1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 * 143 * Return: 0 on success or a negative error number on failure. 144 */ 145 static inline int regulator_lock_nested(struct regulator_dev *rdev, 146 struct ww_acquire_ctx *ww_ctx) 147 { 148 bool lock = false; 149 int ret = 0; 150 151 mutex_lock(®ulator_nesting_mutex); 152 153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 154 if (rdev->mutex_owner == current) 155 rdev->ref_cnt++; 156 else 157 lock = true; 158 159 if (lock) { 160 mutex_unlock(®ulator_nesting_mutex); 161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 162 mutex_lock(®ulator_nesting_mutex); 163 } 164 } else { 165 lock = true; 166 } 167 168 if (lock && ret != -EDEADLK) { 169 rdev->ref_cnt++; 170 rdev->mutex_owner = current; 171 } 172 173 mutex_unlock(®ulator_nesting_mutex); 174 175 return ret; 176 } 177 178 /** 179 * regulator_lock - lock a single regulator 180 * @rdev: regulator source 181 * 182 * This function can be called many times by one task on 183 * a single regulator and its mutex will be locked only 184 * once. If a task, which is calling this function is other 185 * than the one, which initially locked the mutex, it will 186 * wait on mutex. 187 */ 188 static void regulator_lock(struct regulator_dev *rdev) 189 { 190 regulator_lock_nested(rdev, NULL); 191 } 192 193 /** 194 * regulator_unlock - unlock a single regulator 195 * @rdev: regulator_source 196 * 197 * This function unlocks the mutex when the 198 * reference counter reaches 0. 199 */ 200 static void regulator_unlock(struct regulator_dev *rdev) 201 { 202 mutex_lock(®ulator_nesting_mutex); 203 204 if (--rdev->ref_cnt == 0) { 205 rdev->mutex_owner = NULL; 206 ww_mutex_unlock(&rdev->mutex); 207 } 208 209 WARN_ON_ONCE(rdev->ref_cnt < 0); 210 211 mutex_unlock(®ulator_nesting_mutex); 212 } 213 214 /** 215 * regulator_lock_two - lock two regulators 216 * @rdev1: first regulator 217 * @rdev2: second regulator 218 * @ww_ctx: w/w mutex acquire context 219 * 220 * Locks both rdevs using the regulator_ww_class. 221 */ 222 static void regulator_lock_two(struct regulator_dev *rdev1, 223 struct regulator_dev *rdev2, 224 struct ww_acquire_ctx *ww_ctx) 225 { 226 struct regulator_dev *held, *contended; 227 int ret; 228 229 ww_acquire_init(ww_ctx, ®ulator_ww_class); 230 231 /* Try to just grab both of them */ 232 ret = regulator_lock_nested(rdev1, ww_ctx); 233 WARN_ON(ret); 234 ret = regulator_lock_nested(rdev2, ww_ctx); 235 if (ret != -EDEADLOCK) { 236 WARN_ON(ret); 237 goto exit; 238 } 239 240 held = rdev1; 241 contended = rdev2; 242 while (true) { 243 regulator_unlock(held); 244 245 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 246 contended->ref_cnt++; 247 contended->mutex_owner = current; 248 swap(held, contended); 249 ret = regulator_lock_nested(contended, ww_ctx); 250 251 if (ret != -EDEADLOCK) { 252 WARN_ON(ret); 253 break; 254 } 255 } 256 257 exit: 258 ww_acquire_done(ww_ctx); 259 } 260 261 /** 262 * regulator_unlock_two - unlock two regulators 263 * @rdev1: first regulator 264 * @rdev2: second regulator 265 * @ww_ctx: w/w mutex acquire context 266 * 267 * The inverse of regulator_lock_two(). 268 */ 269 270 static void regulator_unlock_two(struct regulator_dev *rdev1, 271 struct regulator_dev *rdev2, 272 struct ww_acquire_ctx *ww_ctx) 273 { 274 regulator_unlock(rdev2); 275 regulator_unlock(rdev1); 276 ww_acquire_fini(ww_ctx); 277 } 278 279 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 280 { 281 struct regulator_dev *c_rdev; 282 int i; 283 284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 285 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 286 287 if (rdev->supply->rdev == c_rdev) 288 return true; 289 } 290 291 return false; 292 } 293 294 static void regulator_unlock_recursive(struct regulator_dev *rdev, 295 unsigned int n_coupled) 296 { 297 struct regulator_dev *c_rdev, *supply_rdev; 298 int i, supply_n_coupled; 299 300 for (i = n_coupled; i > 0; i--) { 301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 302 303 if (!c_rdev) 304 continue; 305 306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 307 supply_rdev = c_rdev->supply->rdev; 308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 309 310 regulator_unlock_recursive(supply_rdev, 311 supply_n_coupled); 312 } 313 314 regulator_unlock(c_rdev); 315 } 316 } 317 318 static int regulator_lock_recursive(struct regulator_dev *rdev, 319 struct regulator_dev **new_contended_rdev, 320 struct regulator_dev **old_contended_rdev, 321 struct ww_acquire_ctx *ww_ctx) 322 { 323 struct regulator_dev *c_rdev; 324 int i, err; 325 326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 327 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 328 329 if (!c_rdev) 330 continue; 331 332 if (c_rdev != *old_contended_rdev) { 333 err = regulator_lock_nested(c_rdev, ww_ctx); 334 if (err) { 335 if (err == -EDEADLK) { 336 *new_contended_rdev = c_rdev; 337 goto err_unlock; 338 } 339 340 /* shouldn't happen */ 341 WARN_ON_ONCE(err != -EALREADY); 342 } 343 } else { 344 *old_contended_rdev = NULL; 345 } 346 347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 348 err = regulator_lock_recursive(c_rdev->supply->rdev, 349 new_contended_rdev, 350 old_contended_rdev, 351 ww_ctx); 352 if (err) { 353 regulator_unlock(c_rdev); 354 goto err_unlock; 355 } 356 } 357 } 358 359 return 0; 360 361 err_unlock: 362 regulator_unlock_recursive(rdev, i); 363 364 return err; 365 } 366 367 /** 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 369 * regulators 370 * @rdev: regulator source 371 * @ww_ctx: w/w mutex acquire context 372 * 373 * Unlock all regulators related with rdev by coupling or supplying. 374 */ 375 static void regulator_unlock_dependent(struct regulator_dev *rdev, 376 struct ww_acquire_ctx *ww_ctx) 377 { 378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 379 ww_acquire_fini(ww_ctx); 380 } 381 382 /** 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 384 * @rdev: regulator source 385 * @ww_ctx: w/w mutex acquire context 386 * 387 * This function as a wrapper on regulator_lock_recursive(), which locks 388 * all regulators related with rdev by coupling or supplying. 389 */ 390 static void regulator_lock_dependent(struct regulator_dev *rdev, 391 struct ww_acquire_ctx *ww_ctx) 392 { 393 struct regulator_dev *new_contended_rdev = NULL; 394 struct regulator_dev *old_contended_rdev = NULL; 395 int err; 396 397 mutex_lock(®ulator_list_mutex); 398 399 ww_acquire_init(ww_ctx, ®ulator_ww_class); 400 401 do { 402 if (new_contended_rdev) { 403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 404 old_contended_rdev = new_contended_rdev; 405 old_contended_rdev->ref_cnt++; 406 old_contended_rdev->mutex_owner = current; 407 } 408 409 err = regulator_lock_recursive(rdev, 410 &new_contended_rdev, 411 &old_contended_rdev, 412 ww_ctx); 413 414 if (old_contended_rdev) 415 regulator_unlock(old_contended_rdev); 416 417 } while (err == -EDEADLK); 418 419 ww_acquire_done(ww_ctx); 420 421 mutex_unlock(®ulator_list_mutex); 422 } 423 424 /* Platform voltage constraint check */ 425 int regulator_check_voltage(struct regulator_dev *rdev, 426 int *min_uV, int *max_uV) 427 { 428 BUG_ON(*min_uV > *max_uV); 429 430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 431 rdev_err(rdev, "voltage operation not allowed\n"); 432 return -EPERM; 433 } 434 435 if (*max_uV > rdev->constraints->max_uV) 436 *max_uV = rdev->constraints->max_uV; 437 if (*min_uV < rdev->constraints->min_uV) 438 *min_uV = rdev->constraints->min_uV; 439 440 if (*min_uV > *max_uV) { 441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 442 *min_uV, *max_uV); 443 return -EINVAL; 444 } 445 446 return 0; 447 } 448 449 /* return 0 if the state is valid */ 450 static int regulator_check_states(suspend_state_t state) 451 { 452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 453 } 454 455 /* Make sure we select a voltage that suits the needs of all 456 * regulator consumers 457 */ 458 int regulator_check_consumers(struct regulator_dev *rdev, 459 int *min_uV, int *max_uV, 460 suspend_state_t state) 461 { 462 struct regulator *regulator; 463 struct regulator_voltage *voltage; 464 465 list_for_each_entry(regulator, &rdev->consumer_list, list) { 466 voltage = ®ulator->voltage[state]; 467 /* 468 * Assume consumers that didn't say anything are OK 469 * with anything in the constraint range. 470 */ 471 if (!voltage->min_uV && !voltage->max_uV) 472 continue; 473 474 if (*max_uV > voltage->max_uV) 475 *max_uV = voltage->max_uV; 476 if (*min_uV < voltage->min_uV) 477 *min_uV = voltage->min_uV; 478 } 479 480 if (*min_uV > *max_uV) { 481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 482 *min_uV, *max_uV); 483 return -EINVAL; 484 } 485 486 return 0; 487 } 488 489 /* current constraint check */ 490 static int regulator_check_current_limit(struct regulator_dev *rdev, 491 int *min_uA, int *max_uA) 492 { 493 BUG_ON(*min_uA > *max_uA); 494 495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 496 rdev_err(rdev, "current operation not allowed\n"); 497 return -EPERM; 498 } 499 500 if (*max_uA > rdev->constraints->max_uA && 501 rdev->constraints->max_uA) 502 *max_uA = rdev->constraints->max_uA; 503 if (*min_uA < rdev->constraints->min_uA) 504 *min_uA = rdev->constraints->min_uA; 505 506 if (*min_uA > *max_uA) { 507 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 508 *min_uA, *max_uA); 509 return -EINVAL; 510 } 511 512 return 0; 513 } 514 515 /* operating mode constraint check */ 516 static int regulator_mode_constrain(struct regulator_dev *rdev, 517 unsigned int *mode) 518 { 519 switch (*mode) { 520 case REGULATOR_MODE_FAST: 521 case REGULATOR_MODE_NORMAL: 522 case REGULATOR_MODE_IDLE: 523 case REGULATOR_MODE_STANDBY: 524 break; 525 default: 526 rdev_err(rdev, "invalid mode %x specified\n", *mode); 527 return -EINVAL; 528 } 529 530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 531 rdev_err(rdev, "mode operation not allowed\n"); 532 return -EPERM; 533 } 534 535 /* The modes are bitmasks, the most power hungry modes having 536 * the lowest values. If the requested mode isn't supported 537 * try higher modes. 538 */ 539 while (*mode) { 540 if (rdev->constraints->valid_modes_mask & *mode) 541 return 0; 542 *mode /= 2; 543 } 544 545 return -EINVAL; 546 } 547 548 static inline struct regulator_state * 549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 550 { 551 if (rdev->constraints == NULL) 552 return NULL; 553 554 switch (state) { 555 case PM_SUSPEND_STANDBY: 556 return &rdev->constraints->state_standby; 557 case PM_SUSPEND_MEM: 558 return &rdev->constraints->state_mem; 559 case PM_SUSPEND_MAX: 560 return &rdev->constraints->state_disk; 561 default: 562 return NULL; 563 } 564 } 565 566 static const struct regulator_state * 567 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 568 { 569 const struct regulator_state *rstate; 570 571 rstate = regulator_get_suspend_state(rdev, state); 572 if (rstate == NULL) 573 return NULL; 574 575 /* If we have no suspend mode configuration don't set anything; 576 * only warn if the driver implements set_suspend_voltage or 577 * set_suspend_mode callback. 578 */ 579 if (rstate->enabled != ENABLE_IN_SUSPEND && 580 rstate->enabled != DISABLE_IN_SUSPEND) { 581 if (rdev->desc->ops->set_suspend_voltage || 582 rdev->desc->ops->set_suspend_mode) 583 rdev_warn(rdev, "No configuration\n"); 584 return NULL; 585 } 586 587 return rstate; 588 } 589 590 static ssize_t microvolts_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct regulator_dev *rdev = dev_get_drvdata(dev); 594 int uV; 595 596 regulator_lock(rdev); 597 uV = regulator_get_voltage_rdev(rdev); 598 regulator_unlock(rdev); 599 600 if (uV < 0) 601 return uV; 602 return sprintf(buf, "%d\n", uV); 603 } 604 static DEVICE_ATTR_RO(microvolts); 605 606 static ssize_t microamps_show(struct device *dev, 607 struct device_attribute *attr, char *buf) 608 { 609 struct regulator_dev *rdev = dev_get_drvdata(dev); 610 611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 612 } 613 static DEVICE_ATTR_RO(microamps); 614 615 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 616 char *buf) 617 { 618 struct regulator_dev *rdev = dev_get_drvdata(dev); 619 620 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 621 } 622 static DEVICE_ATTR_RO(name); 623 624 static const char *regulator_opmode_to_str(int mode) 625 { 626 switch (mode) { 627 case REGULATOR_MODE_FAST: 628 return "fast"; 629 case REGULATOR_MODE_NORMAL: 630 return "normal"; 631 case REGULATOR_MODE_IDLE: 632 return "idle"; 633 case REGULATOR_MODE_STANDBY: 634 return "standby"; 635 } 636 return "unknown"; 637 } 638 639 static ssize_t regulator_print_opmode(char *buf, int mode) 640 { 641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 642 } 643 644 static ssize_t opmode_show(struct device *dev, 645 struct device_attribute *attr, char *buf) 646 { 647 struct regulator_dev *rdev = dev_get_drvdata(dev); 648 649 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 650 } 651 static DEVICE_ATTR_RO(opmode); 652 653 static ssize_t regulator_print_state(char *buf, int state) 654 { 655 if (state > 0) 656 return sprintf(buf, "enabled\n"); 657 else if (state == 0) 658 return sprintf(buf, "disabled\n"); 659 else 660 return sprintf(buf, "unknown\n"); 661 } 662 663 static ssize_t state_show(struct device *dev, 664 struct device_attribute *attr, char *buf) 665 { 666 struct regulator_dev *rdev = dev_get_drvdata(dev); 667 ssize_t ret; 668 669 regulator_lock(rdev); 670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 671 regulator_unlock(rdev); 672 673 return ret; 674 } 675 static DEVICE_ATTR_RO(state); 676 677 static ssize_t status_show(struct device *dev, 678 struct device_attribute *attr, char *buf) 679 { 680 struct regulator_dev *rdev = dev_get_drvdata(dev); 681 int status; 682 char *label; 683 684 status = rdev->desc->ops->get_status(rdev); 685 if (status < 0) 686 return status; 687 688 switch (status) { 689 case REGULATOR_STATUS_OFF: 690 label = "off"; 691 break; 692 case REGULATOR_STATUS_ON: 693 label = "on"; 694 break; 695 case REGULATOR_STATUS_ERROR: 696 label = "error"; 697 break; 698 case REGULATOR_STATUS_FAST: 699 label = "fast"; 700 break; 701 case REGULATOR_STATUS_NORMAL: 702 label = "normal"; 703 break; 704 case REGULATOR_STATUS_IDLE: 705 label = "idle"; 706 break; 707 case REGULATOR_STATUS_STANDBY: 708 label = "standby"; 709 break; 710 case REGULATOR_STATUS_BYPASS: 711 label = "bypass"; 712 break; 713 case REGULATOR_STATUS_UNDEFINED: 714 label = "undefined"; 715 break; 716 default: 717 return -ERANGE; 718 } 719 720 return sprintf(buf, "%s\n", label); 721 } 722 static DEVICE_ATTR_RO(status); 723 724 static ssize_t min_microamps_show(struct device *dev, 725 struct device_attribute *attr, char *buf) 726 { 727 struct regulator_dev *rdev = dev_get_drvdata(dev); 728 729 if (!rdev->constraints) 730 return sprintf(buf, "constraint not defined\n"); 731 732 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 733 } 734 static DEVICE_ATTR_RO(min_microamps); 735 736 static ssize_t max_microamps_show(struct device *dev, 737 struct device_attribute *attr, char *buf) 738 { 739 struct regulator_dev *rdev = dev_get_drvdata(dev); 740 741 if (!rdev->constraints) 742 return sprintf(buf, "constraint not defined\n"); 743 744 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 745 } 746 static DEVICE_ATTR_RO(max_microamps); 747 748 static ssize_t min_microvolts_show(struct device *dev, 749 struct device_attribute *attr, char *buf) 750 { 751 struct regulator_dev *rdev = dev_get_drvdata(dev); 752 753 if (!rdev->constraints) 754 return sprintf(buf, "constraint not defined\n"); 755 756 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 757 } 758 static DEVICE_ATTR_RO(min_microvolts); 759 760 static ssize_t max_microvolts_show(struct device *dev, 761 struct device_attribute *attr, char *buf) 762 { 763 struct regulator_dev *rdev = dev_get_drvdata(dev); 764 765 if (!rdev->constraints) 766 return sprintf(buf, "constraint not defined\n"); 767 768 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 769 } 770 static DEVICE_ATTR_RO(max_microvolts); 771 772 static ssize_t requested_microamps_show(struct device *dev, 773 struct device_attribute *attr, char *buf) 774 { 775 struct regulator_dev *rdev = dev_get_drvdata(dev); 776 struct regulator *regulator; 777 int uA = 0; 778 779 regulator_lock(rdev); 780 list_for_each_entry(regulator, &rdev->consumer_list, list) { 781 if (regulator->enable_count) 782 uA += regulator->uA_load; 783 } 784 regulator_unlock(rdev); 785 return sprintf(buf, "%d\n", uA); 786 } 787 static DEVICE_ATTR_RO(requested_microamps); 788 789 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 790 char *buf) 791 { 792 struct regulator_dev *rdev = dev_get_drvdata(dev); 793 return sprintf(buf, "%d\n", rdev->use_count); 794 } 795 static DEVICE_ATTR_RO(num_users); 796 797 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 798 char *buf) 799 { 800 struct regulator_dev *rdev = dev_get_drvdata(dev); 801 802 switch (rdev->desc->type) { 803 case REGULATOR_VOLTAGE: 804 return sprintf(buf, "voltage\n"); 805 case REGULATOR_CURRENT: 806 return sprintf(buf, "current\n"); 807 } 808 return sprintf(buf, "unknown\n"); 809 } 810 static DEVICE_ATTR_RO(type); 811 812 static ssize_t suspend_mem_microvolts_show(struct device *dev, 813 struct device_attribute *attr, char *buf) 814 { 815 struct regulator_dev *rdev = dev_get_drvdata(dev); 816 817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 818 } 819 static DEVICE_ATTR_RO(suspend_mem_microvolts); 820 821 static ssize_t suspend_disk_microvolts_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 827 } 828 static DEVICE_ATTR_RO(suspend_disk_microvolts); 829 830 static ssize_t suspend_standby_microvolts_show(struct device *dev, 831 struct device_attribute *attr, char *buf) 832 { 833 struct regulator_dev *rdev = dev_get_drvdata(dev); 834 835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 836 } 837 static DEVICE_ATTR_RO(suspend_standby_microvolts); 838 839 static ssize_t suspend_mem_mode_show(struct device *dev, 840 struct device_attribute *attr, char *buf) 841 { 842 struct regulator_dev *rdev = dev_get_drvdata(dev); 843 844 return regulator_print_opmode(buf, 845 rdev->constraints->state_mem.mode); 846 } 847 static DEVICE_ATTR_RO(suspend_mem_mode); 848 849 static ssize_t suspend_disk_mode_show(struct device *dev, 850 struct device_attribute *attr, char *buf) 851 { 852 struct regulator_dev *rdev = dev_get_drvdata(dev); 853 854 return regulator_print_opmode(buf, 855 rdev->constraints->state_disk.mode); 856 } 857 static DEVICE_ATTR_RO(suspend_disk_mode); 858 859 static ssize_t suspend_standby_mode_show(struct device *dev, 860 struct device_attribute *attr, char *buf) 861 { 862 struct regulator_dev *rdev = dev_get_drvdata(dev); 863 864 return regulator_print_opmode(buf, 865 rdev->constraints->state_standby.mode); 866 } 867 static DEVICE_ATTR_RO(suspend_standby_mode); 868 869 static ssize_t suspend_mem_state_show(struct device *dev, 870 struct device_attribute *attr, char *buf) 871 { 872 struct regulator_dev *rdev = dev_get_drvdata(dev); 873 874 return regulator_print_state(buf, 875 rdev->constraints->state_mem.enabled); 876 } 877 static DEVICE_ATTR_RO(suspend_mem_state); 878 879 static ssize_t suspend_disk_state_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct regulator_dev *rdev = dev_get_drvdata(dev); 883 884 return regulator_print_state(buf, 885 rdev->constraints->state_disk.enabled); 886 } 887 static DEVICE_ATTR_RO(suspend_disk_state); 888 889 static ssize_t suspend_standby_state_show(struct device *dev, 890 struct device_attribute *attr, char *buf) 891 { 892 struct regulator_dev *rdev = dev_get_drvdata(dev); 893 894 return regulator_print_state(buf, 895 rdev->constraints->state_standby.enabled); 896 } 897 static DEVICE_ATTR_RO(suspend_standby_state); 898 899 static ssize_t bypass_show(struct device *dev, 900 struct device_attribute *attr, char *buf) 901 { 902 struct regulator_dev *rdev = dev_get_drvdata(dev); 903 const char *report; 904 bool bypass; 905 int ret; 906 907 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 908 909 if (ret != 0) 910 report = "unknown"; 911 else if (bypass) 912 report = "enabled"; 913 else 914 report = "disabled"; 915 916 return sprintf(buf, "%s\n", report); 917 } 918 static DEVICE_ATTR_RO(bypass); 919 920 #define REGULATOR_ERROR_ATTR(name, bit) \ 921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 922 char *buf) \ 923 { \ 924 int ret; \ 925 unsigned int flags; \ 926 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 927 ret = _regulator_get_error_flags(rdev, &flags); \ 928 if (ret) \ 929 return ret; \ 930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 931 } \ 932 static DEVICE_ATTR_RO(name) 933 934 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 935 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 936 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 937 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 938 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 939 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 940 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 941 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 942 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 943 944 /* Calculate the new optimum regulator operating mode based on the new total 945 * consumer load. All locks held by caller 946 */ 947 static int drms_uA_update(struct regulator_dev *rdev) 948 { 949 struct regulator *sibling; 950 int current_uA = 0, output_uV, input_uV, err; 951 unsigned int mode; 952 953 /* 954 * first check to see if we can set modes at all, otherwise just 955 * tell the consumer everything is OK. 956 */ 957 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 958 rdev_dbg(rdev, "DRMS operation not allowed\n"); 959 return 0; 960 } 961 962 if (!rdev->desc->ops->get_optimum_mode && 963 !rdev->desc->ops->set_load) 964 return 0; 965 966 if (!rdev->desc->ops->set_mode && 967 !rdev->desc->ops->set_load) 968 return -EINVAL; 969 970 /* calc total requested load */ 971 list_for_each_entry(sibling, &rdev->consumer_list, list) { 972 if (sibling->enable_count) 973 current_uA += sibling->uA_load; 974 } 975 976 current_uA += rdev->constraints->system_load; 977 978 if (rdev->desc->ops->set_load) { 979 /* set the optimum mode for our new total regulator load */ 980 err = rdev->desc->ops->set_load(rdev, current_uA); 981 if (err < 0) 982 rdev_err(rdev, "failed to set load %d: %pe\n", 983 current_uA, ERR_PTR(err)); 984 } else { 985 /* 986 * Unfortunately in some cases the constraints->valid_ops has 987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 988 * That's not really legit but we won't consider it a fatal 989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 990 * wasn't set. 991 */ 992 if (!rdev->constraints->valid_modes_mask) { 993 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 994 return 0; 995 } 996 997 /* get output voltage */ 998 output_uV = regulator_get_voltage_rdev(rdev); 999 1000 /* 1001 * Don't return an error; if regulator driver cares about 1002 * output_uV then it's up to the driver to validate. 1003 */ 1004 if (output_uV <= 0) 1005 rdev_dbg(rdev, "invalid output voltage found\n"); 1006 1007 /* get input voltage */ 1008 input_uV = 0; 1009 if (rdev->supply) 1010 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1011 if (input_uV <= 0) 1012 input_uV = rdev->constraints->input_uV; 1013 1014 /* 1015 * Don't return an error; if regulator driver cares about 1016 * input_uV then it's up to the driver to validate. 1017 */ 1018 if (input_uV <= 0) 1019 rdev_dbg(rdev, "invalid input voltage found\n"); 1020 1021 /* now get the optimum mode for our new total regulator load */ 1022 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1023 output_uV, current_uA); 1024 1025 /* check the new mode is allowed */ 1026 err = regulator_mode_constrain(rdev, &mode); 1027 if (err < 0) { 1028 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1029 current_uA, input_uV, output_uV, ERR_PTR(err)); 1030 return err; 1031 } 1032 1033 err = rdev->desc->ops->set_mode(rdev, mode); 1034 if (err < 0) 1035 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1036 mode, ERR_PTR(err)); 1037 } 1038 1039 return err; 1040 } 1041 1042 static int __suspend_set_state(struct regulator_dev *rdev, 1043 const struct regulator_state *rstate) 1044 { 1045 int ret = 0; 1046 1047 if (rstate->enabled == ENABLE_IN_SUSPEND && 1048 rdev->desc->ops->set_suspend_enable) 1049 ret = rdev->desc->ops->set_suspend_enable(rdev); 1050 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1051 rdev->desc->ops->set_suspend_disable) 1052 ret = rdev->desc->ops->set_suspend_disable(rdev); 1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1054 ret = 0; 1055 1056 if (ret < 0) { 1057 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1058 return ret; 1059 } 1060 1061 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1062 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1063 if (ret < 0) { 1064 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1065 return ret; 1066 } 1067 } 1068 1069 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1070 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1071 if (ret < 0) { 1072 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1073 return ret; 1074 } 1075 } 1076 1077 return ret; 1078 } 1079 1080 static int suspend_set_initial_state(struct regulator_dev *rdev) 1081 { 1082 const struct regulator_state *rstate; 1083 1084 rstate = regulator_get_suspend_state_check(rdev, 1085 rdev->constraints->initial_state); 1086 if (!rstate) 1087 return 0; 1088 1089 return __suspend_set_state(rdev, rstate); 1090 } 1091 1092 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1093 static void print_constraints_debug(struct regulator_dev *rdev) 1094 { 1095 struct regulation_constraints *constraints = rdev->constraints; 1096 char buf[160] = ""; 1097 size_t len = sizeof(buf) - 1; 1098 int count = 0; 1099 int ret; 1100 1101 if (constraints->min_uV && constraints->max_uV) { 1102 if (constraints->min_uV == constraints->max_uV) 1103 count += scnprintf(buf + count, len - count, "%d mV ", 1104 constraints->min_uV / 1000); 1105 else 1106 count += scnprintf(buf + count, len - count, 1107 "%d <--> %d mV ", 1108 constraints->min_uV / 1000, 1109 constraints->max_uV / 1000); 1110 } 1111 1112 if (!constraints->min_uV || 1113 constraints->min_uV != constraints->max_uV) { 1114 ret = regulator_get_voltage_rdev(rdev); 1115 if (ret > 0) 1116 count += scnprintf(buf + count, len - count, 1117 "at %d mV ", ret / 1000); 1118 } 1119 1120 if (constraints->uV_offset) 1121 count += scnprintf(buf + count, len - count, "%dmV offset ", 1122 constraints->uV_offset / 1000); 1123 1124 if (constraints->min_uA && constraints->max_uA) { 1125 if (constraints->min_uA == constraints->max_uA) 1126 count += scnprintf(buf + count, len - count, "%d mA ", 1127 constraints->min_uA / 1000); 1128 else 1129 count += scnprintf(buf + count, len - count, 1130 "%d <--> %d mA ", 1131 constraints->min_uA / 1000, 1132 constraints->max_uA / 1000); 1133 } 1134 1135 if (!constraints->min_uA || 1136 constraints->min_uA != constraints->max_uA) { 1137 ret = _regulator_get_current_limit(rdev); 1138 if (ret > 0) 1139 count += scnprintf(buf + count, len - count, 1140 "at %d mA ", ret / 1000); 1141 } 1142 1143 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1144 count += scnprintf(buf + count, len - count, "fast "); 1145 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1146 count += scnprintf(buf + count, len - count, "normal "); 1147 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1148 count += scnprintf(buf + count, len - count, "idle "); 1149 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1150 count += scnprintf(buf + count, len - count, "standby "); 1151 1152 if (!count) 1153 count = scnprintf(buf, len, "no parameters"); 1154 else 1155 --count; 1156 1157 count += scnprintf(buf + count, len - count, ", %s", 1158 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1159 1160 rdev_dbg(rdev, "%s\n", buf); 1161 } 1162 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1163 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1164 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1165 1166 static void print_constraints(struct regulator_dev *rdev) 1167 { 1168 struct regulation_constraints *constraints = rdev->constraints; 1169 1170 print_constraints_debug(rdev); 1171 1172 if ((constraints->min_uV != constraints->max_uV) && 1173 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1174 rdev_warn(rdev, 1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1176 } 1177 1178 static int machine_constraints_voltage(struct regulator_dev *rdev, 1179 struct regulation_constraints *constraints) 1180 { 1181 const struct regulator_ops *ops = rdev->desc->ops; 1182 int ret; 1183 1184 /* do we need to apply the constraint voltage */ 1185 if (rdev->constraints->apply_uV && 1186 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1187 int target_min, target_max; 1188 int current_uV = regulator_get_voltage_rdev(rdev); 1189 1190 if (current_uV == -ENOTRECOVERABLE) { 1191 /* This regulator can't be read and must be initialized */ 1192 rdev_info(rdev, "Setting %d-%duV\n", 1193 rdev->constraints->min_uV, 1194 rdev->constraints->max_uV); 1195 _regulator_do_set_voltage(rdev, 1196 rdev->constraints->min_uV, 1197 rdev->constraints->max_uV); 1198 current_uV = regulator_get_voltage_rdev(rdev); 1199 } 1200 1201 if (current_uV < 0) { 1202 if (current_uV != -EPROBE_DEFER) 1203 rdev_err(rdev, 1204 "failed to get the current voltage: %pe\n", 1205 ERR_PTR(current_uV)); 1206 return current_uV; 1207 } 1208 1209 /* 1210 * If we're below the minimum voltage move up to the 1211 * minimum voltage, if we're above the maximum voltage 1212 * then move down to the maximum. 1213 */ 1214 target_min = current_uV; 1215 target_max = current_uV; 1216 1217 if (current_uV < rdev->constraints->min_uV) { 1218 target_min = rdev->constraints->min_uV; 1219 target_max = rdev->constraints->min_uV; 1220 } 1221 1222 if (current_uV > rdev->constraints->max_uV) { 1223 target_min = rdev->constraints->max_uV; 1224 target_max = rdev->constraints->max_uV; 1225 } 1226 1227 if (target_min != current_uV || target_max != current_uV) { 1228 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1229 current_uV, target_min, target_max); 1230 ret = _regulator_do_set_voltage( 1231 rdev, target_min, target_max); 1232 if (ret < 0) { 1233 rdev_err(rdev, 1234 "failed to apply %d-%duV constraint: %pe\n", 1235 target_min, target_max, ERR_PTR(ret)); 1236 return ret; 1237 } 1238 } 1239 } 1240 1241 /* constrain machine-level voltage specs to fit 1242 * the actual range supported by this regulator. 1243 */ 1244 if (ops->list_voltage && rdev->desc->n_voltages) { 1245 int count = rdev->desc->n_voltages; 1246 int i; 1247 int min_uV = INT_MAX; 1248 int max_uV = INT_MIN; 1249 int cmin = constraints->min_uV; 1250 int cmax = constraints->max_uV; 1251 1252 /* it's safe to autoconfigure fixed-voltage supplies 1253 * and the constraints are used by list_voltage. 1254 */ 1255 if (count == 1 && !cmin) { 1256 cmin = 1; 1257 cmax = INT_MAX; 1258 constraints->min_uV = cmin; 1259 constraints->max_uV = cmax; 1260 } 1261 1262 /* voltage constraints are optional */ 1263 if ((cmin == 0) && (cmax == 0)) 1264 return 0; 1265 1266 /* else require explicit machine-level constraints */ 1267 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1268 rdev_err(rdev, "invalid voltage constraints\n"); 1269 return -EINVAL; 1270 } 1271 1272 /* no need to loop voltages if range is continuous */ 1273 if (rdev->desc->continuous_voltage_range) 1274 return 0; 1275 1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1277 for (i = 0; i < count; i++) { 1278 int value; 1279 1280 value = ops->list_voltage(rdev, i); 1281 if (value <= 0) 1282 continue; 1283 1284 /* maybe adjust [min_uV..max_uV] */ 1285 if (value >= cmin && value < min_uV) 1286 min_uV = value; 1287 if (value <= cmax && value > max_uV) 1288 max_uV = value; 1289 } 1290 1291 /* final: [min_uV..max_uV] valid iff constraints valid */ 1292 if (max_uV < min_uV) { 1293 rdev_err(rdev, 1294 "unsupportable voltage constraints %u-%uuV\n", 1295 min_uV, max_uV); 1296 return -EINVAL; 1297 } 1298 1299 /* use regulator's subset of machine constraints */ 1300 if (constraints->min_uV < min_uV) { 1301 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1302 constraints->min_uV, min_uV); 1303 constraints->min_uV = min_uV; 1304 } 1305 if (constraints->max_uV > max_uV) { 1306 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1307 constraints->max_uV, max_uV); 1308 constraints->max_uV = max_uV; 1309 } 1310 } 1311 1312 return 0; 1313 } 1314 1315 static int machine_constraints_current(struct regulator_dev *rdev, 1316 struct regulation_constraints *constraints) 1317 { 1318 const struct regulator_ops *ops = rdev->desc->ops; 1319 int ret; 1320 1321 if (!constraints->min_uA && !constraints->max_uA) 1322 return 0; 1323 1324 if (constraints->min_uA > constraints->max_uA) { 1325 rdev_err(rdev, "Invalid current constraints\n"); 1326 return -EINVAL; 1327 } 1328 1329 if (!ops->set_current_limit || !ops->get_current_limit) { 1330 rdev_warn(rdev, "Operation of current configuration missing\n"); 1331 return 0; 1332 } 1333 1334 /* Set regulator current in constraints range */ 1335 ret = ops->set_current_limit(rdev, constraints->min_uA, 1336 constraints->max_uA); 1337 if (ret < 0) { 1338 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1339 return ret; 1340 } 1341 1342 return 0; 1343 } 1344 1345 static int _regulator_do_enable(struct regulator_dev *rdev); 1346 1347 static int notif_set_limit(struct regulator_dev *rdev, 1348 int (*set)(struct regulator_dev *, int, int, bool), 1349 int limit, int severity) 1350 { 1351 bool enable; 1352 1353 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1354 enable = false; 1355 limit = 0; 1356 } else { 1357 enable = true; 1358 } 1359 1360 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1361 limit = 0; 1362 1363 return set(rdev, limit, severity, enable); 1364 } 1365 1366 static int handle_notify_limits(struct regulator_dev *rdev, 1367 int (*set)(struct regulator_dev *, int, int, bool), 1368 struct notification_limit *limits) 1369 { 1370 int ret = 0; 1371 1372 if (!set) 1373 return -EOPNOTSUPP; 1374 1375 if (limits->prot) 1376 ret = notif_set_limit(rdev, set, limits->prot, 1377 REGULATOR_SEVERITY_PROT); 1378 if (ret) 1379 return ret; 1380 1381 if (limits->err) 1382 ret = notif_set_limit(rdev, set, limits->err, 1383 REGULATOR_SEVERITY_ERR); 1384 if (ret) 1385 return ret; 1386 1387 if (limits->warn) 1388 ret = notif_set_limit(rdev, set, limits->warn, 1389 REGULATOR_SEVERITY_WARN); 1390 1391 return ret; 1392 } 1393 /** 1394 * set_machine_constraints - sets regulator constraints 1395 * @rdev: regulator source 1396 * 1397 * Allows platform initialisation code to define and constrain 1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1399 * Constraints *must* be set by platform code in order for some 1400 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1401 * set_mode. 1402 * 1403 * Return: 0 on success or a negative error number on failure. 1404 */ 1405 static int set_machine_constraints(struct regulator_dev *rdev) 1406 { 1407 int ret = 0; 1408 const struct regulator_ops *ops = rdev->desc->ops; 1409 1410 ret = machine_constraints_voltage(rdev, rdev->constraints); 1411 if (ret != 0) 1412 return ret; 1413 1414 ret = machine_constraints_current(rdev, rdev->constraints); 1415 if (ret != 0) 1416 return ret; 1417 1418 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1419 ret = ops->set_input_current_limit(rdev, 1420 rdev->constraints->ilim_uA); 1421 if (ret < 0) { 1422 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1423 return ret; 1424 } 1425 } 1426 1427 /* do we need to setup our suspend state */ 1428 if (rdev->constraints->initial_state) { 1429 ret = suspend_set_initial_state(rdev); 1430 if (ret < 0) { 1431 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1432 return ret; 1433 } 1434 } 1435 1436 if (rdev->constraints->initial_mode) { 1437 if (!ops->set_mode) { 1438 rdev_err(rdev, "no set_mode operation\n"); 1439 return -EINVAL; 1440 } 1441 1442 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1443 if (ret < 0) { 1444 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1445 return ret; 1446 } 1447 } else if (rdev->constraints->system_load) { 1448 /* 1449 * We'll only apply the initial system load if an 1450 * initial mode wasn't specified. 1451 */ 1452 drms_uA_update(rdev); 1453 } 1454 1455 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1456 && ops->set_ramp_delay) { 1457 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1458 if (ret < 0) { 1459 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1460 return ret; 1461 } 1462 } 1463 1464 if (rdev->constraints->pull_down && ops->set_pull_down) { 1465 ret = ops->set_pull_down(rdev); 1466 if (ret < 0) { 1467 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1468 return ret; 1469 } 1470 } 1471 1472 if (rdev->constraints->soft_start && ops->set_soft_start) { 1473 ret = ops->set_soft_start(rdev); 1474 if (ret < 0) { 1475 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1476 return ret; 1477 } 1478 } 1479 1480 /* 1481 * Existing logic does not warn if over_current_protection is given as 1482 * a constraint but driver does not support that. I think we should 1483 * warn about this type of issues as it is possible someone changes 1484 * PMIC on board to another type - and the another PMIC's driver does 1485 * not support setting protection. Board composer may happily believe 1486 * the DT limits are respected - especially if the new PMIC HW also 1487 * supports protection but the driver does not. I won't change the logic 1488 * without hearing more experienced opinion on this though. 1489 * 1490 * If warning is seen as a good idea then we can merge handling the 1491 * over-curret protection and detection and get rid of this special 1492 * handling. 1493 */ 1494 if (rdev->constraints->over_current_protection 1495 && ops->set_over_current_protection) { 1496 int lim = rdev->constraints->over_curr_limits.prot; 1497 1498 ret = ops->set_over_current_protection(rdev, lim, 1499 REGULATOR_SEVERITY_PROT, 1500 true); 1501 if (ret < 0) { 1502 rdev_err(rdev, "failed to set over current protection: %pe\n", 1503 ERR_PTR(ret)); 1504 return ret; 1505 } 1506 } 1507 1508 if (rdev->constraints->over_current_detection) 1509 ret = handle_notify_limits(rdev, 1510 ops->set_over_current_protection, 1511 &rdev->constraints->over_curr_limits); 1512 if (ret) { 1513 if (ret != -EOPNOTSUPP) { 1514 rdev_err(rdev, "failed to set over current limits: %pe\n", 1515 ERR_PTR(ret)); 1516 return ret; 1517 } 1518 rdev_warn(rdev, 1519 "IC does not support requested over-current limits\n"); 1520 } 1521 1522 if (rdev->constraints->over_voltage_detection) 1523 ret = handle_notify_limits(rdev, 1524 ops->set_over_voltage_protection, 1525 &rdev->constraints->over_voltage_limits); 1526 if (ret) { 1527 if (ret != -EOPNOTSUPP) { 1528 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1529 ERR_PTR(ret)); 1530 return ret; 1531 } 1532 rdev_warn(rdev, 1533 "IC does not support requested over voltage limits\n"); 1534 } 1535 1536 if (rdev->constraints->under_voltage_detection) 1537 ret = handle_notify_limits(rdev, 1538 ops->set_under_voltage_protection, 1539 &rdev->constraints->under_voltage_limits); 1540 if (ret) { 1541 if (ret != -EOPNOTSUPP) { 1542 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1543 ERR_PTR(ret)); 1544 return ret; 1545 } 1546 rdev_warn(rdev, 1547 "IC does not support requested under voltage limits\n"); 1548 } 1549 1550 if (rdev->constraints->over_temp_detection) 1551 ret = handle_notify_limits(rdev, 1552 ops->set_thermal_protection, 1553 &rdev->constraints->temp_limits); 1554 if (ret) { 1555 if (ret != -EOPNOTSUPP) { 1556 rdev_err(rdev, "failed to set temperature limits %pe\n", 1557 ERR_PTR(ret)); 1558 return ret; 1559 } 1560 rdev_warn(rdev, 1561 "IC does not support requested temperature limits\n"); 1562 } 1563 1564 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1565 bool ad_state = (rdev->constraints->active_discharge == 1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1567 1568 ret = ops->set_active_discharge(rdev, ad_state); 1569 if (ret < 0) { 1570 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1571 return ret; 1572 } 1573 } 1574 1575 /* 1576 * If there is no mechanism for controlling the regulator then 1577 * flag it as always_on so we don't end up duplicating checks 1578 * for this so much. Note that we could control the state of 1579 * a supply to control the output on a regulator that has no 1580 * direct control. 1581 */ 1582 if (!rdev->ena_pin && !ops->enable) { 1583 if (rdev->supply_name && !rdev->supply) 1584 return -EPROBE_DEFER; 1585 1586 if (rdev->supply) 1587 rdev->constraints->always_on = 1588 rdev->supply->rdev->constraints->always_on; 1589 else 1590 rdev->constraints->always_on = true; 1591 } 1592 1593 /* If the constraints say the regulator should be on at this point 1594 * and we have control then make sure it is enabled. 1595 */ 1596 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1597 /* If we want to enable this regulator, make sure that we know 1598 * the supplying regulator. 1599 */ 1600 if (rdev->supply_name && !rdev->supply) 1601 return -EPROBE_DEFER; 1602 1603 /* If supplying regulator has already been enabled, 1604 * it's not intended to have use_count increment 1605 * when rdev is only boot-on. 1606 */ 1607 if (rdev->supply && 1608 (rdev->constraints->always_on || 1609 !regulator_is_enabled(rdev->supply))) { 1610 ret = regulator_enable(rdev->supply); 1611 if (ret < 0) { 1612 _regulator_put(rdev->supply); 1613 rdev->supply = NULL; 1614 return ret; 1615 } 1616 } 1617 1618 ret = _regulator_do_enable(rdev); 1619 if (ret < 0 && ret != -EINVAL) { 1620 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1621 return ret; 1622 } 1623 1624 if (rdev->constraints->always_on) 1625 rdev->use_count++; 1626 } else if (rdev->desc->off_on_delay) { 1627 rdev->last_off = ktime_get(); 1628 } 1629 1630 print_constraints(rdev); 1631 return 0; 1632 } 1633 1634 /** 1635 * set_supply - set regulator supply regulator 1636 * @rdev: regulator (locked) 1637 * @supply_rdev: supply regulator (locked)) 1638 * 1639 * Called by platform initialisation code to set the supply regulator for this 1640 * regulator. This ensures that a regulators supply will also be enabled by the 1641 * core if it's child is enabled. 1642 * 1643 * Return: 0 on success or a negative error number on failure. 1644 */ 1645 static int set_supply(struct regulator_dev *rdev, 1646 struct regulator_dev *supply_rdev) 1647 { 1648 int err; 1649 1650 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1651 1652 if (!try_module_get(supply_rdev->owner)) 1653 return -ENODEV; 1654 1655 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1656 if (rdev->supply == NULL) { 1657 module_put(supply_rdev->owner); 1658 err = -ENOMEM; 1659 return err; 1660 } 1661 supply_rdev->open_count++; 1662 1663 return 0; 1664 } 1665 1666 /** 1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1668 * @rdev: regulator source 1669 * @consumer_dev_name: dev_name() string for device supply applies to 1670 * @supply: symbolic name for supply 1671 * 1672 * Allows platform initialisation code to map physical regulator 1673 * sources to symbolic names for supplies for use by devices. Devices 1674 * should use these symbolic names to request regulators, avoiding the 1675 * need to provide board-specific regulator names as platform data. 1676 * 1677 * Return: 0 on success or a negative error number on failure. 1678 */ 1679 static int set_consumer_device_supply(struct regulator_dev *rdev, 1680 const char *consumer_dev_name, 1681 const char *supply) 1682 { 1683 struct regulator_map *node, *new_node; 1684 int has_dev; 1685 1686 if (supply == NULL) 1687 return -EINVAL; 1688 1689 if (consumer_dev_name != NULL) 1690 has_dev = 1; 1691 else 1692 has_dev = 0; 1693 1694 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1695 if (new_node == NULL) 1696 return -ENOMEM; 1697 1698 new_node->regulator = rdev; 1699 new_node->supply = supply; 1700 1701 if (has_dev) { 1702 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1703 if (new_node->dev_name == NULL) { 1704 kfree(new_node); 1705 return -ENOMEM; 1706 } 1707 } 1708 1709 mutex_lock(®ulator_list_mutex); 1710 list_for_each_entry(node, ®ulator_map_list, list) { 1711 if (node->dev_name && consumer_dev_name) { 1712 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1713 continue; 1714 } else if (node->dev_name || consumer_dev_name) { 1715 continue; 1716 } 1717 1718 if (strcmp(node->supply, supply) != 0) 1719 continue; 1720 1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1722 consumer_dev_name, 1723 dev_name(&node->regulator->dev), 1724 node->regulator->desc->name, 1725 supply, 1726 dev_name(&rdev->dev), rdev_get_name(rdev)); 1727 goto fail; 1728 } 1729 1730 list_add(&new_node->list, ®ulator_map_list); 1731 mutex_unlock(®ulator_list_mutex); 1732 1733 return 0; 1734 1735 fail: 1736 mutex_unlock(®ulator_list_mutex); 1737 kfree(new_node->dev_name); 1738 kfree(new_node); 1739 return -EBUSY; 1740 } 1741 1742 static void unset_regulator_supplies(struct regulator_dev *rdev) 1743 { 1744 struct regulator_map *node, *n; 1745 1746 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1747 if (rdev == node->regulator) { 1748 list_del(&node->list); 1749 kfree(node->dev_name); 1750 kfree(node); 1751 } 1752 } 1753 } 1754 1755 #ifdef CONFIG_DEBUG_FS 1756 static ssize_t constraint_flags_read_file(struct file *file, 1757 char __user *user_buf, 1758 size_t count, loff_t *ppos) 1759 { 1760 const struct regulator *regulator = file->private_data; 1761 const struct regulation_constraints *c = regulator->rdev->constraints; 1762 char *buf; 1763 ssize_t ret; 1764 1765 if (!c) 1766 return 0; 1767 1768 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1769 if (!buf) 1770 return -ENOMEM; 1771 1772 ret = snprintf(buf, PAGE_SIZE, 1773 "always_on: %u\n" 1774 "boot_on: %u\n" 1775 "apply_uV: %u\n" 1776 "ramp_disable: %u\n" 1777 "soft_start: %u\n" 1778 "pull_down: %u\n" 1779 "over_current_protection: %u\n", 1780 c->always_on, 1781 c->boot_on, 1782 c->apply_uV, 1783 c->ramp_disable, 1784 c->soft_start, 1785 c->pull_down, 1786 c->over_current_protection); 1787 1788 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1789 kfree(buf); 1790 1791 return ret; 1792 } 1793 1794 #endif 1795 1796 static const struct file_operations constraint_flags_fops = { 1797 #ifdef CONFIG_DEBUG_FS 1798 .open = simple_open, 1799 .read = constraint_flags_read_file, 1800 .llseek = default_llseek, 1801 #endif 1802 }; 1803 1804 #define REG_STR_SIZE 64 1805 1806 static struct regulator *create_regulator(struct regulator_dev *rdev, 1807 struct device *dev, 1808 const char *supply_name) 1809 { 1810 struct regulator *regulator; 1811 int err = 0; 1812 1813 lockdep_assert_held_once(&rdev->mutex.base); 1814 1815 if (dev) { 1816 char buf[REG_STR_SIZE]; 1817 int size; 1818 1819 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1820 dev->kobj.name, supply_name); 1821 if (size >= REG_STR_SIZE) 1822 return NULL; 1823 1824 supply_name = kstrdup(buf, GFP_KERNEL); 1825 if (supply_name == NULL) 1826 return NULL; 1827 } else { 1828 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1829 if (supply_name == NULL) 1830 return NULL; 1831 } 1832 1833 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1834 if (regulator == NULL) { 1835 kfree_const(supply_name); 1836 return NULL; 1837 } 1838 1839 regulator->rdev = rdev; 1840 regulator->supply_name = supply_name; 1841 1842 list_add(®ulator->list, &rdev->consumer_list); 1843 1844 if (dev) { 1845 regulator->dev = dev; 1846 1847 /* Add a link to the device sysfs entry */ 1848 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1849 supply_name); 1850 if (err) { 1851 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1852 dev->kobj.name, ERR_PTR(err)); 1853 /* non-fatal */ 1854 } 1855 } 1856 1857 if (err != -EEXIST) { 1858 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1859 if (IS_ERR(regulator->debugfs)) { 1860 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1861 regulator->debugfs = NULL; 1862 } 1863 } 1864 1865 if (regulator->debugfs) { 1866 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1867 ®ulator->uA_load); 1868 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1869 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1870 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1871 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1872 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1873 regulator, &constraint_flags_fops); 1874 } 1875 1876 /* 1877 * Check now if the regulator is an always on regulator - if 1878 * it is then we don't need to do nearly so much work for 1879 * enable/disable calls. 1880 */ 1881 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1882 _regulator_is_enabled(rdev)) 1883 regulator->always_on = true; 1884 1885 return regulator; 1886 } 1887 1888 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1889 { 1890 if (rdev->constraints && rdev->constraints->enable_time) 1891 return rdev->constraints->enable_time; 1892 if (rdev->desc->ops->enable_time) 1893 return rdev->desc->ops->enable_time(rdev); 1894 return rdev->desc->enable_time; 1895 } 1896 1897 static struct regulator_supply_alias *regulator_find_supply_alias( 1898 struct device *dev, const char *supply) 1899 { 1900 struct regulator_supply_alias *map; 1901 1902 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1903 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1904 return map; 1905 1906 return NULL; 1907 } 1908 1909 static void regulator_supply_alias(struct device **dev, const char **supply) 1910 { 1911 struct regulator_supply_alias *map; 1912 1913 map = regulator_find_supply_alias(*dev, *supply); 1914 if (map) { 1915 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1916 *supply, map->alias_supply, 1917 dev_name(map->alias_dev)); 1918 *dev = map->alias_dev; 1919 *supply = map->alias_supply; 1920 } 1921 } 1922 1923 static int regulator_match(struct device *dev, const void *data) 1924 { 1925 struct regulator_dev *r = dev_to_rdev(dev); 1926 1927 return strcmp(rdev_get_name(r), data) == 0; 1928 } 1929 1930 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1931 { 1932 struct device *dev; 1933 1934 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1935 1936 return dev ? dev_to_rdev(dev) : NULL; 1937 } 1938 1939 /** 1940 * regulator_dev_lookup - lookup a regulator device. 1941 * @dev: device for regulator "consumer". 1942 * @supply: Supply name or regulator ID. 1943 * 1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number. 1945 * 1946 * If successful, returns a struct regulator_dev that corresponds to the name 1947 * @supply and with the embedded struct device refcount incremented by one. 1948 * The refcount must be dropped by calling put_device(). 1949 * On failure one of the following ERR_PTR() encoded values is returned: 1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed 1951 * in the future. 1952 */ 1953 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1954 const char *supply) 1955 { 1956 struct regulator_dev *r = NULL; 1957 struct regulator_map *map; 1958 const char *devname = NULL; 1959 1960 regulator_supply_alias(&dev, &supply); 1961 1962 /* first do a dt based lookup */ 1963 if (dev_of_node(dev)) { 1964 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply); 1965 if (!IS_ERR(r)) 1966 return r; 1967 if (PTR_ERR(r) == -EPROBE_DEFER) 1968 return r; 1969 1970 if (PTR_ERR(r) == -ENODEV) 1971 r = NULL; 1972 } 1973 1974 /* if not found, try doing it non-dt way */ 1975 if (dev) 1976 devname = dev_name(dev); 1977 1978 mutex_lock(®ulator_list_mutex); 1979 list_for_each_entry(map, ®ulator_map_list, list) { 1980 /* If the mapping has a device set up it must match */ 1981 if (map->dev_name && 1982 (!devname || strcmp(map->dev_name, devname))) 1983 continue; 1984 1985 if (strcmp(map->supply, supply) == 0 && 1986 get_device(&map->regulator->dev)) { 1987 r = map->regulator; 1988 break; 1989 } 1990 } 1991 mutex_unlock(®ulator_list_mutex); 1992 1993 if (r) 1994 return r; 1995 1996 r = regulator_lookup_by_name(supply); 1997 if (r) 1998 return r; 1999 2000 return ERR_PTR(-ENODEV); 2001 } 2002 2003 static int regulator_resolve_supply(struct regulator_dev *rdev) 2004 { 2005 struct regulator_dev *r; 2006 struct device *dev = rdev->dev.parent; 2007 struct ww_acquire_ctx ww_ctx; 2008 int ret = 0; 2009 2010 /* No supply to resolve? */ 2011 if (!rdev->supply_name) 2012 return 0; 2013 2014 /* Supply already resolved? (fast-path without locking contention) */ 2015 if (rdev->supply) 2016 return 0; 2017 2018 r = regulator_dev_lookup(dev, rdev->supply_name); 2019 if (IS_ERR(r)) { 2020 ret = PTR_ERR(r); 2021 2022 /* Did the lookup explicitly defer for us? */ 2023 if (ret == -EPROBE_DEFER) 2024 goto out; 2025 2026 if (have_full_constraints()) { 2027 r = dummy_regulator_rdev; 2028 get_device(&r->dev); 2029 } else { 2030 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2031 rdev->supply_name, rdev->desc->name); 2032 ret = -EPROBE_DEFER; 2033 goto out; 2034 } 2035 } 2036 2037 if (r == rdev) { 2038 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2039 rdev->desc->name, rdev->supply_name); 2040 if (!have_full_constraints()) { 2041 ret = -EINVAL; 2042 goto out; 2043 } 2044 r = dummy_regulator_rdev; 2045 get_device(&r->dev); 2046 } 2047 2048 /* 2049 * If the supply's parent device is not the same as the 2050 * regulator's parent device, then ensure the parent device 2051 * is bound before we resolve the supply, in case the parent 2052 * device get probe deferred and unregisters the supply. 2053 */ 2054 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2055 if (!device_is_bound(r->dev.parent)) { 2056 put_device(&r->dev); 2057 ret = -EPROBE_DEFER; 2058 goto out; 2059 } 2060 } 2061 2062 /* Recursively resolve the supply of the supply */ 2063 ret = regulator_resolve_supply(r); 2064 if (ret < 0) { 2065 put_device(&r->dev); 2066 goto out; 2067 } 2068 2069 /* 2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2071 * between rdev->supply null check and setting rdev->supply in 2072 * set_supply() from concurrent tasks. 2073 */ 2074 regulator_lock_two(rdev, r, &ww_ctx); 2075 2076 /* Supply just resolved by a concurrent task? */ 2077 if (rdev->supply) { 2078 regulator_unlock_two(rdev, r, &ww_ctx); 2079 put_device(&r->dev); 2080 goto out; 2081 } 2082 2083 ret = set_supply(rdev, r); 2084 if (ret < 0) { 2085 regulator_unlock_two(rdev, r, &ww_ctx); 2086 put_device(&r->dev); 2087 goto out; 2088 } 2089 2090 regulator_unlock_two(rdev, r, &ww_ctx); 2091 2092 /* 2093 * In set_machine_constraints() we may have turned this regulator on 2094 * but we couldn't propagate to the supply if it hadn't been resolved 2095 * yet. Do it now. 2096 */ 2097 if (rdev->use_count) { 2098 ret = regulator_enable(rdev->supply); 2099 if (ret < 0) { 2100 _regulator_put(rdev->supply); 2101 rdev->supply = NULL; 2102 goto out; 2103 } 2104 } 2105 2106 out: 2107 return ret; 2108 } 2109 2110 /* common pre-checks for regulator requests */ 2111 int _regulator_get_common_check(struct device *dev, const char *id, 2112 enum regulator_get_type get_type) 2113 { 2114 if (get_type >= MAX_GET_TYPE) { 2115 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2116 return -EINVAL; 2117 } 2118 2119 if (id == NULL) { 2120 dev_err(dev, "regulator request with no identifier\n"); 2121 return -EINVAL; 2122 } 2123 2124 return 0; 2125 } 2126 2127 /** 2128 * _regulator_get_common - Common code for regulator requests 2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup() 2130 * Its reference count is expected to have been incremented. 2131 * @dev: device used for dev_printk messages 2132 * @id: Supply name or regulator ID 2133 * @get_type: enum regulator_get_type value corresponding to type of request 2134 * 2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR() 2136 * encoded error. 2137 * 2138 * This function should be chained with *regulator_dev_lookup() functions. 2139 */ 2140 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev, 2141 const char *id, enum regulator_get_type get_type) 2142 { 2143 struct regulator *regulator; 2144 struct device_link *link; 2145 int ret; 2146 2147 if (IS_ERR(rdev)) { 2148 ret = PTR_ERR(rdev); 2149 2150 /* 2151 * If regulator_dev_lookup() fails with error other 2152 * than -ENODEV our job here is done, we simply return it. 2153 */ 2154 if (ret != -ENODEV) 2155 return ERR_PTR(ret); 2156 2157 if (!have_full_constraints()) { 2158 dev_warn(dev, 2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); 2160 return ERR_PTR(-ENODEV); 2161 } 2162 2163 switch (get_type) { 2164 case NORMAL_GET: 2165 /* 2166 * Assume that a regulator is physically present and 2167 * enabled, even if it isn't hooked up, and just 2168 * provide a dummy. 2169 */ 2170 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2171 rdev = dummy_regulator_rdev; 2172 get_device(&rdev->dev); 2173 break; 2174 2175 case EXCLUSIVE_GET: 2176 dev_warn(dev, 2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id); 2178 fallthrough; 2179 2180 default: 2181 return ERR_PTR(-ENODEV); 2182 } 2183 } 2184 2185 if (rdev->exclusive) { 2186 regulator = ERR_PTR(-EPERM); 2187 put_device(&rdev->dev); 2188 return regulator; 2189 } 2190 2191 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2192 regulator = ERR_PTR(-EBUSY); 2193 put_device(&rdev->dev); 2194 return regulator; 2195 } 2196 2197 mutex_lock(®ulator_list_mutex); 2198 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2199 mutex_unlock(®ulator_list_mutex); 2200 2201 if (ret != 0) { 2202 regulator = ERR_PTR(-EPROBE_DEFER); 2203 put_device(&rdev->dev); 2204 return regulator; 2205 } 2206 2207 ret = regulator_resolve_supply(rdev); 2208 if (ret < 0) { 2209 regulator = ERR_PTR(ret); 2210 put_device(&rdev->dev); 2211 return regulator; 2212 } 2213 2214 if (!try_module_get(rdev->owner)) { 2215 regulator = ERR_PTR(-EPROBE_DEFER); 2216 put_device(&rdev->dev); 2217 return regulator; 2218 } 2219 2220 regulator_lock(rdev); 2221 regulator = create_regulator(rdev, dev, id); 2222 regulator_unlock(rdev); 2223 if (regulator == NULL) { 2224 regulator = ERR_PTR(-ENOMEM); 2225 module_put(rdev->owner); 2226 put_device(&rdev->dev); 2227 return regulator; 2228 } 2229 2230 rdev->open_count++; 2231 if (get_type == EXCLUSIVE_GET) { 2232 rdev->exclusive = 1; 2233 2234 ret = _regulator_is_enabled(rdev); 2235 if (ret > 0) { 2236 rdev->use_count = 1; 2237 regulator->enable_count = 1; 2238 2239 /* Propagate the regulator state to its supply */ 2240 if (rdev->supply) { 2241 ret = regulator_enable(rdev->supply); 2242 if (ret < 0) { 2243 destroy_regulator(regulator); 2244 module_put(rdev->owner); 2245 put_device(&rdev->dev); 2246 return ERR_PTR(ret); 2247 } 2248 } 2249 } else { 2250 rdev->use_count = 0; 2251 regulator->enable_count = 0; 2252 } 2253 } 2254 2255 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2256 if (!IS_ERR_OR_NULL(link)) 2257 regulator->device_link = true; 2258 2259 return regulator; 2260 } 2261 2262 /* Internal regulator request function */ 2263 struct regulator *_regulator_get(struct device *dev, const char *id, 2264 enum regulator_get_type get_type) 2265 { 2266 struct regulator_dev *rdev; 2267 int ret; 2268 2269 ret = _regulator_get_common_check(dev, id, get_type); 2270 if (ret) 2271 return ERR_PTR(ret); 2272 2273 rdev = regulator_dev_lookup(dev, id); 2274 return _regulator_get_common(rdev, dev, id, get_type); 2275 } 2276 2277 /** 2278 * regulator_get - lookup and obtain a reference to a regulator. 2279 * @dev: device for regulator "consumer" 2280 * @id: Supply name or regulator ID. 2281 * 2282 * Use of supply names configured via set_consumer_device_supply() is 2283 * strongly encouraged. It is recommended that the supply name used 2284 * should match the name used for the supply and/or the relevant 2285 * device pins in the datasheet. 2286 * 2287 * Return: Pointer to a &struct regulator corresponding to the regulator 2288 * producer, or an ERR_PTR() encoded negative error number. 2289 */ 2290 struct regulator *regulator_get(struct device *dev, const char *id) 2291 { 2292 return _regulator_get(dev, id, NORMAL_GET); 2293 } 2294 EXPORT_SYMBOL_GPL(regulator_get); 2295 2296 /** 2297 * regulator_get_exclusive - obtain exclusive access to a regulator. 2298 * @dev: device for regulator "consumer" 2299 * @id: Supply name or regulator ID. 2300 * 2301 * Other consumers will be unable to obtain this regulator while this 2302 * reference is held and the use count for the regulator will be 2303 * initialised to reflect the current state of the regulator. 2304 * 2305 * This is intended for use by consumers which cannot tolerate shared 2306 * use of the regulator such as those which need to force the 2307 * regulator off for correct operation of the hardware they are 2308 * controlling. 2309 * 2310 * Use of supply names configured via set_consumer_device_supply() is 2311 * strongly encouraged. It is recommended that the supply name used 2312 * should match the name used for the supply and/or the relevant 2313 * device pins in the datasheet. 2314 * 2315 * Return: Pointer to a &struct regulator corresponding to the regulator 2316 * producer, or an ERR_PTR() encoded negative error number. 2317 */ 2318 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2319 { 2320 return _regulator_get(dev, id, EXCLUSIVE_GET); 2321 } 2322 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2323 2324 /** 2325 * regulator_get_optional - obtain optional access to a regulator. 2326 * @dev: device for regulator "consumer" 2327 * @id: Supply name or regulator ID. 2328 * 2329 * This is intended for use by consumers for devices which can have 2330 * some supplies unconnected in normal use, such as some MMC devices. 2331 * It can allow the regulator core to provide stub supplies for other 2332 * supplies requested using normal regulator_get() calls without 2333 * disrupting the operation of drivers that can handle absent 2334 * supplies. 2335 * 2336 * Use of supply names configured via set_consumer_device_supply() is 2337 * strongly encouraged. It is recommended that the supply name used 2338 * should match the name used for the supply and/or the relevant 2339 * device pins in the datasheet. 2340 * 2341 * Return: Pointer to a &struct regulator corresponding to the regulator 2342 * producer, or an ERR_PTR() encoded negative error number. 2343 */ 2344 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2345 { 2346 return _regulator_get(dev, id, OPTIONAL_GET); 2347 } 2348 EXPORT_SYMBOL_GPL(regulator_get_optional); 2349 2350 static void destroy_regulator(struct regulator *regulator) 2351 { 2352 struct regulator_dev *rdev = regulator->rdev; 2353 2354 debugfs_remove_recursive(regulator->debugfs); 2355 2356 if (regulator->dev) { 2357 if (regulator->device_link) 2358 device_link_remove(regulator->dev, &rdev->dev); 2359 2360 /* remove any sysfs entries */ 2361 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2362 } 2363 2364 regulator_lock(rdev); 2365 list_del(®ulator->list); 2366 2367 rdev->open_count--; 2368 rdev->exclusive = 0; 2369 regulator_unlock(rdev); 2370 2371 kfree_const(regulator->supply_name); 2372 kfree(regulator); 2373 } 2374 2375 /* regulator_list_mutex lock held by regulator_put() */ 2376 static void _regulator_put(struct regulator *regulator) 2377 { 2378 struct regulator_dev *rdev; 2379 2380 if (IS_ERR_OR_NULL(regulator)) 2381 return; 2382 2383 lockdep_assert_held_once(®ulator_list_mutex); 2384 2385 /* Docs say you must disable before calling regulator_put() */ 2386 WARN_ON(regulator->enable_count); 2387 2388 rdev = regulator->rdev; 2389 2390 destroy_regulator(regulator); 2391 2392 module_put(rdev->owner); 2393 put_device(&rdev->dev); 2394 } 2395 2396 /** 2397 * regulator_put - "free" the regulator source 2398 * @regulator: regulator source 2399 * 2400 * Note: drivers must ensure that all regulator_enable calls made on this 2401 * regulator source are balanced by regulator_disable calls prior to calling 2402 * this function. 2403 */ 2404 void regulator_put(struct regulator *regulator) 2405 { 2406 mutex_lock(®ulator_list_mutex); 2407 _regulator_put(regulator); 2408 mutex_unlock(®ulator_list_mutex); 2409 } 2410 EXPORT_SYMBOL_GPL(regulator_put); 2411 2412 /** 2413 * regulator_register_supply_alias - Provide device alias for supply lookup 2414 * 2415 * @dev: device that will be given as the regulator "consumer" 2416 * @id: Supply name or regulator ID 2417 * @alias_dev: device that should be used to lookup the supply 2418 * @alias_id: Supply name or regulator ID that should be used to lookup the 2419 * supply 2420 * 2421 * All lookups for id on dev will instead be conducted for alias_id on 2422 * alias_dev. 2423 * 2424 * Return: 0 on success or a negative error number on failure. 2425 */ 2426 int regulator_register_supply_alias(struct device *dev, const char *id, 2427 struct device *alias_dev, 2428 const char *alias_id) 2429 { 2430 struct regulator_supply_alias *map; 2431 2432 map = regulator_find_supply_alias(dev, id); 2433 if (map) 2434 return -EEXIST; 2435 2436 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2437 if (!map) 2438 return -ENOMEM; 2439 2440 map->src_dev = dev; 2441 map->src_supply = id; 2442 map->alias_dev = alias_dev; 2443 map->alias_supply = alias_id; 2444 2445 list_add(&map->list, ®ulator_supply_alias_list); 2446 2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2448 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2449 2450 return 0; 2451 } 2452 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2453 2454 /** 2455 * regulator_unregister_supply_alias - Remove device alias 2456 * 2457 * @dev: device that will be given as the regulator "consumer" 2458 * @id: Supply name or regulator ID 2459 * 2460 * Remove a lookup alias if one exists for id on dev. 2461 */ 2462 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2463 { 2464 struct regulator_supply_alias *map; 2465 2466 map = regulator_find_supply_alias(dev, id); 2467 if (map) { 2468 list_del(&map->list); 2469 kfree(map); 2470 } 2471 } 2472 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2473 2474 /** 2475 * regulator_bulk_register_supply_alias - register multiple aliases 2476 * 2477 * @dev: device that will be given as the regulator "consumer" 2478 * @id: List of supply names or regulator IDs 2479 * @alias_dev: device that should be used to lookup the supply 2480 * @alias_id: List of supply names or regulator IDs that should be used to 2481 * lookup the supply 2482 * @num_id: Number of aliases to register 2483 * 2484 * This helper function allows drivers to register several supply 2485 * aliases in one operation. If any of the aliases cannot be 2486 * registered any aliases that were registered will be removed 2487 * before returning to the caller. 2488 * 2489 * Return: 0 on success or a negative error number on failure. 2490 */ 2491 int regulator_bulk_register_supply_alias(struct device *dev, 2492 const char *const *id, 2493 struct device *alias_dev, 2494 const char *const *alias_id, 2495 int num_id) 2496 { 2497 int i; 2498 int ret; 2499 2500 for (i = 0; i < num_id; ++i) { 2501 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2502 alias_id[i]); 2503 if (ret < 0) 2504 goto err; 2505 } 2506 2507 return 0; 2508 2509 err: 2510 dev_err(dev, 2511 "Failed to create supply alias %s,%s -> %s,%s\n", 2512 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2513 2514 while (--i >= 0) 2515 regulator_unregister_supply_alias(dev, id[i]); 2516 2517 return ret; 2518 } 2519 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2520 2521 /** 2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2523 * 2524 * @dev: device that will be given as the regulator "consumer" 2525 * @id: List of supply names or regulator IDs 2526 * @num_id: Number of aliases to unregister 2527 * 2528 * This helper function allows drivers to unregister several supply 2529 * aliases in one operation. 2530 */ 2531 void regulator_bulk_unregister_supply_alias(struct device *dev, 2532 const char *const *id, 2533 int num_id) 2534 { 2535 int i; 2536 2537 for (i = 0; i < num_id; ++i) 2538 regulator_unregister_supply_alias(dev, id[i]); 2539 } 2540 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2541 2542 2543 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2544 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2545 const struct regulator_config *config) 2546 { 2547 struct regulator_enable_gpio *pin, *new_pin; 2548 struct gpio_desc *gpiod; 2549 2550 gpiod = config->ena_gpiod; 2551 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2552 2553 mutex_lock(®ulator_list_mutex); 2554 2555 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2556 if (pin->gpiod == gpiod) { 2557 rdev_dbg(rdev, "GPIO is already used\n"); 2558 goto update_ena_gpio_to_rdev; 2559 } 2560 } 2561 2562 if (new_pin == NULL) { 2563 mutex_unlock(®ulator_list_mutex); 2564 return -ENOMEM; 2565 } 2566 2567 pin = new_pin; 2568 new_pin = NULL; 2569 2570 pin->gpiod = gpiod; 2571 list_add(&pin->list, ®ulator_ena_gpio_list); 2572 2573 update_ena_gpio_to_rdev: 2574 pin->request_count++; 2575 rdev->ena_pin = pin; 2576 2577 mutex_unlock(®ulator_list_mutex); 2578 kfree(new_pin); 2579 2580 return 0; 2581 } 2582 2583 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2584 { 2585 struct regulator_enable_gpio *pin, *n; 2586 2587 if (!rdev->ena_pin) 2588 return; 2589 2590 /* Free the GPIO only in case of no use */ 2591 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2592 if (pin != rdev->ena_pin) 2593 continue; 2594 2595 if (--pin->request_count) 2596 break; 2597 2598 gpiod_put(pin->gpiod); 2599 list_del(&pin->list); 2600 kfree(pin); 2601 break; 2602 } 2603 2604 rdev->ena_pin = NULL; 2605 } 2606 2607 /** 2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2609 * @rdev: regulator_dev structure 2610 * @enable: enable GPIO at initial use? 2611 * 2612 * GPIO is enabled in case of initial use. (enable_count is 0) 2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2614 * 2615 * Return: 0 on success or a negative error number on failure. 2616 */ 2617 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2618 { 2619 struct regulator_enable_gpio *pin = rdev->ena_pin; 2620 2621 if (!pin) 2622 return -EINVAL; 2623 2624 if (enable) { 2625 /* Enable GPIO at initial use */ 2626 if (pin->enable_count == 0) 2627 gpiod_set_value_cansleep(pin->gpiod, 1); 2628 2629 pin->enable_count++; 2630 } else { 2631 if (pin->enable_count > 1) { 2632 pin->enable_count--; 2633 return 0; 2634 } 2635 2636 /* Disable GPIO if not used */ 2637 if (pin->enable_count <= 1) { 2638 gpiod_set_value_cansleep(pin->gpiod, 0); 2639 pin->enable_count = 0; 2640 } 2641 } 2642 2643 return 0; 2644 } 2645 2646 /** 2647 * _regulator_check_status_enabled - check if regulator status can be 2648 * interpreted as "regulator is enabled" 2649 * @rdev: the regulator device to check 2650 * 2651 * Return: 2652 * * 1 - if status shows regulator is in enabled state 2653 * * 0 - if not enabled state 2654 * * Error Value - as received from ops->get_status() 2655 */ 2656 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2657 { 2658 int ret = rdev->desc->ops->get_status(rdev); 2659 2660 if (ret < 0) { 2661 rdev_info(rdev, "get_status returned error: %d\n", ret); 2662 return ret; 2663 } 2664 2665 switch (ret) { 2666 case REGULATOR_STATUS_OFF: 2667 case REGULATOR_STATUS_ERROR: 2668 case REGULATOR_STATUS_UNDEFINED: 2669 return 0; 2670 default: 2671 return 1; 2672 } 2673 } 2674 2675 static int _regulator_do_enable(struct regulator_dev *rdev) 2676 { 2677 int ret, delay; 2678 2679 /* Query before enabling in case configuration dependent. */ 2680 ret = _regulator_get_enable_time(rdev); 2681 if (ret >= 0) { 2682 delay = ret; 2683 } else { 2684 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2685 delay = 0; 2686 } 2687 2688 trace_regulator_enable(rdev_get_name(rdev)); 2689 2690 if (rdev->desc->off_on_delay) { 2691 /* if needed, keep a distance of off_on_delay from last time 2692 * this regulator was disabled. 2693 */ 2694 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2695 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2696 2697 if (remaining > 0) 2698 fsleep(remaining); 2699 } 2700 2701 if (rdev->ena_pin) { 2702 if (!rdev->ena_gpio_state) { 2703 ret = regulator_ena_gpio_ctrl(rdev, true); 2704 if (ret < 0) 2705 return ret; 2706 rdev->ena_gpio_state = 1; 2707 } 2708 } else if (rdev->desc->ops->enable) { 2709 ret = rdev->desc->ops->enable(rdev); 2710 if (ret < 0) 2711 return ret; 2712 } else { 2713 return -EINVAL; 2714 } 2715 2716 /* Allow the regulator to ramp; it would be useful to extend 2717 * this for bulk operations so that the regulators can ramp 2718 * together. 2719 */ 2720 trace_regulator_enable_delay(rdev_get_name(rdev)); 2721 2722 /* If poll_enabled_time is set, poll upto the delay calculated 2723 * above, delaying poll_enabled_time uS to check if the regulator 2724 * actually got enabled. 2725 * If the regulator isn't enabled after our delay helper has expired, 2726 * return -ETIMEDOUT. 2727 */ 2728 if (rdev->desc->poll_enabled_time) { 2729 int time_remaining = delay; 2730 2731 while (time_remaining > 0) { 2732 fsleep(rdev->desc->poll_enabled_time); 2733 2734 if (rdev->desc->ops->get_status) { 2735 ret = _regulator_check_status_enabled(rdev); 2736 if (ret < 0) 2737 return ret; 2738 else if (ret) 2739 break; 2740 } else if (rdev->desc->ops->is_enabled(rdev)) 2741 break; 2742 2743 time_remaining -= rdev->desc->poll_enabled_time; 2744 } 2745 2746 if (time_remaining <= 0) { 2747 rdev_err(rdev, "Enabled check timed out\n"); 2748 return -ETIMEDOUT; 2749 } 2750 } else { 2751 fsleep(delay); 2752 } 2753 2754 trace_regulator_enable_complete(rdev_get_name(rdev)); 2755 2756 return 0; 2757 } 2758 2759 /** 2760 * _regulator_handle_consumer_enable - handle that a consumer enabled 2761 * @regulator: regulator source 2762 * 2763 * Some things on a regulator consumer (like the contribution towards total 2764 * load on the regulator) only have an effect when the consumer wants the 2765 * regulator enabled. Explained in example with two consumers of the same 2766 * regulator: 2767 * consumer A: set_load(100); => total load = 0 2768 * consumer A: regulator_enable(); => total load = 100 2769 * consumer B: set_load(1000); => total load = 100 2770 * consumer B: regulator_enable(); => total load = 1100 2771 * consumer A: regulator_disable(); => total_load = 1000 2772 * 2773 * This function (together with _regulator_handle_consumer_disable) is 2774 * responsible for keeping track of the refcount for a given regulator consumer 2775 * and applying / unapplying these things. 2776 * 2777 * Return: 0 on success or negative error number on failure. 2778 */ 2779 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2780 { 2781 int ret; 2782 struct regulator_dev *rdev = regulator->rdev; 2783 2784 lockdep_assert_held_once(&rdev->mutex.base); 2785 2786 regulator->enable_count++; 2787 if (regulator->uA_load && regulator->enable_count == 1) { 2788 ret = drms_uA_update(rdev); 2789 if (ret) 2790 regulator->enable_count--; 2791 return ret; 2792 } 2793 2794 return 0; 2795 } 2796 2797 /** 2798 * _regulator_handle_consumer_disable - handle that a consumer disabled 2799 * @regulator: regulator source 2800 * 2801 * The opposite of _regulator_handle_consumer_enable(). 2802 * 2803 * Return: 0 on success or a negative error number on failure. 2804 */ 2805 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2806 { 2807 struct regulator_dev *rdev = regulator->rdev; 2808 2809 lockdep_assert_held_once(&rdev->mutex.base); 2810 2811 if (!regulator->enable_count) { 2812 rdev_err(rdev, "Underflow of regulator enable count\n"); 2813 return -EINVAL; 2814 } 2815 2816 regulator->enable_count--; 2817 if (regulator->uA_load && regulator->enable_count == 0) 2818 return drms_uA_update(rdev); 2819 2820 return 0; 2821 } 2822 2823 /* locks held by regulator_enable() */ 2824 static int _regulator_enable(struct regulator *regulator) 2825 { 2826 struct regulator_dev *rdev = regulator->rdev; 2827 int ret; 2828 2829 lockdep_assert_held_once(&rdev->mutex.base); 2830 2831 if (rdev->use_count == 0 && rdev->supply) { 2832 ret = _regulator_enable(rdev->supply); 2833 if (ret < 0) 2834 return ret; 2835 } 2836 2837 /* balance only if there are regulators coupled */ 2838 if (rdev->coupling_desc.n_coupled > 1) { 2839 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2840 if (ret < 0) 2841 goto err_disable_supply; 2842 } 2843 2844 ret = _regulator_handle_consumer_enable(regulator); 2845 if (ret < 0) 2846 goto err_disable_supply; 2847 2848 if (rdev->use_count == 0) { 2849 /* 2850 * The regulator may already be enabled if it's not switchable 2851 * or was left on 2852 */ 2853 ret = _regulator_is_enabled(rdev); 2854 if (ret == -EINVAL || ret == 0) { 2855 if (!regulator_ops_is_valid(rdev, 2856 REGULATOR_CHANGE_STATUS)) { 2857 ret = -EPERM; 2858 goto err_consumer_disable; 2859 } 2860 2861 ret = _regulator_do_enable(rdev); 2862 if (ret < 0) 2863 goto err_consumer_disable; 2864 2865 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2866 NULL); 2867 } else if (ret < 0) { 2868 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2869 goto err_consumer_disable; 2870 } 2871 /* Fallthrough on positive return values - already enabled */ 2872 } 2873 2874 if (regulator->enable_count == 1) 2875 rdev->use_count++; 2876 2877 return 0; 2878 2879 err_consumer_disable: 2880 _regulator_handle_consumer_disable(regulator); 2881 2882 err_disable_supply: 2883 if (rdev->use_count == 0 && rdev->supply) 2884 _regulator_disable(rdev->supply); 2885 2886 return ret; 2887 } 2888 2889 /** 2890 * regulator_enable - enable regulator output 2891 * @regulator: regulator source 2892 * 2893 * Request that the regulator be enabled with the regulator output at 2894 * the predefined voltage or current value. Calls to regulator_enable() 2895 * must be balanced with calls to regulator_disable(). 2896 * 2897 * NOTE: the output value can be set by other drivers, boot loader or may be 2898 * hardwired in the regulator. 2899 * 2900 * Return: 0 on success or a negative error number on failure. 2901 */ 2902 int regulator_enable(struct regulator *regulator) 2903 { 2904 struct regulator_dev *rdev = regulator->rdev; 2905 struct ww_acquire_ctx ww_ctx; 2906 int ret; 2907 2908 regulator_lock_dependent(rdev, &ww_ctx); 2909 ret = _regulator_enable(regulator); 2910 regulator_unlock_dependent(rdev, &ww_ctx); 2911 2912 return ret; 2913 } 2914 EXPORT_SYMBOL_GPL(regulator_enable); 2915 2916 static int _regulator_do_disable(struct regulator_dev *rdev) 2917 { 2918 int ret; 2919 2920 trace_regulator_disable(rdev_get_name(rdev)); 2921 2922 if (rdev->ena_pin) { 2923 if (rdev->ena_gpio_state) { 2924 ret = regulator_ena_gpio_ctrl(rdev, false); 2925 if (ret < 0) 2926 return ret; 2927 rdev->ena_gpio_state = 0; 2928 } 2929 2930 } else if (rdev->desc->ops->disable) { 2931 ret = rdev->desc->ops->disable(rdev); 2932 if (ret != 0) 2933 return ret; 2934 } 2935 2936 if (rdev->desc->off_on_delay) 2937 rdev->last_off = ktime_get_boottime(); 2938 2939 trace_regulator_disable_complete(rdev_get_name(rdev)); 2940 2941 return 0; 2942 } 2943 2944 /* locks held by regulator_disable() */ 2945 static int _regulator_disable(struct regulator *regulator) 2946 { 2947 struct regulator_dev *rdev = regulator->rdev; 2948 int ret = 0; 2949 2950 lockdep_assert_held_once(&rdev->mutex.base); 2951 2952 if (WARN(regulator->enable_count == 0, 2953 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2954 return -EIO; 2955 2956 if (regulator->enable_count == 1) { 2957 /* disabling last enable_count from this regulator */ 2958 /* are we the last user and permitted to disable ? */ 2959 if (rdev->use_count == 1 && 2960 (rdev->constraints && !rdev->constraints->always_on)) { 2961 2962 /* we are last user */ 2963 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 2964 ret = _notifier_call_chain(rdev, 2965 REGULATOR_EVENT_PRE_DISABLE, 2966 NULL); 2967 if (ret & NOTIFY_STOP_MASK) 2968 return -EINVAL; 2969 2970 ret = _regulator_do_disable(rdev); 2971 if (ret < 0) { 2972 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 2973 _notifier_call_chain(rdev, 2974 REGULATOR_EVENT_ABORT_DISABLE, 2975 NULL); 2976 return ret; 2977 } 2978 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2979 NULL); 2980 } 2981 2982 rdev->use_count = 0; 2983 } else if (rdev->use_count > 1) { 2984 rdev->use_count--; 2985 } 2986 } 2987 2988 if (ret == 0) 2989 ret = _regulator_handle_consumer_disable(regulator); 2990 2991 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 2992 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2993 2994 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 2995 ret = _regulator_disable(rdev->supply); 2996 2997 return ret; 2998 } 2999 3000 /** 3001 * regulator_disable - disable regulator output 3002 * @regulator: regulator source 3003 * 3004 * Disable the regulator output voltage or current. Calls to 3005 * regulator_enable() must be balanced with calls to 3006 * regulator_disable(). 3007 * 3008 * NOTE: this will only disable the regulator output if no other consumer 3009 * devices have it enabled, the regulator device supports disabling and 3010 * machine constraints permit this operation. 3011 * 3012 * Return: 0 on success or a negative error number on failure. 3013 */ 3014 int regulator_disable(struct regulator *regulator) 3015 { 3016 struct regulator_dev *rdev = regulator->rdev; 3017 struct ww_acquire_ctx ww_ctx; 3018 int ret; 3019 3020 regulator_lock_dependent(rdev, &ww_ctx); 3021 ret = _regulator_disable(regulator); 3022 regulator_unlock_dependent(rdev, &ww_ctx); 3023 3024 return ret; 3025 } 3026 EXPORT_SYMBOL_GPL(regulator_disable); 3027 3028 /* locks held by regulator_force_disable() */ 3029 static int _regulator_force_disable(struct regulator_dev *rdev) 3030 { 3031 int ret = 0; 3032 3033 lockdep_assert_held_once(&rdev->mutex.base); 3034 3035 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3036 REGULATOR_EVENT_PRE_DISABLE, NULL); 3037 if (ret & NOTIFY_STOP_MASK) 3038 return -EINVAL; 3039 3040 ret = _regulator_do_disable(rdev); 3041 if (ret < 0) { 3042 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3043 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3044 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3045 return ret; 3046 } 3047 3048 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3049 REGULATOR_EVENT_DISABLE, NULL); 3050 3051 return 0; 3052 } 3053 3054 /** 3055 * regulator_force_disable - force disable regulator output 3056 * @regulator: regulator source 3057 * 3058 * Forcibly disable the regulator output voltage or current. 3059 * NOTE: this *will* disable the regulator output even if other consumer 3060 * devices have it enabled. This should be used for situations when device 3061 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3062 * 3063 * Return: 0 on success or a negative error number on failure. 3064 */ 3065 int regulator_force_disable(struct regulator *regulator) 3066 { 3067 struct regulator_dev *rdev = regulator->rdev; 3068 struct ww_acquire_ctx ww_ctx; 3069 int ret; 3070 3071 regulator_lock_dependent(rdev, &ww_ctx); 3072 3073 ret = _regulator_force_disable(regulator->rdev); 3074 3075 if (rdev->coupling_desc.n_coupled > 1) 3076 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3077 3078 if (regulator->uA_load) { 3079 regulator->uA_load = 0; 3080 ret = drms_uA_update(rdev); 3081 } 3082 3083 if (rdev->use_count != 0 && rdev->supply) 3084 _regulator_disable(rdev->supply); 3085 3086 regulator_unlock_dependent(rdev, &ww_ctx); 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(regulator_force_disable); 3091 3092 static void regulator_disable_work(struct work_struct *work) 3093 { 3094 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3095 disable_work.work); 3096 struct ww_acquire_ctx ww_ctx; 3097 int count, i, ret; 3098 struct regulator *regulator; 3099 int total_count = 0; 3100 3101 regulator_lock_dependent(rdev, &ww_ctx); 3102 3103 /* 3104 * Workqueue functions queue the new work instance while the previous 3105 * work instance is being processed. Cancel the queued work instance 3106 * as the work instance under processing does the job of the queued 3107 * work instance. 3108 */ 3109 cancel_delayed_work(&rdev->disable_work); 3110 3111 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3112 count = regulator->deferred_disables; 3113 3114 if (!count) 3115 continue; 3116 3117 total_count += count; 3118 regulator->deferred_disables = 0; 3119 3120 for (i = 0; i < count; i++) { 3121 ret = _regulator_disable(regulator); 3122 if (ret != 0) 3123 rdev_err(rdev, "Deferred disable failed: %pe\n", 3124 ERR_PTR(ret)); 3125 } 3126 } 3127 WARN_ON(!total_count); 3128 3129 if (rdev->coupling_desc.n_coupled > 1) 3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3131 3132 regulator_unlock_dependent(rdev, &ww_ctx); 3133 } 3134 3135 /** 3136 * regulator_disable_deferred - disable regulator output with delay 3137 * @regulator: regulator source 3138 * @ms: milliseconds until the regulator is disabled 3139 * 3140 * Execute regulator_disable() on the regulator after a delay. This 3141 * is intended for use with devices that require some time to quiesce. 3142 * 3143 * NOTE: this will only disable the regulator output if no other consumer 3144 * devices have it enabled, the regulator device supports disabling and 3145 * machine constraints permit this operation. 3146 * 3147 * Return: 0 on success or a negative error number on failure. 3148 */ 3149 int regulator_disable_deferred(struct regulator *regulator, int ms) 3150 { 3151 struct regulator_dev *rdev = regulator->rdev; 3152 3153 if (!ms) 3154 return regulator_disable(regulator); 3155 3156 regulator_lock(rdev); 3157 regulator->deferred_disables++; 3158 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3159 msecs_to_jiffies(ms)); 3160 regulator_unlock(rdev); 3161 3162 return 0; 3163 } 3164 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3165 3166 static int _regulator_is_enabled(struct regulator_dev *rdev) 3167 { 3168 /* A GPIO control always takes precedence */ 3169 if (rdev->ena_pin) 3170 return rdev->ena_gpio_state; 3171 3172 /* If we don't know then assume that the regulator is always on */ 3173 if (!rdev->desc->ops->is_enabled) 3174 return 1; 3175 3176 return rdev->desc->ops->is_enabled(rdev); 3177 } 3178 3179 static int _regulator_list_voltage(struct regulator_dev *rdev, 3180 unsigned selector, int lock) 3181 { 3182 const struct regulator_ops *ops = rdev->desc->ops; 3183 int ret; 3184 3185 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3186 return rdev->desc->fixed_uV; 3187 3188 if (ops->list_voltage) { 3189 if (selector >= rdev->desc->n_voltages) 3190 return -EINVAL; 3191 if (selector < rdev->desc->linear_min_sel) 3192 return 0; 3193 if (lock) 3194 regulator_lock(rdev); 3195 ret = ops->list_voltage(rdev, selector); 3196 if (lock) 3197 regulator_unlock(rdev); 3198 } else if (rdev->is_switch && rdev->supply) { 3199 ret = _regulator_list_voltage(rdev->supply->rdev, 3200 selector, lock); 3201 } else { 3202 return -EINVAL; 3203 } 3204 3205 if (ret > 0) { 3206 if (ret < rdev->constraints->min_uV) 3207 ret = 0; 3208 else if (ret > rdev->constraints->max_uV) 3209 ret = 0; 3210 } 3211 3212 return ret; 3213 } 3214 3215 /** 3216 * regulator_is_enabled - is the regulator output enabled 3217 * @regulator: regulator source 3218 * 3219 * Note that the device backing this regulator handle can have multiple 3220 * users, so it might be enabled even if regulator_enable() was never 3221 * called for this particular source. 3222 * 3223 * Return: Positive if the regulator driver backing the source/client 3224 * has requested that the device be enabled, zero if it hasn't, 3225 * else a negative error number. 3226 */ 3227 int regulator_is_enabled(struct regulator *regulator) 3228 { 3229 int ret; 3230 3231 if (regulator->always_on) 3232 return 1; 3233 3234 regulator_lock(regulator->rdev); 3235 ret = _regulator_is_enabled(regulator->rdev); 3236 regulator_unlock(regulator->rdev); 3237 3238 return ret; 3239 } 3240 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3241 3242 /** 3243 * regulator_count_voltages - count regulator_list_voltage() selectors 3244 * @regulator: regulator source 3245 * 3246 * Return: Number of selectors for @regulator, or negative error number. 3247 * 3248 * Selectors are numbered starting at zero, and typically correspond to 3249 * bitfields in hardware registers. 3250 */ 3251 int regulator_count_voltages(struct regulator *regulator) 3252 { 3253 struct regulator_dev *rdev = regulator->rdev; 3254 3255 if (rdev->desc->n_voltages) 3256 return rdev->desc->n_voltages; 3257 3258 if (!rdev->is_switch || !rdev->supply) 3259 return -EINVAL; 3260 3261 return regulator_count_voltages(rdev->supply); 3262 } 3263 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3264 3265 /** 3266 * regulator_list_voltage - enumerate supported voltages 3267 * @regulator: regulator source 3268 * @selector: identify voltage to list 3269 * Context: can sleep 3270 * 3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(), 3272 * 0 if @selector can't be used on this system, or a negative error 3273 * number on failure. 3274 */ 3275 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3276 { 3277 return _regulator_list_voltage(regulator->rdev, selector, 1); 3278 } 3279 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3280 3281 /** 3282 * regulator_get_regmap - get the regulator's register map 3283 * @regulator: regulator source 3284 * 3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR() 3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap. 3287 */ 3288 struct regmap *regulator_get_regmap(struct regulator *regulator) 3289 { 3290 struct regmap *map = regulator->rdev->regmap; 3291 3292 return map ? map : ERR_PTR(-EOPNOTSUPP); 3293 } 3294 EXPORT_SYMBOL_GPL(regulator_get_regmap); 3295 3296 /** 3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3298 * @regulator: regulator source 3299 * @vsel_reg: voltage selector register, output parameter 3300 * @vsel_mask: mask for voltage selector bitfield, output parameter 3301 * 3302 * Returns the hardware register offset and bitmask used for setting the 3303 * regulator voltage. This might be useful when configuring voltage-scaling 3304 * hardware or firmware that can make I2C requests behind the kernel's back, 3305 * for example. 3306 * 3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support 3308 * voltage selectors. 3309 * 3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3311 * and 0 is returned, otherwise a negative error number is returned. 3312 */ 3313 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3314 unsigned *vsel_reg, 3315 unsigned *vsel_mask) 3316 { 3317 struct regulator_dev *rdev = regulator->rdev; 3318 const struct regulator_ops *ops = rdev->desc->ops; 3319 3320 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3321 return -EOPNOTSUPP; 3322 3323 *vsel_reg = rdev->desc->vsel_reg; 3324 *vsel_mask = rdev->desc->vsel_mask; 3325 3326 return 0; 3327 } 3328 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3329 3330 /** 3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3332 * @regulator: regulator source 3333 * @selector: identify voltage to list 3334 * 3335 * Converts the selector to a hardware-specific voltage selector that can be 3336 * directly written to the regulator registers. The address of the voltage 3337 * register can be determined by calling @regulator_get_hardware_vsel_register. 3338 * 3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported 3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage 3341 * selectors. 3342 */ 3343 int regulator_list_hardware_vsel(struct regulator *regulator, 3344 unsigned selector) 3345 { 3346 struct regulator_dev *rdev = regulator->rdev; 3347 const struct regulator_ops *ops = rdev->desc->ops; 3348 3349 if (selector >= rdev->desc->n_voltages) 3350 return -EINVAL; 3351 if (selector < rdev->desc->linear_min_sel) 3352 return 0; 3353 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3354 return -EOPNOTSUPP; 3355 3356 return selector; 3357 } 3358 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3359 3360 /** 3361 * regulator_hardware_enable - access the HW for enable/disable regulator 3362 * @regulator: regulator source 3363 * @enable: true for enable, false for disable 3364 * 3365 * Request that the regulator be enabled/disabled with the regulator output at 3366 * the predefined voltage or current value. 3367 * 3368 * Return: 0 on success or a negative error number on failure. 3369 */ 3370 int regulator_hardware_enable(struct regulator *regulator, bool enable) 3371 { 3372 struct regulator_dev *rdev = regulator->rdev; 3373 const struct regulator_ops *ops = rdev->desc->ops; 3374 int ret = -EOPNOTSUPP; 3375 3376 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable) 3377 return ret; 3378 3379 if (enable) 3380 ret = ops->enable(rdev); 3381 else 3382 ret = ops->disable(rdev); 3383 3384 return ret; 3385 } 3386 EXPORT_SYMBOL_GPL(regulator_hardware_enable); 3387 3388 /** 3389 * regulator_get_linear_step - return the voltage step size between VSEL values 3390 * @regulator: regulator source 3391 * 3392 * Return: The voltage step size between VSEL values for linear regulators, 3393 * or 0 if the regulator isn't a linear regulator. 3394 */ 3395 unsigned int regulator_get_linear_step(struct regulator *regulator) 3396 { 3397 struct regulator_dev *rdev = regulator->rdev; 3398 3399 return rdev->desc->uV_step; 3400 } 3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3402 3403 /** 3404 * regulator_is_supported_voltage - check if a voltage range can be supported 3405 * 3406 * @regulator: Regulator to check. 3407 * @min_uV: Minimum required voltage in uV. 3408 * @max_uV: Maximum required voltage in uV. 3409 * 3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error 3411 * number if @regulator's voltage can't be changed and voltage readback 3412 * failed. 3413 */ 3414 int regulator_is_supported_voltage(struct regulator *regulator, 3415 int min_uV, int max_uV) 3416 { 3417 struct regulator_dev *rdev = regulator->rdev; 3418 int i, voltages, ret; 3419 3420 /* If we can't change voltage check the current voltage */ 3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3422 ret = regulator_get_voltage(regulator); 3423 if (ret >= 0) 3424 return min_uV <= ret && ret <= max_uV; 3425 else 3426 return ret; 3427 } 3428 3429 /* Any voltage within constrains range is fine? */ 3430 if (rdev->desc->continuous_voltage_range) 3431 return min_uV >= rdev->constraints->min_uV && 3432 max_uV <= rdev->constraints->max_uV; 3433 3434 ret = regulator_count_voltages(regulator); 3435 if (ret < 0) 3436 return 0; 3437 voltages = ret; 3438 3439 for (i = 0; i < voltages; i++) { 3440 ret = regulator_list_voltage(regulator, i); 3441 3442 if (ret >= min_uV && ret <= max_uV) 3443 return 1; 3444 } 3445 3446 return 0; 3447 } 3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3449 3450 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3451 int max_uV) 3452 { 3453 const struct regulator_desc *desc = rdev->desc; 3454 3455 if (desc->ops->map_voltage) 3456 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3457 3458 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3460 3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3463 3464 if (desc->ops->list_voltage == 3465 regulator_list_voltage_pickable_linear_range) 3466 return regulator_map_voltage_pickable_linear_range(rdev, 3467 min_uV, max_uV); 3468 3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3470 } 3471 3472 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3473 int min_uV, int max_uV, 3474 unsigned *selector) 3475 { 3476 struct pre_voltage_change_data data; 3477 int ret; 3478 3479 data.old_uV = regulator_get_voltage_rdev(rdev); 3480 data.min_uV = min_uV; 3481 data.max_uV = max_uV; 3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3483 &data); 3484 if (ret & NOTIFY_STOP_MASK) 3485 return -EINVAL; 3486 3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3488 if (ret >= 0) 3489 return ret; 3490 3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3492 (void *)data.old_uV); 3493 3494 return ret; 3495 } 3496 3497 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3498 int uV, unsigned selector) 3499 { 3500 struct pre_voltage_change_data data; 3501 int ret; 3502 3503 data.old_uV = regulator_get_voltage_rdev(rdev); 3504 data.min_uV = uV; 3505 data.max_uV = uV; 3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3507 &data); 3508 if (ret & NOTIFY_STOP_MASK) 3509 return -EINVAL; 3510 3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3512 if (ret >= 0) 3513 return ret; 3514 3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3516 (void *)data.old_uV); 3517 3518 return ret; 3519 } 3520 3521 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3522 int uV, int new_selector) 3523 { 3524 const struct regulator_ops *ops = rdev->desc->ops; 3525 int diff, old_sel, curr_sel, ret; 3526 3527 /* Stepping is only needed if the regulator is enabled. */ 3528 if (!_regulator_is_enabled(rdev)) 3529 goto final_set; 3530 3531 if (!ops->get_voltage_sel) 3532 return -EINVAL; 3533 3534 old_sel = ops->get_voltage_sel(rdev); 3535 if (old_sel < 0) 3536 return old_sel; 3537 3538 diff = new_selector - old_sel; 3539 if (diff == 0) 3540 return 0; /* No change needed. */ 3541 3542 if (diff > 0) { 3543 /* Stepping up. */ 3544 for (curr_sel = old_sel + rdev->desc->vsel_step; 3545 curr_sel < new_selector; 3546 curr_sel += rdev->desc->vsel_step) { 3547 /* 3548 * Call the callback directly instead of using 3549 * _regulator_call_set_voltage_sel() as we don't 3550 * want to notify anyone yet. Same in the branch 3551 * below. 3552 */ 3553 ret = ops->set_voltage_sel(rdev, curr_sel); 3554 if (ret) 3555 goto try_revert; 3556 } 3557 } else { 3558 /* Stepping down. */ 3559 for (curr_sel = old_sel - rdev->desc->vsel_step; 3560 curr_sel > new_selector; 3561 curr_sel -= rdev->desc->vsel_step) { 3562 ret = ops->set_voltage_sel(rdev, curr_sel); 3563 if (ret) 3564 goto try_revert; 3565 } 3566 } 3567 3568 final_set: 3569 /* The final selector will trigger the notifiers. */ 3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3571 3572 try_revert: 3573 /* 3574 * At least try to return to the previous voltage if setting a new 3575 * one failed. 3576 */ 3577 (void)ops->set_voltage_sel(rdev, old_sel); 3578 return ret; 3579 } 3580 3581 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3582 int old_uV, int new_uV) 3583 { 3584 unsigned int ramp_delay = 0; 3585 3586 if (rdev->constraints->ramp_delay) 3587 ramp_delay = rdev->constraints->ramp_delay; 3588 else if (rdev->desc->ramp_delay) 3589 ramp_delay = rdev->desc->ramp_delay; 3590 else if (rdev->constraints->settling_time) 3591 return rdev->constraints->settling_time; 3592 else if (rdev->constraints->settling_time_up && 3593 (new_uV > old_uV)) 3594 return rdev->constraints->settling_time_up; 3595 else if (rdev->constraints->settling_time_down && 3596 (new_uV < old_uV)) 3597 return rdev->constraints->settling_time_down; 3598 3599 if (ramp_delay == 0) 3600 return 0; 3601 3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3603 } 3604 3605 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3606 int min_uV, int max_uV) 3607 { 3608 int ret; 3609 int delay = 0; 3610 int best_val = 0; 3611 unsigned int selector; 3612 int old_selector = -1; 3613 const struct regulator_ops *ops = rdev->desc->ops; 3614 int old_uV = regulator_get_voltage_rdev(rdev); 3615 3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3617 3618 min_uV += rdev->constraints->uV_offset; 3619 max_uV += rdev->constraints->uV_offset; 3620 3621 /* 3622 * If we can't obtain the old selector there is not enough 3623 * info to call set_voltage_time_sel(). 3624 */ 3625 if (_regulator_is_enabled(rdev) && 3626 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3627 old_selector = ops->get_voltage_sel(rdev); 3628 if (old_selector < 0) 3629 return old_selector; 3630 } 3631 3632 if (ops->set_voltage) { 3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3634 &selector); 3635 3636 if (ret >= 0) { 3637 if (ops->list_voltage) 3638 best_val = ops->list_voltage(rdev, 3639 selector); 3640 else 3641 best_val = regulator_get_voltage_rdev(rdev); 3642 } 3643 3644 } else if (ops->set_voltage_sel) { 3645 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3646 if (ret >= 0) { 3647 best_val = ops->list_voltage(rdev, ret); 3648 if (min_uV <= best_val && max_uV >= best_val) { 3649 selector = ret; 3650 if (old_selector == selector) 3651 ret = 0; 3652 else if (rdev->desc->vsel_step) 3653 ret = _regulator_set_voltage_sel_step( 3654 rdev, best_val, selector); 3655 else 3656 ret = _regulator_call_set_voltage_sel( 3657 rdev, best_val, selector); 3658 } else { 3659 ret = -EINVAL; 3660 } 3661 } 3662 } else { 3663 ret = -EINVAL; 3664 } 3665 3666 if (ret) 3667 goto out; 3668 3669 if (ops->set_voltage_time_sel) { 3670 /* 3671 * Call set_voltage_time_sel if successfully obtained 3672 * old_selector 3673 */ 3674 if (old_selector >= 0 && old_selector != selector) 3675 delay = ops->set_voltage_time_sel(rdev, old_selector, 3676 selector); 3677 } else { 3678 if (old_uV != best_val) { 3679 if (ops->set_voltage_time) 3680 delay = ops->set_voltage_time(rdev, old_uV, 3681 best_val); 3682 else 3683 delay = _regulator_set_voltage_time(rdev, 3684 old_uV, 3685 best_val); 3686 } 3687 } 3688 3689 if (delay < 0) { 3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3691 delay = 0; 3692 } 3693 3694 /* Insert any necessary delays */ 3695 fsleep(delay); 3696 3697 if (best_val >= 0) { 3698 unsigned long data = best_val; 3699 3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3701 (void *)data); 3702 } 3703 3704 out: 3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3706 3707 return ret; 3708 } 3709 3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3711 int min_uV, int max_uV, suspend_state_t state) 3712 { 3713 struct regulator_state *rstate; 3714 int uV, sel; 3715 3716 rstate = regulator_get_suspend_state(rdev, state); 3717 if (rstate == NULL) 3718 return -EINVAL; 3719 3720 if (min_uV < rstate->min_uV) 3721 min_uV = rstate->min_uV; 3722 if (max_uV > rstate->max_uV) 3723 max_uV = rstate->max_uV; 3724 3725 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3726 if (sel < 0) 3727 return sel; 3728 3729 uV = rdev->desc->ops->list_voltage(rdev, sel); 3730 if (uV >= min_uV && uV <= max_uV) 3731 rstate->uV = uV; 3732 3733 return 0; 3734 } 3735 3736 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3737 int min_uV, int max_uV, 3738 suspend_state_t state) 3739 { 3740 struct regulator_dev *rdev = regulator->rdev; 3741 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3742 int ret = 0; 3743 int old_min_uV, old_max_uV; 3744 int current_uV; 3745 3746 /* If we're setting the same range as last time the change 3747 * should be a noop (some cpufreq implementations use the same 3748 * voltage for multiple frequencies, for example). 3749 */ 3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3751 goto out; 3752 3753 /* If we're trying to set a range that overlaps the current voltage, 3754 * return successfully even though the regulator does not support 3755 * changing the voltage. 3756 */ 3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3758 current_uV = regulator_get_voltage_rdev(rdev); 3759 if (min_uV <= current_uV && current_uV <= max_uV) { 3760 voltage->min_uV = min_uV; 3761 voltage->max_uV = max_uV; 3762 goto out; 3763 } 3764 } 3765 3766 /* sanity check */ 3767 if (!rdev->desc->ops->set_voltage && 3768 !rdev->desc->ops->set_voltage_sel) { 3769 ret = -EINVAL; 3770 goto out; 3771 } 3772 3773 /* constraints check */ 3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3775 if (ret < 0) 3776 goto out; 3777 3778 /* restore original values in case of error */ 3779 old_min_uV = voltage->min_uV; 3780 old_max_uV = voltage->max_uV; 3781 voltage->min_uV = min_uV; 3782 voltage->max_uV = max_uV; 3783 3784 /* for not coupled regulators this will just set the voltage */ 3785 ret = regulator_balance_voltage(rdev, state); 3786 if (ret < 0) { 3787 voltage->min_uV = old_min_uV; 3788 voltage->max_uV = old_max_uV; 3789 } 3790 3791 out: 3792 return ret; 3793 } 3794 3795 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3796 int max_uV, suspend_state_t state) 3797 { 3798 int best_supply_uV = 0; 3799 int supply_change_uV = 0; 3800 int ret; 3801 3802 if (rdev->supply && 3803 regulator_ops_is_valid(rdev->supply->rdev, 3804 REGULATOR_CHANGE_VOLTAGE) && 3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3806 rdev->desc->ops->get_voltage_sel))) { 3807 int current_supply_uV; 3808 int selector; 3809 3810 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3811 if (selector < 0) { 3812 ret = selector; 3813 goto out; 3814 } 3815 3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3817 if (best_supply_uV < 0) { 3818 ret = best_supply_uV; 3819 goto out; 3820 } 3821 3822 best_supply_uV += rdev->desc->min_dropout_uV; 3823 3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3825 if (current_supply_uV < 0) { 3826 ret = current_supply_uV; 3827 goto out; 3828 } 3829 3830 supply_change_uV = best_supply_uV - current_supply_uV; 3831 } 3832 3833 if (supply_change_uV > 0) { 3834 ret = regulator_set_voltage_unlocked(rdev->supply, 3835 best_supply_uV, INT_MAX, state); 3836 if (ret) { 3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3838 ERR_PTR(ret)); 3839 goto out; 3840 } 3841 } 3842 3843 if (state == PM_SUSPEND_ON) 3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3845 else 3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3847 max_uV, state); 3848 if (ret < 0) 3849 goto out; 3850 3851 if (supply_change_uV < 0) { 3852 ret = regulator_set_voltage_unlocked(rdev->supply, 3853 best_supply_uV, INT_MAX, state); 3854 if (ret) 3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3856 ERR_PTR(ret)); 3857 /* No need to fail here */ 3858 ret = 0; 3859 } 3860 3861 out: 3862 return ret; 3863 } 3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3865 3866 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3867 int *current_uV, int *min_uV) 3868 { 3869 struct regulation_constraints *constraints = rdev->constraints; 3870 3871 /* Limit voltage change only if necessary */ 3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3873 return 1; 3874 3875 if (*current_uV < 0) { 3876 *current_uV = regulator_get_voltage_rdev(rdev); 3877 3878 if (*current_uV < 0) 3879 return *current_uV; 3880 } 3881 3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3883 return 1; 3884 3885 /* Clamp target voltage within the given step */ 3886 if (*current_uV < *min_uV) 3887 *min_uV = min(*current_uV + constraints->max_uV_step, 3888 *min_uV); 3889 else 3890 *min_uV = max(*current_uV - constraints->max_uV_step, 3891 *min_uV); 3892 3893 return 0; 3894 } 3895 3896 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3897 int *current_uV, 3898 int *min_uV, int *max_uV, 3899 suspend_state_t state, 3900 int n_coupled) 3901 { 3902 struct coupling_desc *c_desc = &rdev->coupling_desc; 3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3904 struct regulation_constraints *constraints = rdev->constraints; 3905 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3906 int max_current_uV = 0, min_current_uV = INT_MAX; 3907 int highest_min_uV = 0, target_uV, possible_uV; 3908 int i, ret, max_spread; 3909 bool done; 3910 3911 *current_uV = -1; 3912 3913 /* 3914 * If there are no coupled regulators, simply set the voltage 3915 * demanded by consumers. 3916 */ 3917 if (n_coupled == 1) { 3918 /* 3919 * If consumers don't provide any demands, set voltage 3920 * to min_uV 3921 */ 3922 desired_min_uV = constraints->min_uV; 3923 desired_max_uV = constraints->max_uV; 3924 3925 ret = regulator_check_consumers(rdev, 3926 &desired_min_uV, 3927 &desired_max_uV, state); 3928 if (ret < 0) 3929 return ret; 3930 3931 done = true; 3932 3933 goto finish; 3934 } 3935 3936 /* Find highest min desired voltage */ 3937 for (i = 0; i < n_coupled; i++) { 3938 int tmp_min = 0; 3939 int tmp_max = INT_MAX; 3940 3941 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3942 3943 ret = regulator_check_consumers(c_rdevs[i], 3944 &tmp_min, 3945 &tmp_max, state); 3946 if (ret < 0) 3947 return ret; 3948 3949 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3950 if (ret < 0) 3951 return ret; 3952 3953 highest_min_uV = max(highest_min_uV, tmp_min); 3954 3955 if (i == 0) { 3956 desired_min_uV = tmp_min; 3957 desired_max_uV = tmp_max; 3958 } 3959 } 3960 3961 max_spread = constraints->max_spread[0]; 3962 3963 /* 3964 * Let target_uV be equal to the desired one if possible. 3965 * If not, set it to minimum voltage, allowed by other coupled 3966 * regulators. 3967 */ 3968 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3969 3970 /* 3971 * Find min and max voltages, which currently aren't violating 3972 * max_spread. 3973 */ 3974 for (i = 1; i < n_coupled; i++) { 3975 int tmp_act; 3976 3977 if (!_regulator_is_enabled(c_rdevs[i])) 3978 continue; 3979 3980 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3981 if (tmp_act < 0) 3982 return tmp_act; 3983 3984 min_current_uV = min(tmp_act, min_current_uV); 3985 max_current_uV = max(tmp_act, max_current_uV); 3986 } 3987 3988 /* There aren't any other regulators enabled */ 3989 if (max_current_uV == 0) { 3990 possible_uV = target_uV; 3991 } else { 3992 /* 3993 * Correct target voltage, so as it currently isn't 3994 * violating max_spread 3995 */ 3996 possible_uV = max(target_uV, max_current_uV - max_spread); 3997 possible_uV = min(possible_uV, min_current_uV + max_spread); 3998 } 3999 4000 if (possible_uV > desired_max_uV) 4001 return -EINVAL; 4002 4003 done = (possible_uV == target_uV); 4004 desired_min_uV = possible_uV; 4005 4006 finish: 4007 /* Apply max_uV_step constraint if necessary */ 4008 if (state == PM_SUSPEND_ON) { 4009 ret = regulator_limit_voltage_step(rdev, current_uV, 4010 &desired_min_uV); 4011 if (ret < 0) 4012 return ret; 4013 4014 if (ret == 0) 4015 done = false; 4016 } 4017 4018 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4019 if (n_coupled > 1 && *current_uV == -1) { 4020 4021 if (_regulator_is_enabled(rdev)) { 4022 ret = regulator_get_voltage_rdev(rdev); 4023 if (ret < 0) 4024 return ret; 4025 4026 *current_uV = ret; 4027 } else { 4028 *current_uV = desired_min_uV; 4029 } 4030 } 4031 4032 *min_uV = desired_min_uV; 4033 *max_uV = desired_max_uV; 4034 4035 return done; 4036 } 4037 4038 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4039 suspend_state_t state, bool skip_coupled) 4040 { 4041 struct regulator_dev **c_rdevs; 4042 struct regulator_dev *best_rdev; 4043 struct coupling_desc *c_desc = &rdev->coupling_desc; 4044 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4045 unsigned int delta, best_delta; 4046 unsigned long c_rdev_done = 0; 4047 bool best_c_rdev_done; 4048 4049 c_rdevs = c_desc->coupled_rdevs; 4050 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4051 4052 /* 4053 * Find the best possible voltage change on each loop. Leave the loop 4054 * if there isn't any possible change. 4055 */ 4056 do { 4057 best_c_rdev_done = false; 4058 best_delta = 0; 4059 best_min_uV = 0; 4060 best_max_uV = 0; 4061 best_c_rdev = 0; 4062 best_rdev = NULL; 4063 4064 /* 4065 * Find highest difference between optimal voltage 4066 * and current voltage. 4067 */ 4068 for (i = 0; i < n_coupled; i++) { 4069 /* 4070 * optimal_uV is the best voltage that can be set for 4071 * i-th regulator at the moment without violating 4072 * max_spread constraint in order to balance 4073 * the coupled voltages. 4074 */ 4075 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4076 4077 if (test_bit(i, &c_rdev_done)) 4078 continue; 4079 4080 ret = regulator_get_optimal_voltage(c_rdevs[i], 4081 ¤t_uV, 4082 &optimal_uV, 4083 &optimal_max_uV, 4084 state, n_coupled); 4085 if (ret < 0) 4086 goto out; 4087 4088 delta = abs(optimal_uV - current_uV); 4089 4090 if (delta && best_delta <= delta) { 4091 best_c_rdev_done = ret; 4092 best_delta = delta; 4093 best_rdev = c_rdevs[i]; 4094 best_min_uV = optimal_uV; 4095 best_max_uV = optimal_max_uV; 4096 best_c_rdev = i; 4097 } 4098 } 4099 4100 /* Nothing to change, return successfully */ 4101 if (!best_rdev) { 4102 ret = 0; 4103 goto out; 4104 } 4105 4106 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4107 best_max_uV, state); 4108 4109 if (ret < 0) 4110 goto out; 4111 4112 if (best_c_rdev_done) 4113 set_bit(best_c_rdev, &c_rdev_done); 4114 4115 } while (n_coupled > 1); 4116 4117 out: 4118 return ret; 4119 } 4120 4121 static int regulator_balance_voltage(struct regulator_dev *rdev, 4122 suspend_state_t state) 4123 { 4124 struct coupling_desc *c_desc = &rdev->coupling_desc; 4125 struct regulator_coupler *coupler = c_desc->coupler; 4126 bool skip_coupled = false; 4127 4128 /* 4129 * If system is in a state other than PM_SUSPEND_ON, don't check 4130 * other coupled regulators. 4131 */ 4132 if (state != PM_SUSPEND_ON) 4133 skip_coupled = true; 4134 4135 if (c_desc->n_resolved < c_desc->n_coupled) { 4136 rdev_err(rdev, "Not all coupled regulators registered\n"); 4137 return -EPERM; 4138 } 4139 4140 /* Invoke custom balancer for customized couplers */ 4141 if (coupler && coupler->balance_voltage) 4142 return coupler->balance_voltage(coupler, rdev, state); 4143 4144 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4145 } 4146 4147 /** 4148 * regulator_set_voltage - set regulator output voltage 4149 * @regulator: regulator source 4150 * @min_uV: Minimum required voltage in uV 4151 * @max_uV: Maximum acceptable voltage in uV 4152 * 4153 * Sets a voltage regulator to the desired output voltage. This can be set 4154 * during any regulator state. IOW, regulator can be disabled or enabled. 4155 * 4156 * If the regulator is enabled then the voltage will change to the new value 4157 * immediately otherwise if the regulator is disabled the regulator will 4158 * output at the new voltage when enabled. 4159 * 4160 * NOTE: If the regulator is shared between several devices then the lowest 4161 * request voltage that meets the system constraints will be used. 4162 * Regulator system constraints must be set for this regulator before 4163 * calling this function otherwise this call will fail. 4164 * 4165 * Return: 0 on success or a negative error number on failure. 4166 */ 4167 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4168 { 4169 struct ww_acquire_ctx ww_ctx; 4170 int ret; 4171 4172 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4173 4174 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4175 PM_SUSPEND_ON); 4176 4177 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4178 4179 return ret; 4180 } 4181 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4182 4183 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4184 suspend_state_t state, bool en) 4185 { 4186 struct regulator_state *rstate; 4187 4188 rstate = regulator_get_suspend_state(rdev, state); 4189 if (rstate == NULL) 4190 return -EINVAL; 4191 4192 if (!rstate->changeable) 4193 return -EPERM; 4194 4195 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4196 4197 return 0; 4198 } 4199 4200 int regulator_suspend_enable(struct regulator_dev *rdev, 4201 suspend_state_t state) 4202 { 4203 return regulator_suspend_toggle(rdev, state, true); 4204 } 4205 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4206 4207 int regulator_suspend_disable(struct regulator_dev *rdev, 4208 suspend_state_t state) 4209 { 4210 struct regulator *regulator; 4211 struct regulator_voltage *voltage; 4212 4213 /* 4214 * if any consumer wants this regulator device keeping on in 4215 * suspend states, don't set it as disabled. 4216 */ 4217 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4218 voltage = ®ulator->voltage[state]; 4219 if (voltage->min_uV || voltage->max_uV) 4220 return 0; 4221 } 4222 4223 return regulator_suspend_toggle(rdev, state, false); 4224 } 4225 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4226 4227 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4228 int min_uV, int max_uV, 4229 suspend_state_t state) 4230 { 4231 struct regulator_dev *rdev = regulator->rdev; 4232 struct regulator_state *rstate; 4233 4234 rstate = regulator_get_suspend_state(rdev, state); 4235 if (rstate == NULL) 4236 return -EINVAL; 4237 4238 if (rstate->min_uV == rstate->max_uV) { 4239 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4240 return -EPERM; 4241 } 4242 4243 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4244 } 4245 4246 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4247 int max_uV, suspend_state_t state) 4248 { 4249 struct ww_acquire_ctx ww_ctx; 4250 int ret; 4251 4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4253 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4254 return -EINVAL; 4255 4256 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4257 4258 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4259 max_uV, state); 4260 4261 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4262 4263 return ret; 4264 } 4265 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4266 4267 /** 4268 * regulator_set_voltage_time - get raise/fall time 4269 * @regulator: regulator source 4270 * @old_uV: starting voltage in microvolts 4271 * @new_uV: target voltage in microvolts 4272 * 4273 * Provided with the starting and ending voltage, this function attempts to 4274 * calculate the time in microseconds required to rise or fall to this new 4275 * voltage. 4276 * 4277 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4278 */ 4279 int regulator_set_voltage_time(struct regulator *regulator, 4280 int old_uV, int new_uV) 4281 { 4282 struct regulator_dev *rdev = regulator->rdev; 4283 const struct regulator_ops *ops = rdev->desc->ops; 4284 int old_sel = -1; 4285 int new_sel = -1; 4286 int voltage; 4287 int i; 4288 4289 if (ops->set_voltage_time) 4290 return ops->set_voltage_time(rdev, old_uV, new_uV); 4291 else if (!ops->set_voltage_time_sel) 4292 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4293 4294 /* Currently requires operations to do this */ 4295 if (!ops->list_voltage || !rdev->desc->n_voltages) 4296 return -EINVAL; 4297 4298 for (i = 0; i < rdev->desc->n_voltages; i++) { 4299 /* We only look for exact voltage matches here */ 4300 if (i < rdev->desc->linear_min_sel) 4301 continue; 4302 4303 if (old_sel >= 0 && new_sel >= 0) 4304 break; 4305 4306 voltage = regulator_list_voltage(regulator, i); 4307 if (voltage < 0) 4308 return -EINVAL; 4309 if (voltage == 0) 4310 continue; 4311 if (voltage == old_uV) 4312 old_sel = i; 4313 if (voltage == new_uV) 4314 new_sel = i; 4315 } 4316 4317 if (old_sel < 0 || new_sel < 0) 4318 return -EINVAL; 4319 4320 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4321 } 4322 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4323 4324 /** 4325 * regulator_set_voltage_time_sel - get raise/fall time 4326 * @rdev: regulator source device 4327 * @old_selector: selector for starting voltage 4328 * @new_selector: selector for target voltage 4329 * 4330 * Provided with the starting and target voltage selectors, this function 4331 * returns time in microseconds required to rise or fall to this new voltage 4332 * 4333 * Drivers providing ramp_delay in regulation_constraints can use this as their 4334 * set_voltage_time_sel() operation. 4335 * 4336 * Return: ramp time in microseconds, or a negative error number if calculation failed. 4337 */ 4338 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4339 unsigned int old_selector, 4340 unsigned int new_selector) 4341 { 4342 int old_volt, new_volt; 4343 4344 /* sanity check */ 4345 if (!rdev->desc->ops->list_voltage) 4346 return -EINVAL; 4347 4348 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4349 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4350 4351 if (rdev->desc->ops->set_voltage_time) 4352 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4353 new_volt); 4354 else 4355 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4356 } 4357 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4358 4359 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4360 { 4361 int ret; 4362 4363 regulator_lock(rdev); 4364 4365 if (!rdev->desc->ops->set_voltage && 4366 !rdev->desc->ops->set_voltage_sel) { 4367 ret = -EINVAL; 4368 goto out; 4369 } 4370 4371 /* balance only, if regulator is coupled */ 4372 if (rdev->coupling_desc.n_coupled > 1) 4373 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4374 else 4375 ret = -EOPNOTSUPP; 4376 4377 out: 4378 regulator_unlock(rdev); 4379 return ret; 4380 } 4381 4382 /** 4383 * regulator_sync_voltage - re-apply last regulator output voltage 4384 * @regulator: regulator source 4385 * 4386 * Re-apply the last configured voltage. This is intended to be used 4387 * where some external control source the consumer is cooperating with 4388 * has caused the configured voltage to change. 4389 * 4390 * Return: 0 on success or a negative error number on failure. 4391 */ 4392 int regulator_sync_voltage(struct regulator *regulator) 4393 { 4394 struct regulator_dev *rdev = regulator->rdev; 4395 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4396 int ret, min_uV, max_uV; 4397 4398 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4399 return 0; 4400 4401 regulator_lock(rdev); 4402 4403 if (!rdev->desc->ops->set_voltage && 4404 !rdev->desc->ops->set_voltage_sel) { 4405 ret = -EINVAL; 4406 goto out; 4407 } 4408 4409 /* This is only going to work if we've had a voltage configured. */ 4410 if (!voltage->min_uV && !voltage->max_uV) { 4411 ret = -EINVAL; 4412 goto out; 4413 } 4414 4415 min_uV = voltage->min_uV; 4416 max_uV = voltage->max_uV; 4417 4418 /* This should be a paranoia check... */ 4419 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4420 if (ret < 0) 4421 goto out; 4422 4423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4424 if (ret < 0) 4425 goto out; 4426 4427 /* balance only, if regulator is coupled */ 4428 if (rdev->coupling_desc.n_coupled > 1) 4429 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4430 else 4431 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4432 4433 out: 4434 regulator_unlock(rdev); 4435 return ret; 4436 } 4437 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4438 4439 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4440 { 4441 int sel, ret; 4442 bool bypassed; 4443 4444 if (rdev->desc->ops->get_bypass) { 4445 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4446 if (ret < 0) 4447 return ret; 4448 if (bypassed) { 4449 /* if bypassed the regulator must have a supply */ 4450 if (!rdev->supply) { 4451 rdev_err(rdev, 4452 "bypassed regulator has no supply!\n"); 4453 return -EPROBE_DEFER; 4454 } 4455 4456 return regulator_get_voltage_rdev(rdev->supply->rdev); 4457 } 4458 } 4459 4460 if (rdev->desc->ops->get_voltage_sel) { 4461 sel = rdev->desc->ops->get_voltage_sel(rdev); 4462 if (sel < 0) 4463 return sel; 4464 ret = rdev->desc->ops->list_voltage(rdev, sel); 4465 } else if (rdev->desc->ops->get_voltage) { 4466 ret = rdev->desc->ops->get_voltage(rdev); 4467 } else if (rdev->desc->ops->list_voltage) { 4468 ret = rdev->desc->ops->list_voltage(rdev, 0); 4469 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4470 ret = rdev->desc->fixed_uV; 4471 } else if (rdev->supply) { 4472 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4473 } else if (rdev->supply_name) { 4474 return -EPROBE_DEFER; 4475 } else { 4476 return -EINVAL; 4477 } 4478 4479 if (ret < 0) 4480 return ret; 4481 return ret - rdev->constraints->uV_offset; 4482 } 4483 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4484 4485 /** 4486 * regulator_get_voltage - get regulator output voltage 4487 * @regulator: regulator source 4488 * 4489 * Return: Current regulator voltage in uV, or a negative error number on failure. 4490 * 4491 * NOTE: If the regulator is disabled it will return the voltage value. This 4492 * function should not be used to determine regulator state. 4493 */ 4494 int regulator_get_voltage(struct regulator *regulator) 4495 { 4496 struct ww_acquire_ctx ww_ctx; 4497 int ret; 4498 4499 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4500 ret = regulator_get_voltage_rdev(regulator->rdev); 4501 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4502 4503 return ret; 4504 } 4505 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4506 4507 /** 4508 * regulator_set_current_limit - set regulator output current limit 4509 * @regulator: regulator source 4510 * @min_uA: Minimum supported current in uA 4511 * @max_uA: Maximum supported current in uA 4512 * 4513 * Sets current sink to the desired output current. This can be set during 4514 * any regulator state. IOW, regulator can be disabled or enabled. 4515 * 4516 * If the regulator is enabled then the current will change to the new value 4517 * immediately otherwise if the regulator is disabled the regulator will 4518 * output at the new current when enabled. 4519 * 4520 * NOTE: Regulator system constraints must be set for this regulator before 4521 * calling this function otherwise this call will fail. 4522 * 4523 * Return: 0 on success or a negative error number on failure. 4524 */ 4525 int regulator_set_current_limit(struct regulator *regulator, 4526 int min_uA, int max_uA) 4527 { 4528 struct regulator_dev *rdev = regulator->rdev; 4529 int ret; 4530 4531 regulator_lock(rdev); 4532 4533 /* sanity check */ 4534 if (!rdev->desc->ops->set_current_limit) { 4535 ret = -EINVAL; 4536 goto out; 4537 } 4538 4539 /* constraints check */ 4540 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4541 if (ret < 0) 4542 goto out; 4543 4544 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4545 out: 4546 regulator_unlock(rdev); 4547 return ret; 4548 } 4549 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4550 4551 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4552 { 4553 /* sanity check */ 4554 if (!rdev->desc->ops->get_current_limit) 4555 return -EINVAL; 4556 4557 return rdev->desc->ops->get_current_limit(rdev); 4558 } 4559 4560 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4561 { 4562 int ret; 4563 4564 regulator_lock(rdev); 4565 ret = _regulator_get_current_limit_unlocked(rdev); 4566 regulator_unlock(rdev); 4567 4568 return ret; 4569 } 4570 4571 /** 4572 * regulator_get_current_limit - get regulator output current 4573 * @regulator: regulator source 4574 * 4575 * Return: Current supplied by the specified current sink in uA, 4576 * or a negative error number on failure. 4577 * 4578 * NOTE: If the regulator is disabled it will return the current value. This 4579 * function should not be used to determine regulator state. 4580 */ 4581 int regulator_get_current_limit(struct regulator *regulator) 4582 { 4583 return _regulator_get_current_limit(regulator->rdev); 4584 } 4585 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4586 4587 /** 4588 * regulator_set_mode - set regulator operating mode 4589 * @regulator: regulator source 4590 * @mode: operating mode - one of the REGULATOR_MODE constants 4591 * 4592 * Set regulator operating mode to increase regulator efficiency or improve 4593 * regulation performance. 4594 * 4595 * NOTE: Regulator system constraints must be set for this regulator before 4596 * calling this function otherwise this call will fail. 4597 * 4598 * Return: 0 on success or a negative error number on failure. 4599 */ 4600 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4601 { 4602 struct regulator_dev *rdev = regulator->rdev; 4603 int ret; 4604 int regulator_curr_mode; 4605 4606 regulator_lock(rdev); 4607 4608 /* sanity check */ 4609 if (!rdev->desc->ops->set_mode) { 4610 ret = -EINVAL; 4611 goto out; 4612 } 4613 4614 /* return if the same mode is requested */ 4615 if (rdev->desc->ops->get_mode) { 4616 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4617 if (regulator_curr_mode == mode) { 4618 ret = 0; 4619 goto out; 4620 } 4621 } 4622 4623 /* constraints check */ 4624 ret = regulator_mode_constrain(rdev, &mode); 4625 if (ret < 0) 4626 goto out; 4627 4628 ret = rdev->desc->ops->set_mode(rdev, mode); 4629 out: 4630 regulator_unlock(rdev); 4631 return ret; 4632 } 4633 EXPORT_SYMBOL_GPL(regulator_set_mode); 4634 4635 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4636 { 4637 /* sanity check */ 4638 if (!rdev->desc->ops->get_mode) 4639 return -EINVAL; 4640 4641 return rdev->desc->ops->get_mode(rdev); 4642 } 4643 4644 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4645 { 4646 int ret; 4647 4648 regulator_lock(rdev); 4649 ret = _regulator_get_mode_unlocked(rdev); 4650 regulator_unlock(rdev); 4651 4652 return ret; 4653 } 4654 4655 /** 4656 * regulator_get_mode - get regulator operating mode 4657 * @regulator: regulator source 4658 * 4659 * Get the current regulator operating mode. 4660 * 4661 * Return: Current operating mode as %REGULATOR_MODE_* values, 4662 * or a negative error number on failure. 4663 */ 4664 unsigned int regulator_get_mode(struct regulator *regulator) 4665 { 4666 return _regulator_get_mode(regulator->rdev); 4667 } 4668 EXPORT_SYMBOL_GPL(regulator_get_mode); 4669 4670 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4671 { 4672 int ret = 0; 4673 4674 if (rdev->use_cached_err) { 4675 spin_lock(&rdev->err_lock); 4676 ret = rdev->cached_err; 4677 spin_unlock(&rdev->err_lock); 4678 } 4679 return ret; 4680 } 4681 4682 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4683 unsigned int *flags) 4684 { 4685 int cached_flags, ret = 0; 4686 4687 regulator_lock(rdev); 4688 4689 cached_flags = rdev_get_cached_err_flags(rdev); 4690 4691 if (rdev->desc->ops->get_error_flags) 4692 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4693 else if (!rdev->use_cached_err) 4694 ret = -EINVAL; 4695 4696 *flags |= cached_flags; 4697 4698 regulator_unlock(rdev); 4699 4700 return ret; 4701 } 4702 4703 /** 4704 * regulator_get_error_flags - get regulator error information 4705 * @regulator: regulator source 4706 * @flags: pointer to store error flags 4707 * 4708 * Get the current regulator error information. 4709 * 4710 * Return: 0 on success or a negative error number on failure. 4711 */ 4712 int regulator_get_error_flags(struct regulator *regulator, 4713 unsigned int *flags) 4714 { 4715 return _regulator_get_error_flags(regulator->rdev, flags); 4716 } 4717 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4718 4719 /** 4720 * regulator_set_load - set regulator load 4721 * @regulator: regulator source 4722 * @uA_load: load current 4723 * 4724 * Notifies the regulator core of a new device load. This is then used by 4725 * DRMS (if enabled by constraints) to set the most efficient regulator 4726 * operating mode for the new regulator loading. 4727 * 4728 * Consumer devices notify their supply regulator of the maximum power 4729 * they will require (can be taken from device datasheet in the power 4730 * consumption tables) when they change operational status and hence power 4731 * state. Examples of operational state changes that can affect power 4732 * consumption are :- 4733 * 4734 * o Device is opened / closed. 4735 * o Device I/O is about to begin or has just finished. 4736 * o Device is idling in between work. 4737 * 4738 * This information is also exported via sysfs to userspace. 4739 * 4740 * DRMS will sum the total requested load on the regulator and change 4741 * to the most efficient operating mode if platform constraints allow. 4742 * 4743 * NOTE: when a regulator consumer requests to have a regulator 4744 * disabled then any load that consumer requested no longer counts 4745 * toward the total requested load. If the regulator is re-enabled 4746 * then the previously requested load will start counting again. 4747 * 4748 * If a regulator is an always-on regulator then an individual consumer's 4749 * load will still be removed if that consumer is fully disabled. 4750 * 4751 * Return: 0 on success or a negative error number on failure. 4752 */ 4753 int regulator_set_load(struct regulator *regulator, int uA_load) 4754 { 4755 struct regulator_dev *rdev = regulator->rdev; 4756 int old_uA_load; 4757 int ret = 0; 4758 4759 regulator_lock(rdev); 4760 old_uA_load = regulator->uA_load; 4761 regulator->uA_load = uA_load; 4762 if (regulator->enable_count && old_uA_load != uA_load) { 4763 ret = drms_uA_update(rdev); 4764 if (ret < 0) 4765 regulator->uA_load = old_uA_load; 4766 } 4767 regulator_unlock(rdev); 4768 4769 return ret; 4770 } 4771 EXPORT_SYMBOL_GPL(regulator_set_load); 4772 4773 /** 4774 * regulator_allow_bypass - allow the regulator to go into bypass mode 4775 * 4776 * @regulator: Regulator to configure 4777 * @enable: enable or disable bypass mode 4778 * 4779 * Allow the regulator to go into bypass mode if all other consumers 4780 * for the regulator also enable bypass mode and the machine 4781 * constraints allow this. Bypass mode means that the regulator is 4782 * simply passing the input directly to the output with no regulation. 4783 * 4784 * Return: 0 on success or if changing bypass is not possible, or 4785 * a negative error number on failure. 4786 */ 4787 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4788 { 4789 struct regulator_dev *rdev = regulator->rdev; 4790 const char *name = rdev_get_name(rdev); 4791 int ret = 0; 4792 4793 if (!rdev->desc->ops->set_bypass) 4794 return 0; 4795 4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4797 return 0; 4798 4799 regulator_lock(rdev); 4800 4801 if (enable && !regulator->bypass) { 4802 rdev->bypass_count++; 4803 4804 if (rdev->bypass_count == rdev->open_count) { 4805 trace_regulator_bypass_enable(name); 4806 4807 ret = rdev->desc->ops->set_bypass(rdev, enable); 4808 if (ret != 0) 4809 rdev->bypass_count--; 4810 else 4811 trace_regulator_bypass_enable_complete(name); 4812 } 4813 4814 } else if (!enable && regulator->bypass) { 4815 rdev->bypass_count--; 4816 4817 if (rdev->bypass_count != rdev->open_count) { 4818 trace_regulator_bypass_disable(name); 4819 4820 ret = rdev->desc->ops->set_bypass(rdev, enable); 4821 if (ret != 0) 4822 rdev->bypass_count++; 4823 else 4824 trace_regulator_bypass_disable_complete(name); 4825 } 4826 } 4827 4828 if (ret == 0) 4829 regulator->bypass = enable; 4830 4831 regulator_unlock(rdev); 4832 4833 return ret; 4834 } 4835 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4836 4837 /** 4838 * regulator_register_notifier - register regulator event notifier 4839 * @regulator: regulator source 4840 * @nb: notifier block 4841 * 4842 * Register notifier block to receive regulator events. 4843 * 4844 * Return: 0 on success or a negative error number on failure. 4845 */ 4846 int regulator_register_notifier(struct regulator *regulator, 4847 struct notifier_block *nb) 4848 { 4849 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4850 nb); 4851 } 4852 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4853 4854 /** 4855 * regulator_unregister_notifier - unregister regulator event notifier 4856 * @regulator: regulator source 4857 * @nb: notifier block 4858 * 4859 * Unregister regulator event notifier block. 4860 * 4861 * Return: 0 on success or a negative error number on failure. 4862 */ 4863 int regulator_unregister_notifier(struct regulator *regulator, 4864 struct notifier_block *nb) 4865 { 4866 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4867 nb); 4868 } 4869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4870 4871 /* notify regulator consumers and downstream regulator consumers. 4872 * Note mutex must be held by caller. 4873 */ 4874 static int _notifier_call_chain(struct regulator_dev *rdev, 4875 unsigned long event, void *data) 4876 { 4877 /* call rdev chain first */ 4878 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 4879 4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 4881 struct device *parent = rdev->dev.parent; 4882 const char *rname = rdev_get_name(rdev); 4883 char name[32]; 4884 4885 /* Avoid duplicate debugfs directory names */ 4886 if (parent && rname == rdev->desc->name) { 4887 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4888 rname); 4889 rname = name; 4890 } 4891 reg_generate_netlink_event(rname, event); 4892 } 4893 4894 return ret; 4895 } 4896 4897 int _regulator_bulk_get(struct device *dev, int num_consumers, 4898 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4899 { 4900 int i; 4901 int ret; 4902 4903 for (i = 0; i < num_consumers; i++) 4904 consumers[i].consumer = NULL; 4905 4906 for (i = 0; i < num_consumers; i++) { 4907 consumers[i].consumer = _regulator_get(dev, 4908 consumers[i].supply, get_type); 4909 if (IS_ERR(consumers[i].consumer)) { 4910 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4911 "Failed to get supply '%s'", 4912 consumers[i].supply); 4913 consumers[i].consumer = NULL; 4914 goto err; 4915 } 4916 4917 if (consumers[i].init_load_uA > 0) { 4918 ret = regulator_set_load(consumers[i].consumer, 4919 consumers[i].init_load_uA); 4920 if (ret) { 4921 i++; 4922 goto err; 4923 } 4924 } 4925 } 4926 4927 return 0; 4928 4929 err: 4930 while (--i >= 0) 4931 regulator_put(consumers[i].consumer); 4932 4933 return ret; 4934 } 4935 4936 /** 4937 * regulator_bulk_get - get multiple regulator consumers 4938 * 4939 * @dev: Device to supply 4940 * @num_consumers: Number of consumers to register 4941 * @consumers: Configuration of consumers; clients are stored here. 4942 * 4943 * This helper function allows drivers to get several regulator 4944 * consumers in one operation. If any of the regulators cannot be 4945 * acquired then any regulators that were allocated will be freed 4946 * before returning to the caller. 4947 * 4948 * Return: 0 on success or a negative error number on failure. 4949 */ 4950 int regulator_bulk_get(struct device *dev, int num_consumers, 4951 struct regulator_bulk_data *consumers) 4952 { 4953 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4954 } 4955 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4956 4957 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4958 { 4959 struct regulator_bulk_data *bulk = data; 4960 4961 bulk->ret = regulator_enable(bulk->consumer); 4962 } 4963 4964 /** 4965 * regulator_bulk_enable - enable multiple regulator consumers 4966 * 4967 * @num_consumers: Number of consumers 4968 * @consumers: Consumer data; clients are stored here. 4969 * 4970 * This convenience API allows consumers to enable multiple regulator 4971 * clients in a single API call. If any consumers cannot be enabled 4972 * then any others that were enabled will be disabled again prior to 4973 * return. 4974 * 4975 * Return: 0 on success or a negative error number on failure. 4976 */ 4977 int regulator_bulk_enable(int num_consumers, 4978 struct regulator_bulk_data *consumers) 4979 { 4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4981 int i; 4982 int ret = 0; 4983 4984 for (i = 0; i < num_consumers; i++) { 4985 async_schedule_domain(regulator_bulk_enable_async, 4986 &consumers[i], &async_domain); 4987 } 4988 4989 async_synchronize_full_domain(&async_domain); 4990 4991 /* If any consumer failed we need to unwind any that succeeded */ 4992 for (i = 0; i < num_consumers; i++) { 4993 if (consumers[i].ret != 0) { 4994 ret = consumers[i].ret; 4995 goto err; 4996 } 4997 } 4998 4999 return 0; 5000 5001 err: 5002 for (i = 0; i < num_consumers; i++) { 5003 if (consumers[i].ret < 0) 5004 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 5005 ERR_PTR(consumers[i].ret)); 5006 else 5007 regulator_disable(consumers[i].consumer); 5008 } 5009 5010 return ret; 5011 } 5012 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 5013 5014 /** 5015 * regulator_bulk_disable - disable multiple regulator consumers 5016 * 5017 * @num_consumers: Number of consumers 5018 * @consumers: Consumer data; clients are stored here. 5019 * 5020 * This convenience API allows consumers to disable multiple regulator 5021 * clients in a single API call. If any consumers cannot be disabled 5022 * then any others that were disabled will be enabled again prior to 5023 * return. 5024 * 5025 * Return: 0 on success or a negative error number on failure. 5026 */ 5027 int regulator_bulk_disable(int num_consumers, 5028 struct regulator_bulk_data *consumers) 5029 { 5030 int i; 5031 int ret, r; 5032 5033 for (i = num_consumers - 1; i >= 0; --i) { 5034 ret = regulator_disable(consumers[i].consumer); 5035 if (ret != 0) 5036 goto err; 5037 } 5038 5039 return 0; 5040 5041 err: 5042 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5043 for (++i; i < num_consumers; ++i) { 5044 r = regulator_enable(consumers[i].consumer); 5045 if (r != 0) 5046 pr_err("Failed to re-enable %s: %pe\n", 5047 consumers[i].supply, ERR_PTR(r)); 5048 } 5049 5050 return ret; 5051 } 5052 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5053 5054 /** 5055 * regulator_bulk_force_disable - force disable multiple regulator consumers 5056 * 5057 * @num_consumers: Number of consumers 5058 * @consumers: Consumer data; clients are stored here. 5059 * 5060 * This convenience API allows consumers to forcibly disable multiple regulator 5061 * clients in a single API call. 5062 * NOTE: This should be used for situations when device damage will 5063 * likely occur if the regulators are not disabled (e.g. over temp). 5064 * Although regulator_force_disable function call for some consumers can 5065 * return error numbers, the function is called for all consumers. 5066 * 5067 * Return: 0 on success or a negative error number on failure. 5068 */ 5069 int regulator_bulk_force_disable(int num_consumers, 5070 struct regulator_bulk_data *consumers) 5071 { 5072 int i; 5073 int ret = 0; 5074 5075 for (i = 0; i < num_consumers; i++) { 5076 consumers[i].ret = 5077 regulator_force_disable(consumers[i].consumer); 5078 5079 /* Store first error for reporting */ 5080 if (consumers[i].ret && !ret) 5081 ret = consumers[i].ret; 5082 } 5083 5084 return ret; 5085 } 5086 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5087 5088 /** 5089 * regulator_bulk_free - free multiple regulator consumers 5090 * 5091 * @num_consumers: Number of consumers 5092 * @consumers: Consumer data; clients are stored here. 5093 * 5094 * This convenience API allows consumers to free multiple regulator 5095 * clients in a single API call. 5096 */ 5097 void regulator_bulk_free(int num_consumers, 5098 struct regulator_bulk_data *consumers) 5099 { 5100 int i; 5101 5102 for (i = 0; i < num_consumers; i++) { 5103 regulator_put(consumers[i].consumer); 5104 consumers[i].consumer = NULL; 5105 } 5106 } 5107 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5108 5109 /** 5110 * regulator_handle_critical - Handle events for system-critical regulators. 5111 * @rdev: The regulator device. 5112 * @event: The event being handled. 5113 * 5114 * This function handles critical events such as under-voltage, over-current, 5115 * and unknown errors for regulators deemed system-critical. On detecting such 5116 * events, it triggers a hardware protection shutdown with a defined timeout. 5117 */ 5118 static void regulator_handle_critical(struct regulator_dev *rdev, 5119 unsigned long event) 5120 { 5121 const char *reason = NULL; 5122 5123 if (!rdev->constraints->system_critical) 5124 return; 5125 5126 switch (event) { 5127 case REGULATOR_EVENT_UNDER_VOLTAGE: 5128 reason = "System critical regulator: voltage drop detected"; 5129 break; 5130 case REGULATOR_EVENT_OVER_CURRENT: 5131 reason = "System critical regulator: over-current detected"; 5132 break; 5133 case REGULATOR_EVENT_FAIL: 5134 reason = "System critical regulator: unknown error"; 5135 } 5136 5137 if (!reason) 5138 return; 5139 5140 hw_protection_shutdown(reason, 5141 rdev->constraints->uv_less_critical_window_ms); 5142 } 5143 5144 /** 5145 * regulator_notifier_call_chain - call regulator event notifier 5146 * @rdev: regulator source 5147 * @event: notifier block 5148 * @data: callback-specific data. 5149 * 5150 * Called by regulator drivers to notify clients a regulator event has 5151 * occurred. 5152 * 5153 * Return: %NOTIFY_DONE. 5154 */ 5155 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5156 unsigned long event, void *data) 5157 { 5158 regulator_handle_critical(rdev, event); 5159 5160 _notifier_call_chain(rdev, event, data); 5161 return NOTIFY_DONE; 5162 5163 } 5164 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5165 5166 /** 5167 * regulator_mode_to_status - convert a regulator mode into a status 5168 * 5169 * @mode: Mode to convert 5170 * 5171 * Convert a regulator mode into a status. 5172 * 5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode. 5174 */ 5175 int regulator_mode_to_status(unsigned int mode) 5176 { 5177 switch (mode) { 5178 case REGULATOR_MODE_FAST: 5179 return REGULATOR_STATUS_FAST; 5180 case REGULATOR_MODE_NORMAL: 5181 return REGULATOR_STATUS_NORMAL; 5182 case REGULATOR_MODE_IDLE: 5183 return REGULATOR_STATUS_IDLE; 5184 case REGULATOR_MODE_STANDBY: 5185 return REGULATOR_STATUS_STANDBY; 5186 default: 5187 return REGULATOR_STATUS_UNDEFINED; 5188 } 5189 } 5190 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5191 5192 static struct attribute *regulator_dev_attrs[] = { 5193 &dev_attr_name.attr, 5194 &dev_attr_num_users.attr, 5195 &dev_attr_type.attr, 5196 &dev_attr_microvolts.attr, 5197 &dev_attr_microamps.attr, 5198 &dev_attr_opmode.attr, 5199 &dev_attr_state.attr, 5200 &dev_attr_status.attr, 5201 &dev_attr_bypass.attr, 5202 &dev_attr_requested_microamps.attr, 5203 &dev_attr_min_microvolts.attr, 5204 &dev_attr_max_microvolts.attr, 5205 &dev_attr_min_microamps.attr, 5206 &dev_attr_max_microamps.attr, 5207 &dev_attr_under_voltage.attr, 5208 &dev_attr_over_current.attr, 5209 &dev_attr_regulation_out.attr, 5210 &dev_attr_fail.attr, 5211 &dev_attr_over_temp.attr, 5212 &dev_attr_under_voltage_warn.attr, 5213 &dev_attr_over_current_warn.attr, 5214 &dev_attr_over_voltage_warn.attr, 5215 &dev_attr_over_temp_warn.attr, 5216 &dev_attr_suspend_standby_state.attr, 5217 &dev_attr_suspend_mem_state.attr, 5218 &dev_attr_suspend_disk_state.attr, 5219 &dev_attr_suspend_standby_microvolts.attr, 5220 &dev_attr_suspend_mem_microvolts.attr, 5221 &dev_attr_suspend_disk_microvolts.attr, 5222 &dev_attr_suspend_standby_mode.attr, 5223 &dev_attr_suspend_mem_mode.attr, 5224 &dev_attr_suspend_disk_mode.attr, 5225 NULL 5226 }; 5227 5228 /* 5229 * To avoid cluttering sysfs (and memory) with useless state, only 5230 * create attributes that can be meaningfully displayed. 5231 */ 5232 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5233 struct attribute *attr, int idx) 5234 { 5235 struct device *dev = kobj_to_dev(kobj); 5236 struct regulator_dev *rdev = dev_to_rdev(dev); 5237 const struct regulator_ops *ops = rdev->desc->ops; 5238 umode_t mode = attr->mode; 5239 5240 /* these three are always present */ 5241 if (attr == &dev_attr_name.attr || 5242 attr == &dev_attr_num_users.attr || 5243 attr == &dev_attr_type.attr) 5244 return mode; 5245 5246 /* some attributes need specific methods to be displayed */ 5247 if (attr == &dev_attr_microvolts.attr) { 5248 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5249 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5250 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5251 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5252 return mode; 5253 return 0; 5254 } 5255 5256 if (attr == &dev_attr_microamps.attr) 5257 return ops->get_current_limit ? mode : 0; 5258 5259 if (attr == &dev_attr_opmode.attr) 5260 return ops->get_mode ? mode : 0; 5261 5262 if (attr == &dev_attr_state.attr) 5263 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5264 5265 if (attr == &dev_attr_status.attr) 5266 return ops->get_status ? mode : 0; 5267 5268 if (attr == &dev_attr_bypass.attr) 5269 return ops->get_bypass ? mode : 0; 5270 5271 if (attr == &dev_attr_under_voltage.attr || 5272 attr == &dev_attr_over_current.attr || 5273 attr == &dev_attr_regulation_out.attr || 5274 attr == &dev_attr_fail.attr || 5275 attr == &dev_attr_over_temp.attr || 5276 attr == &dev_attr_under_voltage_warn.attr || 5277 attr == &dev_attr_over_current_warn.attr || 5278 attr == &dev_attr_over_voltage_warn.attr || 5279 attr == &dev_attr_over_temp_warn.attr) 5280 return ops->get_error_flags ? mode : 0; 5281 5282 /* constraints need specific supporting methods */ 5283 if (attr == &dev_attr_min_microvolts.attr || 5284 attr == &dev_attr_max_microvolts.attr) 5285 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5286 5287 if (attr == &dev_attr_min_microamps.attr || 5288 attr == &dev_attr_max_microamps.attr) 5289 return ops->set_current_limit ? mode : 0; 5290 5291 if (attr == &dev_attr_suspend_standby_state.attr || 5292 attr == &dev_attr_suspend_mem_state.attr || 5293 attr == &dev_attr_suspend_disk_state.attr) 5294 return mode; 5295 5296 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5297 attr == &dev_attr_suspend_mem_microvolts.attr || 5298 attr == &dev_attr_suspend_disk_microvolts.attr) 5299 return ops->set_suspend_voltage ? mode : 0; 5300 5301 if (attr == &dev_attr_suspend_standby_mode.attr || 5302 attr == &dev_attr_suspend_mem_mode.attr || 5303 attr == &dev_attr_suspend_disk_mode.attr) 5304 return ops->set_suspend_mode ? mode : 0; 5305 5306 return mode; 5307 } 5308 5309 static const struct attribute_group regulator_dev_group = { 5310 .attrs = regulator_dev_attrs, 5311 .is_visible = regulator_attr_is_visible, 5312 }; 5313 5314 static const struct attribute_group *regulator_dev_groups[] = { 5315 ®ulator_dev_group, 5316 NULL 5317 }; 5318 5319 static void regulator_dev_release(struct device *dev) 5320 { 5321 struct regulator_dev *rdev = dev_get_drvdata(dev); 5322 5323 debugfs_remove_recursive(rdev->debugfs); 5324 kfree(rdev->constraints); 5325 of_node_put(rdev->dev.of_node); 5326 kfree(rdev); 5327 } 5328 5329 static void rdev_init_debugfs(struct regulator_dev *rdev) 5330 { 5331 struct device *parent = rdev->dev.parent; 5332 const char *rname = rdev_get_name(rdev); 5333 char name[NAME_MAX]; 5334 5335 /* Avoid duplicate debugfs directory names */ 5336 if (parent && rname == rdev->desc->name) { 5337 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5338 rname); 5339 rname = name; 5340 } 5341 5342 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5343 if (IS_ERR(rdev->debugfs)) 5344 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5345 5346 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5347 &rdev->use_count); 5348 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5349 &rdev->open_count); 5350 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5351 &rdev->bypass_count); 5352 } 5353 5354 static int regulator_register_resolve_supply(struct device *dev, void *data) 5355 { 5356 struct regulator_dev *rdev = dev_to_rdev(dev); 5357 5358 if (regulator_resolve_supply(rdev)) 5359 rdev_dbg(rdev, "unable to resolve supply\n"); 5360 5361 return 0; 5362 } 5363 5364 int regulator_coupler_register(struct regulator_coupler *coupler) 5365 { 5366 mutex_lock(®ulator_list_mutex); 5367 list_add_tail(&coupler->list, ®ulator_coupler_list); 5368 mutex_unlock(®ulator_list_mutex); 5369 5370 return 0; 5371 } 5372 5373 static struct regulator_coupler * 5374 regulator_find_coupler(struct regulator_dev *rdev) 5375 { 5376 struct regulator_coupler *coupler; 5377 int err; 5378 5379 /* 5380 * Note that regulators are appended to the list and the generic 5381 * coupler is registered first, hence it will be attached at last 5382 * if nobody cared. 5383 */ 5384 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5385 err = coupler->attach_regulator(coupler, rdev); 5386 if (!err) { 5387 if (!coupler->balance_voltage && 5388 rdev->coupling_desc.n_coupled > 2) 5389 goto err_unsupported; 5390 5391 return coupler; 5392 } 5393 5394 if (err < 0) 5395 return ERR_PTR(err); 5396 5397 if (err == 1) 5398 continue; 5399 5400 break; 5401 } 5402 5403 return ERR_PTR(-EINVAL); 5404 5405 err_unsupported: 5406 if (coupler->detach_regulator) 5407 coupler->detach_regulator(coupler, rdev); 5408 5409 rdev_err(rdev, 5410 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5411 5412 return ERR_PTR(-EPERM); 5413 } 5414 5415 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5416 { 5417 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5418 struct coupling_desc *c_desc = &rdev->coupling_desc; 5419 int n_coupled = c_desc->n_coupled; 5420 struct regulator_dev *c_rdev; 5421 int i; 5422 5423 for (i = 1; i < n_coupled; i++) { 5424 /* already resolved */ 5425 if (c_desc->coupled_rdevs[i]) 5426 continue; 5427 5428 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5429 5430 if (!c_rdev) 5431 continue; 5432 5433 if (c_rdev->coupling_desc.coupler != coupler) { 5434 rdev_err(rdev, "coupler mismatch with %s\n", 5435 rdev_get_name(c_rdev)); 5436 return; 5437 } 5438 5439 c_desc->coupled_rdevs[i] = c_rdev; 5440 c_desc->n_resolved++; 5441 5442 regulator_resolve_coupling(c_rdev); 5443 } 5444 } 5445 5446 static void regulator_remove_coupling(struct regulator_dev *rdev) 5447 { 5448 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5449 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5450 struct regulator_dev *__c_rdev, *c_rdev; 5451 unsigned int __n_coupled, n_coupled; 5452 int i, k; 5453 int err; 5454 5455 n_coupled = c_desc->n_coupled; 5456 5457 for (i = 1; i < n_coupled; i++) { 5458 c_rdev = c_desc->coupled_rdevs[i]; 5459 5460 if (!c_rdev) 5461 continue; 5462 5463 regulator_lock(c_rdev); 5464 5465 __c_desc = &c_rdev->coupling_desc; 5466 __n_coupled = __c_desc->n_coupled; 5467 5468 for (k = 1; k < __n_coupled; k++) { 5469 __c_rdev = __c_desc->coupled_rdevs[k]; 5470 5471 if (__c_rdev == rdev) { 5472 __c_desc->coupled_rdevs[k] = NULL; 5473 __c_desc->n_resolved--; 5474 break; 5475 } 5476 } 5477 5478 regulator_unlock(c_rdev); 5479 5480 c_desc->coupled_rdevs[i] = NULL; 5481 c_desc->n_resolved--; 5482 } 5483 5484 if (coupler && coupler->detach_regulator) { 5485 err = coupler->detach_regulator(coupler, rdev); 5486 if (err) 5487 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5488 ERR_PTR(err)); 5489 } 5490 5491 kfree(rdev->coupling_desc.coupled_rdevs); 5492 rdev->coupling_desc.coupled_rdevs = NULL; 5493 } 5494 5495 static int regulator_init_coupling(struct regulator_dev *rdev) 5496 { 5497 struct regulator_dev **coupled; 5498 int err, n_phandles; 5499 5500 if (!IS_ENABLED(CONFIG_OF)) 5501 n_phandles = 0; 5502 else 5503 n_phandles = of_get_n_coupled(rdev); 5504 5505 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5506 if (!coupled) 5507 return -ENOMEM; 5508 5509 rdev->coupling_desc.coupled_rdevs = coupled; 5510 5511 /* 5512 * Every regulator should always have coupling descriptor filled with 5513 * at least pointer to itself. 5514 */ 5515 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5516 rdev->coupling_desc.n_coupled = n_phandles + 1; 5517 rdev->coupling_desc.n_resolved++; 5518 5519 /* regulator isn't coupled */ 5520 if (n_phandles == 0) 5521 return 0; 5522 5523 if (!of_check_coupling_data(rdev)) 5524 return -EPERM; 5525 5526 mutex_lock(®ulator_list_mutex); 5527 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5528 mutex_unlock(®ulator_list_mutex); 5529 5530 if (IS_ERR(rdev->coupling_desc.coupler)) { 5531 err = PTR_ERR(rdev->coupling_desc.coupler); 5532 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5533 return err; 5534 } 5535 5536 return 0; 5537 } 5538 5539 static int generic_coupler_attach(struct regulator_coupler *coupler, 5540 struct regulator_dev *rdev) 5541 { 5542 if (rdev->coupling_desc.n_coupled > 2) { 5543 rdev_err(rdev, 5544 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5545 return -EPERM; 5546 } 5547 5548 if (!rdev->constraints->always_on) { 5549 rdev_err(rdev, 5550 "Coupling of a non always-on regulator is unimplemented\n"); 5551 return -ENOTSUPP; 5552 } 5553 5554 return 0; 5555 } 5556 5557 static struct regulator_coupler generic_regulator_coupler = { 5558 .attach_regulator = generic_coupler_attach, 5559 }; 5560 5561 /** 5562 * regulator_register - register regulator 5563 * @dev: the device that drive the regulator 5564 * @regulator_desc: regulator to register 5565 * @cfg: runtime configuration for regulator 5566 * 5567 * Called by regulator drivers to register a regulator. 5568 * 5569 * Return: Pointer to a valid &struct regulator_dev on success or 5570 * an ERR_PTR() encoded negative error number on failure. 5571 */ 5572 struct regulator_dev * 5573 regulator_register(struct device *dev, 5574 const struct regulator_desc *regulator_desc, 5575 const struct regulator_config *cfg) 5576 { 5577 const struct regulator_init_data *init_data; 5578 struct regulator_config *config = NULL; 5579 static atomic_t regulator_no = ATOMIC_INIT(-1); 5580 struct regulator_dev *rdev; 5581 bool dangling_cfg_gpiod = false; 5582 bool dangling_of_gpiod = false; 5583 int ret, i; 5584 bool resolved_early = false; 5585 5586 if (cfg == NULL) 5587 return ERR_PTR(-EINVAL); 5588 if (cfg->ena_gpiod) 5589 dangling_cfg_gpiod = true; 5590 if (regulator_desc == NULL) { 5591 ret = -EINVAL; 5592 goto rinse; 5593 } 5594 5595 WARN_ON(!dev || !cfg->dev); 5596 5597 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5598 ret = -EINVAL; 5599 goto rinse; 5600 } 5601 5602 if (regulator_desc->type != REGULATOR_VOLTAGE && 5603 regulator_desc->type != REGULATOR_CURRENT) { 5604 ret = -EINVAL; 5605 goto rinse; 5606 } 5607 5608 /* Only one of each should be implemented */ 5609 WARN_ON(regulator_desc->ops->get_voltage && 5610 regulator_desc->ops->get_voltage_sel); 5611 WARN_ON(regulator_desc->ops->set_voltage && 5612 regulator_desc->ops->set_voltage_sel); 5613 5614 /* If we're using selectors we must implement list_voltage. */ 5615 if (regulator_desc->ops->get_voltage_sel && 5616 !regulator_desc->ops->list_voltage) { 5617 ret = -EINVAL; 5618 goto rinse; 5619 } 5620 if (regulator_desc->ops->set_voltage_sel && 5621 !regulator_desc->ops->list_voltage) { 5622 ret = -EINVAL; 5623 goto rinse; 5624 } 5625 5626 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5627 if (rdev == NULL) { 5628 ret = -ENOMEM; 5629 goto rinse; 5630 } 5631 device_initialize(&rdev->dev); 5632 dev_set_drvdata(&rdev->dev, rdev); 5633 rdev->dev.class = ®ulator_class; 5634 spin_lock_init(&rdev->err_lock); 5635 5636 /* 5637 * Duplicate the config so the driver could override it after 5638 * parsing init data. 5639 */ 5640 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5641 if (config == NULL) { 5642 ret = -ENOMEM; 5643 goto clean; 5644 } 5645 5646 if (config->init_data) { 5647 /* 5648 * Providing of_match means the framework is expected to parse 5649 * DT to get the init_data. This would conflict with provided 5650 * init_data, if set. Warn if it happens. 5651 */ 5652 if (regulator_desc->of_match) 5653 dev_warn(dev, "Using provided init data - OF match ignored\n"); 5654 5655 init_data = config->init_data; 5656 rdev->dev.of_node = of_node_get(config->of_node); 5657 5658 } else { 5659 init_data = regulator_of_get_init_data(dev, regulator_desc, 5660 config, 5661 &rdev->dev.of_node); 5662 5663 /* 5664 * Sometimes not all resources are probed already so we need to 5665 * take that into account. This happens most the time if the 5666 * ena_gpiod comes from a gpio extender or something else. 5667 */ 5668 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5669 ret = -EPROBE_DEFER; 5670 goto clean; 5671 } 5672 5673 /* 5674 * We need to keep track of any GPIO descriptor coming from the 5675 * device tree until we have handled it over to the core. If the 5676 * config that was passed in to this function DOES NOT contain a 5677 * descriptor, and the config after this call DOES contain a 5678 * descriptor, we definitely got one from parsing the device 5679 * tree. 5680 */ 5681 if (!cfg->ena_gpiod && config->ena_gpiod) 5682 dangling_of_gpiod = true; 5683 } 5684 5685 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5686 rdev->reg_data = config->driver_data; 5687 rdev->owner = regulator_desc->owner; 5688 rdev->desc = regulator_desc; 5689 if (config->regmap) 5690 rdev->regmap = config->regmap; 5691 else if (dev_get_regmap(dev, NULL)) 5692 rdev->regmap = dev_get_regmap(dev, NULL); 5693 else if (dev->parent) 5694 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5695 INIT_LIST_HEAD(&rdev->consumer_list); 5696 INIT_LIST_HEAD(&rdev->list); 5697 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5698 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5699 5700 if (init_data && init_data->supply_regulator) 5701 rdev->supply_name = init_data->supply_regulator; 5702 else if (regulator_desc->supply_name) 5703 rdev->supply_name = regulator_desc->supply_name; 5704 5705 /* register with sysfs */ 5706 rdev->dev.parent = config->dev; 5707 dev_set_name(&rdev->dev, "regulator.%lu", 5708 (unsigned long) atomic_inc_return(®ulator_no)); 5709 5710 /* set regulator constraints */ 5711 if (init_data) 5712 rdev->constraints = kmemdup(&init_data->constraints, 5713 sizeof(*rdev->constraints), 5714 GFP_KERNEL); 5715 else 5716 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5717 GFP_KERNEL); 5718 if (!rdev->constraints) { 5719 ret = -ENOMEM; 5720 goto wash; 5721 } 5722 5723 if (regulator_desc->init_cb) { 5724 ret = regulator_desc->init_cb(rdev, config); 5725 if (ret < 0) 5726 goto wash; 5727 } 5728 5729 if ((rdev->supply_name && !rdev->supply) && 5730 (rdev->constraints->always_on || 5731 rdev->constraints->boot_on)) { 5732 ret = regulator_resolve_supply(rdev); 5733 if (ret) 5734 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5735 ERR_PTR(ret)); 5736 5737 resolved_early = true; 5738 } 5739 5740 if (config->ena_gpiod) { 5741 ret = regulator_ena_gpio_request(rdev, config); 5742 if (ret != 0) { 5743 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5744 ERR_PTR(ret)); 5745 goto wash; 5746 } 5747 /* The regulator core took over the GPIO descriptor */ 5748 dangling_cfg_gpiod = false; 5749 dangling_of_gpiod = false; 5750 } 5751 5752 ret = set_machine_constraints(rdev); 5753 if (ret == -EPROBE_DEFER && !resolved_early) { 5754 /* Regulator might be in bypass mode and so needs its supply 5755 * to set the constraints 5756 */ 5757 /* FIXME: this currently triggers a chicken-and-egg problem 5758 * when creating -SUPPLY symlink in sysfs to a regulator 5759 * that is just being created 5760 */ 5761 rdev_dbg(rdev, "will resolve supply early: %s\n", 5762 rdev->supply_name); 5763 ret = regulator_resolve_supply(rdev); 5764 if (!ret) 5765 ret = set_machine_constraints(rdev); 5766 else 5767 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5768 ERR_PTR(ret)); 5769 } 5770 if (ret < 0) 5771 goto wash; 5772 5773 ret = regulator_init_coupling(rdev); 5774 if (ret < 0) 5775 goto wash; 5776 5777 /* add consumers devices */ 5778 if (init_data) { 5779 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5780 ret = set_consumer_device_supply(rdev, 5781 init_data->consumer_supplies[i].dev_name, 5782 init_data->consumer_supplies[i].supply); 5783 if (ret < 0) { 5784 dev_err(dev, "Failed to set supply %s\n", 5785 init_data->consumer_supplies[i].supply); 5786 goto unset_supplies; 5787 } 5788 } 5789 } 5790 5791 if (!rdev->desc->ops->get_voltage && 5792 !rdev->desc->ops->list_voltage && 5793 !rdev->desc->fixed_uV) 5794 rdev->is_switch = true; 5795 5796 ret = device_add(&rdev->dev); 5797 if (ret != 0) 5798 goto unset_supplies; 5799 5800 rdev_init_debugfs(rdev); 5801 5802 /* try to resolve regulators coupling since a new one was registered */ 5803 mutex_lock(®ulator_list_mutex); 5804 regulator_resolve_coupling(rdev); 5805 mutex_unlock(®ulator_list_mutex); 5806 5807 /* try to resolve regulators supply since a new one was registered */ 5808 class_for_each_device(®ulator_class, NULL, NULL, 5809 regulator_register_resolve_supply); 5810 kfree(config); 5811 return rdev; 5812 5813 unset_supplies: 5814 mutex_lock(®ulator_list_mutex); 5815 unset_regulator_supplies(rdev); 5816 regulator_remove_coupling(rdev); 5817 mutex_unlock(®ulator_list_mutex); 5818 wash: 5819 regulator_put(rdev->supply); 5820 kfree(rdev->coupling_desc.coupled_rdevs); 5821 mutex_lock(®ulator_list_mutex); 5822 regulator_ena_gpio_free(rdev); 5823 mutex_unlock(®ulator_list_mutex); 5824 clean: 5825 if (dangling_of_gpiod) 5826 gpiod_put(config->ena_gpiod); 5827 kfree(config); 5828 put_device(&rdev->dev); 5829 rinse: 5830 if (dangling_cfg_gpiod) 5831 gpiod_put(cfg->ena_gpiod); 5832 return ERR_PTR(ret); 5833 } 5834 EXPORT_SYMBOL_GPL(regulator_register); 5835 5836 /** 5837 * regulator_unregister - unregister regulator 5838 * @rdev: regulator to unregister 5839 * 5840 * Called by regulator drivers to unregister a regulator. 5841 */ 5842 void regulator_unregister(struct regulator_dev *rdev) 5843 { 5844 if (rdev == NULL) 5845 return; 5846 5847 if (rdev->supply) { 5848 while (rdev->use_count--) 5849 regulator_disable(rdev->supply); 5850 regulator_put(rdev->supply); 5851 } 5852 5853 flush_work(&rdev->disable_work.work); 5854 5855 mutex_lock(®ulator_list_mutex); 5856 5857 WARN_ON(rdev->open_count); 5858 regulator_remove_coupling(rdev); 5859 unset_regulator_supplies(rdev); 5860 list_del(&rdev->list); 5861 regulator_ena_gpio_free(rdev); 5862 device_unregister(&rdev->dev); 5863 5864 mutex_unlock(®ulator_list_mutex); 5865 } 5866 EXPORT_SYMBOL_GPL(regulator_unregister); 5867 5868 #ifdef CONFIG_SUSPEND 5869 /** 5870 * regulator_suspend - prepare regulators for system wide suspend 5871 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5872 * 5873 * Configure each regulator with it's suspend operating parameters for state. 5874 * 5875 * Return: 0 on success or a negative error number on failure. 5876 */ 5877 static int regulator_suspend(struct device *dev) 5878 { 5879 struct regulator_dev *rdev = dev_to_rdev(dev); 5880 suspend_state_t state = pm_suspend_target_state; 5881 int ret; 5882 const struct regulator_state *rstate; 5883 5884 rstate = regulator_get_suspend_state_check(rdev, state); 5885 if (!rstate) 5886 return 0; 5887 5888 regulator_lock(rdev); 5889 ret = __suspend_set_state(rdev, rstate); 5890 regulator_unlock(rdev); 5891 5892 return ret; 5893 } 5894 5895 static int regulator_resume(struct device *dev) 5896 { 5897 suspend_state_t state = pm_suspend_target_state; 5898 struct regulator_dev *rdev = dev_to_rdev(dev); 5899 struct regulator_state *rstate; 5900 int ret = 0; 5901 5902 rstate = regulator_get_suspend_state(rdev, state); 5903 if (rstate == NULL) 5904 return 0; 5905 5906 /* Avoid grabbing the lock if we don't need to */ 5907 if (!rdev->desc->ops->resume) 5908 return 0; 5909 5910 regulator_lock(rdev); 5911 5912 if (rstate->enabled == ENABLE_IN_SUSPEND || 5913 rstate->enabled == DISABLE_IN_SUSPEND) 5914 ret = rdev->desc->ops->resume(rdev); 5915 5916 regulator_unlock(rdev); 5917 5918 return ret; 5919 } 5920 #else /* !CONFIG_SUSPEND */ 5921 5922 #define regulator_suspend NULL 5923 #define regulator_resume NULL 5924 5925 #endif /* !CONFIG_SUSPEND */ 5926 5927 #ifdef CONFIG_PM 5928 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5929 .suspend = regulator_suspend, 5930 .resume = regulator_resume, 5931 }; 5932 #endif 5933 5934 const struct class regulator_class = { 5935 .name = "regulator", 5936 .dev_release = regulator_dev_release, 5937 .dev_groups = regulator_dev_groups, 5938 #ifdef CONFIG_PM 5939 .pm = ®ulator_pm_ops, 5940 #endif 5941 }; 5942 /** 5943 * regulator_has_full_constraints - the system has fully specified constraints 5944 * 5945 * Calling this function will cause the regulator API to disable all 5946 * regulators which have a zero use count and don't have an always_on 5947 * constraint in a late_initcall. 5948 * 5949 * The intention is that this will become the default behaviour in a 5950 * future kernel release so users are encouraged to use this facility 5951 * now. 5952 */ 5953 void regulator_has_full_constraints(void) 5954 { 5955 has_full_constraints = 1; 5956 } 5957 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5958 5959 /** 5960 * rdev_get_drvdata - get rdev regulator driver data 5961 * @rdev: regulator 5962 * 5963 * Get rdev regulator driver private data. This call can be used in the 5964 * regulator driver context. 5965 * 5966 * Return: Pointer to regulator driver private data. 5967 */ 5968 void *rdev_get_drvdata(struct regulator_dev *rdev) 5969 { 5970 return rdev->reg_data; 5971 } 5972 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5973 5974 /** 5975 * regulator_get_drvdata - get regulator driver data 5976 * @regulator: regulator 5977 * 5978 * Get regulator driver private data. This call can be used in the consumer 5979 * driver context when non API regulator specific functions need to be called. 5980 * 5981 * Return: Pointer to regulator driver private data. 5982 */ 5983 void *regulator_get_drvdata(struct regulator *regulator) 5984 { 5985 return regulator->rdev->reg_data; 5986 } 5987 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5988 5989 /** 5990 * regulator_set_drvdata - set regulator driver data 5991 * @regulator: regulator 5992 * @data: data 5993 */ 5994 void regulator_set_drvdata(struct regulator *regulator, void *data) 5995 { 5996 regulator->rdev->reg_data = data; 5997 } 5998 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5999 6000 /** 6001 * rdev_get_id - get regulator ID 6002 * @rdev: regulator 6003 * 6004 * Return: Regulator ID for @rdev. 6005 */ 6006 int rdev_get_id(struct regulator_dev *rdev) 6007 { 6008 return rdev->desc->id; 6009 } 6010 EXPORT_SYMBOL_GPL(rdev_get_id); 6011 6012 struct device *rdev_get_dev(struct regulator_dev *rdev) 6013 { 6014 return &rdev->dev; 6015 } 6016 EXPORT_SYMBOL_GPL(rdev_get_dev); 6017 6018 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 6019 { 6020 return rdev->regmap; 6021 } 6022 EXPORT_SYMBOL_GPL(rdev_get_regmap); 6023 6024 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 6025 { 6026 return reg_init_data->driver_data; 6027 } 6028 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 6029 6030 #ifdef CONFIG_DEBUG_FS 6031 static int supply_map_show(struct seq_file *sf, void *data) 6032 { 6033 struct regulator_map *map; 6034 6035 list_for_each_entry(map, ®ulator_map_list, list) { 6036 seq_printf(sf, "%s -> %s.%s\n", 6037 rdev_get_name(map->regulator), map->dev_name, 6038 map->supply); 6039 } 6040 6041 return 0; 6042 } 6043 DEFINE_SHOW_ATTRIBUTE(supply_map); 6044 6045 struct summary_data { 6046 struct seq_file *s; 6047 struct regulator_dev *parent; 6048 int level; 6049 }; 6050 6051 static void regulator_summary_show_subtree(struct seq_file *s, 6052 struct regulator_dev *rdev, 6053 int level); 6054 6055 static int regulator_summary_show_children(struct device *dev, void *data) 6056 { 6057 struct regulator_dev *rdev = dev_to_rdev(dev); 6058 struct summary_data *summary_data = data; 6059 6060 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6061 regulator_summary_show_subtree(summary_data->s, rdev, 6062 summary_data->level + 1); 6063 6064 return 0; 6065 } 6066 6067 static void regulator_summary_show_subtree(struct seq_file *s, 6068 struct regulator_dev *rdev, 6069 int level) 6070 { 6071 struct regulation_constraints *c; 6072 struct regulator *consumer; 6073 struct summary_data summary_data; 6074 unsigned int opmode; 6075 6076 if (!rdev) 6077 return; 6078 6079 opmode = _regulator_get_mode_unlocked(rdev); 6080 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6081 level * 3 + 1, "", 6082 30 - level * 3, rdev_get_name(rdev), 6083 rdev->use_count, rdev->open_count, rdev->bypass_count, 6084 regulator_opmode_to_str(opmode)); 6085 6086 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6087 seq_printf(s, "%5dmA ", 6088 _regulator_get_current_limit_unlocked(rdev) / 1000); 6089 6090 c = rdev->constraints; 6091 if (c) { 6092 switch (rdev->desc->type) { 6093 case REGULATOR_VOLTAGE: 6094 seq_printf(s, "%5dmV %5dmV ", 6095 c->min_uV / 1000, c->max_uV / 1000); 6096 break; 6097 case REGULATOR_CURRENT: 6098 seq_printf(s, "%5dmA %5dmA ", 6099 c->min_uA / 1000, c->max_uA / 1000); 6100 break; 6101 } 6102 } 6103 6104 seq_puts(s, "\n"); 6105 6106 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6107 if (consumer->dev && consumer->dev->class == ®ulator_class) 6108 continue; 6109 6110 seq_printf(s, "%*s%-*s ", 6111 (level + 1) * 3 + 1, "", 6112 30 - (level + 1) * 3, 6113 consumer->supply_name ? consumer->supply_name : 6114 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6115 6116 switch (rdev->desc->type) { 6117 case REGULATOR_VOLTAGE: 6118 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6119 consumer->enable_count, 6120 consumer->uA_load / 1000, 6121 consumer->uA_load && !consumer->enable_count ? 6122 '*' : ' ', 6123 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6124 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6125 break; 6126 case REGULATOR_CURRENT: 6127 break; 6128 } 6129 6130 seq_puts(s, "\n"); 6131 } 6132 6133 summary_data.s = s; 6134 summary_data.level = level; 6135 summary_data.parent = rdev; 6136 6137 class_for_each_device(®ulator_class, NULL, &summary_data, 6138 regulator_summary_show_children); 6139 } 6140 6141 struct summary_lock_data { 6142 struct ww_acquire_ctx *ww_ctx; 6143 struct regulator_dev **new_contended_rdev; 6144 struct regulator_dev **old_contended_rdev; 6145 }; 6146 6147 static int regulator_summary_lock_one(struct device *dev, void *data) 6148 { 6149 struct regulator_dev *rdev = dev_to_rdev(dev); 6150 struct summary_lock_data *lock_data = data; 6151 int ret = 0; 6152 6153 if (rdev != *lock_data->old_contended_rdev) { 6154 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6155 6156 if (ret == -EDEADLK) 6157 *lock_data->new_contended_rdev = rdev; 6158 else 6159 WARN_ON_ONCE(ret); 6160 } else { 6161 *lock_data->old_contended_rdev = NULL; 6162 } 6163 6164 return ret; 6165 } 6166 6167 static int regulator_summary_unlock_one(struct device *dev, void *data) 6168 { 6169 struct regulator_dev *rdev = dev_to_rdev(dev); 6170 struct summary_lock_data *lock_data = data; 6171 6172 if (lock_data) { 6173 if (rdev == *lock_data->new_contended_rdev) 6174 return -EDEADLK; 6175 } 6176 6177 regulator_unlock(rdev); 6178 6179 return 0; 6180 } 6181 6182 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6183 struct regulator_dev **new_contended_rdev, 6184 struct regulator_dev **old_contended_rdev) 6185 { 6186 struct summary_lock_data lock_data; 6187 int ret; 6188 6189 lock_data.ww_ctx = ww_ctx; 6190 lock_data.new_contended_rdev = new_contended_rdev; 6191 lock_data.old_contended_rdev = old_contended_rdev; 6192 6193 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6194 regulator_summary_lock_one); 6195 if (ret) 6196 class_for_each_device(®ulator_class, NULL, &lock_data, 6197 regulator_summary_unlock_one); 6198 6199 return ret; 6200 } 6201 6202 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6203 { 6204 struct regulator_dev *new_contended_rdev = NULL; 6205 struct regulator_dev *old_contended_rdev = NULL; 6206 int err; 6207 6208 mutex_lock(®ulator_list_mutex); 6209 6210 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6211 6212 do { 6213 if (new_contended_rdev) { 6214 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6215 old_contended_rdev = new_contended_rdev; 6216 old_contended_rdev->ref_cnt++; 6217 old_contended_rdev->mutex_owner = current; 6218 } 6219 6220 err = regulator_summary_lock_all(ww_ctx, 6221 &new_contended_rdev, 6222 &old_contended_rdev); 6223 6224 if (old_contended_rdev) 6225 regulator_unlock(old_contended_rdev); 6226 6227 } while (err == -EDEADLK); 6228 6229 ww_acquire_done(ww_ctx); 6230 } 6231 6232 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6233 { 6234 class_for_each_device(®ulator_class, NULL, NULL, 6235 regulator_summary_unlock_one); 6236 ww_acquire_fini(ww_ctx); 6237 6238 mutex_unlock(®ulator_list_mutex); 6239 } 6240 6241 static int regulator_summary_show_roots(struct device *dev, void *data) 6242 { 6243 struct regulator_dev *rdev = dev_to_rdev(dev); 6244 struct seq_file *s = data; 6245 6246 if (!rdev->supply) 6247 regulator_summary_show_subtree(s, rdev, 0); 6248 6249 return 0; 6250 } 6251 6252 static int regulator_summary_show(struct seq_file *s, void *data) 6253 { 6254 struct ww_acquire_ctx ww_ctx; 6255 6256 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6257 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6258 6259 regulator_summary_lock(&ww_ctx); 6260 6261 class_for_each_device(®ulator_class, NULL, s, 6262 regulator_summary_show_roots); 6263 6264 regulator_summary_unlock(&ww_ctx); 6265 6266 return 0; 6267 } 6268 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6269 #endif /* CONFIG_DEBUG_FS */ 6270 6271 static int __init regulator_init(void) 6272 { 6273 int ret; 6274 6275 ret = class_register(®ulator_class); 6276 6277 debugfs_root = debugfs_create_dir("regulator", NULL); 6278 if (IS_ERR(debugfs_root)) 6279 pr_debug("regulator: Failed to create debugfs directory\n"); 6280 6281 #ifdef CONFIG_DEBUG_FS 6282 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6283 &supply_map_fops); 6284 6285 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6286 NULL, ®ulator_summary_fops); 6287 #endif 6288 regulator_dummy_init(); 6289 6290 regulator_coupler_register(&generic_regulator_coupler); 6291 6292 return ret; 6293 } 6294 6295 /* init early to allow our consumers to complete system booting */ 6296 core_initcall(regulator_init); 6297 6298 static int regulator_late_cleanup(struct device *dev, void *data) 6299 { 6300 struct regulator_dev *rdev = dev_to_rdev(dev); 6301 struct regulation_constraints *c = rdev->constraints; 6302 int ret; 6303 6304 if (c && c->always_on) 6305 return 0; 6306 6307 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6308 return 0; 6309 6310 regulator_lock(rdev); 6311 6312 if (rdev->use_count) 6313 goto unlock; 6314 6315 /* If reading the status failed, assume that it's off. */ 6316 if (_regulator_is_enabled(rdev) <= 0) 6317 goto unlock; 6318 6319 if (have_full_constraints()) { 6320 /* We log since this may kill the system if it goes 6321 * wrong. 6322 */ 6323 rdev_info(rdev, "disabling\n"); 6324 ret = _regulator_do_disable(rdev); 6325 if (ret != 0) 6326 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6327 } else { 6328 /* The intention is that in future we will 6329 * assume that full constraints are provided 6330 * so warn even if we aren't going to do 6331 * anything here. 6332 */ 6333 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6334 } 6335 6336 unlock: 6337 regulator_unlock(rdev); 6338 6339 return 0; 6340 } 6341 6342 static bool regulator_ignore_unused; 6343 static int __init regulator_ignore_unused_setup(char *__unused) 6344 { 6345 regulator_ignore_unused = true; 6346 return 1; 6347 } 6348 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6349 6350 static void regulator_init_complete_work_function(struct work_struct *work) 6351 { 6352 /* 6353 * Regulators may had failed to resolve their input supplies 6354 * when were registered, either because the input supply was 6355 * not registered yet or because its parent device was not 6356 * bound yet. So attempt to resolve the input supplies for 6357 * pending regulators before trying to disable unused ones. 6358 */ 6359 class_for_each_device(®ulator_class, NULL, NULL, 6360 regulator_register_resolve_supply); 6361 6362 /* 6363 * For debugging purposes, it may be useful to prevent unused 6364 * regulators from being disabled. 6365 */ 6366 if (regulator_ignore_unused) { 6367 pr_warn("regulator: Not disabling unused regulators\n"); 6368 return; 6369 } 6370 6371 /* If we have a full configuration then disable any regulators 6372 * we have permission to change the status for and which are 6373 * not in use or always_on. This is effectively the default 6374 * for DT and ACPI as they have full constraints. 6375 */ 6376 class_for_each_device(®ulator_class, NULL, NULL, 6377 regulator_late_cleanup); 6378 } 6379 6380 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6381 regulator_init_complete_work_function); 6382 6383 static int __init regulator_init_complete(void) 6384 { 6385 /* 6386 * Since DT doesn't provide an idiomatic mechanism for 6387 * enabling full constraints and since it's much more natural 6388 * with DT to provide them just assume that a DT enabled 6389 * system has full constraints. 6390 */ 6391 if (of_have_populated_dt()) 6392 has_full_constraints = true; 6393 6394 /* 6395 * We punt completion for an arbitrary amount of time since 6396 * systems like distros will load many drivers from userspace 6397 * so consumers might not always be ready yet, this is 6398 * particularly an issue with laptops where this might bounce 6399 * the display off then on. Ideally we'd get a notification 6400 * from userspace when this happens but we don't so just wait 6401 * a bit and hope we waited long enough. It'd be better if 6402 * we'd only do this on systems that need it, and a kernel 6403 * command line option might be useful. 6404 */ 6405 schedule_delayed_work(®ulator_init_complete_work, 6406 msecs_to_jiffies(30000)); 6407 6408 return 0; 6409 } 6410 late_initcall_sync(regulator_init_complete); 6411