
2704 
2705 	data.old_uV = _regulator_get_voltage(rdev);
2706 	data.min_uV = min_uV;
2707 	data.max_uV = max_uV;
2708 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709 				   &data);
2710 	if (ret & NOTIFY_STOP_MASK)
2711 		return -EINVAL;
2712 
2713 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714 	if (ret >= 0)
2715 		return ret;
2716 
2717 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718 			     (void *)data.old_uV);
2719 
2720 	return ret;
2721 }
2722 
2723 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724 					   int uV, unsigned selector)
2725 {
2726 	struct pre_voltage_change_data data;
2727 	int ret;
2728 
2729 	data.old_uV = _regulator_get_voltage(rdev);
2730 	data.min_uV = uV;
2731 	data.max_uV = uV;
2732 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733 				   &data);
2734 	if (ret & NOTIFY_STOP_MASK)
2735 		return -EINVAL;
2736 
2737 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738 	if (ret >= 0)
2739 		return ret;
2740 
2741 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742 			     (void *)data.old_uV);
2743 
2744 	return ret;
2745 }
2746 
2747 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748 				       int old_uV, int new_uV)
2749 {
2750 	unsigned int ramp_delay = 0;
2751 
2752 	if (rdev->constraints->ramp_delay)
2753 		ramp_delay = rdev->constraints->ramp_delay;
2754 	else if (rdev->desc->ramp_delay)
2755 		ramp_delay = rdev->desc->ramp_delay;
2756 
2757 	if (ramp_delay == 0) {
2758 		rdev_dbg(rdev, "ramp_delay not set\n");
2759 		return 0;
2760 	}
2761 
2762 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763 }
2764 
2765 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766 				     int min_uV, int max_uV)
2767 {
2768 	int ret;
2769 	int delay = 0;
2770 	int best_val = 0;
2771 	unsigned int selector;
2772 	int old_selector = -1;
2773 	const struct regulator_ops *ops = rdev->desc->ops;
2774 	int old_uV = _regulator_get_voltage(rdev);
2775 
2776 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777 
2778 	min_uV += rdev->constraints->uV_offset;
2779 	max_uV += rdev->constraints->uV_offset;
2780 
2781 	/*
2782 	 * If we can't obtain the old selector there is not enough
2783 	 * info to call set_voltage_time_sel().
2784 	 */
2785 	if (_regulator_is_enabled(rdev) &&
2786 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787 		old_selector = ops->get_voltage_sel(rdev);
2788 		if (old_selector < 0)
2789 			return old_selector;
2790 	}
2791 
2792 	if (ops->set_voltage) {
2793 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794 						  &selector);
2795 
2796 		if (ret >= 0) {
2797 			if (ops->list_voltage)
2798 				best_val = ops->list_voltage(rdev,
2799 							     selector);
2800 			else
2801 				best_val = _regulator_get_voltage(rdev);
2802 		}
2803 
2804 	} else if (ops->set_voltage_sel) {
2805 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806 		if (ret >= 0) {
2807 			best_val = ops->list_voltage(rdev, ret);
2808 			if (min_uV <= best_val && max_uV >= best_val) {
2809 				selector = ret;
2810 				if (old_selector == selector)
2811 					ret = 0;
2812 				else
2813 					ret = _regulator_call_set_voltage_sel(
2814 						rdev, best_val, selector);
2815 			} else {
2816 				ret = -EINVAL;
2817 			}
2818 		}
2819 	} else {
2820 		ret = -EINVAL;
2821 	}
2822 
2823 	if (ret)
2824 		goto out;
2825 
2826 	if (ops->set_voltage_time_sel) {
2827 		/*
2828 		 * Call set_voltage_time_sel if successfully obtained
2829 		 * old_selector
2830 		 */
2831 		if (old_selector >= 0 && old_selector != selector)
2832 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2833 							  selector);
2834 	} else {
2835 		if (old_uV != best_val) {
2836 			if (ops->set_voltage_time)
2837 				delay = ops->set_voltage_time(rdev, old_uV,
2838 							      best_val);
2839 			else
2840 				delay = _regulator_set_voltage_time(rdev,
2841 								    old_uV,
2842 								    best_val);
2843 		}
2844 	}
2845 
2846 	if (delay < 0) {
2847 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848 		delay = 0;
2849 	}
2850 
2851 	/* Insert any necessary delays */
2852 	if (delay >= 1000) {
2853 		mdelay(delay / 1000);
2854 		udelay(delay % 1000);
2855 	} else if (delay) {
2856 		udelay(delay);
2857 	}
2858 
2859 	if (best_val >= 0) {
2860 		unsigned long data = best_val;
2861 
2862 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863 				     (void *)data);
2864 	}
2865 
2866 out:
2867 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868 
2869 	return ret;
2870 }
2871 
2872 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873 					  int min_uV, int max_uV)
2874 {
2875 	struct regulator_dev *rdev = regulator->rdev;
2876 	int ret = 0;
2877 	int old_min_uV, old_max_uV;
2878 	int current_uV;
2879 	int best_supply_uV = 0;
2880 	int supply_change_uV = 0;
2881 
2882 	/* If we're setting the same range as last time the change
2883 	 * should be a noop (some cpufreq implementations use the same
2884 	 * voltage for multiple frequencies, for example).
2885 	 */
2886 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887 		goto out;
2888 
2889 	/* If we're trying to set a range that overlaps the current voltage,
2890 	 * return successfully even though the regulator does not support
2891 	 * changing the voltage.
2892 	 */
2893 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894 		current_uV = _regulator_get_voltage(rdev);
2895 		if (min_uV <= current_uV && current_uV <= max_uV) {
2896 			regulator->min_uV = min_uV;
2897 			regulator->max_uV = max_uV;
2898 			goto out;
2899 		}
2900 	}
2901 
2902 	/* sanity check */
2903 	if (!rdev->desc->ops->set_voltage &&
2904 	    !rdev->desc->ops->set_voltage_sel) {
2905 		ret = -EINVAL;
2906 		goto out;
2907 	}
2908 
2909 	/* constraints check */
2910 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911 	if (ret < 0)
2912 		goto out;
2913 
2914 	/* restore original values in case of error */
2915 	old_min_uV = regulator->min_uV;
2916 	old_max_uV = regulator->max_uV;
2917 	regulator->min_uV = min_uV;
2918 	regulator->max_uV = max_uV;
2919 
2920 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921 	if (ret < 0)
2922 		goto out2;
2923 
2924 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925 				!rdev->desc->ops->get_voltage)) {
2926 		int current_supply_uV;
2927 		int selector;
2928 
2929 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930 		if (selector < 0) {
2931 			ret = selector;
2932 			goto out2;
2933 		}
2934 
2935 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936 		if (best_supply_uV < 0) {
2937 			ret = best_supply_uV;
2938 			goto out2;
2939 		}
2940 
2941 		best_supply_uV += rdev->desc->min_dropout_uV;
2942 
2943 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944 		if (current_supply_uV < 0) {
2945 			ret = current_supply_uV;
2946 			goto out2;
2947 		}
2948 
2949 		supply_change_uV = best_supply_uV - current_supply_uV;
2950 	}
2951 
2952 	if (supply_change_uV > 0) {
2953 		ret = regulator_set_voltage_unlocked(rdev->supply,
2954 				best_supply_uV, INT_MAX);
2955 		if (ret) {
2956 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957 					ret);
2958 			goto out2;
2959 		}
2960 	}
2961 
2962 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2963 	if (ret < 0)
2964 		goto out2;
2965 
2966 	if (supply_change_uV < 0) {
2967 		ret = regulator_set_voltage_unlocked(rdev->supply,
2968 				best_supply_uV, INT_MAX);
2969 		if (ret)
2970 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971 					ret);
2972 		/* No need to fail here */
2973 		ret = 0;
2974 	}
2975 
2976 out:
2977 	return ret;
2978 out2:
2979 	regulator->min_uV = old_min_uV;
2980 	regulator->max_uV = old_max_uV;
2981 
2982 	return ret;
2983 }
2984 
2985 /**
2986  * regulator_set_voltage - set regulator output voltage
2987  * @regulator: regulator source
2988  * @min_uV: Minimum required voltage in uV
2989  * @max_uV: Maximum acceptable voltage in uV
2990  *
2991  * Sets a voltage regulator to the desired output voltage. This can be set
2992  * during any regulator state. IOW, regulator can be disabled or enabled.
2993  *
2994  * If the regulator is enabled then the voltage will change to the new value
2995  * immediately otherwise if the regulator is disabled the regulator will
2996  * output at the new voltage when enabled.
2997  *
2998  * NOTE: If the regulator is shared between several devices then the lowest
2999  * request voltage that meets the system constraints will be used.
3000  * Regulator system constraints must be set for this regulator before
3001  * calling this function otherwise this call will fail.
3002  */
3003 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004 {
3005 	int ret = 0;
3006 
3007 	regulator_lock_supply(regulator->rdev);
3008 
3009 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010 
3011 	regulator_unlock_supply(regulator->rdev);
3012 
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016 
3017 /**
3018  * regulator_set_voltage_time - get raise/fall time
3019  * @regulator: regulator source
3020  * @old_uV: starting voltage in microvolts
3021  * @new_uV: target voltage in microvolts
3022  *
3023  * Provided with the starting and ending voltage, this function attempts to
3024  * calculate the time in microseconds required to rise or fall to this new
3025  * voltage.
3026  */
3027 int regulator_set_voltage_time(struct regulator *regulator,
3028 			       int old_uV, int new_uV)
3029 {
3030 	struct regulator_dev *rdev = regulator->rdev;
3031 	const struct regulator_ops *ops = rdev->desc->ops;
3032 	int old_sel = -1;
3033 	int new_sel = -1;
3034 	int voltage;
3035 	int i;
3036 
3037 	if (ops->set_voltage_time)
3038 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3039 	else if (!ops->set_voltage_time_sel)
3040 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041 
3042 	/* Currently requires operations to do this */
3043 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3044 		return -EINVAL;
3045 
3046 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3047 		/* We only look for exact voltage matches here */
3048 		voltage = regulator_list_voltage(regulator, i);
3049 		if (voltage < 0)
3050 			return -EINVAL;
3051 		if (voltage == 0)
3052 			continue;
3053 		if (voltage == old_uV)
3054 			old_sel = i;
3055 		if (voltage == new_uV)
3056 			new_sel = i;
3057 	}
3058 
3059 	if (old_sel < 0 || new_sel < 0)
3060 		return -EINVAL;
3061 
3062 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065 
3066 /**
3067  * regulator_set_voltage_time_sel - get raise/fall time
3068  * @rdev: regulator source device
3069  * @old_selector: selector for starting voltage
3070  * @new_selector: selector for target voltage
3071  *
3072  * Provided with the starting and target voltage selectors, this function
3073  * returns time in microseconds required to rise or fall to this new voltage
3074  *
3075  * Drivers providing ramp_delay in regulation_constraints can use this as their
3076  * set_voltage_time_sel() operation.
3077  */
3078 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079 				   unsigned int old_selector,
3080 				   unsigned int new_selector)
3081 {
3082 	int old_volt, new_volt;
3083 
3084 	/* sanity check */
3085 	if (!rdev->desc->ops->list_voltage)
3086 		return -EINVAL;
3087 
3088 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090 
3091 	if (rdev->desc->ops->set_voltage_time)
3092 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093 							 new_volt);
3094 	else
3095 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098 
3099 /**
3100  * regulator_sync_voltage - re-apply last regulator output voltage
3101  * @regulator: regulator source
3102  *
3103  * Re-apply the last configured voltage.  This is intended to be used
3104  * where some external control source the consumer is cooperating with
3105  * has caused the configured voltage to change.
3106  */
3107 int regulator_sync_voltage(struct regulator *regulator)
3108 {
3109 	struct regulator_dev *rdev = regulator->rdev;
3110 	int ret, min_uV, max_uV;
3111 
3112 	mutex_lock(&rdev->mutex);
3113 
3114 	if (!rdev->desc->ops->set_voltage &&
3115 	    !rdev->desc->ops->set_voltage_sel) {
3116 		ret = -EINVAL;
3117 		goto out;
3118 	}
3119 
3120 	/* This is only going to work if we've had a voltage configured. */
3121 	if (!regulator->min_uV && !regulator->max_uV) {
3122 		ret = -EINVAL;
3123 		goto out;
3124 	}
3125 
3126 	min_uV = regulator->min_uV;
3127 	max_uV = regulator->max_uV;
3128 
3129 	/* This should be a paranoia check... */
3130 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131 	if (ret < 0)
3132 		goto out;
3133 
3134 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135 	if (ret < 0)
3136 		goto out;
3137 
3138 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139 
3140 out:
3141 	mutex_unlock(&rdev->mutex);
3142 	return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145 
3146 static int _regulator_get_voltage(struct regulator_dev *rdev)
3147 {
3148 	int sel, ret;
3149 	bool bypassed;
3150 
3151 	if (rdev->desc->ops->get_bypass) {
3152 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153 		if (ret < 0)
3154 			return ret;
3155 		if (bypassed) {
3156 			/* if bypassed the regulator must have a supply */
3157 			if (!rdev->supply) {
3158 				rdev_err(rdev,
3159 					 "bypassed regulator has no supply!\n");
3160 				return -EPROBE_DEFER;
3161 			}
3162 
3163 			return _regulator_get_voltage(rdev->supply->rdev);
3164 		}
3165 	}
3166 
3167 	if (rdev->desc->ops->get_voltage_sel) {
3168 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3169 		if (sel < 0)
3170 			return sel;
3171 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3172 	} else if (rdev->desc->ops->get_voltage) {
3173 		ret = rdev->desc->ops->get_voltage(rdev);
3174 	} else if (rdev->desc->ops->list_voltage) {
3175 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3176 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177 		ret = rdev->desc->fixed_uV;
3178 	} else if (rdev->supply) {
3179 		ret = _regulator_get_voltage(rdev->supply->rdev);
3180 	} else {
3181 		return -EINVAL;
3182 	}
3183 
3184 	if (ret < 0)
3185 		return ret;
3186 	return ret - rdev->constraints->uV_offset;
3187 }
3188 
3189 /**
3190  * regulator_get_voltage - get regulator output voltage
3191  * @regulator: regulator source
3192  *
3193  * This returns the current regulator voltage in uV.
3194  *
3195  * NOTE: If the regulator is disabled it will return the voltage value. This
3196  * function should not be used to determine regulator state.
3197  */
3198 int regulator_get_voltage(struct regulator *regulator)
3199 {
3200 	int ret;
3201 
3202 	regulator_lock_supply(regulator->rdev);
3203 
3204 	ret = _regulator_get_voltage(regulator->rdev);
3205 
3206 	regulator_unlock_supply(regulator->rdev);
3207 
3208 	return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211 
3212 /**
3213  * regulator_set_current_limit - set regulator output current limit
3214  * @regulator: regulator source
3215  * @min_uA: Minimum supported current in uA
3216  * @max_uA: Maximum supported current in uA
3217  *
3218  * Sets current sink to the desired output current. This can be set during
3219  * any regulator state. IOW, regulator can be disabled or enabled.
3220  *
3221  * If the regulator is enabled then the current will change to the new value
3222  * immediately otherwise if the regulator is disabled the regulator will
3223  * output at the new current when enabled.
3224  *
3225  * NOTE: Regulator system constraints must be set for this regulator before
3226  * calling this function otherwise this call will fail.
3227  */
3228 int regulator_set_current_limit(struct regulator *regulator,
3229 			       int min_uA, int max_uA)
3230 {
3231 	struct regulator_dev *rdev = regulator->rdev;
3232 	int ret;
3233 
3234 	mutex_lock(&rdev->mutex);
3235 
3236 	/* sanity check */
3237 	if (!rdev->desc->ops->set_current_limit) {
3238 		ret = -EINVAL;
3239 		goto out;
3240 	}
3241 
3242 	/* constraints check */
3243 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244 	if (ret < 0)
3245 		goto out;
3246 
3247 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248 out:
3249 	mutex_unlock(&rdev->mutex);
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253 
3254 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255 {
3256 	int ret;
3257 
3258 	mutex_lock(&rdev->mutex);
3259 
3260 	/* sanity check */
3261 	if (!rdev->desc->ops->get_current_limit) {
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 
3266 	ret = rdev->desc->ops->get_current_limit(rdev);
3267 out:
3268 	mutex_unlock(&rdev->mutex);
3269 	return ret;
3270 }
3271 
3272 /**
3273  * regulator_get_current_limit - get regulator output current
3274  * @regulator: regulator source
3275  *
3276  * This returns the current supplied by the specified current sink in uA.
3277  *
3278  * NOTE: If the regulator is disabled it will return the current value. This
3279  * function should not be used to determine regulator state.
3280  */
3281 int regulator_get_current_limit(struct regulator *regulator)
3282 {
3283 	return _regulator_get_current_limit(regulator->rdev);
3284 }
3285 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286 
3287 /**
3288  * regulator_set_mode - set regulator operating mode
3289  * @regulator: regulator source
3290  * @mode: operating mode - one of the REGULATOR_MODE constants
3291  *
3292  * Set regulator operating mode to increase regulator efficiency or improve
3293  * regulation performance.
3294  *
3295  * NOTE: Regulator system constraints must be set for this regulator before
3296  * calling this function otherwise this call will fail.
3297  */
3298 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299 {
3300 	struct regulator_dev *rdev = regulator->rdev;
3301 	int ret;
3302 	int regulator_curr_mode;
3303 
3304 	mutex_lock(&rdev->mutex);
3305 
3306 	/* sanity check */
3307 	if (!rdev->desc->ops->set_mode) {
3308 		ret = -EINVAL;
3309 		goto out;
3310 	}
3311 
3312 	/* return if the same mode is requested */
3313 	if (rdev->desc->ops->get_mode) {
3314 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315 		if (regulator_curr_mode == mode) {
3316 			ret = 0;
3317 			goto out;
3318 		}
3319 	}
3320 
3321 	/* constraints check */
3322 	ret = regulator_mode_constrain(rdev, &mode);
3323 	if (ret < 0)
3324 		goto out;
3325 
3326 	ret = rdev->desc->ops->set_mode(rdev, mode);
3327 out:
3328 	mutex_unlock(&rdev->mutex);
3329 	return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_set_mode);
3332 
3333 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334 {
3335 	int ret;
3336 
3337 	mutex_lock(&rdev->mutex);
3338 
3339 	/* sanity check */
3340 	if (!rdev->desc->ops->get_mode) {
3341 		ret = -EINVAL;
3342 		goto out;
3343 	}
3344 
3345 	ret = rdev->desc->ops->get_mode(rdev);
3346 out:
3347 	mutex_unlock(&rdev->mutex);
3348 	return ret;
3349 }
3350 
3351 /**
3352  * regulator_get_mode - get regulator operating mode
3353  * @regulator: regulator source
3354  *
3355  * Get the current regulator operating mode.
3356  */
3357 unsigned int regulator_get_mode(struct regulator *regulator)
3358 {
3359 	return _regulator_get_mode(regulator->rdev);
3360 }
3361 EXPORT_SYMBOL_GPL(regulator_get_mode);
3362 
3363 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364 					unsigned int *flags)
3365 {
3366 	int ret;
3367 
3368 	mutex_lock(&rdev->mutex);
3369 
3370 	/* sanity check */
3371 	if (!rdev->desc->ops->get_error_flags) {
3372 		ret = -EINVAL;
3373 		goto out;
3374 	}
3375 
3376 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377 out:
3378 	mutex_unlock(&rdev->mutex);
3379 	return ret;
3380 }
3381 
3382 /**
3383  * regulator_get_error_flags - get regulator error information
3384  * @regulator: regulator source
3385  * @flags: pointer to store error flags
3386  *
3387  * Get the current regulator error information.
3388  */
3389 int regulator_get_error_flags(struct regulator *regulator,
3390 				unsigned int *flags)
3391 {
3392 	return _regulator_get_error_flags(regulator->rdev, flags);
3393 }
3394 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395 
3396 /**
3397  * regulator_set_load - set regulator load
3398  * @regulator: regulator source
3399  * @uA_load: load current
3400  *
3401  * Notifies the regulator core of a new device load. This is then used by
3402  * DRMS (if enabled by constraints) to set the most efficient regulator
3403  * operating mode for the new regulator loading.
3404  *
3405  * Consumer devices notify their supply regulator of the maximum power
3406  * they will require (can be taken from device datasheet in the power
3407  * consumption tables) when they change operational status and hence power
3408  * state. Examples of operational state changes that can affect power
3409  * consumption are :-
3410  *
3411  *    o Device is opened / closed.
3412  *    o Device I/O is about to begin or has just finished.
3413  *    o Device is idling in between work.
3414  *
3415  * This information is also exported via sysfs to userspace.
3416  *
3417  * DRMS will sum the total requested load on the regulator and change
3418  * to the most efficient operating mode if platform constraints allow.
3419  *
3420  * On error a negative errno is returned.
3421  */
3422 int regulator_set_load(struct regulator *regulator, int uA_load)
3423 {
3424 	struct regulator_dev *rdev = regulator->rdev;
3425 	int ret;
3426 
3427 	mutex_lock(&rdev->mutex);
3428 	regulator->uA_load = uA_load;
3429 	ret = drms_uA_update(rdev);
3430 	mutex_unlock(&rdev->mutex);
3431 
3432 	return ret;
3433 }
3434 EXPORT_SYMBOL_GPL(regulator_set_load);
3435 
3436 /**
3437  * regulator_allow_bypass - allow the regulator to go into bypass mode
3438  *
3439  * @regulator: Regulator to configure
3440  * @enable: enable or disable bypass mode
3441  *
3442  * Allow the regulator to go into bypass mode if all other consumers
3443  * for the regulator also enable bypass mode and the machine
3444  * constraints allow this.  Bypass mode means that the regulator is
3445  * simply passing the input directly to the output with no regulation.
3446  */
3447 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448 {
3449 	struct regulator_dev *rdev = regulator->rdev;
3450 	int ret = 0;
3451 
3452 	if (!rdev->desc->ops->set_bypass)
3453 		return 0;
3454 
3455 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3456 		return 0;
3457 
3458 	mutex_lock(&rdev->mutex);
3459 
3460 	if (enable && !regulator->bypass) {
3461 		rdev->bypass_count++;
3462 
3463 		if (rdev->bypass_count == rdev->open_count) {
3464 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3465 			if (ret != 0)
3466 				rdev->bypass_count--;
3467 		}
3468 
3469 	} else if (!enable && regulator->bypass) {
3470 		rdev->bypass_count--;
3471 
3472 		if (rdev->bypass_count != rdev->open_count) {
3473 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3474 			if (ret != 0)
3475 				rdev->bypass_count++;
3476 		}
3477 	}
3478 
3479 	if (ret == 0)
3480 		regulator->bypass = enable;
3481 
3482 	mutex_unlock(&rdev->mutex);
3483 
3484 	return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487 
3488 /**
3489  * regulator_register_notifier - register regulator event notifier
3490  * @regulator: regulator source
3491  * @nb: notifier block
3492  *
3493  * Register notifier block to receive regulator events.
3494  */
3495 int regulator_register_notifier(struct regulator *regulator,
3496 			      struct notifier_block *nb)
3497 {
3498 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499 						nb);
3500 }
3501 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502 
3503 /**
3504  * regulator_unregister_notifier - unregister regulator event notifier
3505  * @regulator: regulator source
3506  * @nb: notifier block
3507  *
3508  * Unregister regulator event notifier block.
3509  */
3510 int regulator_unregister_notifier(struct regulator *regulator,
3511 				struct notifier_block *nb)
3512 {
3513 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514 						  nb);
3515 }
3516 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517 
3518 /* notify regulator consumers and downstream regulator consumers.
3519  * Note mutex must be held by caller.
3520  */
3521 static int _notifier_call_chain(struct regulator_dev *rdev,
3522 				  unsigned long event, void *data)
3523 {
3524 	/* call rdev chain first */
3525 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526 }
3527 
3528 /**
3529  * regulator_bulk_get - get multiple regulator consumers
3530  *
3531  * @dev:           Device to supply
3532  * @num_consumers: Number of consumers to register
3533  * @consumers:     Configuration of consumers; clients are stored here.
3534  *
3535  * @return 0 on success, an errno on failure.
3536  *
3537  * This helper function allows drivers to get several regulator
3538  * consumers in one operation.  If any of the regulators cannot be
3539  * acquired then any regulators that were allocated will be freed
3540  * before returning to the caller.
3541  */
3542 int regulator_bulk_get(struct device *dev, int num_consumers,
3543 		       struct regulator_bulk_data *consumers)
3544 {
3545 	int i;
3546 	int ret;
3547 
3548 	for (i = 0; i < num_consumers; i++)
3549 		consumers[i].consumer = NULL;
3550 
3551 	for (i = 0; i < num_consumers; i++) {
3552 		consumers[i].consumer = regulator_get(dev,
3553 						      consumers[i].supply);
3554 		if (IS_ERR(consumers[i].consumer)) {
3555 			ret = PTR_ERR(consumers[i].consumer);
3556 			dev_err(dev, "Failed to get supply '%s': %d\n",
3557 				consumers[i].supply, ret);
3558 			consumers[i].consumer = NULL;
3559 			goto err;
3560 		}
3561 	}
3562 
3563 	return 0;
3564 
3565 err:
3566 	while (--i >= 0)
3567 		regulator_put(consumers[i].consumer);
3568 
3569 	return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572 
3573 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574 {
3575 	struct regulator_bulk_data *bulk = data;
3576 
3577 	bulk->ret = regulator_enable(bulk->consumer);
3578 }
3579 
3580 /**
3581  * regulator_bulk_enable - enable multiple regulator consumers
3582  *
3583  * @num_consumers: Number of consumers
3584  * @consumers:     Consumer data; clients are stored here.
3585  * @return         0 on success, an errno on failure
3586  *
3587  * This convenience API allows consumers to enable multiple regulator
3588  * clients in a single API call.  If any consumers cannot be enabled
3589  * then any others that were enabled will be disabled again prior to
3590  * return.
3591  */
3592 int regulator_bulk_enable(int num_consumers,
3593 			  struct regulator_bulk_data *consumers)
3594 {
3595 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596 	int i;
3597 	int ret = 0;
3598 
3599 	for (i = 0; i < num_consumers; i++) {
3600 		if (consumers[i].consumer->always_on)
3601 			consumers[i].ret = 0;
3602 		else
3603 			async_schedule_domain(regulator_bulk_enable_async,
3604 					      &consumers[i], &async_domain);
3605 	}
3606 
3607 	async_synchronize_full_domain(&async_domain);
3608 
3609 	/* If any consumer failed we need to unwind any that succeeded */
3610 	for (i = 0; i < num_consumers; i++) {
3611 		if (consumers[i].ret != 0) {
3612 			ret = consumers[i].ret;
3613 			goto err;
3614 		}
3615 	}
3616 
3617 	return 0;
3618 
3619 err:
3620 	for (i = 0; i < num_consumers; i++) {
3621 		if (consumers[i].ret < 0)
3622 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623 			       consumers[i].ret);
3624 		else
3625 			regulator_disable(consumers[i].consumer);
3626 	}
3627 
3628 	return ret;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631 
3632 /**
3633  * regulator_bulk_disable - disable multiple regulator consumers
3634  *
3635  * @num_consumers: Number of consumers
3636  * @consumers:     Consumer data; clients are stored here.
3637  * @return         0 on success, an errno on failure
3638  *
3639  * This convenience API allows consumers to disable multiple regulator
3640  * clients in a single API call.  If any consumers cannot be disabled
3641  * then any others that were disabled will be enabled again prior to
3642  * return.
3643  */
3644 int regulator_bulk_disable(int num_consumers,
3645 			   struct regulator_bulk_data *consumers)
3646 {
3647 	int i;
3648 	int ret, r;
3649 
3650 	for (i = num_consumers - 1; i >= 0; --i) {
3651 		ret = regulator_disable(consumers[i].consumer);
3652 		if (ret != 0)
3653 			goto err;
3654 	}
3655 
3656 	return 0;
3657 
3658 err:
3659 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660 	for (++i; i < num_consumers; ++i) {
3661 		r = regulator_enable(consumers[i].consumer);
3662 		if (r != 0)
3663 			pr_err("Failed to reename %s: %d\n",
3664 			       consumers[i].supply, r);
3665 	}
3666 
3667 	return ret;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670 
3671 /**
3672  * regulator_bulk_force_disable - force disable multiple regulator consumers
3673  *
3674  * @num_consumers: Number of consumers
3675  * @consumers:     Consumer data; clients are stored here.
3676  * @return         0 on success, an errno on failure
3677  *
3678  * This convenience API allows consumers to forcibly disable multiple regulator
3679  * clients in a single API call.
3680  * NOTE: This should be used for situations when device damage will
3681  * likely occur if the regulators are not disabled (e.g. over temp).
3682  * Although regulator_force_disable function call for some consumers can
3683  * return error numbers, the function is called for all consumers.
3684  */
3685 int regulator_bulk_force_disable(int num_consumers,
3686 			   struct regulator_bulk_data *consumers)
3687 {
3688 	int i;
3689 	int ret;
3690 
3691 	for (i = 0; i < num_consumers; i++)
3692 		consumers[i].ret =
3693 			    regulator_force_disable(consumers[i].consumer);
3694 
3695 	for (i = 0; i < num_consumers; i++) {
3696 		if (consumers[i].ret != 0) {
3697 			ret = consumers[i].ret;
3698 			goto out;
3699 		}
3700 	}
3701 
3702 	return 0;
3703 out:
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707 
3708 /**
3709  * regulator_bulk_free - free multiple regulator consumers
3710  *
3711  * @num_consumers: Number of consumers
3712  * @consumers:     Consumer data; clients are stored here.
3713  *
3714  * This convenience API allows consumers to free multiple regulator
3715  * clients in a single API call.
3716  */
3717 void regulator_bulk_free(int num_consumers,
3718 			 struct regulator_bulk_data *consumers)
3719 {
3720 	int i;
3721 
3722 	for (i = 0; i < num_consumers; i++) {
3723 		regulator_put(consumers[i].consumer);
3724 		consumers[i].consumer = NULL;
3725 	}
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728 
3729 /**
3730  * regulator_notifier_call_chain - call regulator event notifier
3731  * @rdev: regulator source
3732  * @event: notifier block
3733  * @data: callback-specific data.
3734  *
3735  * Called by regulator drivers to notify clients a regulator event has
3736  * occurred. We also notify regulator clients downstream.
3737  * Note lock must be held by caller.
3738  */
3739 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740 				  unsigned long event, void *data)
3741 {
3742 	lockdep_assert_held_once(&rdev->mutex);
3743 
3744 	_notifier_call_chain(rdev, event, data);
3745 	return NOTIFY_DONE;
3746 
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749 
3750 /**
3751  * regulator_mode_to_status - convert a regulator mode into a status
3752  *
3753  * @mode: Mode to convert
3754  *
3755  * Convert a regulator mode into a status.
3756  */
3757 int regulator_mode_to_status(unsigned int mode)
3758 {
3759 	switch (mode) {
3760 	case REGULATOR_MODE_FAST:
3761 		return REGULATOR_STATUS_FAST;
3762 	case REGULATOR_MODE_NORMAL:
3763 		return REGULATOR_STATUS_NORMAL;
3764 	case REGULATOR_MODE_IDLE:
3765 		return REGULATOR_STATUS_IDLE;
3766 	case REGULATOR_MODE_STANDBY:
3767 		return REGULATOR_STATUS_STANDBY;
3768 	default:
3769 		return REGULATOR_STATUS_UNDEFINED;
3770 	}
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773 
3774 static struct attribute *regulator_dev_attrs[] = {
3775 	&dev_attr_name.attr,
3776 	&dev_attr_num_users.attr,
3777 	&dev_attr_type.attr,
3778 	&dev_attr_microvolts.attr,
3779 	&dev_attr_microamps.attr,
3780 	&dev_attr_opmode.attr,
3781 	&dev_attr_state.attr,
3782 	&dev_attr_status.attr,
3783 	&dev_attr_bypass.attr,
3784 	&dev_attr_requested_microamps.attr,
3785 	&dev_attr_min_microvolts.attr,
3786 	&dev_attr_max_microvolts.attr,
3787 	&dev_attr_min_microamps.attr,
3788 	&dev_attr_max_microamps.attr,
3789 	&dev_attr_suspend_standby_state.attr,
3790 	&dev_attr_suspend_mem_state.attr,
3791 	&dev_attr_suspend_disk_state.attr,
3792 	&dev_attr_suspend_standby_microvolts.attr,
3793 	&dev_attr_suspend_mem_microvolts.attr,
3794 	&dev_attr_suspend_disk_microvolts.attr,
3795 	&dev_attr_suspend_standby_mode.attr,
3796 	&dev_attr_suspend_mem_mode.attr,
3797 	&dev_attr_suspend_disk_mode.attr,
3798 	NULL
3799 };
3800 
3801 /*
3802  * To avoid cluttering sysfs (and memory) with useless state, only
3803  * create attributes that can be meaningfully displayed.
3804  */
3805 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806 					 struct attribute *attr, int idx)
3807 {
3808 	struct device *dev = kobj_to_dev(kobj);
3809 	struct regulator_dev *rdev = dev_to_rdev(dev);
3810 	const struct regulator_ops *ops = rdev->desc->ops;
3811 	umode_t mode = attr->mode;
3812 
3813 	/* these three are always present */
3814 	if (attr == &dev_attr_name.attr ||
3815 	    attr == &dev_attr_num_users.attr ||
3816 	    attr == &dev_attr_type.attr)
3817 		return mode;
3818 
3819 	/* some attributes need specific methods to be displayed */
3820 	if (attr == &dev_attr_microvolts.attr) {
3821 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825 			return mode;
3826 		return 0;
3827 	}
3828 
3829 	if (attr == &dev_attr_microamps.attr)
3830 		return ops->get_current_limit ? mode : 0;
3831 
3832 	if (attr == &dev_attr_opmode.attr)
3833 		return ops->get_mode ? mode : 0;
3834 
3835 	if (attr == &dev_attr_state.attr)
3836 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3837 
3838 	if (attr == &dev_attr_status.attr)
3839 		return ops->get_status ? mode : 0;
3840 
3841 	if (attr == &dev_attr_bypass.attr)
3842 		return ops->get_bypass ? mode : 0;
3843 
3844 	/* some attributes are type-specific */
3845 	if (attr == &dev_attr_requested_microamps.attr)
3846 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3847 
3848 	/* constraints need specific supporting methods */
3849 	if (attr == &dev_attr_min_microvolts.attr ||
3850 	    attr == &dev_attr_max_microvolts.attr)
3851 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852 
3853 	if (attr == &dev_attr_min_microamps.attr ||
3854 	    attr == &dev_attr_max_microamps.attr)
3855 		return ops->set_current_limit ? mode : 0;
3856 
3857 	if (attr == &dev_attr_suspend_standby_state.attr ||
3858 	    attr == &dev_attr_suspend_mem_state.attr ||
3859 	    attr == &dev_attr_suspend_disk_state.attr)
3860 		return mode;
3861 
3862 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3864 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3865 		return ops->set_suspend_voltage ? mode : 0;
3866 
3867 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3868 	    attr == &dev_attr_suspend_mem_mode.attr ||
3869 	    attr == &dev_attr_suspend_disk_mode.attr)
3870 		return ops->set_suspend_mode ? mode : 0;
3871 
3872 	return mode;
3873 }
3874 
3875 static const struct attribute_group regulator_dev_group = {
3876 	.attrs = regulator_dev_attrs,
3877 	.is_visible = regulator_attr_is_visible,
3878 };
3879 
3880 static const struct attribute_group *regulator_dev_groups[] = {
3881 	&regulator_dev_group,
3882 	NULL
3883 };
3884 
3885 static void regulator_dev_release(struct device *dev)
3886 {
3887 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3888 
3889 	kfree(rdev->constraints);
3890 	of_node_put(rdev->dev.of_node);
3891 	kfree(rdev);
3892 }
3893 
3894 static struct class regulator_class = {
3895 	.name = "regulator",
3896 	.dev_release = regulator_dev_release,
3897 	.dev_groups = regulator_dev_groups,
3898 };
3899 
3900 static void rdev_init_debugfs(struct regulator_dev *rdev)
3901 {
3902 	struct device *parent = rdev->dev.parent;
3903 	const char *rname = rdev_get_name(rdev);
3904 	char name[NAME_MAX];
3905 
3906 	/* Avoid duplicate debugfs directory names */
3907 	if (parent && rname == rdev->desc->name) {
3908 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909 			 rname);
3910 		rname = name;
3911 	}
3912 
3913 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914 	if (!rdev->debugfs) {
3915 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3916 		return;
3917 	}
3918 
3919 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920 			   &rdev->use_count);
3921 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922 			   &rdev->open_count);
3923 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924 			   &rdev->bypass_count);
3925 }
3926 
3927 static int regulator_register_resolve_supply(struct device *dev, void *data)
3928 {
3929 	struct regulator_dev *rdev = dev_to_rdev(dev);
3930 
3931 	if (regulator_resolve_supply(rdev))
3932 		rdev_dbg(rdev, "unable to resolve supply\n");
3933 
3934 	return 0;
3935 }
3936 
3937 /**
3938  * regulator_register - register regulator
3939  * @regulator_desc: regulator to register
3940  * @cfg: runtime configuration for regulator
3941  *
3942  * Called by regulator drivers to register a regulator.
3943  * Returns a valid pointer to struct regulator_dev on success
3944  * or an ERR_PTR() on error.
3945  */
3946 struct regulator_dev *
3947 regulator_register(const struct regulator_desc *regulator_desc,
3948 		   const struct regulator_config *cfg)
3949 {
3950 	const struct regulation_constraints *constraints = NULL;
3951 	const struct regulator_init_data *init_data;
3952 	struct regulator_config *config = NULL;
3953 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3954 	struct regulator_dev *rdev;
3955 	struct device *dev;
3956 	int ret, i;
3957 
3958 	if (regulator_desc == NULL || cfg == NULL)
3959 		return ERR_PTR(-EINVAL);
3960 
3961 	dev = cfg->dev;
3962 	WARN_ON(!dev);
3963 
3964 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965 		return ERR_PTR(-EINVAL);
3966 
3967 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968 	    regulator_desc->type != REGULATOR_CURRENT)
3969 		return ERR_PTR(-EINVAL);
3970 
3971 	/* Only one of each should be implemented */
3972 	WARN_ON(regulator_desc->ops->get_voltage &&
3973 		regulator_desc->ops->get_voltage_sel);
3974 	WARN_ON(regulator_desc->ops->set_voltage &&
3975 		regulator_desc->ops->set_voltage_sel);
3976 
3977 	/* If we're using selectors we must implement list_voltage. */
3978 	if (regulator_desc->ops->get_voltage_sel &&
3979 	    !regulator_desc->ops->list_voltage) {
3980 		return ERR_PTR(-EINVAL);
3981 	}
3982 	if (regulator_desc->ops->set_voltage_sel &&
3983 	    !regulator_desc->ops->list_voltage) {
3984 		return ERR_PTR(-EINVAL);
3985 	}
3986 
3987 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988 	if (rdev == NULL)
3989 		return ERR_PTR(-ENOMEM);
3990 
3991 	/*
3992 	 * Duplicate the config so the driver could override it after
3993 	 * parsing init data.
3994 	 */
3995 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996 	if (config == NULL) {
3997 		kfree(rdev);
3998 		return ERR_PTR(-ENOMEM);
3999 	}
4000 
4001 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002 					       &rdev->dev.of_node);
4003 	if (!init_data) {
4004 		init_data = config->init_data;
4005 		rdev->dev.of_node = of_node_get(config->of_node);
4006 	}
4007 
4008 	mutex_init(&rdev->mutex);
4009 	rdev->reg_data = config->driver_data;
4010 	rdev->owner = regulator_desc->owner;
4011 	rdev->desc = regulator_desc;
4012 	if (config->regmap)
4013 		rdev->regmap = config->regmap;
4014 	else if (dev_get_regmap(dev, NULL))
4015 		rdev->regmap = dev_get_regmap(dev, NULL);
4016 	else if (dev->parent)
4017 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018 	INIT_LIST_HEAD(&rdev->consumer_list);
4019 	INIT_LIST_HEAD(&rdev->list);
4020 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022 
4023 	/* preform any regulator specific init */
4024 	if (init_data && init_data->regulator_init) {
4025 		ret = init_data->regulator_init(rdev->reg_data);
4026 		if (ret < 0)
4027 			goto clean;
4028 	}
4029 
4030 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031 	    gpio_is_valid(config->ena_gpio)) {
4032 		mutex_lock(&regulator_list_mutex);
4033 		ret = regulator_ena_gpio_request(rdev, config);
4034 		mutex_unlock(&regulator_list_mutex);
4035 		if (ret != 0) {
4036 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037 				 config->ena_gpio, ret);
4038 			goto clean;
4039 		}
4040 	}
4041 
4042 	/* register with sysfs */
4043 	rdev->dev.class = &regulator_class;
4044 	rdev->dev.parent = dev;
4045 	dev_set_name(&rdev->dev, "regulator.%lu",
4046 		    (unsigned long) atomic_inc_return(&regulator_no));
4047 
4048 	/* set regulator constraints */
4049 	if (init_data)
4050 		constraints = &init_data->constraints;
4051 
4052 	if (init_data && init_data->supply_regulator)
4053 		rdev->supply_name = init_data->supply_regulator;
4054 	else if (regulator_desc->supply_name)
4055 		rdev->supply_name = regulator_desc->supply_name;
4056 
4057 	/*
4058 	 * Attempt to resolve the regulator supply, if specified,
4059 	 * but don't return an error if we fail because we will try
4060 	 * to resolve it again later as more regulators are added.
4061 	 */
4062 	if (regulator_resolve_supply(rdev))
4063 		rdev_dbg(rdev, "unable to resolve supply\n");
4064 
4065 	ret = set_machine_constraints(rdev, constraints);
4066 	if (ret < 0)
4067 		goto wash;
4068 
4069 	/* add consumers devices */
4070 	if (init_data) {
4071 		mutex_lock(&regulator_list_mutex);
4072 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073 			ret = set_consumer_device_supply(rdev,
4074 				init_data->consumer_supplies[i].dev_name,
4075 				init_data->consumer_supplies[i].supply);
4076 			if (ret < 0) {
4077 				mutex_unlock(&regulator_list_mutex);
4078 				dev_err(dev, "Failed to set supply %s\n",
4079 					init_data->consumer_supplies[i].supply);
4080 				goto unset_supplies;
4081 			}
4082 		}
4083 		mutex_unlock(&regulator_list_mutex);
4084 	}
4085 
4086 	ret = device_register(&rdev->dev);
4087 	if (ret != 0) {
4088 		put_device(&rdev->dev);
4089 		goto unset_supplies;
4090 	}
4091 
4092 	dev_set_drvdata(&rdev->dev, rdev);
4093 	rdev_init_debugfs(rdev);
4094 
4095 	/* try to resolve regulators supply since a new one was registered */
4096 	class_for_each_device(&regulator_class, NULL, NULL,
4097 			      regulator_register_resolve_supply);
4098 	kfree(config);
4099 	return rdev;
4100 
4101 unset_supplies:
4102 	mutex_lock(&regulator_list_mutex);
4103 	unset_regulator_supplies(rdev);
4104 	mutex_unlock(&regulator_list_mutex);
4105 wash:
4106 	kfree(rdev->constraints);
4107 	mutex_lock(&regulator_list_mutex);
4108 	regulator_ena_gpio_free(rdev);
4109 	mutex_unlock(&regulator_list_mutex);
4110 clean:
4111 	kfree(rdev);
4112 	kfree(config);
4113 	return ERR_PTR(ret);
4114 }
4115 EXPORT_SYMBOL_GPL(regulator_register);
4116 
4117 /**
4118  * regulator_unregister - unregister regulator
4119  * @rdev: regulator to unregister
4120  *
4121  * Called by regulator drivers to unregister a regulator.
4122  */
4123 void regulator_unregister(struct regulator_dev *rdev)
4124 {
4125 	if (rdev == NULL)
4126 		return;
4127 
4128 	if (rdev->supply) {
4129 		while (rdev->use_count--)
4130 			regulator_disable(rdev->supply);
4131 		regulator_put(rdev->supply);
4132 	}
4133 	mutex_lock(&regulator_list_mutex);
4134 	debugfs_remove_recursive(rdev->debugfs);
4135 	flush_work(&rdev->disable_work.work);
4136 	WARN_ON(rdev->open_count);
4137 	unset_regulator_supplies(rdev);
4138 	list_del(&rdev->list);
4139 	regulator_ena_gpio_free(rdev);
4140 	mutex_unlock(&regulator_list_mutex);
4141 	device_unregister(&rdev->dev);
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_unregister);
4144 
4145 static int _regulator_suspend_prepare(struct device *dev, void *data)
4146 {
4147 	struct regulator_dev *rdev = dev_to_rdev(dev);
4148 	const suspend_state_t *state = data;
4149 	int ret;
4150 
4151 	mutex_lock(&rdev->mutex);
4152 	ret = suspend_prepare(rdev, *state);
4153 	mutex_unlock(&rdev->mutex);
4154 
4155 	return ret;
4156 }
4157 
4158 /**
4159  * regulator_suspend_prepare - prepare regulators for system wide suspend
4160  * @state: system suspend state
4161  *
4162  * Configure each regulator with it's suspend operating parameters for state.
4163  * This will usually be called by machine suspend code prior to supending.
4164  */
4165 int regulator_suspend_prepare(suspend_state_t state)
4166 {
4167 	/* ON is handled by regulator active state */
4168 	if (state == PM_SUSPEND_ON)
4169 		return -EINVAL;
4170 
4171 	return class_for_each_device(&regulator_class, NULL, &state,
4172 				     _regulator_suspend_prepare);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175 
4176 static int _regulator_suspend_finish(struct device *dev, void *data)
4177 {
4178 	struct regulator_dev *rdev = dev_to_rdev(dev);
4179 	int ret;
4180 
4181 	mutex_lock(&rdev->mutex);
4182 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4183 		if (!_regulator_is_enabled(rdev)) {
4184 			ret = _regulator_do_enable(rdev);
4185 			if (ret)
4186 				dev_err(dev,
4187 					"Failed to resume regulator %d\n",
4188 					ret);
4189 		}
4190 	} else {
4191 		if (!have_full_constraints())
4192 			goto unlock;
4193 		if (!_regulator_is_enabled(rdev))
4194 			goto unlock;
4195 
4196 		ret = _regulator_do_disable(rdev);
4197 		if (ret)
4198 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199 	}
4200 unlock:
4201 	mutex_unlock(&rdev->mutex);
4202 
4203 	/* Keep processing regulators in spite of any errors */
4204 	return 0;
4205 }
4206 
4207 /**
4208  * regulator_suspend_finish - resume regulators from system wide suspend
4209  *
4210  * Turn on regulators that might be turned off by regulator_suspend_prepare
4211  * and that should be turned on according to the regulators properties.
4212  */
4213 int regulator_suspend_finish(void)
4214 {
4215 	return class_for_each_device(&regulator_class, NULL, NULL,
4216 				     _regulator_suspend_finish);
4217 }
4218 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219 
4220 /**
4221  * regulator_has_full_constraints - the system has fully specified constraints
4222  *
4223  * Calling this function will cause the regulator API to disable all
4224  * regulators which have a zero use count and don't have an always_on
4225  * constraint in a late_initcall.
4226  *
4227  * The intention is that this will become the default behaviour in a
4228  * future kernel release so users are encouraged to use this facility
4229  * now.
4230  */
4231 void regulator_has_full_constraints(void)
4232 {
4233 	has_full_constraints = 1;
4234 }
4235 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236 
4237 /**
4238  * rdev_get_drvdata - get rdev regulator driver data
4239  * @rdev: regulator
4240  *
4241  * Get rdev regulator driver private data. This call can be used in the
4242  * regulator driver context.
4243  */
4244 void *rdev_get_drvdata(struct regulator_dev *rdev)
4245 {
4246 	return rdev->reg_data;
4247 }
4248 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249 
4250 /**
4251  * regulator_get_drvdata - get regulator driver data
4252  * @regulator: regulator
4253  *
4254  * Get regulator driver private data. This call can be used in the consumer
4255  * driver context when non API regulator specific functions need to be called.
4256  */
4257 void *regulator_get_drvdata(struct regulator *regulator)
4258 {
4259 	return regulator->rdev->reg_data;
4260 }
4261 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262 
4263 /**
4264  * regulator_set_drvdata - set regulator driver data
4265  * @regulator: regulator
4266  * @data: data
4267  */
4268 void regulator_set_drvdata(struct regulator *regulator, void *data)
4269 {
4270 	regulator->rdev->reg_data = data;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273 
4274 /**
4275  * regulator_get_id - get regulator ID
4276  * @rdev: regulator
4277  */
4278 int rdev_get_id(struct regulator_dev *rdev)
4279 {
4280 	return rdev->desc->id;
4281 }
4282 EXPORT_SYMBOL_GPL(rdev_get_id);
4283 
4284 struct device *rdev_get_dev(struct regulator_dev *rdev)
4285 {
4286 	return &rdev->dev;
4287 }
4288 EXPORT_SYMBOL_GPL(rdev_get_dev);
4289 
4290 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291 {
4292 	return reg_init_data->driver_data;
4293 }
4294 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295 
4296 #ifdef CONFIG_DEBUG_FS
4297 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298 				    size_t count, loff_t *ppos)
4299 {
4300 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301 	ssize_t len, ret = 0;
4302 	struct regulator_map *map;
4303 
4304 	if (!buf)
4305 		return -ENOMEM;
4306 
4307 	list_for_each_entry(map, &regulator_map_list, list) {
4308 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4309 			       "%s -> %s.%s\n",
4310 			       rdev_get_name(map->regulator), map->dev_name,
4311 			       map->supply);
4312 		if (len >= 0)
4313 			ret += len;
4314 		if (ret > PAGE_SIZE) {
4315 			ret = PAGE_SIZE;
4316 			break;
4317 		}
4318 	}
4319 
4320 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321 
4322 	kfree(buf);
4323 
4324 	return ret;
4325 }
4326 #endif
4327 
4328 static const struct file_operations supply_map_fops = {
4329 #ifdef CONFIG_DEBUG_FS
4330 	.read = supply_map_read_file,
4331 	.llseek = default_llseek,
4332 #endif
4333 };
4334 
4335 #ifdef CONFIG_DEBUG_FS
4336 struct summary_data {
4337 	struct seq_file *s;
4338 	struct regulator_dev *parent;
4339 	int level;
4340 };
4341 
4342 static void regulator_summary_show_subtree(struct seq_file *s,
4343 					   struct regulator_dev *rdev,
4344 					   int level);
4345 
4346 static int regulator_summary_show_children(struct device *dev, void *data)
4347 {
4348 	struct regulator_dev *rdev = dev_to_rdev(dev);
4349 	struct summary_data *summary_data = data;
4350 
4351 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352 		regulator_summary_show_subtree(summary_data->s, rdev,
4353 					       summary_data->level + 1);
4354 
4355 	return 0;
4356 }
4357 
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359 					   struct regulator_dev *rdev,
4360 					   int level)
4361 {
4362 	struct regulation_constraints *c;
4363 	struct regulator *consumer;
4364 	struct summary_data summary_data;
4365 
4366 	if (!rdev)
4367 		return;
4368 
4369 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4370 		   level * 3 + 1, "",
4371 		   30 - level * 3, rdev_get_name(rdev),
4372 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4373 
4374 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4376 
4377 	c = rdev->constraints;
4378 	if (c) {
4379 		switch (rdev->desc->type) {
4380 		case REGULATOR_VOLTAGE:
4381 			seq_printf(s, "%5dmV %5dmV ",
4382 				   c->min_uV / 1000, c->max_uV / 1000);
4383 			break;
4384 		case REGULATOR_CURRENT:
4385 			seq_printf(s, "%5dmA %5dmA ",
4386 				   c->min_uA / 1000, c->max_uA / 1000);
4387 			break;
4388 		}
4389 	}
4390 
4391 	seq_puts(s, "\n");
4392 
4393 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394 		if (consumer->dev->class == &regulator_class)
4395 			continue;
4396 
4397 		seq_printf(s, "%*s%-*s ",
4398 			   (level + 1) * 3 + 1, "",
4399 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4400 
4401 		switch (rdev->desc->type) {
4402 		case REGULATOR_VOLTAGE:
4403 			seq_printf(s, "%37dmV %5dmV",
4404 				   consumer->min_uV / 1000,
4405 				   consumer->max_uV / 1000);
4406 			break;
4407 		case REGULATOR_CURRENT:
4408 			break;
4409 		}
4410 
4411 		seq_puts(s, "\n");
4412 	}
4413 
4414 	summary_data.s = s;
4415 	summary_data.level = level;
4416 	summary_data.parent = rdev;
4417 
4418 	class_for_each_device(&regulator_class, NULL, &summary_data,
4419 			      regulator_summary_show_children);
4420 }
4421 
4422 static int regulator_summary_show_roots(struct device *dev, void *data)
4423 {
4424 	struct regulator_dev *rdev = dev_to_rdev(dev);
4425 	struct seq_file *s = data;
4426 
4427 	if (!rdev->supply)
4428 		regulator_summary_show_subtree(s, rdev, 0);
4429 
4430 	return 0;
4431 }
4432 
4433 static int regulator_summary_show(struct seq_file *s, void *data)
4434 {
4435 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4436 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4437 
4438 	class_for_each_device(&regulator_class, NULL, s,
4439 			      regulator_summary_show_roots);
4440 
4441 	return 0;
4442 }
4443 
4444 static int regulator_summary_open(struct inode *inode, struct file *file)
4445 {
4446 	return single_open(file, regulator_summary_show, inode->i_private);
4447 }
4448 #endif
4449 
4450 static const struct file_operations regulator_summary_fops = {
4451 #ifdef CONFIG_DEBUG_FS
4452 	.open		= regulator_summary_open,
4453 	.read		= seq_read,
4454 	.llseek		= seq_lseek,
4455 	.release	= single_release,
4456 #endif
4457 };
4458 
4459 static int __init regulator_init(void)
4460 {
4461 	int ret;
4462 
4463 	ret = class_register(&regulator_class);
4464 
4465 	debugfs_root = debugfs_create_dir("regulator", NULL);
4466 	if (!debugfs_root)
4467 		pr_warn("regulator: Failed to create debugfs directory\n");
4468 
4469 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4470 			    &supply_map_fops);
4471 
4472 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4473 			    NULL, &regulator_summary_fops);
4474 
4475 	regulator_dummy_init();
4476 
4477 	return ret;
4478 }
4479 
4480 /* init early to allow our consumers to complete system booting */
4481 core_initcall(regulator_init);
4482 
4483 static int __init regulator_late_cleanup(struct device *dev, void *data)
4484 {
4485 	struct regulator_dev *rdev = dev_to_rdev(dev);
4486 	const struct regulator_ops *ops = rdev->desc->ops;
4487 	struct regulation_constraints *c = rdev->constraints;
4488 	int enabled, ret;
4489 
4490 	if (c && c->always_on)
4491 		return 0;
4492 
4493 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4494 		return 0;
4495 
4496 	mutex_lock(&rdev->mutex);
4497 
4498 	if (rdev->use_count)
4499 		goto unlock;
4500 
4501 	/* If we can't read the status assume it's on. */
4502 	if (ops->is_enabled)
4503 		enabled = ops->is_enabled(rdev);
4504 	else
4505 		enabled = 1;
4506 
4507 	if (!enabled)
4508 		goto unlock;
4509 
4510 	if (have_full_constraints()) {
4511 		/* We log since this may kill the system if it goes
4512 		 * wrong. */
4513 		rdev_info(rdev, "disabling\n");
4514 		ret = _regulator_do_disable(rdev);
4515 		if (ret != 0)
4516 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4517 	} else {
4518 		/* The intention is that in future we will
4519 		 * assume that full constraints are provided
4520 		 * so warn even if we aren't going to do
4521 		 * anything here.
4522 		 */
4523 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4524 	}
4525 
4526 unlock:
4527 	mutex_unlock(&rdev->mutex);
4528 
4529 	return 0;
4530 }
4531 
4532 static int __init regulator_init_complete(void)
4533 {
4534 	/*
4535 	 * Since DT doesn't provide an idiomatic mechanism for
4536 	 * enabling full constraints and since it's much more natural
4537 	 * with DT to provide them just assume that a DT enabled
4538 	 * system has full constraints.
4539 	 */
4540 	if (of_have_populated_dt())
4541 		has_full_constraints = true;
4542 
4543 	/* If we have a full configuration then disable any regulators
4544 	 * we have permission to change the status for and which are
4545 	 * not in use or always_on.  This is effectively the default
4546 	 * for DT and ACPI as they have full constraints.
4547 	 */
4548 	class_for_each_device(&regulator_class, NULL, NULL,
4549 			      regulator_late_cleanup);
4550 
4551 	return 0;
4552 }
4553 late_initcall_sync(regulator_init_complete);
4554