1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/reboot.h> 23 #include <linux/regmap.h> 24 #include <linux/regulator/of_regulator.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/regulator/coupler.h> 27 #include <linux/regulator/driver.h> 28 #include <linux/regulator/machine.h> 29 #include <linux/module.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/regulator.h> 33 34 #include "dummy.h" 35 #include "internal.h" 36 #include "regnl.h" 37 38 static DEFINE_WW_CLASS(regulator_ww_class); 39 static DEFINE_MUTEX(regulator_nesting_mutex); 40 static DEFINE_MUTEX(regulator_list_mutex); 41 static LIST_HEAD(regulator_map_list); 42 static LIST_HEAD(regulator_ena_gpio_list); 43 static LIST_HEAD(regulator_supply_alias_list); 44 static LIST_HEAD(regulator_coupler_list); 45 static bool has_full_constraints; 46 47 static struct dentry *debugfs_root; 48 49 /* 50 * struct regulator_map 51 * 52 * Used to provide symbolic supply names to devices. 53 */ 54 struct regulator_map { 55 struct list_head list; 56 const char *dev_name; /* The dev_name() for the consumer */ 57 const char *supply; 58 struct regulator_dev *regulator; 59 }; 60 61 /* 62 * struct regulator_enable_gpio 63 * 64 * Management for shared enable GPIO pin 65 */ 66 struct regulator_enable_gpio { 67 struct list_head list; 68 struct gpio_desc *gpiod; 69 u32 enable_count; /* a number of enabled shared GPIO */ 70 u32 request_count; /* a number of requested shared GPIO */ 71 }; 72 73 /* 74 * struct regulator_supply_alias 75 * 76 * Used to map lookups for a supply onto an alternative device. 77 */ 78 struct regulator_supply_alias { 79 struct list_head list; 80 struct device *src_dev; 81 const char *src_supply; 82 struct device *alias_dev; 83 const char *alias_supply; 84 }; 85 86 static int _regulator_is_enabled(struct regulator_dev *rdev); 87 static int _regulator_disable(struct regulator *regulator); 88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 89 static int _regulator_get_current_limit(struct regulator_dev *rdev); 90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 91 static int _notifier_call_chain(struct regulator_dev *rdev, 92 unsigned long event, void *data); 93 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 94 int min_uV, int max_uV); 95 static int regulator_balance_voltage(struct regulator_dev *rdev, 96 suspend_state_t state); 97 static struct regulator *create_regulator(struct regulator_dev *rdev, 98 struct device *dev, 99 const char *supply_name); 100 static void destroy_regulator(struct regulator *regulator); 101 static void _regulator_put(struct regulator *regulator); 102 103 const char *rdev_get_name(struct regulator_dev *rdev) 104 { 105 if (rdev->constraints && rdev->constraints->name) 106 return rdev->constraints->name; 107 else if (rdev->desc->name) 108 return rdev->desc->name; 109 else 110 return ""; 111 } 112 EXPORT_SYMBOL_GPL(rdev_get_name); 113 114 static bool have_full_constraints(void) 115 { 116 return has_full_constraints || of_have_populated_dt(); 117 } 118 119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 120 { 121 if (!rdev->constraints) { 122 rdev_err(rdev, "no constraints\n"); 123 return false; 124 } 125 126 if (rdev->constraints->valid_ops_mask & ops) 127 return true; 128 129 return false; 130 } 131 132 /** 133 * regulator_lock_nested - lock a single regulator 134 * @rdev: regulator source 135 * @ww_ctx: w/w mutex acquire context 136 * 137 * This function can be called many times by one task on 138 * a single regulator and its mutex will be locked only 139 * once. If a task, which is calling this function is other 140 * than the one, which initially locked the mutex, it will 141 * wait on mutex. 142 */ 143 static inline int regulator_lock_nested(struct regulator_dev *rdev, 144 struct ww_acquire_ctx *ww_ctx) 145 { 146 bool lock = false; 147 int ret = 0; 148 149 mutex_lock(®ulator_nesting_mutex); 150 151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 152 if (rdev->mutex_owner == current) 153 rdev->ref_cnt++; 154 else 155 lock = true; 156 157 if (lock) { 158 mutex_unlock(®ulator_nesting_mutex); 159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 160 mutex_lock(®ulator_nesting_mutex); 161 } 162 } else { 163 lock = true; 164 } 165 166 if (lock && ret != -EDEADLK) { 167 rdev->ref_cnt++; 168 rdev->mutex_owner = current; 169 } 170 171 mutex_unlock(®ulator_nesting_mutex); 172 173 return ret; 174 } 175 176 /** 177 * regulator_lock - lock a single regulator 178 * @rdev: regulator source 179 * 180 * This function can be called many times by one task on 181 * a single regulator and its mutex will be locked only 182 * once. If a task, which is calling this function is other 183 * than the one, which initially locked the mutex, it will 184 * wait on mutex. 185 */ 186 static void regulator_lock(struct regulator_dev *rdev) 187 { 188 regulator_lock_nested(rdev, NULL); 189 } 190 191 /** 192 * regulator_unlock - unlock a single regulator 193 * @rdev: regulator_source 194 * 195 * This function unlocks the mutex when the 196 * reference counter reaches 0. 197 */ 198 static void regulator_unlock(struct regulator_dev *rdev) 199 { 200 mutex_lock(®ulator_nesting_mutex); 201 202 if (--rdev->ref_cnt == 0) { 203 rdev->mutex_owner = NULL; 204 ww_mutex_unlock(&rdev->mutex); 205 } 206 207 WARN_ON_ONCE(rdev->ref_cnt < 0); 208 209 mutex_unlock(®ulator_nesting_mutex); 210 } 211 212 /** 213 * regulator_lock_two - lock two regulators 214 * @rdev1: first regulator 215 * @rdev2: second regulator 216 * @ww_ctx: w/w mutex acquire context 217 * 218 * Locks both rdevs using the regulator_ww_class. 219 */ 220 static void regulator_lock_two(struct regulator_dev *rdev1, 221 struct regulator_dev *rdev2, 222 struct ww_acquire_ctx *ww_ctx) 223 { 224 struct regulator_dev *held, *contended; 225 int ret; 226 227 ww_acquire_init(ww_ctx, ®ulator_ww_class); 228 229 /* Try to just grab both of them */ 230 ret = regulator_lock_nested(rdev1, ww_ctx); 231 WARN_ON(ret); 232 ret = regulator_lock_nested(rdev2, ww_ctx); 233 if (ret != -EDEADLOCK) { 234 WARN_ON(ret); 235 goto exit; 236 } 237 238 held = rdev1; 239 contended = rdev2; 240 while (true) { 241 regulator_unlock(held); 242 243 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 244 contended->ref_cnt++; 245 contended->mutex_owner = current; 246 swap(held, contended); 247 ret = regulator_lock_nested(contended, ww_ctx); 248 249 if (ret != -EDEADLOCK) { 250 WARN_ON(ret); 251 break; 252 } 253 } 254 255 exit: 256 ww_acquire_done(ww_ctx); 257 } 258 259 /** 260 * regulator_unlock_two - unlock two regulators 261 * @rdev1: first regulator 262 * @rdev2: second regulator 263 * @ww_ctx: w/w mutex acquire context 264 * 265 * The inverse of regulator_lock_two(). 266 */ 267 268 static void regulator_unlock_two(struct regulator_dev *rdev1, 269 struct regulator_dev *rdev2, 270 struct ww_acquire_ctx *ww_ctx) 271 { 272 regulator_unlock(rdev2); 273 regulator_unlock(rdev1); 274 ww_acquire_fini(ww_ctx); 275 } 276 277 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 278 { 279 struct regulator_dev *c_rdev; 280 int i; 281 282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 283 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 284 285 if (rdev->supply->rdev == c_rdev) 286 return true; 287 } 288 289 return false; 290 } 291 292 static void regulator_unlock_recursive(struct regulator_dev *rdev, 293 unsigned int n_coupled) 294 { 295 struct regulator_dev *c_rdev, *supply_rdev; 296 int i, supply_n_coupled; 297 298 for (i = n_coupled; i > 0; i--) { 299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 300 301 if (!c_rdev) 302 continue; 303 304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 305 supply_rdev = c_rdev->supply->rdev; 306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 307 308 regulator_unlock_recursive(supply_rdev, 309 supply_n_coupled); 310 } 311 312 regulator_unlock(c_rdev); 313 } 314 } 315 316 static int regulator_lock_recursive(struct regulator_dev *rdev, 317 struct regulator_dev **new_contended_rdev, 318 struct regulator_dev **old_contended_rdev, 319 struct ww_acquire_ctx *ww_ctx) 320 { 321 struct regulator_dev *c_rdev; 322 int i, err; 323 324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 325 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 326 327 if (!c_rdev) 328 continue; 329 330 if (c_rdev != *old_contended_rdev) { 331 err = regulator_lock_nested(c_rdev, ww_ctx); 332 if (err) { 333 if (err == -EDEADLK) { 334 *new_contended_rdev = c_rdev; 335 goto err_unlock; 336 } 337 338 /* shouldn't happen */ 339 WARN_ON_ONCE(err != -EALREADY); 340 } 341 } else { 342 *old_contended_rdev = NULL; 343 } 344 345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 346 err = regulator_lock_recursive(c_rdev->supply->rdev, 347 new_contended_rdev, 348 old_contended_rdev, 349 ww_ctx); 350 if (err) { 351 regulator_unlock(c_rdev); 352 goto err_unlock; 353 } 354 } 355 } 356 357 return 0; 358 359 err_unlock: 360 regulator_unlock_recursive(rdev, i); 361 362 return err; 363 } 364 365 /** 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 367 * regulators 368 * @rdev: regulator source 369 * @ww_ctx: w/w mutex acquire context 370 * 371 * Unlock all regulators related with rdev by coupling or supplying. 372 */ 373 static void regulator_unlock_dependent(struct regulator_dev *rdev, 374 struct ww_acquire_ctx *ww_ctx) 375 { 376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 377 ww_acquire_fini(ww_ctx); 378 } 379 380 /** 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 382 * @rdev: regulator source 383 * @ww_ctx: w/w mutex acquire context 384 * 385 * This function as a wrapper on regulator_lock_recursive(), which locks 386 * all regulators related with rdev by coupling or supplying. 387 */ 388 static void regulator_lock_dependent(struct regulator_dev *rdev, 389 struct ww_acquire_ctx *ww_ctx) 390 { 391 struct regulator_dev *new_contended_rdev = NULL; 392 struct regulator_dev *old_contended_rdev = NULL; 393 int err; 394 395 mutex_lock(®ulator_list_mutex); 396 397 ww_acquire_init(ww_ctx, ®ulator_ww_class); 398 399 do { 400 if (new_contended_rdev) { 401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 402 old_contended_rdev = new_contended_rdev; 403 old_contended_rdev->ref_cnt++; 404 old_contended_rdev->mutex_owner = current; 405 } 406 407 err = regulator_lock_recursive(rdev, 408 &new_contended_rdev, 409 &old_contended_rdev, 410 ww_ctx); 411 412 if (old_contended_rdev) 413 regulator_unlock(old_contended_rdev); 414 415 } while (err == -EDEADLK); 416 417 ww_acquire_done(ww_ctx); 418 419 mutex_unlock(®ulator_list_mutex); 420 } 421 422 /** 423 * of_get_child_regulator - get a child regulator device node 424 * based on supply name 425 * @parent: Parent device node 426 * @prop_name: Combination regulator supply name and "-supply" 427 * 428 * Traverse all child nodes. 429 * Extract the child regulator device node corresponding to the supply name. 430 * returns the device node corresponding to the regulator if found, else 431 * returns NULL. 432 */ 433 static struct device_node *of_get_child_regulator(struct device_node *parent, 434 const char *prop_name) 435 { 436 struct device_node *regnode = NULL; 437 struct device_node *child = NULL; 438 439 for_each_child_of_node(parent, child) { 440 regnode = of_parse_phandle(child, prop_name, 0); 441 442 if (!regnode) { 443 regnode = of_get_child_regulator(child, prop_name); 444 if (regnode) 445 goto err_node_put; 446 } else { 447 goto err_node_put; 448 } 449 } 450 return NULL; 451 452 err_node_put: 453 of_node_put(child); 454 return regnode; 455 } 456 457 /** 458 * of_get_regulator - get a regulator device node based on supply name 459 * @dev: Device pointer for the consumer (of regulator) device 460 * @supply: regulator supply name 461 * 462 * Extract the regulator device node corresponding to the supply name. 463 * returns the device node corresponding to the regulator if found, else 464 * returns NULL. 465 */ 466 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 467 { 468 struct device_node *regnode = NULL; 469 char prop_name[64]; /* 64 is max size of property name */ 470 471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 472 473 snprintf(prop_name, 64, "%s-supply", supply); 474 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 475 476 if (!regnode) { 477 regnode = of_get_child_regulator(dev->of_node, prop_name); 478 if (regnode) 479 return regnode; 480 481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 482 prop_name, dev->of_node); 483 return NULL; 484 } 485 return regnode; 486 } 487 488 /* Platform voltage constraint check */ 489 int regulator_check_voltage(struct regulator_dev *rdev, 490 int *min_uV, int *max_uV) 491 { 492 BUG_ON(*min_uV > *max_uV); 493 494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 495 rdev_err(rdev, "voltage operation not allowed\n"); 496 return -EPERM; 497 } 498 499 if (*max_uV > rdev->constraints->max_uV) 500 *max_uV = rdev->constraints->max_uV; 501 if (*min_uV < rdev->constraints->min_uV) 502 *min_uV = rdev->constraints->min_uV; 503 504 if (*min_uV > *max_uV) { 505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 506 *min_uV, *max_uV); 507 return -EINVAL; 508 } 509 510 return 0; 511 } 512 513 /* return 0 if the state is valid */ 514 static int regulator_check_states(suspend_state_t state) 515 { 516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 517 } 518 519 /* Make sure we select a voltage that suits the needs of all 520 * regulator consumers 521 */ 522 int regulator_check_consumers(struct regulator_dev *rdev, 523 int *min_uV, int *max_uV, 524 suspend_state_t state) 525 { 526 struct regulator *regulator; 527 struct regulator_voltage *voltage; 528 529 list_for_each_entry(regulator, &rdev->consumer_list, list) { 530 voltage = ®ulator->voltage[state]; 531 /* 532 * Assume consumers that didn't say anything are OK 533 * with anything in the constraint range. 534 */ 535 if (!voltage->min_uV && !voltage->max_uV) 536 continue; 537 538 if (*max_uV > voltage->max_uV) 539 *max_uV = voltage->max_uV; 540 if (*min_uV < voltage->min_uV) 541 *min_uV = voltage->min_uV; 542 } 543 544 if (*min_uV > *max_uV) { 545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 546 *min_uV, *max_uV); 547 return -EINVAL; 548 } 549 550 return 0; 551 } 552 553 /* current constraint check */ 554 static int regulator_check_current_limit(struct regulator_dev *rdev, 555 int *min_uA, int *max_uA) 556 { 557 BUG_ON(*min_uA > *max_uA); 558 559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 560 rdev_err(rdev, "current operation not allowed\n"); 561 return -EPERM; 562 } 563 564 if (*max_uA > rdev->constraints->max_uA) 565 *max_uA = rdev->constraints->max_uA; 566 if (*min_uA < rdev->constraints->min_uA) 567 *min_uA = rdev->constraints->min_uA; 568 569 if (*min_uA > *max_uA) { 570 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 571 *min_uA, *max_uA); 572 return -EINVAL; 573 } 574 575 return 0; 576 } 577 578 /* operating mode constraint check */ 579 static int regulator_mode_constrain(struct regulator_dev *rdev, 580 unsigned int *mode) 581 { 582 switch (*mode) { 583 case REGULATOR_MODE_FAST: 584 case REGULATOR_MODE_NORMAL: 585 case REGULATOR_MODE_IDLE: 586 case REGULATOR_MODE_STANDBY: 587 break; 588 default: 589 rdev_err(rdev, "invalid mode %x specified\n", *mode); 590 return -EINVAL; 591 } 592 593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 594 rdev_err(rdev, "mode operation not allowed\n"); 595 return -EPERM; 596 } 597 598 /* The modes are bitmasks, the most power hungry modes having 599 * the lowest values. If the requested mode isn't supported 600 * try higher modes. 601 */ 602 while (*mode) { 603 if (rdev->constraints->valid_modes_mask & *mode) 604 return 0; 605 *mode /= 2; 606 } 607 608 return -EINVAL; 609 } 610 611 static inline struct regulator_state * 612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 613 { 614 if (rdev->constraints == NULL) 615 return NULL; 616 617 switch (state) { 618 case PM_SUSPEND_STANDBY: 619 return &rdev->constraints->state_standby; 620 case PM_SUSPEND_MEM: 621 return &rdev->constraints->state_mem; 622 case PM_SUSPEND_MAX: 623 return &rdev->constraints->state_disk; 624 default: 625 return NULL; 626 } 627 } 628 629 static const struct regulator_state * 630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 631 { 632 const struct regulator_state *rstate; 633 634 rstate = regulator_get_suspend_state(rdev, state); 635 if (rstate == NULL) 636 return NULL; 637 638 /* If we have no suspend mode configuration don't set anything; 639 * only warn if the driver implements set_suspend_voltage or 640 * set_suspend_mode callback. 641 */ 642 if (rstate->enabled != ENABLE_IN_SUSPEND && 643 rstate->enabled != DISABLE_IN_SUSPEND) { 644 if (rdev->desc->ops->set_suspend_voltage || 645 rdev->desc->ops->set_suspend_mode) 646 rdev_warn(rdev, "No configuration\n"); 647 return NULL; 648 } 649 650 return rstate; 651 } 652 653 static ssize_t microvolts_show(struct device *dev, 654 struct device_attribute *attr, char *buf) 655 { 656 struct regulator_dev *rdev = dev_get_drvdata(dev); 657 int uV; 658 659 regulator_lock(rdev); 660 uV = regulator_get_voltage_rdev(rdev); 661 regulator_unlock(rdev); 662 663 if (uV < 0) 664 return uV; 665 return sprintf(buf, "%d\n", uV); 666 } 667 static DEVICE_ATTR_RO(microvolts); 668 669 static ssize_t microamps_show(struct device *dev, 670 struct device_attribute *attr, char *buf) 671 { 672 struct regulator_dev *rdev = dev_get_drvdata(dev); 673 674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 675 } 676 static DEVICE_ATTR_RO(microamps); 677 678 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 679 char *buf) 680 { 681 struct regulator_dev *rdev = dev_get_drvdata(dev); 682 683 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 684 } 685 static DEVICE_ATTR_RO(name); 686 687 static const char *regulator_opmode_to_str(int mode) 688 { 689 switch (mode) { 690 case REGULATOR_MODE_FAST: 691 return "fast"; 692 case REGULATOR_MODE_NORMAL: 693 return "normal"; 694 case REGULATOR_MODE_IDLE: 695 return "idle"; 696 case REGULATOR_MODE_STANDBY: 697 return "standby"; 698 } 699 return "unknown"; 700 } 701 702 static ssize_t regulator_print_opmode(char *buf, int mode) 703 { 704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 705 } 706 707 static ssize_t opmode_show(struct device *dev, 708 struct device_attribute *attr, char *buf) 709 { 710 struct regulator_dev *rdev = dev_get_drvdata(dev); 711 712 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 713 } 714 static DEVICE_ATTR_RO(opmode); 715 716 static ssize_t regulator_print_state(char *buf, int state) 717 { 718 if (state > 0) 719 return sprintf(buf, "enabled\n"); 720 else if (state == 0) 721 return sprintf(buf, "disabled\n"); 722 else 723 return sprintf(buf, "unknown\n"); 724 } 725 726 static ssize_t state_show(struct device *dev, 727 struct device_attribute *attr, char *buf) 728 { 729 struct regulator_dev *rdev = dev_get_drvdata(dev); 730 ssize_t ret; 731 732 regulator_lock(rdev); 733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 734 regulator_unlock(rdev); 735 736 return ret; 737 } 738 static DEVICE_ATTR_RO(state); 739 740 static ssize_t status_show(struct device *dev, 741 struct device_attribute *attr, char *buf) 742 { 743 struct regulator_dev *rdev = dev_get_drvdata(dev); 744 int status; 745 char *label; 746 747 status = rdev->desc->ops->get_status(rdev); 748 if (status < 0) 749 return status; 750 751 switch (status) { 752 case REGULATOR_STATUS_OFF: 753 label = "off"; 754 break; 755 case REGULATOR_STATUS_ON: 756 label = "on"; 757 break; 758 case REGULATOR_STATUS_ERROR: 759 label = "error"; 760 break; 761 case REGULATOR_STATUS_FAST: 762 label = "fast"; 763 break; 764 case REGULATOR_STATUS_NORMAL: 765 label = "normal"; 766 break; 767 case REGULATOR_STATUS_IDLE: 768 label = "idle"; 769 break; 770 case REGULATOR_STATUS_STANDBY: 771 label = "standby"; 772 break; 773 case REGULATOR_STATUS_BYPASS: 774 label = "bypass"; 775 break; 776 case REGULATOR_STATUS_UNDEFINED: 777 label = "undefined"; 778 break; 779 default: 780 return -ERANGE; 781 } 782 783 return sprintf(buf, "%s\n", label); 784 } 785 static DEVICE_ATTR_RO(status); 786 787 static ssize_t min_microamps_show(struct device *dev, 788 struct device_attribute *attr, char *buf) 789 { 790 struct regulator_dev *rdev = dev_get_drvdata(dev); 791 792 if (!rdev->constraints) 793 return sprintf(buf, "constraint not defined\n"); 794 795 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 796 } 797 static DEVICE_ATTR_RO(min_microamps); 798 799 static ssize_t max_microamps_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct regulator_dev *rdev = dev_get_drvdata(dev); 803 804 if (!rdev->constraints) 805 return sprintf(buf, "constraint not defined\n"); 806 807 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 808 } 809 static DEVICE_ATTR_RO(max_microamps); 810 811 static ssize_t min_microvolts_show(struct device *dev, 812 struct device_attribute *attr, char *buf) 813 { 814 struct regulator_dev *rdev = dev_get_drvdata(dev); 815 816 if (!rdev->constraints) 817 return sprintf(buf, "constraint not defined\n"); 818 819 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 820 } 821 static DEVICE_ATTR_RO(min_microvolts); 822 823 static ssize_t max_microvolts_show(struct device *dev, 824 struct device_attribute *attr, char *buf) 825 { 826 struct regulator_dev *rdev = dev_get_drvdata(dev); 827 828 if (!rdev->constraints) 829 return sprintf(buf, "constraint not defined\n"); 830 831 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 832 } 833 static DEVICE_ATTR_RO(max_microvolts); 834 835 static ssize_t requested_microamps_show(struct device *dev, 836 struct device_attribute *attr, char *buf) 837 { 838 struct regulator_dev *rdev = dev_get_drvdata(dev); 839 struct regulator *regulator; 840 int uA = 0; 841 842 regulator_lock(rdev); 843 list_for_each_entry(regulator, &rdev->consumer_list, list) { 844 if (regulator->enable_count) 845 uA += regulator->uA_load; 846 } 847 regulator_unlock(rdev); 848 return sprintf(buf, "%d\n", uA); 849 } 850 static DEVICE_ATTR_RO(requested_microamps); 851 852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 853 char *buf) 854 { 855 struct regulator_dev *rdev = dev_get_drvdata(dev); 856 return sprintf(buf, "%d\n", rdev->use_count); 857 } 858 static DEVICE_ATTR_RO(num_users); 859 860 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 861 char *buf) 862 { 863 struct regulator_dev *rdev = dev_get_drvdata(dev); 864 865 switch (rdev->desc->type) { 866 case REGULATOR_VOLTAGE: 867 return sprintf(buf, "voltage\n"); 868 case REGULATOR_CURRENT: 869 return sprintf(buf, "current\n"); 870 } 871 return sprintf(buf, "unknown\n"); 872 } 873 static DEVICE_ATTR_RO(type); 874 875 static ssize_t suspend_mem_microvolts_show(struct device *dev, 876 struct device_attribute *attr, char *buf) 877 { 878 struct regulator_dev *rdev = dev_get_drvdata(dev); 879 880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 881 } 882 static DEVICE_ATTR_RO(suspend_mem_microvolts); 883 884 static ssize_t suspend_disk_microvolts_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct regulator_dev *rdev = dev_get_drvdata(dev); 888 889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 890 } 891 static DEVICE_ATTR_RO(suspend_disk_microvolts); 892 893 static ssize_t suspend_standby_microvolts_show(struct device *dev, 894 struct device_attribute *attr, char *buf) 895 { 896 struct regulator_dev *rdev = dev_get_drvdata(dev); 897 898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 899 } 900 static DEVICE_ATTR_RO(suspend_standby_microvolts); 901 902 static ssize_t suspend_mem_mode_show(struct device *dev, 903 struct device_attribute *attr, char *buf) 904 { 905 struct regulator_dev *rdev = dev_get_drvdata(dev); 906 907 return regulator_print_opmode(buf, 908 rdev->constraints->state_mem.mode); 909 } 910 static DEVICE_ATTR_RO(suspend_mem_mode); 911 912 static ssize_t suspend_disk_mode_show(struct device *dev, 913 struct device_attribute *attr, char *buf) 914 { 915 struct regulator_dev *rdev = dev_get_drvdata(dev); 916 917 return regulator_print_opmode(buf, 918 rdev->constraints->state_disk.mode); 919 } 920 static DEVICE_ATTR_RO(suspend_disk_mode); 921 922 static ssize_t suspend_standby_mode_show(struct device *dev, 923 struct device_attribute *attr, char *buf) 924 { 925 struct regulator_dev *rdev = dev_get_drvdata(dev); 926 927 return regulator_print_opmode(buf, 928 rdev->constraints->state_standby.mode); 929 } 930 static DEVICE_ATTR_RO(suspend_standby_mode); 931 932 static ssize_t suspend_mem_state_show(struct device *dev, 933 struct device_attribute *attr, char *buf) 934 { 935 struct regulator_dev *rdev = dev_get_drvdata(dev); 936 937 return regulator_print_state(buf, 938 rdev->constraints->state_mem.enabled); 939 } 940 static DEVICE_ATTR_RO(suspend_mem_state); 941 942 static ssize_t suspend_disk_state_show(struct device *dev, 943 struct device_attribute *attr, char *buf) 944 { 945 struct regulator_dev *rdev = dev_get_drvdata(dev); 946 947 return regulator_print_state(buf, 948 rdev->constraints->state_disk.enabled); 949 } 950 static DEVICE_ATTR_RO(suspend_disk_state); 951 952 static ssize_t suspend_standby_state_show(struct device *dev, 953 struct device_attribute *attr, char *buf) 954 { 955 struct regulator_dev *rdev = dev_get_drvdata(dev); 956 957 return regulator_print_state(buf, 958 rdev->constraints->state_standby.enabled); 959 } 960 static DEVICE_ATTR_RO(suspend_standby_state); 961 962 static ssize_t bypass_show(struct device *dev, 963 struct device_attribute *attr, char *buf) 964 { 965 struct regulator_dev *rdev = dev_get_drvdata(dev); 966 const char *report; 967 bool bypass; 968 int ret; 969 970 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 971 972 if (ret != 0) 973 report = "unknown"; 974 else if (bypass) 975 report = "enabled"; 976 else 977 report = "disabled"; 978 979 return sprintf(buf, "%s\n", report); 980 } 981 static DEVICE_ATTR_RO(bypass); 982 983 #define REGULATOR_ERROR_ATTR(name, bit) \ 984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 985 char *buf) \ 986 { \ 987 int ret; \ 988 unsigned int flags; \ 989 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 990 ret = _regulator_get_error_flags(rdev, &flags); \ 991 if (ret) \ 992 return ret; \ 993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 994 } \ 995 static DEVICE_ATTR_RO(name) 996 997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1006 1007 /* Calculate the new optimum regulator operating mode based on the new total 1008 * consumer load. All locks held by caller 1009 */ 1010 static int drms_uA_update(struct regulator_dev *rdev) 1011 { 1012 struct regulator *sibling; 1013 int current_uA = 0, output_uV, input_uV, err; 1014 unsigned int mode; 1015 1016 /* 1017 * first check to see if we can set modes at all, otherwise just 1018 * tell the consumer everything is OK. 1019 */ 1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1021 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1022 return 0; 1023 } 1024 1025 if (!rdev->desc->ops->get_optimum_mode && 1026 !rdev->desc->ops->set_load) 1027 return 0; 1028 1029 if (!rdev->desc->ops->set_mode && 1030 !rdev->desc->ops->set_load) 1031 return -EINVAL; 1032 1033 /* calc total requested load */ 1034 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1035 if (sibling->enable_count) 1036 current_uA += sibling->uA_load; 1037 } 1038 1039 current_uA += rdev->constraints->system_load; 1040 1041 if (rdev->desc->ops->set_load) { 1042 /* set the optimum mode for our new total regulator load */ 1043 err = rdev->desc->ops->set_load(rdev, current_uA); 1044 if (err < 0) 1045 rdev_err(rdev, "failed to set load %d: %pe\n", 1046 current_uA, ERR_PTR(err)); 1047 } else { 1048 /* 1049 * Unfortunately in some cases the constraints->valid_ops has 1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1051 * That's not really legit but we won't consider it a fatal 1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1053 * wasn't set. 1054 */ 1055 if (!rdev->constraints->valid_modes_mask) { 1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1057 return 0; 1058 } 1059 1060 /* get output voltage */ 1061 output_uV = regulator_get_voltage_rdev(rdev); 1062 1063 /* 1064 * Don't return an error; if regulator driver cares about 1065 * output_uV then it's up to the driver to validate. 1066 */ 1067 if (output_uV <= 0) 1068 rdev_dbg(rdev, "invalid output voltage found\n"); 1069 1070 /* get input voltage */ 1071 input_uV = 0; 1072 if (rdev->supply) 1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1074 if (input_uV <= 0) 1075 input_uV = rdev->constraints->input_uV; 1076 1077 /* 1078 * Don't return an error; if regulator driver cares about 1079 * input_uV then it's up to the driver to validate. 1080 */ 1081 if (input_uV <= 0) 1082 rdev_dbg(rdev, "invalid input voltage found\n"); 1083 1084 /* now get the optimum mode for our new total regulator load */ 1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1086 output_uV, current_uA); 1087 1088 /* check the new mode is allowed */ 1089 err = regulator_mode_constrain(rdev, &mode); 1090 if (err < 0) { 1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1092 current_uA, input_uV, output_uV, ERR_PTR(err)); 1093 return err; 1094 } 1095 1096 err = rdev->desc->ops->set_mode(rdev, mode); 1097 if (err < 0) 1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1099 mode, ERR_PTR(err)); 1100 } 1101 1102 return err; 1103 } 1104 1105 static int __suspend_set_state(struct regulator_dev *rdev, 1106 const struct regulator_state *rstate) 1107 { 1108 int ret = 0; 1109 1110 if (rstate->enabled == ENABLE_IN_SUSPEND && 1111 rdev->desc->ops->set_suspend_enable) 1112 ret = rdev->desc->ops->set_suspend_enable(rdev); 1113 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1114 rdev->desc->ops->set_suspend_disable) 1115 ret = rdev->desc->ops->set_suspend_disable(rdev); 1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1117 ret = 0; 1118 1119 if (ret < 0) { 1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1121 return ret; 1122 } 1123 1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1126 if (ret < 0) { 1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1128 return ret; 1129 } 1130 } 1131 1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1134 if (ret < 0) { 1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1136 return ret; 1137 } 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int suspend_set_initial_state(struct regulator_dev *rdev) 1144 { 1145 const struct regulator_state *rstate; 1146 1147 rstate = regulator_get_suspend_state_check(rdev, 1148 rdev->constraints->initial_state); 1149 if (!rstate) 1150 return 0; 1151 1152 return __suspend_set_state(rdev, rstate); 1153 } 1154 1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1156 static void print_constraints_debug(struct regulator_dev *rdev) 1157 { 1158 struct regulation_constraints *constraints = rdev->constraints; 1159 char buf[160] = ""; 1160 size_t len = sizeof(buf) - 1; 1161 int count = 0; 1162 int ret; 1163 1164 if (constraints->min_uV && constraints->max_uV) { 1165 if (constraints->min_uV == constraints->max_uV) 1166 count += scnprintf(buf + count, len - count, "%d mV ", 1167 constraints->min_uV / 1000); 1168 else 1169 count += scnprintf(buf + count, len - count, 1170 "%d <--> %d mV ", 1171 constraints->min_uV / 1000, 1172 constraints->max_uV / 1000); 1173 } 1174 1175 if (!constraints->min_uV || 1176 constraints->min_uV != constraints->max_uV) { 1177 ret = regulator_get_voltage_rdev(rdev); 1178 if (ret > 0) 1179 count += scnprintf(buf + count, len - count, 1180 "at %d mV ", ret / 1000); 1181 } 1182 1183 if (constraints->uV_offset) 1184 count += scnprintf(buf + count, len - count, "%dmV offset ", 1185 constraints->uV_offset / 1000); 1186 1187 if (constraints->min_uA && constraints->max_uA) { 1188 if (constraints->min_uA == constraints->max_uA) 1189 count += scnprintf(buf + count, len - count, "%d mA ", 1190 constraints->min_uA / 1000); 1191 else 1192 count += scnprintf(buf + count, len - count, 1193 "%d <--> %d mA ", 1194 constraints->min_uA / 1000, 1195 constraints->max_uA / 1000); 1196 } 1197 1198 if (!constraints->min_uA || 1199 constraints->min_uA != constraints->max_uA) { 1200 ret = _regulator_get_current_limit(rdev); 1201 if (ret > 0) 1202 count += scnprintf(buf + count, len - count, 1203 "at %d mA ", ret / 1000); 1204 } 1205 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1207 count += scnprintf(buf + count, len - count, "fast "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1209 count += scnprintf(buf + count, len - count, "normal "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1211 count += scnprintf(buf + count, len - count, "idle "); 1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1213 count += scnprintf(buf + count, len - count, "standby "); 1214 1215 if (!count) 1216 count = scnprintf(buf, len, "no parameters"); 1217 else 1218 --count; 1219 1220 count += scnprintf(buf + count, len - count, ", %s", 1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1222 1223 rdev_dbg(rdev, "%s\n", buf); 1224 } 1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1228 1229 static void print_constraints(struct regulator_dev *rdev) 1230 { 1231 struct regulation_constraints *constraints = rdev->constraints; 1232 1233 print_constraints_debug(rdev); 1234 1235 if ((constraints->min_uV != constraints->max_uV) && 1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1237 rdev_warn(rdev, 1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1239 } 1240 1241 static int machine_constraints_voltage(struct regulator_dev *rdev, 1242 struct regulation_constraints *constraints) 1243 { 1244 const struct regulator_ops *ops = rdev->desc->ops; 1245 int ret; 1246 1247 /* do we need to apply the constraint voltage */ 1248 if (rdev->constraints->apply_uV && 1249 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1250 int target_min, target_max; 1251 int current_uV = regulator_get_voltage_rdev(rdev); 1252 1253 if (current_uV == -ENOTRECOVERABLE) { 1254 /* This regulator can't be read and must be initialized */ 1255 rdev_info(rdev, "Setting %d-%duV\n", 1256 rdev->constraints->min_uV, 1257 rdev->constraints->max_uV); 1258 _regulator_do_set_voltage(rdev, 1259 rdev->constraints->min_uV, 1260 rdev->constraints->max_uV); 1261 current_uV = regulator_get_voltage_rdev(rdev); 1262 } 1263 1264 if (current_uV < 0) { 1265 if (current_uV != -EPROBE_DEFER) 1266 rdev_err(rdev, 1267 "failed to get the current voltage: %pe\n", 1268 ERR_PTR(current_uV)); 1269 return current_uV; 1270 } 1271 1272 /* 1273 * If we're below the minimum voltage move up to the 1274 * minimum voltage, if we're above the maximum voltage 1275 * then move down to the maximum. 1276 */ 1277 target_min = current_uV; 1278 target_max = current_uV; 1279 1280 if (current_uV < rdev->constraints->min_uV) { 1281 target_min = rdev->constraints->min_uV; 1282 target_max = rdev->constraints->min_uV; 1283 } 1284 1285 if (current_uV > rdev->constraints->max_uV) { 1286 target_min = rdev->constraints->max_uV; 1287 target_max = rdev->constraints->max_uV; 1288 } 1289 1290 if (target_min != current_uV || target_max != current_uV) { 1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1292 current_uV, target_min, target_max); 1293 ret = _regulator_do_set_voltage( 1294 rdev, target_min, target_max); 1295 if (ret < 0) { 1296 rdev_err(rdev, 1297 "failed to apply %d-%duV constraint: %pe\n", 1298 target_min, target_max, ERR_PTR(ret)); 1299 return ret; 1300 } 1301 } 1302 } 1303 1304 /* constrain machine-level voltage specs to fit 1305 * the actual range supported by this regulator. 1306 */ 1307 if (ops->list_voltage && rdev->desc->n_voltages) { 1308 int count = rdev->desc->n_voltages; 1309 int i; 1310 int min_uV = INT_MAX; 1311 int max_uV = INT_MIN; 1312 int cmin = constraints->min_uV; 1313 int cmax = constraints->max_uV; 1314 1315 /* it's safe to autoconfigure fixed-voltage supplies 1316 * and the constraints are used by list_voltage. 1317 */ 1318 if (count == 1 && !cmin) { 1319 cmin = 1; 1320 cmax = INT_MAX; 1321 constraints->min_uV = cmin; 1322 constraints->max_uV = cmax; 1323 } 1324 1325 /* voltage constraints are optional */ 1326 if ((cmin == 0) && (cmax == 0)) 1327 return 0; 1328 1329 /* else require explicit machine-level constraints */ 1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1331 rdev_err(rdev, "invalid voltage constraints\n"); 1332 return -EINVAL; 1333 } 1334 1335 /* no need to loop voltages if range is continuous */ 1336 if (rdev->desc->continuous_voltage_range) 1337 return 0; 1338 1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1340 for (i = 0; i < count; i++) { 1341 int value; 1342 1343 value = ops->list_voltage(rdev, i); 1344 if (value <= 0) 1345 continue; 1346 1347 /* maybe adjust [min_uV..max_uV] */ 1348 if (value >= cmin && value < min_uV) 1349 min_uV = value; 1350 if (value <= cmax && value > max_uV) 1351 max_uV = value; 1352 } 1353 1354 /* final: [min_uV..max_uV] valid iff constraints valid */ 1355 if (max_uV < min_uV) { 1356 rdev_err(rdev, 1357 "unsupportable voltage constraints %u-%uuV\n", 1358 min_uV, max_uV); 1359 return -EINVAL; 1360 } 1361 1362 /* use regulator's subset of machine constraints */ 1363 if (constraints->min_uV < min_uV) { 1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1365 constraints->min_uV, min_uV); 1366 constraints->min_uV = min_uV; 1367 } 1368 if (constraints->max_uV > max_uV) { 1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1370 constraints->max_uV, max_uV); 1371 constraints->max_uV = max_uV; 1372 } 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int machine_constraints_current(struct regulator_dev *rdev, 1379 struct regulation_constraints *constraints) 1380 { 1381 const struct regulator_ops *ops = rdev->desc->ops; 1382 int ret; 1383 1384 if (!constraints->min_uA && !constraints->max_uA) 1385 return 0; 1386 1387 if (constraints->min_uA > constraints->max_uA) { 1388 rdev_err(rdev, "Invalid current constraints\n"); 1389 return -EINVAL; 1390 } 1391 1392 if (!ops->set_current_limit || !ops->get_current_limit) { 1393 rdev_warn(rdev, "Operation of current configuration missing\n"); 1394 return 0; 1395 } 1396 1397 /* Set regulator current in constraints range */ 1398 ret = ops->set_current_limit(rdev, constraints->min_uA, 1399 constraints->max_uA); 1400 if (ret < 0) { 1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1402 return ret; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int _regulator_do_enable(struct regulator_dev *rdev); 1409 1410 static int notif_set_limit(struct regulator_dev *rdev, 1411 int (*set)(struct regulator_dev *, int, int, bool), 1412 int limit, int severity) 1413 { 1414 bool enable; 1415 1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1417 enable = false; 1418 limit = 0; 1419 } else { 1420 enable = true; 1421 } 1422 1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1424 limit = 0; 1425 1426 return set(rdev, limit, severity, enable); 1427 } 1428 1429 static int handle_notify_limits(struct regulator_dev *rdev, 1430 int (*set)(struct regulator_dev *, int, int, bool), 1431 struct notification_limit *limits) 1432 { 1433 int ret = 0; 1434 1435 if (!set) 1436 return -EOPNOTSUPP; 1437 1438 if (limits->prot) 1439 ret = notif_set_limit(rdev, set, limits->prot, 1440 REGULATOR_SEVERITY_PROT); 1441 if (ret) 1442 return ret; 1443 1444 if (limits->err) 1445 ret = notif_set_limit(rdev, set, limits->err, 1446 REGULATOR_SEVERITY_ERR); 1447 if (ret) 1448 return ret; 1449 1450 if (limits->warn) 1451 ret = notif_set_limit(rdev, set, limits->warn, 1452 REGULATOR_SEVERITY_WARN); 1453 1454 return ret; 1455 } 1456 /** 1457 * set_machine_constraints - sets regulator constraints 1458 * @rdev: regulator source 1459 * 1460 * Allows platform initialisation code to define and constrain 1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1462 * Constraints *must* be set by platform code in order for some 1463 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1464 * set_mode. 1465 */ 1466 static int set_machine_constraints(struct regulator_dev *rdev) 1467 { 1468 int ret = 0; 1469 const struct regulator_ops *ops = rdev->desc->ops; 1470 1471 ret = machine_constraints_voltage(rdev, rdev->constraints); 1472 if (ret != 0) 1473 return ret; 1474 1475 ret = machine_constraints_current(rdev, rdev->constraints); 1476 if (ret != 0) 1477 return ret; 1478 1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1480 ret = ops->set_input_current_limit(rdev, 1481 rdev->constraints->ilim_uA); 1482 if (ret < 0) { 1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1484 return ret; 1485 } 1486 } 1487 1488 /* do we need to setup our suspend state */ 1489 if (rdev->constraints->initial_state) { 1490 ret = suspend_set_initial_state(rdev); 1491 if (ret < 0) { 1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1493 return ret; 1494 } 1495 } 1496 1497 if (rdev->constraints->initial_mode) { 1498 if (!ops->set_mode) { 1499 rdev_err(rdev, "no set_mode operation\n"); 1500 return -EINVAL; 1501 } 1502 1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1504 if (ret < 0) { 1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1506 return ret; 1507 } 1508 } else if (rdev->constraints->system_load) { 1509 /* 1510 * We'll only apply the initial system load if an 1511 * initial mode wasn't specified. 1512 */ 1513 drms_uA_update(rdev); 1514 } 1515 1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1517 && ops->set_ramp_delay) { 1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1519 if (ret < 0) { 1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1521 return ret; 1522 } 1523 } 1524 1525 if (rdev->constraints->pull_down && ops->set_pull_down) { 1526 ret = ops->set_pull_down(rdev); 1527 if (ret < 0) { 1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1529 return ret; 1530 } 1531 } 1532 1533 if (rdev->constraints->soft_start && ops->set_soft_start) { 1534 ret = ops->set_soft_start(rdev); 1535 if (ret < 0) { 1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1537 return ret; 1538 } 1539 } 1540 1541 /* 1542 * Existing logic does not warn if over_current_protection is given as 1543 * a constraint but driver does not support that. I think we should 1544 * warn about this type of issues as it is possible someone changes 1545 * PMIC on board to another type - and the another PMIC's driver does 1546 * not support setting protection. Board composer may happily believe 1547 * the DT limits are respected - especially if the new PMIC HW also 1548 * supports protection but the driver does not. I won't change the logic 1549 * without hearing more experienced opinion on this though. 1550 * 1551 * If warning is seen as a good idea then we can merge handling the 1552 * over-curret protection and detection and get rid of this special 1553 * handling. 1554 */ 1555 if (rdev->constraints->over_current_protection 1556 && ops->set_over_current_protection) { 1557 int lim = rdev->constraints->over_curr_limits.prot; 1558 1559 ret = ops->set_over_current_protection(rdev, lim, 1560 REGULATOR_SEVERITY_PROT, 1561 true); 1562 if (ret < 0) { 1563 rdev_err(rdev, "failed to set over current protection: %pe\n", 1564 ERR_PTR(ret)); 1565 return ret; 1566 } 1567 } 1568 1569 if (rdev->constraints->over_current_detection) 1570 ret = handle_notify_limits(rdev, 1571 ops->set_over_current_protection, 1572 &rdev->constraints->over_curr_limits); 1573 if (ret) { 1574 if (ret != -EOPNOTSUPP) { 1575 rdev_err(rdev, "failed to set over current limits: %pe\n", 1576 ERR_PTR(ret)); 1577 return ret; 1578 } 1579 rdev_warn(rdev, 1580 "IC does not support requested over-current limits\n"); 1581 } 1582 1583 if (rdev->constraints->over_voltage_detection) 1584 ret = handle_notify_limits(rdev, 1585 ops->set_over_voltage_protection, 1586 &rdev->constraints->over_voltage_limits); 1587 if (ret) { 1588 if (ret != -EOPNOTSUPP) { 1589 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1590 ERR_PTR(ret)); 1591 return ret; 1592 } 1593 rdev_warn(rdev, 1594 "IC does not support requested over voltage limits\n"); 1595 } 1596 1597 if (rdev->constraints->under_voltage_detection) 1598 ret = handle_notify_limits(rdev, 1599 ops->set_under_voltage_protection, 1600 &rdev->constraints->under_voltage_limits); 1601 if (ret) { 1602 if (ret != -EOPNOTSUPP) { 1603 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1604 ERR_PTR(ret)); 1605 return ret; 1606 } 1607 rdev_warn(rdev, 1608 "IC does not support requested under voltage limits\n"); 1609 } 1610 1611 if (rdev->constraints->over_temp_detection) 1612 ret = handle_notify_limits(rdev, 1613 ops->set_thermal_protection, 1614 &rdev->constraints->temp_limits); 1615 if (ret) { 1616 if (ret != -EOPNOTSUPP) { 1617 rdev_err(rdev, "failed to set temperature limits %pe\n", 1618 ERR_PTR(ret)); 1619 return ret; 1620 } 1621 rdev_warn(rdev, 1622 "IC does not support requested temperature limits\n"); 1623 } 1624 1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1626 bool ad_state = (rdev->constraints->active_discharge == 1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1628 1629 ret = ops->set_active_discharge(rdev, ad_state); 1630 if (ret < 0) { 1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1632 return ret; 1633 } 1634 } 1635 1636 /* 1637 * If there is no mechanism for controlling the regulator then 1638 * flag it as always_on so we don't end up duplicating checks 1639 * for this so much. Note that we could control the state of 1640 * a supply to control the output on a regulator that has no 1641 * direct control. 1642 */ 1643 if (!rdev->ena_pin && !ops->enable) { 1644 if (rdev->supply_name && !rdev->supply) 1645 return -EPROBE_DEFER; 1646 1647 if (rdev->supply) 1648 rdev->constraints->always_on = 1649 rdev->supply->rdev->constraints->always_on; 1650 else 1651 rdev->constraints->always_on = true; 1652 } 1653 1654 /* If the constraints say the regulator should be on at this point 1655 * and we have control then make sure it is enabled. 1656 */ 1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1658 /* If we want to enable this regulator, make sure that we know 1659 * the supplying regulator. 1660 */ 1661 if (rdev->supply_name && !rdev->supply) 1662 return -EPROBE_DEFER; 1663 1664 /* If supplying regulator has already been enabled, 1665 * it's not intended to have use_count increment 1666 * when rdev is only boot-on. 1667 */ 1668 if (rdev->supply && 1669 (rdev->constraints->always_on || 1670 !regulator_is_enabled(rdev->supply))) { 1671 ret = regulator_enable(rdev->supply); 1672 if (ret < 0) { 1673 _regulator_put(rdev->supply); 1674 rdev->supply = NULL; 1675 return ret; 1676 } 1677 } 1678 1679 ret = _regulator_do_enable(rdev); 1680 if (ret < 0 && ret != -EINVAL) { 1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1682 return ret; 1683 } 1684 1685 if (rdev->constraints->always_on) 1686 rdev->use_count++; 1687 } else if (rdev->desc->off_on_delay) { 1688 rdev->last_off = ktime_get(); 1689 } 1690 1691 print_constraints(rdev); 1692 return 0; 1693 } 1694 1695 /** 1696 * set_supply - set regulator supply regulator 1697 * @rdev: regulator (locked) 1698 * @supply_rdev: supply regulator (locked)) 1699 * 1700 * Called by platform initialisation code to set the supply regulator for this 1701 * regulator. This ensures that a regulators supply will also be enabled by the 1702 * core if it's child is enabled. 1703 */ 1704 static int set_supply(struct regulator_dev *rdev, 1705 struct regulator_dev *supply_rdev) 1706 { 1707 int err; 1708 1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1710 1711 if (!try_module_get(supply_rdev->owner)) 1712 return -ENODEV; 1713 1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1715 if (rdev->supply == NULL) { 1716 module_put(supply_rdev->owner); 1717 err = -ENOMEM; 1718 return err; 1719 } 1720 supply_rdev->open_count++; 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1727 * @rdev: regulator source 1728 * @consumer_dev_name: dev_name() string for device supply applies to 1729 * @supply: symbolic name for supply 1730 * 1731 * Allows platform initialisation code to map physical regulator 1732 * sources to symbolic names for supplies for use by devices. Devices 1733 * should use these symbolic names to request regulators, avoiding the 1734 * need to provide board-specific regulator names as platform data. 1735 */ 1736 static int set_consumer_device_supply(struct regulator_dev *rdev, 1737 const char *consumer_dev_name, 1738 const char *supply) 1739 { 1740 struct regulator_map *node, *new_node; 1741 int has_dev; 1742 1743 if (supply == NULL) 1744 return -EINVAL; 1745 1746 if (consumer_dev_name != NULL) 1747 has_dev = 1; 1748 else 1749 has_dev = 0; 1750 1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1752 if (new_node == NULL) 1753 return -ENOMEM; 1754 1755 new_node->regulator = rdev; 1756 new_node->supply = supply; 1757 1758 if (has_dev) { 1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1760 if (new_node->dev_name == NULL) { 1761 kfree(new_node); 1762 return -ENOMEM; 1763 } 1764 } 1765 1766 mutex_lock(®ulator_list_mutex); 1767 list_for_each_entry(node, ®ulator_map_list, list) { 1768 if (node->dev_name && consumer_dev_name) { 1769 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1770 continue; 1771 } else if (node->dev_name || consumer_dev_name) { 1772 continue; 1773 } 1774 1775 if (strcmp(node->supply, supply) != 0) 1776 continue; 1777 1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1779 consumer_dev_name, 1780 dev_name(&node->regulator->dev), 1781 node->regulator->desc->name, 1782 supply, 1783 dev_name(&rdev->dev), rdev_get_name(rdev)); 1784 goto fail; 1785 } 1786 1787 list_add(&new_node->list, ®ulator_map_list); 1788 mutex_unlock(®ulator_list_mutex); 1789 1790 return 0; 1791 1792 fail: 1793 mutex_unlock(®ulator_list_mutex); 1794 kfree(new_node->dev_name); 1795 kfree(new_node); 1796 return -EBUSY; 1797 } 1798 1799 static void unset_regulator_supplies(struct regulator_dev *rdev) 1800 { 1801 struct regulator_map *node, *n; 1802 1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1804 if (rdev == node->regulator) { 1805 list_del(&node->list); 1806 kfree(node->dev_name); 1807 kfree(node); 1808 } 1809 } 1810 } 1811 1812 #ifdef CONFIG_DEBUG_FS 1813 static ssize_t constraint_flags_read_file(struct file *file, 1814 char __user *user_buf, 1815 size_t count, loff_t *ppos) 1816 { 1817 const struct regulator *regulator = file->private_data; 1818 const struct regulation_constraints *c = regulator->rdev->constraints; 1819 char *buf; 1820 ssize_t ret; 1821 1822 if (!c) 1823 return 0; 1824 1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1826 if (!buf) 1827 return -ENOMEM; 1828 1829 ret = snprintf(buf, PAGE_SIZE, 1830 "always_on: %u\n" 1831 "boot_on: %u\n" 1832 "apply_uV: %u\n" 1833 "ramp_disable: %u\n" 1834 "soft_start: %u\n" 1835 "pull_down: %u\n" 1836 "over_current_protection: %u\n", 1837 c->always_on, 1838 c->boot_on, 1839 c->apply_uV, 1840 c->ramp_disable, 1841 c->soft_start, 1842 c->pull_down, 1843 c->over_current_protection); 1844 1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1846 kfree(buf); 1847 1848 return ret; 1849 } 1850 1851 #endif 1852 1853 static const struct file_operations constraint_flags_fops = { 1854 #ifdef CONFIG_DEBUG_FS 1855 .open = simple_open, 1856 .read = constraint_flags_read_file, 1857 .llseek = default_llseek, 1858 #endif 1859 }; 1860 1861 #define REG_STR_SIZE 64 1862 1863 static struct regulator *create_regulator(struct regulator_dev *rdev, 1864 struct device *dev, 1865 const char *supply_name) 1866 { 1867 struct regulator *regulator; 1868 int err = 0; 1869 1870 lockdep_assert_held_once(&rdev->mutex.base); 1871 1872 if (dev) { 1873 char buf[REG_STR_SIZE]; 1874 int size; 1875 1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1877 dev->kobj.name, supply_name); 1878 if (size >= REG_STR_SIZE) 1879 return NULL; 1880 1881 supply_name = kstrdup(buf, GFP_KERNEL); 1882 if (supply_name == NULL) 1883 return NULL; 1884 } else { 1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1886 if (supply_name == NULL) 1887 return NULL; 1888 } 1889 1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1891 if (regulator == NULL) { 1892 kfree_const(supply_name); 1893 return NULL; 1894 } 1895 1896 regulator->rdev = rdev; 1897 regulator->supply_name = supply_name; 1898 1899 list_add(®ulator->list, &rdev->consumer_list); 1900 1901 if (dev) { 1902 regulator->dev = dev; 1903 1904 /* Add a link to the device sysfs entry */ 1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1906 supply_name); 1907 if (err) { 1908 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1909 dev->kobj.name, ERR_PTR(err)); 1910 /* non-fatal */ 1911 } 1912 } 1913 1914 if (err != -EEXIST) 1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1916 if (IS_ERR(regulator->debugfs)) 1917 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1918 1919 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1920 ®ulator->uA_load); 1921 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1922 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1923 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1924 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1925 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1926 regulator, &constraint_flags_fops); 1927 1928 /* 1929 * Check now if the regulator is an always on regulator - if 1930 * it is then we don't need to do nearly so much work for 1931 * enable/disable calls. 1932 */ 1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1934 _regulator_is_enabled(rdev)) 1935 regulator->always_on = true; 1936 1937 return regulator; 1938 } 1939 1940 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1941 { 1942 if (rdev->constraints && rdev->constraints->enable_time) 1943 return rdev->constraints->enable_time; 1944 if (rdev->desc->ops->enable_time) 1945 return rdev->desc->ops->enable_time(rdev); 1946 return rdev->desc->enable_time; 1947 } 1948 1949 static struct regulator_supply_alias *regulator_find_supply_alias( 1950 struct device *dev, const char *supply) 1951 { 1952 struct regulator_supply_alias *map; 1953 1954 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1956 return map; 1957 1958 return NULL; 1959 } 1960 1961 static void regulator_supply_alias(struct device **dev, const char **supply) 1962 { 1963 struct regulator_supply_alias *map; 1964 1965 map = regulator_find_supply_alias(*dev, *supply); 1966 if (map) { 1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1968 *supply, map->alias_supply, 1969 dev_name(map->alias_dev)); 1970 *dev = map->alias_dev; 1971 *supply = map->alias_supply; 1972 } 1973 } 1974 1975 static int regulator_match(struct device *dev, const void *data) 1976 { 1977 struct regulator_dev *r = dev_to_rdev(dev); 1978 1979 return strcmp(rdev_get_name(r), data) == 0; 1980 } 1981 1982 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1983 { 1984 struct device *dev; 1985 1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1987 1988 return dev ? dev_to_rdev(dev) : NULL; 1989 } 1990 1991 /** 1992 * regulator_dev_lookup - lookup a regulator device. 1993 * @dev: device for regulator "consumer". 1994 * @supply: Supply name or regulator ID. 1995 * 1996 * If successful, returns a struct regulator_dev that corresponds to the name 1997 * @supply and with the embedded struct device refcount incremented by one. 1998 * The refcount must be dropped by calling put_device(). 1999 * On failure one of the following ERR-PTR-encoded values is returned: 2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 2001 * in the future. 2002 */ 2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2004 const char *supply) 2005 { 2006 struct regulator_dev *r = NULL; 2007 struct device_node *node; 2008 struct regulator_map *map; 2009 const char *devname = NULL; 2010 2011 regulator_supply_alias(&dev, &supply); 2012 2013 /* first do a dt based lookup */ 2014 if (dev && dev->of_node) { 2015 node = of_get_regulator(dev, supply); 2016 if (node) { 2017 r = of_find_regulator_by_node(node); 2018 of_node_put(node); 2019 if (r) 2020 return r; 2021 2022 /* 2023 * We have a node, but there is no device. 2024 * assume it has not registered yet. 2025 */ 2026 return ERR_PTR(-EPROBE_DEFER); 2027 } 2028 } 2029 2030 /* if not found, try doing it non-dt way */ 2031 if (dev) 2032 devname = dev_name(dev); 2033 2034 mutex_lock(®ulator_list_mutex); 2035 list_for_each_entry(map, ®ulator_map_list, list) { 2036 /* If the mapping has a device set up it must match */ 2037 if (map->dev_name && 2038 (!devname || strcmp(map->dev_name, devname))) 2039 continue; 2040 2041 if (strcmp(map->supply, supply) == 0 && 2042 get_device(&map->regulator->dev)) { 2043 r = map->regulator; 2044 break; 2045 } 2046 } 2047 mutex_unlock(®ulator_list_mutex); 2048 2049 if (r) 2050 return r; 2051 2052 r = regulator_lookup_by_name(supply); 2053 if (r) 2054 return r; 2055 2056 return ERR_PTR(-ENODEV); 2057 } 2058 2059 static int regulator_resolve_supply(struct regulator_dev *rdev) 2060 { 2061 struct regulator_dev *r; 2062 struct device *dev = rdev->dev.parent; 2063 struct ww_acquire_ctx ww_ctx; 2064 int ret = 0; 2065 2066 /* No supply to resolve? */ 2067 if (!rdev->supply_name) 2068 return 0; 2069 2070 /* Supply already resolved? (fast-path without locking contention) */ 2071 if (rdev->supply) 2072 return 0; 2073 2074 r = regulator_dev_lookup(dev, rdev->supply_name); 2075 if (IS_ERR(r)) { 2076 ret = PTR_ERR(r); 2077 2078 /* Did the lookup explicitly defer for us? */ 2079 if (ret == -EPROBE_DEFER) 2080 goto out; 2081 2082 if (have_full_constraints()) { 2083 r = dummy_regulator_rdev; 2084 get_device(&r->dev); 2085 } else { 2086 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2087 rdev->supply_name, rdev->desc->name); 2088 ret = -EPROBE_DEFER; 2089 goto out; 2090 } 2091 } 2092 2093 if (r == rdev) { 2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2095 rdev->desc->name, rdev->supply_name); 2096 if (!have_full_constraints()) { 2097 ret = -EINVAL; 2098 goto out; 2099 } 2100 r = dummy_regulator_rdev; 2101 get_device(&r->dev); 2102 } 2103 2104 /* 2105 * If the supply's parent device is not the same as the 2106 * regulator's parent device, then ensure the parent device 2107 * is bound before we resolve the supply, in case the parent 2108 * device get probe deferred and unregisters the supply. 2109 */ 2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2111 if (!device_is_bound(r->dev.parent)) { 2112 put_device(&r->dev); 2113 ret = -EPROBE_DEFER; 2114 goto out; 2115 } 2116 } 2117 2118 /* Recursively resolve the supply of the supply */ 2119 ret = regulator_resolve_supply(r); 2120 if (ret < 0) { 2121 put_device(&r->dev); 2122 goto out; 2123 } 2124 2125 /* 2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2127 * between rdev->supply null check and setting rdev->supply in 2128 * set_supply() from concurrent tasks. 2129 */ 2130 regulator_lock_two(rdev, r, &ww_ctx); 2131 2132 /* Supply just resolved by a concurrent task? */ 2133 if (rdev->supply) { 2134 regulator_unlock_two(rdev, r, &ww_ctx); 2135 put_device(&r->dev); 2136 goto out; 2137 } 2138 2139 ret = set_supply(rdev, r); 2140 if (ret < 0) { 2141 regulator_unlock_two(rdev, r, &ww_ctx); 2142 put_device(&r->dev); 2143 goto out; 2144 } 2145 2146 regulator_unlock_two(rdev, r, &ww_ctx); 2147 2148 /* 2149 * In set_machine_constraints() we may have turned this regulator on 2150 * but we couldn't propagate to the supply if it hadn't been resolved 2151 * yet. Do it now. 2152 */ 2153 if (rdev->use_count) { 2154 ret = regulator_enable(rdev->supply); 2155 if (ret < 0) { 2156 _regulator_put(rdev->supply); 2157 rdev->supply = NULL; 2158 goto out; 2159 } 2160 } 2161 2162 out: 2163 return ret; 2164 } 2165 2166 /* Internal regulator request function */ 2167 struct regulator *_regulator_get(struct device *dev, const char *id, 2168 enum regulator_get_type get_type) 2169 { 2170 struct regulator_dev *rdev; 2171 struct regulator *regulator; 2172 struct device_link *link; 2173 int ret; 2174 2175 if (get_type >= MAX_GET_TYPE) { 2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2177 return ERR_PTR(-EINVAL); 2178 } 2179 2180 if (id == NULL) { 2181 pr_err("get() with no identifier\n"); 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 rdev = regulator_dev_lookup(dev, id); 2186 if (IS_ERR(rdev)) { 2187 ret = PTR_ERR(rdev); 2188 2189 /* 2190 * If regulator_dev_lookup() fails with error other 2191 * than -ENODEV our job here is done, we simply return it. 2192 */ 2193 if (ret != -ENODEV) 2194 return ERR_PTR(ret); 2195 2196 if (!have_full_constraints()) { 2197 dev_warn(dev, 2198 "incomplete constraints, dummy supplies not allowed\n"); 2199 return ERR_PTR(-ENODEV); 2200 } 2201 2202 switch (get_type) { 2203 case NORMAL_GET: 2204 /* 2205 * Assume that a regulator is physically present and 2206 * enabled, even if it isn't hooked up, and just 2207 * provide a dummy. 2208 */ 2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2210 rdev = dummy_regulator_rdev; 2211 get_device(&rdev->dev); 2212 break; 2213 2214 case EXCLUSIVE_GET: 2215 dev_warn(dev, 2216 "dummy supplies not allowed for exclusive requests\n"); 2217 fallthrough; 2218 2219 default: 2220 return ERR_PTR(-ENODEV); 2221 } 2222 } 2223 2224 if (rdev->exclusive) { 2225 regulator = ERR_PTR(-EPERM); 2226 put_device(&rdev->dev); 2227 return regulator; 2228 } 2229 2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2231 regulator = ERR_PTR(-EBUSY); 2232 put_device(&rdev->dev); 2233 return regulator; 2234 } 2235 2236 mutex_lock(®ulator_list_mutex); 2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2238 mutex_unlock(®ulator_list_mutex); 2239 2240 if (ret != 0) { 2241 regulator = ERR_PTR(-EPROBE_DEFER); 2242 put_device(&rdev->dev); 2243 return regulator; 2244 } 2245 2246 ret = regulator_resolve_supply(rdev); 2247 if (ret < 0) { 2248 regulator = ERR_PTR(ret); 2249 put_device(&rdev->dev); 2250 return regulator; 2251 } 2252 2253 if (!try_module_get(rdev->owner)) { 2254 regulator = ERR_PTR(-EPROBE_DEFER); 2255 put_device(&rdev->dev); 2256 return regulator; 2257 } 2258 2259 regulator_lock(rdev); 2260 regulator = create_regulator(rdev, dev, id); 2261 regulator_unlock(rdev); 2262 if (regulator == NULL) { 2263 regulator = ERR_PTR(-ENOMEM); 2264 module_put(rdev->owner); 2265 put_device(&rdev->dev); 2266 return regulator; 2267 } 2268 2269 rdev->open_count++; 2270 if (get_type == EXCLUSIVE_GET) { 2271 rdev->exclusive = 1; 2272 2273 ret = _regulator_is_enabled(rdev); 2274 if (ret > 0) { 2275 rdev->use_count = 1; 2276 regulator->enable_count = 1; 2277 2278 /* Propagate the regulator state to its supply */ 2279 if (rdev->supply) { 2280 ret = regulator_enable(rdev->supply); 2281 if (ret < 0) { 2282 destroy_regulator(regulator); 2283 module_put(rdev->owner); 2284 put_device(&rdev->dev); 2285 return ERR_PTR(ret); 2286 } 2287 } 2288 } else { 2289 rdev->use_count = 0; 2290 regulator->enable_count = 0; 2291 } 2292 } 2293 2294 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2295 if (!IS_ERR_OR_NULL(link)) 2296 regulator->device_link = true; 2297 2298 return regulator; 2299 } 2300 2301 /** 2302 * regulator_get - lookup and obtain a reference to a regulator. 2303 * @dev: device for regulator "consumer" 2304 * @id: Supply name or regulator ID. 2305 * 2306 * Returns a struct regulator corresponding to the regulator producer, 2307 * or IS_ERR() condition containing errno. 2308 * 2309 * Use of supply names configured via set_consumer_device_supply() is 2310 * strongly encouraged. It is recommended that the supply name used 2311 * should match the name used for the supply and/or the relevant 2312 * device pins in the datasheet. 2313 */ 2314 struct regulator *regulator_get(struct device *dev, const char *id) 2315 { 2316 return _regulator_get(dev, id, NORMAL_GET); 2317 } 2318 EXPORT_SYMBOL_GPL(regulator_get); 2319 2320 /** 2321 * regulator_get_exclusive - obtain exclusive access to a regulator. 2322 * @dev: device for regulator "consumer" 2323 * @id: Supply name or regulator ID. 2324 * 2325 * Returns a struct regulator corresponding to the regulator producer, 2326 * or IS_ERR() condition containing errno. Other consumers will be 2327 * unable to obtain this regulator while this reference is held and the 2328 * use count for the regulator will be initialised to reflect the current 2329 * state of the regulator. 2330 * 2331 * This is intended for use by consumers which cannot tolerate shared 2332 * use of the regulator such as those which need to force the 2333 * regulator off for correct operation of the hardware they are 2334 * controlling. 2335 * 2336 * Use of supply names configured via set_consumer_device_supply() is 2337 * strongly encouraged. It is recommended that the supply name used 2338 * should match the name used for the supply and/or the relevant 2339 * device pins in the datasheet. 2340 */ 2341 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2342 { 2343 return _regulator_get(dev, id, EXCLUSIVE_GET); 2344 } 2345 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2346 2347 /** 2348 * regulator_get_optional - obtain optional access to a regulator. 2349 * @dev: device for regulator "consumer" 2350 * @id: Supply name or regulator ID. 2351 * 2352 * Returns a struct regulator corresponding to the regulator producer, 2353 * or IS_ERR() condition containing errno. 2354 * 2355 * This is intended for use by consumers for devices which can have 2356 * some supplies unconnected in normal use, such as some MMC devices. 2357 * It can allow the regulator core to provide stub supplies for other 2358 * supplies requested using normal regulator_get() calls without 2359 * disrupting the operation of drivers that can handle absent 2360 * supplies. 2361 * 2362 * Use of supply names configured via set_consumer_device_supply() is 2363 * strongly encouraged. It is recommended that the supply name used 2364 * should match the name used for the supply and/or the relevant 2365 * device pins in the datasheet. 2366 */ 2367 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2368 { 2369 return _regulator_get(dev, id, OPTIONAL_GET); 2370 } 2371 EXPORT_SYMBOL_GPL(regulator_get_optional); 2372 2373 static void destroy_regulator(struct regulator *regulator) 2374 { 2375 struct regulator_dev *rdev = regulator->rdev; 2376 2377 debugfs_remove_recursive(regulator->debugfs); 2378 2379 if (regulator->dev) { 2380 if (regulator->device_link) 2381 device_link_remove(regulator->dev, &rdev->dev); 2382 2383 /* remove any sysfs entries */ 2384 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2385 } 2386 2387 regulator_lock(rdev); 2388 list_del(®ulator->list); 2389 2390 rdev->open_count--; 2391 rdev->exclusive = 0; 2392 regulator_unlock(rdev); 2393 2394 kfree_const(regulator->supply_name); 2395 kfree(regulator); 2396 } 2397 2398 /* regulator_list_mutex lock held by regulator_put() */ 2399 static void _regulator_put(struct regulator *regulator) 2400 { 2401 struct regulator_dev *rdev; 2402 2403 if (IS_ERR_OR_NULL(regulator)) 2404 return; 2405 2406 lockdep_assert_held_once(®ulator_list_mutex); 2407 2408 /* Docs say you must disable before calling regulator_put() */ 2409 WARN_ON(regulator->enable_count); 2410 2411 rdev = regulator->rdev; 2412 2413 destroy_regulator(regulator); 2414 2415 module_put(rdev->owner); 2416 put_device(&rdev->dev); 2417 } 2418 2419 /** 2420 * regulator_put - "free" the regulator source 2421 * @regulator: regulator source 2422 * 2423 * Note: drivers must ensure that all regulator_enable calls made on this 2424 * regulator source are balanced by regulator_disable calls prior to calling 2425 * this function. 2426 */ 2427 void regulator_put(struct regulator *regulator) 2428 { 2429 mutex_lock(®ulator_list_mutex); 2430 _regulator_put(regulator); 2431 mutex_unlock(®ulator_list_mutex); 2432 } 2433 EXPORT_SYMBOL_GPL(regulator_put); 2434 2435 /** 2436 * regulator_register_supply_alias - Provide device alias for supply lookup 2437 * 2438 * @dev: device that will be given as the regulator "consumer" 2439 * @id: Supply name or regulator ID 2440 * @alias_dev: device that should be used to lookup the supply 2441 * @alias_id: Supply name or regulator ID that should be used to lookup the 2442 * supply 2443 * 2444 * All lookups for id on dev will instead be conducted for alias_id on 2445 * alias_dev. 2446 */ 2447 int regulator_register_supply_alias(struct device *dev, const char *id, 2448 struct device *alias_dev, 2449 const char *alias_id) 2450 { 2451 struct regulator_supply_alias *map; 2452 2453 map = regulator_find_supply_alias(dev, id); 2454 if (map) 2455 return -EEXIST; 2456 2457 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2458 if (!map) 2459 return -ENOMEM; 2460 2461 map->src_dev = dev; 2462 map->src_supply = id; 2463 map->alias_dev = alias_dev; 2464 map->alias_supply = alias_id; 2465 2466 list_add(&map->list, ®ulator_supply_alias_list); 2467 2468 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2469 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2470 2471 return 0; 2472 } 2473 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2474 2475 /** 2476 * regulator_unregister_supply_alias - Remove device alias 2477 * 2478 * @dev: device that will be given as the regulator "consumer" 2479 * @id: Supply name or regulator ID 2480 * 2481 * Remove a lookup alias if one exists for id on dev. 2482 */ 2483 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2484 { 2485 struct regulator_supply_alias *map; 2486 2487 map = regulator_find_supply_alias(dev, id); 2488 if (map) { 2489 list_del(&map->list); 2490 kfree(map); 2491 } 2492 } 2493 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2494 2495 /** 2496 * regulator_bulk_register_supply_alias - register multiple aliases 2497 * 2498 * @dev: device that will be given as the regulator "consumer" 2499 * @id: List of supply names or regulator IDs 2500 * @alias_dev: device that should be used to lookup the supply 2501 * @alias_id: List of supply names or regulator IDs that should be used to 2502 * lookup the supply 2503 * @num_id: Number of aliases to register 2504 * 2505 * @return 0 on success, an errno on failure. 2506 * 2507 * This helper function allows drivers to register several supply 2508 * aliases in one operation. If any of the aliases cannot be 2509 * registered any aliases that were registered will be removed 2510 * before returning to the caller. 2511 */ 2512 int regulator_bulk_register_supply_alias(struct device *dev, 2513 const char *const *id, 2514 struct device *alias_dev, 2515 const char *const *alias_id, 2516 int num_id) 2517 { 2518 int i; 2519 int ret; 2520 2521 for (i = 0; i < num_id; ++i) { 2522 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2523 alias_id[i]); 2524 if (ret < 0) 2525 goto err; 2526 } 2527 2528 return 0; 2529 2530 err: 2531 dev_err(dev, 2532 "Failed to create supply alias %s,%s -> %s,%s\n", 2533 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2534 2535 while (--i >= 0) 2536 regulator_unregister_supply_alias(dev, id[i]); 2537 2538 return ret; 2539 } 2540 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2541 2542 /** 2543 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2544 * 2545 * @dev: device that will be given as the regulator "consumer" 2546 * @id: List of supply names or regulator IDs 2547 * @num_id: Number of aliases to unregister 2548 * 2549 * This helper function allows drivers to unregister several supply 2550 * aliases in one operation. 2551 */ 2552 void regulator_bulk_unregister_supply_alias(struct device *dev, 2553 const char *const *id, 2554 int num_id) 2555 { 2556 int i; 2557 2558 for (i = 0; i < num_id; ++i) 2559 regulator_unregister_supply_alias(dev, id[i]); 2560 } 2561 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2562 2563 2564 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2565 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2566 const struct regulator_config *config) 2567 { 2568 struct regulator_enable_gpio *pin, *new_pin; 2569 struct gpio_desc *gpiod; 2570 2571 gpiod = config->ena_gpiod; 2572 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2573 2574 mutex_lock(®ulator_list_mutex); 2575 2576 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2577 if (pin->gpiod == gpiod) { 2578 rdev_dbg(rdev, "GPIO is already used\n"); 2579 goto update_ena_gpio_to_rdev; 2580 } 2581 } 2582 2583 if (new_pin == NULL) { 2584 mutex_unlock(®ulator_list_mutex); 2585 return -ENOMEM; 2586 } 2587 2588 pin = new_pin; 2589 new_pin = NULL; 2590 2591 pin->gpiod = gpiod; 2592 list_add(&pin->list, ®ulator_ena_gpio_list); 2593 2594 update_ena_gpio_to_rdev: 2595 pin->request_count++; 2596 rdev->ena_pin = pin; 2597 2598 mutex_unlock(®ulator_list_mutex); 2599 kfree(new_pin); 2600 2601 return 0; 2602 } 2603 2604 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2605 { 2606 struct regulator_enable_gpio *pin, *n; 2607 2608 if (!rdev->ena_pin) 2609 return; 2610 2611 /* Free the GPIO only in case of no use */ 2612 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2613 if (pin != rdev->ena_pin) 2614 continue; 2615 2616 if (--pin->request_count) 2617 break; 2618 2619 gpiod_put(pin->gpiod); 2620 list_del(&pin->list); 2621 kfree(pin); 2622 break; 2623 } 2624 2625 rdev->ena_pin = NULL; 2626 } 2627 2628 /** 2629 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2630 * @rdev: regulator_dev structure 2631 * @enable: enable GPIO at initial use? 2632 * 2633 * GPIO is enabled in case of initial use. (enable_count is 0) 2634 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2635 */ 2636 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2637 { 2638 struct regulator_enable_gpio *pin = rdev->ena_pin; 2639 2640 if (!pin) 2641 return -EINVAL; 2642 2643 if (enable) { 2644 /* Enable GPIO at initial use */ 2645 if (pin->enable_count == 0) 2646 gpiod_set_value_cansleep(pin->gpiod, 1); 2647 2648 pin->enable_count++; 2649 } else { 2650 if (pin->enable_count > 1) { 2651 pin->enable_count--; 2652 return 0; 2653 } 2654 2655 /* Disable GPIO if not used */ 2656 if (pin->enable_count <= 1) { 2657 gpiod_set_value_cansleep(pin->gpiod, 0); 2658 pin->enable_count = 0; 2659 } 2660 } 2661 2662 return 0; 2663 } 2664 2665 /** 2666 * _regulator_delay_helper - a delay helper function 2667 * @delay: time to delay in microseconds 2668 * 2669 * Delay for the requested amount of time as per the guidelines in: 2670 * 2671 * Documentation/timers/timers-howto.rst 2672 * 2673 * The assumption here is that these regulator operations will never used in 2674 * atomic context and therefore sleeping functions can be used. 2675 */ 2676 static void _regulator_delay_helper(unsigned int delay) 2677 { 2678 unsigned int ms = delay / 1000; 2679 unsigned int us = delay % 1000; 2680 2681 if (ms > 0) { 2682 /* 2683 * For small enough values, handle super-millisecond 2684 * delays in the usleep_range() call below. 2685 */ 2686 if (ms < 20) 2687 us += ms * 1000; 2688 else 2689 msleep(ms); 2690 } 2691 2692 /* 2693 * Give the scheduler some room to coalesce with any other 2694 * wakeup sources. For delays shorter than 10 us, don't even 2695 * bother setting up high-resolution timers and just busy- 2696 * loop. 2697 */ 2698 if (us >= 10) 2699 usleep_range(us, us + 100); 2700 else 2701 udelay(us); 2702 } 2703 2704 /** 2705 * _regulator_check_status_enabled 2706 * 2707 * A helper function to check if the regulator status can be interpreted 2708 * as 'regulator is enabled'. 2709 * @rdev: the regulator device to check 2710 * 2711 * Return: 2712 * * 1 - if status shows regulator is in enabled state 2713 * * 0 - if not enabled state 2714 * * Error Value - as received from ops->get_status() 2715 */ 2716 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2717 { 2718 int ret = rdev->desc->ops->get_status(rdev); 2719 2720 if (ret < 0) { 2721 rdev_info(rdev, "get_status returned error: %d\n", ret); 2722 return ret; 2723 } 2724 2725 switch (ret) { 2726 case REGULATOR_STATUS_OFF: 2727 case REGULATOR_STATUS_ERROR: 2728 case REGULATOR_STATUS_UNDEFINED: 2729 return 0; 2730 default: 2731 return 1; 2732 } 2733 } 2734 2735 static int _regulator_do_enable(struct regulator_dev *rdev) 2736 { 2737 int ret, delay; 2738 2739 /* Query before enabling in case configuration dependent. */ 2740 ret = _regulator_get_enable_time(rdev); 2741 if (ret >= 0) { 2742 delay = ret; 2743 } else { 2744 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2745 delay = 0; 2746 } 2747 2748 trace_regulator_enable(rdev_get_name(rdev)); 2749 2750 if (rdev->desc->off_on_delay) { 2751 /* if needed, keep a distance of off_on_delay from last time 2752 * this regulator was disabled. 2753 */ 2754 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2755 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2756 2757 if (remaining > 0) 2758 _regulator_delay_helper(remaining); 2759 } 2760 2761 if (rdev->ena_pin) { 2762 if (!rdev->ena_gpio_state) { 2763 ret = regulator_ena_gpio_ctrl(rdev, true); 2764 if (ret < 0) 2765 return ret; 2766 rdev->ena_gpio_state = 1; 2767 } 2768 } else if (rdev->desc->ops->enable) { 2769 ret = rdev->desc->ops->enable(rdev); 2770 if (ret < 0) 2771 return ret; 2772 } else { 2773 return -EINVAL; 2774 } 2775 2776 /* Allow the regulator to ramp; it would be useful to extend 2777 * this for bulk operations so that the regulators can ramp 2778 * together. 2779 */ 2780 trace_regulator_enable_delay(rdev_get_name(rdev)); 2781 2782 /* If poll_enabled_time is set, poll upto the delay calculated 2783 * above, delaying poll_enabled_time uS to check if the regulator 2784 * actually got enabled. 2785 * If the regulator isn't enabled after our delay helper has expired, 2786 * return -ETIMEDOUT. 2787 */ 2788 if (rdev->desc->poll_enabled_time) { 2789 int time_remaining = delay; 2790 2791 while (time_remaining > 0) { 2792 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2793 2794 if (rdev->desc->ops->get_status) { 2795 ret = _regulator_check_status_enabled(rdev); 2796 if (ret < 0) 2797 return ret; 2798 else if (ret) 2799 break; 2800 } else if (rdev->desc->ops->is_enabled(rdev)) 2801 break; 2802 2803 time_remaining -= rdev->desc->poll_enabled_time; 2804 } 2805 2806 if (time_remaining <= 0) { 2807 rdev_err(rdev, "Enabled check timed out\n"); 2808 return -ETIMEDOUT; 2809 } 2810 } else { 2811 _regulator_delay_helper(delay); 2812 } 2813 2814 trace_regulator_enable_complete(rdev_get_name(rdev)); 2815 2816 return 0; 2817 } 2818 2819 /** 2820 * _regulator_handle_consumer_enable - handle that a consumer enabled 2821 * @regulator: regulator source 2822 * 2823 * Some things on a regulator consumer (like the contribution towards total 2824 * load on the regulator) only have an effect when the consumer wants the 2825 * regulator enabled. Explained in example with two consumers of the same 2826 * regulator: 2827 * consumer A: set_load(100); => total load = 0 2828 * consumer A: regulator_enable(); => total load = 100 2829 * consumer B: set_load(1000); => total load = 100 2830 * consumer B: regulator_enable(); => total load = 1100 2831 * consumer A: regulator_disable(); => total_load = 1000 2832 * 2833 * This function (together with _regulator_handle_consumer_disable) is 2834 * responsible for keeping track of the refcount for a given regulator consumer 2835 * and applying / unapplying these things. 2836 * 2837 * Returns 0 upon no error; -error upon error. 2838 */ 2839 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2840 { 2841 int ret; 2842 struct regulator_dev *rdev = regulator->rdev; 2843 2844 lockdep_assert_held_once(&rdev->mutex.base); 2845 2846 regulator->enable_count++; 2847 if (regulator->uA_load && regulator->enable_count == 1) { 2848 ret = drms_uA_update(rdev); 2849 if (ret) 2850 regulator->enable_count--; 2851 return ret; 2852 } 2853 2854 return 0; 2855 } 2856 2857 /** 2858 * _regulator_handle_consumer_disable - handle that a consumer disabled 2859 * @regulator: regulator source 2860 * 2861 * The opposite of _regulator_handle_consumer_enable(). 2862 * 2863 * Returns 0 upon no error; -error upon error. 2864 */ 2865 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2866 { 2867 struct regulator_dev *rdev = regulator->rdev; 2868 2869 lockdep_assert_held_once(&rdev->mutex.base); 2870 2871 if (!regulator->enable_count) { 2872 rdev_err(rdev, "Underflow of regulator enable count\n"); 2873 return -EINVAL; 2874 } 2875 2876 regulator->enable_count--; 2877 if (regulator->uA_load && regulator->enable_count == 0) 2878 return drms_uA_update(rdev); 2879 2880 return 0; 2881 } 2882 2883 /* locks held by regulator_enable() */ 2884 static int _regulator_enable(struct regulator *regulator) 2885 { 2886 struct regulator_dev *rdev = regulator->rdev; 2887 int ret; 2888 2889 lockdep_assert_held_once(&rdev->mutex.base); 2890 2891 if (rdev->use_count == 0 && rdev->supply) { 2892 ret = _regulator_enable(rdev->supply); 2893 if (ret < 0) 2894 return ret; 2895 } 2896 2897 /* balance only if there are regulators coupled */ 2898 if (rdev->coupling_desc.n_coupled > 1) { 2899 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2900 if (ret < 0) 2901 goto err_disable_supply; 2902 } 2903 2904 ret = _regulator_handle_consumer_enable(regulator); 2905 if (ret < 0) 2906 goto err_disable_supply; 2907 2908 if (rdev->use_count == 0) { 2909 /* 2910 * The regulator may already be enabled if it's not switchable 2911 * or was left on 2912 */ 2913 ret = _regulator_is_enabled(rdev); 2914 if (ret == -EINVAL || ret == 0) { 2915 if (!regulator_ops_is_valid(rdev, 2916 REGULATOR_CHANGE_STATUS)) { 2917 ret = -EPERM; 2918 goto err_consumer_disable; 2919 } 2920 2921 ret = _regulator_do_enable(rdev); 2922 if (ret < 0) 2923 goto err_consumer_disable; 2924 2925 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2926 NULL); 2927 } else if (ret < 0) { 2928 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2929 goto err_consumer_disable; 2930 } 2931 /* Fallthrough on positive return values - already enabled */ 2932 } 2933 2934 if (regulator->enable_count == 1) 2935 rdev->use_count++; 2936 2937 return 0; 2938 2939 err_consumer_disable: 2940 _regulator_handle_consumer_disable(regulator); 2941 2942 err_disable_supply: 2943 if (rdev->use_count == 0 && rdev->supply) 2944 _regulator_disable(rdev->supply); 2945 2946 return ret; 2947 } 2948 2949 /** 2950 * regulator_enable - enable regulator output 2951 * @regulator: regulator source 2952 * 2953 * Request that the regulator be enabled with the regulator output at 2954 * the predefined voltage or current value. Calls to regulator_enable() 2955 * must be balanced with calls to regulator_disable(). 2956 * 2957 * NOTE: the output value can be set by other drivers, boot loader or may be 2958 * hardwired in the regulator. 2959 */ 2960 int regulator_enable(struct regulator *regulator) 2961 { 2962 struct regulator_dev *rdev = regulator->rdev; 2963 struct ww_acquire_ctx ww_ctx; 2964 int ret; 2965 2966 regulator_lock_dependent(rdev, &ww_ctx); 2967 ret = _regulator_enable(regulator); 2968 regulator_unlock_dependent(rdev, &ww_ctx); 2969 2970 return ret; 2971 } 2972 EXPORT_SYMBOL_GPL(regulator_enable); 2973 2974 static int _regulator_do_disable(struct regulator_dev *rdev) 2975 { 2976 int ret; 2977 2978 trace_regulator_disable(rdev_get_name(rdev)); 2979 2980 if (rdev->ena_pin) { 2981 if (rdev->ena_gpio_state) { 2982 ret = regulator_ena_gpio_ctrl(rdev, false); 2983 if (ret < 0) 2984 return ret; 2985 rdev->ena_gpio_state = 0; 2986 } 2987 2988 } else if (rdev->desc->ops->disable) { 2989 ret = rdev->desc->ops->disable(rdev); 2990 if (ret != 0) 2991 return ret; 2992 } 2993 2994 if (rdev->desc->off_on_delay) 2995 rdev->last_off = ktime_get_boottime(); 2996 2997 trace_regulator_disable_complete(rdev_get_name(rdev)); 2998 2999 return 0; 3000 } 3001 3002 /* locks held by regulator_disable() */ 3003 static int _regulator_disable(struct regulator *regulator) 3004 { 3005 struct regulator_dev *rdev = regulator->rdev; 3006 int ret = 0; 3007 3008 lockdep_assert_held_once(&rdev->mutex.base); 3009 3010 if (WARN(regulator->enable_count == 0, 3011 "unbalanced disables for %s\n", rdev_get_name(rdev))) 3012 return -EIO; 3013 3014 if (regulator->enable_count == 1) { 3015 /* disabling last enable_count from this regulator */ 3016 /* are we the last user and permitted to disable ? */ 3017 if (rdev->use_count == 1 && 3018 (rdev->constraints && !rdev->constraints->always_on)) { 3019 3020 /* we are last user */ 3021 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3022 ret = _notifier_call_chain(rdev, 3023 REGULATOR_EVENT_PRE_DISABLE, 3024 NULL); 3025 if (ret & NOTIFY_STOP_MASK) 3026 return -EINVAL; 3027 3028 ret = _regulator_do_disable(rdev); 3029 if (ret < 0) { 3030 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3031 _notifier_call_chain(rdev, 3032 REGULATOR_EVENT_ABORT_DISABLE, 3033 NULL); 3034 return ret; 3035 } 3036 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3037 NULL); 3038 } 3039 3040 rdev->use_count = 0; 3041 } else if (rdev->use_count > 1) { 3042 rdev->use_count--; 3043 } 3044 } 3045 3046 if (ret == 0) 3047 ret = _regulator_handle_consumer_disable(regulator); 3048 3049 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3050 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3051 3052 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3053 ret = _regulator_disable(rdev->supply); 3054 3055 return ret; 3056 } 3057 3058 /** 3059 * regulator_disable - disable regulator output 3060 * @regulator: regulator source 3061 * 3062 * Disable the regulator output voltage or current. Calls to 3063 * regulator_enable() must be balanced with calls to 3064 * regulator_disable(). 3065 * 3066 * NOTE: this will only disable the regulator output if no other consumer 3067 * devices have it enabled, the regulator device supports disabling and 3068 * machine constraints permit this operation. 3069 */ 3070 int regulator_disable(struct regulator *regulator) 3071 { 3072 struct regulator_dev *rdev = regulator->rdev; 3073 struct ww_acquire_ctx ww_ctx; 3074 int ret; 3075 3076 regulator_lock_dependent(rdev, &ww_ctx); 3077 ret = _regulator_disable(regulator); 3078 regulator_unlock_dependent(rdev, &ww_ctx); 3079 3080 return ret; 3081 } 3082 EXPORT_SYMBOL_GPL(regulator_disable); 3083 3084 /* locks held by regulator_force_disable() */ 3085 static int _regulator_force_disable(struct regulator_dev *rdev) 3086 { 3087 int ret = 0; 3088 3089 lockdep_assert_held_once(&rdev->mutex.base); 3090 3091 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3092 REGULATOR_EVENT_PRE_DISABLE, NULL); 3093 if (ret & NOTIFY_STOP_MASK) 3094 return -EINVAL; 3095 3096 ret = _regulator_do_disable(rdev); 3097 if (ret < 0) { 3098 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3099 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3100 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3101 return ret; 3102 } 3103 3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3105 REGULATOR_EVENT_DISABLE, NULL); 3106 3107 return 0; 3108 } 3109 3110 /** 3111 * regulator_force_disable - force disable regulator output 3112 * @regulator: regulator source 3113 * 3114 * Forcibly disable the regulator output voltage or current. 3115 * NOTE: this *will* disable the regulator output even if other consumer 3116 * devices have it enabled. This should be used for situations when device 3117 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3118 */ 3119 int regulator_force_disable(struct regulator *regulator) 3120 { 3121 struct regulator_dev *rdev = regulator->rdev; 3122 struct ww_acquire_ctx ww_ctx; 3123 int ret; 3124 3125 regulator_lock_dependent(rdev, &ww_ctx); 3126 3127 ret = _regulator_force_disable(regulator->rdev); 3128 3129 if (rdev->coupling_desc.n_coupled > 1) 3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3131 3132 if (regulator->uA_load) { 3133 regulator->uA_load = 0; 3134 ret = drms_uA_update(rdev); 3135 } 3136 3137 if (rdev->use_count != 0 && rdev->supply) 3138 _regulator_disable(rdev->supply); 3139 3140 regulator_unlock_dependent(rdev, &ww_ctx); 3141 3142 return ret; 3143 } 3144 EXPORT_SYMBOL_GPL(regulator_force_disable); 3145 3146 static void regulator_disable_work(struct work_struct *work) 3147 { 3148 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3149 disable_work.work); 3150 struct ww_acquire_ctx ww_ctx; 3151 int count, i, ret; 3152 struct regulator *regulator; 3153 int total_count = 0; 3154 3155 regulator_lock_dependent(rdev, &ww_ctx); 3156 3157 /* 3158 * Workqueue functions queue the new work instance while the previous 3159 * work instance is being processed. Cancel the queued work instance 3160 * as the work instance under processing does the job of the queued 3161 * work instance. 3162 */ 3163 cancel_delayed_work(&rdev->disable_work); 3164 3165 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3166 count = regulator->deferred_disables; 3167 3168 if (!count) 3169 continue; 3170 3171 total_count += count; 3172 regulator->deferred_disables = 0; 3173 3174 for (i = 0; i < count; i++) { 3175 ret = _regulator_disable(regulator); 3176 if (ret != 0) 3177 rdev_err(rdev, "Deferred disable failed: %pe\n", 3178 ERR_PTR(ret)); 3179 } 3180 } 3181 WARN_ON(!total_count); 3182 3183 if (rdev->coupling_desc.n_coupled > 1) 3184 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3185 3186 regulator_unlock_dependent(rdev, &ww_ctx); 3187 } 3188 3189 /** 3190 * regulator_disable_deferred - disable regulator output with delay 3191 * @regulator: regulator source 3192 * @ms: milliseconds until the regulator is disabled 3193 * 3194 * Execute regulator_disable() on the regulator after a delay. This 3195 * is intended for use with devices that require some time to quiesce. 3196 * 3197 * NOTE: this will only disable the regulator output if no other consumer 3198 * devices have it enabled, the regulator device supports disabling and 3199 * machine constraints permit this operation. 3200 */ 3201 int regulator_disable_deferred(struct regulator *regulator, int ms) 3202 { 3203 struct regulator_dev *rdev = regulator->rdev; 3204 3205 if (!ms) 3206 return regulator_disable(regulator); 3207 3208 regulator_lock(rdev); 3209 regulator->deferred_disables++; 3210 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3211 msecs_to_jiffies(ms)); 3212 regulator_unlock(rdev); 3213 3214 return 0; 3215 } 3216 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3217 3218 static int _regulator_is_enabled(struct regulator_dev *rdev) 3219 { 3220 /* A GPIO control always takes precedence */ 3221 if (rdev->ena_pin) 3222 return rdev->ena_gpio_state; 3223 3224 /* If we don't know then assume that the regulator is always on */ 3225 if (!rdev->desc->ops->is_enabled) 3226 return 1; 3227 3228 return rdev->desc->ops->is_enabled(rdev); 3229 } 3230 3231 static int _regulator_list_voltage(struct regulator_dev *rdev, 3232 unsigned selector, int lock) 3233 { 3234 const struct regulator_ops *ops = rdev->desc->ops; 3235 int ret; 3236 3237 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3238 return rdev->desc->fixed_uV; 3239 3240 if (ops->list_voltage) { 3241 if (selector >= rdev->desc->n_voltages) 3242 return -EINVAL; 3243 if (selector < rdev->desc->linear_min_sel) 3244 return 0; 3245 if (lock) 3246 regulator_lock(rdev); 3247 ret = ops->list_voltage(rdev, selector); 3248 if (lock) 3249 regulator_unlock(rdev); 3250 } else if (rdev->is_switch && rdev->supply) { 3251 ret = _regulator_list_voltage(rdev->supply->rdev, 3252 selector, lock); 3253 } else { 3254 return -EINVAL; 3255 } 3256 3257 if (ret > 0) { 3258 if (ret < rdev->constraints->min_uV) 3259 ret = 0; 3260 else if (ret > rdev->constraints->max_uV) 3261 ret = 0; 3262 } 3263 3264 return ret; 3265 } 3266 3267 /** 3268 * regulator_is_enabled - is the regulator output enabled 3269 * @regulator: regulator source 3270 * 3271 * Returns positive if the regulator driver backing the source/client 3272 * has requested that the device be enabled, zero if it hasn't, else a 3273 * negative errno code. 3274 * 3275 * Note that the device backing this regulator handle can have multiple 3276 * users, so it might be enabled even if regulator_enable() was never 3277 * called for this particular source. 3278 */ 3279 int regulator_is_enabled(struct regulator *regulator) 3280 { 3281 int ret; 3282 3283 if (regulator->always_on) 3284 return 1; 3285 3286 regulator_lock(regulator->rdev); 3287 ret = _regulator_is_enabled(regulator->rdev); 3288 regulator_unlock(regulator->rdev); 3289 3290 return ret; 3291 } 3292 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3293 3294 /** 3295 * regulator_count_voltages - count regulator_list_voltage() selectors 3296 * @regulator: regulator source 3297 * 3298 * Returns number of selectors, or negative errno. Selectors are 3299 * numbered starting at zero, and typically correspond to bitfields 3300 * in hardware registers. 3301 */ 3302 int regulator_count_voltages(struct regulator *regulator) 3303 { 3304 struct regulator_dev *rdev = regulator->rdev; 3305 3306 if (rdev->desc->n_voltages) 3307 return rdev->desc->n_voltages; 3308 3309 if (!rdev->is_switch || !rdev->supply) 3310 return -EINVAL; 3311 3312 return regulator_count_voltages(rdev->supply); 3313 } 3314 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3315 3316 /** 3317 * regulator_list_voltage - enumerate supported voltages 3318 * @regulator: regulator source 3319 * @selector: identify voltage to list 3320 * Context: can sleep 3321 * 3322 * Returns a voltage that can be passed to @regulator_set_voltage(), 3323 * zero if this selector code can't be used on this system, or a 3324 * negative errno. 3325 */ 3326 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3327 { 3328 return _regulator_list_voltage(regulator->rdev, selector, 1); 3329 } 3330 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3331 3332 /** 3333 * regulator_get_regmap - get the regulator's register map 3334 * @regulator: regulator source 3335 * 3336 * Returns the register map for the given regulator, or an ERR_PTR value 3337 * if the regulator doesn't use regmap. 3338 */ 3339 struct regmap *regulator_get_regmap(struct regulator *regulator) 3340 { 3341 struct regmap *map = regulator->rdev->regmap; 3342 3343 return map ? map : ERR_PTR(-EOPNOTSUPP); 3344 } 3345 3346 /** 3347 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3348 * @regulator: regulator source 3349 * @vsel_reg: voltage selector register, output parameter 3350 * @vsel_mask: mask for voltage selector bitfield, output parameter 3351 * 3352 * Returns the hardware register offset and bitmask used for setting the 3353 * regulator voltage. This might be useful when configuring voltage-scaling 3354 * hardware or firmware that can make I2C requests behind the kernel's back, 3355 * for example. 3356 * 3357 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3358 * and 0 is returned, otherwise a negative errno is returned. 3359 */ 3360 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3361 unsigned *vsel_reg, 3362 unsigned *vsel_mask) 3363 { 3364 struct regulator_dev *rdev = regulator->rdev; 3365 const struct regulator_ops *ops = rdev->desc->ops; 3366 3367 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3368 return -EOPNOTSUPP; 3369 3370 *vsel_reg = rdev->desc->vsel_reg; 3371 *vsel_mask = rdev->desc->vsel_mask; 3372 3373 return 0; 3374 } 3375 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3376 3377 /** 3378 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3379 * @regulator: regulator source 3380 * @selector: identify voltage to list 3381 * 3382 * Converts the selector to a hardware-specific voltage selector that can be 3383 * directly written to the regulator registers. The address of the voltage 3384 * register can be determined by calling @regulator_get_hardware_vsel_register. 3385 * 3386 * On error a negative errno is returned. 3387 */ 3388 int regulator_list_hardware_vsel(struct regulator *regulator, 3389 unsigned selector) 3390 { 3391 struct regulator_dev *rdev = regulator->rdev; 3392 const struct regulator_ops *ops = rdev->desc->ops; 3393 3394 if (selector >= rdev->desc->n_voltages) 3395 return -EINVAL; 3396 if (selector < rdev->desc->linear_min_sel) 3397 return 0; 3398 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3399 return -EOPNOTSUPP; 3400 3401 return selector; 3402 } 3403 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3404 3405 /** 3406 * regulator_get_linear_step - return the voltage step size between VSEL values 3407 * @regulator: regulator source 3408 * 3409 * Returns the voltage step size between VSEL values for linear 3410 * regulators, or return 0 if the regulator isn't a linear regulator. 3411 */ 3412 unsigned int regulator_get_linear_step(struct regulator *regulator) 3413 { 3414 struct regulator_dev *rdev = regulator->rdev; 3415 3416 return rdev->desc->uV_step; 3417 } 3418 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3419 3420 /** 3421 * regulator_is_supported_voltage - check if a voltage range can be supported 3422 * 3423 * @regulator: Regulator to check. 3424 * @min_uV: Minimum required voltage in uV. 3425 * @max_uV: Maximum required voltage in uV. 3426 * 3427 * Returns a boolean. 3428 */ 3429 int regulator_is_supported_voltage(struct regulator *regulator, 3430 int min_uV, int max_uV) 3431 { 3432 struct regulator_dev *rdev = regulator->rdev; 3433 int i, voltages, ret; 3434 3435 /* If we can't change voltage check the current voltage */ 3436 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3437 ret = regulator_get_voltage(regulator); 3438 if (ret >= 0) 3439 return min_uV <= ret && ret <= max_uV; 3440 else 3441 return ret; 3442 } 3443 3444 /* Any voltage within constrains range is fine? */ 3445 if (rdev->desc->continuous_voltage_range) 3446 return min_uV >= rdev->constraints->min_uV && 3447 max_uV <= rdev->constraints->max_uV; 3448 3449 ret = regulator_count_voltages(regulator); 3450 if (ret < 0) 3451 return 0; 3452 voltages = ret; 3453 3454 for (i = 0; i < voltages; i++) { 3455 ret = regulator_list_voltage(regulator, i); 3456 3457 if (ret >= min_uV && ret <= max_uV) 3458 return 1; 3459 } 3460 3461 return 0; 3462 } 3463 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3464 3465 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3466 int max_uV) 3467 { 3468 const struct regulator_desc *desc = rdev->desc; 3469 3470 if (desc->ops->map_voltage) 3471 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3472 3473 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3474 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3475 3476 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3477 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3478 3479 if (desc->ops->list_voltage == 3480 regulator_list_voltage_pickable_linear_range) 3481 return regulator_map_voltage_pickable_linear_range(rdev, 3482 min_uV, max_uV); 3483 3484 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3485 } 3486 3487 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3488 int min_uV, int max_uV, 3489 unsigned *selector) 3490 { 3491 struct pre_voltage_change_data data; 3492 int ret; 3493 3494 data.old_uV = regulator_get_voltage_rdev(rdev); 3495 data.min_uV = min_uV; 3496 data.max_uV = max_uV; 3497 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3498 &data); 3499 if (ret & NOTIFY_STOP_MASK) 3500 return -EINVAL; 3501 3502 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3503 if (ret >= 0) 3504 return ret; 3505 3506 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3507 (void *)data.old_uV); 3508 3509 return ret; 3510 } 3511 3512 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3513 int uV, unsigned selector) 3514 { 3515 struct pre_voltage_change_data data; 3516 int ret; 3517 3518 data.old_uV = regulator_get_voltage_rdev(rdev); 3519 data.min_uV = uV; 3520 data.max_uV = uV; 3521 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3522 &data); 3523 if (ret & NOTIFY_STOP_MASK) 3524 return -EINVAL; 3525 3526 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3527 if (ret >= 0) 3528 return ret; 3529 3530 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3531 (void *)data.old_uV); 3532 3533 return ret; 3534 } 3535 3536 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3537 int uV, int new_selector) 3538 { 3539 const struct regulator_ops *ops = rdev->desc->ops; 3540 int diff, old_sel, curr_sel, ret; 3541 3542 /* Stepping is only needed if the regulator is enabled. */ 3543 if (!_regulator_is_enabled(rdev)) 3544 goto final_set; 3545 3546 if (!ops->get_voltage_sel) 3547 return -EINVAL; 3548 3549 old_sel = ops->get_voltage_sel(rdev); 3550 if (old_sel < 0) 3551 return old_sel; 3552 3553 diff = new_selector - old_sel; 3554 if (diff == 0) 3555 return 0; /* No change needed. */ 3556 3557 if (diff > 0) { 3558 /* Stepping up. */ 3559 for (curr_sel = old_sel + rdev->desc->vsel_step; 3560 curr_sel < new_selector; 3561 curr_sel += rdev->desc->vsel_step) { 3562 /* 3563 * Call the callback directly instead of using 3564 * _regulator_call_set_voltage_sel() as we don't 3565 * want to notify anyone yet. Same in the branch 3566 * below. 3567 */ 3568 ret = ops->set_voltage_sel(rdev, curr_sel); 3569 if (ret) 3570 goto try_revert; 3571 } 3572 } else { 3573 /* Stepping down. */ 3574 for (curr_sel = old_sel - rdev->desc->vsel_step; 3575 curr_sel > new_selector; 3576 curr_sel -= rdev->desc->vsel_step) { 3577 ret = ops->set_voltage_sel(rdev, curr_sel); 3578 if (ret) 3579 goto try_revert; 3580 } 3581 } 3582 3583 final_set: 3584 /* The final selector will trigger the notifiers. */ 3585 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3586 3587 try_revert: 3588 /* 3589 * At least try to return to the previous voltage if setting a new 3590 * one failed. 3591 */ 3592 (void)ops->set_voltage_sel(rdev, old_sel); 3593 return ret; 3594 } 3595 3596 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3597 int old_uV, int new_uV) 3598 { 3599 unsigned int ramp_delay = 0; 3600 3601 if (rdev->constraints->ramp_delay) 3602 ramp_delay = rdev->constraints->ramp_delay; 3603 else if (rdev->desc->ramp_delay) 3604 ramp_delay = rdev->desc->ramp_delay; 3605 else if (rdev->constraints->settling_time) 3606 return rdev->constraints->settling_time; 3607 else if (rdev->constraints->settling_time_up && 3608 (new_uV > old_uV)) 3609 return rdev->constraints->settling_time_up; 3610 else if (rdev->constraints->settling_time_down && 3611 (new_uV < old_uV)) 3612 return rdev->constraints->settling_time_down; 3613 3614 if (ramp_delay == 0) 3615 return 0; 3616 3617 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3618 } 3619 3620 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3621 int min_uV, int max_uV) 3622 { 3623 int ret; 3624 int delay = 0; 3625 int best_val = 0; 3626 unsigned int selector; 3627 int old_selector = -1; 3628 const struct regulator_ops *ops = rdev->desc->ops; 3629 int old_uV = regulator_get_voltage_rdev(rdev); 3630 3631 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3632 3633 min_uV += rdev->constraints->uV_offset; 3634 max_uV += rdev->constraints->uV_offset; 3635 3636 /* 3637 * If we can't obtain the old selector there is not enough 3638 * info to call set_voltage_time_sel(). 3639 */ 3640 if (_regulator_is_enabled(rdev) && 3641 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3642 old_selector = ops->get_voltage_sel(rdev); 3643 if (old_selector < 0) 3644 return old_selector; 3645 } 3646 3647 if (ops->set_voltage) { 3648 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3649 &selector); 3650 3651 if (ret >= 0) { 3652 if (ops->list_voltage) 3653 best_val = ops->list_voltage(rdev, 3654 selector); 3655 else 3656 best_val = regulator_get_voltage_rdev(rdev); 3657 } 3658 3659 } else if (ops->set_voltage_sel) { 3660 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3661 if (ret >= 0) { 3662 best_val = ops->list_voltage(rdev, ret); 3663 if (min_uV <= best_val && max_uV >= best_val) { 3664 selector = ret; 3665 if (old_selector == selector) 3666 ret = 0; 3667 else if (rdev->desc->vsel_step) 3668 ret = _regulator_set_voltage_sel_step( 3669 rdev, best_val, selector); 3670 else 3671 ret = _regulator_call_set_voltage_sel( 3672 rdev, best_val, selector); 3673 } else { 3674 ret = -EINVAL; 3675 } 3676 } 3677 } else { 3678 ret = -EINVAL; 3679 } 3680 3681 if (ret) 3682 goto out; 3683 3684 if (ops->set_voltage_time_sel) { 3685 /* 3686 * Call set_voltage_time_sel if successfully obtained 3687 * old_selector 3688 */ 3689 if (old_selector >= 0 && old_selector != selector) 3690 delay = ops->set_voltage_time_sel(rdev, old_selector, 3691 selector); 3692 } else { 3693 if (old_uV != best_val) { 3694 if (ops->set_voltage_time) 3695 delay = ops->set_voltage_time(rdev, old_uV, 3696 best_val); 3697 else 3698 delay = _regulator_set_voltage_time(rdev, 3699 old_uV, 3700 best_val); 3701 } 3702 } 3703 3704 if (delay < 0) { 3705 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3706 delay = 0; 3707 } 3708 3709 /* Insert any necessary delays */ 3710 _regulator_delay_helper(delay); 3711 3712 if (best_val >= 0) { 3713 unsigned long data = best_val; 3714 3715 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3716 (void *)data); 3717 } 3718 3719 out: 3720 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3721 3722 return ret; 3723 } 3724 3725 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3726 int min_uV, int max_uV, suspend_state_t state) 3727 { 3728 struct regulator_state *rstate; 3729 int uV, sel; 3730 3731 rstate = regulator_get_suspend_state(rdev, state); 3732 if (rstate == NULL) 3733 return -EINVAL; 3734 3735 if (min_uV < rstate->min_uV) 3736 min_uV = rstate->min_uV; 3737 if (max_uV > rstate->max_uV) 3738 max_uV = rstate->max_uV; 3739 3740 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3741 if (sel < 0) 3742 return sel; 3743 3744 uV = rdev->desc->ops->list_voltage(rdev, sel); 3745 if (uV >= min_uV && uV <= max_uV) 3746 rstate->uV = uV; 3747 3748 return 0; 3749 } 3750 3751 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3752 int min_uV, int max_uV, 3753 suspend_state_t state) 3754 { 3755 struct regulator_dev *rdev = regulator->rdev; 3756 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3757 int ret = 0; 3758 int old_min_uV, old_max_uV; 3759 int current_uV; 3760 3761 /* If we're setting the same range as last time the change 3762 * should be a noop (some cpufreq implementations use the same 3763 * voltage for multiple frequencies, for example). 3764 */ 3765 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3766 goto out; 3767 3768 /* If we're trying to set a range that overlaps the current voltage, 3769 * return successfully even though the regulator does not support 3770 * changing the voltage. 3771 */ 3772 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3773 current_uV = regulator_get_voltage_rdev(rdev); 3774 if (min_uV <= current_uV && current_uV <= max_uV) { 3775 voltage->min_uV = min_uV; 3776 voltage->max_uV = max_uV; 3777 goto out; 3778 } 3779 } 3780 3781 /* sanity check */ 3782 if (!rdev->desc->ops->set_voltage && 3783 !rdev->desc->ops->set_voltage_sel) { 3784 ret = -EINVAL; 3785 goto out; 3786 } 3787 3788 /* constraints check */ 3789 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3790 if (ret < 0) 3791 goto out; 3792 3793 /* restore original values in case of error */ 3794 old_min_uV = voltage->min_uV; 3795 old_max_uV = voltage->max_uV; 3796 voltage->min_uV = min_uV; 3797 voltage->max_uV = max_uV; 3798 3799 /* for not coupled regulators this will just set the voltage */ 3800 ret = regulator_balance_voltage(rdev, state); 3801 if (ret < 0) { 3802 voltage->min_uV = old_min_uV; 3803 voltage->max_uV = old_max_uV; 3804 } 3805 3806 out: 3807 return ret; 3808 } 3809 3810 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3811 int max_uV, suspend_state_t state) 3812 { 3813 int best_supply_uV = 0; 3814 int supply_change_uV = 0; 3815 int ret; 3816 3817 if (rdev->supply && 3818 regulator_ops_is_valid(rdev->supply->rdev, 3819 REGULATOR_CHANGE_VOLTAGE) && 3820 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3821 rdev->desc->ops->get_voltage_sel))) { 3822 int current_supply_uV; 3823 int selector; 3824 3825 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3826 if (selector < 0) { 3827 ret = selector; 3828 goto out; 3829 } 3830 3831 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3832 if (best_supply_uV < 0) { 3833 ret = best_supply_uV; 3834 goto out; 3835 } 3836 3837 best_supply_uV += rdev->desc->min_dropout_uV; 3838 3839 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3840 if (current_supply_uV < 0) { 3841 ret = current_supply_uV; 3842 goto out; 3843 } 3844 3845 supply_change_uV = best_supply_uV - current_supply_uV; 3846 } 3847 3848 if (supply_change_uV > 0) { 3849 ret = regulator_set_voltage_unlocked(rdev->supply, 3850 best_supply_uV, INT_MAX, state); 3851 if (ret) { 3852 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3853 ERR_PTR(ret)); 3854 goto out; 3855 } 3856 } 3857 3858 if (state == PM_SUSPEND_ON) 3859 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3860 else 3861 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3862 max_uV, state); 3863 if (ret < 0) 3864 goto out; 3865 3866 if (supply_change_uV < 0) { 3867 ret = regulator_set_voltage_unlocked(rdev->supply, 3868 best_supply_uV, INT_MAX, state); 3869 if (ret) 3870 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3871 ERR_PTR(ret)); 3872 /* No need to fail here */ 3873 ret = 0; 3874 } 3875 3876 out: 3877 return ret; 3878 } 3879 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3880 3881 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3882 int *current_uV, int *min_uV) 3883 { 3884 struct regulation_constraints *constraints = rdev->constraints; 3885 3886 /* Limit voltage change only if necessary */ 3887 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3888 return 1; 3889 3890 if (*current_uV < 0) { 3891 *current_uV = regulator_get_voltage_rdev(rdev); 3892 3893 if (*current_uV < 0) 3894 return *current_uV; 3895 } 3896 3897 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3898 return 1; 3899 3900 /* Clamp target voltage within the given step */ 3901 if (*current_uV < *min_uV) 3902 *min_uV = min(*current_uV + constraints->max_uV_step, 3903 *min_uV); 3904 else 3905 *min_uV = max(*current_uV - constraints->max_uV_step, 3906 *min_uV); 3907 3908 return 0; 3909 } 3910 3911 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3912 int *current_uV, 3913 int *min_uV, int *max_uV, 3914 suspend_state_t state, 3915 int n_coupled) 3916 { 3917 struct coupling_desc *c_desc = &rdev->coupling_desc; 3918 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3919 struct regulation_constraints *constraints = rdev->constraints; 3920 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3921 int max_current_uV = 0, min_current_uV = INT_MAX; 3922 int highest_min_uV = 0, target_uV, possible_uV; 3923 int i, ret, max_spread; 3924 bool done; 3925 3926 *current_uV = -1; 3927 3928 /* 3929 * If there are no coupled regulators, simply set the voltage 3930 * demanded by consumers. 3931 */ 3932 if (n_coupled == 1) { 3933 /* 3934 * If consumers don't provide any demands, set voltage 3935 * to min_uV 3936 */ 3937 desired_min_uV = constraints->min_uV; 3938 desired_max_uV = constraints->max_uV; 3939 3940 ret = regulator_check_consumers(rdev, 3941 &desired_min_uV, 3942 &desired_max_uV, state); 3943 if (ret < 0) 3944 return ret; 3945 3946 done = true; 3947 3948 goto finish; 3949 } 3950 3951 /* Find highest min desired voltage */ 3952 for (i = 0; i < n_coupled; i++) { 3953 int tmp_min = 0; 3954 int tmp_max = INT_MAX; 3955 3956 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3957 3958 ret = regulator_check_consumers(c_rdevs[i], 3959 &tmp_min, 3960 &tmp_max, state); 3961 if (ret < 0) 3962 return ret; 3963 3964 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3965 if (ret < 0) 3966 return ret; 3967 3968 highest_min_uV = max(highest_min_uV, tmp_min); 3969 3970 if (i == 0) { 3971 desired_min_uV = tmp_min; 3972 desired_max_uV = tmp_max; 3973 } 3974 } 3975 3976 max_spread = constraints->max_spread[0]; 3977 3978 /* 3979 * Let target_uV be equal to the desired one if possible. 3980 * If not, set it to minimum voltage, allowed by other coupled 3981 * regulators. 3982 */ 3983 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3984 3985 /* 3986 * Find min and max voltages, which currently aren't violating 3987 * max_spread. 3988 */ 3989 for (i = 1; i < n_coupled; i++) { 3990 int tmp_act; 3991 3992 if (!_regulator_is_enabled(c_rdevs[i])) 3993 continue; 3994 3995 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3996 if (tmp_act < 0) 3997 return tmp_act; 3998 3999 min_current_uV = min(tmp_act, min_current_uV); 4000 max_current_uV = max(tmp_act, max_current_uV); 4001 } 4002 4003 /* There aren't any other regulators enabled */ 4004 if (max_current_uV == 0) { 4005 possible_uV = target_uV; 4006 } else { 4007 /* 4008 * Correct target voltage, so as it currently isn't 4009 * violating max_spread 4010 */ 4011 possible_uV = max(target_uV, max_current_uV - max_spread); 4012 possible_uV = min(possible_uV, min_current_uV + max_spread); 4013 } 4014 4015 if (possible_uV > desired_max_uV) 4016 return -EINVAL; 4017 4018 done = (possible_uV == target_uV); 4019 desired_min_uV = possible_uV; 4020 4021 finish: 4022 /* Apply max_uV_step constraint if necessary */ 4023 if (state == PM_SUSPEND_ON) { 4024 ret = regulator_limit_voltage_step(rdev, current_uV, 4025 &desired_min_uV); 4026 if (ret < 0) 4027 return ret; 4028 4029 if (ret == 0) 4030 done = false; 4031 } 4032 4033 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4034 if (n_coupled > 1 && *current_uV == -1) { 4035 4036 if (_regulator_is_enabled(rdev)) { 4037 ret = regulator_get_voltage_rdev(rdev); 4038 if (ret < 0) 4039 return ret; 4040 4041 *current_uV = ret; 4042 } else { 4043 *current_uV = desired_min_uV; 4044 } 4045 } 4046 4047 *min_uV = desired_min_uV; 4048 *max_uV = desired_max_uV; 4049 4050 return done; 4051 } 4052 4053 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4054 suspend_state_t state, bool skip_coupled) 4055 { 4056 struct regulator_dev **c_rdevs; 4057 struct regulator_dev *best_rdev; 4058 struct coupling_desc *c_desc = &rdev->coupling_desc; 4059 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4060 unsigned int delta, best_delta; 4061 unsigned long c_rdev_done = 0; 4062 bool best_c_rdev_done; 4063 4064 c_rdevs = c_desc->coupled_rdevs; 4065 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4066 4067 /* 4068 * Find the best possible voltage change on each loop. Leave the loop 4069 * if there isn't any possible change. 4070 */ 4071 do { 4072 best_c_rdev_done = false; 4073 best_delta = 0; 4074 best_min_uV = 0; 4075 best_max_uV = 0; 4076 best_c_rdev = 0; 4077 best_rdev = NULL; 4078 4079 /* 4080 * Find highest difference between optimal voltage 4081 * and current voltage. 4082 */ 4083 for (i = 0; i < n_coupled; i++) { 4084 /* 4085 * optimal_uV is the best voltage that can be set for 4086 * i-th regulator at the moment without violating 4087 * max_spread constraint in order to balance 4088 * the coupled voltages. 4089 */ 4090 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4091 4092 if (test_bit(i, &c_rdev_done)) 4093 continue; 4094 4095 ret = regulator_get_optimal_voltage(c_rdevs[i], 4096 ¤t_uV, 4097 &optimal_uV, 4098 &optimal_max_uV, 4099 state, n_coupled); 4100 if (ret < 0) 4101 goto out; 4102 4103 delta = abs(optimal_uV - current_uV); 4104 4105 if (delta && best_delta <= delta) { 4106 best_c_rdev_done = ret; 4107 best_delta = delta; 4108 best_rdev = c_rdevs[i]; 4109 best_min_uV = optimal_uV; 4110 best_max_uV = optimal_max_uV; 4111 best_c_rdev = i; 4112 } 4113 } 4114 4115 /* Nothing to change, return successfully */ 4116 if (!best_rdev) { 4117 ret = 0; 4118 goto out; 4119 } 4120 4121 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4122 best_max_uV, state); 4123 4124 if (ret < 0) 4125 goto out; 4126 4127 if (best_c_rdev_done) 4128 set_bit(best_c_rdev, &c_rdev_done); 4129 4130 } while (n_coupled > 1); 4131 4132 out: 4133 return ret; 4134 } 4135 4136 static int regulator_balance_voltage(struct regulator_dev *rdev, 4137 suspend_state_t state) 4138 { 4139 struct coupling_desc *c_desc = &rdev->coupling_desc; 4140 struct regulator_coupler *coupler = c_desc->coupler; 4141 bool skip_coupled = false; 4142 4143 /* 4144 * If system is in a state other than PM_SUSPEND_ON, don't check 4145 * other coupled regulators. 4146 */ 4147 if (state != PM_SUSPEND_ON) 4148 skip_coupled = true; 4149 4150 if (c_desc->n_resolved < c_desc->n_coupled) { 4151 rdev_err(rdev, "Not all coupled regulators registered\n"); 4152 return -EPERM; 4153 } 4154 4155 /* Invoke custom balancer for customized couplers */ 4156 if (coupler && coupler->balance_voltage) 4157 return coupler->balance_voltage(coupler, rdev, state); 4158 4159 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4160 } 4161 4162 /** 4163 * regulator_set_voltage - set regulator output voltage 4164 * @regulator: regulator source 4165 * @min_uV: Minimum required voltage in uV 4166 * @max_uV: Maximum acceptable voltage in uV 4167 * 4168 * Sets a voltage regulator to the desired output voltage. This can be set 4169 * during any regulator state. IOW, regulator can be disabled or enabled. 4170 * 4171 * If the regulator is enabled then the voltage will change to the new value 4172 * immediately otherwise if the regulator is disabled the regulator will 4173 * output at the new voltage when enabled. 4174 * 4175 * NOTE: If the regulator is shared between several devices then the lowest 4176 * request voltage that meets the system constraints will be used. 4177 * Regulator system constraints must be set for this regulator before 4178 * calling this function otherwise this call will fail. 4179 */ 4180 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4181 { 4182 struct ww_acquire_ctx ww_ctx; 4183 int ret; 4184 4185 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4186 4187 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4188 PM_SUSPEND_ON); 4189 4190 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4191 4192 return ret; 4193 } 4194 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4195 4196 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4197 suspend_state_t state, bool en) 4198 { 4199 struct regulator_state *rstate; 4200 4201 rstate = regulator_get_suspend_state(rdev, state); 4202 if (rstate == NULL) 4203 return -EINVAL; 4204 4205 if (!rstate->changeable) 4206 return -EPERM; 4207 4208 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4209 4210 return 0; 4211 } 4212 4213 int regulator_suspend_enable(struct regulator_dev *rdev, 4214 suspend_state_t state) 4215 { 4216 return regulator_suspend_toggle(rdev, state, true); 4217 } 4218 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4219 4220 int regulator_suspend_disable(struct regulator_dev *rdev, 4221 suspend_state_t state) 4222 { 4223 struct regulator *regulator; 4224 struct regulator_voltage *voltage; 4225 4226 /* 4227 * if any consumer wants this regulator device keeping on in 4228 * suspend states, don't set it as disabled. 4229 */ 4230 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4231 voltage = ®ulator->voltage[state]; 4232 if (voltage->min_uV || voltage->max_uV) 4233 return 0; 4234 } 4235 4236 return regulator_suspend_toggle(rdev, state, false); 4237 } 4238 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4239 4240 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4241 int min_uV, int max_uV, 4242 suspend_state_t state) 4243 { 4244 struct regulator_dev *rdev = regulator->rdev; 4245 struct regulator_state *rstate; 4246 4247 rstate = regulator_get_suspend_state(rdev, state); 4248 if (rstate == NULL) 4249 return -EINVAL; 4250 4251 if (rstate->min_uV == rstate->max_uV) { 4252 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4253 return -EPERM; 4254 } 4255 4256 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4257 } 4258 4259 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4260 int max_uV, suspend_state_t state) 4261 { 4262 struct ww_acquire_ctx ww_ctx; 4263 int ret; 4264 4265 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4266 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4267 return -EINVAL; 4268 4269 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4270 4271 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4272 max_uV, state); 4273 4274 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4275 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4279 4280 /** 4281 * regulator_set_voltage_time - get raise/fall time 4282 * @regulator: regulator source 4283 * @old_uV: starting voltage in microvolts 4284 * @new_uV: target voltage in microvolts 4285 * 4286 * Provided with the starting and ending voltage, this function attempts to 4287 * calculate the time in microseconds required to rise or fall to this new 4288 * voltage. 4289 */ 4290 int regulator_set_voltage_time(struct regulator *regulator, 4291 int old_uV, int new_uV) 4292 { 4293 struct regulator_dev *rdev = regulator->rdev; 4294 const struct regulator_ops *ops = rdev->desc->ops; 4295 int old_sel = -1; 4296 int new_sel = -1; 4297 int voltage; 4298 int i; 4299 4300 if (ops->set_voltage_time) 4301 return ops->set_voltage_time(rdev, old_uV, new_uV); 4302 else if (!ops->set_voltage_time_sel) 4303 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4304 4305 /* Currently requires operations to do this */ 4306 if (!ops->list_voltage || !rdev->desc->n_voltages) 4307 return -EINVAL; 4308 4309 for (i = 0; i < rdev->desc->n_voltages; i++) { 4310 /* We only look for exact voltage matches here */ 4311 if (i < rdev->desc->linear_min_sel) 4312 continue; 4313 4314 if (old_sel >= 0 && new_sel >= 0) 4315 break; 4316 4317 voltage = regulator_list_voltage(regulator, i); 4318 if (voltage < 0) 4319 return -EINVAL; 4320 if (voltage == 0) 4321 continue; 4322 if (voltage == old_uV) 4323 old_sel = i; 4324 if (voltage == new_uV) 4325 new_sel = i; 4326 } 4327 4328 if (old_sel < 0 || new_sel < 0) 4329 return -EINVAL; 4330 4331 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4332 } 4333 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4334 4335 /** 4336 * regulator_set_voltage_time_sel - get raise/fall time 4337 * @rdev: regulator source device 4338 * @old_selector: selector for starting voltage 4339 * @new_selector: selector for target voltage 4340 * 4341 * Provided with the starting and target voltage selectors, this function 4342 * returns time in microseconds required to rise or fall to this new voltage 4343 * 4344 * Drivers providing ramp_delay in regulation_constraints can use this as their 4345 * set_voltage_time_sel() operation. 4346 */ 4347 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4348 unsigned int old_selector, 4349 unsigned int new_selector) 4350 { 4351 int old_volt, new_volt; 4352 4353 /* sanity check */ 4354 if (!rdev->desc->ops->list_voltage) 4355 return -EINVAL; 4356 4357 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4358 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4359 4360 if (rdev->desc->ops->set_voltage_time) 4361 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4362 new_volt); 4363 else 4364 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4365 } 4366 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4367 4368 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4369 { 4370 int ret; 4371 4372 regulator_lock(rdev); 4373 4374 if (!rdev->desc->ops->set_voltage && 4375 !rdev->desc->ops->set_voltage_sel) { 4376 ret = -EINVAL; 4377 goto out; 4378 } 4379 4380 /* balance only, if regulator is coupled */ 4381 if (rdev->coupling_desc.n_coupled > 1) 4382 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4383 else 4384 ret = -EOPNOTSUPP; 4385 4386 out: 4387 regulator_unlock(rdev); 4388 return ret; 4389 } 4390 4391 /** 4392 * regulator_sync_voltage - re-apply last regulator output voltage 4393 * @regulator: regulator source 4394 * 4395 * Re-apply the last configured voltage. This is intended to be used 4396 * where some external control source the consumer is cooperating with 4397 * has caused the configured voltage to change. 4398 */ 4399 int regulator_sync_voltage(struct regulator *regulator) 4400 { 4401 struct regulator_dev *rdev = regulator->rdev; 4402 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4403 int ret, min_uV, max_uV; 4404 4405 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4406 return 0; 4407 4408 regulator_lock(rdev); 4409 4410 if (!rdev->desc->ops->set_voltage && 4411 !rdev->desc->ops->set_voltage_sel) { 4412 ret = -EINVAL; 4413 goto out; 4414 } 4415 4416 /* This is only going to work if we've had a voltage configured. */ 4417 if (!voltage->min_uV && !voltage->max_uV) { 4418 ret = -EINVAL; 4419 goto out; 4420 } 4421 4422 min_uV = voltage->min_uV; 4423 max_uV = voltage->max_uV; 4424 4425 /* This should be a paranoia check... */ 4426 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4427 if (ret < 0) 4428 goto out; 4429 4430 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4431 if (ret < 0) 4432 goto out; 4433 4434 /* balance only, if regulator is coupled */ 4435 if (rdev->coupling_desc.n_coupled > 1) 4436 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4437 else 4438 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4439 4440 out: 4441 regulator_unlock(rdev); 4442 return ret; 4443 } 4444 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4445 4446 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4447 { 4448 int sel, ret; 4449 bool bypassed; 4450 4451 if (rdev->desc->ops->get_bypass) { 4452 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4453 if (ret < 0) 4454 return ret; 4455 if (bypassed) { 4456 /* if bypassed the regulator must have a supply */ 4457 if (!rdev->supply) { 4458 rdev_err(rdev, 4459 "bypassed regulator has no supply!\n"); 4460 return -EPROBE_DEFER; 4461 } 4462 4463 return regulator_get_voltage_rdev(rdev->supply->rdev); 4464 } 4465 } 4466 4467 if (rdev->desc->ops->get_voltage_sel) { 4468 sel = rdev->desc->ops->get_voltage_sel(rdev); 4469 if (sel < 0) 4470 return sel; 4471 ret = rdev->desc->ops->list_voltage(rdev, sel); 4472 } else if (rdev->desc->ops->get_voltage) { 4473 ret = rdev->desc->ops->get_voltage(rdev); 4474 } else if (rdev->desc->ops->list_voltage) { 4475 ret = rdev->desc->ops->list_voltage(rdev, 0); 4476 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4477 ret = rdev->desc->fixed_uV; 4478 } else if (rdev->supply) { 4479 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4480 } else if (rdev->supply_name) { 4481 return -EPROBE_DEFER; 4482 } else { 4483 return -EINVAL; 4484 } 4485 4486 if (ret < 0) 4487 return ret; 4488 return ret - rdev->constraints->uV_offset; 4489 } 4490 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4491 4492 /** 4493 * regulator_get_voltage - get regulator output voltage 4494 * @regulator: regulator source 4495 * 4496 * This returns the current regulator voltage in uV. 4497 * 4498 * NOTE: If the regulator is disabled it will return the voltage value. This 4499 * function should not be used to determine regulator state. 4500 */ 4501 int regulator_get_voltage(struct regulator *regulator) 4502 { 4503 struct ww_acquire_ctx ww_ctx; 4504 int ret; 4505 4506 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4507 ret = regulator_get_voltage_rdev(regulator->rdev); 4508 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4509 4510 return ret; 4511 } 4512 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4513 4514 /** 4515 * regulator_set_current_limit - set regulator output current limit 4516 * @regulator: regulator source 4517 * @min_uA: Minimum supported current in uA 4518 * @max_uA: Maximum supported current in uA 4519 * 4520 * Sets current sink to the desired output current. This can be set during 4521 * any regulator state. IOW, regulator can be disabled or enabled. 4522 * 4523 * If the regulator is enabled then the current will change to the new value 4524 * immediately otherwise if the regulator is disabled the regulator will 4525 * output at the new current when enabled. 4526 * 4527 * NOTE: Regulator system constraints must be set for this regulator before 4528 * calling this function otherwise this call will fail. 4529 */ 4530 int regulator_set_current_limit(struct regulator *regulator, 4531 int min_uA, int max_uA) 4532 { 4533 struct regulator_dev *rdev = regulator->rdev; 4534 int ret; 4535 4536 regulator_lock(rdev); 4537 4538 /* sanity check */ 4539 if (!rdev->desc->ops->set_current_limit) { 4540 ret = -EINVAL; 4541 goto out; 4542 } 4543 4544 /* constraints check */ 4545 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4546 if (ret < 0) 4547 goto out; 4548 4549 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4550 out: 4551 regulator_unlock(rdev); 4552 return ret; 4553 } 4554 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4555 4556 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4557 { 4558 /* sanity check */ 4559 if (!rdev->desc->ops->get_current_limit) 4560 return -EINVAL; 4561 4562 return rdev->desc->ops->get_current_limit(rdev); 4563 } 4564 4565 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4566 { 4567 int ret; 4568 4569 regulator_lock(rdev); 4570 ret = _regulator_get_current_limit_unlocked(rdev); 4571 regulator_unlock(rdev); 4572 4573 return ret; 4574 } 4575 4576 /** 4577 * regulator_get_current_limit - get regulator output current 4578 * @regulator: regulator source 4579 * 4580 * This returns the current supplied by the specified current sink in uA. 4581 * 4582 * NOTE: If the regulator is disabled it will return the current value. This 4583 * function should not be used to determine regulator state. 4584 */ 4585 int regulator_get_current_limit(struct regulator *regulator) 4586 { 4587 return _regulator_get_current_limit(regulator->rdev); 4588 } 4589 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4590 4591 /** 4592 * regulator_set_mode - set regulator operating mode 4593 * @regulator: regulator source 4594 * @mode: operating mode - one of the REGULATOR_MODE constants 4595 * 4596 * Set regulator operating mode to increase regulator efficiency or improve 4597 * regulation performance. 4598 * 4599 * NOTE: Regulator system constraints must be set for this regulator before 4600 * calling this function otherwise this call will fail. 4601 */ 4602 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4603 { 4604 struct regulator_dev *rdev = regulator->rdev; 4605 int ret; 4606 int regulator_curr_mode; 4607 4608 regulator_lock(rdev); 4609 4610 /* sanity check */ 4611 if (!rdev->desc->ops->set_mode) { 4612 ret = -EINVAL; 4613 goto out; 4614 } 4615 4616 /* return if the same mode is requested */ 4617 if (rdev->desc->ops->get_mode) { 4618 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4619 if (regulator_curr_mode == mode) { 4620 ret = 0; 4621 goto out; 4622 } 4623 } 4624 4625 /* constraints check */ 4626 ret = regulator_mode_constrain(rdev, &mode); 4627 if (ret < 0) 4628 goto out; 4629 4630 ret = rdev->desc->ops->set_mode(rdev, mode); 4631 out: 4632 regulator_unlock(rdev); 4633 return ret; 4634 } 4635 EXPORT_SYMBOL_GPL(regulator_set_mode); 4636 4637 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4638 { 4639 /* sanity check */ 4640 if (!rdev->desc->ops->get_mode) 4641 return -EINVAL; 4642 4643 return rdev->desc->ops->get_mode(rdev); 4644 } 4645 4646 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4647 { 4648 int ret; 4649 4650 regulator_lock(rdev); 4651 ret = _regulator_get_mode_unlocked(rdev); 4652 regulator_unlock(rdev); 4653 4654 return ret; 4655 } 4656 4657 /** 4658 * regulator_get_mode - get regulator operating mode 4659 * @regulator: regulator source 4660 * 4661 * Get the current regulator operating mode. 4662 */ 4663 unsigned int regulator_get_mode(struct regulator *regulator) 4664 { 4665 return _regulator_get_mode(regulator->rdev); 4666 } 4667 EXPORT_SYMBOL_GPL(regulator_get_mode); 4668 4669 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4670 { 4671 int ret = 0; 4672 4673 if (rdev->use_cached_err) { 4674 spin_lock(&rdev->err_lock); 4675 ret = rdev->cached_err; 4676 spin_unlock(&rdev->err_lock); 4677 } 4678 return ret; 4679 } 4680 4681 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4682 unsigned int *flags) 4683 { 4684 int cached_flags, ret = 0; 4685 4686 regulator_lock(rdev); 4687 4688 cached_flags = rdev_get_cached_err_flags(rdev); 4689 4690 if (rdev->desc->ops->get_error_flags) 4691 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4692 else if (!rdev->use_cached_err) 4693 ret = -EINVAL; 4694 4695 *flags |= cached_flags; 4696 4697 regulator_unlock(rdev); 4698 4699 return ret; 4700 } 4701 4702 /** 4703 * regulator_get_error_flags - get regulator error information 4704 * @regulator: regulator source 4705 * @flags: pointer to store error flags 4706 * 4707 * Get the current regulator error information. 4708 */ 4709 int regulator_get_error_flags(struct regulator *regulator, 4710 unsigned int *flags) 4711 { 4712 return _regulator_get_error_flags(regulator->rdev, flags); 4713 } 4714 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4715 4716 /** 4717 * regulator_set_load - set regulator load 4718 * @regulator: regulator source 4719 * @uA_load: load current 4720 * 4721 * Notifies the regulator core of a new device load. This is then used by 4722 * DRMS (if enabled by constraints) to set the most efficient regulator 4723 * operating mode for the new regulator loading. 4724 * 4725 * Consumer devices notify their supply regulator of the maximum power 4726 * they will require (can be taken from device datasheet in the power 4727 * consumption tables) when they change operational status and hence power 4728 * state. Examples of operational state changes that can affect power 4729 * consumption are :- 4730 * 4731 * o Device is opened / closed. 4732 * o Device I/O is about to begin or has just finished. 4733 * o Device is idling in between work. 4734 * 4735 * This information is also exported via sysfs to userspace. 4736 * 4737 * DRMS will sum the total requested load on the regulator and change 4738 * to the most efficient operating mode if platform constraints allow. 4739 * 4740 * NOTE: when a regulator consumer requests to have a regulator 4741 * disabled then any load that consumer requested no longer counts 4742 * toward the total requested load. If the regulator is re-enabled 4743 * then the previously requested load will start counting again. 4744 * 4745 * If a regulator is an always-on regulator then an individual consumer's 4746 * load will still be removed if that consumer is fully disabled. 4747 * 4748 * On error a negative errno is returned. 4749 */ 4750 int regulator_set_load(struct regulator *regulator, int uA_load) 4751 { 4752 struct regulator_dev *rdev = regulator->rdev; 4753 int old_uA_load; 4754 int ret = 0; 4755 4756 regulator_lock(rdev); 4757 old_uA_load = regulator->uA_load; 4758 regulator->uA_load = uA_load; 4759 if (regulator->enable_count && old_uA_load != uA_load) { 4760 ret = drms_uA_update(rdev); 4761 if (ret < 0) 4762 regulator->uA_load = old_uA_load; 4763 } 4764 regulator_unlock(rdev); 4765 4766 return ret; 4767 } 4768 EXPORT_SYMBOL_GPL(regulator_set_load); 4769 4770 /** 4771 * regulator_allow_bypass - allow the regulator to go into bypass mode 4772 * 4773 * @regulator: Regulator to configure 4774 * @enable: enable or disable bypass mode 4775 * 4776 * Allow the regulator to go into bypass mode if all other consumers 4777 * for the regulator also enable bypass mode and the machine 4778 * constraints allow this. Bypass mode means that the regulator is 4779 * simply passing the input directly to the output with no regulation. 4780 */ 4781 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4782 { 4783 struct regulator_dev *rdev = regulator->rdev; 4784 const char *name = rdev_get_name(rdev); 4785 int ret = 0; 4786 4787 if (!rdev->desc->ops->set_bypass) 4788 return 0; 4789 4790 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4791 return 0; 4792 4793 regulator_lock(rdev); 4794 4795 if (enable && !regulator->bypass) { 4796 rdev->bypass_count++; 4797 4798 if (rdev->bypass_count == rdev->open_count) { 4799 trace_regulator_bypass_enable(name); 4800 4801 ret = rdev->desc->ops->set_bypass(rdev, enable); 4802 if (ret != 0) 4803 rdev->bypass_count--; 4804 else 4805 trace_regulator_bypass_enable_complete(name); 4806 } 4807 4808 } else if (!enable && regulator->bypass) { 4809 rdev->bypass_count--; 4810 4811 if (rdev->bypass_count != rdev->open_count) { 4812 trace_regulator_bypass_disable(name); 4813 4814 ret = rdev->desc->ops->set_bypass(rdev, enable); 4815 if (ret != 0) 4816 rdev->bypass_count++; 4817 else 4818 trace_regulator_bypass_disable_complete(name); 4819 } 4820 } 4821 4822 if (ret == 0) 4823 regulator->bypass = enable; 4824 4825 regulator_unlock(rdev); 4826 4827 return ret; 4828 } 4829 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4830 4831 /** 4832 * regulator_register_notifier - register regulator event notifier 4833 * @regulator: regulator source 4834 * @nb: notifier block 4835 * 4836 * Register notifier block to receive regulator events. 4837 */ 4838 int regulator_register_notifier(struct regulator *regulator, 4839 struct notifier_block *nb) 4840 { 4841 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4842 nb); 4843 } 4844 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4845 4846 /** 4847 * regulator_unregister_notifier - unregister regulator event notifier 4848 * @regulator: regulator source 4849 * @nb: notifier block 4850 * 4851 * Unregister regulator event notifier block. 4852 */ 4853 int regulator_unregister_notifier(struct regulator *regulator, 4854 struct notifier_block *nb) 4855 { 4856 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4857 nb); 4858 } 4859 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4860 4861 /* notify regulator consumers and downstream regulator consumers. 4862 * Note mutex must be held by caller. 4863 */ 4864 static int _notifier_call_chain(struct regulator_dev *rdev, 4865 unsigned long event, void *data) 4866 { 4867 /* call rdev chain first */ 4868 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data); 4869 4870 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { 4871 struct device *parent = rdev->dev.parent; 4872 const char *rname = rdev_get_name(rdev); 4873 char name[32]; 4874 4875 /* Avoid duplicate debugfs directory names */ 4876 if (parent && rname == rdev->desc->name) { 4877 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 4878 rname); 4879 rname = name; 4880 } 4881 reg_generate_netlink_event(rname, event); 4882 } 4883 4884 return ret; 4885 } 4886 4887 int _regulator_bulk_get(struct device *dev, int num_consumers, 4888 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4889 { 4890 int i; 4891 int ret; 4892 4893 for (i = 0; i < num_consumers; i++) 4894 consumers[i].consumer = NULL; 4895 4896 for (i = 0; i < num_consumers; i++) { 4897 consumers[i].consumer = _regulator_get(dev, 4898 consumers[i].supply, get_type); 4899 if (IS_ERR(consumers[i].consumer)) { 4900 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4901 "Failed to get supply '%s'", 4902 consumers[i].supply); 4903 consumers[i].consumer = NULL; 4904 goto err; 4905 } 4906 4907 if (consumers[i].init_load_uA > 0) { 4908 ret = regulator_set_load(consumers[i].consumer, 4909 consumers[i].init_load_uA); 4910 if (ret) { 4911 i++; 4912 goto err; 4913 } 4914 } 4915 } 4916 4917 return 0; 4918 4919 err: 4920 while (--i >= 0) 4921 regulator_put(consumers[i].consumer); 4922 4923 return ret; 4924 } 4925 4926 /** 4927 * regulator_bulk_get - get multiple regulator consumers 4928 * 4929 * @dev: Device to supply 4930 * @num_consumers: Number of consumers to register 4931 * @consumers: Configuration of consumers; clients are stored here. 4932 * 4933 * @return 0 on success, an errno on failure. 4934 * 4935 * This helper function allows drivers to get several regulator 4936 * consumers in one operation. If any of the regulators cannot be 4937 * acquired then any regulators that were allocated will be freed 4938 * before returning to the caller. 4939 */ 4940 int regulator_bulk_get(struct device *dev, int num_consumers, 4941 struct regulator_bulk_data *consumers) 4942 { 4943 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4944 } 4945 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4946 4947 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4948 { 4949 struct regulator_bulk_data *bulk = data; 4950 4951 bulk->ret = regulator_enable(bulk->consumer); 4952 } 4953 4954 /** 4955 * regulator_bulk_enable - enable multiple regulator consumers 4956 * 4957 * @num_consumers: Number of consumers 4958 * @consumers: Consumer data; clients are stored here. 4959 * @return 0 on success, an errno on failure 4960 * 4961 * This convenience API allows consumers to enable multiple regulator 4962 * clients in a single API call. If any consumers cannot be enabled 4963 * then any others that were enabled will be disabled again prior to 4964 * return. 4965 */ 4966 int regulator_bulk_enable(int num_consumers, 4967 struct regulator_bulk_data *consumers) 4968 { 4969 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4970 int i; 4971 int ret = 0; 4972 4973 for (i = 0; i < num_consumers; i++) { 4974 async_schedule_domain(regulator_bulk_enable_async, 4975 &consumers[i], &async_domain); 4976 } 4977 4978 async_synchronize_full_domain(&async_domain); 4979 4980 /* If any consumer failed we need to unwind any that succeeded */ 4981 for (i = 0; i < num_consumers; i++) { 4982 if (consumers[i].ret != 0) { 4983 ret = consumers[i].ret; 4984 goto err; 4985 } 4986 } 4987 4988 return 0; 4989 4990 err: 4991 for (i = 0; i < num_consumers; i++) { 4992 if (consumers[i].ret < 0) 4993 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4994 ERR_PTR(consumers[i].ret)); 4995 else 4996 regulator_disable(consumers[i].consumer); 4997 } 4998 4999 return ret; 5000 } 5001 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 5002 5003 /** 5004 * regulator_bulk_disable - disable multiple regulator consumers 5005 * 5006 * @num_consumers: Number of consumers 5007 * @consumers: Consumer data; clients are stored here. 5008 * @return 0 on success, an errno on failure 5009 * 5010 * This convenience API allows consumers to disable multiple regulator 5011 * clients in a single API call. If any consumers cannot be disabled 5012 * then any others that were disabled will be enabled again prior to 5013 * return. 5014 */ 5015 int regulator_bulk_disable(int num_consumers, 5016 struct regulator_bulk_data *consumers) 5017 { 5018 int i; 5019 int ret, r; 5020 5021 for (i = num_consumers - 1; i >= 0; --i) { 5022 ret = regulator_disable(consumers[i].consumer); 5023 if (ret != 0) 5024 goto err; 5025 } 5026 5027 return 0; 5028 5029 err: 5030 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 5031 for (++i; i < num_consumers; ++i) { 5032 r = regulator_enable(consumers[i].consumer); 5033 if (r != 0) 5034 pr_err("Failed to re-enable %s: %pe\n", 5035 consumers[i].supply, ERR_PTR(r)); 5036 } 5037 5038 return ret; 5039 } 5040 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5041 5042 /** 5043 * regulator_bulk_force_disable - force disable multiple regulator consumers 5044 * 5045 * @num_consumers: Number of consumers 5046 * @consumers: Consumer data; clients are stored here. 5047 * @return 0 on success, an errno on failure 5048 * 5049 * This convenience API allows consumers to forcibly disable multiple regulator 5050 * clients in a single API call. 5051 * NOTE: This should be used for situations when device damage will 5052 * likely occur if the regulators are not disabled (e.g. over temp). 5053 * Although regulator_force_disable function call for some consumers can 5054 * return error numbers, the function is called for all consumers. 5055 */ 5056 int regulator_bulk_force_disable(int num_consumers, 5057 struct regulator_bulk_data *consumers) 5058 { 5059 int i; 5060 int ret = 0; 5061 5062 for (i = 0; i < num_consumers; i++) { 5063 consumers[i].ret = 5064 regulator_force_disable(consumers[i].consumer); 5065 5066 /* Store first error for reporting */ 5067 if (consumers[i].ret && !ret) 5068 ret = consumers[i].ret; 5069 } 5070 5071 return ret; 5072 } 5073 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5074 5075 /** 5076 * regulator_bulk_free - free multiple regulator consumers 5077 * 5078 * @num_consumers: Number of consumers 5079 * @consumers: Consumer data; clients are stored here. 5080 * 5081 * This convenience API allows consumers to free multiple regulator 5082 * clients in a single API call. 5083 */ 5084 void regulator_bulk_free(int num_consumers, 5085 struct regulator_bulk_data *consumers) 5086 { 5087 int i; 5088 5089 for (i = 0; i < num_consumers; i++) { 5090 regulator_put(consumers[i].consumer); 5091 consumers[i].consumer = NULL; 5092 } 5093 } 5094 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5095 5096 /** 5097 * regulator_handle_critical - Handle events for system-critical regulators. 5098 * @rdev: The regulator device. 5099 * @event: The event being handled. 5100 * 5101 * This function handles critical events such as under-voltage, over-current, 5102 * and unknown errors for regulators deemed system-critical. On detecting such 5103 * events, it triggers a hardware protection shutdown with a defined timeout. 5104 */ 5105 static void regulator_handle_critical(struct regulator_dev *rdev, 5106 unsigned long event) 5107 { 5108 const char *reason = NULL; 5109 5110 if (!rdev->constraints->system_critical) 5111 return; 5112 5113 switch (event) { 5114 case REGULATOR_EVENT_UNDER_VOLTAGE: 5115 reason = "System critical regulator: voltage drop detected"; 5116 break; 5117 case REGULATOR_EVENT_OVER_CURRENT: 5118 reason = "System critical regulator: over-current detected"; 5119 break; 5120 case REGULATOR_EVENT_FAIL: 5121 reason = "System critical regulator: unknown error"; 5122 } 5123 5124 if (!reason) 5125 return; 5126 5127 hw_protection_shutdown(reason, 5128 rdev->constraints->uv_less_critical_window_ms); 5129 } 5130 5131 /** 5132 * regulator_notifier_call_chain - call regulator event notifier 5133 * @rdev: regulator source 5134 * @event: notifier block 5135 * @data: callback-specific data. 5136 * 5137 * Called by regulator drivers to notify clients a regulator event has 5138 * occurred. 5139 */ 5140 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5141 unsigned long event, void *data) 5142 { 5143 regulator_handle_critical(rdev, event); 5144 5145 _notifier_call_chain(rdev, event, data); 5146 return NOTIFY_DONE; 5147 5148 } 5149 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5150 5151 /** 5152 * regulator_mode_to_status - convert a regulator mode into a status 5153 * 5154 * @mode: Mode to convert 5155 * 5156 * Convert a regulator mode into a status. 5157 */ 5158 int regulator_mode_to_status(unsigned int mode) 5159 { 5160 switch (mode) { 5161 case REGULATOR_MODE_FAST: 5162 return REGULATOR_STATUS_FAST; 5163 case REGULATOR_MODE_NORMAL: 5164 return REGULATOR_STATUS_NORMAL; 5165 case REGULATOR_MODE_IDLE: 5166 return REGULATOR_STATUS_IDLE; 5167 case REGULATOR_MODE_STANDBY: 5168 return REGULATOR_STATUS_STANDBY; 5169 default: 5170 return REGULATOR_STATUS_UNDEFINED; 5171 } 5172 } 5173 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5174 5175 static struct attribute *regulator_dev_attrs[] = { 5176 &dev_attr_name.attr, 5177 &dev_attr_num_users.attr, 5178 &dev_attr_type.attr, 5179 &dev_attr_microvolts.attr, 5180 &dev_attr_microamps.attr, 5181 &dev_attr_opmode.attr, 5182 &dev_attr_state.attr, 5183 &dev_attr_status.attr, 5184 &dev_attr_bypass.attr, 5185 &dev_attr_requested_microamps.attr, 5186 &dev_attr_min_microvolts.attr, 5187 &dev_attr_max_microvolts.attr, 5188 &dev_attr_min_microamps.attr, 5189 &dev_attr_max_microamps.attr, 5190 &dev_attr_under_voltage.attr, 5191 &dev_attr_over_current.attr, 5192 &dev_attr_regulation_out.attr, 5193 &dev_attr_fail.attr, 5194 &dev_attr_over_temp.attr, 5195 &dev_attr_under_voltage_warn.attr, 5196 &dev_attr_over_current_warn.attr, 5197 &dev_attr_over_voltage_warn.attr, 5198 &dev_attr_over_temp_warn.attr, 5199 &dev_attr_suspend_standby_state.attr, 5200 &dev_attr_suspend_mem_state.attr, 5201 &dev_attr_suspend_disk_state.attr, 5202 &dev_attr_suspend_standby_microvolts.attr, 5203 &dev_attr_suspend_mem_microvolts.attr, 5204 &dev_attr_suspend_disk_microvolts.attr, 5205 &dev_attr_suspend_standby_mode.attr, 5206 &dev_attr_suspend_mem_mode.attr, 5207 &dev_attr_suspend_disk_mode.attr, 5208 NULL 5209 }; 5210 5211 /* 5212 * To avoid cluttering sysfs (and memory) with useless state, only 5213 * create attributes that can be meaningfully displayed. 5214 */ 5215 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5216 struct attribute *attr, int idx) 5217 { 5218 struct device *dev = kobj_to_dev(kobj); 5219 struct regulator_dev *rdev = dev_to_rdev(dev); 5220 const struct regulator_ops *ops = rdev->desc->ops; 5221 umode_t mode = attr->mode; 5222 5223 /* these three are always present */ 5224 if (attr == &dev_attr_name.attr || 5225 attr == &dev_attr_num_users.attr || 5226 attr == &dev_attr_type.attr) 5227 return mode; 5228 5229 /* some attributes need specific methods to be displayed */ 5230 if (attr == &dev_attr_microvolts.attr) { 5231 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5232 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5233 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5234 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5235 return mode; 5236 return 0; 5237 } 5238 5239 if (attr == &dev_attr_microamps.attr) 5240 return ops->get_current_limit ? mode : 0; 5241 5242 if (attr == &dev_attr_opmode.attr) 5243 return ops->get_mode ? mode : 0; 5244 5245 if (attr == &dev_attr_state.attr) 5246 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5247 5248 if (attr == &dev_attr_status.attr) 5249 return ops->get_status ? mode : 0; 5250 5251 if (attr == &dev_attr_bypass.attr) 5252 return ops->get_bypass ? mode : 0; 5253 5254 if (attr == &dev_attr_under_voltage.attr || 5255 attr == &dev_attr_over_current.attr || 5256 attr == &dev_attr_regulation_out.attr || 5257 attr == &dev_attr_fail.attr || 5258 attr == &dev_attr_over_temp.attr || 5259 attr == &dev_attr_under_voltage_warn.attr || 5260 attr == &dev_attr_over_current_warn.attr || 5261 attr == &dev_attr_over_voltage_warn.attr || 5262 attr == &dev_attr_over_temp_warn.attr) 5263 return ops->get_error_flags ? mode : 0; 5264 5265 /* constraints need specific supporting methods */ 5266 if (attr == &dev_attr_min_microvolts.attr || 5267 attr == &dev_attr_max_microvolts.attr) 5268 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5269 5270 if (attr == &dev_attr_min_microamps.attr || 5271 attr == &dev_attr_max_microamps.attr) 5272 return ops->set_current_limit ? mode : 0; 5273 5274 if (attr == &dev_attr_suspend_standby_state.attr || 5275 attr == &dev_attr_suspend_mem_state.attr || 5276 attr == &dev_attr_suspend_disk_state.attr) 5277 return mode; 5278 5279 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5280 attr == &dev_attr_suspend_mem_microvolts.attr || 5281 attr == &dev_attr_suspend_disk_microvolts.attr) 5282 return ops->set_suspend_voltage ? mode : 0; 5283 5284 if (attr == &dev_attr_suspend_standby_mode.attr || 5285 attr == &dev_attr_suspend_mem_mode.attr || 5286 attr == &dev_attr_suspend_disk_mode.attr) 5287 return ops->set_suspend_mode ? mode : 0; 5288 5289 return mode; 5290 } 5291 5292 static const struct attribute_group regulator_dev_group = { 5293 .attrs = regulator_dev_attrs, 5294 .is_visible = regulator_attr_is_visible, 5295 }; 5296 5297 static const struct attribute_group *regulator_dev_groups[] = { 5298 ®ulator_dev_group, 5299 NULL 5300 }; 5301 5302 static void regulator_dev_release(struct device *dev) 5303 { 5304 struct regulator_dev *rdev = dev_get_drvdata(dev); 5305 5306 debugfs_remove_recursive(rdev->debugfs); 5307 kfree(rdev->constraints); 5308 of_node_put(rdev->dev.of_node); 5309 kfree(rdev); 5310 } 5311 5312 static void rdev_init_debugfs(struct regulator_dev *rdev) 5313 { 5314 struct device *parent = rdev->dev.parent; 5315 const char *rname = rdev_get_name(rdev); 5316 char name[NAME_MAX]; 5317 5318 /* Avoid duplicate debugfs directory names */ 5319 if (parent && rname == rdev->desc->name) { 5320 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5321 rname); 5322 rname = name; 5323 } 5324 5325 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5326 if (IS_ERR(rdev->debugfs)) 5327 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5328 5329 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5330 &rdev->use_count); 5331 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5332 &rdev->open_count); 5333 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5334 &rdev->bypass_count); 5335 } 5336 5337 static int regulator_register_resolve_supply(struct device *dev, void *data) 5338 { 5339 struct regulator_dev *rdev = dev_to_rdev(dev); 5340 5341 if (regulator_resolve_supply(rdev)) 5342 rdev_dbg(rdev, "unable to resolve supply\n"); 5343 5344 return 0; 5345 } 5346 5347 int regulator_coupler_register(struct regulator_coupler *coupler) 5348 { 5349 mutex_lock(®ulator_list_mutex); 5350 list_add_tail(&coupler->list, ®ulator_coupler_list); 5351 mutex_unlock(®ulator_list_mutex); 5352 5353 return 0; 5354 } 5355 5356 static struct regulator_coupler * 5357 regulator_find_coupler(struct regulator_dev *rdev) 5358 { 5359 struct regulator_coupler *coupler; 5360 int err; 5361 5362 /* 5363 * Note that regulators are appended to the list and the generic 5364 * coupler is registered first, hence it will be attached at last 5365 * if nobody cared. 5366 */ 5367 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5368 err = coupler->attach_regulator(coupler, rdev); 5369 if (!err) { 5370 if (!coupler->balance_voltage && 5371 rdev->coupling_desc.n_coupled > 2) 5372 goto err_unsupported; 5373 5374 return coupler; 5375 } 5376 5377 if (err < 0) 5378 return ERR_PTR(err); 5379 5380 if (err == 1) 5381 continue; 5382 5383 break; 5384 } 5385 5386 return ERR_PTR(-EINVAL); 5387 5388 err_unsupported: 5389 if (coupler->detach_regulator) 5390 coupler->detach_regulator(coupler, rdev); 5391 5392 rdev_err(rdev, 5393 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5394 5395 return ERR_PTR(-EPERM); 5396 } 5397 5398 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5399 { 5400 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5401 struct coupling_desc *c_desc = &rdev->coupling_desc; 5402 int n_coupled = c_desc->n_coupled; 5403 struct regulator_dev *c_rdev; 5404 int i; 5405 5406 for (i = 1; i < n_coupled; i++) { 5407 /* already resolved */ 5408 if (c_desc->coupled_rdevs[i]) 5409 continue; 5410 5411 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5412 5413 if (!c_rdev) 5414 continue; 5415 5416 if (c_rdev->coupling_desc.coupler != coupler) { 5417 rdev_err(rdev, "coupler mismatch with %s\n", 5418 rdev_get_name(c_rdev)); 5419 return; 5420 } 5421 5422 c_desc->coupled_rdevs[i] = c_rdev; 5423 c_desc->n_resolved++; 5424 5425 regulator_resolve_coupling(c_rdev); 5426 } 5427 } 5428 5429 static void regulator_remove_coupling(struct regulator_dev *rdev) 5430 { 5431 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5432 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5433 struct regulator_dev *__c_rdev, *c_rdev; 5434 unsigned int __n_coupled, n_coupled; 5435 int i, k; 5436 int err; 5437 5438 n_coupled = c_desc->n_coupled; 5439 5440 for (i = 1; i < n_coupled; i++) { 5441 c_rdev = c_desc->coupled_rdevs[i]; 5442 5443 if (!c_rdev) 5444 continue; 5445 5446 regulator_lock(c_rdev); 5447 5448 __c_desc = &c_rdev->coupling_desc; 5449 __n_coupled = __c_desc->n_coupled; 5450 5451 for (k = 1; k < __n_coupled; k++) { 5452 __c_rdev = __c_desc->coupled_rdevs[k]; 5453 5454 if (__c_rdev == rdev) { 5455 __c_desc->coupled_rdevs[k] = NULL; 5456 __c_desc->n_resolved--; 5457 break; 5458 } 5459 } 5460 5461 regulator_unlock(c_rdev); 5462 5463 c_desc->coupled_rdevs[i] = NULL; 5464 c_desc->n_resolved--; 5465 } 5466 5467 if (coupler && coupler->detach_regulator) { 5468 err = coupler->detach_regulator(coupler, rdev); 5469 if (err) 5470 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5471 ERR_PTR(err)); 5472 } 5473 5474 kfree(rdev->coupling_desc.coupled_rdevs); 5475 rdev->coupling_desc.coupled_rdevs = NULL; 5476 } 5477 5478 static int regulator_init_coupling(struct regulator_dev *rdev) 5479 { 5480 struct regulator_dev **coupled; 5481 int err, n_phandles; 5482 5483 if (!IS_ENABLED(CONFIG_OF)) 5484 n_phandles = 0; 5485 else 5486 n_phandles = of_get_n_coupled(rdev); 5487 5488 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5489 if (!coupled) 5490 return -ENOMEM; 5491 5492 rdev->coupling_desc.coupled_rdevs = coupled; 5493 5494 /* 5495 * Every regulator should always have coupling descriptor filled with 5496 * at least pointer to itself. 5497 */ 5498 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5499 rdev->coupling_desc.n_coupled = n_phandles + 1; 5500 rdev->coupling_desc.n_resolved++; 5501 5502 /* regulator isn't coupled */ 5503 if (n_phandles == 0) 5504 return 0; 5505 5506 if (!of_check_coupling_data(rdev)) 5507 return -EPERM; 5508 5509 mutex_lock(®ulator_list_mutex); 5510 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5511 mutex_unlock(®ulator_list_mutex); 5512 5513 if (IS_ERR(rdev->coupling_desc.coupler)) { 5514 err = PTR_ERR(rdev->coupling_desc.coupler); 5515 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5516 return err; 5517 } 5518 5519 return 0; 5520 } 5521 5522 static int generic_coupler_attach(struct regulator_coupler *coupler, 5523 struct regulator_dev *rdev) 5524 { 5525 if (rdev->coupling_desc.n_coupled > 2) { 5526 rdev_err(rdev, 5527 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5528 return -EPERM; 5529 } 5530 5531 if (!rdev->constraints->always_on) { 5532 rdev_err(rdev, 5533 "Coupling of a non always-on regulator is unimplemented\n"); 5534 return -ENOTSUPP; 5535 } 5536 5537 return 0; 5538 } 5539 5540 static struct regulator_coupler generic_regulator_coupler = { 5541 .attach_regulator = generic_coupler_attach, 5542 }; 5543 5544 /** 5545 * regulator_register - register regulator 5546 * @dev: the device that drive the regulator 5547 * @regulator_desc: regulator to register 5548 * @cfg: runtime configuration for regulator 5549 * 5550 * Called by regulator drivers to register a regulator. 5551 * Returns a valid pointer to struct regulator_dev on success 5552 * or an ERR_PTR() on error. 5553 */ 5554 struct regulator_dev * 5555 regulator_register(struct device *dev, 5556 const struct regulator_desc *regulator_desc, 5557 const struct regulator_config *cfg) 5558 { 5559 const struct regulator_init_data *init_data; 5560 struct regulator_config *config = NULL; 5561 static atomic_t regulator_no = ATOMIC_INIT(-1); 5562 struct regulator_dev *rdev; 5563 bool dangling_cfg_gpiod = false; 5564 bool dangling_of_gpiod = false; 5565 int ret, i; 5566 bool resolved_early = false; 5567 5568 if (cfg == NULL) 5569 return ERR_PTR(-EINVAL); 5570 if (cfg->ena_gpiod) 5571 dangling_cfg_gpiod = true; 5572 if (regulator_desc == NULL) { 5573 ret = -EINVAL; 5574 goto rinse; 5575 } 5576 5577 WARN_ON(!dev || !cfg->dev); 5578 5579 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5580 ret = -EINVAL; 5581 goto rinse; 5582 } 5583 5584 if (regulator_desc->type != REGULATOR_VOLTAGE && 5585 regulator_desc->type != REGULATOR_CURRENT) { 5586 ret = -EINVAL; 5587 goto rinse; 5588 } 5589 5590 /* Only one of each should be implemented */ 5591 WARN_ON(regulator_desc->ops->get_voltage && 5592 regulator_desc->ops->get_voltage_sel); 5593 WARN_ON(regulator_desc->ops->set_voltage && 5594 regulator_desc->ops->set_voltage_sel); 5595 5596 /* If we're using selectors we must implement list_voltage. */ 5597 if (regulator_desc->ops->get_voltage_sel && 5598 !regulator_desc->ops->list_voltage) { 5599 ret = -EINVAL; 5600 goto rinse; 5601 } 5602 if (regulator_desc->ops->set_voltage_sel && 5603 !regulator_desc->ops->list_voltage) { 5604 ret = -EINVAL; 5605 goto rinse; 5606 } 5607 5608 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5609 if (rdev == NULL) { 5610 ret = -ENOMEM; 5611 goto rinse; 5612 } 5613 device_initialize(&rdev->dev); 5614 dev_set_drvdata(&rdev->dev, rdev); 5615 rdev->dev.class = ®ulator_class; 5616 spin_lock_init(&rdev->err_lock); 5617 5618 /* 5619 * Duplicate the config so the driver could override it after 5620 * parsing init data. 5621 */ 5622 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5623 if (config == NULL) { 5624 ret = -ENOMEM; 5625 goto clean; 5626 } 5627 5628 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5629 &rdev->dev.of_node); 5630 5631 /* 5632 * Sometimes not all resources are probed already so we need to take 5633 * that into account. This happens most the time if the ena_gpiod comes 5634 * from a gpio extender or something else. 5635 */ 5636 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5637 ret = -EPROBE_DEFER; 5638 goto clean; 5639 } 5640 5641 /* 5642 * We need to keep track of any GPIO descriptor coming from the 5643 * device tree until we have handled it over to the core. If the 5644 * config that was passed in to this function DOES NOT contain 5645 * a descriptor, and the config after this call DOES contain 5646 * a descriptor, we definitely got one from parsing the device 5647 * tree. 5648 */ 5649 if (!cfg->ena_gpiod && config->ena_gpiod) 5650 dangling_of_gpiod = true; 5651 if (!init_data) { 5652 init_data = config->init_data; 5653 rdev->dev.of_node = of_node_get(config->of_node); 5654 } 5655 5656 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5657 rdev->reg_data = config->driver_data; 5658 rdev->owner = regulator_desc->owner; 5659 rdev->desc = regulator_desc; 5660 if (config->regmap) 5661 rdev->regmap = config->regmap; 5662 else if (dev_get_regmap(dev, NULL)) 5663 rdev->regmap = dev_get_regmap(dev, NULL); 5664 else if (dev->parent) 5665 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5666 INIT_LIST_HEAD(&rdev->consumer_list); 5667 INIT_LIST_HEAD(&rdev->list); 5668 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5669 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5670 5671 if (init_data && init_data->supply_regulator) 5672 rdev->supply_name = init_data->supply_regulator; 5673 else if (regulator_desc->supply_name) 5674 rdev->supply_name = regulator_desc->supply_name; 5675 5676 /* register with sysfs */ 5677 rdev->dev.parent = config->dev; 5678 dev_set_name(&rdev->dev, "regulator.%lu", 5679 (unsigned long) atomic_inc_return(®ulator_no)); 5680 5681 /* set regulator constraints */ 5682 if (init_data) 5683 rdev->constraints = kmemdup(&init_data->constraints, 5684 sizeof(*rdev->constraints), 5685 GFP_KERNEL); 5686 else 5687 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5688 GFP_KERNEL); 5689 if (!rdev->constraints) { 5690 ret = -ENOMEM; 5691 goto wash; 5692 } 5693 5694 if ((rdev->supply_name && !rdev->supply) && 5695 (rdev->constraints->always_on || 5696 rdev->constraints->boot_on)) { 5697 ret = regulator_resolve_supply(rdev); 5698 if (ret) 5699 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5700 ERR_PTR(ret)); 5701 5702 resolved_early = true; 5703 } 5704 5705 /* perform any regulator specific init */ 5706 if (init_data && init_data->regulator_init) { 5707 ret = init_data->regulator_init(rdev->reg_data); 5708 if (ret < 0) 5709 goto wash; 5710 } 5711 5712 if (config->ena_gpiod) { 5713 ret = regulator_ena_gpio_request(rdev, config); 5714 if (ret != 0) { 5715 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5716 ERR_PTR(ret)); 5717 goto wash; 5718 } 5719 /* The regulator core took over the GPIO descriptor */ 5720 dangling_cfg_gpiod = false; 5721 dangling_of_gpiod = false; 5722 } 5723 5724 ret = set_machine_constraints(rdev); 5725 if (ret == -EPROBE_DEFER && !resolved_early) { 5726 /* Regulator might be in bypass mode and so needs its supply 5727 * to set the constraints 5728 */ 5729 /* FIXME: this currently triggers a chicken-and-egg problem 5730 * when creating -SUPPLY symlink in sysfs to a regulator 5731 * that is just being created 5732 */ 5733 rdev_dbg(rdev, "will resolve supply early: %s\n", 5734 rdev->supply_name); 5735 ret = regulator_resolve_supply(rdev); 5736 if (!ret) 5737 ret = set_machine_constraints(rdev); 5738 else 5739 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5740 ERR_PTR(ret)); 5741 } 5742 if (ret < 0) 5743 goto wash; 5744 5745 ret = regulator_init_coupling(rdev); 5746 if (ret < 0) 5747 goto wash; 5748 5749 /* add consumers devices */ 5750 if (init_data) { 5751 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5752 ret = set_consumer_device_supply(rdev, 5753 init_data->consumer_supplies[i].dev_name, 5754 init_data->consumer_supplies[i].supply); 5755 if (ret < 0) { 5756 dev_err(dev, "Failed to set supply %s\n", 5757 init_data->consumer_supplies[i].supply); 5758 goto unset_supplies; 5759 } 5760 } 5761 } 5762 5763 if (!rdev->desc->ops->get_voltage && 5764 !rdev->desc->ops->list_voltage && 5765 !rdev->desc->fixed_uV) 5766 rdev->is_switch = true; 5767 5768 ret = device_add(&rdev->dev); 5769 if (ret != 0) 5770 goto unset_supplies; 5771 5772 rdev_init_debugfs(rdev); 5773 5774 /* try to resolve regulators coupling since a new one was registered */ 5775 mutex_lock(®ulator_list_mutex); 5776 regulator_resolve_coupling(rdev); 5777 mutex_unlock(®ulator_list_mutex); 5778 5779 /* try to resolve regulators supply since a new one was registered */ 5780 class_for_each_device(®ulator_class, NULL, NULL, 5781 regulator_register_resolve_supply); 5782 kfree(config); 5783 return rdev; 5784 5785 unset_supplies: 5786 mutex_lock(®ulator_list_mutex); 5787 unset_regulator_supplies(rdev); 5788 regulator_remove_coupling(rdev); 5789 mutex_unlock(®ulator_list_mutex); 5790 wash: 5791 regulator_put(rdev->supply); 5792 kfree(rdev->coupling_desc.coupled_rdevs); 5793 mutex_lock(®ulator_list_mutex); 5794 regulator_ena_gpio_free(rdev); 5795 mutex_unlock(®ulator_list_mutex); 5796 clean: 5797 if (dangling_of_gpiod) 5798 gpiod_put(config->ena_gpiod); 5799 kfree(config); 5800 put_device(&rdev->dev); 5801 rinse: 5802 if (dangling_cfg_gpiod) 5803 gpiod_put(cfg->ena_gpiod); 5804 return ERR_PTR(ret); 5805 } 5806 EXPORT_SYMBOL_GPL(regulator_register); 5807 5808 /** 5809 * regulator_unregister - unregister regulator 5810 * @rdev: regulator to unregister 5811 * 5812 * Called by regulator drivers to unregister a regulator. 5813 */ 5814 void regulator_unregister(struct regulator_dev *rdev) 5815 { 5816 if (rdev == NULL) 5817 return; 5818 5819 if (rdev->supply) { 5820 while (rdev->use_count--) 5821 regulator_disable(rdev->supply); 5822 regulator_put(rdev->supply); 5823 } 5824 5825 flush_work(&rdev->disable_work.work); 5826 5827 mutex_lock(®ulator_list_mutex); 5828 5829 WARN_ON(rdev->open_count); 5830 regulator_remove_coupling(rdev); 5831 unset_regulator_supplies(rdev); 5832 list_del(&rdev->list); 5833 regulator_ena_gpio_free(rdev); 5834 device_unregister(&rdev->dev); 5835 5836 mutex_unlock(®ulator_list_mutex); 5837 } 5838 EXPORT_SYMBOL_GPL(regulator_unregister); 5839 5840 #ifdef CONFIG_SUSPEND 5841 /** 5842 * regulator_suspend - prepare regulators for system wide suspend 5843 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5844 * 5845 * Configure each regulator with it's suspend operating parameters for state. 5846 */ 5847 static int regulator_suspend(struct device *dev) 5848 { 5849 struct regulator_dev *rdev = dev_to_rdev(dev); 5850 suspend_state_t state = pm_suspend_target_state; 5851 int ret; 5852 const struct regulator_state *rstate; 5853 5854 rstate = regulator_get_suspend_state_check(rdev, state); 5855 if (!rstate) 5856 return 0; 5857 5858 regulator_lock(rdev); 5859 ret = __suspend_set_state(rdev, rstate); 5860 regulator_unlock(rdev); 5861 5862 return ret; 5863 } 5864 5865 static int regulator_resume(struct device *dev) 5866 { 5867 suspend_state_t state = pm_suspend_target_state; 5868 struct regulator_dev *rdev = dev_to_rdev(dev); 5869 struct regulator_state *rstate; 5870 int ret = 0; 5871 5872 rstate = regulator_get_suspend_state(rdev, state); 5873 if (rstate == NULL) 5874 return 0; 5875 5876 /* Avoid grabbing the lock if we don't need to */ 5877 if (!rdev->desc->ops->resume) 5878 return 0; 5879 5880 regulator_lock(rdev); 5881 5882 if (rstate->enabled == ENABLE_IN_SUSPEND || 5883 rstate->enabled == DISABLE_IN_SUSPEND) 5884 ret = rdev->desc->ops->resume(rdev); 5885 5886 regulator_unlock(rdev); 5887 5888 return ret; 5889 } 5890 #else /* !CONFIG_SUSPEND */ 5891 5892 #define regulator_suspend NULL 5893 #define regulator_resume NULL 5894 5895 #endif /* !CONFIG_SUSPEND */ 5896 5897 #ifdef CONFIG_PM 5898 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5899 .suspend = regulator_suspend, 5900 .resume = regulator_resume, 5901 }; 5902 #endif 5903 5904 const struct class regulator_class = { 5905 .name = "regulator", 5906 .dev_release = regulator_dev_release, 5907 .dev_groups = regulator_dev_groups, 5908 #ifdef CONFIG_PM 5909 .pm = ®ulator_pm_ops, 5910 #endif 5911 }; 5912 /** 5913 * regulator_has_full_constraints - the system has fully specified constraints 5914 * 5915 * Calling this function will cause the regulator API to disable all 5916 * regulators which have a zero use count and don't have an always_on 5917 * constraint in a late_initcall. 5918 * 5919 * The intention is that this will become the default behaviour in a 5920 * future kernel release so users are encouraged to use this facility 5921 * now. 5922 */ 5923 void regulator_has_full_constraints(void) 5924 { 5925 has_full_constraints = 1; 5926 } 5927 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5928 5929 /** 5930 * rdev_get_drvdata - get rdev regulator driver data 5931 * @rdev: regulator 5932 * 5933 * Get rdev regulator driver private data. This call can be used in the 5934 * regulator driver context. 5935 */ 5936 void *rdev_get_drvdata(struct regulator_dev *rdev) 5937 { 5938 return rdev->reg_data; 5939 } 5940 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5941 5942 /** 5943 * regulator_get_drvdata - get regulator driver data 5944 * @regulator: regulator 5945 * 5946 * Get regulator driver private data. This call can be used in the consumer 5947 * driver context when non API regulator specific functions need to be called. 5948 */ 5949 void *regulator_get_drvdata(struct regulator *regulator) 5950 { 5951 return regulator->rdev->reg_data; 5952 } 5953 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5954 5955 /** 5956 * regulator_set_drvdata - set regulator driver data 5957 * @regulator: regulator 5958 * @data: data 5959 */ 5960 void regulator_set_drvdata(struct regulator *regulator, void *data) 5961 { 5962 regulator->rdev->reg_data = data; 5963 } 5964 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5965 5966 /** 5967 * rdev_get_id - get regulator ID 5968 * @rdev: regulator 5969 */ 5970 int rdev_get_id(struct regulator_dev *rdev) 5971 { 5972 return rdev->desc->id; 5973 } 5974 EXPORT_SYMBOL_GPL(rdev_get_id); 5975 5976 struct device *rdev_get_dev(struct regulator_dev *rdev) 5977 { 5978 return &rdev->dev; 5979 } 5980 EXPORT_SYMBOL_GPL(rdev_get_dev); 5981 5982 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5983 { 5984 return rdev->regmap; 5985 } 5986 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5987 5988 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5989 { 5990 return reg_init_data->driver_data; 5991 } 5992 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5993 5994 #ifdef CONFIG_DEBUG_FS 5995 static int supply_map_show(struct seq_file *sf, void *data) 5996 { 5997 struct regulator_map *map; 5998 5999 list_for_each_entry(map, ®ulator_map_list, list) { 6000 seq_printf(sf, "%s -> %s.%s\n", 6001 rdev_get_name(map->regulator), map->dev_name, 6002 map->supply); 6003 } 6004 6005 return 0; 6006 } 6007 DEFINE_SHOW_ATTRIBUTE(supply_map); 6008 6009 struct summary_data { 6010 struct seq_file *s; 6011 struct regulator_dev *parent; 6012 int level; 6013 }; 6014 6015 static void regulator_summary_show_subtree(struct seq_file *s, 6016 struct regulator_dev *rdev, 6017 int level); 6018 6019 static int regulator_summary_show_children(struct device *dev, void *data) 6020 { 6021 struct regulator_dev *rdev = dev_to_rdev(dev); 6022 struct summary_data *summary_data = data; 6023 6024 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 6025 regulator_summary_show_subtree(summary_data->s, rdev, 6026 summary_data->level + 1); 6027 6028 return 0; 6029 } 6030 6031 static void regulator_summary_show_subtree(struct seq_file *s, 6032 struct regulator_dev *rdev, 6033 int level) 6034 { 6035 struct regulation_constraints *c; 6036 struct regulator *consumer; 6037 struct summary_data summary_data; 6038 unsigned int opmode; 6039 6040 if (!rdev) 6041 return; 6042 6043 opmode = _regulator_get_mode_unlocked(rdev); 6044 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 6045 level * 3 + 1, "", 6046 30 - level * 3, rdev_get_name(rdev), 6047 rdev->use_count, rdev->open_count, rdev->bypass_count, 6048 regulator_opmode_to_str(opmode)); 6049 6050 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 6051 seq_printf(s, "%5dmA ", 6052 _regulator_get_current_limit_unlocked(rdev) / 1000); 6053 6054 c = rdev->constraints; 6055 if (c) { 6056 switch (rdev->desc->type) { 6057 case REGULATOR_VOLTAGE: 6058 seq_printf(s, "%5dmV %5dmV ", 6059 c->min_uV / 1000, c->max_uV / 1000); 6060 break; 6061 case REGULATOR_CURRENT: 6062 seq_printf(s, "%5dmA %5dmA ", 6063 c->min_uA / 1000, c->max_uA / 1000); 6064 break; 6065 } 6066 } 6067 6068 seq_puts(s, "\n"); 6069 6070 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6071 if (consumer->dev && consumer->dev->class == ®ulator_class) 6072 continue; 6073 6074 seq_printf(s, "%*s%-*s ", 6075 (level + 1) * 3 + 1, "", 6076 30 - (level + 1) * 3, 6077 consumer->supply_name ? consumer->supply_name : 6078 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6079 6080 switch (rdev->desc->type) { 6081 case REGULATOR_VOLTAGE: 6082 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6083 consumer->enable_count, 6084 consumer->uA_load / 1000, 6085 consumer->uA_load && !consumer->enable_count ? 6086 '*' : ' ', 6087 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6088 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6089 break; 6090 case REGULATOR_CURRENT: 6091 break; 6092 } 6093 6094 seq_puts(s, "\n"); 6095 } 6096 6097 summary_data.s = s; 6098 summary_data.level = level; 6099 summary_data.parent = rdev; 6100 6101 class_for_each_device(®ulator_class, NULL, &summary_data, 6102 regulator_summary_show_children); 6103 } 6104 6105 struct summary_lock_data { 6106 struct ww_acquire_ctx *ww_ctx; 6107 struct regulator_dev **new_contended_rdev; 6108 struct regulator_dev **old_contended_rdev; 6109 }; 6110 6111 static int regulator_summary_lock_one(struct device *dev, void *data) 6112 { 6113 struct regulator_dev *rdev = dev_to_rdev(dev); 6114 struct summary_lock_data *lock_data = data; 6115 int ret = 0; 6116 6117 if (rdev != *lock_data->old_contended_rdev) { 6118 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6119 6120 if (ret == -EDEADLK) 6121 *lock_data->new_contended_rdev = rdev; 6122 else 6123 WARN_ON_ONCE(ret); 6124 } else { 6125 *lock_data->old_contended_rdev = NULL; 6126 } 6127 6128 return ret; 6129 } 6130 6131 static int regulator_summary_unlock_one(struct device *dev, void *data) 6132 { 6133 struct regulator_dev *rdev = dev_to_rdev(dev); 6134 struct summary_lock_data *lock_data = data; 6135 6136 if (lock_data) { 6137 if (rdev == *lock_data->new_contended_rdev) 6138 return -EDEADLK; 6139 } 6140 6141 regulator_unlock(rdev); 6142 6143 return 0; 6144 } 6145 6146 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6147 struct regulator_dev **new_contended_rdev, 6148 struct regulator_dev **old_contended_rdev) 6149 { 6150 struct summary_lock_data lock_data; 6151 int ret; 6152 6153 lock_data.ww_ctx = ww_ctx; 6154 lock_data.new_contended_rdev = new_contended_rdev; 6155 lock_data.old_contended_rdev = old_contended_rdev; 6156 6157 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6158 regulator_summary_lock_one); 6159 if (ret) 6160 class_for_each_device(®ulator_class, NULL, &lock_data, 6161 regulator_summary_unlock_one); 6162 6163 return ret; 6164 } 6165 6166 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6167 { 6168 struct regulator_dev *new_contended_rdev = NULL; 6169 struct regulator_dev *old_contended_rdev = NULL; 6170 int err; 6171 6172 mutex_lock(®ulator_list_mutex); 6173 6174 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6175 6176 do { 6177 if (new_contended_rdev) { 6178 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6179 old_contended_rdev = new_contended_rdev; 6180 old_contended_rdev->ref_cnt++; 6181 old_contended_rdev->mutex_owner = current; 6182 } 6183 6184 err = regulator_summary_lock_all(ww_ctx, 6185 &new_contended_rdev, 6186 &old_contended_rdev); 6187 6188 if (old_contended_rdev) 6189 regulator_unlock(old_contended_rdev); 6190 6191 } while (err == -EDEADLK); 6192 6193 ww_acquire_done(ww_ctx); 6194 } 6195 6196 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6197 { 6198 class_for_each_device(®ulator_class, NULL, NULL, 6199 regulator_summary_unlock_one); 6200 ww_acquire_fini(ww_ctx); 6201 6202 mutex_unlock(®ulator_list_mutex); 6203 } 6204 6205 static int regulator_summary_show_roots(struct device *dev, void *data) 6206 { 6207 struct regulator_dev *rdev = dev_to_rdev(dev); 6208 struct seq_file *s = data; 6209 6210 if (!rdev->supply) 6211 regulator_summary_show_subtree(s, rdev, 0); 6212 6213 return 0; 6214 } 6215 6216 static int regulator_summary_show(struct seq_file *s, void *data) 6217 { 6218 struct ww_acquire_ctx ww_ctx; 6219 6220 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6221 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6222 6223 regulator_summary_lock(&ww_ctx); 6224 6225 class_for_each_device(®ulator_class, NULL, s, 6226 regulator_summary_show_roots); 6227 6228 regulator_summary_unlock(&ww_ctx); 6229 6230 return 0; 6231 } 6232 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6233 #endif /* CONFIG_DEBUG_FS */ 6234 6235 static int __init regulator_init(void) 6236 { 6237 int ret; 6238 6239 ret = class_register(®ulator_class); 6240 6241 debugfs_root = debugfs_create_dir("regulator", NULL); 6242 if (IS_ERR(debugfs_root)) 6243 pr_debug("regulator: Failed to create debugfs directory\n"); 6244 6245 #ifdef CONFIG_DEBUG_FS 6246 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6247 &supply_map_fops); 6248 6249 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6250 NULL, ®ulator_summary_fops); 6251 #endif 6252 regulator_dummy_init(); 6253 6254 regulator_coupler_register(&generic_regulator_coupler); 6255 6256 return ret; 6257 } 6258 6259 /* init early to allow our consumers to complete system booting */ 6260 core_initcall(regulator_init); 6261 6262 static int regulator_late_cleanup(struct device *dev, void *data) 6263 { 6264 struct regulator_dev *rdev = dev_to_rdev(dev); 6265 struct regulation_constraints *c = rdev->constraints; 6266 int ret; 6267 6268 if (c && c->always_on) 6269 return 0; 6270 6271 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6272 return 0; 6273 6274 regulator_lock(rdev); 6275 6276 if (rdev->use_count) 6277 goto unlock; 6278 6279 /* If reading the status failed, assume that it's off. */ 6280 if (_regulator_is_enabled(rdev) <= 0) 6281 goto unlock; 6282 6283 if (have_full_constraints()) { 6284 /* We log since this may kill the system if it goes 6285 * wrong. 6286 */ 6287 rdev_info(rdev, "disabling\n"); 6288 ret = _regulator_do_disable(rdev); 6289 if (ret != 0) 6290 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6291 } else { 6292 /* The intention is that in future we will 6293 * assume that full constraints are provided 6294 * so warn even if we aren't going to do 6295 * anything here. 6296 */ 6297 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6298 } 6299 6300 unlock: 6301 regulator_unlock(rdev); 6302 6303 return 0; 6304 } 6305 6306 static bool regulator_ignore_unused; 6307 static int __init regulator_ignore_unused_setup(char *__unused) 6308 { 6309 regulator_ignore_unused = true; 6310 return 1; 6311 } 6312 __setup("regulator_ignore_unused", regulator_ignore_unused_setup); 6313 6314 static void regulator_init_complete_work_function(struct work_struct *work) 6315 { 6316 /* 6317 * Regulators may had failed to resolve their input supplies 6318 * when were registered, either because the input supply was 6319 * not registered yet or because its parent device was not 6320 * bound yet. So attempt to resolve the input supplies for 6321 * pending regulators before trying to disable unused ones. 6322 */ 6323 class_for_each_device(®ulator_class, NULL, NULL, 6324 regulator_register_resolve_supply); 6325 6326 /* 6327 * For debugging purposes, it may be useful to prevent unused 6328 * regulators from being disabled. 6329 */ 6330 if (regulator_ignore_unused) { 6331 pr_warn("regulator: Not disabling unused regulators\n"); 6332 return; 6333 } 6334 6335 /* If we have a full configuration then disable any regulators 6336 * we have permission to change the status for and which are 6337 * not in use or always_on. This is effectively the default 6338 * for DT and ACPI as they have full constraints. 6339 */ 6340 class_for_each_device(®ulator_class, NULL, NULL, 6341 regulator_late_cleanup); 6342 } 6343 6344 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6345 regulator_init_complete_work_function); 6346 6347 static int __init regulator_init_complete(void) 6348 { 6349 /* 6350 * Since DT doesn't provide an idiomatic mechanism for 6351 * enabling full constraints and since it's much more natural 6352 * with DT to provide them just assume that a DT enabled 6353 * system has full constraints. 6354 */ 6355 if (of_have_populated_dt()) 6356 has_full_constraints = true; 6357 6358 /* 6359 * We punt completion for an arbitrary amount of time since 6360 * systems like distros will load many drivers from userspace 6361 * so consumers might not always be ready yet, this is 6362 * particularly an issue with laptops where this might bounce 6363 * the display off then on. Ideally we'd get a notification 6364 * from userspace when this happens but we don't so just wait 6365 * a bit and hope we waited long enough. It'd be better if 6366 * we'd only do this on systems that need it, and a kernel 6367 * command line option might be useful. 6368 */ 6369 schedule_delayed_work(®ulator_init_complete_work, 6370 msecs_to_jiffies(30000)); 6371 6372 return 0; 6373 } 6374 late_initcall_sync(regulator_init_complete); 6375