xref: /linux/drivers/regulator/core.c (revision 6a35ddc5445a8291ced6247a67977e110275acde)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 #define rdev_crit(rdev, fmt, ...)					\
37 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)					\
39 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)					\
41 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)					\
43 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)					\
45 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76 	struct list_head list;
77 	struct gpio_desc *gpiod;
78 	u32 enable_count;	/* a number of enabled shared GPIO */
79 	u32 request_count;	/* a number of requested shared GPIO */
80 };
81 
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88 	struct list_head list;
89 	struct device *src_dev;
90 	const char *src_supply;
91 	struct device *alias_dev;
92 	const char *alias_supply;
93 };
94 
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 				  unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 				     int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 				     suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 					  struct device *dev,
107 					  const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109 
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112 	if (rdev->constraints && rdev->constraints->name)
113 		return rdev->constraints->name;
114 	else if (rdev->desc->name)
115 		return rdev->desc->name;
116 	else
117 		return "";
118 }
119 
120 static bool have_full_constraints(void)
121 {
122 	return has_full_constraints || of_have_populated_dt();
123 }
124 
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127 	if (!rdev->constraints) {
128 		rdev_err(rdev, "no constraints\n");
129 		return false;
130 	}
131 
132 	if (rdev->constraints->valid_ops_mask & ops)
133 		return true;
134 
135 	return false;
136 }
137 
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:		regulator source
141  * @ww_ctx:		w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 					struct ww_acquire_ctx *ww_ctx)
151 {
152 	bool lock = false;
153 	int ret = 0;
154 
155 	mutex_lock(&regulator_nesting_mutex);
156 
157 	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 		if (rdev->mutex_owner == current)
159 			rdev->ref_cnt++;
160 		else
161 			lock = true;
162 
163 		if (lock) {
164 			mutex_unlock(&regulator_nesting_mutex);
165 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 			mutex_lock(&regulator_nesting_mutex);
167 		}
168 	} else {
169 		lock = true;
170 	}
171 
172 	if (lock && ret != -EDEADLK) {
173 		rdev->ref_cnt++;
174 		rdev->mutex_owner = current;
175 	}
176 
177 	mutex_unlock(&regulator_nesting_mutex);
178 
179 	return ret;
180 }
181 
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:		regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194 	regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197 
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:		regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207 	mutex_lock(&regulator_nesting_mutex);
208 
209 	if (--rdev->ref_cnt == 0) {
210 		rdev->mutex_owner = NULL;
211 		ww_mutex_unlock(&rdev->mutex);
212 	}
213 
214 	WARN_ON_ONCE(rdev->ref_cnt < 0);
215 
216 	mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219 
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222 	struct regulator_dev *c_rdev;
223 	int i;
224 
225 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227 
228 		if (rdev->supply->rdev == c_rdev)
229 			return true;
230 	}
231 
232 	return false;
233 }
234 
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 				       unsigned int n_coupled)
237 {
238 	struct regulator_dev *c_rdev;
239 	int i;
240 
241 	for (i = n_coupled; i > 0; i--) {
242 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 
244 		if (!c_rdev)
245 			continue;
246 
247 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 			regulator_unlock_recursive(
249 					c_rdev->supply->rdev,
250 					c_rdev->coupling_desc.n_coupled);
251 
252 		regulator_unlock(c_rdev);
253 	}
254 }
255 
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257 				    struct regulator_dev **new_contended_rdev,
258 				    struct regulator_dev **old_contended_rdev,
259 				    struct ww_acquire_ctx *ww_ctx)
260 {
261 	struct regulator_dev *c_rdev;
262 	int i, err;
263 
264 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266 
267 		if (!c_rdev)
268 			continue;
269 
270 		if (c_rdev != *old_contended_rdev) {
271 			err = regulator_lock_nested(c_rdev, ww_ctx);
272 			if (err) {
273 				if (err == -EDEADLK) {
274 					*new_contended_rdev = c_rdev;
275 					goto err_unlock;
276 				}
277 
278 				/* shouldn't happen */
279 				WARN_ON_ONCE(err != -EALREADY);
280 			}
281 		} else {
282 			*old_contended_rdev = NULL;
283 		}
284 
285 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 			err = regulator_lock_recursive(c_rdev->supply->rdev,
287 						       new_contended_rdev,
288 						       old_contended_rdev,
289 						       ww_ctx);
290 			if (err) {
291 				regulator_unlock(c_rdev);
292 				goto err_unlock;
293 			}
294 		}
295 	}
296 
297 	return 0;
298 
299 err_unlock:
300 	regulator_unlock_recursive(rdev, i);
301 
302 	return err;
303 }
304 
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *				regulators
308  * @rdev:			regulator source
309  * @ww_ctx:			w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 				       struct ww_acquire_ctx *ww_ctx)
315 {
316 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 	ww_acquire_fini(ww_ctx);
318 }
319 
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:			regulator source
323  * @ww_ctx:			w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329 				     struct ww_acquire_ctx *ww_ctx)
330 {
331 	struct regulator_dev *new_contended_rdev = NULL;
332 	struct regulator_dev *old_contended_rdev = NULL;
333 	int err;
334 
335 	mutex_lock(&regulator_list_mutex);
336 
337 	ww_acquire_init(ww_ctx, &regulator_ww_class);
338 
339 	do {
340 		if (new_contended_rdev) {
341 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 			old_contended_rdev = new_contended_rdev;
343 			old_contended_rdev->ref_cnt++;
344 		}
345 
346 		err = regulator_lock_recursive(rdev,
347 					       &new_contended_rdev,
348 					       &old_contended_rdev,
349 					       ww_ctx);
350 
351 		if (old_contended_rdev)
352 			regulator_unlock(old_contended_rdev);
353 
354 	} while (err == -EDEADLK);
355 
356 	ww_acquire_done(ww_ctx);
357 
358 	mutex_unlock(&regulator_list_mutex);
359 }
360 
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373 						  const char *prop_name)
374 {
375 	struct device_node *regnode = NULL;
376 	struct device_node *child = NULL;
377 
378 	for_each_child_of_node(parent, child) {
379 		regnode = of_parse_phandle(child, prop_name, 0);
380 
381 		if (!regnode) {
382 			regnode = of_get_child_regulator(child, prop_name);
383 			if (regnode)
384 				goto err_node_put;
385 		} else {
386 			goto err_node_put;
387 		}
388 	}
389 	return NULL;
390 
391 err_node_put:
392 	of_node_put(child);
393 	return regnode;
394 }
395 
396 /**
397  * of_get_regulator - get a regulator device node based on supply name
398  * @dev: Device pointer for the consumer (of regulator) device
399  * @supply: regulator supply name
400  *
401  * Extract the regulator device node corresponding to the supply name.
402  * returns the device node corresponding to the regulator if found, else
403  * returns NULL.
404  */
405 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406 {
407 	struct device_node *regnode = NULL;
408 	char prop_name[32]; /* 32 is max size of property name */
409 
410 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411 
412 	snprintf(prop_name, 32, "%s-supply", supply);
413 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414 
415 	if (!regnode) {
416 		regnode = of_get_child_regulator(dev->of_node, prop_name);
417 		if (regnode)
418 			return regnode;
419 
420 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 				prop_name, dev->of_node);
422 		return NULL;
423 	}
424 	return regnode;
425 }
426 
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev *rdev,
429 			    int *min_uV, int *max_uV)
430 {
431 	BUG_ON(*min_uV > *max_uV);
432 
433 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 		rdev_err(rdev, "voltage operation not allowed\n");
435 		return -EPERM;
436 	}
437 
438 	if (*max_uV > rdev->constraints->max_uV)
439 		*max_uV = rdev->constraints->max_uV;
440 	if (*min_uV < rdev->constraints->min_uV)
441 		*min_uV = rdev->constraints->min_uV;
442 
443 	if (*min_uV > *max_uV) {
444 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 			 *min_uV, *max_uV);
446 		return -EINVAL;
447 	}
448 
449 	return 0;
450 }
451 
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state)
454 {
455 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456 }
457 
458 /* Make sure we select a voltage that suits the needs of all
459  * regulator consumers
460  */
461 int regulator_check_consumers(struct regulator_dev *rdev,
462 			      int *min_uV, int *max_uV,
463 			      suspend_state_t state)
464 {
465 	struct regulator *regulator;
466 	struct regulator_voltage *voltage;
467 
468 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 		voltage = &regulator->voltage[state];
470 		/*
471 		 * Assume consumers that didn't say anything are OK
472 		 * with anything in the constraint range.
473 		 */
474 		if (!voltage->min_uV && !voltage->max_uV)
475 			continue;
476 
477 		if (*max_uV > voltage->max_uV)
478 			*max_uV = voltage->max_uV;
479 		if (*min_uV < voltage->min_uV)
480 			*min_uV = voltage->min_uV;
481 	}
482 
483 	if (*min_uV > *max_uV) {
484 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 			*min_uV, *max_uV);
486 		return -EINVAL;
487 	}
488 
489 	return 0;
490 }
491 
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev *rdev,
494 					int *min_uA, int *max_uA)
495 {
496 	BUG_ON(*min_uA > *max_uA);
497 
498 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 		rdev_err(rdev, "current operation not allowed\n");
500 		return -EPERM;
501 	}
502 
503 	if (*max_uA > rdev->constraints->max_uA)
504 		*max_uA = rdev->constraints->max_uA;
505 	if (*min_uA < rdev->constraints->min_uA)
506 		*min_uA = rdev->constraints->min_uA;
507 
508 	if (*min_uA > *max_uA) {
509 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 			 *min_uA, *max_uA);
511 		return -EINVAL;
512 	}
513 
514 	return 0;
515 }
516 
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev *rdev,
519 				    unsigned int *mode)
520 {
521 	switch (*mode) {
522 	case REGULATOR_MODE_FAST:
523 	case REGULATOR_MODE_NORMAL:
524 	case REGULATOR_MODE_IDLE:
525 	case REGULATOR_MODE_STANDBY:
526 		break;
527 	default:
528 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 		return -EINVAL;
530 	}
531 
532 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 		rdev_err(rdev, "mode operation not allowed\n");
534 		return -EPERM;
535 	}
536 
537 	/* The modes are bitmasks, the most power hungry modes having
538 	 * the lowest values. If the requested mode isn't supported
539 	 * try higher modes. */
540 	while (*mode) {
541 		if (rdev->constraints->valid_modes_mask & *mode)
542 			return 0;
543 		*mode /= 2;
544 	}
545 
546 	return -EINVAL;
547 }
548 
549 static inline struct regulator_state *
550 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551 {
552 	if (rdev->constraints == NULL)
553 		return NULL;
554 
555 	switch (state) {
556 	case PM_SUSPEND_STANDBY:
557 		return &rdev->constraints->state_standby;
558 	case PM_SUSPEND_MEM:
559 		return &rdev->constraints->state_mem;
560 	case PM_SUSPEND_MAX:
561 		return &rdev->constraints->state_disk;
562 	default:
563 		return NULL;
564 	}
565 }
566 
567 static ssize_t regulator_uV_show(struct device *dev,
568 				struct device_attribute *attr, char *buf)
569 {
570 	struct regulator_dev *rdev = dev_get_drvdata(dev);
571 	int uV;
572 
573 	regulator_lock(rdev);
574 	uV = regulator_get_voltage_rdev(rdev);
575 	regulator_unlock(rdev);
576 
577 	if (uV < 0)
578 		return uV;
579 	return sprintf(buf, "%d\n", uV);
580 }
581 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582 
583 static ssize_t regulator_uA_show(struct device *dev,
584 				struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589 }
590 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591 
592 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 			 char *buf)
594 {
595 	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 
597 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
598 }
599 static DEVICE_ATTR_RO(name);
600 
601 static const char *regulator_opmode_to_str(int mode)
602 {
603 	switch (mode) {
604 	case REGULATOR_MODE_FAST:
605 		return "fast";
606 	case REGULATOR_MODE_NORMAL:
607 		return "normal";
608 	case REGULATOR_MODE_IDLE:
609 		return "idle";
610 	case REGULATOR_MODE_STANDBY:
611 		return "standby";
612 	}
613 	return "unknown";
614 }
615 
616 static ssize_t regulator_print_opmode(char *buf, int mode)
617 {
618 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 }
620 
621 static ssize_t regulator_opmode_show(struct device *dev,
622 				    struct device_attribute *attr, char *buf)
623 {
624 	struct regulator_dev *rdev = dev_get_drvdata(dev);
625 
626 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627 }
628 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629 
630 static ssize_t regulator_print_state(char *buf, int state)
631 {
632 	if (state > 0)
633 		return sprintf(buf, "enabled\n");
634 	else if (state == 0)
635 		return sprintf(buf, "disabled\n");
636 	else
637 		return sprintf(buf, "unknown\n");
638 }
639 
640 static ssize_t regulator_state_show(struct device *dev,
641 				   struct device_attribute *attr, char *buf)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 	ssize_t ret;
645 
646 	regulator_lock(rdev);
647 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 	regulator_unlock(rdev);
649 
650 	return ret;
651 }
652 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653 
654 static ssize_t regulator_status_show(struct device *dev,
655 				   struct device_attribute *attr, char *buf)
656 {
657 	struct regulator_dev *rdev = dev_get_drvdata(dev);
658 	int status;
659 	char *label;
660 
661 	status = rdev->desc->ops->get_status(rdev);
662 	if (status < 0)
663 		return status;
664 
665 	switch (status) {
666 	case REGULATOR_STATUS_OFF:
667 		label = "off";
668 		break;
669 	case REGULATOR_STATUS_ON:
670 		label = "on";
671 		break;
672 	case REGULATOR_STATUS_ERROR:
673 		label = "error";
674 		break;
675 	case REGULATOR_STATUS_FAST:
676 		label = "fast";
677 		break;
678 	case REGULATOR_STATUS_NORMAL:
679 		label = "normal";
680 		break;
681 	case REGULATOR_STATUS_IDLE:
682 		label = "idle";
683 		break;
684 	case REGULATOR_STATUS_STANDBY:
685 		label = "standby";
686 		break;
687 	case REGULATOR_STATUS_BYPASS:
688 		label = "bypass";
689 		break;
690 	case REGULATOR_STATUS_UNDEFINED:
691 		label = "undefined";
692 		break;
693 	default:
694 		return -ERANGE;
695 	}
696 
697 	return sprintf(buf, "%s\n", label);
698 }
699 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700 
701 static ssize_t regulator_min_uA_show(struct device *dev,
702 				    struct device_attribute *attr, char *buf)
703 {
704 	struct regulator_dev *rdev = dev_get_drvdata(dev);
705 
706 	if (!rdev->constraints)
707 		return sprintf(buf, "constraint not defined\n");
708 
709 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710 }
711 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712 
713 static ssize_t regulator_max_uA_show(struct device *dev,
714 				    struct device_attribute *attr, char *buf)
715 {
716 	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 
718 	if (!rdev->constraints)
719 		return sprintf(buf, "constraint not defined\n");
720 
721 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722 }
723 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724 
725 static ssize_t regulator_min_uV_show(struct device *dev,
726 				    struct device_attribute *attr, char *buf)
727 {
728 	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 
730 	if (!rdev->constraints)
731 		return sprintf(buf, "constraint not defined\n");
732 
733 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734 }
735 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736 
737 static ssize_t regulator_max_uV_show(struct device *dev,
738 				    struct device_attribute *attr, char *buf)
739 {
740 	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 
742 	if (!rdev->constraints)
743 		return sprintf(buf, "constraint not defined\n");
744 
745 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746 }
747 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748 
749 static ssize_t regulator_total_uA_show(struct device *dev,
750 				      struct device_attribute *attr, char *buf)
751 {
752 	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 	struct regulator *regulator;
754 	int uA = 0;
755 
756 	regulator_lock(rdev);
757 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 		if (regulator->enable_count)
759 			uA += regulator->uA_load;
760 	}
761 	regulator_unlock(rdev);
762 	return sprintf(buf, "%d\n", uA);
763 }
764 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765 
766 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 			      char *buf)
768 {
769 	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 	return sprintf(buf, "%d\n", rdev->use_count);
771 }
772 static DEVICE_ATTR_RO(num_users);
773 
774 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 			 char *buf)
776 {
777 	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 
779 	switch (rdev->desc->type) {
780 	case REGULATOR_VOLTAGE:
781 		return sprintf(buf, "voltage\n");
782 	case REGULATOR_CURRENT:
783 		return sprintf(buf, "current\n");
784 	}
785 	return sprintf(buf, "unknown\n");
786 }
787 static DEVICE_ATTR_RO(type);
788 
789 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 				struct device_attribute *attr, char *buf)
791 {
792 	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 
794 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795 }
796 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 		regulator_suspend_mem_uV_show, NULL);
798 
799 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 				struct device_attribute *attr, char *buf)
801 {
802 	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 
804 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805 }
806 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 		regulator_suspend_disk_uV_show, NULL);
808 
809 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 				struct device_attribute *attr, char *buf)
811 {
812 	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 
814 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815 }
816 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 		regulator_suspend_standby_uV_show, NULL);
818 
819 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 				struct device_attribute *attr, char *buf)
821 {
822 	struct regulator_dev *rdev = dev_get_drvdata(dev);
823 
824 	return regulator_print_opmode(buf,
825 		rdev->constraints->state_mem.mode);
826 }
827 static DEVICE_ATTR(suspend_mem_mode, 0444,
828 		regulator_suspend_mem_mode_show, NULL);
829 
830 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 				struct device_attribute *attr, char *buf)
832 {
833 	struct regulator_dev *rdev = dev_get_drvdata(dev);
834 
835 	return regulator_print_opmode(buf,
836 		rdev->constraints->state_disk.mode);
837 }
838 static DEVICE_ATTR(suspend_disk_mode, 0444,
839 		regulator_suspend_disk_mode_show, NULL);
840 
841 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 				struct device_attribute *attr, char *buf)
843 {
844 	struct regulator_dev *rdev = dev_get_drvdata(dev);
845 
846 	return regulator_print_opmode(buf,
847 		rdev->constraints->state_standby.mode);
848 }
849 static DEVICE_ATTR(suspend_standby_mode, 0444,
850 		regulator_suspend_standby_mode_show, NULL);
851 
852 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 				   struct device_attribute *attr, char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 
857 	return regulator_print_state(buf,
858 			rdev->constraints->state_mem.enabled);
859 }
860 static DEVICE_ATTR(suspend_mem_state, 0444,
861 		regulator_suspend_mem_state_show, NULL);
862 
863 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 				   struct device_attribute *attr, char *buf)
865 {
866 	struct regulator_dev *rdev = dev_get_drvdata(dev);
867 
868 	return regulator_print_state(buf,
869 			rdev->constraints->state_disk.enabled);
870 }
871 static DEVICE_ATTR(suspend_disk_state, 0444,
872 		regulator_suspend_disk_state_show, NULL);
873 
874 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 				   struct device_attribute *attr, char *buf)
876 {
877 	struct regulator_dev *rdev = dev_get_drvdata(dev);
878 
879 	return regulator_print_state(buf,
880 			rdev->constraints->state_standby.enabled);
881 }
882 static DEVICE_ATTR(suspend_standby_state, 0444,
883 		regulator_suspend_standby_state_show, NULL);
884 
885 static ssize_t regulator_bypass_show(struct device *dev,
886 				     struct device_attribute *attr, char *buf)
887 {
888 	struct regulator_dev *rdev = dev_get_drvdata(dev);
889 	const char *report;
890 	bool bypass;
891 	int ret;
892 
893 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894 
895 	if (ret != 0)
896 		report = "unknown";
897 	else if (bypass)
898 		report = "enabled";
899 	else
900 		report = "disabled";
901 
902 	return sprintf(buf, "%s\n", report);
903 }
904 static DEVICE_ATTR(bypass, 0444,
905 		   regulator_bypass_show, NULL);
906 
907 /* Calculate the new optimum regulator operating mode based on the new total
908  * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev *rdev)
910 {
911 	struct regulator *sibling;
912 	int current_uA = 0, output_uV, input_uV, err;
913 	unsigned int mode;
914 
915 	/*
916 	 * first check to see if we can set modes at all, otherwise just
917 	 * tell the consumer everything is OK.
918 	 */
919 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 		rdev_dbg(rdev, "DRMS operation not allowed\n");
921 		return 0;
922 	}
923 
924 	if (!rdev->desc->ops->get_optimum_mode &&
925 	    !rdev->desc->ops->set_load)
926 		return 0;
927 
928 	if (!rdev->desc->ops->set_mode &&
929 	    !rdev->desc->ops->set_load)
930 		return -EINVAL;
931 
932 	/* calc total requested load */
933 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 		if (sibling->enable_count)
935 			current_uA += sibling->uA_load;
936 	}
937 
938 	current_uA += rdev->constraints->system_load;
939 
940 	if (rdev->desc->ops->set_load) {
941 		/* set the optimum mode for our new total regulator load */
942 		err = rdev->desc->ops->set_load(rdev, current_uA);
943 		if (err < 0)
944 			rdev_err(rdev, "failed to set load %d\n", current_uA);
945 	} else {
946 		/* get output voltage */
947 		output_uV = regulator_get_voltage_rdev(rdev);
948 		if (output_uV <= 0) {
949 			rdev_err(rdev, "invalid output voltage found\n");
950 			return -EINVAL;
951 		}
952 
953 		/* get input voltage */
954 		input_uV = 0;
955 		if (rdev->supply)
956 			input_uV = regulator_get_voltage(rdev->supply);
957 		if (input_uV <= 0)
958 			input_uV = rdev->constraints->input_uV;
959 		if (input_uV <= 0) {
960 			rdev_err(rdev, "invalid input voltage found\n");
961 			return -EINVAL;
962 		}
963 
964 		/* now get the optimum mode for our new total regulator load */
965 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 							 output_uV, current_uA);
967 
968 		/* check the new mode is allowed */
969 		err = regulator_mode_constrain(rdev, &mode);
970 		if (err < 0) {
971 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 				 current_uA, input_uV, output_uV);
973 			return err;
974 		}
975 
976 		err = rdev->desc->ops->set_mode(rdev, mode);
977 		if (err < 0)
978 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 	}
980 
981 	return err;
982 }
983 
984 static int suspend_set_state(struct regulator_dev *rdev,
985 				    suspend_state_t state)
986 {
987 	int ret = 0;
988 	struct regulator_state *rstate;
989 
990 	rstate = regulator_get_suspend_state(rdev, state);
991 	if (rstate == NULL)
992 		return 0;
993 
994 	/* If we have no suspend mode configuration don't set anything;
995 	 * only warn if the driver implements set_suspend_voltage or
996 	 * set_suspend_mode callback.
997 	 */
998 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000 		if (rdev->desc->ops->set_suspend_voltage ||
1001 		    rdev->desc->ops->set_suspend_mode)
1002 			rdev_warn(rdev, "No configuration\n");
1003 		return 0;
1004 	}
1005 
1006 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 		rdev->desc->ops->set_suspend_enable)
1008 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 		rdev->desc->ops->set_suspend_disable)
1011 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 		ret = 0;
1014 
1015 	if (ret < 0) {
1016 		rdev_err(rdev, "failed to enabled/disable\n");
1017 		return ret;
1018 	}
1019 
1020 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 		if (ret < 0) {
1023 			rdev_err(rdev, "failed to set voltage\n");
1024 			return ret;
1025 		}
1026 	}
1027 
1028 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 		if (ret < 0) {
1031 			rdev_err(rdev, "failed to set mode\n");
1032 			return ret;
1033 		}
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static void print_constraints(struct regulator_dev *rdev)
1040 {
1041 	struct regulation_constraints *constraints = rdev->constraints;
1042 	char buf[160] = "";
1043 	size_t len = sizeof(buf) - 1;
1044 	int count = 0;
1045 	int ret;
1046 
1047 	if (constraints->min_uV && constraints->max_uV) {
1048 		if (constraints->min_uV == constraints->max_uV)
1049 			count += scnprintf(buf + count, len - count, "%d mV ",
1050 					   constraints->min_uV / 1000);
1051 		else
1052 			count += scnprintf(buf + count, len - count,
1053 					   "%d <--> %d mV ",
1054 					   constraints->min_uV / 1000,
1055 					   constraints->max_uV / 1000);
1056 	}
1057 
1058 	if (!constraints->min_uV ||
1059 	    constraints->min_uV != constraints->max_uV) {
1060 		ret = regulator_get_voltage_rdev(rdev);
1061 		if (ret > 0)
1062 			count += scnprintf(buf + count, len - count,
1063 					   "at %d mV ", ret / 1000);
1064 	}
1065 
1066 	if (constraints->uV_offset)
1067 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 				   constraints->uV_offset / 1000);
1069 
1070 	if (constraints->min_uA && constraints->max_uA) {
1071 		if (constraints->min_uA == constraints->max_uA)
1072 			count += scnprintf(buf + count, len - count, "%d mA ",
1073 					   constraints->min_uA / 1000);
1074 		else
1075 			count += scnprintf(buf + count, len - count,
1076 					   "%d <--> %d mA ",
1077 					   constraints->min_uA / 1000,
1078 					   constraints->max_uA / 1000);
1079 	}
1080 
1081 	if (!constraints->min_uA ||
1082 	    constraints->min_uA != constraints->max_uA) {
1083 		ret = _regulator_get_current_limit(rdev);
1084 		if (ret > 0)
1085 			count += scnprintf(buf + count, len - count,
1086 					   "at %d mA ", ret / 1000);
1087 	}
1088 
1089 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 		count += scnprintf(buf + count, len - count, "fast ");
1091 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 		count += scnprintf(buf + count, len - count, "normal ");
1093 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 		count += scnprintf(buf + count, len - count, "idle ");
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 		count += scnprintf(buf + count, len - count, "standby");
1097 
1098 	if (!count)
1099 		scnprintf(buf, len, "no parameters");
1100 
1101 	rdev_dbg(rdev, "%s\n", buf);
1102 
1103 	if ((constraints->min_uV != constraints->max_uV) &&
1104 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 		rdev_warn(rdev,
1106 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 }
1108 
1109 static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 	struct regulation_constraints *constraints)
1111 {
1112 	const struct regulator_ops *ops = rdev->desc->ops;
1113 	int ret;
1114 
1115 	/* do we need to apply the constraint voltage */
1116 	if (rdev->constraints->apply_uV &&
1117 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 		int target_min, target_max;
1119 		int current_uV = regulator_get_voltage_rdev(rdev);
1120 
1121 		if (current_uV == -ENOTRECOVERABLE) {
1122 			/* This regulator can't be read and must be initialized */
1123 			rdev_info(rdev, "Setting %d-%duV\n",
1124 				  rdev->constraints->min_uV,
1125 				  rdev->constraints->max_uV);
1126 			_regulator_do_set_voltage(rdev,
1127 						  rdev->constraints->min_uV,
1128 						  rdev->constraints->max_uV);
1129 			current_uV = regulator_get_voltage_rdev(rdev);
1130 		}
1131 
1132 		if (current_uV < 0) {
1133 			rdev_err(rdev,
1134 				 "failed to get the current voltage(%d)\n",
1135 				 current_uV);
1136 			return current_uV;
1137 		}
1138 
1139 		/*
1140 		 * If we're below the minimum voltage move up to the
1141 		 * minimum voltage, if we're above the maximum voltage
1142 		 * then move down to the maximum.
1143 		 */
1144 		target_min = current_uV;
1145 		target_max = current_uV;
1146 
1147 		if (current_uV < rdev->constraints->min_uV) {
1148 			target_min = rdev->constraints->min_uV;
1149 			target_max = rdev->constraints->min_uV;
1150 		}
1151 
1152 		if (current_uV > rdev->constraints->max_uV) {
1153 			target_min = rdev->constraints->max_uV;
1154 			target_max = rdev->constraints->max_uV;
1155 		}
1156 
1157 		if (target_min != current_uV || target_max != current_uV) {
1158 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 				  current_uV, target_min, target_max);
1160 			ret = _regulator_do_set_voltage(
1161 				rdev, target_min, target_max);
1162 			if (ret < 0) {
1163 				rdev_err(rdev,
1164 					"failed to apply %d-%duV constraint(%d)\n",
1165 					target_min, target_max, ret);
1166 				return ret;
1167 			}
1168 		}
1169 	}
1170 
1171 	/* constrain machine-level voltage specs to fit
1172 	 * the actual range supported by this regulator.
1173 	 */
1174 	if (ops->list_voltage && rdev->desc->n_voltages) {
1175 		int	count = rdev->desc->n_voltages;
1176 		int	i;
1177 		int	min_uV = INT_MAX;
1178 		int	max_uV = INT_MIN;
1179 		int	cmin = constraints->min_uV;
1180 		int	cmax = constraints->max_uV;
1181 
1182 		/* it's safe to autoconfigure fixed-voltage supplies
1183 		   and the constraints are used by list_voltage. */
1184 		if (count == 1 && !cmin) {
1185 			cmin = 1;
1186 			cmax = INT_MAX;
1187 			constraints->min_uV = cmin;
1188 			constraints->max_uV = cmax;
1189 		}
1190 
1191 		/* voltage constraints are optional */
1192 		if ((cmin == 0) && (cmax == 0))
1193 			return 0;
1194 
1195 		/* else require explicit machine-level constraints */
1196 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 			rdev_err(rdev, "invalid voltage constraints\n");
1198 			return -EINVAL;
1199 		}
1200 
1201 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 		for (i = 0; i < count; i++) {
1203 			int	value;
1204 
1205 			value = ops->list_voltage(rdev, i);
1206 			if (value <= 0)
1207 				continue;
1208 
1209 			/* maybe adjust [min_uV..max_uV] */
1210 			if (value >= cmin && value < min_uV)
1211 				min_uV = value;
1212 			if (value <= cmax && value > max_uV)
1213 				max_uV = value;
1214 		}
1215 
1216 		/* final: [min_uV..max_uV] valid iff constraints valid */
1217 		if (max_uV < min_uV) {
1218 			rdev_err(rdev,
1219 				 "unsupportable voltage constraints %u-%uuV\n",
1220 				 min_uV, max_uV);
1221 			return -EINVAL;
1222 		}
1223 
1224 		/* use regulator's subset of machine constraints */
1225 		if (constraints->min_uV < min_uV) {
1226 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227 				 constraints->min_uV, min_uV);
1228 			constraints->min_uV = min_uV;
1229 		}
1230 		if (constraints->max_uV > max_uV) {
1231 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232 				 constraints->max_uV, max_uV);
1233 			constraints->max_uV = max_uV;
1234 		}
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int machine_constraints_current(struct regulator_dev *rdev,
1241 	struct regulation_constraints *constraints)
1242 {
1243 	const struct regulator_ops *ops = rdev->desc->ops;
1244 	int ret;
1245 
1246 	if (!constraints->min_uA && !constraints->max_uA)
1247 		return 0;
1248 
1249 	if (constraints->min_uA > constraints->max_uA) {
1250 		rdev_err(rdev, "Invalid current constraints\n");
1251 		return -EINVAL;
1252 	}
1253 
1254 	if (!ops->set_current_limit || !ops->get_current_limit) {
1255 		rdev_warn(rdev, "Operation of current configuration missing\n");
1256 		return 0;
1257 	}
1258 
1259 	/* Set regulator current in constraints range */
1260 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1261 			constraints->max_uA);
1262 	if (ret < 0) {
1263 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264 		return ret;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int _regulator_do_enable(struct regulator_dev *rdev);
1271 
1272 /**
1273  * set_machine_constraints - sets regulator constraints
1274  * @rdev: regulator source
1275  * @constraints: constraints to apply
1276  *
1277  * Allows platform initialisation code to define and constrain
1278  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279  * Constraints *must* be set by platform code in order for some
1280  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281  * set_mode.
1282  */
1283 static int set_machine_constraints(struct regulator_dev *rdev,
1284 	const struct regulation_constraints *constraints)
1285 {
1286 	int ret = 0;
1287 	const struct regulator_ops *ops = rdev->desc->ops;
1288 
1289 	if (constraints)
1290 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291 					    GFP_KERNEL);
1292 	else
1293 		rdev->constraints = kzalloc(sizeof(*constraints),
1294 					    GFP_KERNEL);
1295 	if (!rdev->constraints)
1296 		return -ENOMEM;
1297 
1298 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299 	if (ret != 0)
1300 		return ret;
1301 
1302 	ret = machine_constraints_current(rdev, rdev->constraints);
1303 	if (ret != 0)
1304 		return ret;
1305 
1306 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307 		ret = ops->set_input_current_limit(rdev,
1308 						   rdev->constraints->ilim_uA);
1309 		if (ret < 0) {
1310 			rdev_err(rdev, "failed to set input limit\n");
1311 			return ret;
1312 		}
1313 	}
1314 
1315 	/* do we need to setup our suspend state */
1316 	if (rdev->constraints->initial_state) {
1317 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318 		if (ret < 0) {
1319 			rdev_err(rdev, "failed to set suspend state\n");
1320 			return ret;
1321 		}
1322 	}
1323 
1324 	if (rdev->constraints->initial_mode) {
1325 		if (!ops->set_mode) {
1326 			rdev_err(rdev, "no set_mode operation\n");
1327 			return -EINVAL;
1328 		}
1329 
1330 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331 		if (ret < 0) {
1332 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333 			return ret;
1334 		}
1335 	} else if (rdev->constraints->system_load) {
1336 		/*
1337 		 * We'll only apply the initial system load if an
1338 		 * initial mode wasn't specified.
1339 		 */
1340 		drms_uA_update(rdev);
1341 	}
1342 
1343 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344 		&& ops->set_ramp_delay) {
1345 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346 		if (ret < 0) {
1347 			rdev_err(rdev, "failed to set ramp_delay\n");
1348 			return ret;
1349 		}
1350 	}
1351 
1352 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1353 		ret = ops->set_pull_down(rdev);
1354 		if (ret < 0) {
1355 			rdev_err(rdev, "failed to set pull down\n");
1356 			return ret;
1357 		}
1358 	}
1359 
1360 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1361 		ret = ops->set_soft_start(rdev);
1362 		if (ret < 0) {
1363 			rdev_err(rdev, "failed to set soft start\n");
1364 			return ret;
1365 		}
1366 	}
1367 
1368 	if (rdev->constraints->over_current_protection
1369 		&& ops->set_over_current_protection) {
1370 		ret = ops->set_over_current_protection(rdev);
1371 		if (ret < 0) {
1372 			rdev_err(rdev, "failed to set over current protection\n");
1373 			return ret;
1374 		}
1375 	}
1376 
1377 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378 		bool ad_state = (rdev->constraints->active_discharge ==
1379 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380 
1381 		ret = ops->set_active_discharge(rdev, ad_state);
1382 		if (ret < 0) {
1383 			rdev_err(rdev, "failed to set active discharge\n");
1384 			return ret;
1385 		}
1386 	}
1387 
1388 	/* If the constraints say the regulator should be on at this point
1389 	 * and we have control then make sure it is enabled.
1390 	 */
1391 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 		if (rdev->supply) {
1393 			ret = regulator_enable(rdev->supply);
1394 			if (ret < 0) {
1395 				_regulator_put(rdev->supply);
1396 				rdev->supply = NULL;
1397 				return ret;
1398 			}
1399 		}
1400 
1401 		ret = _regulator_do_enable(rdev);
1402 		if (ret < 0 && ret != -EINVAL) {
1403 			rdev_err(rdev, "failed to enable\n");
1404 			return ret;
1405 		}
1406 
1407 		if (rdev->constraints->always_on)
1408 			rdev->use_count++;
1409 	}
1410 
1411 	print_constraints(rdev);
1412 	return 0;
1413 }
1414 
1415 /**
1416  * set_supply - set regulator supply regulator
1417  * @rdev: regulator name
1418  * @supply_rdev: supply regulator name
1419  *
1420  * Called by platform initialisation code to set the supply regulator for this
1421  * regulator. This ensures that a regulators supply will also be enabled by the
1422  * core if it's child is enabled.
1423  */
1424 static int set_supply(struct regulator_dev *rdev,
1425 		      struct regulator_dev *supply_rdev)
1426 {
1427 	int err;
1428 
1429 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1430 
1431 	if (!try_module_get(supply_rdev->owner))
1432 		return -ENODEV;
1433 
1434 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435 	if (rdev->supply == NULL) {
1436 		err = -ENOMEM;
1437 		return err;
1438 	}
1439 	supply_rdev->open_count++;
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446  * @rdev:         regulator source
1447  * @consumer_dev_name: dev_name() string for device supply applies to
1448  * @supply:       symbolic name for supply
1449  *
1450  * Allows platform initialisation code to map physical regulator
1451  * sources to symbolic names for supplies for use by devices.  Devices
1452  * should use these symbolic names to request regulators, avoiding the
1453  * need to provide board-specific regulator names as platform data.
1454  */
1455 static int set_consumer_device_supply(struct regulator_dev *rdev,
1456 				      const char *consumer_dev_name,
1457 				      const char *supply)
1458 {
1459 	struct regulator_map *node;
1460 	int has_dev;
1461 
1462 	if (supply == NULL)
1463 		return -EINVAL;
1464 
1465 	if (consumer_dev_name != NULL)
1466 		has_dev = 1;
1467 	else
1468 		has_dev = 0;
1469 
1470 	list_for_each_entry(node, &regulator_map_list, list) {
1471 		if (node->dev_name && consumer_dev_name) {
1472 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1473 				continue;
1474 		} else if (node->dev_name || consumer_dev_name) {
1475 			continue;
1476 		}
1477 
1478 		if (strcmp(node->supply, supply) != 0)
1479 			continue;
1480 
1481 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1482 			 consumer_dev_name,
1483 			 dev_name(&node->regulator->dev),
1484 			 node->regulator->desc->name,
1485 			 supply,
1486 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1487 		return -EBUSY;
1488 	}
1489 
1490 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491 	if (node == NULL)
1492 		return -ENOMEM;
1493 
1494 	node->regulator = rdev;
1495 	node->supply = supply;
1496 
1497 	if (has_dev) {
1498 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1499 		if (node->dev_name == NULL) {
1500 			kfree(node);
1501 			return -ENOMEM;
1502 		}
1503 	}
1504 
1505 	list_add(&node->list, &regulator_map_list);
1506 	return 0;
1507 }
1508 
1509 static void unset_regulator_supplies(struct regulator_dev *rdev)
1510 {
1511 	struct regulator_map *node, *n;
1512 
1513 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1514 		if (rdev == node->regulator) {
1515 			list_del(&node->list);
1516 			kfree(node->dev_name);
1517 			kfree(node);
1518 		}
1519 	}
1520 }
1521 
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t constraint_flags_read_file(struct file *file,
1524 					  char __user *user_buf,
1525 					  size_t count, loff_t *ppos)
1526 {
1527 	const struct regulator *regulator = file->private_data;
1528 	const struct regulation_constraints *c = regulator->rdev->constraints;
1529 	char *buf;
1530 	ssize_t ret;
1531 
1532 	if (!c)
1533 		return 0;
1534 
1535 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1536 	if (!buf)
1537 		return -ENOMEM;
1538 
1539 	ret = snprintf(buf, PAGE_SIZE,
1540 			"always_on: %u\n"
1541 			"boot_on: %u\n"
1542 			"apply_uV: %u\n"
1543 			"ramp_disable: %u\n"
1544 			"soft_start: %u\n"
1545 			"pull_down: %u\n"
1546 			"over_current_protection: %u\n",
1547 			c->always_on,
1548 			c->boot_on,
1549 			c->apply_uV,
1550 			c->ramp_disable,
1551 			c->soft_start,
1552 			c->pull_down,
1553 			c->over_current_protection);
1554 
1555 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1556 	kfree(buf);
1557 
1558 	return ret;
1559 }
1560 
1561 #endif
1562 
1563 static const struct file_operations constraint_flags_fops = {
1564 #ifdef CONFIG_DEBUG_FS
1565 	.open = simple_open,
1566 	.read = constraint_flags_read_file,
1567 	.llseek = default_llseek,
1568 #endif
1569 };
1570 
1571 #define REG_STR_SIZE	64
1572 
1573 static struct regulator *create_regulator(struct regulator_dev *rdev,
1574 					  struct device *dev,
1575 					  const char *supply_name)
1576 {
1577 	struct regulator *regulator;
1578 	char buf[REG_STR_SIZE];
1579 	int err, size;
1580 
1581 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1582 	if (regulator == NULL)
1583 		return NULL;
1584 
1585 	regulator_lock(rdev);
1586 	regulator->rdev = rdev;
1587 	list_add(&regulator->list, &rdev->consumer_list);
1588 
1589 	if (dev) {
1590 		regulator->dev = dev;
1591 
1592 		/* Add a link to the device sysfs entry */
1593 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1594 				dev->kobj.name, supply_name);
1595 		if (size >= REG_STR_SIZE)
1596 			goto overflow_err;
1597 
1598 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1599 		if (regulator->supply_name == NULL)
1600 			goto overflow_err;
1601 
1602 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603 					buf);
1604 		if (err) {
1605 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1606 				  dev->kobj.name, err);
1607 			/* non-fatal */
1608 		}
1609 	} else {
1610 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 		if (regulator->supply_name == NULL)
1612 			goto overflow_err;
1613 	}
1614 
1615 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1616 						rdev->debugfs);
1617 	if (!regulator->debugfs) {
1618 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619 	} else {
1620 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1621 				   &regulator->uA_load);
1622 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626 		debugfs_create_file("constraint_flags", 0444,
1627 				    regulator->debugfs, regulator,
1628 				    &constraint_flags_fops);
1629 	}
1630 
1631 	/*
1632 	 * Check now if the regulator is an always on regulator - if
1633 	 * it is then we don't need to do nearly so much work for
1634 	 * enable/disable calls.
1635 	 */
1636 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637 	    _regulator_is_enabled(rdev))
1638 		regulator->always_on = true;
1639 
1640 	regulator_unlock(rdev);
1641 	return regulator;
1642 overflow_err:
1643 	list_del(&regulator->list);
1644 	kfree(regulator);
1645 	regulator_unlock(rdev);
1646 	return NULL;
1647 }
1648 
1649 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1650 {
1651 	if (rdev->constraints && rdev->constraints->enable_time)
1652 		return rdev->constraints->enable_time;
1653 	if (rdev->desc->ops->enable_time)
1654 		return rdev->desc->ops->enable_time(rdev);
1655 	return rdev->desc->enable_time;
1656 }
1657 
1658 static struct regulator_supply_alias *regulator_find_supply_alias(
1659 		struct device *dev, const char *supply)
1660 {
1661 	struct regulator_supply_alias *map;
1662 
1663 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1664 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1665 			return map;
1666 
1667 	return NULL;
1668 }
1669 
1670 static void regulator_supply_alias(struct device **dev, const char **supply)
1671 {
1672 	struct regulator_supply_alias *map;
1673 
1674 	map = regulator_find_supply_alias(*dev, *supply);
1675 	if (map) {
1676 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1677 				*supply, map->alias_supply,
1678 				dev_name(map->alias_dev));
1679 		*dev = map->alias_dev;
1680 		*supply = map->alias_supply;
1681 	}
1682 }
1683 
1684 static int regulator_match(struct device *dev, const void *data)
1685 {
1686 	struct regulator_dev *r = dev_to_rdev(dev);
1687 
1688 	return strcmp(rdev_get_name(r), data) == 0;
1689 }
1690 
1691 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1692 {
1693 	struct device *dev;
1694 
1695 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1696 
1697 	return dev ? dev_to_rdev(dev) : NULL;
1698 }
1699 
1700 /**
1701  * regulator_dev_lookup - lookup a regulator device.
1702  * @dev: device for regulator "consumer".
1703  * @supply: Supply name or regulator ID.
1704  *
1705  * If successful, returns a struct regulator_dev that corresponds to the name
1706  * @supply and with the embedded struct device refcount incremented by one.
1707  * The refcount must be dropped by calling put_device().
1708  * On failure one of the following ERR-PTR-encoded values is returned:
1709  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1710  * in the future.
1711  */
1712 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713 						  const char *supply)
1714 {
1715 	struct regulator_dev *r = NULL;
1716 	struct device_node *node;
1717 	struct regulator_map *map;
1718 	const char *devname = NULL;
1719 
1720 	regulator_supply_alias(&dev, &supply);
1721 
1722 	/* first do a dt based lookup */
1723 	if (dev && dev->of_node) {
1724 		node = of_get_regulator(dev, supply);
1725 		if (node) {
1726 			r = of_find_regulator_by_node(node);
1727 			if (r)
1728 				return r;
1729 
1730 			/*
1731 			 * We have a node, but there is no device.
1732 			 * assume it has not registered yet.
1733 			 */
1734 			return ERR_PTR(-EPROBE_DEFER);
1735 		}
1736 	}
1737 
1738 	/* if not found, try doing it non-dt way */
1739 	if (dev)
1740 		devname = dev_name(dev);
1741 
1742 	mutex_lock(&regulator_list_mutex);
1743 	list_for_each_entry(map, &regulator_map_list, list) {
1744 		/* If the mapping has a device set up it must match */
1745 		if (map->dev_name &&
1746 		    (!devname || strcmp(map->dev_name, devname)))
1747 			continue;
1748 
1749 		if (strcmp(map->supply, supply) == 0 &&
1750 		    get_device(&map->regulator->dev)) {
1751 			r = map->regulator;
1752 			break;
1753 		}
1754 	}
1755 	mutex_unlock(&regulator_list_mutex);
1756 
1757 	if (r)
1758 		return r;
1759 
1760 	r = regulator_lookup_by_name(supply);
1761 	if (r)
1762 		return r;
1763 
1764 	return ERR_PTR(-ENODEV);
1765 }
1766 
1767 static int regulator_resolve_supply(struct regulator_dev *rdev)
1768 {
1769 	struct regulator_dev *r;
1770 	struct device *dev = rdev->dev.parent;
1771 	int ret;
1772 
1773 	/* No supply to resolve? */
1774 	if (!rdev->supply_name)
1775 		return 0;
1776 
1777 	/* Supply already resolved? */
1778 	if (rdev->supply)
1779 		return 0;
1780 
1781 	r = regulator_dev_lookup(dev, rdev->supply_name);
1782 	if (IS_ERR(r)) {
1783 		ret = PTR_ERR(r);
1784 
1785 		/* Did the lookup explicitly defer for us? */
1786 		if (ret == -EPROBE_DEFER)
1787 			return ret;
1788 
1789 		if (have_full_constraints()) {
1790 			r = dummy_regulator_rdev;
1791 			get_device(&r->dev);
1792 		} else {
1793 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1794 				rdev->supply_name, rdev->desc->name);
1795 			return -EPROBE_DEFER;
1796 		}
1797 	}
1798 
1799 	/*
1800 	 * If the supply's parent device is not the same as the
1801 	 * regulator's parent device, then ensure the parent device
1802 	 * is bound before we resolve the supply, in case the parent
1803 	 * device get probe deferred and unregisters the supply.
1804 	 */
1805 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1806 		if (!device_is_bound(r->dev.parent)) {
1807 			put_device(&r->dev);
1808 			return -EPROBE_DEFER;
1809 		}
1810 	}
1811 
1812 	/* Recursively resolve the supply of the supply */
1813 	ret = regulator_resolve_supply(r);
1814 	if (ret < 0) {
1815 		put_device(&r->dev);
1816 		return ret;
1817 	}
1818 
1819 	ret = set_supply(rdev, r);
1820 	if (ret < 0) {
1821 		put_device(&r->dev);
1822 		return ret;
1823 	}
1824 
1825 	/*
1826 	 * In set_machine_constraints() we may have turned this regulator on
1827 	 * but we couldn't propagate to the supply if it hadn't been resolved
1828 	 * yet.  Do it now.
1829 	 */
1830 	if (rdev->use_count) {
1831 		ret = regulator_enable(rdev->supply);
1832 		if (ret < 0) {
1833 			_regulator_put(rdev->supply);
1834 			rdev->supply = NULL;
1835 			return ret;
1836 		}
1837 	}
1838 
1839 	return 0;
1840 }
1841 
1842 /* Internal regulator request function */
1843 struct regulator *_regulator_get(struct device *dev, const char *id,
1844 				 enum regulator_get_type get_type)
1845 {
1846 	struct regulator_dev *rdev;
1847 	struct regulator *regulator;
1848 	const char *devname = dev ? dev_name(dev) : "deviceless";
1849 	struct device_link *link;
1850 	int ret;
1851 
1852 	if (get_type >= MAX_GET_TYPE) {
1853 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1854 		return ERR_PTR(-EINVAL);
1855 	}
1856 
1857 	if (id == NULL) {
1858 		pr_err("get() with no identifier\n");
1859 		return ERR_PTR(-EINVAL);
1860 	}
1861 
1862 	rdev = regulator_dev_lookup(dev, id);
1863 	if (IS_ERR(rdev)) {
1864 		ret = PTR_ERR(rdev);
1865 
1866 		/*
1867 		 * If regulator_dev_lookup() fails with error other
1868 		 * than -ENODEV our job here is done, we simply return it.
1869 		 */
1870 		if (ret != -ENODEV)
1871 			return ERR_PTR(ret);
1872 
1873 		if (!have_full_constraints()) {
1874 			dev_warn(dev,
1875 				 "incomplete constraints, dummy supplies not allowed\n");
1876 			return ERR_PTR(-ENODEV);
1877 		}
1878 
1879 		switch (get_type) {
1880 		case NORMAL_GET:
1881 			/*
1882 			 * Assume that a regulator is physically present and
1883 			 * enabled, even if it isn't hooked up, and just
1884 			 * provide a dummy.
1885 			 */
1886 			dev_warn(dev,
1887 				 "%s supply %s not found, using dummy regulator\n",
1888 				 devname, id);
1889 			rdev = dummy_regulator_rdev;
1890 			get_device(&rdev->dev);
1891 			break;
1892 
1893 		case EXCLUSIVE_GET:
1894 			dev_warn(dev,
1895 				 "dummy supplies not allowed for exclusive requests\n");
1896 			/* fall through */
1897 
1898 		default:
1899 			return ERR_PTR(-ENODEV);
1900 		}
1901 	}
1902 
1903 	if (rdev->exclusive) {
1904 		regulator = ERR_PTR(-EPERM);
1905 		put_device(&rdev->dev);
1906 		return regulator;
1907 	}
1908 
1909 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1910 		regulator = ERR_PTR(-EBUSY);
1911 		put_device(&rdev->dev);
1912 		return regulator;
1913 	}
1914 
1915 	mutex_lock(&regulator_list_mutex);
1916 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1917 	mutex_unlock(&regulator_list_mutex);
1918 
1919 	if (ret != 0) {
1920 		regulator = ERR_PTR(-EPROBE_DEFER);
1921 		put_device(&rdev->dev);
1922 		return regulator;
1923 	}
1924 
1925 	ret = regulator_resolve_supply(rdev);
1926 	if (ret < 0) {
1927 		regulator = ERR_PTR(ret);
1928 		put_device(&rdev->dev);
1929 		return regulator;
1930 	}
1931 
1932 	if (!try_module_get(rdev->owner)) {
1933 		regulator = ERR_PTR(-EPROBE_DEFER);
1934 		put_device(&rdev->dev);
1935 		return regulator;
1936 	}
1937 
1938 	regulator = create_regulator(rdev, dev, id);
1939 	if (regulator == NULL) {
1940 		regulator = ERR_PTR(-ENOMEM);
1941 		put_device(&rdev->dev);
1942 		module_put(rdev->owner);
1943 		return regulator;
1944 	}
1945 
1946 	rdev->open_count++;
1947 	if (get_type == EXCLUSIVE_GET) {
1948 		rdev->exclusive = 1;
1949 
1950 		ret = _regulator_is_enabled(rdev);
1951 		if (ret > 0)
1952 			rdev->use_count = 1;
1953 		else
1954 			rdev->use_count = 0;
1955 	}
1956 
1957 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1958 	if (!IS_ERR_OR_NULL(link))
1959 		regulator->device_link = true;
1960 
1961 	return regulator;
1962 }
1963 
1964 /**
1965  * regulator_get - lookup and obtain a reference to a regulator.
1966  * @dev: device for regulator "consumer"
1967  * @id: Supply name or regulator ID.
1968  *
1969  * Returns a struct regulator corresponding to the regulator producer,
1970  * or IS_ERR() condition containing errno.
1971  *
1972  * Use of supply names configured via regulator_set_device_supply() is
1973  * strongly encouraged.  It is recommended that the supply name used
1974  * should match the name used for the supply and/or the relevant
1975  * device pins in the datasheet.
1976  */
1977 struct regulator *regulator_get(struct device *dev, const char *id)
1978 {
1979 	return _regulator_get(dev, id, NORMAL_GET);
1980 }
1981 EXPORT_SYMBOL_GPL(regulator_get);
1982 
1983 /**
1984  * regulator_get_exclusive - obtain exclusive access to a regulator.
1985  * @dev: device for regulator "consumer"
1986  * @id: Supply name or regulator ID.
1987  *
1988  * Returns a struct regulator corresponding to the regulator producer,
1989  * or IS_ERR() condition containing errno.  Other consumers will be
1990  * unable to obtain this regulator while this reference is held and the
1991  * use count for the regulator will be initialised to reflect the current
1992  * state of the regulator.
1993  *
1994  * This is intended for use by consumers which cannot tolerate shared
1995  * use of the regulator such as those which need to force the
1996  * regulator off for correct operation of the hardware they are
1997  * controlling.
1998  *
1999  * Use of supply names configured via regulator_set_device_supply() is
2000  * strongly encouraged.  It is recommended that the supply name used
2001  * should match the name used for the supply and/or the relevant
2002  * device pins in the datasheet.
2003  */
2004 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2005 {
2006 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2009 
2010 /**
2011  * regulator_get_optional - obtain optional access to a regulator.
2012  * @dev: device for regulator "consumer"
2013  * @id: Supply name or regulator ID.
2014  *
2015  * Returns a struct regulator corresponding to the regulator producer,
2016  * or IS_ERR() condition containing errno.
2017  *
2018  * This is intended for use by consumers for devices which can have
2019  * some supplies unconnected in normal use, such as some MMC devices.
2020  * It can allow the regulator core to provide stub supplies for other
2021  * supplies requested using normal regulator_get() calls without
2022  * disrupting the operation of drivers that can handle absent
2023  * supplies.
2024  *
2025  * Use of supply names configured via regulator_set_device_supply() is
2026  * strongly encouraged.  It is recommended that the supply name used
2027  * should match the name used for the supply and/or the relevant
2028  * device pins in the datasheet.
2029  */
2030 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2031 {
2032 	return _regulator_get(dev, id, OPTIONAL_GET);
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_get_optional);
2035 
2036 /* regulator_list_mutex lock held by regulator_put() */
2037 static void _regulator_put(struct regulator *regulator)
2038 {
2039 	struct regulator_dev *rdev;
2040 
2041 	if (IS_ERR_OR_NULL(regulator))
2042 		return;
2043 
2044 	lockdep_assert_held_once(&regulator_list_mutex);
2045 
2046 	/* Docs say you must disable before calling regulator_put() */
2047 	WARN_ON(regulator->enable_count);
2048 
2049 	rdev = regulator->rdev;
2050 
2051 	debugfs_remove_recursive(regulator->debugfs);
2052 
2053 	if (regulator->dev) {
2054 		if (regulator->device_link)
2055 			device_link_remove(regulator->dev, &rdev->dev);
2056 
2057 		/* remove any sysfs entries */
2058 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2059 	}
2060 
2061 	regulator_lock(rdev);
2062 	list_del(&regulator->list);
2063 
2064 	rdev->open_count--;
2065 	rdev->exclusive = 0;
2066 	put_device(&rdev->dev);
2067 	regulator_unlock(rdev);
2068 
2069 	kfree_const(regulator->supply_name);
2070 	kfree(regulator);
2071 
2072 	module_put(rdev->owner);
2073 }
2074 
2075 /**
2076  * regulator_put - "free" the regulator source
2077  * @regulator: regulator source
2078  *
2079  * Note: drivers must ensure that all regulator_enable calls made on this
2080  * regulator source are balanced by regulator_disable calls prior to calling
2081  * this function.
2082  */
2083 void regulator_put(struct regulator *regulator)
2084 {
2085 	mutex_lock(&regulator_list_mutex);
2086 	_regulator_put(regulator);
2087 	mutex_unlock(&regulator_list_mutex);
2088 }
2089 EXPORT_SYMBOL_GPL(regulator_put);
2090 
2091 /**
2092  * regulator_register_supply_alias - Provide device alias for supply lookup
2093  *
2094  * @dev: device that will be given as the regulator "consumer"
2095  * @id: Supply name or regulator ID
2096  * @alias_dev: device that should be used to lookup the supply
2097  * @alias_id: Supply name or regulator ID that should be used to lookup the
2098  * supply
2099  *
2100  * All lookups for id on dev will instead be conducted for alias_id on
2101  * alias_dev.
2102  */
2103 int regulator_register_supply_alias(struct device *dev, const char *id,
2104 				    struct device *alias_dev,
2105 				    const char *alias_id)
2106 {
2107 	struct regulator_supply_alias *map;
2108 
2109 	map = regulator_find_supply_alias(dev, id);
2110 	if (map)
2111 		return -EEXIST;
2112 
2113 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2114 	if (!map)
2115 		return -ENOMEM;
2116 
2117 	map->src_dev = dev;
2118 	map->src_supply = id;
2119 	map->alias_dev = alias_dev;
2120 	map->alias_supply = alias_id;
2121 
2122 	list_add(&map->list, &regulator_supply_alias_list);
2123 
2124 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2125 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2126 
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2130 
2131 /**
2132  * regulator_unregister_supply_alias - Remove device alias
2133  *
2134  * @dev: device that will be given as the regulator "consumer"
2135  * @id: Supply name or regulator ID
2136  *
2137  * Remove a lookup alias if one exists for id on dev.
2138  */
2139 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2140 {
2141 	struct regulator_supply_alias *map;
2142 
2143 	map = regulator_find_supply_alias(dev, id);
2144 	if (map) {
2145 		list_del(&map->list);
2146 		kfree(map);
2147 	}
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2150 
2151 /**
2152  * regulator_bulk_register_supply_alias - register multiple aliases
2153  *
2154  * @dev: device that will be given as the regulator "consumer"
2155  * @id: List of supply names or regulator IDs
2156  * @alias_dev: device that should be used to lookup the supply
2157  * @alias_id: List of supply names or regulator IDs that should be used to
2158  * lookup the supply
2159  * @num_id: Number of aliases to register
2160  *
2161  * @return 0 on success, an errno on failure.
2162  *
2163  * This helper function allows drivers to register several supply
2164  * aliases in one operation.  If any of the aliases cannot be
2165  * registered any aliases that were registered will be removed
2166  * before returning to the caller.
2167  */
2168 int regulator_bulk_register_supply_alias(struct device *dev,
2169 					 const char *const *id,
2170 					 struct device *alias_dev,
2171 					 const char *const *alias_id,
2172 					 int num_id)
2173 {
2174 	int i;
2175 	int ret;
2176 
2177 	for (i = 0; i < num_id; ++i) {
2178 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2179 						      alias_id[i]);
2180 		if (ret < 0)
2181 			goto err;
2182 	}
2183 
2184 	return 0;
2185 
2186 err:
2187 	dev_err(dev,
2188 		"Failed to create supply alias %s,%s -> %s,%s\n",
2189 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2190 
2191 	while (--i >= 0)
2192 		regulator_unregister_supply_alias(dev, id[i]);
2193 
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2197 
2198 /**
2199  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2200  *
2201  * @dev: device that will be given as the regulator "consumer"
2202  * @id: List of supply names or regulator IDs
2203  * @num_id: Number of aliases to unregister
2204  *
2205  * This helper function allows drivers to unregister several supply
2206  * aliases in one operation.
2207  */
2208 void regulator_bulk_unregister_supply_alias(struct device *dev,
2209 					    const char *const *id,
2210 					    int num_id)
2211 {
2212 	int i;
2213 
2214 	for (i = 0; i < num_id; ++i)
2215 		regulator_unregister_supply_alias(dev, id[i]);
2216 }
2217 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2218 
2219 
2220 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2221 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2222 				const struct regulator_config *config)
2223 {
2224 	struct regulator_enable_gpio *pin;
2225 	struct gpio_desc *gpiod;
2226 
2227 	gpiod = config->ena_gpiod;
2228 
2229 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2230 		if (pin->gpiod == gpiod) {
2231 			rdev_dbg(rdev, "GPIO is already used\n");
2232 			goto update_ena_gpio_to_rdev;
2233 		}
2234 	}
2235 
2236 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2237 	if (pin == NULL)
2238 		return -ENOMEM;
2239 
2240 	pin->gpiod = gpiod;
2241 	list_add(&pin->list, &regulator_ena_gpio_list);
2242 
2243 update_ena_gpio_to_rdev:
2244 	pin->request_count++;
2245 	rdev->ena_pin = pin;
2246 	return 0;
2247 }
2248 
2249 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2250 {
2251 	struct regulator_enable_gpio *pin, *n;
2252 
2253 	if (!rdev->ena_pin)
2254 		return;
2255 
2256 	/* Free the GPIO only in case of no use */
2257 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2258 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2259 			if (pin->request_count <= 1) {
2260 				pin->request_count = 0;
2261 				gpiod_put(pin->gpiod);
2262 				list_del(&pin->list);
2263 				kfree(pin);
2264 				rdev->ena_pin = NULL;
2265 				return;
2266 			} else {
2267 				pin->request_count--;
2268 			}
2269 		}
2270 	}
2271 }
2272 
2273 /**
2274  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2275  * @rdev: regulator_dev structure
2276  * @enable: enable GPIO at initial use?
2277  *
2278  * GPIO is enabled in case of initial use. (enable_count is 0)
2279  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2280  */
2281 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2282 {
2283 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2284 
2285 	if (!pin)
2286 		return -EINVAL;
2287 
2288 	if (enable) {
2289 		/* Enable GPIO at initial use */
2290 		if (pin->enable_count == 0)
2291 			gpiod_set_value_cansleep(pin->gpiod, 1);
2292 
2293 		pin->enable_count++;
2294 	} else {
2295 		if (pin->enable_count > 1) {
2296 			pin->enable_count--;
2297 			return 0;
2298 		}
2299 
2300 		/* Disable GPIO if not used */
2301 		if (pin->enable_count <= 1) {
2302 			gpiod_set_value_cansleep(pin->gpiod, 0);
2303 			pin->enable_count = 0;
2304 		}
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 /**
2311  * _regulator_enable_delay - a delay helper function
2312  * @delay: time to delay in microseconds
2313  *
2314  * Delay for the requested amount of time as per the guidelines in:
2315  *
2316  *     Documentation/timers/timers-howto.rst
2317  *
2318  * The assumption here is that regulators will never be enabled in
2319  * atomic context and therefore sleeping functions can be used.
2320  */
2321 static void _regulator_enable_delay(unsigned int delay)
2322 {
2323 	unsigned int ms = delay / 1000;
2324 	unsigned int us = delay % 1000;
2325 
2326 	if (ms > 0) {
2327 		/*
2328 		 * For small enough values, handle super-millisecond
2329 		 * delays in the usleep_range() call below.
2330 		 */
2331 		if (ms < 20)
2332 			us += ms * 1000;
2333 		else
2334 			msleep(ms);
2335 	}
2336 
2337 	/*
2338 	 * Give the scheduler some room to coalesce with any other
2339 	 * wakeup sources. For delays shorter than 10 us, don't even
2340 	 * bother setting up high-resolution timers and just busy-
2341 	 * loop.
2342 	 */
2343 	if (us >= 10)
2344 		usleep_range(us, us + 100);
2345 	else
2346 		udelay(us);
2347 }
2348 
2349 static int _regulator_do_enable(struct regulator_dev *rdev)
2350 {
2351 	int ret, delay;
2352 
2353 	/* Query before enabling in case configuration dependent.  */
2354 	ret = _regulator_get_enable_time(rdev);
2355 	if (ret >= 0) {
2356 		delay = ret;
2357 	} else {
2358 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2359 		delay = 0;
2360 	}
2361 
2362 	trace_regulator_enable(rdev_get_name(rdev));
2363 
2364 	if (rdev->desc->off_on_delay) {
2365 		/* if needed, keep a distance of off_on_delay from last time
2366 		 * this regulator was disabled.
2367 		 */
2368 		unsigned long start_jiffy = jiffies;
2369 		unsigned long intended, max_delay, remaining;
2370 
2371 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2372 		intended = rdev->last_off_jiffy + max_delay;
2373 
2374 		if (time_before(start_jiffy, intended)) {
2375 			/* calc remaining jiffies to deal with one-time
2376 			 * timer wrapping.
2377 			 * in case of multiple timer wrapping, either it can be
2378 			 * detected by out-of-range remaining, or it cannot be
2379 			 * detected and we get a penalty of
2380 			 * _regulator_enable_delay().
2381 			 */
2382 			remaining = intended - start_jiffy;
2383 			if (remaining <= max_delay)
2384 				_regulator_enable_delay(
2385 						jiffies_to_usecs(remaining));
2386 		}
2387 	}
2388 
2389 	if (rdev->ena_pin) {
2390 		if (!rdev->ena_gpio_state) {
2391 			ret = regulator_ena_gpio_ctrl(rdev, true);
2392 			if (ret < 0)
2393 				return ret;
2394 			rdev->ena_gpio_state = 1;
2395 		}
2396 	} else if (rdev->desc->ops->enable) {
2397 		ret = rdev->desc->ops->enable(rdev);
2398 		if (ret < 0)
2399 			return ret;
2400 	} else {
2401 		return -EINVAL;
2402 	}
2403 
2404 	/* Allow the regulator to ramp; it would be useful to extend
2405 	 * this for bulk operations so that the regulators can ramp
2406 	 * together.  */
2407 	trace_regulator_enable_delay(rdev_get_name(rdev));
2408 
2409 	_regulator_enable_delay(delay);
2410 
2411 	trace_regulator_enable_complete(rdev_get_name(rdev));
2412 
2413 	return 0;
2414 }
2415 
2416 /**
2417  * _regulator_handle_consumer_enable - handle that a consumer enabled
2418  * @regulator: regulator source
2419  *
2420  * Some things on a regulator consumer (like the contribution towards total
2421  * load on the regulator) only have an effect when the consumer wants the
2422  * regulator enabled.  Explained in example with two consumers of the same
2423  * regulator:
2424  *   consumer A: set_load(100);       => total load = 0
2425  *   consumer A: regulator_enable();  => total load = 100
2426  *   consumer B: set_load(1000);      => total load = 100
2427  *   consumer B: regulator_enable();  => total load = 1100
2428  *   consumer A: regulator_disable(); => total_load = 1000
2429  *
2430  * This function (together with _regulator_handle_consumer_disable) is
2431  * responsible for keeping track of the refcount for a given regulator consumer
2432  * and applying / unapplying these things.
2433  *
2434  * Returns 0 upon no error; -error upon error.
2435  */
2436 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2437 {
2438 	struct regulator_dev *rdev = regulator->rdev;
2439 
2440 	lockdep_assert_held_once(&rdev->mutex.base);
2441 
2442 	regulator->enable_count++;
2443 	if (regulator->uA_load && regulator->enable_count == 1)
2444 		return drms_uA_update(rdev);
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  * _regulator_handle_consumer_disable - handle that a consumer disabled
2451  * @regulator: regulator source
2452  *
2453  * The opposite of _regulator_handle_consumer_enable().
2454  *
2455  * Returns 0 upon no error; -error upon error.
2456  */
2457 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2458 {
2459 	struct regulator_dev *rdev = regulator->rdev;
2460 
2461 	lockdep_assert_held_once(&rdev->mutex.base);
2462 
2463 	if (!regulator->enable_count) {
2464 		rdev_err(rdev, "Underflow of regulator enable count\n");
2465 		return -EINVAL;
2466 	}
2467 
2468 	regulator->enable_count--;
2469 	if (regulator->uA_load && regulator->enable_count == 0)
2470 		return drms_uA_update(rdev);
2471 
2472 	return 0;
2473 }
2474 
2475 /* locks held by regulator_enable() */
2476 static int _regulator_enable(struct regulator *regulator)
2477 {
2478 	struct regulator_dev *rdev = regulator->rdev;
2479 	int ret;
2480 
2481 	lockdep_assert_held_once(&rdev->mutex.base);
2482 
2483 	if (rdev->use_count == 0 && rdev->supply) {
2484 		ret = _regulator_enable(rdev->supply);
2485 		if (ret < 0)
2486 			return ret;
2487 	}
2488 
2489 	/* balance only if there are regulators coupled */
2490 	if (rdev->coupling_desc.n_coupled > 1) {
2491 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2492 		if (ret < 0)
2493 			goto err_disable_supply;
2494 	}
2495 
2496 	ret = _regulator_handle_consumer_enable(regulator);
2497 	if (ret < 0)
2498 		goto err_disable_supply;
2499 
2500 	if (rdev->use_count == 0) {
2501 		/* The regulator may on if it's not switchable or left on */
2502 		ret = _regulator_is_enabled(rdev);
2503 		if (ret == -EINVAL || ret == 0) {
2504 			if (!regulator_ops_is_valid(rdev,
2505 					REGULATOR_CHANGE_STATUS)) {
2506 				ret = -EPERM;
2507 				goto err_consumer_disable;
2508 			}
2509 
2510 			ret = _regulator_do_enable(rdev);
2511 			if (ret < 0)
2512 				goto err_consumer_disable;
2513 
2514 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2515 					     NULL);
2516 		} else if (ret < 0) {
2517 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2518 			goto err_consumer_disable;
2519 		}
2520 		/* Fallthrough on positive return values - already enabled */
2521 	}
2522 
2523 	rdev->use_count++;
2524 
2525 	return 0;
2526 
2527 err_consumer_disable:
2528 	_regulator_handle_consumer_disable(regulator);
2529 
2530 err_disable_supply:
2531 	if (rdev->use_count == 0 && rdev->supply)
2532 		_regulator_disable(rdev->supply);
2533 
2534 	return ret;
2535 }
2536 
2537 /**
2538  * regulator_enable - enable regulator output
2539  * @regulator: regulator source
2540  *
2541  * Request that the regulator be enabled with the regulator output at
2542  * the predefined voltage or current value.  Calls to regulator_enable()
2543  * must be balanced with calls to regulator_disable().
2544  *
2545  * NOTE: the output value can be set by other drivers, boot loader or may be
2546  * hardwired in the regulator.
2547  */
2548 int regulator_enable(struct regulator *regulator)
2549 {
2550 	struct regulator_dev *rdev = regulator->rdev;
2551 	struct ww_acquire_ctx ww_ctx;
2552 	int ret;
2553 
2554 	regulator_lock_dependent(rdev, &ww_ctx);
2555 	ret = _regulator_enable(regulator);
2556 	regulator_unlock_dependent(rdev, &ww_ctx);
2557 
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_enable);
2561 
2562 static int _regulator_do_disable(struct regulator_dev *rdev)
2563 {
2564 	int ret;
2565 
2566 	trace_regulator_disable(rdev_get_name(rdev));
2567 
2568 	if (rdev->ena_pin) {
2569 		if (rdev->ena_gpio_state) {
2570 			ret = regulator_ena_gpio_ctrl(rdev, false);
2571 			if (ret < 0)
2572 				return ret;
2573 			rdev->ena_gpio_state = 0;
2574 		}
2575 
2576 	} else if (rdev->desc->ops->disable) {
2577 		ret = rdev->desc->ops->disable(rdev);
2578 		if (ret != 0)
2579 			return ret;
2580 	}
2581 
2582 	/* cares about last_off_jiffy only if off_on_delay is required by
2583 	 * device.
2584 	 */
2585 	if (rdev->desc->off_on_delay)
2586 		rdev->last_off_jiffy = jiffies;
2587 
2588 	trace_regulator_disable_complete(rdev_get_name(rdev));
2589 
2590 	return 0;
2591 }
2592 
2593 /* locks held by regulator_disable() */
2594 static int _regulator_disable(struct regulator *regulator)
2595 {
2596 	struct regulator_dev *rdev = regulator->rdev;
2597 	int ret = 0;
2598 
2599 	lockdep_assert_held_once(&rdev->mutex.base);
2600 
2601 	if (WARN(rdev->use_count <= 0,
2602 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2603 		return -EIO;
2604 
2605 	/* are we the last user and permitted to disable ? */
2606 	if (rdev->use_count == 1 &&
2607 	    (rdev->constraints && !rdev->constraints->always_on)) {
2608 
2609 		/* we are last user */
2610 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2611 			ret = _notifier_call_chain(rdev,
2612 						   REGULATOR_EVENT_PRE_DISABLE,
2613 						   NULL);
2614 			if (ret & NOTIFY_STOP_MASK)
2615 				return -EINVAL;
2616 
2617 			ret = _regulator_do_disable(rdev);
2618 			if (ret < 0) {
2619 				rdev_err(rdev, "failed to disable\n");
2620 				_notifier_call_chain(rdev,
2621 						REGULATOR_EVENT_ABORT_DISABLE,
2622 						NULL);
2623 				return ret;
2624 			}
2625 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2626 					NULL);
2627 		}
2628 
2629 		rdev->use_count = 0;
2630 	} else if (rdev->use_count > 1) {
2631 		rdev->use_count--;
2632 	}
2633 
2634 	if (ret == 0)
2635 		ret = _regulator_handle_consumer_disable(regulator);
2636 
2637 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2638 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2639 
2640 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2641 		ret = _regulator_disable(rdev->supply);
2642 
2643 	return ret;
2644 }
2645 
2646 /**
2647  * regulator_disable - disable regulator output
2648  * @regulator: regulator source
2649  *
2650  * Disable the regulator output voltage or current.  Calls to
2651  * regulator_enable() must be balanced with calls to
2652  * regulator_disable().
2653  *
2654  * NOTE: this will only disable the regulator output if no other consumer
2655  * devices have it enabled, the regulator device supports disabling and
2656  * machine constraints permit this operation.
2657  */
2658 int regulator_disable(struct regulator *regulator)
2659 {
2660 	struct regulator_dev *rdev = regulator->rdev;
2661 	struct ww_acquire_ctx ww_ctx;
2662 	int ret;
2663 
2664 	regulator_lock_dependent(rdev, &ww_ctx);
2665 	ret = _regulator_disable(regulator);
2666 	regulator_unlock_dependent(rdev, &ww_ctx);
2667 
2668 	return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_disable);
2671 
2672 /* locks held by regulator_force_disable() */
2673 static int _regulator_force_disable(struct regulator_dev *rdev)
2674 {
2675 	int ret = 0;
2676 
2677 	lockdep_assert_held_once(&rdev->mutex.base);
2678 
2679 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2680 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2681 	if (ret & NOTIFY_STOP_MASK)
2682 		return -EINVAL;
2683 
2684 	ret = _regulator_do_disable(rdev);
2685 	if (ret < 0) {
2686 		rdev_err(rdev, "failed to force disable\n");
2687 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2688 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2689 		return ret;
2690 	}
2691 
2692 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2693 			REGULATOR_EVENT_DISABLE, NULL);
2694 
2695 	return 0;
2696 }
2697 
2698 /**
2699  * regulator_force_disable - force disable regulator output
2700  * @regulator: regulator source
2701  *
2702  * Forcibly disable the regulator output voltage or current.
2703  * NOTE: this *will* disable the regulator output even if other consumer
2704  * devices have it enabled. This should be used for situations when device
2705  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2706  */
2707 int regulator_force_disable(struct regulator *regulator)
2708 {
2709 	struct regulator_dev *rdev = regulator->rdev;
2710 	struct ww_acquire_ctx ww_ctx;
2711 	int ret;
2712 
2713 	regulator_lock_dependent(rdev, &ww_ctx);
2714 
2715 	ret = _regulator_force_disable(regulator->rdev);
2716 
2717 	if (rdev->coupling_desc.n_coupled > 1)
2718 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2719 
2720 	if (regulator->uA_load) {
2721 		regulator->uA_load = 0;
2722 		ret = drms_uA_update(rdev);
2723 	}
2724 
2725 	if (rdev->use_count != 0 && rdev->supply)
2726 		_regulator_disable(rdev->supply);
2727 
2728 	regulator_unlock_dependent(rdev, &ww_ctx);
2729 
2730 	return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(regulator_force_disable);
2733 
2734 static void regulator_disable_work(struct work_struct *work)
2735 {
2736 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2737 						  disable_work.work);
2738 	struct ww_acquire_ctx ww_ctx;
2739 	int count, i, ret;
2740 	struct regulator *regulator;
2741 	int total_count = 0;
2742 
2743 	regulator_lock_dependent(rdev, &ww_ctx);
2744 
2745 	/*
2746 	 * Workqueue functions queue the new work instance while the previous
2747 	 * work instance is being processed. Cancel the queued work instance
2748 	 * as the work instance under processing does the job of the queued
2749 	 * work instance.
2750 	 */
2751 	cancel_delayed_work(&rdev->disable_work);
2752 
2753 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2754 		count = regulator->deferred_disables;
2755 
2756 		if (!count)
2757 			continue;
2758 
2759 		total_count += count;
2760 		regulator->deferred_disables = 0;
2761 
2762 		for (i = 0; i < count; i++) {
2763 			ret = _regulator_disable(regulator);
2764 			if (ret != 0)
2765 				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2766 		}
2767 	}
2768 	WARN_ON(!total_count);
2769 
2770 	if (rdev->coupling_desc.n_coupled > 1)
2771 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2772 
2773 	regulator_unlock_dependent(rdev, &ww_ctx);
2774 }
2775 
2776 /**
2777  * regulator_disable_deferred - disable regulator output with delay
2778  * @regulator: regulator source
2779  * @ms: milliseconds until the regulator is disabled
2780  *
2781  * Execute regulator_disable() on the regulator after a delay.  This
2782  * is intended for use with devices that require some time to quiesce.
2783  *
2784  * NOTE: this will only disable the regulator output if no other consumer
2785  * devices have it enabled, the regulator device supports disabling and
2786  * machine constraints permit this operation.
2787  */
2788 int regulator_disable_deferred(struct regulator *regulator, int ms)
2789 {
2790 	struct regulator_dev *rdev = regulator->rdev;
2791 
2792 	if (!ms)
2793 		return regulator_disable(regulator);
2794 
2795 	regulator_lock(rdev);
2796 	regulator->deferred_disables++;
2797 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2798 			 msecs_to_jiffies(ms));
2799 	regulator_unlock(rdev);
2800 
2801 	return 0;
2802 }
2803 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2804 
2805 static int _regulator_is_enabled(struct regulator_dev *rdev)
2806 {
2807 	/* A GPIO control always takes precedence */
2808 	if (rdev->ena_pin)
2809 		return rdev->ena_gpio_state;
2810 
2811 	/* If we don't know then assume that the regulator is always on */
2812 	if (!rdev->desc->ops->is_enabled)
2813 		return 1;
2814 
2815 	return rdev->desc->ops->is_enabled(rdev);
2816 }
2817 
2818 static int _regulator_list_voltage(struct regulator_dev *rdev,
2819 				   unsigned selector, int lock)
2820 {
2821 	const struct regulator_ops *ops = rdev->desc->ops;
2822 	int ret;
2823 
2824 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2825 		return rdev->desc->fixed_uV;
2826 
2827 	if (ops->list_voltage) {
2828 		if (selector >= rdev->desc->n_voltages)
2829 			return -EINVAL;
2830 		if (lock)
2831 			regulator_lock(rdev);
2832 		ret = ops->list_voltage(rdev, selector);
2833 		if (lock)
2834 			regulator_unlock(rdev);
2835 	} else if (rdev->is_switch && rdev->supply) {
2836 		ret = _regulator_list_voltage(rdev->supply->rdev,
2837 					      selector, lock);
2838 	} else {
2839 		return -EINVAL;
2840 	}
2841 
2842 	if (ret > 0) {
2843 		if (ret < rdev->constraints->min_uV)
2844 			ret = 0;
2845 		else if (ret > rdev->constraints->max_uV)
2846 			ret = 0;
2847 	}
2848 
2849 	return ret;
2850 }
2851 
2852 /**
2853  * regulator_is_enabled - is the regulator output enabled
2854  * @regulator: regulator source
2855  *
2856  * Returns positive if the regulator driver backing the source/client
2857  * has requested that the device be enabled, zero if it hasn't, else a
2858  * negative errno code.
2859  *
2860  * Note that the device backing this regulator handle can have multiple
2861  * users, so it might be enabled even if regulator_enable() was never
2862  * called for this particular source.
2863  */
2864 int regulator_is_enabled(struct regulator *regulator)
2865 {
2866 	int ret;
2867 
2868 	if (regulator->always_on)
2869 		return 1;
2870 
2871 	regulator_lock(regulator->rdev);
2872 	ret = _regulator_is_enabled(regulator->rdev);
2873 	regulator_unlock(regulator->rdev);
2874 
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2878 
2879 /**
2880  * regulator_count_voltages - count regulator_list_voltage() selectors
2881  * @regulator: regulator source
2882  *
2883  * Returns number of selectors, or negative errno.  Selectors are
2884  * numbered starting at zero, and typically correspond to bitfields
2885  * in hardware registers.
2886  */
2887 int regulator_count_voltages(struct regulator *regulator)
2888 {
2889 	struct regulator_dev	*rdev = regulator->rdev;
2890 
2891 	if (rdev->desc->n_voltages)
2892 		return rdev->desc->n_voltages;
2893 
2894 	if (!rdev->is_switch || !rdev->supply)
2895 		return -EINVAL;
2896 
2897 	return regulator_count_voltages(rdev->supply);
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2900 
2901 /**
2902  * regulator_list_voltage - enumerate supported voltages
2903  * @regulator: regulator source
2904  * @selector: identify voltage to list
2905  * Context: can sleep
2906  *
2907  * Returns a voltage that can be passed to @regulator_set_voltage(),
2908  * zero if this selector code can't be used on this system, or a
2909  * negative errno.
2910  */
2911 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2912 {
2913 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2916 
2917 /**
2918  * regulator_get_regmap - get the regulator's register map
2919  * @regulator: regulator source
2920  *
2921  * Returns the register map for the given regulator, or an ERR_PTR value
2922  * if the regulator doesn't use regmap.
2923  */
2924 struct regmap *regulator_get_regmap(struct regulator *regulator)
2925 {
2926 	struct regmap *map = regulator->rdev->regmap;
2927 
2928 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2929 }
2930 
2931 /**
2932  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2933  * @regulator: regulator source
2934  * @vsel_reg: voltage selector register, output parameter
2935  * @vsel_mask: mask for voltage selector bitfield, output parameter
2936  *
2937  * Returns the hardware register offset and bitmask used for setting the
2938  * regulator voltage. This might be useful when configuring voltage-scaling
2939  * hardware or firmware that can make I2C requests behind the kernel's back,
2940  * for example.
2941  *
2942  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2943  * and 0 is returned, otherwise a negative errno is returned.
2944  */
2945 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2946 					 unsigned *vsel_reg,
2947 					 unsigned *vsel_mask)
2948 {
2949 	struct regulator_dev *rdev = regulator->rdev;
2950 	const struct regulator_ops *ops = rdev->desc->ops;
2951 
2952 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2953 		return -EOPNOTSUPP;
2954 
2955 	*vsel_reg = rdev->desc->vsel_reg;
2956 	*vsel_mask = rdev->desc->vsel_mask;
2957 
2958 	 return 0;
2959 }
2960 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2961 
2962 /**
2963  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2964  * @regulator: regulator source
2965  * @selector: identify voltage to list
2966  *
2967  * Converts the selector to a hardware-specific voltage selector that can be
2968  * directly written to the regulator registers. The address of the voltage
2969  * register can be determined by calling @regulator_get_hardware_vsel_register.
2970  *
2971  * On error a negative errno is returned.
2972  */
2973 int regulator_list_hardware_vsel(struct regulator *regulator,
2974 				 unsigned selector)
2975 {
2976 	struct regulator_dev *rdev = regulator->rdev;
2977 	const struct regulator_ops *ops = rdev->desc->ops;
2978 
2979 	if (selector >= rdev->desc->n_voltages)
2980 		return -EINVAL;
2981 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2982 		return -EOPNOTSUPP;
2983 
2984 	return selector;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2987 
2988 /**
2989  * regulator_get_linear_step - return the voltage step size between VSEL values
2990  * @regulator: regulator source
2991  *
2992  * Returns the voltage step size between VSEL values for linear
2993  * regulators, or return 0 if the regulator isn't a linear regulator.
2994  */
2995 unsigned int regulator_get_linear_step(struct regulator *regulator)
2996 {
2997 	struct regulator_dev *rdev = regulator->rdev;
2998 
2999 	return rdev->desc->uV_step;
3000 }
3001 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3002 
3003 /**
3004  * regulator_is_supported_voltage - check if a voltage range can be supported
3005  *
3006  * @regulator: Regulator to check.
3007  * @min_uV: Minimum required voltage in uV.
3008  * @max_uV: Maximum required voltage in uV.
3009  *
3010  * Returns a boolean.
3011  */
3012 int regulator_is_supported_voltage(struct regulator *regulator,
3013 				   int min_uV, int max_uV)
3014 {
3015 	struct regulator_dev *rdev = regulator->rdev;
3016 	int i, voltages, ret;
3017 
3018 	/* If we can't change voltage check the current voltage */
3019 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3020 		ret = regulator_get_voltage(regulator);
3021 		if (ret >= 0)
3022 			return min_uV <= ret && ret <= max_uV;
3023 		else
3024 			return ret;
3025 	}
3026 
3027 	/* Any voltage within constrains range is fine? */
3028 	if (rdev->desc->continuous_voltage_range)
3029 		return min_uV >= rdev->constraints->min_uV &&
3030 				max_uV <= rdev->constraints->max_uV;
3031 
3032 	ret = regulator_count_voltages(regulator);
3033 	if (ret < 0)
3034 		return 0;
3035 	voltages = ret;
3036 
3037 	for (i = 0; i < voltages; i++) {
3038 		ret = regulator_list_voltage(regulator, i);
3039 
3040 		if (ret >= min_uV && ret <= max_uV)
3041 			return 1;
3042 	}
3043 
3044 	return 0;
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3047 
3048 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3049 				 int max_uV)
3050 {
3051 	const struct regulator_desc *desc = rdev->desc;
3052 
3053 	if (desc->ops->map_voltage)
3054 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3055 
3056 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3057 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3058 
3059 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3060 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3061 
3062 	if (desc->ops->list_voltage ==
3063 		regulator_list_voltage_pickable_linear_range)
3064 		return regulator_map_voltage_pickable_linear_range(rdev,
3065 							min_uV, max_uV);
3066 
3067 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3068 }
3069 
3070 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3071 				       int min_uV, int max_uV,
3072 				       unsigned *selector)
3073 {
3074 	struct pre_voltage_change_data data;
3075 	int ret;
3076 
3077 	data.old_uV = regulator_get_voltage_rdev(rdev);
3078 	data.min_uV = min_uV;
3079 	data.max_uV = max_uV;
3080 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3081 				   &data);
3082 	if (ret & NOTIFY_STOP_MASK)
3083 		return -EINVAL;
3084 
3085 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3086 	if (ret >= 0)
3087 		return ret;
3088 
3089 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3090 			     (void *)data.old_uV);
3091 
3092 	return ret;
3093 }
3094 
3095 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3096 					   int uV, unsigned selector)
3097 {
3098 	struct pre_voltage_change_data data;
3099 	int ret;
3100 
3101 	data.old_uV = regulator_get_voltage_rdev(rdev);
3102 	data.min_uV = uV;
3103 	data.max_uV = uV;
3104 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3105 				   &data);
3106 	if (ret & NOTIFY_STOP_MASK)
3107 		return -EINVAL;
3108 
3109 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3110 	if (ret >= 0)
3111 		return ret;
3112 
3113 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3114 			     (void *)data.old_uV);
3115 
3116 	return ret;
3117 }
3118 
3119 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3120 					   int uV, int new_selector)
3121 {
3122 	const struct regulator_ops *ops = rdev->desc->ops;
3123 	int diff, old_sel, curr_sel, ret;
3124 
3125 	/* Stepping is only needed if the regulator is enabled. */
3126 	if (!_regulator_is_enabled(rdev))
3127 		goto final_set;
3128 
3129 	if (!ops->get_voltage_sel)
3130 		return -EINVAL;
3131 
3132 	old_sel = ops->get_voltage_sel(rdev);
3133 	if (old_sel < 0)
3134 		return old_sel;
3135 
3136 	diff = new_selector - old_sel;
3137 	if (diff == 0)
3138 		return 0; /* No change needed. */
3139 
3140 	if (diff > 0) {
3141 		/* Stepping up. */
3142 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3143 		     curr_sel < new_selector;
3144 		     curr_sel += rdev->desc->vsel_step) {
3145 			/*
3146 			 * Call the callback directly instead of using
3147 			 * _regulator_call_set_voltage_sel() as we don't
3148 			 * want to notify anyone yet. Same in the branch
3149 			 * below.
3150 			 */
3151 			ret = ops->set_voltage_sel(rdev, curr_sel);
3152 			if (ret)
3153 				goto try_revert;
3154 		}
3155 	} else {
3156 		/* Stepping down. */
3157 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3158 		     curr_sel > new_selector;
3159 		     curr_sel -= rdev->desc->vsel_step) {
3160 			ret = ops->set_voltage_sel(rdev, curr_sel);
3161 			if (ret)
3162 				goto try_revert;
3163 		}
3164 	}
3165 
3166 final_set:
3167 	/* The final selector will trigger the notifiers. */
3168 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3169 
3170 try_revert:
3171 	/*
3172 	 * At least try to return to the previous voltage if setting a new
3173 	 * one failed.
3174 	 */
3175 	(void)ops->set_voltage_sel(rdev, old_sel);
3176 	return ret;
3177 }
3178 
3179 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3180 				       int old_uV, int new_uV)
3181 {
3182 	unsigned int ramp_delay = 0;
3183 
3184 	if (rdev->constraints->ramp_delay)
3185 		ramp_delay = rdev->constraints->ramp_delay;
3186 	else if (rdev->desc->ramp_delay)
3187 		ramp_delay = rdev->desc->ramp_delay;
3188 	else if (rdev->constraints->settling_time)
3189 		return rdev->constraints->settling_time;
3190 	else if (rdev->constraints->settling_time_up &&
3191 		 (new_uV > old_uV))
3192 		return rdev->constraints->settling_time_up;
3193 	else if (rdev->constraints->settling_time_down &&
3194 		 (new_uV < old_uV))
3195 		return rdev->constraints->settling_time_down;
3196 
3197 	if (ramp_delay == 0) {
3198 		rdev_dbg(rdev, "ramp_delay not set\n");
3199 		return 0;
3200 	}
3201 
3202 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3203 }
3204 
3205 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3206 				     int min_uV, int max_uV)
3207 {
3208 	int ret;
3209 	int delay = 0;
3210 	int best_val = 0;
3211 	unsigned int selector;
3212 	int old_selector = -1;
3213 	const struct regulator_ops *ops = rdev->desc->ops;
3214 	int old_uV = regulator_get_voltage_rdev(rdev);
3215 
3216 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3217 
3218 	min_uV += rdev->constraints->uV_offset;
3219 	max_uV += rdev->constraints->uV_offset;
3220 
3221 	/*
3222 	 * If we can't obtain the old selector there is not enough
3223 	 * info to call set_voltage_time_sel().
3224 	 */
3225 	if (_regulator_is_enabled(rdev) &&
3226 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3227 		old_selector = ops->get_voltage_sel(rdev);
3228 		if (old_selector < 0)
3229 			return old_selector;
3230 	}
3231 
3232 	if (ops->set_voltage) {
3233 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3234 						  &selector);
3235 
3236 		if (ret >= 0) {
3237 			if (ops->list_voltage)
3238 				best_val = ops->list_voltage(rdev,
3239 							     selector);
3240 			else
3241 				best_val = regulator_get_voltage_rdev(rdev);
3242 		}
3243 
3244 	} else if (ops->set_voltage_sel) {
3245 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3246 		if (ret >= 0) {
3247 			best_val = ops->list_voltage(rdev, ret);
3248 			if (min_uV <= best_val && max_uV >= best_val) {
3249 				selector = ret;
3250 				if (old_selector == selector)
3251 					ret = 0;
3252 				else if (rdev->desc->vsel_step)
3253 					ret = _regulator_set_voltage_sel_step(
3254 						rdev, best_val, selector);
3255 				else
3256 					ret = _regulator_call_set_voltage_sel(
3257 						rdev, best_val, selector);
3258 			} else {
3259 				ret = -EINVAL;
3260 			}
3261 		}
3262 	} else {
3263 		ret = -EINVAL;
3264 	}
3265 
3266 	if (ret)
3267 		goto out;
3268 
3269 	if (ops->set_voltage_time_sel) {
3270 		/*
3271 		 * Call set_voltage_time_sel if successfully obtained
3272 		 * old_selector
3273 		 */
3274 		if (old_selector >= 0 && old_selector != selector)
3275 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3276 							  selector);
3277 	} else {
3278 		if (old_uV != best_val) {
3279 			if (ops->set_voltage_time)
3280 				delay = ops->set_voltage_time(rdev, old_uV,
3281 							      best_val);
3282 			else
3283 				delay = _regulator_set_voltage_time(rdev,
3284 								    old_uV,
3285 								    best_val);
3286 		}
3287 	}
3288 
3289 	if (delay < 0) {
3290 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3291 		delay = 0;
3292 	}
3293 
3294 	/* Insert any necessary delays */
3295 	if (delay >= 1000) {
3296 		mdelay(delay / 1000);
3297 		udelay(delay % 1000);
3298 	} else if (delay) {
3299 		udelay(delay);
3300 	}
3301 
3302 	if (best_val >= 0) {
3303 		unsigned long data = best_val;
3304 
3305 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3306 				     (void *)data);
3307 	}
3308 
3309 out:
3310 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3311 
3312 	return ret;
3313 }
3314 
3315 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3316 				  int min_uV, int max_uV, suspend_state_t state)
3317 {
3318 	struct regulator_state *rstate;
3319 	int uV, sel;
3320 
3321 	rstate = regulator_get_suspend_state(rdev, state);
3322 	if (rstate == NULL)
3323 		return -EINVAL;
3324 
3325 	if (min_uV < rstate->min_uV)
3326 		min_uV = rstate->min_uV;
3327 	if (max_uV > rstate->max_uV)
3328 		max_uV = rstate->max_uV;
3329 
3330 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3331 	if (sel < 0)
3332 		return sel;
3333 
3334 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3335 	if (uV >= min_uV && uV <= max_uV)
3336 		rstate->uV = uV;
3337 
3338 	return 0;
3339 }
3340 
3341 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3342 					  int min_uV, int max_uV,
3343 					  suspend_state_t state)
3344 {
3345 	struct regulator_dev *rdev = regulator->rdev;
3346 	struct regulator_voltage *voltage = &regulator->voltage[state];
3347 	int ret = 0;
3348 	int old_min_uV, old_max_uV;
3349 	int current_uV;
3350 
3351 	/* If we're setting the same range as last time the change
3352 	 * should be a noop (some cpufreq implementations use the same
3353 	 * voltage for multiple frequencies, for example).
3354 	 */
3355 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3356 		goto out;
3357 
3358 	/* If we're trying to set a range that overlaps the current voltage,
3359 	 * return successfully even though the regulator does not support
3360 	 * changing the voltage.
3361 	 */
3362 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3363 		current_uV = regulator_get_voltage_rdev(rdev);
3364 		if (min_uV <= current_uV && current_uV <= max_uV) {
3365 			voltage->min_uV = min_uV;
3366 			voltage->max_uV = max_uV;
3367 			goto out;
3368 		}
3369 	}
3370 
3371 	/* sanity check */
3372 	if (!rdev->desc->ops->set_voltage &&
3373 	    !rdev->desc->ops->set_voltage_sel) {
3374 		ret = -EINVAL;
3375 		goto out;
3376 	}
3377 
3378 	/* constraints check */
3379 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3380 	if (ret < 0)
3381 		goto out;
3382 
3383 	/* restore original values in case of error */
3384 	old_min_uV = voltage->min_uV;
3385 	old_max_uV = voltage->max_uV;
3386 	voltage->min_uV = min_uV;
3387 	voltage->max_uV = max_uV;
3388 
3389 	/* for not coupled regulators this will just set the voltage */
3390 	ret = regulator_balance_voltage(rdev, state);
3391 	if (ret < 0) {
3392 		voltage->min_uV = old_min_uV;
3393 		voltage->max_uV = old_max_uV;
3394 	}
3395 
3396 out:
3397 	return ret;
3398 }
3399 
3400 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3401 			       int max_uV, suspend_state_t state)
3402 {
3403 	int best_supply_uV = 0;
3404 	int supply_change_uV = 0;
3405 	int ret;
3406 
3407 	if (rdev->supply &&
3408 	    regulator_ops_is_valid(rdev->supply->rdev,
3409 				   REGULATOR_CHANGE_VOLTAGE) &&
3410 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3411 					   rdev->desc->ops->get_voltage_sel))) {
3412 		int current_supply_uV;
3413 		int selector;
3414 
3415 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3416 		if (selector < 0) {
3417 			ret = selector;
3418 			goto out;
3419 		}
3420 
3421 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3422 		if (best_supply_uV < 0) {
3423 			ret = best_supply_uV;
3424 			goto out;
3425 		}
3426 
3427 		best_supply_uV += rdev->desc->min_dropout_uV;
3428 
3429 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3430 		if (current_supply_uV < 0) {
3431 			ret = current_supply_uV;
3432 			goto out;
3433 		}
3434 
3435 		supply_change_uV = best_supply_uV - current_supply_uV;
3436 	}
3437 
3438 	if (supply_change_uV > 0) {
3439 		ret = regulator_set_voltage_unlocked(rdev->supply,
3440 				best_supply_uV, INT_MAX, state);
3441 		if (ret) {
3442 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3443 					ret);
3444 			goto out;
3445 		}
3446 	}
3447 
3448 	if (state == PM_SUSPEND_ON)
3449 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3450 	else
3451 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3452 							max_uV, state);
3453 	if (ret < 0)
3454 		goto out;
3455 
3456 	if (supply_change_uV < 0) {
3457 		ret = regulator_set_voltage_unlocked(rdev->supply,
3458 				best_supply_uV, INT_MAX, state);
3459 		if (ret)
3460 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3461 					ret);
3462 		/* No need to fail here */
3463 		ret = 0;
3464 	}
3465 
3466 out:
3467 	return ret;
3468 }
3469 
3470 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3471 					int *current_uV, int *min_uV)
3472 {
3473 	struct regulation_constraints *constraints = rdev->constraints;
3474 
3475 	/* Limit voltage change only if necessary */
3476 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3477 		return 1;
3478 
3479 	if (*current_uV < 0) {
3480 		*current_uV = regulator_get_voltage_rdev(rdev);
3481 
3482 		if (*current_uV < 0)
3483 			return *current_uV;
3484 	}
3485 
3486 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3487 		return 1;
3488 
3489 	/* Clamp target voltage within the given step */
3490 	if (*current_uV < *min_uV)
3491 		*min_uV = min(*current_uV + constraints->max_uV_step,
3492 			      *min_uV);
3493 	else
3494 		*min_uV = max(*current_uV - constraints->max_uV_step,
3495 			      *min_uV);
3496 
3497 	return 0;
3498 }
3499 
3500 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3501 					 int *current_uV,
3502 					 int *min_uV, int *max_uV,
3503 					 suspend_state_t state,
3504 					 int n_coupled)
3505 {
3506 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3507 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3508 	struct regulation_constraints *constraints = rdev->constraints;
3509 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3510 	int max_current_uV = 0, min_current_uV = INT_MAX;
3511 	int highest_min_uV = 0, target_uV, possible_uV;
3512 	int i, ret, max_spread;
3513 	bool done;
3514 
3515 	*current_uV = -1;
3516 
3517 	/*
3518 	 * If there are no coupled regulators, simply set the voltage
3519 	 * demanded by consumers.
3520 	 */
3521 	if (n_coupled == 1) {
3522 		/*
3523 		 * If consumers don't provide any demands, set voltage
3524 		 * to min_uV
3525 		 */
3526 		desired_min_uV = constraints->min_uV;
3527 		desired_max_uV = constraints->max_uV;
3528 
3529 		ret = regulator_check_consumers(rdev,
3530 						&desired_min_uV,
3531 						&desired_max_uV, state);
3532 		if (ret < 0)
3533 			return ret;
3534 
3535 		possible_uV = desired_min_uV;
3536 		done = true;
3537 
3538 		goto finish;
3539 	}
3540 
3541 	/* Find highest min desired voltage */
3542 	for (i = 0; i < n_coupled; i++) {
3543 		int tmp_min = 0;
3544 		int tmp_max = INT_MAX;
3545 
3546 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3547 
3548 		ret = regulator_check_consumers(c_rdevs[i],
3549 						&tmp_min,
3550 						&tmp_max, state);
3551 		if (ret < 0)
3552 			return ret;
3553 
3554 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3555 		if (ret < 0)
3556 			return ret;
3557 
3558 		highest_min_uV = max(highest_min_uV, tmp_min);
3559 
3560 		if (i == 0) {
3561 			desired_min_uV = tmp_min;
3562 			desired_max_uV = tmp_max;
3563 		}
3564 	}
3565 
3566 	max_spread = constraints->max_spread[0];
3567 
3568 	/*
3569 	 * Let target_uV be equal to the desired one if possible.
3570 	 * If not, set it to minimum voltage, allowed by other coupled
3571 	 * regulators.
3572 	 */
3573 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3574 
3575 	/*
3576 	 * Find min and max voltages, which currently aren't violating
3577 	 * max_spread.
3578 	 */
3579 	for (i = 1; i < n_coupled; i++) {
3580 		int tmp_act;
3581 
3582 		if (!_regulator_is_enabled(c_rdevs[i]))
3583 			continue;
3584 
3585 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3586 		if (tmp_act < 0)
3587 			return tmp_act;
3588 
3589 		min_current_uV = min(tmp_act, min_current_uV);
3590 		max_current_uV = max(tmp_act, max_current_uV);
3591 	}
3592 
3593 	/* There aren't any other regulators enabled */
3594 	if (max_current_uV == 0) {
3595 		possible_uV = target_uV;
3596 	} else {
3597 		/*
3598 		 * Correct target voltage, so as it currently isn't
3599 		 * violating max_spread
3600 		 */
3601 		possible_uV = max(target_uV, max_current_uV - max_spread);
3602 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3603 	}
3604 
3605 	if (possible_uV > desired_max_uV)
3606 		return -EINVAL;
3607 
3608 	done = (possible_uV == target_uV);
3609 	desired_min_uV = possible_uV;
3610 
3611 finish:
3612 	/* Apply max_uV_step constraint if necessary */
3613 	if (state == PM_SUSPEND_ON) {
3614 		ret = regulator_limit_voltage_step(rdev, current_uV,
3615 						   &desired_min_uV);
3616 		if (ret < 0)
3617 			return ret;
3618 
3619 		if (ret == 0)
3620 			done = false;
3621 	}
3622 
3623 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3624 	if (n_coupled > 1 && *current_uV == -1) {
3625 
3626 		if (_regulator_is_enabled(rdev)) {
3627 			ret = regulator_get_voltage_rdev(rdev);
3628 			if (ret < 0)
3629 				return ret;
3630 
3631 			*current_uV = ret;
3632 		} else {
3633 			*current_uV = desired_min_uV;
3634 		}
3635 	}
3636 
3637 	*min_uV = desired_min_uV;
3638 	*max_uV = desired_max_uV;
3639 
3640 	return done;
3641 }
3642 
3643 static int regulator_balance_voltage(struct regulator_dev *rdev,
3644 				     suspend_state_t state)
3645 {
3646 	struct regulator_dev **c_rdevs;
3647 	struct regulator_dev *best_rdev;
3648 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3649 	struct regulator_coupler *coupler = c_desc->coupler;
3650 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3651 	unsigned int delta, best_delta;
3652 	unsigned long c_rdev_done = 0;
3653 	bool best_c_rdev_done;
3654 
3655 	c_rdevs = c_desc->coupled_rdevs;
3656 	n_coupled = c_desc->n_coupled;
3657 
3658 	/*
3659 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3660 	 * other coupled regulators.
3661 	 */
3662 	if (state != PM_SUSPEND_ON)
3663 		n_coupled = 1;
3664 
3665 	if (c_desc->n_resolved < n_coupled) {
3666 		rdev_err(rdev, "Not all coupled regulators registered\n");
3667 		return -EPERM;
3668 	}
3669 
3670 	/* Invoke custom balancer for customized couplers */
3671 	if (coupler && coupler->balance_voltage)
3672 		return coupler->balance_voltage(coupler, rdev, state);
3673 
3674 	/*
3675 	 * Find the best possible voltage change on each loop. Leave the loop
3676 	 * if there isn't any possible change.
3677 	 */
3678 	do {
3679 		best_c_rdev_done = false;
3680 		best_delta = 0;
3681 		best_min_uV = 0;
3682 		best_max_uV = 0;
3683 		best_c_rdev = 0;
3684 		best_rdev = NULL;
3685 
3686 		/*
3687 		 * Find highest difference between optimal voltage
3688 		 * and current voltage.
3689 		 */
3690 		for (i = 0; i < n_coupled; i++) {
3691 			/*
3692 			 * optimal_uV is the best voltage that can be set for
3693 			 * i-th regulator at the moment without violating
3694 			 * max_spread constraint in order to balance
3695 			 * the coupled voltages.
3696 			 */
3697 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3698 
3699 			if (test_bit(i, &c_rdev_done))
3700 				continue;
3701 
3702 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3703 							    &current_uV,
3704 							    &optimal_uV,
3705 							    &optimal_max_uV,
3706 							    state, n_coupled);
3707 			if (ret < 0)
3708 				goto out;
3709 
3710 			delta = abs(optimal_uV - current_uV);
3711 
3712 			if (delta && best_delta <= delta) {
3713 				best_c_rdev_done = ret;
3714 				best_delta = delta;
3715 				best_rdev = c_rdevs[i];
3716 				best_min_uV = optimal_uV;
3717 				best_max_uV = optimal_max_uV;
3718 				best_c_rdev = i;
3719 			}
3720 		}
3721 
3722 		/* Nothing to change, return successfully */
3723 		if (!best_rdev) {
3724 			ret = 0;
3725 			goto out;
3726 		}
3727 
3728 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3729 						 best_max_uV, state);
3730 
3731 		if (ret < 0)
3732 			goto out;
3733 
3734 		if (best_c_rdev_done)
3735 			set_bit(best_c_rdev, &c_rdev_done);
3736 
3737 	} while (n_coupled > 1);
3738 
3739 out:
3740 	return ret;
3741 }
3742 
3743 /**
3744  * regulator_set_voltage - set regulator output voltage
3745  * @regulator: regulator source
3746  * @min_uV: Minimum required voltage in uV
3747  * @max_uV: Maximum acceptable voltage in uV
3748  *
3749  * Sets a voltage regulator to the desired output voltage. This can be set
3750  * during any regulator state. IOW, regulator can be disabled or enabled.
3751  *
3752  * If the regulator is enabled then the voltage will change to the new value
3753  * immediately otherwise if the regulator is disabled the regulator will
3754  * output at the new voltage when enabled.
3755  *
3756  * NOTE: If the regulator is shared between several devices then the lowest
3757  * request voltage that meets the system constraints will be used.
3758  * Regulator system constraints must be set for this regulator before
3759  * calling this function otherwise this call will fail.
3760  */
3761 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3762 {
3763 	struct ww_acquire_ctx ww_ctx;
3764 	int ret;
3765 
3766 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3767 
3768 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3769 					     PM_SUSPEND_ON);
3770 
3771 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3772 
3773 	return ret;
3774 }
3775 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3776 
3777 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3778 					   suspend_state_t state, bool en)
3779 {
3780 	struct regulator_state *rstate;
3781 
3782 	rstate = regulator_get_suspend_state(rdev, state);
3783 	if (rstate == NULL)
3784 		return -EINVAL;
3785 
3786 	if (!rstate->changeable)
3787 		return -EPERM;
3788 
3789 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3790 
3791 	return 0;
3792 }
3793 
3794 int regulator_suspend_enable(struct regulator_dev *rdev,
3795 				    suspend_state_t state)
3796 {
3797 	return regulator_suspend_toggle(rdev, state, true);
3798 }
3799 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3800 
3801 int regulator_suspend_disable(struct regulator_dev *rdev,
3802 				     suspend_state_t state)
3803 {
3804 	struct regulator *regulator;
3805 	struct regulator_voltage *voltage;
3806 
3807 	/*
3808 	 * if any consumer wants this regulator device keeping on in
3809 	 * suspend states, don't set it as disabled.
3810 	 */
3811 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3812 		voltage = &regulator->voltage[state];
3813 		if (voltage->min_uV || voltage->max_uV)
3814 			return 0;
3815 	}
3816 
3817 	return regulator_suspend_toggle(rdev, state, false);
3818 }
3819 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3820 
3821 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3822 					  int min_uV, int max_uV,
3823 					  suspend_state_t state)
3824 {
3825 	struct regulator_dev *rdev = regulator->rdev;
3826 	struct regulator_state *rstate;
3827 
3828 	rstate = regulator_get_suspend_state(rdev, state);
3829 	if (rstate == NULL)
3830 		return -EINVAL;
3831 
3832 	if (rstate->min_uV == rstate->max_uV) {
3833 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3834 		return -EPERM;
3835 	}
3836 
3837 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3838 }
3839 
3840 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3841 				  int max_uV, suspend_state_t state)
3842 {
3843 	struct ww_acquire_ctx ww_ctx;
3844 	int ret;
3845 
3846 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3847 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3848 		return -EINVAL;
3849 
3850 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3851 
3852 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3853 					     max_uV, state);
3854 
3855 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3856 
3857 	return ret;
3858 }
3859 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3860 
3861 /**
3862  * regulator_set_voltage_time - get raise/fall time
3863  * @regulator: regulator source
3864  * @old_uV: starting voltage in microvolts
3865  * @new_uV: target voltage in microvolts
3866  *
3867  * Provided with the starting and ending voltage, this function attempts to
3868  * calculate the time in microseconds required to rise or fall to this new
3869  * voltage.
3870  */
3871 int regulator_set_voltage_time(struct regulator *regulator,
3872 			       int old_uV, int new_uV)
3873 {
3874 	struct regulator_dev *rdev = regulator->rdev;
3875 	const struct regulator_ops *ops = rdev->desc->ops;
3876 	int old_sel = -1;
3877 	int new_sel = -1;
3878 	int voltage;
3879 	int i;
3880 
3881 	if (ops->set_voltage_time)
3882 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3883 	else if (!ops->set_voltage_time_sel)
3884 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3885 
3886 	/* Currently requires operations to do this */
3887 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3888 		return -EINVAL;
3889 
3890 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3891 		/* We only look for exact voltage matches here */
3892 		voltage = regulator_list_voltage(regulator, i);
3893 		if (voltage < 0)
3894 			return -EINVAL;
3895 		if (voltage == 0)
3896 			continue;
3897 		if (voltage == old_uV)
3898 			old_sel = i;
3899 		if (voltage == new_uV)
3900 			new_sel = i;
3901 	}
3902 
3903 	if (old_sel < 0 || new_sel < 0)
3904 		return -EINVAL;
3905 
3906 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3907 }
3908 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3909 
3910 /**
3911  * regulator_set_voltage_time_sel - get raise/fall time
3912  * @rdev: regulator source device
3913  * @old_selector: selector for starting voltage
3914  * @new_selector: selector for target voltage
3915  *
3916  * Provided with the starting and target voltage selectors, this function
3917  * returns time in microseconds required to rise or fall to this new voltage
3918  *
3919  * Drivers providing ramp_delay in regulation_constraints can use this as their
3920  * set_voltage_time_sel() operation.
3921  */
3922 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3923 				   unsigned int old_selector,
3924 				   unsigned int new_selector)
3925 {
3926 	int old_volt, new_volt;
3927 
3928 	/* sanity check */
3929 	if (!rdev->desc->ops->list_voltage)
3930 		return -EINVAL;
3931 
3932 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3933 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3934 
3935 	if (rdev->desc->ops->set_voltage_time)
3936 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3937 							 new_volt);
3938 	else
3939 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3940 }
3941 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3942 
3943 /**
3944  * regulator_sync_voltage - re-apply last regulator output voltage
3945  * @regulator: regulator source
3946  *
3947  * Re-apply the last configured voltage.  This is intended to be used
3948  * where some external control source the consumer is cooperating with
3949  * has caused the configured voltage to change.
3950  */
3951 int regulator_sync_voltage(struct regulator *regulator)
3952 {
3953 	struct regulator_dev *rdev = regulator->rdev;
3954 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3955 	int ret, min_uV, max_uV;
3956 
3957 	regulator_lock(rdev);
3958 
3959 	if (!rdev->desc->ops->set_voltage &&
3960 	    !rdev->desc->ops->set_voltage_sel) {
3961 		ret = -EINVAL;
3962 		goto out;
3963 	}
3964 
3965 	/* This is only going to work if we've had a voltage configured. */
3966 	if (!voltage->min_uV && !voltage->max_uV) {
3967 		ret = -EINVAL;
3968 		goto out;
3969 	}
3970 
3971 	min_uV = voltage->min_uV;
3972 	max_uV = voltage->max_uV;
3973 
3974 	/* This should be a paranoia check... */
3975 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3976 	if (ret < 0)
3977 		goto out;
3978 
3979 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3980 	if (ret < 0)
3981 		goto out;
3982 
3983 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3984 
3985 out:
3986 	regulator_unlock(rdev);
3987 	return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3990 
3991 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3992 {
3993 	int sel, ret;
3994 	bool bypassed;
3995 
3996 	if (rdev->desc->ops->get_bypass) {
3997 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3998 		if (ret < 0)
3999 			return ret;
4000 		if (bypassed) {
4001 			/* if bypassed the regulator must have a supply */
4002 			if (!rdev->supply) {
4003 				rdev_err(rdev,
4004 					 "bypassed regulator has no supply!\n");
4005 				return -EPROBE_DEFER;
4006 			}
4007 
4008 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4009 		}
4010 	}
4011 
4012 	if (rdev->desc->ops->get_voltage_sel) {
4013 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4014 		if (sel < 0)
4015 			return sel;
4016 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4017 	} else if (rdev->desc->ops->get_voltage) {
4018 		ret = rdev->desc->ops->get_voltage(rdev);
4019 	} else if (rdev->desc->ops->list_voltage) {
4020 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4021 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4022 		ret = rdev->desc->fixed_uV;
4023 	} else if (rdev->supply) {
4024 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4025 	} else {
4026 		return -EINVAL;
4027 	}
4028 
4029 	if (ret < 0)
4030 		return ret;
4031 	return ret - rdev->constraints->uV_offset;
4032 }
4033 
4034 /**
4035  * regulator_get_voltage - get regulator output voltage
4036  * @regulator: regulator source
4037  *
4038  * This returns the current regulator voltage in uV.
4039  *
4040  * NOTE: If the regulator is disabled it will return the voltage value. This
4041  * function should not be used to determine regulator state.
4042  */
4043 int regulator_get_voltage(struct regulator *regulator)
4044 {
4045 	struct ww_acquire_ctx ww_ctx;
4046 	int ret;
4047 
4048 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4049 	ret = regulator_get_voltage_rdev(regulator->rdev);
4050 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4051 
4052 	return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4055 
4056 /**
4057  * regulator_set_current_limit - set regulator output current limit
4058  * @regulator: regulator source
4059  * @min_uA: Minimum supported current in uA
4060  * @max_uA: Maximum supported current in uA
4061  *
4062  * Sets current sink to the desired output current. This can be set during
4063  * any regulator state. IOW, regulator can be disabled or enabled.
4064  *
4065  * If the regulator is enabled then the current will change to the new value
4066  * immediately otherwise if the regulator is disabled the regulator will
4067  * output at the new current when enabled.
4068  *
4069  * NOTE: Regulator system constraints must be set for this regulator before
4070  * calling this function otherwise this call will fail.
4071  */
4072 int regulator_set_current_limit(struct regulator *regulator,
4073 			       int min_uA, int max_uA)
4074 {
4075 	struct regulator_dev *rdev = regulator->rdev;
4076 	int ret;
4077 
4078 	regulator_lock(rdev);
4079 
4080 	/* sanity check */
4081 	if (!rdev->desc->ops->set_current_limit) {
4082 		ret = -EINVAL;
4083 		goto out;
4084 	}
4085 
4086 	/* constraints check */
4087 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4088 	if (ret < 0)
4089 		goto out;
4090 
4091 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4092 out:
4093 	regulator_unlock(rdev);
4094 	return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4097 
4098 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4099 {
4100 	/* sanity check */
4101 	if (!rdev->desc->ops->get_current_limit)
4102 		return -EINVAL;
4103 
4104 	return rdev->desc->ops->get_current_limit(rdev);
4105 }
4106 
4107 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4108 {
4109 	int ret;
4110 
4111 	regulator_lock(rdev);
4112 	ret = _regulator_get_current_limit_unlocked(rdev);
4113 	regulator_unlock(rdev);
4114 
4115 	return ret;
4116 }
4117 
4118 /**
4119  * regulator_get_current_limit - get regulator output current
4120  * @regulator: regulator source
4121  *
4122  * This returns the current supplied by the specified current sink in uA.
4123  *
4124  * NOTE: If the regulator is disabled it will return the current value. This
4125  * function should not be used to determine regulator state.
4126  */
4127 int regulator_get_current_limit(struct regulator *regulator)
4128 {
4129 	return _regulator_get_current_limit(regulator->rdev);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4132 
4133 /**
4134  * regulator_set_mode - set regulator operating mode
4135  * @regulator: regulator source
4136  * @mode: operating mode - one of the REGULATOR_MODE constants
4137  *
4138  * Set regulator operating mode to increase regulator efficiency or improve
4139  * regulation performance.
4140  *
4141  * NOTE: Regulator system constraints must be set for this regulator before
4142  * calling this function otherwise this call will fail.
4143  */
4144 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4145 {
4146 	struct regulator_dev *rdev = regulator->rdev;
4147 	int ret;
4148 	int regulator_curr_mode;
4149 
4150 	regulator_lock(rdev);
4151 
4152 	/* sanity check */
4153 	if (!rdev->desc->ops->set_mode) {
4154 		ret = -EINVAL;
4155 		goto out;
4156 	}
4157 
4158 	/* return if the same mode is requested */
4159 	if (rdev->desc->ops->get_mode) {
4160 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4161 		if (regulator_curr_mode == mode) {
4162 			ret = 0;
4163 			goto out;
4164 		}
4165 	}
4166 
4167 	/* constraints check */
4168 	ret = regulator_mode_constrain(rdev, &mode);
4169 	if (ret < 0)
4170 		goto out;
4171 
4172 	ret = rdev->desc->ops->set_mode(rdev, mode);
4173 out:
4174 	regulator_unlock(rdev);
4175 	return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(regulator_set_mode);
4178 
4179 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4180 {
4181 	/* sanity check */
4182 	if (!rdev->desc->ops->get_mode)
4183 		return -EINVAL;
4184 
4185 	return rdev->desc->ops->get_mode(rdev);
4186 }
4187 
4188 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4189 {
4190 	int ret;
4191 
4192 	regulator_lock(rdev);
4193 	ret = _regulator_get_mode_unlocked(rdev);
4194 	regulator_unlock(rdev);
4195 
4196 	return ret;
4197 }
4198 
4199 /**
4200  * regulator_get_mode - get regulator operating mode
4201  * @regulator: regulator source
4202  *
4203  * Get the current regulator operating mode.
4204  */
4205 unsigned int regulator_get_mode(struct regulator *regulator)
4206 {
4207 	return _regulator_get_mode(regulator->rdev);
4208 }
4209 EXPORT_SYMBOL_GPL(regulator_get_mode);
4210 
4211 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4212 					unsigned int *flags)
4213 {
4214 	int ret;
4215 
4216 	regulator_lock(rdev);
4217 
4218 	/* sanity check */
4219 	if (!rdev->desc->ops->get_error_flags) {
4220 		ret = -EINVAL;
4221 		goto out;
4222 	}
4223 
4224 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4225 out:
4226 	regulator_unlock(rdev);
4227 	return ret;
4228 }
4229 
4230 /**
4231  * regulator_get_error_flags - get regulator error information
4232  * @regulator: regulator source
4233  * @flags: pointer to store error flags
4234  *
4235  * Get the current regulator error information.
4236  */
4237 int regulator_get_error_flags(struct regulator *regulator,
4238 				unsigned int *flags)
4239 {
4240 	return _regulator_get_error_flags(regulator->rdev, flags);
4241 }
4242 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4243 
4244 /**
4245  * regulator_set_load - set regulator load
4246  * @regulator: regulator source
4247  * @uA_load: load current
4248  *
4249  * Notifies the regulator core of a new device load. This is then used by
4250  * DRMS (if enabled by constraints) to set the most efficient regulator
4251  * operating mode for the new regulator loading.
4252  *
4253  * Consumer devices notify their supply regulator of the maximum power
4254  * they will require (can be taken from device datasheet in the power
4255  * consumption tables) when they change operational status and hence power
4256  * state. Examples of operational state changes that can affect power
4257  * consumption are :-
4258  *
4259  *    o Device is opened / closed.
4260  *    o Device I/O is about to begin or has just finished.
4261  *    o Device is idling in between work.
4262  *
4263  * This information is also exported via sysfs to userspace.
4264  *
4265  * DRMS will sum the total requested load on the regulator and change
4266  * to the most efficient operating mode if platform constraints allow.
4267  *
4268  * NOTE: when a regulator consumer requests to have a regulator
4269  * disabled then any load that consumer requested no longer counts
4270  * toward the total requested load.  If the regulator is re-enabled
4271  * then the previously requested load will start counting again.
4272  *
4273  * If a regulator is an always-on regulator then an individual consumer's
4274  * load will still be removed if that consumer is fully disabled.
4275  *
4276  * On error a negative errno is returned.
4277  */
4278 int regulator_set_load(struct regulator *regulator, int uA_load)
4279 {
4280 	struct regulator_dev *rdev = regulator->rdev;
4281 	int old_uA_load;
4282 	int ret = 0;
4283 
4284 	regulator_lock(rdev);
4285 	old_uA_load = regulator->uA_load;
4286 	regulator->uA_load = uA_load;
4287 	if (regulator->enable_count && old_uA_load != uA_load) {
4288 		ret = drms_uA_update(rdev);
4289 		if (ret < 0)
4290 			regulator->uA_load = old_uA_load;
4291 	}
4292 	regulator_unlock(rdev);
4293 
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(regulator_set_load);
4297 
4298 /**
4299  * regulator_allow_bypass - allow the regulator to go into bypass mode
4300  *
4301  * @regulator: Regulator to configure
4302  * @enable: enable or disable bypass mode
4303  *
4304  * Allow the regulator to go into bypass mode if all other consumers
4305  * for the regulator also enable bypass mode and the machine
4306  * constraints allow this.  Bypass mode means that the regulator is
4307  * simply passing the input directly to the output with no regulation.
4308  */
4309 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4310 {
4311 	struct regulator_dev *rdev = regulator->rdev;
4312 	int ret = 0;
4313 
4314 	if (!rdev->desc->ops->set_bypass)
4315 		return 0;
4316 
4317 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4318 		return 0;
4319 
4320 	regulator_lock(rdev);
4321 
4322 	if (enable && !regulator->bypass) {
4323 		rdev->bypass_count++;
4324 
4325 		if (rdev->bypass_count == rdev->open_count) {
4326 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4327 			if (ret != 0)
4328 				rdev->bypass_count--;
4329 		}
4330 
4331 	} else if (!enable && regulator->bypass) {
4332 		rdev->bypass_count--;
4333 
4334 		if (rdev->bypass_count != rdev->open_count) {
4335 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4336 			if (ret != 0)
4337 				rdev->bypass_count++;
4338 		}
4339 	}
4340 
4341 	if (ret == 0)
4342 		regulator->bypass = enable;
4343 
4344 	regulator_unlock(rdev);
4345 
4346 	return ret;
4347 }
4348 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4349 
4350 /**
4351  * regulator_register_notifier - register regulator event notifier
4352  * @regulator: regulator source
4353  * @nb: notifier block
4354  *
4355  * Register notifier block to receive regulator events.
4356  */
4357 int regulator_register_notifier(struct regulator *regulator,
4358 			      struct notifier_block *nb)
4359 {
4360 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4361 						nb);
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4364 
4365 /**
4366  * regulator_unregister_notifier - unregister regulator event notifier
4367  * @regulator: regulator source
4368  * @nb: notifier block
4369  *
4370  * Unregister regulator event notifier block.
4371  */
4372 int regulator_unregister_notifier(struct regulator *regulator,
4373 				struct notifier_block *nb)
4374 {
4375 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4376 						  nb);
4377 }
4378 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4379 
4380 /* notify regulator consumers and downstream regulator consumers.
4381  * Note mutex must be held by caller.
4382  */
4383 static int _notifier_call_chain(struct regulator_dev *rdev,
4384 				  unsigned long event, void *data)
4385 {
4386 	/* call rdev chain first */
4387 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4388 }
4389 
4390 /**
4391  * regulator_bulk_get - get multiple regulator consumers
4392  *
4393  * @dev:           Device to supply
4394  * @num_consumers: Number of consumers to register
4395  * @consumers:     Configuration of consumers; clients are stored here.
4396  *
4397  * @return 0 on success, an errno on failure.
4398  *
4399  * This helper function allows drivers to get several regulator
4400  * consumers in one operation.  If any of the regulators cannot be
4401  * acquired then any regulators that were allocated will be freed
4402  * before returning to the caller.
4403  */
4404 int regulator_bulk_get(struct device *dev, int num_consumers,
4405 		       struct regulator_bulk_data *consumers)
4406 {
4407 	int i;
4408 	int ret;
4409 
4410 	for (i = 0; i < num_consumers; i++)
4411 		consumers[i].consumer = NULL;
4412 
4413 	for (i = 0; i < num_consumers; i++) {
4414 		consumers[i].consumer = regulator_get(dev,
4415 						      consumers[i].supply);
4416 		if (IS_ERR(consumers[i].consumer)) {
4417 			ret = PTR_ERR(consumers[i].consumer);
4418 			consumers[i].consumer = NULL;
4419 			goto err;
4420 		}
4421 	}
4422 
4423 	return 0;
4424 
4425 err:
4426 	if (ret != -EPROBE_DEFER)
4427 		dev_err(dev, "Failed to get supply '%s': %d\n",
4428 			consumers[i].supply, ret);
4429 	else
4430 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4431 			consumers[i].supply);
4432 
4433 	while (--i >= 0)
4434 		regulator_put(consumers[i].consumer);
4435 
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4439 
4440 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4441 {
4442 	struct regulator_bulk_data *bulk = data;
4443 
4444 	bulk->ret = regulator_enable(bulk->consumer);
4445 }
4446 
4447 /**
4448  * regulator_bulk_enable - enable multiple regulator consumers
4449  *
4450  * @num_consumers: Number of consumers
4451  * @consumers:     Consumer data; clients are stored here.
4452  * @return         0 on success, an errno on failure
4453  *
4454  * This convenience API allows consumers to enable multiple regulator
4455  * clients in a single API call.  If any consumers cannot be enabled
4456  * then any others that were enabled will be disabled again prior to
4457  * return.
4458  */
4459 int regulator_bulk_enable(int num_consumers,
4460 			  struct regulator_bulk_data *consumers)
4461 {
4462 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4463 	int i;
4464 	int ret = 0;
4465 
4466 	for (i = 0; i < num_consumers; i++) {
4467 		async_schedule_domain(regulator_bulk_enable_async,
4468 				      &consumers[i], &async_domain);
4469 	}
4470 
4471 	async_synchronize_full_domain(&async_domain);
4472 
4473 	/* If any consumer failed we need to unwind any that succeeded */
4474 	for (i = 0; i < num_consumers; i++) {
4475 		if (consumers[i].ret != 0) {
4476 			ret = consumers[i].ret;
4477 			goto err;
4478 		}
4479 	}
4480 
4481 	return 0;
4482 
4483 err:
4484 	for (i = 0; i < num_consumers; i++) {
4485 		if (consumers[i].ret < 0)
4486 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4487 			       consumers[i].ret);
4488 		else
4489 			regulator_disable(consumers[i].consumer);
4490 	}
4491 
4492 	return ret;
4493 }
4494 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4495 
4496 /**
4497  * regulator_bulk_disable - disable multiple regulator consumers
4498  *
4499  * @num_consumers: Number of consumers
4500  * @consumers:     Consumer data; clients are stored here.
4501  * @return         0 on success, an errno on failure
4502  *
4503  * This convenience API allows consumers to disable multiple regulator
4504  * clients in a single API call.  If any consumers cannot be disabled
4505  * then any others that were disabled will be enabled again prior to
4506  * return.
4507  */
4508 int regulator_bulk_disable(int num_consumers,
4509 			   struct regulator_bulk_data *consumers)
4510 {
4511 	int i;
4512 	int ret, r;
4513 
4514 	for (i = num_consumers - 1; i >= 0; --i) {
4515 		ret = regulator_disable(consumers[i].consumer);
4516 		if (ret != 0)
4517 			goto err;
4518 	}
4519 
4520 	return 0;
4521 
4522 err:
4523 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4524 	for (++i; i < num_consumers; ++i) {
4525 		r = regulator_enable(consumers[i].consumer);
4526 		if (r != 0)
4527 			pr_err("Failed to re-enable %s: %d\n",
4528 			       consumers[i].supply, r);
4529 	}
4530 
4531 	return ret;
4532 }
4533 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4534 
4535 /**
4536  * regulator_bulk_force_disable - force disable multiple regulator consumers
4537  *
4538  * @num_consumers: Number of consumers
4539  * @consumers:     Consumer data; clients are stored here.
4540  * @return         0 on success, an errno on failure
4541  *
4542  * This convenience API allows consumers to forcibly disable multiple regulator
4543  * clients in a single API call.
4544  * NOTE: This should be used for situations when device damage will
4545  * likely occur if the regulators are not disabled (e.g. over temp).
4546  * Although regulator_force_disable function call for some consumers can
4547  * return error numbers, the function is called for all consumers.
4548  */
4549 int regulator_bulk_force_disable(int num_consumers,
4550 			   struct regulator_bulk_data *consumers)
4551 {
4552 	int i;
4553 	int ret = 0;
4554 
4555 	for (i = 0; i < num_consumers; i++) {
4556 		consumers[i].ret =
4557 			    regulator_force_disable(consumers[i].consumer);
4558 
4559 		/* Store first error for reporting */
4560 		if (consumers[i].ret && !ret)
4561 			ret = consumers[i].ret;
4562 	}
4563 
4564 	return ret;
4565 }
4566 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4567 
4568 /**
4569  * regulator_bulk_free - free multiple regulator consumers
4570  *
4571  * @num_consumers: Number of consumers
4572  * @consumers:     Consumer data; clients are stored here.
4573  *
4574  * This convenience API allows consumers to free multiple regulator
4575  * clients in a single API call.
4576  */
4577 void regulator_bulk_free(int num_consumers,
4578 			 struct regulator_bulk_data *consumers)
4579 {
4580 	int i;
4581 
4582 	for (i = 0; i < num_consumers; i++) {
4583 		regulator_put(consumers[i].consumer);
4584 		consumers[i].consumer = NULL;
4585 	}
4586 }
4587 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4588 
4589 /**
4590  * regulator_notifier_call_chain - call regulator event notifier
4591  * @rdev: regulator source
4592  * @event: notifier block
4593  * @data: callback-specific data.
4594  *
4595  * Called by regulator drivers to notify clients a regulator event has
4596  * occurred. We also notify regulator clients downstream.
4597  * Note lock must be held by caller.
4598  */
4599 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4600 				  unsigned long event, void *data)
4601 {
4602 	lockdep_assert_held_once(&rdev->mutex.base);
4603 
4604 	_notifier_call_chain(rdev, event, data);
4605 	return NOTIFY_DONE;
4606 
4607 }
4608 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4609 
4610 /**
4611  * regulator_mode_to_status - convert a regulator mode into a status
4612  *
4613  * @mode: Mode to convert
4614  *
4615  * Convert a regulator mode into a status.
4616  */
4617 int regulator_mode_to_status(unsigned int mode)
4618 {
4619 	switch (mode) {
4620 	case REGULATOR_MODE_FAST:
4621 		return REGULATOR_STATUS_FAST;
4622 	case REGULATOR_MODE_NORMAL:
4623 		return REGULATOR_STATUS_NORMAL;
4624 	case REGULATOR_MODE_IDLE:
4625 		return REGULATOR_STATUS_IDLE;
4626 	case REGULATOR_MODE_STANDBY:
4627 		return REGULATOR_STATUS_STANDBY;
4628 	default:
4629 		return REGULATOR_STATUS_UNDEFINED;
4630 	}
4631 }
4632 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4633 
4634 static struct attribute *regulator_dev_attrs[] = {
4635 	&dev_attr_name.attr,
4636 	&dev_attr_num_users.attr,
4637 	&dev_attr_type.attr,
4638 	&dev_attr_microvolts.attr,
4639 	&dev_attr_microamps.attr,
4640 	&dev_attr_opmode.attr,
4641 	&dev_attr_state.attr,
4642 	&dev_attr_status.attr,
4643 	&dev_attr_bypass.attr,
4644 	&dev_attr_requested_microamps.attr,
4645 	&dev_attr_min_microvolts.attr,
4646 	&dev_attr_max_microvolts.attr,
4647 	&dev_attr_min_microamps.attr,
4648 	&dev_attr_max_microamps.attr,
4649 	&dev_attr_suspend_standby_state.attr,
4650 	&dev_attr_suspend_mem_state.attr,
4651 	&dev_attr_suspend_disk_state.attr,
4652 	&dev_attr_suspend_standby_microvolts.attr,
4653 	&dev_attr_suspend_mem_microvolts.attr,
4654 	&dev_attr_suspend_disk_microvolts.attr,
4655 	&dev_attr_suspend_standby_mode.attr,
4656 	&dev_attr_suspend_mem_mode.attr,
4657 	&dev_attr_suspend_disk_mode.attr,
4658 	NULL
4659 };
4660 
4661 /*
4662  * To avoid cluttering sysfs (and memory) with useless state, only
4663  * create attributes that can be meaningfully displayed.
4664  */
4665 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4666 					 struct attribute *attr, int idx)
4667 {
4668 	struct device *dev = kobj_to_dev(kobj);
4669 	struct regulator_dev *rdev = dev_to_rdev(dev);
4670 	const struct regulator_ops *ops = rdev->desc->ops;
4671 	umode_t mode = attr->mode;
4672 
4673 	/* these three are always present */
4674 	if (attr == &dev_attr_name.attr ||
4675 	    attr == &dev_attr_num_users.attr ||
4676 	    attr == &dev_attr_type.attr)
4677 		return mode;
4678 
4679 	/* some attributes need specific methods to be displayed */
4680 	if (attr == &dev_attr_microvolts.attr) {
4681 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4682 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4683 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4684 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4685 			return mode;
4686 		return 0;
4687 	}
4688 
4689 	if (attr == &dev_attr_microamps.attr)
4690 		return ops->get_current_limit ? mode : 0;
4691 
4692 	if (attr == &dev_attr_opmode.attr)
4693 		return ops->get_mode ? mode : 0;
4694 
4695 	if (attr == &dev_attr_state.attr)
4696 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4697 
4698 	if (attr == &dev_attr_status.attr)
4699 		return ops->get_status ? mode : 0;
4700 
4701 	if (attr == &dev_attr_bypass.attr)
4702 		return ops->get_bypass ? mode : 0;
4703 
4704 	/* constraints need specific supporting methods */
4705 	if (attr == &dev_attr_min_microvolts.attr ||
4706 	    attr == &dev_attr_max_microvolts.attr)
4707 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4708 
4709 	if (attr == &dev_attr_min_microamps.attr ||
4710 	    attr == &dev_attr_max_microamps.attr)
4711 		return ops->set_current_limit ? mode : 0;
4712 
4713 	if (attr == &dev_attr_suspend_standby_state.attr ||
4714 	    attr == &dev_attr_suspend_mem_state.attr ||
4715 	    attr == &dev_attr_suspend_disk_state.attr)
4716 		return mode;
4717 
4718 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4719 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4720 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4721 		return ops->set_suspend_voltage ? mode : 0;
4722 
4723 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4724 	    attr == &dev_attr_suspend_mem_mode.attr ||
4725 	    attr == &dev_attr_suspend_disk_mode.attr)
4726 		return ops->set_suspend_mode ? mode : 0;
4727 
4728 	return mode;
4729 }
4730 
4731 static const struct attribute_group regulator_dev_group = {
4732 	.attrs = regulator_dev_attrs,
4733 	.is_visible = regulator_attr_is_visible,
4734 };
4735 
4736 static const struct attribute_group *regulator_dev_groups[] = {
4737 	&regulator_dev_group,
4738 	NULL
4739 };
4740 
4741 static void regulator_dev_release(struct device *dev)
4742 {
4743 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4744 
4745 	kfree(rdev->constraints);
4746 	of_node_put(rdev->dev.of_node);
4747 	kfree(rdev);
4748 }
4749 
4750 static void rdev_init_debugfs(struct regulator_dev *rdev)
4751 {
4752 	struct device *parent = rdev->dev.parent;
4753 	const char *rname = rdev_get_name(rdev);
4754 	char name[NAME_MAX];
4755 
4756 	/* Avoid duplicate debugfs directory names */
4757 	if (parent && rname == rdev->desc->name) {
4758 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4759 			 rname);
4760 		rname = name;
4761 	}
4762 
4763 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4764 	if (!rdev->debugfs) {
4765 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4766 		return;
4767 	}
4768 
4769 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4770 			   &rdev->use_count);
4771 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4772 			   &rdev->open_count);
4773 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4774 			   &rdev->bypass_count);
4775 }
4776 
4777 static int regulator_register_resolve_supply(struct device *dev, void *data)
4778 {
4779 	struct regulator_dev *rdev = dev_to_rdev(dev);
4780 
4781 	if (regulator_resolve_supply(rdev))
4782 		rdev_dbg(rdev, "unable to resolve supply\n");
4783 
4784 	return 0;
4785 }
4786 
4787 int regulator_coupler_register(struct regulator_coupler *coupler)
4788 {
4789 	mutex_lock(&regulator_list_mutex);
4790 	list_add_tail(&coupler->list, &regulator_coupler_list);
4791 	mutex_unlock(&regulator_list_mutex);
4792 
4793 	return 0;
4794 }
4795 
4796 static struct regulator_coupler *
4797 regulator_find_coupler(struct regulator_dev *rdev)
4798 {
4799 	struct regulator_coupler *coupler;
4800 	int err;
4801 
4802 	/*
4803 	 * Note that regulators are appended to the list and the generic
4804 	 * coupler is registered first, hence it will be attached at last
4805 	 * if nobody cared.
4806 	 */
4807 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4808 		err = coupler->attach_regulator(coupler, rdev);
4809 		if (!err) {
4810 			if (!coupler->balance_voltage &&
4811 			    rdev->coupling_desc.n_coupled > 2)
4812 				goto err_unsupported;
4813 
4814 			return coupler;
4815 		}
4816 
4817 		if (err < 0)
4818 			return ERR_PTR(err);
4819 
4820 		if (err == 1)
4821 			continue;
4822 
4823 		break;
4824 	}
4825 
4826 	return ERR_PTR(-EINVAL);
4827 
4828 err_unsupported:
4829 	if (coupler->detach_regulator)
4830 		coupler->detach_regulator(coupler, rdev);
4831 
4832 	rdev_err(rdev,
4833 		"Voltage balancing for multiple regulator couples is unimplemented\n");
4834 
4835 	return ERR_PTR(-EPERM);
4836 }
4837 
4838 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4839 {
4840 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4841 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4842 	int n_coupled = c_desc->n_coupled;
4843 	struct regulator_dev *c_rdev;
4844 	int i;
4845 
4846 	for (i = 1; i < n_coupled; i++) {
4847 		/* already resolved */
4848 		if (c_desc->coupled_rdevs[i])
4849 			continue;
4850 
4851 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4852 
4853 		if (!c_rdev)
4854 			continue;
4855 
4856 		if (c_rdev->coupling_desc.coupler != coupler) {
4857 			rdev_err(rdev, "coupler mismatch with %s\n",
4858 				 rdev_get_name(c_rdev));
4859 			return;
4860 		}
4861 
4862 		regulator_lock(c_rdev);
4863 
4864 		c_desc->coupled_rdevs[i] = c_rdev;
4865 		c_desc->n_resolved++;
4866 
4867 		regulator_unlock(c_rdev);
4868 
4869 		regulator_resolve_coupling(c_rdev);
4870 	}
4871 }
4872 
4873 static void regulator_remove_coupling(struct regulator_dev *rdev)
4874 {
4875 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4876 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4877 	struct regulator_dev *__c_rdev, *c_rdev;
4878 	unsigned int __n_coupled, n_coupled;
4879 	int i, k;
4880 	int err;
4881 
4882 	n_coupled = c_desc->n_coupled;
4883 
4884 	for (i = 1; i < n_coupled; i++) {
4885 		c_rdev = c_desc->coupled_rdevs[i];
4886 
4887 		if (!c_rdev)
4888 			continue;
4889 
4890 		regulator_lock(c_rdev);
4891 
4892 		__c_desc = &c_rdev->coupling_desc;
4893 		__n_coupled = __c_desc->n_coupled;
4894 
4895 		for (k = 1; k < __n_coupled; k++) {
4896 			__c_rdev = __c_desc->coupled_rdevs[k];
4897 
4898 			if (__c_rdev == rdev) {
4899 				__c_desc->coupled_rdevs[k] = NULL;
4900 				__c_desc->n_resolved--;
4901 				break;
4902 			}
4903 		}
4904 
4905 		regulator_unlock(c_rdev);
4906 
4907 		c_desc->coupled_rdevs[i] = NULL;
4908 		c_desc->n_resolved--;
4909 	}
4910 
4911 	if (coupler && coupler->detach_regulator) {
4912 		err = coupler->detach_regulator(coupler, rdev);
4913 		if (err)
4914 			rdev_err(rdev, "failed to detach from coupler: %d\n",
4915 				 err);
4916 	}
4917 
4918 	kfree(rdev->coupling_desc.coupled_rdevs);
4919 	rdev->coupling_desc.coupled_rdevs = NULL;
4920 }
4921 
4922 static int regulator_init_coupling(struct regulator_dev *rdev)
4923 {
4924 	int err, n_phandles;
4925 	size_t alloc_size;
4926 
4927 	if (!IS_ENABLED(CONFIG_OF))
4928 		n_phandles = 0;
4929 	else
4930 		n_phandles = of_get_n_coupled(rdev);
4931 
4932 	alloc_size = sizeof(*rdev) * (n_phandles + 1);
4933 
4934 	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4935 	if (!rdev->coupling_desc.coupled_rdevs)
4936 		return -ENOMEM;
4937 
4938 	/*
4939 	 * Every regulator should always have coupling descriptor filled with
4940 	 * at least pointer to itself.
4941 	 */
4942 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4943 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4944 	rdev->coupling_desc.n_resolved++;
4945 
4946 	/* regulator isn't coupled */
4947 	if (n_phandles == 0)
4948 		return 0;
4949 
4950 	if (!of_check_coupling_data(rdev))
4951 		return -EPERM;
4952 
4953 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4954 	if (IS_ERR(rdev->coupling_desc.coupler)) {
4955 		err = PTR_ERR(rdev->coupling_desc.coupler);
4956 		rdev_err(rdev, "failed to get coupler: %d\n", err);
4957 		return err;
4958 	}
4959 
4960 	return 0;
4961 }
4962 
4963 static int generic_coupler_attach(struct regulator_coupler *coupler,
4964 				  struct regulator_dev *rdev)
4965 {
4966 	if (rdev->coupling_desc.n_coupled > 2) {
4967 		rdev_err(rdev,
4968 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4969 		return -EPERM;
4970 	}
4971 
4972 	if (!rdev->constraints->always_on) {
4973 		rdev_err(rdev,
4974 			 "Coupling of a non always-on regulator is unimplemented\n");
4975 		return -ENOTSUPP;
4976 	}
4977 
4978 	return 0;
4979 }
4980 
4981 static struct regulator_coupler generic_regulator_coupler = {
4982 	.attach_regulator = generic_coupler_attach,
4983 };
4984 
4985 /**
4986  * regulator_register - register regulator
4987  * @regulator_desc: regulator to register
4988  * @cfg: runtime configuration for regulator
4989  *
4990  * Called by regulator drivers to register a regulator.
4991  * Returns a valid pointer to struct regulator_dev on success
4992  * or an ERR_PTR() on error.
4993  */
4994 struct regulator_dev *
4995 regulator_register(const struct regulator_desc *regulator_desc,
4996 		   const struct regulator_config *cfg)
4997 {
4998 	const struct regulation_constraints *constraints = NULL;
4999 	const struct regulator_init_data *init_data;
5000 	struct regulator_config *config = NULL;
5001 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5002 	struct regulator_dev *rdev;
5003 	bool dangling_cfg_gpiod = false;
5004 	bool dangling_of_gpiod = false;
5005 	struct device *dev;
5006 	int ret, i;
5007 
5008 	if (cfg == NULL)
5009 		return ERR_PTR(-EINVAL);
5010 	if (cfg->ena_gpiod)
5011 		dangling_cfg_gpiod = true;
5012 	if (regulator_desc == NULL) {
5013 		ret = -EINVAL;
5014 		goto rinse;
5015 	}
5016 
5017 	dev = cfg->dev;
5018 	WARN_ON(!dev);
5019 
5020 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5021 		ret = -EINVAL;
5022 		goto rinse;
5023 	}
5024 
5025 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5026 	    regulator_desc->type != REGULATOR_CURRENT) {
5027 		ret = -EINVAL;
5028 		goto rinse;
5029 	}
5030 
5031 	/* Only one of each should be implemented */
5032 	WARN_ON(regulator_desc->ops->get_voltage &&
5033 		regulator_desc->ops->get_voltage_sel);
5034 	WARN_ON(regulator_desc->ops->set_voltage &&
5035 		regulator_desc->ops->set_voltage_sel);
5036 
5037 	/* If we're using selectors we must implement list_voltage. */
5038 	if (regulator_desc->ops->get_voltage_sel &&
5039 	    !regulator_desc->ops->list_voltage) {
5040 		ret = -EINVAL;
5041 		goto rinse;
5042 	}
5043 	if (regulator_desc->ops->set_voltage_sel &&
5044 	    !regulator_desc->ops->list_voltage) {
5045 		ret = -EINVAL;
5046 		goto rinse;
5047 	}
5048 
5049 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5050 	if (rdev == NULL) {
5051 		ret = -ENOMEM;
5052 		goto rinse;
5053 	}
5054 
5055 	/*
5056 	 * Duplicate the config so the driver could override it after
5057 	 * parsing init data.
5058 	 */
5059 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5060 	if (config == NULL) {
5061 		kfree(rdev);
5062 		ret = -ENOMEM;
5063 		goto rinse;
5064 	}
5065 
5066 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5067 					       &rdev->dev.of_node);
5068 
5069 	/*
5070 	 * Sometimes not all resources are probed already so we need to take
5071 	 * that into account. This happens most the time if the ena_gpiod comes
5072 	 * from a gpio extender or something else.
5073 	 */
5074 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5075 		kfree(config);
5076 		kfree(rdev);
5077 		ret = -EPROBE_DEFER;
5078 		goto rinse;
5079 	}
5080 
5081 	/*
5082 	 * We need to keep track of any GPIO descriptor coming from the
5083 	 * device tree until we have handled it over to the core. If the
5084 	 * config that was passed in to this function DOES NOT contain
5085 	 * a descriptor, and the config after this call DOES contain
5086 	 * a descriptor, we definitely got one from parsing the device
5087 	 * tree.
5088 	 */
5089 	if (!cfg->ena_gpiod && config->ena_gpiod)
5090 		dangling_of_gpiod = true;
5091 	if (!init_data) {
5092 		init_data = config->init_data;
5093 		rdev->dev.of_node = of_node_get(config->of_node);
5094 	}
5095 
5096 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5097 	rdev->reg_data = config->driver_data;
5098 	rdev->owner = regulator_desc->owner;
5099 	rdev->desc = regulator_desc;
5100 	if (config->regmap)
5101 		rdev->regmap = config->regmap;
5102 	else if (dev_get_regmap(dev, NULL))
5103 		rdev->regmap = dev_get_regmap(dev, NULL);
5104 	else if (dev->parent)
5105 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5106 	INIT_LIST_HEAD(&rdev->consumer_list);
5107 	INIT_LIST_HEAD(&rdev->list);
5108 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5109 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5110 
5111 	/* preform any regulator specific init */
5112 	if (init_data && init_data->regulator_init) {
5113 		ret = init_data->regulator_init(rdev->reg_data);
5114 		if (ret < 0)
5115 			goto clean;
5116 	}
5117 
5118 	if (config->ena_gpiod) {
5119 		mutex_lock(&regulator_list_mutex);
5120 		ret = regulator_ena_gpio_request(rdev, config);
5121 		mutex_unlock(&regulator_list_mutex);
5122 		if (ret != 0) {
5123 			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5124 				 ret);
5125 			goto clean;
5126 		}
5127 		/* The regulator core took over the GPIO descriptor */
5128 		dangling_cfg_gpiod = false;
5129 		dangling_of_gpiod = false;
5130 	}
5131 
5132 	/* register with sysfs */
5133 	rdev->dev.class = &regulator_class;
5134 	rdev->dev.parent = dev;
5135 	dev_set_name(&rdev->dev, "regulator.%lu",
5136 		    (unsigned long) atomic_inc_return(&regulator_no));
5137 
5138 	/* set regulator constraints */
5139 	if (init_data)
5140 		constraints = &init_data->constraints;
5141 
5142 	if (init_data && init_data->supply_regulator)
5143 		rdev->supply_name = init_data->supply_regulator;
5144 	else if (regulator_desc->supply_name)
5145 		rdev->supply_name = regulator_desc->supply_name;
5146 
5147 	/*
5148 	 * Attempt to resolve the regulator supply, if specified,
5149 	 * but don't return an error if we fail because we will try
5150 	 * to resolve it again later as more regulators are added.
5151 	 */
5152 	if (regulator_resolve_supply(rdev))
5153 		rdev_dbg(rdev, "unable to resolve supply\n");
5154 
5155 	ret = set_machine_constraints(rdev, constraints);
5156 	if (ret < 0)
5157 		goto wash;
5158 
5159 	mutex_lock(&regulator_list_mutex);
5160 	ret = regulator_init_coupling(rdev);
5161 	mutex_unlock(&regulator_list_mutex);
5162 	if (ret < 0)
5163 		goto wash;
5164 
5165 	/* add consumers devices */
5166 	if (init_data) {
5167 		mutex_lock(&regulator_list_mutex);
5168 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5169 			ret = set_consumer_device_supply(rdev,
5170 				init_data->consumer_supplies[i].dev_name,
5171 				init_data->consumer_supplies[i].supply);
5172 			if (ret < 0) {
5173 				mutex_unlock(&regulator_list_mutex);
5174 				dev_err(dev, "Failed to set supply %s\n",
5175 					init_data->consumer_supplies[i].supply);
5176 				goto unset_supplies;
5177 			}
5178 		}
5179 		mutex_unlock(&regulator_list_mutex);
5180 	}
5181 
5182 	if (!rdev->desc->ops->get_voltage &&
5183 	    !rdev->desc->ops->list_voltage &&
5184 	    !rdev->desc->fixed_uV)
5185 		rdev->is_switch = true;
5186 
5187 	dev_set_drvdata(&rdev->dev, rdev);
5188 	ret = device_register(&rdev->dev);
5189 	if (ret != 0) {
5190 		put_device(&rdev->dev);
5191 		goto unset_supplies;
5192 	}
5193 
5194 	rdev_init_debugfs(rdev);
5195 
5196 	/* try to resolve regulators coupling since a new one was registered */
5197 	mutex_lock(&regulator_list_mutex);
5198 	regulator_resolve_coupling(rdev);
5199 	mutex_unlock(&regulator_list_mutex);
5200 
5201 	/* try to resolve regulators supply since a new one was registered */
5202 	class_for_each_device(&regulator_class, NULL, NULL,
5203 			      regulator_register_resolve_supply);
5204 	kfree(config);
5205 	return rdev;
5206 
5207 unset_supplies:
5208 	mutex_lock(&regulator_list_mutex);
5209 	unset_regulator_supplies(rdev);
5210 	regulator_remove_coupling(rdev);
5211 	mutex_unlock(&regulator_list_mutex);
5212 wash:
5213 	kfree(rdev->coupling_desc.coupled_rdevs);
5214 	kfree(rdev->constraints);
5215 	mutex_lock(&regulator_list_mutex);
5216 	regulator_ena_gpio_free(rdev);
5217 	mutex_unlock(&regulator_list_mutex);
5218 clean:
5219 	if (dangling_of_gpiod)
5220 		gpiod_put(config->ena_gpiod);
5221 	kfree(rdev);
5222 	kfree(config);
5223 rinse:
5224 	if (dangling_cfg_gpiod)
5225 		gpiod_put(cfg->ena_gpiod);
5226 	return ERR_PTR(ret);
5227 }
5228 EXPORT_SYMBOL_GPL(regulator_register);
5229 
5230 /**
5231  * regulator_unregister - unregister regulator
5232  * @rdev: regulator to unregister
5233  *
5234  * Called by regulator drivers to unregister a regulator.
5235  */
5236 void regulator_unregister(struct regulator_dev *rdev)
5237 {
5238 	if (rdev == NULL)
5239 		return;
5240 
5241 	if (rdev->supply) {
5242 		while (rdev->use_count--)
5243 			regulator_disable(rdev->supply);
5244 		regulator_put(rdev->supply);
5245 	}
5246 
5247 	flush_work(&rdev->disable_work.work);
5248 
5249 	mutex_lock(&regulator_list_mutex);
5250 
5251 	debugfs_remove_recursive(rdev->debugfs);
5252 	WARN_ON(rdev->open_count);
5253 	regulator_remove_coupling(rdev);
5254 	unset_regulator_supplies(rdev);
5255 	list_del(&rdev->list);
5256 	regulator_ena_gpio_free(rdev);
5257 	device_unregister(&rdev->dev);
5258 
5259 	mutex_unlock(&regulator_list_mutex);
5260 }
5261 EXPORT_SYMBOL_GPL(regulator_unregister);
5262 
5263 #ifdef CONFIG_SUSPEND
5264 /**
5265  * regulator_suspend - prepare regulators for system wide suspend
5266  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5267  *
5268  * Configure each regulator with it's suspend operating parameters for state.
5269  */
5270 static int regulator_suspend(struct device *dev)
5271 {
5272 	struct regulator_dev *rdev = dev_to_rdev(dev);
5273 	suspend_state_t state = pm_suspend_target_state;
5274 	int ret;
5275 
5276 	regulator_lock(rdev);
5277 	ret = suspend_set_state(rdev, state);
5278 	regulator_unlock(rdev);
5279 
5280 	return ret;
5281 }
5282 
5283 static int regulator_resume(struct device *dev)
5284 {
5285 	suspend_state_t state = pm_suspend_target_state;
5286 	struct regulator_dev *rdev = dev_to_rdev(dev);
5287 	struct regulator_state *rstate;
5288 	int ret = 0;
5289 
5290 	rstate = regulator_get_suspend_state(rdev, state);
5291 	if (rstate == NULL)
5292 		return 0;
5293 
5294 	regulator_lock(rdev);
5295 
5296 	if (rdev->desc->ops->resume &&
5297 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5298 	     rstate->enabled == DISABLE_IN_SUSPEND))
5299 		ret = rdev->desc->ops->resume(rdev);
5300 
5301 	regulator_unlock(rdev);
5302 
5303 	return ret;
5304 }
5305 #else /* !CONFIG_SUSPEND */
5306 
5307 #define regulator_suspend	NULL
5308 #define regulator_resume	NULL
5309 
5310 #endif /* !CONFIG_SUSPEND */
5311 
5312 #ifdef CONFIG_PM
5313 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5314 	.suspend	= regulator_suspend,
5315 	.resume		= regulator_resume,
5316 };
5317 #endif
5318 
5319 struct class regulator_class = {
5320 	.name = "regulator",
5321 	.dev_release = regulator_dev_release,
5322 	.dev_groups = regulator_dev_groups,
5323 #ifdef CONFIG_PM
5324 	.pm = &regulator_pm_ops,
5325 #endif
5326 };
5327 /**
5328  * regulator_has_full_constraints - the system has fully specified constraints
5329  *
5330  * Calling this function will cause the regulator API to disable all
5331  * regulators which have a zero use count and don't have an always_on
5332  * constraint in a late_initcall.
5333  *
5334  * The intention is that this will become the default behaviour in a
5335  * future kernel release so users are encouraged to use this facility
5336  * now.
5337  */
5338 void regulator_has_full_constraints(void)
5339 {
5340 	has_full_constraints = 1;
5341 }
5342 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5343 
5344 /**
5345  * rdev_get_drvdata - get rdev regulator driver data
5346  * @rdev: regulator
5347  *
5348  * Get rdev regulator driver private data. This call can be used in the
5349  * regulator driver context.
5350  */
5351 void *rdev_get_drvdata(struct regulator_dev *rdev)
5352 {
5353 	return rdev->reg_data;
5354 }
5355 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5356 
5357 /**
5358  * regulator_get_drvdata - get regulator driver data
5359  * @regulator: regulator
5360  *
5361  * Get regulator driver private data. This call can be used in the consumer
5362  * driver context when non API regulator specific functions need to be called.
5363  */
5364 void *regulator_get_drvdata(struct regulator *regulator)
5365 {
5366 	return regulator->rdev->reg_data;
5367 }
5368 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5369 
5370 /**
5371  * regulator_set_drvdata - set regulator driver data
5372  * @regulator: regulator
5373  * @data: data
5374  */
5375 void regulator_set_drvdata(struct regulator *regulator, void *data)
5376 {
5377 	regulator->rdev->reg_data = data;
5378 }
5379 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5380 
5381 /**
5382  * regulator_get_id - get regulator ID
5383  * @rdev: regulator
5384  */
5385 int rdev_get_id(struct regulator_dev *rdev)
5386 {
5387 	return rdev->desc->id;
5388 }
5389 EXPORT_SYMBOL_GPL(rdev_get_id);
5390 
5391 struct device *rdev_get_dev(struct regulator_dev *rdev)
5392 {
5393 	return &rdev->dev;
5394 }
5395 EXPORT_SYMBOL_GPL(rdev_get_dev);
5396 
5397 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5398 {
5399 	return rdev->regmap;
5400 }
5401 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5402 
5403 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5404 {
5405 	return reg_init_data->driver_data;
5406 }
5407 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5408 
5409 #ifdef CONFIG_DEBUG_FS
5410 static int supply_map_show(struct seq_file *sf, void *data)
5411 {
5412 	struct regulator_map *map;
5413 
5414 	list_for_each_entry(map, &regulator_map_list, list) {
5415 		seq_printf(sf, "%s -> %s.%s\n",
5416 				rdev_get_name(map->regulator), map->dev_name,
5417 				map->supply);
5418 	}
5419 
5420 	return 0;
5421 }
5422 DEFINE_SHOW_ATTRIBUTE(supply_map);
5423 
5424 struct summary_data {
5425 	struct seq_file *s;
5426 	struct regulator_dev *parent;
5427 	int level;
5428 };
5429 
5430 static void regulator_summary_show_subtree(struct seq_file *s,
5431 					   struct regulator_dev *rdev,
5432 					   int level);
5433 
5434 static int regulator_summary_show_children(struct device *dev, void *data)
5435 {
5436 	struct regulator_dev *rdev = dev_to_rdev(dev);
5437 	struct summary_data *summary_data = data;
5438 
5439 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5440 		regulator_summary_show_subtree(summary_data->s, rdev,
5441 					       summary_data->level + 1);
5442 
5443 	return 0;
5444 }
5445 
5446 static void regulator_summary_show_subtree(struct seq_file *s,
5447 					   struct regulator_dev *rdev,
5448 					   int level)
5449 {
5450 	struct regulation_constraints *c;
5451 	struct regulator *consumer;
5452 	struct summary_data summary_data;
5453 	unsigned int opmode;
5454 
5455 	if (!rdev)
5456 		return;
5457 
5458 	opmode = _regulator_get_mode_unlocked(rdev);
5459 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5460 		   level * 3 + 1, "",
5461 		   30 - level * 3, rdev_get_name(rdev),
5462 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5463 		   regulator_opmode_to_str(opmode));
5464 
5465 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5466 	seq_printf(s, "%5dmA ",
5467 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5468 
5469 	c = rdev->constraints;
5470 	if (c) {
5471 		switch (rdev->desc->type) {
5472 		case REGULATOR_VOLTAGE:
5473 			seq_printf(s, "%5dmV %5dmV ",
5474 				   c->min_uV / 1000, c->max_uV / 1000);
5475 			break;
5476 		case REGULATOR_CURRENT:
5477 			seq_printf(s, "%5dmA %5dmA ",
5478 				   c->min_uA / 1000, c->max_uA / 1000);
5479 			break;
5480 		}
5481 	}
5482 
5483 	seq_puts(s, "\n");
5484 
5485 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5486 		if (consumer->dev && consumer->dev->class == &regulator_class)
5487 			continue;
5488 
5489 		seq_printf(s, "%*s%-*s ",
5490 			   (level + 1) * 3 + 1, "",
5491 			   30 - (level + 1) * 3,
5492 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5493 
5494 		switch (rdev->desc->type) {
5495 		case REGULATOR_VOLTAGE:
5496 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5497 				   consumer->enable_count,
5498 				   consumer->uA_load / 1000,
5499 				   consumer->uA_load && !consumer->enable_count ?
5500 				   '*' : ' ',
5501 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5502 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5503 			break;
5504 		case REGULATOR_CURRENT:
5505 			break;
5506 		}
5507 
5508 		seq_puts(s, "\n");
5509 	}
5510 
5511 	summary_data.s = s;
5512 	summary_data.level = level;
5513 	summary_data.parent = rdev;
5514 
5515 	class_for_each_device(&regulator_class, NULL, &summary_data,
5516 			      regulator_summary_show_children);
5517 }
5518 
5519 struct summary_lock_data {
5520 	struct ww_acquire_ctx *ww_ctx;
5521 	struct regulator_dev **new_contended_rdev;
5522 	struct regulator_dev **old_contended_rdev;
5523 };
5524 
5525 static int regulator_summary_lock_one(struct device *dev, void *data)
5526 {
5527 	struct regulator_dev *rdev = dev_to_rdev(dev);
5528 	struct summary_lock_data *lock_data = data;
5529 	int ret = 0;
5530 
5531 	if (rdev != *lock_data->old_contended_rdev) {
5532 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5533 
5534 		if (ret == -EDEADLK)
5535 			*lock_data->new_contended_rdev = rdev;
5536 		else
5537 			WARN_ON_ONCE(ret);
5538 	} else {
5539 		*lock_data->old_contended_rdev = NULL;
5540 	}
5541 
5542 	return ret;
5543 }
5544 
5545 static int regulator_summary_unlock_one(struct device *dev, void *data)
5546 {
5547 	struct regulator_dev *rdev = dev_to_rdev(dev);
5548 	struct summary_lock_data *lock_data = data;
5549 
5550 	if (lock_data) {
5551 		if (rdev == *lock_data->new_contended_rdev)
5552 			return -EDEADLK;
5553 	}
5554 
5555 	regulator_unlock(rdev);
5556 
5557 	return 0;
5558 }
5559 
5560 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5561 				      struct regulator_dev **new_contended_rdev,
5562 				      struct regulator_dev **old_contended_rdev)
5563 {
5564 	struct summary_lock_data lock_data;
5565 	int ret;
5566 
5567 	lock_data.ww_ctx = ww_ctx;
5568 	lock_data.new_contended_rdev = new_contended_rdev;
5569 	lock_data.old_contended_rdev = old_contended_rdev;
5570 
5571 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5572 				    regulator_summary_lock_one);
5573 	if (ret)
5574 		class_for_each_device(&regulator_class, NULL, &lock_data,
5575 				      regulator_summary_unlock_one);
5576 
5577 	return ret;
5578 }
5579 
5580 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5581 {
5582 	struct regulator_dev *new_contended_rdev = NULL;
5583 	struct regulator_dev *old_contended_rdev = NULL;
5584 	int err;
5585 
5586 	mutex_lock(&regulator_list_mutex);
5587 
5588 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5589 
5590 	do {
5591 		if (new_contended_rdev) {
5592 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5593 			old_contended_rdev = new_contended_rdev;
5594 			old_contended_rdev->ref_cnt++;
5595 		}
5596 
5597 		err = regulator_summary_lock_all(ww_ctx,
5598 						 &new_contended_rdev,
5599 						 &old_contended_rdev);
5600 
5601 		if (old_contended_rdev)
5602 			regulator_unlock(old_contended_rdev);
5603 
5604 	} while (err == -EDEADLK);
5605 
5606 	ww_acquire_done(ww_ctx);
5607 }
5608 
5609 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5610 {
5611 	class_for_each_device(&regulator_class, NULL, NULL,
5612 			      regulator_summary_unlock_one);
5613 	ww_acquire_fini(ww_ctx);
5614 
5615 	mutex_unlock(&regulator_list_mutex);
5616 }
5617 
5618 static int regulator_summary_show_roots(struct device *dev, void *data)
5619 {
5620 	struct regulator_dev *rdev = dev_to_rdev(dev);
5621 	struct seq_file *s = data;
5622 
5623 	if (!rdev->supply)
5624 		regulator_summary_show_subtree(s, rdev, 0);
5625 
5626 	return 0;
5627 }
5628 
5629 static int regulator_summary_show(struct seq_file *s, void *data)
5630 {
5631 	struct ww_acquire_ctx ww_ctx;
5632 
5633 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5634 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5635 
5636 	regulator_summary_lock(&ww_ctx);
5637 
5638 	class_for_each_device(&regulator_class, NULL, s,
5639 			      regulator_summary_show_roots);
5640 
5641 	regulator_summary_unlock(&ww_ctx);
5642 
5643 	return 0;
5644 }
5645 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5646 #endif /* CONFIG_DEBUG_FS */
5647 
5648 static int __init regulator_init(void)
5649 {
5650 	int ret;
5651 
5652 	ret = class_register(&regulator_class);
5653 
5654 	debugfs_root = debugfs_create_dir("regulator", NULL);
5655 	if (!debugfs_root)
5656 		pr_warn("regulator: Failed to create debugfs directory\n");
5657 
5658 #ifdef CONFIG_DEBUG_FS
5659 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5660 			    &supply_map_fops);
5661 
5662 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5663 			    NULL, &regulator_summary_fops);
5664 #endif
5665 	regulator_dummy_init();
5666 
5667 	regulator_coupler_register(&generic_regulator_coupler);
5668 
5669 	return ret;
5670 }
5671 
5672 /* init early to allow our consumers to complete system booting */
5673 core_initcall(regulator_init);
5674 
5675 static int regulator_late_cleanup(struct device *dev, void *data)
5676 {
5677 	struct regulator_dev *rdev = dev_to_rdev(dev);
5678 	const struct regulator_ops *ops = rdev->desc->ops;
5679 	struct regulation_constraints *c = rdev->constraints;
5680 	int enabled, ret;
5681 
5682 	if (c && c->always_on)
5683 		return 0;
5684 
5685 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5686 		return 0;
5687 
5688 	regulator_lock(rdev);
5689 
5690 	if (rdev->use_count)
5691 		goto unlock;
5692 
5693 	/* If we can't read the status assume it's on. */
5694 	if (ops->is_enabled)
5695 		enabled = ops->is_enabled(rdev);
5696 	else
5697 		enabled = 1;
5698 
5699 	if (!enabled)
5700 		goto unlock;
5701 
5702 	if (have_full_constraints()) {
5703 		/* We log since this may kill the system if it goes
5704 		 * wrong. */
5705 		rdev_info(rdev, "disabling\n");
5706 		ret = _regulator_do_disable(rdev);
5707 		if (ret != 0)
5708 			rdev_err(rdev, "couldn't disable: %d\n", ret);
5709 	} else {
5710 		/* The intention is that in future we will
5711 		 * assume that full constraints are provided
5712 		 * so warn even if we aren't going to do
5713 		 * anything here.
5714 		 */
5715 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5716 	}
5717 
5718 unlock:
5719 	regulator_unlock(rdev);
5720 
5721 	return 0;
5722 }
5723 
5724 static void regulator_init_complete_work_function(struct work_struct *work)
5725 {
5726 	/*
5727 	 * Regulators may had failed to resolve their input supplies
5728 	 * when were registered, either because the input supply was
5729 	 * not registered yet or because its parent device was not
5730 	 * bound yet. So attempt to resolve the input supplies for
5731 	 * pending regulators before trying to disable unused ones.
5732 	 */
5733 	class_for_each_device(&regulator_class, NULL, NULL,
5734 			      regulator_register_resolve_supply);
5735 
5736 	/* If we have a full configuration then disable any regulators
5737 	 * we have permission to change the status for and which are
5738 	 * not in use or always_on.  This is effectively the default
5739 	 * for DT and ACPI as they have full constraints.
5740 	 */
5741 	class_for_each_device(&regulator_class, NULL, NULL,
5742 			      regulator_late_cleanup);
5743 }
5744 
5745 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5746 			    regulator_init_complete_work_function);
5747 
5748 static int __init regulator_init_complete(void)
5749 {
5750 	/*
5751 	 * Since DT doesn't provide an idiomatic mechanism for
5752 	 * enabling full constraints and since it's much more natural
5753 	 * with DT to provide them just assume that a DT enabled
5754 	 * system has full constraints.
5755 	 */
5756 	if (of_have_populated_dt())
5757 		has_full_constraints = true;
5758 
5759 	/*
5760 	 * We punt completion for an arbitrary amount of time since
5761 	 * systems like distros will load many drivers from userspace
5762 	 * so consumers might not always be ready yet, this is
5763 	 * particularly an issue with laptops where this might bounce
5764 	 * the display off then on.  Ideally we'd get a notification
5765 	 * from userspace when this happens but we don't so just wait
5766 	 * a bit and hope we waited long enough.  It'd be better if
5767 	 * we'd only do this on systems that need it, and a kernel
5768 	 * command line option might be useful.
5769 	 */
5770 	schedule_delayed_work(&regulator_init_complete_work,
5771 			      msecs_to_jiffies(30000));
5772 
5773 	return 0;
5774 }
5775 late_initcall_sync(regulator_init_complete);
5776