xref: /linux/drivers/regulator/core.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 				     suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102 
103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113 
114 static bool have_full_constraints(void)
115 {
116 	return has_full_constraints || of_have_populated_dt();
117 }
118 
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 	if (!rdev->constraints) {
122 		rdev_err(rdev, "no constraints\n");
123 		return false;
124 	}
125 
126 	if (rdev->constraints->valid_ops_mask & ops)
127 		return true;
128 
129 	return false;
130 }
131 
132 /**
133  * regulator_lock_nested - lock a single regulator
134  * @rdev:		regulator source
135  * @ww_ctx:		w/w mutex acquire context
136  *
137  * This function can be called many times by one task on
138  * a single regulator and its mutex will be locked only
139  * once. If a task, which is calling this function is other
140  * than the one, which initially locked the mutex, it will
141  * wait on mutex.
142  *
143  * Return: 0 on success or a negative error number on failure.
144  */
145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 					struct ww_acquire_ctx *ww_ctx)
147 {
148 	bool lock = false;
149 	int ret = 0;
150 
151 	mutex_lock(&regulator_nesting_mutex);
152 
153 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 		if (rdev->mutex_owner == current)
155 			rdev->ref_cnt++;
156 		else
157 			lock = true;
158 
159 		if (lock) {
160 			mutex_unlock(&regulator_nesting_mutex);
161 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 			mutex_lock(&regulator_nesting_mutex);
163 		}
164 	} else {
165 		lock = true;
166 	}
167 
168 	if (lock && ret != -EDEADLK) {
169 		rdev->ref_cnt++;
170 		rdev->mutex_owner = current;
171 	}
172 
173 	mutex_unlock(&regulator_nesting_mutex);
174 
175 	return ret;
176 }
177 
178 /**
179  * regulator_lock - lock a single regulator
180  * @rdev:		regulator source
181  *
182  * This function can be called many times by one task on
183  * a single regulator and its mutex will be locked only
184  * once. If a task, which is calling this function is other
185  * than the one, which initially locked the mutex, it will
186  * wait on mutex.
187  */
188 static void regulator_lock(struct regulator_dev *rdev)
189 {
190 	regulator_lock_nested(rdev, NULL);
191 }
192 
193 /**
194  * regulator_unlock - unlock a single regulator
195  * @rdev:		regulator_source
196  *
197  * This function unlocks the mutex when the
198  * reference counter reaches 0.
199  */
200 static void regulator_unlock(struct regulator_dev *rdev)
201 {
202 	mutex_lock(&regulator_nesting_mutex);
203 
204 	if (--rdev->ref_cnt == 0) {
205 		rdev->mutex_owner = NULL;
206 		ww_mutex_unlock(&rdev->mutex);
207 	}
208 
209 	WARN_ON_ONCE(rdev->ref_cnt < 0);
210 
211 	mutex_unlock(&regulator_nesting_mutex);
212 }
213 
214 /**
215  * regulator_lock_two - lock two regulators
216  * @rdev1:		first regulator
217  * @rdev2:		second regulator
218  * @ww_ctx:		w/w mutex acquire context
219  *
220  * Locks both rdevs using the regulator_ww_class.
221  */
222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 			       struct regulator_dev *rdev2,
224 			       struct ww_acquire_ctx *ww_ctx)
225 {
226 	struct regulator_dev *held, *contended;
227 	int ret;
228 
229 	ww_acquire_init(ww_ctx, &regulator_ww_class);
230 
231 	/* Try to just grab both of them */
232 	ret = regulator_lock_nested(rdev1, ww_ctx);
233 	WARN_ON(ret);
234 	ret = regulator_lock_nested(rdev2, ww_ctx);
235 	if (ret != -EDEADLOCK) {
236 		WARN_ON(ret);
237 		goto exit;
238 	}
239 
240 	held = rdev1;
241 	contended = rdev2;
242 	while (true) {
243 		regulator_unlock(held);
244 
245 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 		contended->ref_cnt++;
247 		contended->mutex_owner = current;
248 		swap(held, contended);
249 		ret = regulator_lock_nested(contended, ww_ctx);
250 
251 		if (ret != -EDEADLOCK) {
252 			WARN_ON(ret);
253 			break;
254 		}
255 	}
256 
257 exit:
258 	ww_acquire_done(ww_ctx);
259 }
260 
261 /**
262  * regulator_unlock_two - unlock two regulators
263  * @rdev1:		first regulator
264  * @rdev2:		second regulator
265  * @ww_ctx:		w/w mutex acquire context
266  *
267  * The inverse of regulator_lock_two().
268  */
269 
270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 				 struct regulator_dev *rdev2,
272 				 struct ww_acquire_ctx *ww_ctx)
273 {
274 	regulator_unlock(rdev2);
275 	regulator_unlock(rdev1);
276 	ww_acquire_fini(ww_ctx);
277 }
278 
279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280 {
281 	struct regulator_dev *c_rdev;
282 	int i;
283 
284 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286 
287 		if (rdev->supply->rdev == c_rdev)
288 			return true;
289 	}
290 
291 	return false;
292 }
293 
294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 				       unsigned int n_coupled)
296 {
297 	struct regulator_dev *c_rdev, *supply_rdev;
298 	int i, supply_n_coupled;
299 
300 	for (i = n_coupled; i > 0; i--) {
301 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302 
303 		if (!c_rdev)
304 			continue;
305 
306 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 			supply_rdev = c_rdev->supply->rdev;
308 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309 
310 			regulator_unlock_recursive(supply_rdev,
311 						   supply_n_coupled);
312 		}
313 
314 		regulator_unlock(c_rdev);
315 	}
316 }
317 
318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 				    struct regulator_dev **new_contended_rdev,
320 				    struct regulator_dev **old_contended_rdev,
321 				    struct ww_acquire_ctx *ww_ctx)
322 {
323 	struct regulator_dev *c_rdev;
324 	int i, err;
325 
326 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328 
329 		if (!c_rdev)
330 			continue;
331 
332 		if (c_rdev != *old_contended_rdev) {
333 			err = regulator_lock_nested(c_rdev, ww_ctx);
334 			if (err) {
335 				if (err == -EDEADLK) {
336 					*new_contended_rdev = c_rdev;
337 					goto err_unlock;
338 				}
339 
340 				/* shouldn't happen */
341 				WARN_ON_ONCE(err != -EALREADY);
342 			}
343 		} else {
344 			*old_contended_rdev = NULL;
345 		}
346 
347 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 			err = regulator_lock_recursive(c_rdev->supply->rdev,
349 						       new_contended_rdev,
350 						       old_contended_rdev,
351 						       ww_ctx);
352 			if (err) {
353 				regulator_unlock(c_rdev);
354 				goto err_unlock;
355 			}
356 		}
357 	}
358 
359 	return 0;
360 
361 err_unlock:
362 	regulator_unlock_recursive(rdev, i);
363 
364 	return err;
365 }
366 
367 /**
368  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369  *				regulators
370  * @rdev:			regulator source
371  * @ww_ctx:			w/w mutex acquire context
372  *
373  * Unlock all regulators related with rdev by coupling or supplying.
374  */
375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 				       struct ww_acquire_ctx *ww_ctx)
377 {
378 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 	ww_acquire_fini(ww_ctx);
380 }
381 
382 /**
383  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384  * @rdev:			regulator source
385  * @ww_ctx:			w/w mutex acquire context
386  *
387  * This function as a wrapper on regulator_lock_recursive(), which locks
388  * all regulators related with rdev by coupling or supplying.
389  */
390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 				     struct ww_acquire_ctx *ww_ctx)
392 {
393 	struct regulator_dev *new_contended_rdev = NULL;
394 	struct regulator_dev *old_contended_rdev = NULL;
395 	int err;
396 
397 	mutex_lock(&regulator_list_mutex);
398 
399 	ww_acquire_init(ww_ctx, &regulator_ww_class);
400 
401 	do {
402 		if (new_contended_rdev) {
403 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 			old_contended_rdev = new_contended_rdev;
405 			old_contended_rdev->ref_cnt++;
406 			old_contended_rdev->mutex_owner = current;
407 		}
408 
409 		err = regulator_lock_recursive(rdev,
410 					       &new_contended_rdev,
411 					       &old_contended_rdev,
412 					       ww_ctx);
413 
414 		if (old_contended_rdev)
415 			regulator_unlock(old_contended_rdev);
416 
417 	} while (err == -EDEADLK);
418 
419 	ww_acquire_done(ww_ctx);
420 
421 	mutex_unlock(&regulator_list_mutex);
422 }
423 
424 /* Platform voltage constraint check */
425 int regulator_check_voltage(struct regulator_dev *rdev,
426 			    int *min_uV, int *max_uV)
427 {
428 	BUG_ON(*min_uV > *max_uV);
429 
430 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 		rdev_err(rdev, "voltage operation not allowed\n");
432 		return -EPERM;
433 	}
434 
435 	if (*max_uV > rdev->constraints->max_uV)
436 		*max_uV = rdev->constraints->max_uV;
437 	if (*min_uV < rdev->constraints->min_uV)
438 		*min_uV = rdev->constraints->min_uV;
439 
440 	if (*min_uV > *max_uV) {
441 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 			 *min_uV, *max_uV);
443 		return -EINVAL;
444 	}
445 
446 	return 0;
447 }
448 
449 /* return 0 if the state is valid */
450 static int regulator_check_states(suspend_state_t state)
451 {
452 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453 }
454 
455 /* Make sure we select a voltage that suits the needs of all
456  * regulator consumers
457  */
458 int regulator_check_consumers(struct regulator_dev *rdev,
459 			      int *min_uV, int *max_uV,
460 			      suspend_state_t state)
461 {
462 	struct regulator *regulator;
463 	struct regulator_voltage *voltage;
464 
465 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 		voltage = &regulator->voltage[state];
467 		/*
468 		 * Assume consumers that didn't say anything are OK
469 		 * with anything in the constraint range.
470 		 */
471 		if (!voltage->min_uV && !voltage->max_uV)
472 			continue;
473 
474 		if (*max_uV > voltage->max_uV)
475 			*max_uV = voltage->max_uV;
476 		if (*min_uV < voltage->min_uV)
477 			*min_uV = voltage->min_uV;
478 	}
479 
480 	if (*min_uV > *max_uV) {
481 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 			*min_uV, *max_uV);
483 		return -EINVAL;
484 	}
485 
486 	return 0;
487 }
488 
489 /* current constraint check */
490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 					int *min_uA, int *max_uA)
492 {
493 	BUG_ON(*min_uA > *max_uA);
494 
495 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 		rdev_err(rdev, "current operation not allowed\n");
497 		return -EPERM;
498 	}
499 
500 	if (*max_uA > rdev->constraints->max_uA &&
501 	    rdev->constraints->max_uA)
502 		*max_uA = rdev->constraints->max_uA;
503 	if (*min_uA < rdev->constraints->min_uA)
504 		*min_uA = rdev->constraints->min_uA;
505 
506 	if (*min_uA > *max_uA) {
507 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 			 *min_uA, *max_uA);
509 		return -EINVAL;
510 	}
511 
512 	return 0;
513 }
514 
515 /* operating mode constraint check */
516 static int regulator_mode_constrain(struct regulator_dev *rdev,
517 				    unsigned int *mode)
518 {
519 	switch (*mode) {
520 	case REGULATOR_MODE_FAST:
521 	case REGULATOR_MODE_NORMAL:
522 	case REGULATOR_MODE_IDLE:
523 	case REGULATOR_MODE_STANDBY:
524 		break;
525 	default:
526 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 		return -EINVAL;
528 	}
529 
530 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 		rdev_err(rdev, "mode operation not allowed\n");
532 		return -EPERM;
533 	}
534 
535 	/* The modes are bitmasks, the most power hungry modes having
536 	 * the lowest values. If the requested mode isn't supported
537 	 * try higher modes.
538 	 */
539 	while (*mode) {
540 		if (rdev->constraints->valid_modes_mask & *mode)
541 			return 0;
542 		*mode /= 2;
543 	}
544 
545 	return -EINVAL;
546 }
547 
548 static inline struct regulator_state *
549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550 {
551 	if (rdev->constraints == NULL)
552 		return NULL;
553 
554 	switch (state) {
555 	case PM_SUSPEND_STANDBY:
556 		return &rdev->constraints->state_standby;
557 	case PM_SUSPEND_MEM:
558 		return &rdev->constraints->state_mem;
559 	case PM_SUSPEND_MAX:
560 		return &rdev->constraints->state_disk;
561 	default:
562 		return NULL;
563 	}
564 }
565 
566 static const struct regulator_state *
567 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568 {
569 	const struct regulator_state *rstate;
570 
571 	rstate = regulator_get_suspend_state(rdev, state);
572 	if (rstate == NULL)
573 		return NULL;
574 
575 	/* If we have no suspend mode configuration don't set anything;
576 	 * only warn if the driver implements set_suspend_voltage or
577 	 * set_suspend_mode callback.
578 	 */
579 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 	    rstate->enabled != DISABLE_IN_SUSPEND) {
581 		if (rdev->desc->ops->set_suspend_voltage ||
582 		    rdev->desc->ops->set_suspend_mode)
583 			rdev_warn(rdev, "No configuration\n");
584 		return NULL;
585 	}
586 
587 	return rstate;
588 }
589 
590 static ssize_t microvolts_show(struct device *dev,
591 			       struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 	int uV;
595 
596 	regulator_lock(rdev);
597 	uV = regulator_get_voltage_rdev(rdev);
598 	regulator_unlock(rdev);
599 
600 	if (uV < 0)
601 		return uV;
602 	return sprintf(buf, "%d\n", uV);
603 }
604 static DEVICE_ATTR_RO(microvolts);
605 
606 static ssize_t microamps_show(struct device *dev,
607 			      struct device_attribute *attr, char *buf)
608 {
609 	struct regulator_dev *rdev = dev_get_drvdata(dev);
610 
611 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612 }
613 static DEVICE_ATTR_RO(microamps);
614 
615 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 			 char *buf)
617 {
618 	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 
620 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
621 }
622 static DEVICE_ATTR_RO(name);
623 
624 static const char *regulator_opmode_to_str(int mode)
625 {
626 	switch (mode) {
627 	case REGULATOR_MODE_FAST:
628 		return "fast";
629 	case REGULATOR_MODE_NORMAL:
630 		return "normal";
631 	case REGULATOR_MODE_IDLE:
632 		return "idle";
633 	case REGULATOR_MODE_STANDBY:
634 		return "standby";
635 	}
636 	return "unknown";
637 }
638 
639 static ssize_t regulator_print_opmode(char *buf, int mode)
640 {
641 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642 }
643 
644 static ssize_t opmode_show(struct device *dev,
645 			   struct device_attribute *attr, char *buf)
646 {
647 	struct regulator_dev *rdev = dev_get_drvdata(dev);
648 
649 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650 }
651 static DEVICE_ATTR_RO(opmode);
652 
653 static ssize_t regulator_print_state(char *buf, int state)
654 {
655 	if (state > 0)
656 		return sprintf(buf, "enabled\n");
657 	else if (state == 0)
658 		return sprintf(buf, "disabled\n");
659 	else
660 		return sprintf(buf, "unknown\n");
661 }
662 
663 static ssize_t state_show(struct device *dev,
664 			  struct device_attribute *attr, char *buf)
665 {
666 	struct regulator_dev *rdev = dev_get_drvdata(dev);
667 	ssize_t ret;
668 
669 	regulator_lock(rdev);
670 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 	regulator_unlock(rdev);
672 
673 	return ret;
674 }
675 static DEVICE_ATTR_RO(state);
676 
677 static ssize_t status_show(struct device *dev,
678 			   struct device_attribute *attr, char *buf)
679 {
680 	struct regulator_dev *rdev = dev_get_drvdata(dev);
681 	int status;
682 	char *label;
683 
684 	status = rdev->desc->ops->get_status(rdev);
685 	if (status < 0)
686 		return status;
687 
688 	switch (status) {
689 	case REGULATOR_STATUS_OFF:
690 		label = "off";
691 		break;
692 	case REGULATOR_STATUS_ON:
693 		label = "on";
694 		break;
695 	case REGULATOR_STATUS_ERROR:
696 		label = "error";
697 		break;
698 	case REGULATOR_STATUS_FAST:
699 		label = "fast";
700 		break;
701 	case REGULATOR_STATUS_NORMAL:
702 		label = "normal";
703 		break;
704 	case REGULATOR_STATUS_IDLE:
705 		label = "idle";
706 		break;
707 	case REGULATOR_STATUS_STANDBY:
708 		label = "standby";
709 		break;
710 	case REGULATOR_STATUS_BYPASS:
711 		label = "bypass";
712 		break;
713 	case REGULATOR_STATUS_UNDEFINED:
714 		label = "undefined";
715 		break;
716 	default:
717 		return -ERANGE;
718 	}
719 
720 	return sprintf(buf, "%s\n", label);
721 }
722 static DEVICE_ATTR_RO(status);
723 
724 static ssize_t min_microamps_show(struct device *dev,
725 				  struct device_attribute *attr, char *buf)
726 {
727 	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 
729 	if (!rdev->constraints)
730 		return sprintf(buf, "constraint not defined\n");
731 
732 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733 }
734 static DEVICE_ATTR_RO(min_microamps);
735 
736 static ssize_t max_microamps_show(struct device *dev,
737 				  struct device_attribute *attr, char *buf)
738 {
739 	struct regulator_dev *rdev = dev_get_drvdata(dev);
740 
741 	if (!rdev->constraints)
742 		return sprintf(buf, "constraint not defined\n");
743 
744 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745 }
746 static DEVICE_ATTR_RO(max_microamps);
747 
748 static ssize_t min_microvolts_show(struct device *dev,
749 				   struct device_attribute *attr, char *buf)
750 {
751 	struct regulator_dev *rdev = dev_get_drvdata(dev);
752 
753 	if (!rdev->constraints)
754 		return sprintf(buf, "constraint not defined\n");
755 
756 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757 }
758 static DEVICE_ATTR_RO(min_microvolts);
759 
760 static ssize_t max_microvolts_show(struct device *dev,
761 				   struct device_attribute *attr, char *buf)
762 {
763 	struct regulator_dev *rdev = dev_get_drvdata(dev);
764 
765 	if (!rdev->constraints)
766 		return sprintf(buf, "constraint not defined\n");
767 
768 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769 }
770 static DEVICE_ATTR_RO(max_microvolts);
771 
772 static ssize_t requested_microamps_show(struct device *dev,
773 					struct device_attribute *attr, char *buf)
774 {
775 	struct regulator_dev *rdev = dev_get_drvdata(dev);
776 	struct regulator *regulator;
777 	int uA = 0;
778 
779 	regulator_lock(rdev);
780 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 		if (regulator->enable_count)
782 			uA += regulator->uA_load;
783 	}
784 	regulator_unlock(rdev);
785 	return sprintf(buf, "%d\n", uA);
786 }
787 static DEVICE_ATTR_RO(requested_microamps);
788 
789 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 			      char *buf)
791 {
792 	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 	return sprintf(buf, "%d\n", rdev->use_count);
794 }
795 static DEVICE_ATTR_RO(num_users);
796 
797 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 			 char *buf)
799 {
800 	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 
802 	switch (rdev->desc->type) {
803 	case REGULATOR_VOLTAGE:
804 		return sprintf(buf, "voltage\n");
805 	case REGULATOR_CURRENT:
806 		return sprintf(buf, "current\n");
807 	}
808 	return sprintf(buf, "unknown\n");
809 }
810 static DEVICE_ATTR_RO(type);
811 
812 static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 					   struct device_attribute *attr, char *buf)
814 {
815 	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 
817 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818 }
819 static DEVICE_ATTR_RO(suspend_mem_microvolts);
820 
821 static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 					    struct device_attribute *attr, char *buf)
823 {
824 	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 
826 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827 }
828 static DEVICE_ATTR_RO(suspend_disk_microvolts);
829 
830 static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 					       struct device_attribute *attr, char *buf)
832 {
833 	struct regulator_dev *rdev = dev_get_drvdata(dev);
834 
835 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836 }
837 static DEVICE_ATTR_RO(suspend_standby_microvolts);
838 
839 static ssize_t suspend_mem_mode_show(struct device *dev,
840 				     struct device_attribute *attr, char *buf)
841 {
842 	struct regulator_dev *rdev = dev_get_drvdata(dev);
843 
844 	return regulator_print_opmode(buf,
845 		rdev->constraints->state_mem.mode);
846 }
847 static DEVICE_ATTR_RO(suspend_mem_mode);
848 
849 static ssize_t suspend_disk_mode_show(struct device *dev,
850 				      struct device_attribute *attr, char *buf)
851 {
852 	struct regulator_dev *rdev = dev_get_drvdata(dev);
853 
854 	return regulator_print_opmode(buf,
855 		rdev->constraints->state_disk.mode);
856 }
857 static DEVICE_ATTR_RO(suspend_disk_mode);
858 
859 static ssize_t suspend_standby_mode_show(struct device *dev,
860 					 struct device_attribute *attr, char *buf)
861 {
862 	struct regulator_dev *rdev = dev_get_drvdata(dev);
863 
864 	return regulator_print_opmode(buf,
865 		rdev->constraints->state_standby.mode);
866 }
867 static DEVICE_ATTR_RO(suspend_standby_mode);
868 
869 static ssize_t suspend_mem_state_show(struct device *dev,
870 				      struct device_attribute *attr, char *buf)
871 {
872 	struct regulator_dev *rdev = dev_get_drvdata(dev);
873 
874 	return regulator_print_state(buf,
875 			rdev->constraints->state_mem.enabled);
876 }
877 static DEVICE_ATTR_RO(suspend_mem_state);
878 
879 static ssize_t suspend_disk_state_show(struct device *dev,
880 				       struct device_attribute *attr, char *buf)
881 {
882 	struct regulator_dev *rdev = dev_get_drvdata(dev);
883 
884 	return regulator_print_state(buf,
885 			rdev->constraints->state_disk.enabled);
886 }
887 static DEVICE_ATTR_RO(suspend_disk_state);
888 
889 static ssize_t suspend_standby_state_show(struct device *dev,
890 					  struct device_attribute *attr, char *buf)
891 {
892 	struct regulator_dev *rdev = dev_get_drvdata(dev);
893 
894 	return regulator_print_state(buf,
895 			rdev->constraints->state_standby.enabled);
896 }
897 static DEVICE_ATTR_RO(suspend_standby_state);
898 
899 static ssize_t bypass_show(struct device *dev,
900 			   struct device_attribute *attr, char *buf)
901 {
902 	struct regulator_dev *rdev = dev_get_drvdata(dev);
903 	const char *report;
904 	bool bypass;
905 	int ret;
906 
907 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908 
909 	if (ret != 0)
910 		report = "unknown";
911 	else if (bypass)
912 		report = "enabled";
913 	else
914 		report = "disabled";
915 
916 	return sprintf(buf, "%s\n", report);
917 }
918 static DEVICE_ATTR_RO(bypass);
919 
920 #define REGULATOR_ERROR_ATTR(name, bit)							\
921 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
922 				   char *buf)						\
923 	{										\
924 		int ret;								\
925 		unsigned int flags;							\
926 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
927 		ret = _regulator_get_error_flags(rdev, &flags);				\
928 		if (ret)								\
929 			return ret;							\
930 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
931 	}										\
932 	static DEVICE_ATTR_RO(name)
933 
934 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
935 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
936 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
937 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
938 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
939 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
940 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
941 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
942 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
943 
944 /* Calculate the new optimum regulator operating mode based on the new total
945  * consumer load. All locks held by caller
946  */
947 static int drms_uA_update(struct regulator_dev *rdev)
948 {
949 	struct regulator *sibling;
950 	int current_uA = 0, output_uV, input_uV, err;
951 	unsigned int mode;
952 
953 	/*
954 	 * first check to see if we can set modes at all, otherwise just
955 	 * tell the consumer everything is OK.
956 	 */
957 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
958 		rdev_dbg(rdev, "DRMS operation not allowed\n");
959 		return 0;
960 	}
961 
962 	if (!rdev->desc->ops->get_optimum_mode &&
963 	    !rdev->desc->ops->set_load)
964 		return 0;
965 
966 	if (!rdev->desc->ops->set_mode &&
967 	    !rdev->desc->ops->set_load)
968 		return -EINVAL;
969 
970 	/* calc total requested load */
971 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
972 		if (sibling->enable_count)
973 			current_uA += sibling->uA_load;
974 	}
975 
976 	current_uA += rdev->constraints->system_load;
977 
978 	if (rdev->desc->ops->set_load) {
979 		/* set the optimum mode for our new total regulator load */
980 		err = rdev->desc->ops->set_load(rdev, current_uA);
981 		if (err < 0)
982 			rdev_err(rdev, "failed to set load %d: %pe\n",
983 				 current_uA, ERR_PTR(err));
984 	} else {
985 		/*
986 		 * Unfortunately in some cases the constraints->valid_ops has
987 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 		 * That's not really legit but we won't consider it a fatal
989 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
990 		 * wasn't set.
991 		 */
992 		if (!rdev->constraints->valid_modes_mask) {
993 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
994 			return 0;
995 		}
996 
997 		/* get output voltage */
998 		output_uV = regulator_get_voltage_rdev(rdev);
999 
1000 		/*
1001 		 * Don't return an error; if regulator driver cares about
1002 		 * output_uV then it's up to the driver to validate.
1003 		 */
1004 		if (output_uV <= 0)
1005 			rdev_dbg(rdev, "invalid output voltage found\n");
1006 
1007 		/* get input voltage */
1008 		input_uV = 0;
1009 		if (rdev->supply)
1010 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011 		if (input_uV <= 0)
1012 			input_uV = rdev->constraints->input_uV;
1013 
1014 		/*
1015 		 * Don't return an error; if regulator driver cares about
1016 		 * input_uV then it's up to the driver to validate.
1017 		 */
1018 		if (input_uV <= 0)
1019 			rdev_dbg(rdev, "invalid input voltage found\n");
1020 
1021 		/* now get the optimum mode for our new total regulator load */
1022 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023 							 output_uV, current_uA);
1024 
1025 		/* check the new mode is allowed */
1026 		err = regulator_mode_constrain(rdev, &mode);
1027 		if (err < 0) {
1028 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1030 			return err;
1031 		}
1032 
1033 		err = rdev->desc->ops->set_mode(rdev, mode);
1034 		if (err < 0)
1035 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036 				 mode, ERR_PTR(err));
1037 	}
1038 
1039 	return err;
1040 }
1041 
1042 static int __suspend_set_state(struct regulator_dev *rdev,
1043 			       const struct regulator_state *rstate)
1044 {
1045 	int ret = 0;
1046 
1047 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048 		rdev->desc->ops->set_suspend_enable)
1049 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1050 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051 		rdev->desc->ops->set_suspend_disable)
1052 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1053 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054 		ret = 0;
1055 
1056 	if (ret < 0) {
1057 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058 		return ret;
1059 	}
1060 
1061 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063 		if (ret < 0) {
1064 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065 			return ret;
1066 		}
1067 	}
1068 
1069 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071 		if (ret < 0) {
1072 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073 			return ret;
1074 		}
1075 	}
1076 
1077 	return ret;
1078 }
1079 
1080 static int suspend_set_initial_state(struct regulator_dev *rdev)
1081 {
1082 	const struct regulator_state *rstate;
1083 
1084 	rstate = regulator_get_suspend_state_check(rdev,
1085 			rdev->constraints->initial_state);
1086 	if (!rstate)
1087 		return 0;
1088 
1089 	return __suspend_set_state(rdev, rstate);
1090 }
1091 
1092 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093 static void print_constraints_debug(struct regulator_dev *rdev)
1094 {
1095 	struct regulation_constraints *constraints = rdev->constraints;
1096 	char buf[160] = "";
1097 	size_t len = sizeof(buf) - 1;
1098 	int count = 0;
1099 	int ret;
1100 
1101 	if (constraints->min_uV && constraints->max_uV) {
1102 		if (constraints->min_uV == constraints->max_uV)
1103 			count += scnprintf(buf + count, len - count, "%d mV ",
1104 					   constraints->min_uV / 1000);
1105 		else
1106 			count += scnprintf(buf + count, len - count,
1107 					   "%d <--> %d mV ",
1108 					   constraints->min_uV / 1000,
1109 					   constraints->max_uV / 1000);
1110 	}
1111 
1112 	if (!constraints->min_uV ||
1113 	    constraints->min_uV != constraints->max_uV) {
1114 		ret = regulator_get_voltage_rdev(rdev);
1115 		if (ret > 0)
1116 			count += scnprintf(buf + count, len - count,
1117 					   "at %d mV ", ret / 1000);
1118 	}
1119 
1120 	if (constraints->uV_offset)
1121 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1122 				   constraints->uV_offset / 1000);
1123 
1124 	if (constraints->min_uA && constraints->max_uA) {
1125 		if (constraints->min_uA == constraints->max_uA)
1126 			count += scnprintf(buf + count, len - count, "%d mA ",
1127 					   constraints->min_uA / 1000);
1128 		else
1129 			count += scnprintf(buf + count, len - count,
1130 					   "%d <--> %d mA ",
1131 					   constraints->min_uA / 1000,
1132 					   constraints->max_uA / 1000);
1133 	}
1134 
1135 	if (!constraints->min_uA ||
1136 	    constraints->min_uA != constraints->max_uA) {
1137 		ret = _regulator_get_current_limit(rdev);
1138 		if (ret > 0)
1139 			count += scnprintf(buf + count, len - count,
1140 					   "at %d mA ", ret / 1000);
1141 	}
1142 
1143 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144 		count += scnprintf(buf + count, len - count, "fast ");
1145 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146 		count += scnprintf(buf + count, len - count, "normal ");
1147 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148 		count += scnprintf(buf + count, len - count, "idle ");
1149 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150 		count += scnprintf(buf + count, len - count, "standby ");
1151 
1152 	if (!count)
1153 		count = scnprintf(buf, len, "no parameters");
1154 	else
1155 		--count;
1156 
1157 	count += scnprintf(buf + count, len - count, ", %s",
1158 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159 
1160 	rdev_dbg(rdev, "%s\n", buf);
1161 }
1162 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165 
1166 static void print_constraints(struct regulator_dev *rdev)
1167 {
1168 	struct regulation_constraints *constraints = rdev->constraints;
1169 
1170 	print_constraints_debug(rdev);
1171 
1172 	if ((constraints->min_uV != constraints->max_uV) &&
1173 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174 		rdev_warn(rdev,
1175 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176 }
1177 
1178 static int machine_constraints_voltage(struct regulator_dev *rdev,
1179 	struct regulation_constraints *constraints)
1180 {
1181 	const struct regulator_ops *ops = rdev->desc->ops;
1182 	int ret;
1183 
1184 	/* do we need to apply the constraint voltage */
1185 	if (rdev->constraints->apply_uV &&
1186 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187 		int target_min, target_max;
1188 		int current_uV = regulator_get_voltage_rdev(rdev);
1189 
1190 		if (current_uV == -ENOTRECOVERABLE) {
1191 			/* This regulator can't be read and must be initialized */
1192 			rdev_info(rdev, "Setting %d-%duV\n",
1193 				  rdev->constraints->min_uV,
1194 				  rdev->constraints->max_uV);
1195 			_regulator_do_set_voltage(rdev,
1196 						  rdev->constraints->min_uV,
1197 						  rdev->constraints->max_uV);
1198 			current_uV = regulator_get_voltage_rdev(rdev);
1199 		}
1200 
1201 		if (current_uV < 0) {
1202 			if (current_uV != -EPROBE_DEFER)
1203 				rdev_err(rdev,
1204 					 "failed to get the current voltage: %pe\n",
1205 					 ERR_PTR(current_uV));
1206 			return current_uV;
1207 		}
1208 
1209 		/*
1210 		 * If we're below the minimum voltage move up to the
1211 		 * minimum voltage, if we're above the maximum voltage
1212 		 * then move down to the maximum.
1213 		 */
1214 		target_min = current_uV;
1215 		target_max = current_uV;
1216 
1217 		if (current_uV < rdev->constraints->min_uV) {
1218 			target_min = rdev->constraints->min_uV;
1219 			target_max = rdev->constraints->min_uV;
1220 		}
1221 
1222 		if (current_uV > rdev->constraints->max_uV) {
1223 			target_min = rdev->constraints->max_uV;
1224 			target_max = rdev->constraints->max_uV;
1225 		}
1226 
1227 		if (target_min != current_uV || target_max != current_uV) {
1228 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229 				  current_uV, target_min, target_max);
1230 			ret = _regulator_do_set_voltage(
1231 				rdev, target_min, target_max);
1232 			if (ret < 0) {
1233 				rdev_err(rdev,
1234 					"failed to apply %d-%duV constraint: %pe\n",
1235 					target_min, target_max, ERR_PTR(ret));
1236 				return ret;
1237 			}
1238 		}
1239 	}
1240 
1241 	/* constrain machine-level voltage specs to fit
1242 	 * the actual range supported by this regulator.
1243 	 */
1244 	if (ops->list_voltage && rdev->desc->n_voltages) {
1245 		int	count = rdev->desc->n_voltages;
1246 		int	i;
1247 		int	min_uV = INT_MAX;
1248 		int	max_uV = INT_MIN;
1249 		int	cmin = constraints->min_uV;
1250 		int	cmax = constraints->max_uV;
1251 
1252 		/* it's safe to autoconfigure fixed-voltage supplies
1253 		 * and the constraints are used by list_voltage.
1254 		 */
1255 		if (count == 1 && !cmin) {
1256 			cmin = 1;
1257 			cmax = INT_MAX;
1258 			constraints->min_uV = cmin;
1259 			constraints->max_uV = cmax;
1260 		}
1261 
1262 		/* voltage constraints are optional */
1263 		if ((cmin == 0) && (cmax == 0))
1264 			return 0;
1265 
1266 		/* else require explicit machine-level constraints */
1267 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268 			rdev_err(rdev, "invalid voltage constraints\n");
1269 			return -EINVAL;
1270 		}
1271 
1272 		/* no need to loop voltages if range is continuous */
1273 		if (rdev->desc->continuous_voltage_range)
1274 			return 0;
1275 
1276 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 		for (i = 0; i < count; i++) {
1278 			int	value;
1279 
1280 			value = ops->list_voltage(rdev, i);
1281 			if (value <= 0)
1282 				continue;
1283 
1284 			/* maybe adjust [min_uV..max_uV] */
1285 			if (value >= cmin && value < min_uV)
1286 				min_uV = value;
1287 			if (value <= cmax && value > max_uV)
1288 				max_uV = value;
1289 		}
1290 
1291 		/* final: [min_uV..max_uV] valid iff constraints valid */
1292 		if (max_uV < min_uV) {
1293 			rdev_err(rdev,
1294 				 "unsupportable voltage constraints %u-%uuV\n",
1295 				 min_uV, max_uV);
1296 			return -EINVAL;
1297 		}
1298 
1299 		/* use regulator's subset of machine constraints */
1300 		if (constraints->min_uV < min_uV) {
1301 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302 				 constraints->min_uV, min_uV);
1303 			constraints->min_uV = min_uV;
1304 		}
1305 		if (constraints->max_uV > max_uV) {
1306 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307 				 constraints->max_uV, max_uV);
1308 			constraints->max_uV = max_uV;
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static int machine_constraints_current(struct regulator_dev *rdev,
1316 	struct regulation_constraints *constraints)
1317 {
1318 	const struct regulator_ops *ops = rdev->desc->ops;
1319 	int ret;
1320 
1321 	if (!constraints->min_uA && !constraints->max_uA)
1322 		return 0;
1323 
1324 	if (constraints->min_uA > constraints->max_uA) {
1325 		rdev_err(rdev, "Invalid current constraints\n");
1326 		return -EINVAL;
1327 	}
1328 
1329 	if (!ops->set_current_limit || !ops->get_current_limit) {
1330 		rdev_warn(rdev, "Operation of current configuration missing\n");
1331 		return 0;
1332 	}
1333 
1334 	/* Set regulator current in constraints range */
1335 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1336 			constraints->max_uA);
1337 	if (ret < 0) {
1338 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int _regulator_do_enable(struct regulator_dev *rdev);
1346 
1347 static int notif_set_limit(struct regulator_dev *rdev,
1348 			   int (*set)(struct regulator_dev *, int, int, bool),
1349 			   int limit, int severity)
1350 {
1351 	bool enable;
1352 
1353 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354 		enable = false;
1355 		limit = 0;
1356 	} else {
1357 		enable = true;
1358 	}
1359 
1360 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361 		limit = 0;
1362 
1363 	return set(rdev, limit, severity, enable);
1364 }
1365 
1366 static int handle_notify_limits(struct regulator_dev *rdev,
1367 			int (*set)(struct regulator_dev *, int, int, bool),
1368 			struct notification_limit *limits)
1369 {
1370 	int ret = 0;
1371 
1372 	if (!set)
1373 		return -EOPNOTSUPP;
1374 
1375 	if (limits->prot)
1376 		ret = notif_set_limit(rdev, set, limits->prot,
1377 				      REGULATOR_SEVERITY_PROT);
1378 	if (ret)
1379 		return ret;
1380 
1381 	if (limits->err)
1382 		ret = notif_set_limit(rdev, set, limits->err,
1383 				      REGULATOR_SEVERITY_ERR);
1384 	if (ret)
1385 		return ret;
1386 
1387 	if (limits->warn)
1388 		ret = notif_set_limit(rdev, set, limits->warn,
1389 				      REGULATOR_SEVERITY_WARN);
1390 
1391 	return ret;
1392 }
1393 /**
1394  * set_machine_constraints - sets regulator constraints
1395  * @rdev: regulator source
1396  *
1397  * Allows platform initialisation code to define and constrain
1398  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1399  * Constraints *must* be set by platform code in order for some
1400  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401  * set_mode.
1402  *
1403  * Return: 0 on success or a negative error number on failure.
1404  */
1405 static int set_machine_constraints(struct regulator_dev *rdev)
1406 {
1407 	int ret = 0;
1408 	const struct regulator_ops *ops = rdev->desc->ops;
1409 
1410 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1411 	if (ret != 0)
1412 		return ret;
1413 
1414 	ret = machine_constraints_current(rdev, rdev->constraints);
1415 	if (ret != 0)
1416 		return ret;
1417 
1418 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419 		ret = ops->set_input_current_limit(rdev,
1420 						   rdev->constraints->ilim_uA);
1421 		if (ret < 0) {
1422 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423 			return ret;
1424 		}
1425 	}
1426 
1427 	/* do we need to setup our suspend state */
1428 	if (rdev->constraints->initial_state) {
1429 		ret = suspend_set_initial_state(rdev);
1430 		if (ret < 0) {
1431 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432 			return ret;
1433 		}
1434 	}
1435 
1436 	if (rdev->constraints->initial_mode) {
1437 		if (!ops->set_mode) {
1438 			rdev_err(rdev, "no set_mode operation\n");
1439 			return -EINVAL;
1440 		}
1441 
1442 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443 		if (ret < 0) {
1444 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445 			return ret;
1446 		}
1447 	} else if (rdev->constraints->system_load) {
1448 		/*
1449 		 * We'll only apply the initial system load if an
1450 		 * initial mode wasn't specified.
1451 		 */
1452 		drms_uA_update(rdev);
1453 	}
1454 
1455 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456 		&& ops->set_ramp_delay) {
1457 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458 		if (ret < 0) {
1459 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460 			return ret;
1461 		}
1462 	}
1463 
1464 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1465 		ret = ops->set_pull_down(rdev);
1466 		if (ret < 0) {
1467 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468 			return ret;
1469 		}
1470 	}
1471 
1472 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1473 		ret = ops->set_soft_start(rdev);
1474 		if (ret < 0) {
1475 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476 			return ret;
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Existing logic does not warn if over_current_protection is given as
1482 	 * a constraint but driver does not support that. I think we should
1483 	 * warn about this type of issues as it is possible someone changes
1484 	 * PMIC on board to another type - and the another PMIC's driver does
1485 	 * not support setting protection. Board composer may happily believe
1486 	 * the DT limits are respected - especially if the new PMIC HW also
1487 	 * supports protection but the driver does not. I won't change the logic
1488 	 * without hearing more experienced opinion on this though.
1489 	 *
1490 	 * If warning is seen as a good idea then we can merge handling the
1491 	 * over-curret protection and detection and get rid of this special
1492 	 * handling.
1493 	 */
1494 	if (rdev->constraints->over_current_protection
1495 		&& ops->set_over_current_protection) {
1496 		int lim = rdev->constraints->over_curr_limits.prot;
1497 
1498 		ret = ops->set_over_current_protection(rdev, lim,
1499 						       REGULATOR_SEVERITY_PROT,
1500 						       true);
1501 		if (ret < 0) {
1502 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1503 				 ERR_PTR(ret));
1504 			return ret;
1505 		}
1506 	}
1507 
1508 	if (rdev->constraints->over_current_detection)
1509 		ret = handle_notify_limits(rdev,
1510 					   ops->set_over_current_protection,
1511 					   &rdev->constraints->over_curr_limits);
1512 	if (ret) {
1513 		if (ret != -EOPNOTSUPP) {
1514 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1515 				 ERR_PTR(ret));
1516 			return ret;
1517 		}
1518 		rdev_warn(rdev,
1519 			  "IC does not support requested over-current limits\n");
1520 	}
1521 
1522 	if (rdev->constraints->over_voltage_detection)
1523 		ret = handle_notify_limits(rdev,
1524 					   ops->set_over_voltage_protection,
1525 					   &rdev->constraints->over_voltage_limits);
1526 	if (ret) {
1527 		if (ret != -EOPNOTSUPP) {
1528 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529 				 ERR_PTR(ret));
1530 			return ret;
1531 		}
1532 		rdev_warn(rdev,
1533 			  "IC does not support requested over voltage limits\n");
1534 	}
1535 
1536 	if (rdev->constraints->under_voltage_detection)
1537 		ret = handle_notify_limits(rdev,
1538 					   ops->set_under_voltage_protection,
1539 					   &rdev->constraints->under_voltage_limits);
1540 	if (ret) {
1541 		if (ret != -EOPNOTSUPP) {
1542 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543 				 ERR_PTR(ret));
1544 			return ret;
1545 		}
1546 		rdev_warn(rdev,
1547 			  "IC does not support requested under voltage limits\n");
1548 	}
1549 
1550 	if (rdev->constraints->over_temp_detection)
1551 		ret = handle_notify_limits(rdev,
1552 					   ops->set_thermal_protection,
1553 					   &rdev->constraints->temp_limits);
1554 	if (ret) {
1555 		if (ret != -EOPNOTSUPP) {
1556 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1557 				 ERR_PTR(ret));
1558 			return ret;
1559 		}
1560 		rdev_warn(rdev,
1561 			  "IC does not support requested temperature limits\n");
1562 	}
1563 
1564 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565 		bool ad_state = (rdev->constraints->active_discharge ==
1566 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567 
1568 		ret = ops->set_active_discharge(rdev, ad_state);
1569 		if (ret < 0) {
1570 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571 			return ret;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * If there is no mechanism for controlling the regulator then
1577 	 * flag it as always_on so we don't end up duplicating checks
1578 	 * for this so much.  Note that we could control the state of
1579 	 * a supply to control the output on a regulator that has no
1580 	 * direct control.
1581 	 */
1582 	if (!rdev->ena_pin && !ops->enable) {
1583 		if (rdev->supply_name && !rdev->supply)
1584 			return -EPROBE_DEFER;
1585 
1586 		if (rdev->supply)
1587 			rdev->constraints->always_on =
1588 				rdev->supply->rdev->constraints->always_on;
1589 		else
1590 			rdev->constraints->always_on = true;
1591 	}
1592 
1593 	/* If the constraints say the regulator should be on at this point
1594 	 * and we have control then make sure it is enabled.
1595 	 */
1596 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597 		/* If we want to enable this regulator, make sure that we know
1598 		 * the supplying regulator.
1599 		 */
1600 		if (rdev->supply_name && !rdev->supply)
1601 			return -EPROBE_DEFER;
1602 
1603 		/* If supplying regulator has already been enabled,
1604 		 * it's not intended to have use_count increment
1605 		 * when rdev is only boot-on.
1606 		 */
1607 		if (rdev->supply &&
1608 		    (rdev->constraints->always_on ||
1609 		     !regulator_is_enabled(rdev->supply))) {
1610 			ret = regulator_enable(rdev->supply);
1611 			if (ret < 0) {
1612 				_regulator_put(rdev->supply);
1613 				rdev->supply = NULL;
1614 				return ret;
1615 			}
1616 		}
1617 
1618 		ret = _regulator_do_enable(rdev);
1619 		if (ret < 0 && ret != -EINVAL) {
1620 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621 			return ret;
1622 		}
1623 
1624 		if (rdev->constraints->always_on)
1625 			rdev->use_count++;
1626 	} else if (rdev->desc->off_on_delay) {
1627 		rdev->last_off = ktime_get();
1628 	}
1629 
1630 	print_constraints(rdev);
1631 	return 0;
1632 }
1633 
1634 /**
1635  * set_supply - set regulator supply regulator
1636  * @rdev: regulator (locked)
1637  * @supply_rdev: supply regulator (locked))
1638  *
1639  * Called by platform initialisation code to set the supply regulator for this
1640  * regulator. This ensures that a regulators supply will also be enabled by the
1641  * core if it's child is enabled.
1642  *
1643  * Return: 0 on success or a negative error number on failure.
1644  */
1645 static int set_supply(struct regulator_dev *rdev,
1646 		      struct regulator_dev *supply_rdev)
1647 {
1648 	int err;
1649 
1650 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651 
1652 	if (!try_module_get(supply_rdev->owner))
1653 		return -ENODEV;
1654 
1655 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656 	if (rdev->supply == NULL) {
1657 		module_put(supply_rdev->owner);
1658 		err = -ENOMEM;
1659 		return err;
1660 	}
1661 	supply_rdev->open_count++;
1662 
1663 	return 0;
1664 }
1665 
1666 /**
1667  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668  * @rdev:         regulator source
1669  * @consumer_dev_name: dev_name() string for device supply applies to
1670  * @supply:       symbolic name for supply
1671  *
1672  * Allows platform initialisation code to map physical regulator
1673  * sources to symbolic names for supplies for use by devices.  Devices
1674  * should use these symbolic names to request regulators, avoiding the
1675  * need to provide board-specific regulator names as platform data.
1676  *
1677  * Return: 0 on success or a negative error number on failure.
1678  */
1679 static int set_consumer_device_supply(struct regulator_dev *rdev,
1680 				      const char *consumer_dev_name,
1681 				      const char *supply)
1682 {
1683 	struct regulator_map *node, *new_node;
1684 	int has_dev;
1685 
1686 	if (supply == NULL)
1687 		return -EINVAL;
1688 
1689 	if (consumer_dev_name != NULL)
1690 		has_dev = 1;
1691 	else
1692 		has_dev = 0;
1693 
1694 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695 	if (new_node == NULL)
1696 		return -ENOMEM;
1697 
1698 	new_node->regulator = rdev;
1699 	new_node->supply = supply;
1700 
1701 	if (has_dev) {
1702 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703 		if (new_node->dev_name == NULL) {
1704 			kfree(new_node);
1705 			return -ENOMEM;
1706 		}
1707 	}
1708 
1709 	mutex_lock(&regulator_list_mutex);
1710 	list_for_each_entry(node, &regulator_map_list, list) {
1711 		if (node->dev_name && consumer_dev_name) {
1712 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713 				continue;
1714 		} else if (node->dev_name || consumer_dev_name) {
1715 			continue;
1716 		}
1717 
1718 		if (strcmp(node->supply, supply) != 0)
1719 			continue;
1720 
1721 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722 			 consumer_dev_name,
1723 			 dev_name(&node->regulator->dev),
1724 			 node->regulator->desc->name,
1725 			 supply,
1726 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1727 		goto fail;
1728 	}
1729 
1730 	list_add(&new_node->list, &regulator_map_list);
1731 	mutex_unlock(&regulator_list_mutex);
1732 
1733 	return 0;
1734 
1735 fail:
1736 	mutex_unlock(&regulator_list_mutex);
1737 	kfree(new_node->dev_name);
1738 	kfree(new_node);
1739 	return -EBUSY;
1740 }
1741 
1742 static void unset_regulator_supplies(struct regulator_dev *rdev)
1743 {
1744 	struct regulator_map *node, *n;
1745 
1746 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1747 		if (rdev == node->regulator) {
1748 			list_del(&node->list);
1749 			kfree(node->dev_name);
1750 			kfree(node);
1751 		}
1752 	}
1753 }
1754 
1755 #ifdef CONFIG_DEBUG_FS
1756 static ssize_t constraint_flags_read_file(struct file *file,
1757 					  char __user *user_buf,
1758 					  size_t count, loff_t *ppos)
1759 {
1760 	const struct regulator *regulator = file->private_data;
1761 	const struct regulation_constraints *c = regulator->rdev->constraints;
1762 	char *buf;
1763 	ssize_t ret;
1764 
1765 	if (!c)
1766 		return 0;
1767 
1768 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769 	if (!buf)
1770 		return -ENOMEM;
1771 
1772 	ret = snprintf(buf, PAGE_SIZE,
1773 			"always_on: %u\n"
1774 			"boot_on: %u\n"
1775 			"apply_uV: %u\n"
1776 			"ramp_disable: %u\n"
1777 			"soft_start: %u\n"
1778 			"pull_down: %u\n"
1779 			"over_current_protection: %u\n",
1780 			c->always_on,
1781 			c->boot_on,
1782 			c->apply_uV,
1783 			c->ramp_disable,
1784 			c->soft_start,
1785 			c->pull_down,
1786 			c->over_current_protection);
1787 
1788 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789 	kfree(buf);
1790 
1791 	return ret;
1792 }
1793 
1794 #endif
1795 
1796 static const struct file_operations constraint_flags_fops = {
1797 #ifdef CONFIG_DEBUG_FS
1798 	.open = simple_open,
1799 	.read = constraint_flags_read_file,
1800 	.llseek = default_llseek,
1801 #endif
1802 };
1803 
1804 #define REG_STR_SIZE	64
1805 
1806 static struct regulator *create_regulator(struct regulator_dev *rdev,
1807 					  struct device *dev,
1808 					  const char *supply_name)
1809 {
1810 	struct regulator *regulator;
1811 	int err = 0;
1812 
1813 	lockdep_assert_held_once(&rdev->mutex.base);
1814 
1815 	if (dev) {
1816 		char buf[REG_STR_SIZE];
1817 		int size;
1818 
1819 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820 				dev->kobj.name, supply_name);
1821 		if (size >= REG_STR_SIZE)
1822 			return NULL;
1823 
1824 		supply_name = kstrdup(buf, GFP_KERNEL);
1825 		if (supply_name == NULL)
1826 			return NULL;
1827 	} else {
1828 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829 		if (supply_name == NULL)
1830 			return NULL;
1831 	}
1832 
1833 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834 	if (regulator == NULL) {
1835 		kfree_const(supply_name);
1836 		return NULL;
1837 	}
1838 
1839 	regulator->rdev = rdev;
1840 	regulator->supply_name = supply_name;
1841 
1842 	list_add(&regulator->list, &rdev->consumer_list);
1843 
1844 	if (dev) {
1845 		regulator->dev = dev;
1846 
1847 		/* Add a link to the device sysfs entry */
1848 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849 					       supply_name);
1850 		if (err) {
1851 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852 				  dev->kobj.name, ERR_PTR(err));
1853 			/* non-fatal */
1854 		}
1855 	}
1856 
1857 	if (err != -EEXIST) {
1858 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859 		if (IS_ERR(regulator->debugfs)) {
1860 			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861 			regulator->debugfs = NULL;
1862 		}
1863 	}
1864 
1865 	if (regulator->debugfs) {
1866 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867 				   &regulator->uA_load);
1868 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1870 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1872 		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873 				    regulator, &constraint_flags_fops);
1874 	}
1875 
1876 	/*
1877 	 * Check now if the regulator is an always on regulator - if
1878 	 * it is then we don't need to do nearly so much work for
1879 	 * enable/disable calls.
1880 	 */
1881 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882 	    _regulator_is_enabled(rdev))
1883 		regulator->always_on = true;
1884 
1885 	return regulator;
1886 }
1887 
1888 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889 {
1890 	if (rdev->constraints && rdev->constraints->enable_time)
1891 		return rdev->constraints->enable_time;
1892 	if (rdev->desc->ops->enable_time)
1893 		return rdev->desc->ops->enable_time(rdev);
1894 	return rdev->desc->enable_time;
1895 }
1896 
1897 static struct regulator_supply_alias *regulator_find_supply_alias(
1898 		struct device *dev, const char *supply)
1899 {
1900 	struct regulator_supply_alias *map;
1901 
1902 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1903 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904 			return map;
1905 
1906 	return NULL;
1907 }
1908 
1909 static void regulator_supply_alias(struct device **dev, const char **supply)
1910 {
1911 	struct regulator_supply_alias *map;
1912 
1913 	map = regulator_find_supply_alias(*dev, *supply);
1914 	if (map) {
1915 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916 				*supply, map->alias_supply,
1917 				dev_name(map->alias_dev));
1918 		*dev = map->alias_dev;
1919 		*supply = map->alias_supply;
1920 	}
1921 }
1922 
1923 static int regulator_match(struct device *dev, const void *data)
1924 {
1925 	struct regulator_dev *r = dev_to_rdev(dev);
1926 
1927 	return strcmp(rdev_get_name(r), data) == 0;
1928 }
1929 
1930 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931 {
1932 	struct device *dev;
1933 
1934 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1935 
1936 	return dev ? dev_to_rdev(dev) : NULL;
1937 }
1938 
1939 /**
1940  * regulator_dev_lookup - lookup a regulator device.
1941  * @dev: device for regulator "consumer".
1942  * @supply: Supply name or regulator ID.
1943  *
1944  * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945  *
1946  * If successful, returns a struct regulator_dev that corresponds to the name
1947  * @supply and with the embedded struct device refcount incremented by one.
1948  * The refcount must be dropped by calling put_device().
1949  * On failure one of the following ERR_PTR() encoded values is returned:
1950  * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951  * in the future.
1952  */
1953 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954 						  const char *supply)
1955 {
1956 	struct regulator_dev *r = NULL;
1957 	struct regulator_map *map;
1958 	const char *devname = NULL;
1959 
1960 	regulator_supply_alias(&dev, &supply);
1961 
1962 	/* first do a dt based lookup */
1963 	if (dev_of_node(dev)) {
1964 		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965 		if (!IS_ERR(r))
1966 			return r;
1967 		if (PTR_ERR(r) == -EPROBE_DEFER)
1968 			return r;
1969 
1970 		if (PTR_ERR(r) == -ENODEV)
1971 			r = NULL;
1972 	}
1973 
1974 	/* if not found, try doing it non-dt way */
1975 	if (dev)
1976 		devname = dev_name(dev);
1977 
1978 	mutex_lock(&regulator_list_mutex);
1979 	list_for_each_entry(map, &regulator_map_list, list) {
1980 		/* If the mapping has a device set up it must match */
1981 		if (map->dev_name &&
1982 		    (!devname || strcmp(map->dev_name, devname)))
1983 			continue;
1984 
1985 		if (strcmp(map->supply, supply) == 0 &&
1986 		    get_device(&map->regulator->dev)) {
1987 			r = map->regulator;
1988 			break;
1989 		}
1990 	}
1991 	mutex_unlock(&regulator_list_mutex);
1992 
1993 	if (r)
1994 		return r;
1995 
1996 	r = regulator_lookup_by_name(supply);
1997 	if (r)
1998 		return r;
1999 
2000 	return ERR_PTR(-ENODEV);
2001 }
2002 
2003 static int regulator_resolve_supply(struct regulator_dev *rdev)
2004 {
2005 	struct regulator_dev *r;
2006 	struct device *dev = rdev->dev.parent;
2007 	struct ww_acquire_ctx ww_ctx;
2008 	int ret = 0;
2009 
2010 	/* No supply to resolve? */
2011 	if (!rdev->supply_name)
2012 		return 0;
2013 
2014 	/* Supply already resolved? (fast-path without locking contention) */
2015 	if (rdev->supply)
2016 		return 0;
2017 
2018 	r = regulator_dev_lookup(dev, rdev->supply_name);
2019 	if (IS_ERR(r)) {
2020 		ret = PTR_ERR(r);
2021 
2022 		/* Did the lookup explicitly defer for us? */
2023 		if (ret == -EPROBE_DEFER)
2024 			goto out;
2025 
2026 		if (have_full_constraints()) {
2027 			r = dummy_regulator_rdev;
2028 			get_device(&r->dev);
2029 		} else {
2030 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031 				rdev->supply_name, rdev->desc->name);
2032 			ret = -EPROBE_DEFER;
2033 			goto out;
2034 		}
2035 	}
2036 
2037 	if (r == rdev) {
2038 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039 			rdev->desc->name, rdev->supply_name);
2040 		if (!have_full_constraints()) {
2041 			ret = -EINVAL;
2042 			goto out;
2043 		}
2044 		r = dummy_regulator_rdev;
2045 		get_device(&r->dev);
2046 	}
2047 
2048 	/*
2049 	 * If the supply's parent device is not the same as the
2050 	 * regulator's parent device, then ensure the parent device
2051 	 * is bound before we resolve the supply, in case the parent
2052 	 * device get probe deferred and unregisters the supply.
2053 	 */
2054 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055 		if (!device_is_bound(r->dev.parent)) {
2056 			put_device(&r->dev);
2057 			ret = -EPROBE_DEFER;
2058 			goto out;
2059 		}
2060 	}
2061 
2062 	/* Recursively resolve the supply of the supply */
2063 	ret = regulator_resolve_supply(r);
2064 	if (ret < 0) {
2065 		put_device(&r->dev);
2066 		goto out;
2067 	}
2068 
2069 	/*
2070 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 	 * between rdev->supply null check and setting rdev->supply in
2072 	 * set_supply() from concurrent tasks.
2073 	 */
2074 	regulator_lock_two(rdev, r, &ww_ctx);
2075 
2076 	/* Supply just resolved by a concurrent task? */
2077 	if (rdev->supply) {
2078 		regulator_unlock_two(rdev, r, &ww_ctx);
2079 		put_device(&r->dev);
2080 		goto out;
2081 	}
2082 
2083 	ret = set_supply(rdev, r);
2084 	if (ret < 0) {
2085 		regulator_unlock_two(rdev, r, &ww_ctx);
2086 		put_device(&r->dev);
2087 		goto out;
2088 	}
2089 
2090 	regulator_unlock_two(rdev, r, &ww_ctx);
2091 
2092 	/*
2093 	 * In set_machine_constraints() we may have turned this regulator on
2094 	 * but we couldn't propagate to the supply if it hadn't been resolved
2095 	 * yet.  Do it now.
2096 	 */
2097 	if (rdev->use_count) {
2098 		ret = regulator_enable(rdev->supply);
2099 		if (ret < 0) {
2100 			_regulator_put(rdev->supply);
2101 			rdev->supply = NULL;
2102 			goto out;
2103 		}
2104 	}
2105 
2106 out:
2107 	return ret;
2108 }
2109 
2110 /* common pre-checks for regulator requests */
2111 int _regulator_get_common_check(struct device *dev, const char *id,
2112 				enum regulator_get_type get_type)
2113 {
2114 	if (get_type >= MAX_GET_TYPE) {
2115 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116 		return -EINVAL;
2117 	}
2118 
2119 	if (id == NULL) {
2120 		dev_err(dev, "regulator request with no identifier\n");
2121 		return -EINVAL;
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 /**
2128  * _regulator_get_common - Common code for regulator requests
2129  * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130  *       Its reference count is expected to have been incremented.
2131  * @dev: device used for dev_printk messages
2132  * @id: Supply name or regulator ID
2133  * @get_type: enum regulator_get_type value corresponding to type of request
2134  *
2135  * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136  *	    encoded error.
2137  *
2138  * This function should be chained with *regulator_dev_lookup() functions.
2139  */
2140 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141 					const char *id, enum regulator_get_type get_type)
2142 {
2143 	struct regulator *regulator;
2144 	struct device_link *link;
2145 	int ret;
2146 
2147 	if (IS_ERR(rdev)) {
2148 		ret = PTR_ERR(rdev);
2149 
2150 		/*
2151 		 * If regulator_dev_lookup() fails with error other
2152 		 * than -ENODEV our job here is done, we simply return it.
2153 		 */
2154 		if (ret != -ENODEV)
2155 			return ERR_PTR(ret);
2156 
2157 		if (!have_full_constraints()) {
2158 			dev_warn(dev,
2159 				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160 			return ERR_PTR(-ENODEV);
2161 		}
2162 
2163 		switch (get_type) {
2164 		case NORMAL_GET:
2165 			/*
2166 			 * Assume that a regulator is physically present and
2167 			 * enabled, even if it isn't hooked up, and just
2168 			 * provide a dummy.
2169 			 */
2170 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171 			rdev = dummy_regulator_rdev;
2172 			get_device(&rdev->dev);
2173 			break;
2174 
2175 		case EXCLUSIVE_GET:
2176 			dev_warn(dev,
2177 				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178 			fallthrough;
2179 
2180 		default:
2181 			return ERR_PTR(-ENODEV);
2182 		}
2183 	}
2184 
2185 	if (rdev->exclusive) {
2186 		regulator = ERR_PTR(-EPERM);
2187 		put_device(&rdev->dev);
2188 		return regulator;
2189 	}
2190 
2191 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192 		regulator = ERR_PTR(-EBUSY);
2193 		put_device(&rdev->dev);
2194 		return regulator;
2195 	}
2196 
2197 	mutex_lock(&regulator_list_mutex);
2198 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199 	mutex_unlock(&regulator_list_mutex);
2200 
2201 	if (ret != 0) {
2202 		regulator = ERR_PTR(-EPROBE_DEFER);
2203 		put_device(&rdev->dev);
2204 		return regulator;
2205 	}
2206 
2207 	ret = regulator_resolve_supply(rdev);
2208 	if (ret < 0) {
2209 		regulator = ERR_PTR(ret);
2210 		put_device(&rdev->dev);
2211 		return regulator;
2212 	}
2213 
2214 	if (!try_module_get(rdev->owner)) {
2215 		regulator = ERR_PTR(-EPROBE_DEFER);
2216 		put_device(&rdev->dev);
2217 		return regulator;
2218 	}
2219 
2220 	regulator_lock(rdev);
2221 	regulator = create_regulator(rdev, dev, id);
2222 	regulator_unlock(rdev);
2223 	if (regulator == NULL) {
2224 		regulator = ERR_PTR(-ENOMEM);
2225 		module_put(rdev->owner);
2226 		put_device(&rdev->dev);
2227 		return regulator;
2228 	}
2229 
2230 	rdev->open_count++;
2231 	if (get_type == EXCLUSIVE_GET) {
2232 		rdev->exclusive = 1;
2233 
2234 		ret = _regulator_is_enabled(rdev);
2235 		if (ret > 0) {
2236 			rdev->use_count = 1;
2237 			regulator->enable_count = 1;
2238 
2239 			/* Propagate the regulator state to its supply */
2240 			if (rdev->supply) {
2241 				ret = regulator_enable(rdev->supply);
2242 				if (ret < 0) {
2243 					destroy_regulator(regulator);
2244 					module_put(rdev->owner);
2245 					put_device(&rdev->dev);
2246 					return ERR_PTR(ret);
2247 				}
2248 			}
2249 		} else {
2250 			rdev->use_count = 0;
2251 			regulator->enable_count = 0;
2252 		}
2253 	}
2254 
2255 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256 	if (!IS_ERR_OR_NULL(link))
2257 		regulator->device_link = true;
2258 
2259 	return regulator;
2260 }
2261 
2262 /* Internal regulator request function */
2263 struct regulator *_regulator_get(struct device *dev, const char *id,
2264 				 enum regulator_get_type get_type)
2265 {
2266 	struct regulator_dev *rdev;
2267 	int ret;
2268 
2269 	ret = _regulator_get_common_check(dev, id, get_type);
2270 	if (ret)
2271 		return ERR_PTR(ret);
2272 
2273 	rdev = regulator_dev_lookup(dev, id);
2274 	return _regulator_get_common(rdev, dev, id, get_type);
2275 }
2276 
2277 /**
2278  * regulator_get - lookup and obtain a reference to a regulator.
2279  * @dev: device for regulator "consumer"
2280  * @id: Supply name or regulator ID.
2281  *
2282  * Use of supply names configured via set_consumer_device_supply() is
2283  * strongly encouraged.  It is recommended that the supply name used
2284  * should match the name used for the supply and/or the relevant
2285  * device pins in the datasheet.
2286  *
2287  * Return: Pointer to a &struct regulator corresponding to the regulator
2288  *	   producer, or an ERR_PTR() encoded negative error number.
2289  */
2290 struct regulator *regulator_get(struct device *dev, const char *id)
2291 {
2292 	return _regulator_get(dev, id, NORMAL_GET);
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_get);
2295 
2296 /**
2297  * regulator_get_exclusive - obtain exclusive access to a regulator.
2298  * @dev: device for regulator "consumer"
2299  * @id: Supply name or regulator ID.
2300  *
2301  * Other consumers will be unable to obtain this regulator while this
2302  * reference is held and the use count for the regulator will be
2303  * initialised to reflect the current state of the regulator.
2304  *
2305  * This is intended for use by consumers which cannot tolerate shared
2306  * use of the regulator such as those which need to force the
2307  * regulator off for correct operation of the hardware they are
2308  * controlling.
2309  *
2310  * Use of supply names configured via set_consumer_device_supply() is
2311  * strongly encouraged.  It is recommended that the supply name used
2312  * should match the name used for the supply and/or the relevant
2313  * device pins in the datasheet.
2314  *
2315  * Return: Pointer to a &struct regulator corresponding to the regulator
2316  *	   producer, or an ERR_PTR() encoded negative error number.
2317  */
2318 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319 {
2320 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323 
2324 /**
2325  * regulator_get_optional - obtain optional access to a regulator.
2326  * @dev: device for regulator "consumer"
2327  * @id: Supply name or regulator ID.
2328  *
2329  * This is intended for use by consumers for devices which can have
2330  * some supplies unconnected in normal use, such as some MMC devices.
2331  * It can allow the regulator core to provide stub supplies for other
2332  * supplies requested using normal regulator_get() calls without
2333  * disrupting the operation of drivers that can handle absent
2334  * supplies.
2335  *
2336  * Use of supply names configured via set_consumer_device_supply() is
2337  * strongly encouraged.  It is recommended that the supply name used
2338  * should match the name used for the supply and/or the relevant
2339  * device pins in the datasheet.
2340  *
2341  * Return: Pointer to a &struct regulator corresponding to the regulator
2342  *	   producer, or an ERR_PTR() encoded negative error number.
2343  */
2344 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345 {
2346 	return _regulator_get(dev, id, OPTIONAL_GET);
2347 }
2348 EXPORT_SYMBOL_GPL(regulator_get_optional);
2349 
2350 static void destroy_regulator(struct regulator *regulator)
2351 {
2352 	struct regulator_dev *rdev = regulator->rdev;
2353 
2354 	debugfs_remove_recursive(regulator->debugfs);
2355 
2356 	if (regulator->dev) {
2357 		if (regulator->device_link)
2358 			device_link_remove(regulator->dev, &rdev->dev);
2359 
2360 		/* remove any sysfs entries */
2361 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362 	}
2363 
2364 	regulator_lock(rdev);
2365 	list_del(&regulator->list);
2366 
2367 	rdev->open_count--;
2368 	rdev->exclusive = 0;
2369 	regulator_unlock(rdev);
2370 
2371 	kfree_const(regulator->supply_name);
2372 	kfree(regulator);
2373 }
2374 
2375 /* regulator_list_mutex lock held by regulator_put() */
2376 static void _regulator_put(struct regulator *regulator)
2377 {
2378 	struct regulator_dev *rdev;
2379 
2380 	if (IS_ERR_OR_NULL(regulator))
2381 		return;
2382 
2383 	lockdep_assert_held_once(&regulator_list_mutex);
2384 
2385 	/* Docs say you must disable before calling regulator_put() */
2386 	WARN_ON(regulator->enable_count);
2387 
2388 	rdev = regulator->rdev;
2389 
2390 	destroy_regulator(regulator);
2391 
2392 	module_put(rdev->owner);
2393 	put_device(&rdev->dev);
2394 }
2395 
2396 /**
2397  * regulator_put - "free" the regulator source
2398  * @regulator: regulator source
2399  *
2400  * Note: drivers must ensure that all regulator_enable calls made on this
2401  * regulator source are balanced by regulator_disable calls prior to calling
2402  * this function.
2403  */
2404 void regulator_put(struct regulator *regulator)
2405 {
2406 	mutex_lock(&regulator_list_mutex);
2407 	_regulator_put(regulator);
2408 	mutex_unlock(&regulator_list_mutex);
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_put);
2411 
2412 /**
2413  * regulator_register_supply_alias - Provide device alias for supply lookup
2414  *
2415  * @dev: device that will be given as the regulator "consumer"
2416  * @id: Supply name or regulator ID
2417  * @alias_dev: device that should be used to lookup the supply
2418  * @alias_id: Supply name or regulator ID that should be used to lookup the
2419  * supply
2420  *
2421  * All lookups for id on dev will instead be conducted for alias_id on
2422  * alias_dev.
2423  *
2424  * Return: 0 on success or a negative error number on failure.
2425  */
2426 int regulator_register_supply_alias(struct device *dev, const char *id,
2427 				    struct device *alias_dev,
2428 				    const char *alias_id)
2429 {
2430 	struct regulator_supply_alias *map;
2431 
2432 	map = regulator_find_supply_alias(dev, id);
2433 	if (map)
2434 		return -EEXIST;
2435 
2436 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437 	if (!map)
2438 		return -ENOMEM;
2439 
2440 	map->src_dev = dev;
2441 	map->src_supply = id;
2442 	map->alias_dev = alias_dev;
2443 	map->alias_supply = alias_id;
2444 
2445 	list_add(&map->list, &regulator_supply_alias_list);
2446 
2447 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2449 
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453 
2454 /**
2455  * regulator_unregister_supply_alias - Remove device alias
2456  *
2457  * @dev: device that will be given as the regulator "consumer"
2458  * @id: Supply name or regulator ID
2459  *
2460  * Remove a lookup alias if one exists for id on dev.
2461  */
2462 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463 {
2464 	struct regulator_supply_alias *map;
2465 
2466 	map = regulator_find_supply_alias(dev, id);
2467 	if (map) {
2468 		list_del(&map->list);
2469 		kfree(map);
2470 	}
2471 }
2472 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473 
2474 /**
2475  * regulator_bulk_register_supply_alias - register multiple aliases
2476  *
2477  * @dev: device that will be given as the regulator "consumer"
2478  * @id: List of supply names or regulator IDs
2479  * @alias_dev: device that should be used to lookup the supply
2480  * @alias_id: List of supply names or regulator IDs that should be used to
2481  * lookup the supply
2482  * @num_id: Number of aliases to register
2483  *
2484  * This helper function allows drivers to register several supply
2485  * aliases in one operation.  If any of the aliases cannot be
2486  * registered any aliases that were registered will be removed
2487  * before returning to the caller.
2488  *
2489  * Return: 0 on success or a negative error number on failure.
2490  */
2491 int regulator_bulk_register_supply_alias(struct device *dev,
2492 					 const char *const *id,
2493 					 struct device *alias_dev,
2494 					 const char *const *alias_id,
2495 					 int num_id)
2496 {
2497 	int i;
2498 	int ret;
2499 
2500 	for (i = 0; i < num_id; ++i) {
2501 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502 						      alias_id[i]);
2503 		if (ret < 0)
2504 			goto err;
2505 	}
2506 
2507 	return 0;
2508 
2509 err:
2510 	dev_err(dev,
2511 		"Failed to create supply alias %s,%s -> %s,%s\n",
2512 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513 
2514 	while (--i >= 0)
2515 		regulator_unregister_supply_alias(dev, id[i]);
2516 
2517 	return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520 
2521 /**
2522  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523  *
2524  * @dev: device that will be given as the regulator "consumer"
2525  * @id: List of supply names or regulator IDs
2526  * @num_id: Number of aliases to unregister
2527  *
2528  * This helper function allows drivers to unregister several supply
2529  * aliases in one operation.
2530  */
2531 void regulator_bulk_unregister_supply_alias(struct device *dev,
2532 					    const char *const *id,
2533 					    int num_id)
2534 {
2535 	int i;
2536 
2537 	for (i = 0; i < num_id; ++i)
2538 		regulator_unregister_supply_alias(dev, id[i]);
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541 
2542 
2543 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545 				const struct regulator_config *config)
2546 {
2547 	struct regulator_enable_gpio *pin, *new_pin;
2548 	struct gpio_desc *gpiod;
2549 
2550 	gpiod = config->ena_gpiod;
2551 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552 
2553 	mutex_lock(&regulator_list_mutex);
2554 
2555 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2556 		if (pin->gpiod == gpiod) {
2557 			rdev_dbg(rdev, "GPIO is already used\n");
2558 			goto update_ena_gpio_to_rdev;
2559 		}
2560 	}
2561 
2562 	if (new_pin == NULL) {
2563 		mutex_unlock(&regulator_list_mutex);
2564 		return -ENOMEM;
2565 	}
2566 
2567 	pin = new_pin;
2568 	new_pin = NULL;
2569 
2570 	pin->gpiod = gpiod;
2571 	list_add(&pin->list, &regulator_ena_gpio_list);
2572 
2573 update_ena_gpio_to_rdev:
2574 	pin->request_count++;
2575 	rdev->ena_pin = pin;
2576 
2577 	mutex_unlock(&regulator_list_mutex);
2578 	kfree(new_pin);
2579 
2580 	return 0;
2581 }
2582 
2583 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584 {
2585 	struct regulator_enable_gpio *pin, *n;
2586 
2587 	if (!rdev->ena_pin)
2588 		return;
2589 
2590 	/* Free the GPIO only in case of no use */
2591 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2592 		if (pin != rdev->ena_pin)
2593 			continue;
2594 
2595 		if (--pin->request_count)
2596 			break;
2597 
2598 		gpiod_put(pin->gpiod);
2599 		list_del(&pin->list);
2600 		kfree(pin);
2601 		break;
2602 	}
2603 
2604 	rdev->ena_pin = NULL;
2605 }
2606 
2607 /**
2608  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609  * @rdev: regulator_dev structure
2610  * @enable: enable GPIO at initial use?
2611  *
2612  * GPIO is enabled in case of initial use. (enable_count is 0)
2613  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614  *
2615  * Return: 0 on success or a negative error number on failure.
2616  */
2617 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618 {
2619 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2620 
2621 	if (!pin)
2622 		return -EINVAL;
2623 
2624 	if (enable) {
2625 		/* Enable GPIO at initial use */
2626 		if (pin->enable_count == 0)
2627 			gpiod_set_value_cansleep(pin->gpiod, 1);
2628 
2629 		pin->enable_count++;
2630 	} else {
2631 		if (pin->enable_count > 1) {
2632 			pin->enable_count--;
2633 			return 0;
2634 		}
2635 
2636 		/* Disable GPIO if not used */
2637 		if (pin->enable_count <= 1) {
2638 			gpiod_set_value_cansleep(pin->gpiod, 0);
2639 			pin->enable_count = 0;
2640 		}
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 /**
2647  * _regulator_check_status_enabled - check if regulator status can be
2648  *				     interpreted as "regulator is enabled"
2649  * @rdev: the regulator device to check
2650  *
2651  * Return:
2652  * * 1			- if status shows regulator is in enabled state
2653  * * 0			- if not enabled state
2654  * * Error Value	- as received from ops->get_status()
2655  */
2656 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657 {
2658 	int ret = rdev->desc->ops->get_status(rdev);
2659 
2660 	if (ret < 0) {
2661 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2662 		return ret;
2663 	}
2664 
2665 	switch (ret) {
2666 	case REGULATOR_STATUS_OFF:
2667 	case REGULATOR_STATUS_ERROR:
2668 	case REGULATOR_STATUS_UNDEFINED:
2669 		return 0;
2670 	default:
2671 		return 1;
2672 	}
2673 }
2674 
2675 static int _regulator_do_enable(struct regulator_dev *rdev)
2676 {
2677 	int ret, delay;
2678 
2679 	/* Query before enabling in case configuration dependent.  */
2680 	ret = _regulator_get_enable_time(rdev);
2681 	if (ret >= 0) {
2682 		delay = ret;
2683 	} else {
2684 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685 		delay = 0;
2686 	}
2687 
2688 	trace_regulator_enable(rdev_get_name(rdev));
2689 
2690 	if (rdev->desc->off_on_delay) {
2691 		/* if needed, keep a distance of off_on_delay from last time
2692 		 * this regulator was disabled.
2693 		 */
2694 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696 
2697 		if (remaining > 0)
2698 			fsleep(remaining);
2699 	}
2700 
2701 	if (rdev->ena_pin) {
2702 		if (!rdev->ena_gpio_state) {
2703 			ret = regulator_ena_gpio_ctrl(rdev, true);
2704 			if (ret < 0)
2705 				return ret;
2706 			rdev->ena_gpio_state = 1;
2707 		}
2708 	} else if (rdev->desc->ops->enable) {
2709 		ret = rdev->desc->ops->enable(rdev);
2710 		if (ret < 0)
2711 			return ret;
2712 	} else {
2713 		return -EINVAL;
2714 	}
2715 
2716 	/* Allow the regulator to ramp; it would be useful to extend
2717 	 * this for bulk operations so that the regulators can ramp
2718 	 * together.
2719 	 */
2720 	trace_regulator_enable_delay(rdev_get_name(rdev));
2721 
2722 	/* If poll_enabled_time is set, poll upto the delay calculated
2723 	 * above, delaying poll_enabled_time uS to check if the regulator
2724 	 * actually got enabled.
2725 	 * If the regulator isn't enabled after our delay helper has expired,
2726 	 * return -ETIMEDOUT.
2727 	 */
2728 	if (rdev->desc->poll_enabled_time) {
2729 		int time_remaining = delay;
2730 
2731 		while (time_remaining > 0) {
2732 			fsleep(rdev->desc->poll_enabled_time);
2733 
2734 			if (rdev->desc->ops->get_status) {
2735 				ret = _regulator_check_status_enabled(rdev);
2736 				if (ret < 0)
2737 					return ret;
2738 				else if (ret)
2739 					break;
2740 			} else if (rdev->desc->ops->is_enabled(rdev))
2741 				break;
2742 
2743 			time_remaining -= rdev->desc->poll_enabled_time;
2744 		}
2745 
2746 		if (time_remaining <= 0) {
2747 			rdev_err(rdev, "Enabled check timed out\n");
2748 			return -ETIMEDOUT;
2749 		}
2750 	} else {
2751 		fsleep(delay);
2752 	}
2753 
2754 	trace_regulator_enable_complete(rdev_get_name(rdev));
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  * _regulator_handle_consumer_enable - handle that a consumer enabled
2761  * @regulator: regulator source
2762  *
2763  * Some things on a regulator consumer (like the contribution towards total
2764  * load on the regulator) only have an effect when the consumer wants the
2765  * regulator enabled.  Explained in example with two consumers of the same
2766  * regulator:
2767  *   consumer A: set_load(100);       => total load = 0
2768  *   consumer A: regulator_enable();  => total load = 100
2769  *   consumer B: set_load(1000);      => total load = 100
2770  *   consumer B: regulator_enable();  => total load = 1100
2771  *   consumer A: regulator_disable(); => total_load = 1000
2772  *
2773  * This function (together with _regulator_handle_consumer_disable) is
2774  * responsible for keeping track of the refcount for a given regulator consumer
2775  * and applying / unapplying these things.
2776  *
2777  * Return: 0 on success or negative error number on failure.
2778  */
2779 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780 {
2781 	int ret;
2782 	struct regulator_dev *rdev = regulator->rdev;
2783 
2784 	lockdep_assert_held_once(&rdev->mutex.base);
2785 
2786 	regulator->enable_count++;
2787 	if (regulator->uA_load && regulator->enable_count == 1) {
2788 		ret = drms_uA_update(rdev);
2789 		if (ret)
2790 			regulator->enable_count--;
2791 		return ret;
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 /**
2798  * _regulator_handle_consumer_disable - handle that a consumer disabled
2799  * @regulator: regulator source
2800  *
2801  * The opposite of _regulator_handle_consumer_enable().
2802  *
2803  * Return: 0 on success or a negative error number on failure.
2804  */
2805 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806 {
2807 	struct regulator_dev *rdev = regulator->rdev;
2808 
2809 	lockdep_assert_held_once(&rdev->mutex.base);
2810 
2811 	if (!regulator->enable_count) {
2812 		rdev_err(rdev, "Underflow of regulator enable count\n");
2813 		return -EINVAL;
2814 	}
2815 
2816 	regulator->enable_count--;
2817 	if (regulator->uA_load && regulator->enable_count == 0)
2818 		return drms_uA_update(rdev);
2819 
2820 	return 0;
2821 }
2822 
2823 /* locks held by regulator_enable() */
2824 static int _regulator_enable(struct regulator *regulator)
2825 {
2826 	struct regulator_dev *rdev = regulator->rdev;
2827 	int ret;
2828 
2829 	lockdep_assert_held_once(&rdev->mutex.base);
2830 
2831 	if (rdev->use_count == 0 && rdev->supply) {
2832 		ret = _regulator_enable(rdev->supply);
2833 		if (ret < 0)
2834 			return ret;
2835 	}
2836 
2837 	/* balance only if there are regulators coupled */
2838 	if (rdev->coupling_desc.n_coupled > 1) {
2839 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 		if (ret < 0)
2841 			goto err_disable_supply;
2842 	}
2843 
2844 	ret = _regulator_handle_consumer_enable(regulator);
2845 	if (ret < 0)
2846 		goto err_disable_supply;
2847 
2848 	if (rdev->use_count == 0) {
2849 		/*
2850 		 * The regulator may already be enabled if it's not switchable
2851 		 * or was left on
2852 		 */
2853 		ret = _regulator_is_enabled(rdev);
2854 		if (ret == -EINVAL || ret == 0) {
2855 			if (!regulator_ops_is_valid(rdev,
2856 					REGULATOR_CHANGE_STATUS)) {
2857 				ret = -EPERM;
2858 				goto err_consumer_disable;
2859 			}
2860 
2861 			ret = _regulator_do_enable(rdev);
2862 			if (ret < 0)
2863 				goto err_consumer_disable;
2864 
2865 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866 					     NULL);
2867 		} else if (ret < 0) {
2868 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869 			goto err_consumer_disable;
2870 		}
2871 		/* Fallthrough on positive return values - already enabled */
2872 	}
2873 
2874 	if (regulator->enable_count == 1)
2875 		rdev->use_count++;
2876 
2877 	return 0;
2878 
2879 err_consumer_disable:
2880 	_regulator_handle_consumer_disable(regulator);
2881 
2882 err_disable_supply:
2883 	if (rdev->use_count == 0 && rdev->supply)
2884 		_regulator_disable(rdev->supply);
2885 
2886 	return ret;
2887 }
2888 
2889 /**
2890  * regulator_enable - enable regulator output
2891  * @regulator: regulator source
2892  *
2893  * Request that the regulator be enabled with the regulator output at
2894  * the predefined voltage or current value.  Calls to regulator_enable()
2895  * must be balanced with calls to regulator_disable().
2896  *
2897  * NOTE: the output value can be set by other drivers, boot loader or may be
2898  * hardwired in the regulator.
2899  *
2900  * Return: 0 on success or a negative error number on failure.
2901  */
2902 int regulator_enable(struct regulator *regulator)
2903 {
2904 	struct regulator_dev *rdev = regulator->rdev;
2905 	struct ww_acquire_ctx ww_ctx;
2906 	int ret;
2907 
2908 	regulator_lock_dependent(rdev, &ww_ctx);
2909 	ret = _regulator_enable(regulator);
2910 	regulator_unlock_dependent(rdev, &ww_ctx);
2911 
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL_GPL(regulator_enable);
2915 
2916 static int _regulator_do_disable(struct regulator_dev *rdev)
2917 {
2918 	int ret;
2919 
2920 	trace_regulator_disable(rdev_get_name(rdev));
2921 
2922 	if (rdev->ena_pin) {
2923 		if (rdev->ena_gpio_state) {
2924 			ret = regulator_ena_gpio_ctrl(rdev, false);
2925 			if (ret < 0)
2926 				return ret;
2927 			rdev->ena_gpio_state = 0;
2928 		}
2929 
2930 	} else if (rdev->desc->ops->disable) {
2931 		ret = rdev->desc->ops->disable(rdev);
2932 		if (ret != 0)
2933 			return ret;
2934 	}
2935 
2936 	if (rdev->desc->off_on_delay)
2937 		rdev->last_off = ktime_get_boottime();
2938 
2939 	trace_regulator_disable_complete(rdev_get_name(rdev));
2940 
2941 	return 0;
2942 }
2943 
2944 /* locks held by regulator_disable() */
2945 static int _regulator_disable(struct regulator *regulator)
2946 {
2947 	struct regulator_dev *rdev = regulator->rdev;
2948 	int ret = 0;
2949 
2950 	lockdep_assert_held_once(&rdev->mutex.base);
2951 
2952 	if (WARN(regulator->enable_count == 0,
2953 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954 		return -EIO;
2955 
2956 	if (regulator->enable_count == 1) {
2957 	/* disabling last enable_count from this regulator */
2958 		/* are we the last user and permitted to disable ? */
2959 		if (rdev->use_count == 1 &&
2960 		    (rdev->constraints && !rdev->constraints->always_on)) {
2961 
2962 			/* we are last user */
2963 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964 				ret = _notifier_call_chain(rdev,
2965 							   REGULATOR_EVENT_PRE_DISABLE,
2966 							   NULL);
2967 				if (ret & NOTIFY_STOP_MASK)
2968 					return -EINVAL;
2969 
2970 				ret = _regulator_do_disable(rdev);
2971 				if (ret < 0) {
2972 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973 					_notifier_call_chain(rdev,
2974 							REGULATOR_EVENT_ABORT_DISABLE,
2975 							NULL);
2976 					return ret;
2977 				}
2978 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979 						NULL);
2980 			}
2981 
2982 			rdev->use_count = 0;
2983 		} else if (rdev->use_count > 1) {
2984 			rdev->use_count--;
2985 		}
2986 	}
2987 
2988 	if (ret == 0)
2989 		ret = _regulator_handle_consumer_disable(regulator);
2990 
2991 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993 
2994 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995 		ret = _regulator_disable(rdev->supply);
2996 
2997 	return ret;
2998 }
2999 
3000 /**
3001  * regulator_disable - disable regulator output
3002  * @regulator: regulator source
3003  *
3004  * Disable the regulator output voltage or current.  Calls to
3005  * regulator_enable() must be balanced with calls to
3006  * regulator_disable().
3007  *
3008  * NOTE: this will only disable the regulator output if no other consumer
3009  * devices have it enabled, the regulator device supports disabling and
3010  * machine constraints permit this operation.
3011  *
3012  * Return: 0 on success or a negative error number on failure.
3013  */
3014 int regulator_disable(struct regulator *regulator)
3015 {
3016 	struct regulator_dev *rdev = regulator->rdev;
3017 	struct ww_acquire_ctx ww_ctx;
3018 	int ret;
3019 
3020 	regulator_lock_dependent(rdev, &ww_ctx);
3021 	ret = _regulator_disable(regulator);
3022 	regulator_unlock_dependent(rdev, &ww_ctx);
3023 
3024 	return ret;
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_disable);
3027 
3028 /* locks held by regulator_force_disable() */
3029 static int _regulator_force_disable(struct regulator_dev *rdev)
3030 {
3031 	int ret = 0;
3032 
3033 	lockdep_assert_held_once(&rdev->mutex.base);
3034 
3035 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3037 	if (ret & NOTIFY_STOP_MASK)
3038 		return -EINVAL;
3039 
3040 	ret = _regulator_do_disable(rdev);
3041 	if (ret < 0) {
3042 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045 		return ret;
3046 	}
3047 
3048 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049 			REGULATOR_EVENT_DISABLE, NULL);
3050 
3051 	return 0;
3052 }
3053 
3054 /**
3055  * regulator_force_disable - force disable regulator output
3056  * @regulator: regulator source
3057  *
3058  * Forcibly disable the regulator output voltage or current.
3059  * NOTE: this *will* disable the regulator output even if other consumer
3060  * devices have it enabled. This should be used for situations when device
3061  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062  *
3063  * Return: 0 on success or a negative error number on failure.
3064  */
3065 int regulator_force_disable(struct regulator *regulator)
3066 {
3067 	struct regulator_dev *rdev = regulator->rdev;
3068 	struct ww_acquire_ctx ww_ctx;
3069 	int ret;
3070 
3071 	regulator_lock_dependent(rdev, &ww_ctx);
3072 
3073 	ret = _regulator_force_disable(regulator->rdev);
3074 
3075 	if (rdev->coupling_desc.n_coupled > 1)
3076 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077 
3078 	if (regulator->uA_load) {
3079 		regulator->uA_load = 0;
3080 		ret = drms_uA_update(rdev);
3081 	}
3082 
3083 	if (rdev->use_count != 0 && rdev->supply)
3084 		_regulator_disable(rdev->supply);
3085 
3086 	regulator_unlock_dependent(rdev, &ww_ctx);
3087 
3088 	return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(regulator_force_disable);
3091 
3092 static void regulator_disable_work(struct work_struct *work)
3093 {
3094 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095 						  disable_work.work);
3096 	struct ww_acquire_ctx ww_ctx;
3097 	int count, i, ret;
3098 	struct regulator *regulator;
3099 	int total_count = 0;
3100 
3101 	regulator_lock_dependent(rdev, &ww_ctx);
3102 
3103 	/*
3104 	 * Workqueue functions queue the new work instance while the previous
3105 	 * work instance is being processed. Cancel the queued work instance
3106 	 * as the work instance under processing does the job of the queued
3107 	 * work instance.
3108 	 */
3109 	cancel_delayed_work(&rdev->disable_work);
3110 
3111 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112 		count = regulator->deferred_disables;
3113 
3114 		if (!count)
3115 			continue;
3116 
3117 		total_count += count;
3118 		regulator->deferred_disables = 0;
3119 
3120 		for (i = 0; i < count; i++) {
3121 			ret = _regulator_disable(regulator);
3122 			if (ret != 0)
3123 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3124 					 ERR_PTR(ret));
3125 		}
3126 	}
3127 	WARN_ON(!total_count);
3128 
3129 	if (rdev->coupling_desc.n_coupled > 1)
3130 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131 
3132 	regulator_unlock_dependent(rdev, &ww_ctx);
3133 }
3134 
3135 /**
3136  * regulator_disable_deferred - disable regulator output with delay
3137  * @regulator: regulator source
3138  * @ms: milliseconds until the regulator is disabled
3139  *
3140  * Execute regulator_disable() on the regulator after a delay.  This
3141  * is intended for use with devices that require some time to quiesce.
3142  *
3143  * NOTE: this will only disable the regulator output if no other consumer
3144  * devices have it enabled, the regulator device supports disabling and
3145  * machine constraints permit this operation.
3146  *
3147  * Return: 0 on success or a negative error number on failure.
3148  */
3149 int regulator_disable_deferred(struct regulator *regulator, int ms)
3150 {
3151 	struct regulator_dev *rdev = regulator->rdev;
3152 
3153 	if (!ms)
3154 		return regulator_disable(regulator);
3155 
3156 	regulator_lock(rdev);
3157 	regulator->deferred_disables++;
3158 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159 			 msecs_to_jiffies(ms));
3160 	regulator_unlock(rdev);
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165 
3166 static int _regulator_is_enabled(struct regulator_dev *rdev)
3167 {
3168 	/* A GPIO control always takes precedence */
3169 	if (rdev->ena_pin)
3170 		return rdev->ena_gpio_state;
3171 
3172 	/* If we don't know then assume that the regulator is always on */
3173 	if (!rdev->desc->ops->is_enabled)
3174 		return 1;
3175 
3176 	return rdev->desc->ops->is_enabled(rdev);
3177 }
3178 
3179 static int _regulator_list_voltage(struct regulator_dev *rdev,
3180 				   unsigned selector, int lock)
3181 {
3182 	const struct regulator_ops *ops = rdev->desc->ops;
3183 	int ret;
3184 
3185 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186 		return rdev->desc->fixed_uV;
3187 
3188 	if (ops->list_voltage) {
3189 		if (selector >= rdev->desc->n_voltages)
3190 			return -EINVAL;
3191 		if (selector < rdev->desc->linear_min_sel)
3192 			return 0;
3193 		if (lock)
3194 			regulator_lock(rdev);
3195 		ret = ops->list_voltage(rdev, selector);
3196 		if (lock)
3197 			regulator_unlock(rdev);
3198 	} else if (rdev->is_switch && rdev->supply) {
3199 		ret = _regulator_list_voltage(rdev->supply->rdev,
3200 					      selector, lock);
3201 	} else {
3202 		return -EINVAL;
3203 	}
3204 
3205 	if (ret > 0) {
3206 		if (ret < rdev->constraints->min_uV)
3207 			ret = 0;
3208 		else if (ret > rdev->constraints->max_uV)
3209 			ret = 0;
3210 	}
3211 
3212 	return ret;
3213 }
3214 
3215 /**
3216  * regulator_is_enabled - is the regulator output enabled
3217  * @regulator: regulator source
3218  *
3219  * Note that the device backing this regulator handle can have multiple
3220  * users, so it might be enabled even if regulator_enable() was never
3221  * called for this particular source.
3222  *
3223  * Return: Positive if the regulator driver backing the source/client
3224  *	   has requested that the device be enabled, zero if it hasn't,
3225  *	   else a negative error number.
3226  */
3227 int regulator_is_enabled(struct regulator *regulator)
3228 {
3229 	int ret;
3230 
3231 	if (regulator->always_on)
3232 		return 1;
3233 
3234 	regulator_lock(regulator->rdev);
3235 	ret = _regulator_is_enabled(regulator->rdev);
3236 	regulator_unlock(regulator->rdev);
3237 
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241 
3242 /**
3243  * regulator_count_voltages - count regulator_list_voltage() selectors
3244  * @regulator: regulator source
3245  *
3246  * Return: Number of selectors for @regulator, or negative error number.
3247  *
3248  * Selectors are numbered starting at zero, and typically correspond to
3249  * bitfields in hardware registers.
3250  */
3251 int regulator_count_voltages(struct regulator *regulator)
3252 {
3253 	struct regulator_dev	*rdev = regulator->rdev;
3254 
3255 	if (rdev->desc->n_voltages)
3256 		return rdev->desc->n_voltages;
3257 
3258 	if (!rdev->is_switch || !rdev->supply)
3259 		return -EINVAL;
3260 
3261 	return regulator_count_voltages(rdev->supply);
3262 }
3263 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264 
3265 /**
3266  * regulator_list_voltage - enumerate supported voltages
3267  * @regulator: regulator source
3268  * @selector: identify voltage to list
3269  * Context: can sleep
3270  *
3271  * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272  *	   0 if @selector can't be used on this system, or a negative error
3273  *	   number on failure.
3274  */
3275 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276 {
3277 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280 
3281 /**
3282  * regulator_get_regmap - get the regulator's register map
3283  * @regulator: regulator source
3284  *
3285  * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286  *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287  */
3288 struct regmap *regulator_get_regmap(struct regulator *regulator)
3289 {
3290 	struct regmap *map = regulator->rdev->regmap;
3291 
3292 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295 
3296 /**
3297  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298  * @regulator: regulator source
3299  * @vsel_reg: voltage selector register, output parameter
3300  * @vsel_mask: mask for voltage selector bitfield, output parameter
3301  *
3302  * Returns the hardware register offset and bitmask used for setting the
3303  * regulator voltage. This might be useful when configuring voltage-scaling
3304  * hardware or firmware that can make I2C requests behind the kernel's back,
3305  * for example.
3306  *
3307  * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308  *         voltage selectors.
3309  *
3310  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311  * and 0 is returned, otherwise a negative error number is returned.
3312  */
3313 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314 					 unsigned *vsel_reg,
3315 					 unsigned *vsel_mask)
3316 {
3317 	struct regulator_dev *rdev = regulator->rdev;
3318 	const struct regulator_ops *ops = rdev->desc->ops;
3319 
3320 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321 		return -EOPNOTSUPP;
3322 
3323 	*vsel_reg = rdev->desc->vsel_reg;
3324 	*vsel_mask = rdev->desc->vsel_mask;
3325 
3326 	return 0;
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329 
3330 /**
3331  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332  * @regulator: regulator source
3333  * @selector: identify voltage to list
3334  *
3335  * Converts the selector to a hardware-specific voltage selector that can be
3336  * directly written to the regulator registers. The address of the voltage
3337  * register can be determined by calling @regulator_get_hardware_vsel_register.
3338  *
3339  * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340  *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3341  *	   selectors.
3342  */
3343 int regulator_list_hardware_vsel(struct regulator *regulator,
3344 				 unsigned selector)
3345 {
3346 	struct regulator_dev *rdev = regulator->rdev;
3347 	const struct regulator_ops *ops = rdev->desc->ops;
3348 
3349 	if (selector >= rdev->desc->n_voltages)
3350 		return -EINVAL;
3351 	if (selector < rdev->desc->linear_min_sel)
3352 		return 0;
3353 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354 		return -EOPNOTSUPP;
3355 
3356 	return selector;
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359 
3360 /**
3361  * regulator_hardware_enable - access the HW for enable/disable regulator
3362  * @regulator: regulator source
3363  * @enable: true for enable, false for disable
3364  *
3365  * Request that the regulator be enabled/disabled with the regulator output at
3366  * the predefined voltage or current value.
3367  *
3368  * Return: 0 on success or a negative error number on failure.
3369  */
3370 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371 {
3372 	struct regulator_dev *rdev = regulator->rdev;
3373 	const struct regulator_ops *ops = rdev->desc->ops;
3374 	int ret = -EOPNOTSUPP;
3375 
3376 	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377 		return ret;
3378 
3379 	if (enable)
3380 		ret = ops->enable(rdev);
3381 	else
3382 		ret = ops->disable(rdev);
3383 
3384 	return ret;
3385 }
3386 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387 
3388 /**
3389  * regulator_get_linear_step - return the voltage step size between VSEL values
3390  * @regulator: regulator source
3391  *
3392  * Return: The voltage step size between VSEL values for linear regulators,
3393  *	   or 0 if the regulator isn't a linear regulator.
3394  */
3395 unsigned int regulator_get_linear_step(struct regulator *regulator)
3396 {
3397 	struct regulator_dev *rdev = regulator->rdev;
3398 
3399 	return rdev->desc->uV_step;
3400 }
3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402 
3403 /**
3404  * regulator_is_supported_voltage - check if a voltage range can be supported
3405  *
3406  * @regulator: Regulator to check.
3407  * @min_uV: Minimum required voltage in uV.
3408  * @max_uV: Maximum required voltage in uV.
3409  *
3410  * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411  *	   number if @regulator's voltage can't be changed and voltage readback
3412  *	   failed.
3413  */
3414 int regulator_is_supported_voltage(struct regulator *regulator,
3415 				   int min_uV, int max_uV)
3416 {
3417 	struct regulator_dev *rdev = regulator->rdev;
3418 	int i, voltages, ret;
3419 
3420 	/* If we can't change voltage check the current voltage */
3421 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 		ret = regulator_get_voltage(regulator);
3423 		if (ret >= 0)
3424 			return min_uV <= ret && ret <= max_uV;
3425 		else
3426 			return ret;
3427 	}
3428 
3429 	/* Any voltage within constrains range is fine? */
3430 	if (rdev->desc->continuous_voltage_range)
3431 		return min_uV >= rdev->constraints->min_uV &&
3432 				max_uV <= rdev->constraints->max_uV;
3433 
3434 	ret = regulator_count_voltages(regulator);
3435 	if (ret < 0)
3436 		return 0;
3437 	voltages = ret;
3438 
3439 	for (i = 0; i < voltages; i++) {
3440 		ret = regulator_list_voltage(regulator, i);
3441 
3442 		if (ret >= min_uV && ret <= max_uV)
3443 			return 1;
3444 	}
3445 
3446 	return 0;
3447 }
3448 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449 
3450 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 				 int max_uV)
3452 {
3453 	const struct regulator_desc *desc = rdev->desc;
3454 
3455 	if (desc->ops->map_voltage)
3456 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457 
3458 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460 
3461 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463 
3464 	if (desc->ops->list_voltage ==
3465 		regulator_list_voltage_pickable_linear_range)
3466 		return regulator_map_voltage_pickable_linear_range(rdev,
3467 							min_uV, max_uV);
3468 
3469 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470 }
3471 
3472 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 				       int min_uV, int max_uV,
3474 				       unsigned *selector)
3475 {
3476 	struct pre_voltage_change_data data;
3477 	int ret;
3478 
3479 	data.old_uV = regulator_get_voltage_rdev(rdev);
3480 	data.min_uV = min_uV;
3481 	data.max_uV = max_uV;
3482 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 				   &data);
3484 	if (ret & NOTIFY_STOP_MASK)
3485 		return -EINVAL;
3486 
3487 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 	if (ret >= 0)
3489 		return ret;
3490 
3491 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 			     (void *)data.old_uV);
3493 
3494 	return ret;
3495 }
3496 
3497 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 					   int uV, unsigned selector)
3499 {
3500 	struct pre_voltage_change_data data;
3501 	int ret;
3502 
3503 	data.old_uV = regulator_get_voltage_rdev(rdev);
3504 	data.min_uV = uV;
3505 	data.max_uV = uV;
3506 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 				   &data);
3508 	if (ret & NOTIFY_STOP_MASK)
3509 		return -EINVAL;
3510 
3511 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 	if (ret >= 0)
3513 		return ret;
3514 
3515 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 			     (void *)data.old_uV);
3517 
3518 	return ret;
3519 }
3520 
3521 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 					   int uV, int new_selector)
3523 {
3524 	const struct regulator_ops *ops = rdev->desc->ops;
3525 	int diff, old_sel, curr_sel, ret;
3526 
3527 	/* Stepping is only needed if the regulator is enabled. */
3528 	if (!_regulator_is_enabled(rdev))
3529 		goto final_set;
3530 
3531 	if (!ops->get_voltage_sel)
3532 		return -EINVAL;
3533 
3534 	old_sel = ops->get_voltage_sel(rdev);
3535 	if (old_sel < 0)
3536 		return old_sel;
3537 
3538 	diff = new_selector - old_sel;
3539 	if (diff == 0)
3540 		return 0; /* No change needed. */
3541 
3542 	if (diff > 0) {
3543 		/* Stepping up. */
3544 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 		     curr_sel < new_selector;
3546 		     curr_sel += rdev->desc->vsel_step) {
3547 			/*
3548 			 * Call the callback directly instead of using
3549 			 * _regulator_call_set_voltage_sel() as we don't
3550 			 * want to notify anyone yet. Same in the branch
3551 			 * below.
3552 			 */
3553 			ret = ops->set_voltage_sel(rdev, curr_sel);
3554 			if (ret)
3555 				goto try_revert;
3556 		}
3557 	} else {
3558 		/* Stepping down. */
3559 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 		     curr_sel > new_selector;
3561 		     curr_sel -= rdev->desc->vsel_step) {
3562 			ret = ops->set_voltage_sel(rdev, curr_sel);
3563 			if (ret)
3564 				goto try_revert;
3565 		}
3566 	}
3567 
3568 final_set:
3569 	/* The final selector will trigger the notifiers. */
3570 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571 
3572 try_revert:
3573 	/*
3574 	 * At least try to return to the previous voltage if setting a new
3575 	 * one failed.
3576 	 */
3577 	(void)ops->set_voltage_sel(rdev, old_sel);
3578 	return ret;
3579 }
3580 
3581 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 				       int old_uV, int new_uV)
3583 {
3584 	unsigned int ramp_delay = 0;
3585 
3586 	if (rdev->constraints->ramp_delay)
3587 		ramp_delay = rdev->constraints->ramp_delay;
3588 	else if (rdev->desc->ramp_delay)
3589 		ramp_delay = rdev->desc->ramp_delay;
3590 	else if (rdev->constraints->settling_time)
3591 		return rdev->constraints->settling_time;
3592 	else if (rdev->constraints->settling_time_up &&
3593 		 (new_uV > old_uV))
3594 		return rdev->constraints->settling_time_up;
3595 	else if (rdev->constraints->settling_time_down &&
3596 		 (new_uV < old_uV))
3597 		return rdev->constraints->settling_time_down;
3598 
3599 	if (ramp_delay == 0)
3600 		return 0;
3601 
3602 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603 }
3604 
3605 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 				     int min_uV, int max_uV)
3607 {
3608 	int ret;
3609 	int delay = 0;
3610 	int best_val = 0;
3611 	unsigned int selector;
3612 	int old_selector = -1;
3613 	const struct regulator_ops *ops = rdev->desc->ops;
3614 	int old_uV = regulator_get_voltage_rdev(rdev);
3615 
3616 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617 
3618 	min_uV += rdev->constraints->uV_offset;
3619 	max_uV += rdev->constraints->uV_offset;
3620 
3621 	/*
3622 	 * If we can't obtain the old selector there is not enough
3623 	 * info to call set_voltage_time_sel().
3624 	 */
3625 	if (_regulator_is_enabled(rdev) &&
3626 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 		old_selector = ops->get_voltage_sel(rdev);
3628 		if (old_selector < 0)
3629 			return old_selector;
3630 	}
3631 
3632 	if (ops->set_voltage) {
3633 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 						  &selector);
3635 
3636 		if (ret >= 0) {
3637 			if (ops->list_voltage)
3638 				best_val = ops->list_voltage(rdev,
3639 							     selector);
3640 			else
3641 				best_val = regulator_get_voltage_rdev(rdev);
3642 		}
3643 
3644 	} else if (ops->set_voltage_sel) {
3645 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 		if (ret >= 0) {
3647 			best_val = ops->list_voltage(rdev, ret);
3648 			if (min_uV <= best_val && max_uV >= best_val) {
3649 				selector = ret;
3650 				if (old_selector == selector)
3651 					ret = 0;
3652 				else if (rdev->desc->vsel_step)
3653 					ret = _regulator_set_voltage_sel_step(
3654 						rdev, best_val, selector);
3655 				else
3656 					ret = _regulator_call_set_voltage_sel(
3657 						rdev, best_val, selector);
3658 			} else {
3659 				ret = -EINVAL;
3660 			}
3661 		}
3662 	} else {
3663 		ret = -EINVAL;
3664 	}
3665 
3666 	if (ret)
3667 		goto out;
3668 
3669 	if (ops->set_voltage_time_sel) {
3670 		/*
3671 		 * Call set_voltage_time_sel if successfully obtained
3672 		 * old_selector
3673 		 */
3674 		if (old_selector >= 0 && old_selector != selector)
3675 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 							  selector);
3677 	} else {
3678 		if (old_uV != best_val) {
3679 			if (ops->set_voltage_time)
3680 				delay = ops->set_voltage_time(rdev, old_uV,
3681 							      best_val);
3682 			else
3683 				delay = _regulator_set_voltage_time(rdev,
3684 								    old_uV,
3685 								    best_val);
3686 		}
3687 	}
3688 
3689 	if (delay < 0) {
3690 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 		delay = 0;
3692 	}
3693 
3694 	/* Insert any necessary delays */
3695 	fsleep(delay);
3696 
3697 	if (best_val >= 0) {
3698 		unsigned long data = best_val;
3699 
3700 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 				     (void *)data);
3702 	}
3703 
3704 out:
3705 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706 
3707 	return ret;
3708 }
3709 
3710 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 				  int min_uV, int max_uV, suspend_state_t state)
3712 {
3713 	struct regulator_state *rstate;
3714 	int uV, sel;
3715 
3716 	rstate = regulator_get_suspend_state(rdev, state);
3717 	if (rstate == NULL)
3718 		return -EINVAL;
3719 
3720 	if (min_uV < rstate->min_uV)
3721 		min_uV = rstate->min_uV;
3722 	if (max_uV > rstate->max_uV)
3723 		max_uV = rstate->max_uV;
3724 
3725 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 	if (sel < 0)
3727 		return sel;
3728 
3729 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 	if (uV >= min_uV && uV <= max_uV)
3731 		rstate->uV = uV;
3732 
3733 	return 0;
3734 }
3735 
3736 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 					  int min_uV, int max_uV,
3738 					  suspend_state_t state)
3739 {
3740 	struct regulator_dev *rdev = regulator->rdev;
3741 	struct regulator_voltage *voltage = &regulator->voltage[state];
3742 	int ret = 0;
3743 	int old_min_uV, old_max_uV;
3744 	int current_uV;
3745 
3746 	/* If we're setting the same range as last time the change
3747 	 * should be a noop (some cpufreq implementations use the same
3748 	 * voltage for multiple frequencies, for example).
3749 	 */
3750 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 		goto out;
3752 
3753 	/* If we're trying to set a range that overlaps the current voltage,
3754 	 * return successfully even though the regulator does not support
3755 	 * changing the voltage.
3756 	 */
3757 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 		current_uV = regulator_get_voltage_rdev(rdev);
3759 		if (min_uV <= current_uV && current_uV <= max_uV) {
3760 			voltage->min_uV = min_uV;
3761 			voltage->max_uV = max_uV;
3762 			goto out;
3763 		}
3764 	}
3765 
3766 	/* sanity check */
3767 	if (!rdev->desc->ops->set_voltage &&
3768 	    !rdev->desc->ops->set_voltage_sel) {
3769 		ret = -EINVAL;
3770 		goto out;
3771 	}
3772 
3773 	/* constraints check */
3774 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 	if (ret < 0)
3776 		goto out;
3777 
3778 	/* restore original values in case of error */
3779 	old_min_uV = voltage->min_uV;
3780 	old_max_uV = voltage->max_uV;
3781 	voltage->min_uV = min_uV;
3782 	voltage->max_uV = max_uV;
3783 
3784 	/* for not coupled regulators this will just set the voltage */
3785 	ret = regulator_balance_voltage(rdev, state);
3786 	if (ret < 0) {
3787 		voltage->min_uV = old_min_uV;
3788 		voltage->max_uV = old_max_uV;
3789 	}
3790 
3791 out:
3792 	return ret;
3793 }
3794 
3795 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 			       int max_uV, suspend_state_t state)
3797 {
3798 	int best_supply_uV = 0;
3799 	int supply_change_uV = 0;
3800 	int ret;
3801 
3802 	if (rdev->supply &&
3803 	    regulator_ops_is_valid(rdev->supply->rdev,
3804 				   REGULATOR_CHANGE_VOLTAGE) &&
3805 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 					   rdev->desc->ops->get_voltage_sel))) {
3807 		int current_supply_uV;
3808 		int selector;
3809 
3810 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 		if (selector < 0) {
3812 			ret = selector;
3813 			goto out;
3814 		}
3815 
3816 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 		if (best_supply_uV < 0) {
3818 			ret = best_supply_uV;
3819 			goto out;
3820 		}
3821 
3822 		best_supply_uV += rdev->desc->min_dropout_uV;
3823 
3824 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 		if (current_supply_uV < 0) {
3826 			ret = current_supply_uV;
3827 			goto out;
3828 		}
3829 
3830 		supply_change_uV = best_supply_uV - current_supply_uV;
3831 	}
3832 
3833 	if (supply_change_uV > 0) {
3834 		ret = regulator_set_voltage_unlocked(rdev->supply,
3835 				best_supply_uV, INT_MAX, state);
3836 		if (ret) {
3837 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 				ERR_PTR(ret));
3839 			goto out;
3840 		}
3841 	}
3842 
3843 	if (state == PM_SUSPEND_ON)
3844 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 	else
3846 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 							max_uV, state);
3848 	if (ret < 0)
3849 		goto out;
3850 
3851 	if (supply_change_uV < 0) {
3852 		ret = regulator_set_voltage_unlocked(rdev->supply,
3853 				best_supply_uV, INT_MAX, state);
3854 		if (ret)
3855 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 				 ERR_PTR(ret));
3857 		/* No need to fail here */
3858 		ret = 0;
3859 	}
3860 
3861 out:
3862 	return ret;
3863 }
3864 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865 
3866 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 					int *current_uV, int *min_uV)
3868 {
3869 	struct regulation_constraints *constraints = rdev->constraints;
3870 
3871 	/* Limit voltage change only if necessary */
3872 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 		return 1;
3874 
3875 	if (*current_uV < 0) {
3876 		*current_uV = regulator_get_voltage_rdev(rdev);
3877 
3878 		if (*current_uV < 0)
3879 			return *current_uV;
3880 	}
3881 
3882 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 		return 1;
3884 
3885 	/* Clamp target voltage within the given step */
3886 	if (*current_uV < *min_uV)
3887 		*min_uV = min(*current_uV + constraints->max_uV_step,
3888 			      *min_uV);
3889 	else
3890 		*min_uV = max(*current_uV - constraints->max_uV_step,
3891 			      *min_uV);
3892 
3893 	return 0;
3894 }
3895 
3896 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 					 int *current_uV,
3898 					 int *min_uV, int *max_uV,
3899 					 suspend_state_t state,
3900 					 int n_coupled)
3901 {
3902 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 	struct regulation_constraints *constraints = rdev->constraints;
3905 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 	int max_current_uV = 0, min_current_uV = INT_MAX;
3907 	int highest_min_uV = 0, target_uV, possible_uV;
3908 	int i, ret, max_spread;
3909 	bool done;
3910 
3911 	*current_uV = -1;
3912 
3913 	/*
3914 	 * If there are no coupled regulators, simply set the voltage
3915 	 * demanded by consumers.
3916 	 */
3917 	if (n_coupled == 1) {
3918 		/*
3919 		 * If consumers don't provide any demands, set voltage
3920 		 * to min_uV
3921 		 */
3922 		desired_min_uV = constraints->min_uV;
3923 		desired_max_uV = constraints->max_uV;
3924 
3925 		ret = regulator_check_consumers(rdev,
3926 						&desired_min_uV,
3927 						&desired_max_uV, state);
3928 		if (ret < 0)
3929 			return ret;
3930 
3931 		done = true;
3932 
3933 		goto finish;
3934 	}
3935 
3936 	/* Find highest min desired voltage */
3937 	for (i = 0; i < n_coupled; i++) {
3938 		int tmp_min = 0;
3939 		int tmp_max = INT_MAX;
3940 
3941 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942 
3943 		ret = regulator_check_consumers(c_rdevs[i],
3944 						&tmp_min,
3945 						&tmp_max, state);
3946 		if (ret < 0)
3947 			return ret;
3948 
3949 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950 		if (ret < 0)
3951 			return ret;
3952 
3953 		highest_min_uV = max(highest_min_uV, tmp_min);
3954 
3955 		if (i == 0) {
3956 			desired_min_uV = tmp_min;
3957 			desired_max_uV = tmp_max;
3958 		}
3959 	}
3960 
3961 	max_spread = constraints->max_spread[0];
3962 
3963 	/*
3964 	 * Let target_uV be equal to the desired one if possible.
3965 	 * If not, set it to minimum voltage, allowed by other coupled
3966 	 * regulators.
3967 	 */
3968 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969 
3970 	/*
3971 	 * Find min and max voltages, which currently aren't violating
3972 	 * max_spread.
3973 	 */
3974 	for (i = 1; i < n_coupled; i++) {
3975 		int tmp_act;
3976 
3977 		if (!_regulator_is_enabled(c_rdevs[i]))
3978 			continue;
3979 
3980 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981 		if (tmp_act < 0)
3982 			return tmp_act;
3983 
3984 		min_current_uV = min(tmp_act, min_current_uV);
3985 		max_current_uV = max(tmp_act, max_current_uV);
3986 	}
3987 
3988 	/* There aren't any other regulators enabled */
3989 	if (max_current_uV == 0) {
3990 		possible_uV = target_uV;
3991 	} else {
3992 		/*
3993 		 * Correct target voltage, so as it currently isn't
3994 		 * violating max_spread
3995 		 */
3996 		possible_uV = max(target_uV, max_current_uV - max_spread);
3997 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3998 	}
3999 
4000 	if (possible_uV > desired_max_uV)
4001 		return -EINVAL;
4002 
4003 	done = (possible_uV == target_uV);
4004 	desired_min_uV = possible_uV;
4005 
4006 finish:
4007 	/* Apply max_uV_step constraint if necessary */
4008 	if (state == PM_SUSPEND_ON) {
4009 		ret = regulator_limit_voltage_step(rdev, current_uV,
4010 						   &desired_min_uV);
4011 		if (ret < 0)
4012 			return ret;
4013 
4014 		if (ret == 0)
4015 			done = false;
4016 	}
4017 
4018 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4019 	if (n_coupled > 1 && *current_uV == -1) {
4020 
4021 		if (_regulator_is_enabled(rdev)) {
4022 			ret = regulator_get_voltage_rdev(rdev);
4023 			if (ret < 0)
4024 				return ret;
4025 
4026 			*current_uV = ret;
4027 		} else {
4028 			*current_uV = desired_min_uV;
4029 		}
4030 	}
4031 
4032 	*min_uV = desired_min_uV;
4033 	*max_uV = desired_max_uV;
4034 
4035 	return done;
4036 }
4037 
4038 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039 				 suspend_state_t state, bool skip_coupled)
4040 {
4041 	struct regulator_dev **c_rdevs;
4042 	struct regulator_dev *best_rdev;
4043 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4044 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045 	unsigned int delta, best_delta;
4046 	unsigned long c_rdev_done = 0;
4047 	bool best_c_rdev_done;
4048 
4049 	c_rdevs = c_desc->coupled_rdevs;
4050 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051 
4052 	/*
4053 	 * Find the best possible voltage change on each loop. Leave the loop
4054 	 * if there isn't any possible change.
4055 	 */
4056 	do {
4057 		best_c_rdev_done = false;
4058 		best_delta = 0;
4059 		best_min_uV = 0;
4060 		best_max_uV = 0;
4061 		best_c_rdev = 0;
4062 		best_rdev = NULL;
4063 
4064 		/*
4065 		 * Find highest difference between optimal voltage
4066 		 * and current voltage.
4067 		 */
4068 		for (i = 0; i < n_coupled; i++) {
4069 			/*
4070 			 * optimal_uV is the best voltage that can be set for
4071 			 * i-th regulator at the moment without violating
4072 			 * max_spread constraint in order to balance
4073 			 * the coupled voltages.
4074 			 */
4075 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076 
4077 			if (test_bit(i, &c_rdev_done))
4078 				continue;
4079 
4080 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4081 							    &current_uV,
4082 							    &optimal_uV,
4083 							    &optimal_max_uV,
4084 							    state, n_coupled);
4085 			if (ret < 0)
4086 				goto out;
4087 
4088 			delta = abs(optimal_uV - current_uV);
4089 
4090 			if (delta && best_delta <= delta) {
4091 				best_c_rdev_done = ret;
4092 				best_delta = delta;
4093 				best_rdev = c_rdevs[i];
4094 				best_min_uV = optimal_uV;
4095 				best_max_uV = optimal_max_uV;
4096 				best_c_rdev = i;
4097 			}
4098 		}
4099 
4100 		/* Nothing to change, return successfully */
4101 		if (!best_rdev) {
4102 			ret = 0;
4103 			goto out;
4104 		}
4105 
4106 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107 						 best_max_uV, state);
4108 
4109 		if (ret < 0)
4110 			goto out;
4111 
4112 		if (best_c_rdev_done)
4113 			set_bit(best_c_rdev, &c_rdev_done);
4114 
4115 	} while (n_coupled > 1);
4116 
4117 out:
4118 	return ret;
4119 }
4120 
4121 static int regulator_balance_voltage(struct regulator_dev *rdev,
4122 				     suspend_state_t state)
4123 {
4124 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4125 	struct regulator_coupler *coupler = c_desc->coupler;
4126 	bool skip_coupled = false;
4127 
4128 	/*
4129 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 	 * other coupled regulators.
4131 	 */
4132 	if (state != PM_SUSPEND_ON)
4133 		skip_coupled = true;
4134 
4135 	if (c_desc->n_resolved < c_desc->n_coupled) {
4136 		rdev_err(rdev, "Not all coupled regulators registered\n");
4137 		return -EPERM;
4138 	}
4139 
4140 	/* Invoke custom balancer for customized couplers */
4141 	if (coupler && coupler->balance_voltage)
4142 		return coupler->balance_voltage(coupler, rdev, state);
4143 
4144 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145 }
4146 
4147 /**
4148  * regulator_set_voltage - set regulator output voltage
4149  * @regulator: regulator source
4150  * @min_uV: Minimum required voltage in uV
4151  * @max_uV: Maximum acceptable voltage in uV
4152  *
4153  * Sets a voltage regulator to the desired output voltage. This can be set
4154  * during any regulator state. IOW, regulator can be disabled or enabled.
4155  *
4156  * If the regulator is enabled then the voltage will change to the new value
4157  * immediately otherwise if the regulator is disabled the regulator will
4158  * output at the new voltage when enabled.
4159  *
4160  * NOTE: If the regulator is shared between several devices then the lowest
4161  * request voltage that meets the system constraints will be used.
4162  * Regulator system constraints must be set for this regulator before
4163  * calling this function otherwise this call will fail.
4164  *
4165  * Return: 0 on success or a negative error number on failure.
4166  */
4167 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168 {
4169 	struct ww_acquire_ctx ww_ctx;
4170 	int ret;
4171 
4172 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173 
4174 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175 					     PM_SUSPEND_ON);
4176 
4177 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178 
4179 	return ret;
4180 }
4181 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182 
4183 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184 					   suspend_state_t state, bool en)
4185 {
4186 	struct regulator_state *rstate;
4187 
4188 	rstate = regulator_get_suspend_state(rdev, state);
4189 	if (rstate == NULL)
4190 		return -EINVAL;
4191 
4192 	if (!rstate->changeable)
4193 		return -EPERM;
4194 
4195 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196 
4197 	return 0;
4198 }
4199 
4200 int regulator_suspend_enable(struct regulator_dev *rdev,
4201 				    suspend_state_t state)
4202 {
4203 	return regulator_suspend_toggle(rdev, state, true);
4204 }
4205 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206 
4207 int regulator_suspend_disable(struct regulator_dev *rdev,
4208 				     suspend_state_t state)
4209 {
4210 	struct regulator *regulator;
4211 	struct regulator_voltage *voltage;
4212 
4213 	/*
4214 	 * if any consumer wants this regulator device keeping on in
4215 	 * suspend states, don't set it as disabled.
4216 	 */
4217 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218 		voltage = &regulator->voltage[state];
4219 		if (voltage->min_uV || voltage->max_uV)
4220 			return 0;
4221 	}
4222 
4223 	return regulator_suspend_toggle(rdev, state, false);
4224 }
4225 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226 
4227 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228 					  int min_uV, int max_uV,
4229 					  suspend_state_t state)
4230 {
4231 	struct regulator_dev *rdev = regulator->rdev;
4232 	struct regulator_state *rstate;
4233 
4234 	rstate = regulator_get_suspend_state(rdev, state);
4235 	if (rstate == NULL)
4236 		return -EINVAL;
4237 
4238 	if (rstate->min_uV == rstate->max_uV) {
4239 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240 		return -EPERM;
4241 	}
4242 
4243 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244 }
4245 
4246 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247 				  int max_uV, suspend_state_t state)
4248 {
4249 	struct ww_acquire_ctx ww_ctx;
4250 	int ret;
4251 
4252 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254 		return -EINVAL;
4255 
4256 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257 
4258 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259 					     max_uV, state);
4260 
4261 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262 
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266 
4267 /**
4268  * regulator_set_voltage_time - get raise/fall time
4269  * @regulator: regulator source
4270  * @old_uV: starting voltage in microvolts
4271  * @new_uV: target voltage in microvolts
4272  *
4273  * Provided with the starting and ending voltage, this function attempts to
4274  * calculate the time in microseconds required to rise or fall to this new
4275  * voltage.
4276  *
4277  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278  */
4279 int regulator_set_voltage_time(struct regulator *regulator,
4280 			       int old_uV, int new_uV)
4281 {
4282 	struct regulator_dev *rdev = regulator->rdev;
4283 	const struct regulator_ops *ops = rdev->desc->ops;
4284 	int old_sel = -1;
4285 	int new_sel = -1;
4286 	int voltage;
4287 	int i;
4288 
4289 	if (ops->set_voltage_time)
4290 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 	else if (!ops->set_voltage_time_sel)
4292 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293 
4294 	/* Currently requires operations to do this */
4295 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 		return -EINVAL;
4297 
4298 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 		/* We only look for exact voltage matches here */
4300 		if (i < rdev->desc->linear_min_sel)
4301 			continue;
4302 
4303 		if (old_sel >= 0 && new_sel >= 0)
4304 			break;
4305 
4306 		voltage = regulator_list_voltage(regulator, i);
4307 		if (voltage < 0)
4308 			return -EINVAL;
4309 		if (voltage == 0)
4310 			continue;
4311 		if (voltage == old_uV)
4312 			old_sel = i;
4313 		if (voltage == new_uV)
4314 			new_sel = i;
4315 	}
4316 
4317 	if (old_sel < 0 || new_sel < 0)
4318 		return -EINVAL;
4319 
4320 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321 }
4322 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323 
4324 /**
4325  * regulator_set_voltage_time_sel - get raise/fall time
4326  * @rdev: regulator source device
4327  * @old_selector: selector for starting voltage
4328  * @new_selector: selector for target voltage
4329  *
4330  * Provided with the starting and target voltage selectors, this function
4331  * returns time in microseconds required to rise or fall to this new voltage
4332  *
4333  * Drivers providing ramp_delay in regulation_constraints can use this as their
4334  * set_voltage_time_sel() operation.
4335  *
4336  * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337  */
4338 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339 				   unsigned int old_selector,
4340 				   unsigned int new_selector)
4341 {
4342 	int old_volt, new_volt;
4343 
4344 	/* sanity check */
4345 	if (!rdev->desc->ops->list_voltage)
4346 		return -EINVAL;
4347 
4348 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350 
4351 	if (rdev->desc->ops->set_voltage_time)
4352 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353 							 new_volt);
4354 	else
4355 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356 }
4357 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358 
4359 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360 {
4361 	int ret;
4362 
4363 	regulator_lock(rdev);
4364 
4365 	if (!rdev->desc->ops->set_voltage &&
4366 	    !rdev->desc->ops->set_voltage_sel) {
4367 		ret = -EINVAL;
4368 		goto out;
4369 	}
4370 
4371 	/* balance only, if regulator is coupled */
4372 	if (rdev->coupling_desc.n_coupled > 1)
4373 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374 	else
4375 		ret = -EOPNOTSUPP;
4376 
4377 out:
4378 	regulator_unlock(rdev);
4379 	return ret;
4380 }
4381 
4382 /**
4383  * regulator_sync_voltage - re-apply last regulator output voltage
4384  * @regulator: regulator source
4385  *
4386  * Re-apply the last configured voltage.  This is intended to be used
4387  * where some external control source the consumer is cooperating with
4388  * has caused the configured voltage to change.
4389  *
4390  * Return: 0 on success or a negative error number on failure.
4391  */
4392 int regulator_sync_voltage(struct regulator *regulator)
4393 {
4394 	struct regulator_dev *rdev = regulator->rdev;
4395 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4396 	int ret, min_uV, max_uV;
4397 
4398 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399 		return 0;
4400 
4401 	regulator_lock(rdev);
4402 
4403 	if (!rdev->desc->ops->set_voltage &&
4404 	    !rdev->desc->ops->set_voltage_sel) {
4405 		ret = -EINVAL;
4406 		goto out;
4407 	}
4408 
4409 	/* This is only going to work if we've had a voltage configured. */
4410 	if (!voltage->min_uV && !voltage->max_uV) {
4411 		ret = -EINVAL;
4412 		goto out;
4413 	}
4414 
4415 	min_uV = voltage->min_uV;
4416 	max_uV = voltage->max_uV;
4417 
4418 	/* This should be a paranoia check... */
4419 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420 	if (ret < 0)
4421 		goto out;
4422 
4423 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424 	if (ret < 0)
4425 		goto out;
4426 
4427 	/* balance only, if regulator is coupled */
4428 	if (rdev->coupling_desc.n_coupled > 1)
4429 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430 	else
4431 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432 
4433 out:
4434 	regulator_unlock(rdev);
4435 	return ret;
4436 }
4437 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438 
4439 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440 {
4441 	int sel, ret;
4442 	bool bypassed;
4443 
4444 	if (rdev->desc->ops->get_bypass) {
4445 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446 		if (ret < 0)
4447 			return ret;
4448 		if (bypassed) {
4449 			/* if bypassed the regulator must have a supply */
4450 			if (!rdev->supply) {
4451 				rdev_err(rdev,
4452 					 "bypassed regulator has no supply!\n");
4453 				return -EPROBE_DEFER;
4454 			}
4455 
4456 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4457 		}
4458 	}
4459 
4460 	if (rdev->desc->ops->get_voltage_sel) {
4461 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4462 		if (sel < 0)
4463 			return sel;
4464 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4465 	} else if (rdev->desc->ops->get_voltage) {
4466 		ret = rdev->desc->ops->get_voltage(rdev);
4467 	} else if (rdev->desc->ops->list_voltage) {
4468 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4469 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470 		ret = rdev->desc->fixed_uV;
4471 	} else if (rdev->supply) {
4472 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473 	} else if (rdev->supply_name) {
4474 		return -EPROBE_DEFER;
4475 	} else {
4476 		return -EINVAL;
4477 	}
4478 
4479 	if (ret < 0)
4480 		return ret;
4481 	return ret - rdev->constraints->uV_offset;
4482 }
4483 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484 
4485 /**
4486  * regulator_get_voltage - get regulator output voltage
4487  * @regulator: regulator source
4488  *
4489  * Return: Current regulator voltage in uV, or a negative error number on failure.
4490  *
4491  * NOTE: If the regulator is disabled it will return the voltage value. This
4492  * function should not be used to determine regulator state.
4493  */
4494 int regulator_get_voltage(struct regulator *regulator)
4495 {
4496 	struct ww_acquire_ctx ww_ctx;
4497 	int ret;
4498 
4499 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500 	ret = regulator_get_voltage_rdev(regulator->rdev);
4501 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502 
4503 	return ret;
4504 }
4505 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506 
4507 /**
4508  * regulator_set_current_limit - set regulator output current limit
4509  * @regulator: regulator source
4510  * @min_uA: Minimum supported current in uA
4511  * @max_uA: Maximum supported current in uA
4512  *
4513  * Sets current sink to the desired output current. This can be set during
4514  * any regulator state. IOW, regulator can be disabled or enabled.
4515  *
4516  * If the regulator is enabled then the current will change to the new value
4517  * immediately otherwise if the regulator is disabled the regulator will
4518  * output at the new current when enabled.
4519  *
4520  * NOTE: Regulator system constraints must be set for this regulator before
4521  * calling this function otherwise this call will fail.
4522  *
4523  * Return: 0 on success or a negative error number on failure.
4524  */
4525 int regulator_set_current_limit(struct regulator *regulator,
4526 			       int min_uA, int max_uA)
4527 {
4528 	struct regulator_dev *rdev = regulator->rdev;
4529 	int ret;
4530 
4531 	regulator_lock(rdev);
4532 
4533 	/* sanity check */
4534 	if (!rdev->desc->ops->set_current_limit) {
4535 		ret = -EINVAL;
4536 		goto out;
4537 	}
4538 
4539 	/* constraints check */
4540 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 	if (ret < 0)
4542 		goto out;
4543 
4544 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545 out:
4546 	regulator_unlock(rdev);
4547 	return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550 
4551 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552 {
4553 	/* sanity check */
4554 	if (!rdev->desc->ops->get_current_limit)
4555 		return -EINVAL;
4556 
4557 	return rdev->desc->ops->get_current_limit(rdev);
4558 }
4559 
4560 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561 {
4562 	int ret;
4563 
4564 	regulator_lock(rdev);
4565 	ret = _regulator_get_current_limit_unlocked(rdev);
4566 	regulator_unlock(rdev);
4567 
4568 	return ret;
4569 }
4570 
4571 /**
4572  * regulator_get_current_limit - get regulator output current
4573  * @regulator: regulator source
4574  *
4575  * Return: Current supplied by the specified current sink in uA,
4576  *	   or a negative error number on failure.
4577  *
4578  * NOTE: If the regulator is disabled it will return the current value. This
4579  * function should not be used to determine regulator state.
4580  */
4581 int regulator_get_current_limit(struct regulator *regulator)
4582 {
4583 	return _regulator_get_current_limit(regulator->rdev);
4584 }
4585 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586 
4587 /**
4588  * regulator_set_mode - set regulator operating mode
4589  * @regulator: regulator source
4590  * @mode: operating mode - one of the REGULATOR_MODE constants
4591  *
4592  * Set regulator operating mode to increase regulator efficiency or improve
4593  * regulation performance.
4594  *
4595  * NOTE: Regulator system constraints must be set for this regulator before
4596  * calling this function otherwise this call will fail.
4597  *
4598  * Return: 0 on success or a negative error number on failure.
4599  */
4600 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601 {
4602 	struct regulator_dev *rdev = regulator->rdev;
4603 	int ret;
4604 	int regulator_curr_mode;
4605 
4606 	regulator_lock(rdev);
4607 
4608 	/* sanity check */
4609 	if (!rdev->desc->ops->set_mode) {
4610 		ret = -EINVAL;
4611 		goto out;
4612 	}
4613 
4614 	/* return if the same mode is requested */
4615 	if (rdev->desc->ops->get_mode) {
4616 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617 		if (regulator_curr_mode == mode) {
4618 			ret = 0;
4619 			goto out;
4620 		}
4621 	}
4622 
4623 	/* constraints check */
4624 	ret = regulator_mode_constrain(rdev, &mode);
4625 	if (ret < 0)
4626 		goto out;
4627 
4628 	ret = rdev->desc->ops->set_mode(rdev, mode);
4629 out:
4630 	regulator_unlock(rdev);
4631 	return ret;
4632 }
4633 EXPORT_SYMBOL_GPL(regulator_set_mode);
4634 
4635 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636 {
4637 	/* sanity check */
4638 	if (!rdev->desc->ops->get_mode)
4639 		return -EINVAL;
4640 
4641 	return rdev->desc->ops->get_mode(rdev);
4642 }
4643 
4644 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645 {
4646 	int ret;
4647 
4648 	regulator_lock(rdev);
4649 	ret = _regulator_get_mode_unlocked(rdev);
4650 	regulator_unlock(rdev);
4651 
4652 	return ret;
4653 }
4654 
4655 /**
4656  * regulator_get_mode - get regulator operating mode
4657  * @regulator: regulator source
4658  *
4659  * Get the current regulator operating mode.
4660  *
4661  * Return: Current operating mode as %REGULATOR_MODE_* values,
4662  *	   or a negative error number on failure.
4663  */
4664 unsigned int regulator_get_mode(struct regulator *regulator)
4665 {
4666 	return _regulator_get_mode(regulator->rdev);
4667 }
4668 EXPORT_SYMBOL_GPL(regulator_get_mode);
4669 
4670 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671 {
4672 	int ret = 0;
4673 
4674 	if (rdev->use_cached_err) {
4675 		spin_lock(&rdev->err_lock);
4676 		ret = rdev->cached_err;
4677 		spin_unlock(&rdev->err_lock);
4678 	}
4679 	return ret;
4680 }
4681 
4682 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683 					unsigned int *flags)
4684 {
4685 	int cached_flags, ret = 0;
4686 
4687 	regulator_lock(rdev);
4688 
4689 	cached_flags = rdev_get_cached_err_flags(rdev);
4690 
4691 	if (rdev->desc->ops->get_error_flags)
4692 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693 	else if (!rdev->use_cached_err)
4694 		ret = -EINVAL;
4695 
4696 	*flags |= cached_flags;
4697 
4698 	regulator_unlock(rdev);
4699 
4700 	return ret;
4701 }
4702 
4703 /**
4704  * regulator_get_error_flags - get regulator error information
4705  * @regulator: regulator source
4706  * @flags: pointer to store error flags
4707  *
4708  * Get the current regulator error information.
4709  *
4710  * Return: 0 on success or a negative error number on failure.
4711  */
4712 int regulator_get_error_flags(struct regulator *regulator,
4713 				unsigned int *flags)
4714 {
4715 	return _regulator_get_error_flags(regulator->rdev, flags);
4716 }
4717 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718 
4719 /**
4720  * regulator_set_load - set regulator load
4721  * @regulator: regulator source
4722  * @uA_load: load current
4723  *
4724  * Notifies the regulator core of a new device load. This is then used by
4725  * DRMS (if enabled by constraints) to set the most efficient regulator
4726  * operating mode for the new regulator loading.
4727  *
4728  * Consumer devices notify their supply regulator of the maximum power
4729  * they will require (can be taken from device datasheet in the power
4730  * consumption tables) when they change operational status and hence power
4731  * state. Examples of operational state changes that can affect power
4732  * consumption are :-
4733  *
4734  *    o Device is opened / closed.
4735  *    o Device I/O is about to begin or has just finished.
4736  *    o Device is idling in between work.
4737  *
4738  * This information is also exported via sysfs to userspace.
4739  *
4740  * DRMS will sum the total requested load on the regulator and change
4741  * to the most efficient operating mode if platform constraints allow.
4742  *
4743  * NOTE: when a regulator consumer requests to have a regulator
4744  * disabled then any load that consumer requested no longer counts
4745  * toward the total requested load.  If the regulator is re-enabled
4746  * then the previously requested load will start counting again.
4747  *
4748  * If a regulator is an always-on regulator then an individual consumer's
4749  * load will still be removed if that consumer is fully disabled.
4750  *
4751  * Return: 0 on success or a negative error number on failure.
4752  */
4753 int regulator_set_load(struct regulator *regulator, int uA_load)
4754 {
4755 	struct regulator_dev *rdev = regulator->rdev;
4756 	int old_uA_load;
4757 	int ret = 0;
4758 
4759 	regulator_lock(rdev);
4760 	old_uA_load = regulator->uA_load;
4761 	regulator->uA_load = uA_load;
4762 	if (regulator->enable_count && old_uA_load != uA_load) {
4763 		ret = drms_uA_update(rdev);
4764 		if (ret < 0)
4765 			regulator->uA_load = old_uA_load;
4766 	}
4767 	regulator_unlock(rdev);
4768 
4769 	return ret;
4770 }
4771 EXPORT_SYMBOL_GPL(regulator_set_load);
4772 
4773 /**
4774  * regulator_allow_bypass - allow the regulator to go into bypass mode
4775  *
4776  * @regulator: Regulator to configure
4777  * @enable: enable or disable bypass mode
4778  *
4779  * Allow the regulator to go into bypass mode if all other consumers
4780  * for the regulator also enable bypass mode and the machine
4781  * constraints allow this.  Bypass mode means that the regulator is
4782  * simply passing the input directly to the output with no regulation.
4783  *
4784  * Return: 0 on success or if changing bypass is not possible, or
4785  *	   a negative error number on failure.
4786  */
4787 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788 {
4789 	struct regulator_dev *rdev = regulator->rdev;
4790 	const char *name = rdev_get_name(rdev);
4791 	int ret = 0;
4792 
4793 	if (!rdev->desc->ops->set_bypass)
4794 		return 0;
4795 
4796 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 		return 0;
4798 
4799 	regulator_lock(rdev);
4800 
4801 	if (enable && !regulator->bypass) {
4802 		rdev->bypass_count++;
4803 
4804 		if (rdev->bypass_count == rdev->open_count) {
4805 			trace_regulator_bypass_enable(name);
4806 
4807 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 			if (ret != 0)
4809 				rdev->bypass_count--;
4810 			else
4811 				trace_regulator_bypass_enable_complete(name);
4812 		}
4813 
4814 	} else if (!enable && regulator->bypass) {
4815 		rdev->bypass_count--;
4816 
4817 		if (rdev->bypass_count != rdev->open_count) {
4818 			trace_regulator_bypass_disable(name);
4819 
4820 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 			if (ret != 0)
4822 				rdev->bypass_count++;
4823 			else
4824 				trace_regulator_bypass_disable_complete(name);
4825 		}
4826 	}
4827 
4828 	if (ret == 0)
4829 		regulator->bypass = enable;
4830 
4831 	regulator_unlock(rdev);
4832 
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836 
4837 /**
4838  * regulator_register_notifier - register regulator event notifier
4839  * @regulator: regulator source
4840  * @nb: notifier block
4841  *
4842  * Register notifier block to receive regulator events.
4843  *
4844  * Return: 0 on success or a negative error number on failure.
4845  */
4846 int regulator_register_notifier(struct regulator *regulator,
4847 			      struct notifier_block *nb)
4848 {
4849 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4850 						nb);
4851 }
4852 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853 
4854 /**
4855  * regulator_unregister_notifier - unregister regulator event notifier
4856  * @regulator: regulator source
4857  * @nb: notifier block
4858  *
4859  * Unregister regulator event notifier block.
4860  *
4861  * Return: 0 on success or a negative error number on failure.
4862  */
4863 int regulator_unregister_notifier(struct regulator *regulator,
4864 				struct notifier_block *nb)
4865 {
4866 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4867 						  nb);
4868 }
4869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870 
4871 /* notify regulator consumers and downstream regulator consumers.
4872  * Note mutex must be held by caller.
4873  */
4874 static int _notifier_call_chain(struct regulator_dev *rdev,
4875 				  unsigned long event, void *data)
4876 {
4877 	/* call rdev chain first */
4878 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4879 
4880 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881 		struct device *parent = rdev->dev.parent;
4882 		const char *rname = rdev_get_name(rdev);
4883 		char name[32];
4884 
4885 		/* Avoid duplicate debugfs directory names */
4886 		if (parent && rname == rdev->desc->name) {
4887 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888 				 rname);
4889 			rname = name;
4890 		}
4891 		reg_generate_netlink_event(rname, event);
4892 	}
4893 
4894 	return ret;
4895 }
4896 
4897 int _regulator_bulk_get(struct device *dev, int num_consumers,
4898 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899 {
4900 	int i;
4901 	int ret;
4902 
4903 	for (i = 0; i < num_consumers; i++)
4904 		consumers[i].consumer = NULL;
4905 
4906 	for (i = 0; i < num_consumers; i++) {
4907 		consumers[i].consumer = _regulator_get(dev,
4908 						       consumers[i].supply, get_type);
4909 		if (IS_ERR(consumers[i].consumer)) {
4910 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911 					    "Failed to get supply '%s'",
4912 					    consumers[i].supply);
4913 			consumers[i].consumer = NULL;
4914 			goto err;
4915 		}
4916 
4917 		if (consumers[i].init_load_uA > 0) {
4918 			ret = regulator_set_load(consumers[i].consumer,
4919 						 consumers[i].init_load_uA);
4920 			if (ret) {
4921 				i++;
4922 				goto err;
4923 			}
4924 		}
4925 	}
4926 
4927 	return 0;
4928 
4929 err:
4930 	while (--i >= 0)
4931 		regulator_put(consumers[i].consumer);
4932 
4933 	return ret;
4934 }
4935 
4936 /**
4937  * regulator_bulk_get - get multiple regulator consumers
4938  *
4939  * @dev:           Device to supply
4940  * @num_consumers: Number of consumers to register
4941  * @consumers:     Configuration of consumers; clients are stored here.
4942  *
4943  * This helper function allows drivers to get several regulator
4944  * consumers in one operation.  If any of the regulators cannot be
4945  * acquired then any regulators that were allocated will be freed
4946  * before returning to the caller.
4947  *
4948  * Return: 0 on success or a negative error number on failure.
4949  */
4950 int regulator_bulk_get(struct device *dev, int num_consumers,
4951 		       struct regulator_bulk_data *consumers)
4952 {
4953 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954 }
4955 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956 
4957 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958 {
4959 	struct regulator_bulk_data *bulk = data;
4960 
4961 	bulk->ret = regulator_enable(bulk->consumer);
4962 }
4963 
4964 /**
4965  * regulator_bulk_enable - enable multiple regulator consumers
4966  *
4967  * @num_consumers: Number of consumers
4968  * @consumers:     Consumer data; clients are stored here.
4969  *
4970  * This convenience API allows consumers to enable multiple regulator
4971  * clients in a single API call.  If any consumers cannot be enabled
4972  * then any others that were enabled will be disabled again prior to
4973  * return.
4974  *
4975  * Return: 0 on success or a negative error number on failure.
4976  */
4977 int regulator_bulk_enable(int num_consumers,
4978 			  struct regulator_bulk_data *consumers)
4979 {
4980 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981 	int i;
4982 	int ret = 0;
4983 
4984 	for (i = 0; i < num_consumers; i++) {
4985 		async_schedule_domain(regulator_bulk_enable_async,
4986 				      &consumers[i], &async_domain);
4987 	}
4988 
4989 	async_synchronize_full_domain(&async_domain);
4990 
4991 	/* If any consumer failed we need to unwind any that succeeded */
4992 	for (i = 0; i < num_consumers; i++) {
4993 		if (consumers[i].ret != 0) {
4994 			ret = consumers[i].ret;
4995 			goto err;
4996 		}
4997 	}
4998 
4999 	return 0;
5000 
5001 err:
5002 	for (i = 0; i < num_consumers; i++) {
5003 		if (consumers[i].ret < 0)
5004 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005 			       ERR_PTR(consumers[i].ret));
5006 		else
5007 			regulator_disable(consumers[i].consumer);
5008 	}
5009 
5010 	return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013 
5014 /**
5015  * regulator_bulk_disable - disable multiple regulator consumers
5016  *
5017  * @num_consumers: Number of consumers
5018  * @consumers:     Consumer data; clients are stored here.
5019  *
5020  * This convenience API allows consumers to disable multiple regulator
5021  * clients in a single API call.  If any consumers cannot be disabled
5022  * then any others that were disabled will be enabled again prior to
5023  * return.
5024  *
5025  * Return: 0 on success or a negative error number on failure.
5026  */
5027 int regulator_bulk_disable(int num_consumers,
5028 			   struct regulator_bulk_data *consumers)
5029 {
5030 	int i;
5031 	int ret, r;
5032 
5033 	for (i = num_consumers - 1; i >= 0; --i) {
5034 		ret = regulator_disable(consumers[i].consumer);
5035 		if (ret != 0)
5036 			goto err;
5037 	}
5038 
5039 	return 0;
5040 
5041 err:
5042 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043 	for (++i; i < num_consumers; ++i) {
5044 		r = regulator_enable(consumers[i].consumer);
5045 		if (r != 0)
5046 			pr_err("Failed to re-enable %s: %pe\n",
5047 			       consumers[i].supply, ERR_PTR(r));
5048 	}
5049 
5050 	return ret;
5051 }
5052 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053 
5054 /**
5055  * regulator_bulk_force_disable - force disable multiple regulator consumers
5056  *
5057  * @num_consumers: Number of consumers
5058  * @consumers:     Consumer data; clients are stored here.
5059  *
5060  * This convenience API allows consumers to forcibly disable multiple regulator
5061  * clients in a single API call.
5062  * NOTE: This should be used for situations when device damage will
5063  * likely occur if the regulators are not disabled (e.g. over temp).
5064  * Although regulator_force_disable function call for some consumers can
5065  * return error numbers, the function is called for all consumers.
5066  *
5067  * Return: 0 on success or a negative error number on failure.
5068  */
5069 int regulator_bulk_force_disable(int num_consumers,
5070 			   struct regulator_bulk_data *consumers)
5071 {
5072 	int i;
5073 	int ret = 0;
5074 
5075 	for (i = 0; i < num_consumers; i++) {
5076 		consumers[i].ret =
5077 			    regulator_force_disable(consumers[i].consumer);
5078 
5079 		/* Store first error for reporting */
5080 		if (consumers[i].ret && !ret)
5081 			ret = consumers[i].ret;
5082 	}
5083 
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087 
5088 /**
5089  * regulator_bulk_free - free multiple regulator consumers
5090  *
5091  * @num_consumers: Number of consumers
5092  * @consumers:     Consumer data; clients are stored here.
5093  *
5094  * This convenience API allows consumers to free multiple regulator
5095  * clients in a single API call.
5096  */
5097 void regulator_bulk_free(int num_consumers,
5098 			 struct regulator_bulk_data *consumers)
5099 {
5100 	int i;
5101 
5102 	for (i = 0; i < num_consumers; i++) {
5103 		regulator_put(consumers[i].consumer);
5104 		consumers[i].consumer = NULL;
5105 	}
5106 }
5107 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108 
5109 /**
5110  * regulator_handle_critical - Handle events for system-critical regulators.
5111  * @rdev: The regulator device.
5112  * @event: The event being handled.
5113  *
5114  * This function handles critical events such as under-voltage, over-current,
5115  * and unknown errors for regulators deemed system-critical. On detecting such
5116  * events, it triggers a hardware protection shutdown with a defined timeout.
5117  */
5118 static void regulator_handle_critical(struct regulator_dev *rdev,
5119 				      unsigned long event)
5120 {
5121 	const char *reason = NULL;
5122 
5123 	if (!rdev->constraints->system_critical)
5124 		return;
5125 
5126 	switch (event) {
5127 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5128 		reason = "System critical regulator: voltage drop detected";
5129 		break;
5130 	case REGULATOR_EVENT_OVER_CURRENT:
5131 		reason = "System critical regulator: over-current detected";
5132 		break;
5133 	case REGULATOR_EVENT_FAIL:
5134 		reason = "System critical regulator: unknown error";
5135 	}
5136 
5137 	if (!reason)
5138 		return;
5139 
5140 	hw_protection_shutdown(reason,
5141 			       rdev->constraints->uv_less_critical_window_ms);
5142 }
5143 
5144 /**
5145  * regulator_notifier_call_chain - call regulator event notifier
5146  * @rdev: regulator source
5147  * @event: notifier block
5148  * @data: callback-specific data.
5149  *
5150  * Called by regulator drivers to notify clients a regulator event has
5151  * occurred.
5152  *
5153  * Return: %NOTIFY_DONE.
5154  */
5155 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156 				  unsigned long event, void *data)
5157 {
5158 	regulator_handle_critical(rdev, event);
5159 
5160 	_notifier_call_chain(rdev, event, data);
5161 	return NOTIFY_DONE;
5162 
5163 }
5164 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165 
5166 /**
5167  * regulator_mode_to_status - convert a regulator mode into a status
5168  *
5169  * @mode: Mode to convert
5170  *
5171  * Convert a regulator mode into a status.
5172  *
5173  * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174  */
5175 int regulator_mode_to_status(unsigned int mode)
5176 {
5177 	switch (mode) {
5178 	case REGULATOR_MODE_FAST:
5179 		return REGULATOR_STATUS_FAST;
5180 	case REGULATOR_MODE_NORMAL:
5181 		return REGULATOR_STATUS_NORMAL;
5182 	case REGULATOR_MODE_IDLE:
5183 		return REGULATOR_STATUS_IDLE;
5184 	case REGULATOR_MODE_STANDBY:
5185 		return REGULATOR_STATUS_STANDBY;
5186 	default:
5187 		return REGULATOR_STATUS_UNDEFINED;
5188 	}
5189 }
5190 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191 
5192 static struct attribute *regulator_dev_attrs[] = {
5193 	&dev_attr_name.attr,
5194 	&dev_attr_num_users.attr,
5195 	&dev_attr_type.attr,
5196 	&dev_attr_microvolts.attr,
5197 	&dev_attr_microamps.attr,
5198 	&dev_attr_opmode.attr,
5199 	&dev_attr_state.attr,
5200 	&dev_attr_status.attr,
5201 	&dev_attr_bypass.attr,
5202 	&dev_attr_requested_microamps.attr,
5203 	&dev_attr_min_microvolts.attr,
5204 	&dev_attr_max_microvolts.attr,
5205 	&dev_attr_min_microamps.attr,
5206 	&dev_attr_max_microamps.attr,
5207 	&dev_attr_under_voltage.attr,
5208 	&dev_attr_over_current.attr,
5209 	&dev_attr_regulation_out.attr,
5210 	&dev_attr_fail.attr,
5211 	&dev_attr_over_temp.attr,
5212 	&dev_attr_under_voltage_warn.attr,
5213 	&dev_attr_over_current_warn.attr,
5214 	&dev_attr_over_voltage_warn.attr,
5215 	&dev_attr_over_temp_warn.attr,
5216 	&dev_attr_suspend_standby_state.attr,
5217 	&dev_attr_suspend_mem_state.attr,
5218 	&dev_attr_suspend_disk_state.attr,
5219 	&dev_attr_suspend_standby_microvolts.attr,
5220 	&dev_attr_suspend_mem_microvolts.attr,
5221 	&dev_attr_suspend_disk_microvolts.attr,
5222 	&dev_attr_suspend_standby_mode.attr,
5223 	&dev_attr_suspend_mem_mode.attr,
5224 	&dev_attr_suspend_disk_mode.attr,
5225 	NULL
5226 };
5227 
5228 /*
5229  * To avoid cluttering sysfs (and memory) with useless state, only
5230  * create attributes that can be meaningfully displayed.
5231  */
5232 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233 					 struct attribute *attr, int idx)
5234 {
5235 	struct device *dev = kobj_to_dev(kobj);
5236 	struct regulator_dev *rdev = dev_to_rdev(dev);
5237 	const struct regulator_ops *ops = rdev->desc->ops;
5238 	umode_t mode = attr->mode;
5239 
5240 	/* these three are always present */
5241 	if (attr == &dev_attr_name.attr ||
5242 	    attr == &dev_attr_num_users.attr ||
5243 	    attr == &dev_attr_type.attr)
5244 		return mode;
5245 
5246 	/* some attributes need specific methods to be displayed */
5247 	if (attr == &dev_attr_microvolts.attr) {
5248 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252 			return mode;
5253 		return 0;
5254 	}
5255 
5256 	if (attr == &dev_attr_microamps.attr)
5257 		return ops->get_current_limit ? mode : 0;
5258 
5259 	if (attr == &dev_attr_opmode.attr)
5260 		return ops->get_mode ? mode : 0;
5261 
5262 	if (attr == &dev_attr_state.attr)
5263 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264 
5265 	if (attr == &dev_attr_status.attr)
5266 		return ops->get_status ? mode : 0;
5267 
5268 	if (attr == &dev_attr_bypass.attr)
5269 		return ops->get_bypass ? mode : 0;
5270 
5271 	if (attr == &dev_attr_under_voltage.attr ||
5272 	    attr == &dev_attr_over_current.attr ||
5273 	    attr == &dev_attr_regulation_out.attr ||
5274 	    attr == &dev_attr_fail.attr ||
5275 	    attr == &dev_attr_over_temp.attr ||
5276 	    attr == &dev_attr_under_voltage_warn.attr ||
5277 	    attr == &dev_attr_over_current_warn.attr ||
5278 	    attr == &dev_attr_over_voltage_warn.attr ||
5279 	    attr == &dev_attr_over_temp_warn.attr)
5280 		return ops->get_error_flags ? mode : 0;
5281 
5282 	/* constraints need specific supporting methods */
5283 	if (attr == &dev_attr_min_microvolts.attr ||
5284 	    attr == &dev_attr_max_microvolts.attr)
5285 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286 
5287 	if (attr == &dev_attr_min_microamps.attr ||
5288 	    attr == &dev_attr_max_microamps.attr)
5289 		return ops->set_current_limit ? mode : 0;
5290 
5291 	if (attr == &dev_attr_suspend_standby_state.attr ||
5292 	    attr == &dev_attr_suspend_mem_state.attr ||
5293 	    attr == &dev_attr_suspend_disk_state.attr)
5294 		return mode;
5295 
5296 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5298 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5299 		return ops->set_suspend_voltage ? mode : 0;
5300 
5301 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5302 	    attr == &dev_attr_suspend_mem_mode.attr ||
5303 	    attr == &dev_attr_suspend_disk_mode.attr)
5304 		return ops->set_suspend_mode ? mode : 0;
5305 
5306 	return mode;
5307 }
5308 
5309 static const struct attribute_group regulator_dev_group = {
5310 	.attrs = regulator_dev_attrs,
5311 	.is_visible = regulator_attr_is_visible,
5312 };
5313 
5314 static const struct attribute_group *regulator_dev_groups[] = {
5315 	&regulator_dev_group,
5316 	NULL
5317 };
5318 
5319 static void regulator_dev_release(struct device *dev)
5320 {
5321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5322 
5323 	debugfs_remove_recursive(rdev->debugfs);
5324 	kfree(rdev->constraints);
5325 	of_node_put(rdev->dev.of_node);
5326 	kfree(rdev);
5327 }
5328 
5329 static void rdev_init_debugfs(struct regulator_dev *rdev)
5330 {
5331 	struct device *parent = rdev->dev.parent;
5332 	const char *rname = rdev_get_name(rdev);
5333 	char name[NAME_MAX];
5334 
5335 	/* Avoid duplicate debugfs directory names */
5336 	if (parent && rname == rdev->desc->name) {
5337 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338 			 rname);
5339 		rname = name;
5340 	}
5341 
5342 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343 	if (IS_ERR(rdev->debugfs))
5344 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5345 
5346 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347 			   &rdev->use_count);
5348 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349 			   &rdev->open_count);
5350 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351 			   &rdev->bypass_count);
5352 }
5353 
5354 static int regulator_register_resolve_supply(struct device *dev, void *data)
5355 {
5356 	struct regulator_dev *rdev = dev_to_rdev(dev);
5357 
5358 	if (regulator_resolve_supply(rdev))
5359 		rdev_dbg(rdev, "unable to resolve supply\n");
5360 
5361 	return 0;
5362 }
5363 
5364 int regulator_coupler_register(struct regulator_coupler *coupler)
5365 {
5366 	mutex_lock(&regulator_list_mutex);
5367 	list_add_tail(&coupler->list, &regulator_coupler_list);
5368 	mutex_unlock(&regulator_list_mutex);
5369 
5370 	return 0;
5371 }
5372 
5373 static struct regulator_coupler *
5374 regulator_find_coupler(struct regulator_dev *rdev)
5375 {
5376 	struct regulator_coupler *coupler;
5377 	int err;
5378 
5379 	/*
5380 	 * Note that regulators are appended to the list and the generic
5381 	 * coupler is registered first, hence it will be attached at last
5382 	 * if nobody cared.
5383 	 */
5384 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5385 		err = coupler->attach_regulator(coupler, rdev);
5386 		if (!err) {
5387 			if (!coupler->balance_voltage &&
5388 			    rdev->coupling_desc.n_coupled > 2)
5389 				goto err_unsupported;
5390 
5391 			return coupler;
5392 		}
5393 
5394 		if (err < 0)
5395 			return ERR_PTR(err);
5396 
5397 		if (err == 1)
5398 			continue;
5399 
5400 		break;
5401 	}
5402 
5403 	return ERR_PTR(-EINVAL);
5404 
5405 err_unsupported:
5406 	if (coupler->detach_regulator)
5407 		coupler->detach_regulator(coupler, rdev);
5408 
5409 	rdev_err(rdev,
5410 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5411 
5412 	return ERR_PTR(-EPERM);
5413 }
5414 
5415 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416 {
5417 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5419 	int n_coupled = c_desc->n_coupled;
5420 	struct regulator_dev *c_rdev;
5421 	int i;
5422 
5423 	for (i = 1; i < n_coupled; i++) {
5424 		/* already resolved */
5425 		if (c_desc->coupled_rdevs[i])
5426 			continue;
5427 
5428 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429 
5430 		if (!c_rdev)
5431 			continue;
5432 
5433 		if (c_rdev->coupling_desc.coupler != coupler) {
5434 			rdev_err(rdev, "coupler mismatch with %s\n",
5435 				 rdev_get_name(c_rdev));
5436 			return;
5437 		}
5438 
5439 		c_desc->coupled_rdevs[i] = c_rdev;
5440 		c_desc->n_resolved++;
5441 
5442 		regulator_resolve_coupling(c_rdev);
5443 	}
5444 }
5445 
5446 static void regulator_remove_coupling(struct regulator_dev *rdev)
5447 {
5448 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450 	struct regulator_dev *__c_rdev, *c_rdev;
5451 	unsigned int __n_coupled, n_coupled;
5452 	int i, k;
5453 	int err;
5454 
5455 	n_coupled = c_desc->n_coupled;
5456 
5457 	for (i = 1; i < n_coupled; i++) {
5458 		c_rdev = c_desc->coupled_rdevs[i];
5459 
5460 		if (!c_rdev)
5461 			continue;
5462 
5463 		regulator_lock(c_rdev);
5464 
5465 		__c_desc = &c_rdev->coupling_desc;
5466 		__n_coupled = __c_desc->n_coupled;
5467 
5468 		for (k = 1; k < __n_coupled; k++) {
5469 			__c_rdev = __c_desc->coupled_rdevs[k];
5470 
5471 			if (__c_rdev == rdev) {
5472 				__c_desc->coupled_rdevs[k] = NULL;
5473 				__c_desc->n_resolved--;
5474 				break;
5475 			}
5476 		}
5477 
5478 		regulator_unlock(c_rdev);
5479 
5480 		c_desc->coupled_rdevs[i] = NULL;
5481 		c_desc->n_resolved--;
5482 	}
5483 
5484 	if (coupler && coupler->detach_regulator) {
5485 		err = coupler->detach_regulator(coupler, rdev);
5486 		if (err)
5487 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488 				 ERR_PTR(err));
5489 	}
5490 
5491 	kfree(rdev->coupling_desc.coupled_rdevs);
5492 	rdev->coupling_desc.coupled_rdevs = NULL;
5493 }
5494 
5495 static int regulator_init_coupling(struct regulator_dev *rdev)
5496 {
5497 	struct regulator_dev **coupled;
5498 	int err, n_phandles;
5499 
5500 	if (!IS_ENABLED(CONFIG_OF))
5501 		n_phandles = 0;
5502 	else
5503 		n_phandles = of_get_n_coupled(rdev);
5504 
5505 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506 	if (!coupled)
5507 		return -ENOMEM;
5508 
5509 	rdev->coupling_desc.coupled_rdevs = coupled;
5510 
5511 	/*
5512 	 * Every regulator should always have coupling descriptor filled with
5513 	 * at least pointer to itself.
5514 	 */
5515 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5517 	rdev->coupling_desc.n_resolved++;
5518 
5519 	/* regulator isn't coupled */
5520 	if (n_phandles == 0)
5521 		return 0;
5522 
5523 	if (!of_check_coupling_data(rdev))
5524 		return -EPERM;
5525 
5526 	mutex_lock(&regulator_list_mutex);
5527 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528 	mutex_unlock(&regulator_list_mutex);
5529 
5530 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5531 		err = PTR_ERR(rdev->coupling_desc.coupler);
5532 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533 		return err;
5534 	}
5535 
5536 	return 0;
5537 }
5538 
5539 static int generic_coupler_attach(struct regulator_coupler *coupler,
5540 				  struct regulator_dev *rdev)
5541 {
5542 	if (rdev->coupling_desc.n_coupled > 2) {
5543 		rdev_err(rdev,
5544 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545 		return -EPERM;
5546 	}
5547 
5548 	if (!rdev->constraints->always_on) {
5549 		rdev_err(rdev,
5550 			 "Coupling of a non always-on regulator is unimplemented\n");
5551 		return -ENOTSUPP;
5552 	}
5553 
5554 	return 0;
5555 }
5556 
5557 static struct regulator_coupler generic_regulator_coupler = {
5558 	.attach_regulator = generic_coupler_attach,
5559 };
5560 
5561 /**
5562  * regulator_register - register regulator
5563  * @dev: the device that drive the regulator
5564  * @regulator_desc: regulator to register
5565  * @cfg: runtime configuration for regulator
5566  *
5567  * Called by regulator drivers to register a regulator.
5568  *
5569  * Return: Pointer to a valid &struct regulator_dev on success or
5570  *	   an ERR_PTR() encoded negative error number on failure.
5571  */
5572 struct regulator_dev *
5573 regulator_register(struct device *dev,
5574 		   const struct regulator_desc *regulator_desc,
5575 		   const struct regulator_config *cfg)
5576 {
5577 	const struct regulator_init_data *init_data;
5578 	struct regulator_config *config = NULL;
5579 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5580 	struct regulator_dev *rdev;
5581 	bool dangling_cfg_gpiod = false;
5582 	bool dangling_of_gpiod = false;
5583 	int ret, i;
5584 	bool resolved_early = false;
5585 
5586 	if (cfg == NULL)
5587 		return ERR_PTR(-EINVAL);
5588 	if (cfg->ena_gpiod)
5589 		dangling_cfg_gpiod = true;
5590 	if (regulator_desc == NULL) {
5591 		ret = -EINVAL;
5592 		goto rinse;
5593 	}
5594 
5595 	WARN_ON(!dev || !cfg->dev);
5596 
5597 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598 		ret = -EINVAL;
5599 		goto rinse;
5600 	}
5601 
5602 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603 	    regulator_desc->type != REGULATOR_CURRENT) {
5604 		ret = -EINVAL;
5605 		goto rinse;
5606 	}
5607 
5608 	/* Only one of each should be implemented */
5609 	WARN_ON(regulator_desc->ops->get_voltage &&
5610 		regulator_desc->ops->get_voltage_sel);
5611 	WARN_ON(regulator_desc->ops->set_voltage &&
5612 		regulator_desc->ops->set_voltage_sel);
5613 
5614 	/* If we're using selectors we must implement list_voltage. */
5615 	if (regulator_desc->ops->get_voltage_sel &&
5616 	    !regulator_desc->ops->list_voltage) {
5617 		ret = -EINVAL;
5618 		goto rinse;
5619 	}
5620 	if (regulator_desc->ops->set_voltage_sel &&
5621 	    !regulator_desc->ops->list_voltage) {
5622 		ret = -EINVAL;
5623 		goto rinse;
5624 	}
5625 
5626 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627 	if (rdev == NULL) {
5628 		ret = -ENOMEM;
5629 		goto rinse;
5630 	}
5631 	device_initialize(&rdev->dev);
5632 	dev_set_drvdata(&rdev->dev, rdev);
5633 	rdev->dev.class = &regulator_class;
5634 	spin_lock_init(&rdev->err_lock);
5635 
5636 	/*
5637 	 * Duplicate the config so the driver could override it after
5638 	 * parsing init data.
5639 	 */
5640 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641 	if (config == NULL) {
5642 		ret = -ENOMEM;
5643 		goto clean;
5644 	}
5645 
5646 	if (config->init_data) {
5647 		/*
5648 		 * Providing of_match means the framework is expected to parse
5649 		 * DT to get the init_data. This would conflict with provided
5650 		 * init_data, if set. Warn if it happens.
5651 		 */
5652 		if (regulator_desc->of_match)
5653 			dev_warn(dev, "Using provided init data - OF match ignored\n");
5654 
5655 		init_data = config->init_data;
5656 		rdev->dev.of_node = of_node_get(config->of_node);
5657 
5658 	} else {
5659 		init_data = regulator_of_get_init_data(dev, regulator_desc,
5660 						       config,
5661 						       &rdev->dev.of_node);
5662 
5663 		/*
5664 		 * Sometimes not all resources are probed already so we need to
5665 		 * take that into account. This happens most the time if the
5666 		 * ena_gpiod comes from a gpio extender or something else.
5667 		 */
5668 		if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5669 			ret = -EPROBE_DEFER;
5670 			goto clean;
5671 		}
5672 
5673 		/*
5674 		 * We need to keep track of any GPIO descriptor coming from the
5675 		 * device tree until we have handled it over to the core. If the
5676 		 * config that was passed in to this function DOES NOT contain a
5677 		 * descriptor, and the config after this call DOES contain a
5678 		 * descriptor, we definitely got one from parsing the device
5679 		 * tree.
5680 		 */
5681 		if (!cfg->ena_gpiod && config->ena_gpiod)
5682 			dangling_of_gpiod = true;
5683 	}
5684 
5685 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5686 	rdev->reg_data = config->driver_data;
5687 	rdev->owner = regulator_desc->owner;
5688 	rdev->desc = regulator_desc;
5689 	if (config->regmap)
5690 		rdev->regmap = config->regmap;
5691 	else if (dev_get_regmap(dev, NULL))
5692 		rdev->regmap = dev_get_regmap(dev, NULL);
5693 	else if (dev->parent)
5694 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5695 	INIT_LIST_HEAD(&rdev->consumer_list);
5696 	INIT_LIST_HEAD(&rdev->list);
5697 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5698 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5699 
5700 	if (init_data && init_data->supply_regulator)
5701 		rdev->supply_name = init_data->supply_regulator;
5702 	else if (regulator_desc->supply_name)
5703 		rdev->supply_name = regulator_desc->supply_name;
5704 
5705 	/* register with sysfs */
5706 	rdev->dev.parent = config->dev;
5707 	dev_set_name(&rdev->dev, "regulator.%lu",
5708 		    (unsigned long) atomic_inc_return(&regulator_no));
5709 
5710 	/* set regulator constraints */
5711 	if (init_data)
5712 		rdev->constraints = kmemdup(&init_data->constraints,
5713 					    sizeof(*rdev->constraints),
5714 					    GFP_KERNEL);
5715 	else
5716 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5717 					    GFP_KERNEL);
5718 	if (!rdev->constraints) {
5719 		ret = -ENOMEM;
5720 		goto wash;
5721 	}
5722 
5723 	if (regulator_desc->init_cb) {
5724 		ret = regulator_desc->init_cb(rdev, config);
5725 		if (ret < 0)
5726 			goto wash;
5727 	}
5728 
5729 	if ((rdev->supply_name && !rdev->supply) &&
5730 		(rdev->constraints->always_on ||
5731 		 rdev->constraints->boot_on)) {
5732 		ret = regulator_resolve_supply(rdev);
5733 		if (ret)
5734 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5735 					 ERR_PTR(ret));
5736 
5737 		resolved_early = true;
5738 	}
5739 
5740 	if (config->ena_gpiod) {
5741 		ret = regulator_ena_gpio_request(rdev, config);
5742 		if (ret != 0) {
5743 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5744 				 ERR_PTR(ret));
5745 			goto wash;
5746 		}
5747 		/* The regulator core took over the GPIO descriptor */
5748 		dangling_cfg_gpiod = false;
5749 		dangling_of_gpiod = false;
5750 	}
5751 
5752 	ret = set_machine_constraints(rdev);
5753 	if (ret == -EPROBE_DEFER && !resolved_early) {
5754 		/* Regulator might be in bypass mode and so needs its supply
5755 		 * to set the constraints
5756 		 */
5757 		/* FIXME: this currently triggers a chicken-and-egg problem
5758 		 * when creating -SUPPLY symlink in sysfs to a regulator
5759 		 * that is just being created
5760 		 */
5761 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5762 			 rdev->supply_name);
5763 		ret = regulator_resolve_supply(rdev);
5764 		if (!ret)
5765 			ret = set_machine_constraints(rdev);
5766 		else
5767 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5768 				 ERR_PTR(ret));
5769 	}
5770 	if (ret < 0)
5771 		goto wash;
5772 
5773 	ret = regulator_init_coupling(rdev);
5774 	if (ret < 0)
5775 		goto wash;
5776 
5777 	/* add consumers devices */
5778 	if (init_data) {
5779 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5780 			ret = set_consumer_device_supply(rdev,
5781 				init_data->consumer_supplies[i].dev_name,
5782 				init_data->consumer_supplies[i].supply);
5783 			if (ret < 0) {
5784 				dev_err(dev, "Failed to set supply %s\n",
5785 					init_data->consumer_supplies[i].supply);
5786 				goto unset_supplies;
5787 			}
5788 		}
5789 	}
5790 
5791 	if (!rdev->desc->ops->get_voltage &&
5792 	    !rdev->desc->ops->list_voltage &&
5793 	    !rdev->desc->fixed_uV)
5794 		rdev->is_switch = true;
5795 
5796 	ret = device_add(&rdev->dev);
5797 	if (ret != 0)
5798 		goto unset_supplies;
5799 
5800 	rdev_init_debugfs(rdev);
5801 
5802 	/* try to resolve regulators coupling since a new one was registered */
5803 	mutex_lock(&regulator_list_mutex);
5804 	regulator_resolve_coupling(rdev);
5805 	mutex_unlock(&regulator_list_mutex);
5806 
5807 	/* try to resolve regulators supply since a new one was registered */
5808 	class_for_each_device(&regulator_class, NULL, NULL,
5809 			      regulator_register_resolve_supply);
5810 	kfree(config);
5811 	return rdev;
5812 
5813 unset_supplies:
5814 	mutex_lock(&regulator_list_mutex);
5815 	unset_regulator_supplies(rdev);
5816 	regulator_remove_coupling(rdev);
5817 	mutex_unlock(&regulator_list_mutex);
5818 wash:
5819 	regulator_put(rdev->supply);
5820 	kfree(rdev->coupling_desc.coupled_rdevs);
5821 	mutex_lock(&regulator_list_mutex);
5822 	regulator_ena_gpio_free(rdev);
5823 	mutex_unlock(&regulator_list_mutex);
5824 clean:
5825 	if (dangling_of_gpiod)
5826 		gpiod_put(config->ena_gpiod);
5827 	kfree(config);
5828 	put_device(&rdev->dev);
5829 rinse:
5830 	if (dangling_cfg_gpiod)
5831 		gpiod_put(cfg->ena_gpiod);
5832 	return ERR_PTR(ret);
5833 }
5834 EXPORT_SYMBOL_GPL(regulator_register);
5835 
5836 /**
5837  * regulator_unregister - unregister regulator
5838  * @rdev: regulator to unregister
5839  *
5840  * Called by regulator drivers to unregister a regulator.
5841  */
5842 void regulator_unregister(struct regulator_dev *rdev)
5843 {
5844 	if (rdev == NULL)
5845 		return;
5846 
5847 	if (rdev->supply) {
5848 		while (rdev->use_count--)
5849 			regulator_disable(rdev->supply);
5850 		regulator_put(rdev->supply);
5851 	}
5852 
5853 	flush_work(&rdev->disable_work.work);
5854 
5855 	mutex_lock(&regulator_list_mutex);
5856 
5857 	WARN_ON(rdev->open_count);
5858 	regulator_remove_coupling(rdev);
5859 	unset_regulator_supplies(rdev);
5860 	list_del(&rdev->list);
5861 	regulator_ena_gpio_free(rdev);
5862 	device_unregister(&rdev->dev);
5863 
5864 	mutex_unlock(&regulator_list_mutex);
5865 }
5866 EXPORT_SYMBOL_GPL(regulator_unregister);
5867 
5868 #ifdef CONFIG_SUSPEND
5869 /**
5870  * regulator_suspend - prepare regulators for system wide suspend
5871  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5872  *
5873  * Configure each regulator with it's suspend operating parameters for state.
5874  *
5875  * Return: 0 on success or a negative error number on failure.
5876  */
5877 static int regulator_suspend(struct device *dev)
5878 {
5879 	struct regulator_dev *rdev = dev_to_rdev(dev);
5880 	suspend_state_t state = pm_suspend_target_state;
5881 	int ret;
5882 	const struct regulator_state *rstate;
5883 
5884 	rstate = regulator_get_suspend_state_check(rdev, state);
5885 	if (!rstate)
5886 		return 0;
5887 
5888 	regulator_lock(rdev);
5889 	ret = __suspend_set_state(rdev, rstate);
5890 	regulator_unlock(rdev);
5891 
5892 	return ret;
5893 }
5894 
5895 static int regulator_resume(struct device *dev)
5896 {
5897 	suspend_state_t state = pm_suspend_target_state;
5898 	struct regulator_dev *rdev = dev_to_rdev(dev);
5899 	struct regulator_state *rstate;
5900 	int ret = 0;
5901 
5902 	rstate = regulator_get_suspend_state(rdev, state);
5903 	if (rstate == NULL)
5904 		return 0;
5905 
5906 	/* Avoid grabbing the lock if we don't need to */
5907 	if (!rdev->desc->ops->resume)
5908 		return 0;
5909 
5910 	regulator_lock(rdev);
5911 
5912 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5913 	    rstate->enabled == DISABLE_IN_SUSPEND)
5914 		ret = rdev->desc->ops->resume(rdev);
5915 
5916 	regulator_unlock(rdev);
5917 
5918 	return ret;
5919 }
5920 #else /* !CONFIG_SUSPEND */
5921 
5922 #define regulator_suspend	NULL
5923 #define regulator_resume	NULL
5924 
5925 #endif /* !CONFIG_SUSPEND */
5926 
5927 #ifdef CONFIG_PM
5928 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5929 	.suspend	= regulator_suspend,
5930 	.resume		= regulator_resume,
5931 };
5932 #endif
5933 
5934 const struct class regulator_class = {
5935 	.name = "regulator",
5936 	.dev_release = regulator_dev_release,
5937 	.dev_groups = regulator_dev_groups,
5938 #ifdef CONFIG_PM
5939 	.pm = &regulator_pm_ops,
5940 #endif
5941 };
5942 /**
5943  * regulator_has_full_constraints - the system has fully specified constraints
5944  *
5945  * Calling this function will cause the regulator API to disable all
5946  * regulators which have a zero use count and don't have an always_on
5947  * constraint in a late_initcall.
5948  *
5949  * The intention is that this will become the default behaviour in a
5950  * future kernel release so users are encouraged to use this facility
5951  * now.
5952  */
5953 void regulator_has_full_constraints(void)
5954 {
5955 	has_full_constraints = 1;
5956 }
5957 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5958 
5959 /**
5960  * rdev_get_drvdata - get rdev regulator driver data
5961  * @rdev: regulator
5962  *
5963  * Get rdev regulator driver private data. This call can be used in the
5964  * regulator driver context.
5965  *
5966  * Return: Pointer to regulator driver private data.
5967  */
5968 void *rdev_get_drvdata(struct regulator_dev *rdev)
5969 {
5970 	return rdev->reg_data;
5971 }
5972 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5973 
5974 /**
5975  * regulator_get_drvdata - get regulator driver data
5976  * @regulator: regulator
5977  *
5978  * Get regulator driver private data. This call can be used in the consumer
5979  * driver context when non API regulator specific functions need to be called.
5980  *
5981  * Return: Pointer to regulator driver private data.
5982  */
5983 void *regulator_get_drvdata(struct regulator *regulator)
5984 {
5985 	return regulator->rdev->reg_data;
5986 }
5987 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5988 
5989 /**
5990  * regulator_set_drvdata - set regulator driver data
5991  * @regulator: regulator
5992  * @data: data
5993  */
5994 void regulator_set_drvdata(struct regulator *regulator, void *data)
5995 {
5996 	regulator->rdev->reg_data = data;
5997 }
5998 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5999 
6000 /**
6001  * rdev_get_id - get regulator ID
6002  * @rdev: regulator
6003  *
6004  * Return: Regulator ID for @rdev.
6005  */
6006 int rdev_get_id(struct regulator_dev *rdev)
6007 {
6008 	return rdev->desc->id;
6009 }
6010 EXPORT_SYMBOL_GPL(rdev_get_id);
6011 
6012 struct device *rdev_get_dev(struct regulator_dev *rdev)
6013 {
6014 	return &rdev->dev;
6015 }
6016 EXPORT_SYMBOL_GPL(rdev_get_dev);
6017 
6018 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6019 {
6020 	return rdev->regmap;
6021 }
6022 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6023 
6024 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6025 {
6026 	return reg_init_data->driver_data;
6027 }
6028 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6029 
6030 #ifdef CONFIG_DEBUG_FS
6031 static int supply_map_show(struct seq_file *sf, void *data)
6032 {
6033 	struct regulator_map *map;
6034 
6035 	list_for_each_entry(map, &regulator_map_list, list) {
6036 		seq_printf(sf, "%s -> %s.%s\n",
6037 				rdev_get_name(map->regulator), map->dev_name,
6038 				map->supply);
6039 	}
6040 
6041 	return 0;
6042 }
6043 DEFINE_SHOW_ATTRIBUTE(supply_map);
6044 
6045 struct summary_data {
6046 	struct seq_file *s;
6047 	struct regulator_dev *parent;
6048 	int level;
6049 };
6050 
6051 static void regulator_summary_show_subtree(struct seq_file *s,
6052 					   struct regulator_dev *rdev,
6053 					   int level);
6054 
6055 static int regulator_summary_show_children(struct device *dev, void *data)
6056 {
6057 	struct regulator_dev *rdev = dev_to_rdev(dev);
6058 	struct summary_data *summary_data = data;
6059 
6060 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6061 		regulator_summary_show_subtree(summary_data->s, rdev,
6062 					       summary_data->level + 1);
6063 
6064 	return 0;
6065 }
6066 
6067 static void regulator_summary_show_subtree(struct seq_file *s,
6068 					   struct regulator_dev *rdev,
6069 					   int level)
6070 {
6071 	struct regulation_constraints *c;
6072 	struct regulator *consumer;
6073 	struct summary_data summary_data;
6074 	unsigned int opmode;
6075 
6076 	if (!rdev)
6077 		return;
6078 
6079 	opmode = _regulator_get_mode_unlocked(rdev);
6080 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6081 		   level * 3 + 1, "",
6082 		   30 - level * 3, rdev_get_name(rdev),
6083 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6084 		   regulator_opmode_to_str(opmode));
6085 
6086 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6087 	seq_printf(s, "%5dmA ",
6088 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6089 
6090 	c = rdev->constraints;
6091 	if (c) {
6092 		switch (rdev->desc->type) {
6093 		case REGULATOR_VOLTAGE:
6094 			seq_printf(s, "%5dmV %5dmV ",
6095 				   c->min_uV / 1000, c->max_uV / 1000);
6096 			break;
6097 		case REGULATOR_CURRENT:
6098 			seq_printf(s, "%5dmA %5dmA ",
6099 				   c->min_uA / 1000, c->max_uA / 1000);
6100 			break;
6101 		}
6102 	}
6103 
6104 	seq_puts(s, "\n");
6105 
6106 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6107 		if (consumer->dev && consumer->dev->class == &regulator_class)
6108 			continue;
6109 
6110 		seq_printf(s, "%*s%-*s ",
6111 			   (level + 1) * 3 + 1, "",
6112 			   30 - (level + 1) * 3,
6113 			   consumer->supply_name ? consumer->supply_name :
6114 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6115 
6116 		switch (rdev->desc->type) {
6117 		case REGULATOR_VOLTAGE:
6118 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6119 				   consumer->enable_count,
6120 				   consumer->uA_load / 1000,
6121 				   consumer->uA_load && !consumer->enable_count ?
6122 				   '*' : ' ',
6123 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6124 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6125 			break;
6126 		case REGULATOR_CURRENT:
6127 			break;
6128 		}
6129 
6130 		seq_puts(s, "\n");
6131 	}
6132 
6133 	summary_data.s = s;
6134 	summary_data.level = level;
6135 	summary_data.parent = rdev;
6136 
6137 	class_for_each_device(&regulator_class, NULL, &summary_data,
6138 			      regulator_summary_show_children);
6139 }
6140 
6141 struct summary_lock_data {
6142 	struct ww_acquire_ctx *ww_ctx;
6143 	struct regulator_dev **new_contended_rdev;
6144 	struct regulator_dev **old_contended_rdev;
6145 };
6146 
6147 static int regulator_summary_lock_one(struct device *dev, void *data)
6148 {
6149 	struct regulator_dev *rdev = dev_to_rdev(dev);
6150 	struct summary_lock_data *lock_data = data;
6151 	int ret = 0;
6152 
6153 	if (rdev != *lock_data->old_contended_rdev) {
6154 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6155 
6156 		if (ret == -EDEADLK)
6157 			*lock_data->new_contended_rdev = rdev;
6158 		else
6159 			WARN_ON_ONCE(ret);
6160 	} else {
6161 		*lock_data->old_contended_rdev = NULL;
6162 	}
6163 
6164 	return ret;
6165 }
6166 
6167 static int regulator_summary_unlock_one(struct device *dev, void *data)
6168 {
6169 	struct regulator_dev *rdev = dev_to_rdev(dev);
6170 	struct summary_lock_data *lock_data = data;
6171 
6172 	if (lock_data) {
6173 		if (rdev == *lock_data->new_contended_rdev)
6174 			return -EDEADLK;
6175 	}
6176 
6177 	regulator_unlock(rdev);
6178 
6179 	return 0;
6180 }
6181 
6182 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6183 				      struct regulator_dev **new_contended_rdev,
6184 				      struct regulator_dev **old_contended_rdev)
6185 {
6186 	struct summary_lock_data lock_data;
6187 	int ret;
6188 
6189 	lock_data.ww_ctx = ww_ctx;
6190 	lock_data.new_contended_rdev = new_contended_rdev;
6191 	lock_data.old_contended_rdev = old_contended_rdev;
6192 
6193 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6194 				    regulator_summary_lock_one);
6195 	if (ret)
6196 		class_for_each_device(&regulator_class, NULL, &lock_data,
6197 				      regulator_summary_unlock_one);
6198 
6199 	return ret;
6200 }
6201 
6202 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6203 {
6204 	struct regulator_dev *new_contended_rdev = NULL;
6205 	struct regulator_dev *old_contended_rdev = NULL;
6206 	int err;
6207 
6208 	mutex_lock(&regulator_list_mutex);
6209 
6210 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6211 
6212 	do {
6213 		if (new_contended_rdev) {
6214 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6215 			old_contended_rdev = new_contended_rdev;
6216 			old_contended_rdev->ref_cnt++;
6217 			old_contended_rdev->mutex_owner = current;
6218 		}
6219 
6220 		err = regulator_summary_lock_all(ww_ctx,
6221 						 &new_contended_rdev,
6222 						 &old_contended_rdev);
6223 
6224 		if (old_contended_rdev)
6225 			regulator_unlock(old_contended_rdev);
6226 
6227 	} while (err == -EDEADLK);
6228 
6229 	ww_acquire_done(ww_ctx);
6230 }
6231 
6232 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6233 {
6234 	class_for_each_device(&regulator_class, NULL, NULL,
6235 			      regulator_summary_unlock_one);
6236 	ww_acquire_fini(ww_ctx);
6237 
6238 	mutex_unlock(&regulator_list_mutex);
6239 }
6240 
6241 static int regulator_summary_show_roots(struct device *dev, void *data)
6242 {
6243 	struct regulator_dev *rdev = dev_to_rdev(dev);
6244 	struct seq_file *s = data;
6245 
6246 	if (!rdev->supply)
6247 		regulator_summary_show_subtree(s, rdev, 0);
6248 
6249 	return 0;
6250 }
6251 
6252 static int regulator_summary_show(struct seq_file *s, void *data)
6253 {
6254 	struct ww_acquire_ctx ww_ctx;
6255 
6256 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6257 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6258 
6259 	regulator_summary_lock(&ww_ctx);
6260 
6261 	class_for_each_device(&regulator_class, NULL, s,
6262 			      regulator_summary_show_roots);
6263 
6264 	regulator_summary_unlock(&ww_ctx);
6265 
6266 	return 0;
6267 }
6268 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6269 #endif /* CONFIG_DEBUG_FS */
6270 
6271 static int __init regulator_init(void)
6272 {
6273 	int ret;
6274 
6275 	ret = class_register(&regulator_class);
6276 
6277 	debugfs_root = debugfs_create_dir("regulator", NULL);
6278 	if (IS_ERR(debugfs_root))
6279 		pr_debug("regulator: Failed to create debugfs directory\n");
6280 
6281 #ifdef CONFIG_DEBUG_FS
6282 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6283 			    &supply_map_fops);
6284 
6285 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6286 			    NULL, &regulator_summary_fops);
6287 #endif
6288 	regulator_dummy_init();
6289 
6290 	regulator_coupler_register(&generic_regulator_coupler);
6291 
6292 	return ret;
6293 }
6294 
6295 /* init early to allow our consumers to complete system booting */
6296 core_initcall(regulator_init);
6297 
6298 static int regulator_late_cleanup(struct device *dev, void *data)
6299 {
6300 	struct regulator_dev *rdev = dev_to_rdev(dev);
6301 	struct regulation_constraints *c = rdev->constraints;
6302 	int ret;
6303 
6304 	if (c && c->always_on)
6305 		return 0;
6306 
6307 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6308 		return 0;
6309 
6310 	regulator_lock(rdev);
6311 
6312 	if (rdev->use_count)
6313 		goto unlock;
6314 
6315 	/* If reading the status failed, assume that it's off. */
6316 	if (_regulator_is_enabled(rdev) <= 0)
6317 		goto unlock;
6318 
6319 	if (have_full_constraints()) {
6320 		/* We log since this may kill the system if it goes
6321 		 * wrong.
6322 		 */
6323 		rdev_info(rdev, "disabling\n");
6324 		ret = _regulator_do_disable(rdev);
6325 		if (ret != 0)
6326 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6327 	} else {
6328 		/* The intention is that in future we will
6329 		 * assume that full constraints are provided
6330 		 * so warn even if we aren't going to do
6331 		 * anything here.
6332 		 */
6333 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6334 	}
6335 
6336 unlock:
6337 	regulator_unlock(rdev);
6338 
6339 	return 0;
6340 }
6341 
6342 static bool regulator_ignore_unused;
6343 static int __init regulator_ignore_unused_setup(char *__unused)
6344 {
6345 	regulator_ignore_unused = true;
6346 	return 1;
6347 }
6348 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6349 
6350 static void regulator_init_complete_work_function(struct work_struct *work)
6351 {
6352 	/*
6353 	 * Regulators may had failed to resolve their input supplies
6354 	 * when were registered, either because the input supply was
6355 	 * not registered yet or because its parent device was not
6356 	 * bound yet. So attempt to resolve the input supplies for
6357 	 * pending regulators before trying to disable unused ones.
6358 	 */
6359 	class_for_each_device(&regulator_class, NULL, NULL,
6360 			      regulator_register_resolve_supply);
6361 
6362 	/*
6363 	 * For debugging purposes, it may be useful to prevent unused
6364 	 * regulators from being disabled.
6365 	 */
6366 	if (regulator_ignore_unused) {
6367 		pr_warn("regulator: Not disabling unused regulators\n");
6368 		return;
6369 	}
6370 
6371 	/* If we have a full configuration then disable any regulators
6372 	 * we have permission to change the status for and which are
6373 	 * not in use or always_on.  This is effectively the default
6374 	 * for DT and ACPI as they have full constraints.
6375 	 */
6376 	class_for_each_device(&regulator_class, NULL, NULL,
6377 			      regulator_late_cleanup);
6378 }
6379 
6380 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6381 			    regulator_init_complete_work_function);
6382 
6383 static int __init regulator_init_complete(void)
6384 {
6385 	/*
6386 	 * Since DT doesn't provide an idiomatic mechanism for
6387 	 * enabling full constraints and since it's much more natural
6388 	 * with DT to provide them just assume that a DT enabled
6389 	 * system has full constraints.
6390 	 */
6391 	if (of_have_populated_dt())
6392 		has_full_constraints = true;
6393 
6394 	/*
6395 	 * We punt completion for an arbitrary amount of time since
6396 	 * systems like distros will load many drivers from userspace
6397 	 * so consumers might not always be ready yet, this is
6398 	 * particularly an issue with laptops where this might bounce
6399 	 * the display off then on.  Ideally we'd get a notification
6400 	 * from userspace when this happens but we don't so just wait
6401 	 * a bit and hope we waited long enough.  It'd be better if
6402 	 * we'd only do this on systems that need it, and a kernel
6403 	 * command line option might be useful.
6404 	 */
6405 	schedule_delayed_work(&regulator_init_complete_work,
6406 			      msecs_to_jiffies(30000));
6407 
6408 	return 0;
6409 }
6410 late_initcall_sync(regulator_init_complete);
6411