1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // 3 // core.c -- Voltage/Current Regulator framework. 4 // 5 // Copyright 2007, 2008 Wolfson Microelectronics PLC. 6 // Copyright 2008 SlimLogic Ltd. 7 // 8 // Author: Liam Girdwood <lrg@slimlogic.co.uk> 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/debugfs.h> 13 #include <linux/device.h> 14 #include <linux/slab.h> 15 #include <linux/async.h> 16 #include <linux/err.h> 17 #include <linux/mutex.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/of.h> 22 #include <linux/regmap.h> 23 #include <linux/regulator/of_regulator.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/regulator/coupler.h> 26 #include <linux/regulator/driver.h> 27 #include <linux/regulator/machine.h> 28 #include <linux/module.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/regulator.h> 32 33 #include "dummy.h" 34 #include "internal.h" 35 36 static DEFINE_WW_CLASS(regulator_ww_class); 37 static DEFINE_MUTEX(regulator_nesting_mutex); 38 static DEFINE_MUTEX(regulator_list_mutex); 39 static LIST_HEAD(regulator_map_list); 40 static LIST_HEAD(regulator_ena_gpio_list); 41 static LIST_HEAD(regulator_supply_alias_list); 42 static LIST_HEAD(regulator_coupler_list); 43 static bool has_full_constraints; 44 45 static struct dentry *debugfs_root; 46 47 /* 48 * struct regulator_map 49 * 50 * Used to provide symbolic supply names to devices. 51 */ 52 struct regulator_map { 53 struct list_head list; 54 const char *dev_name; /* The dev_name() for the consumer */ 55 const char *supply; 56 struct regulator_dev *regulator; 57 }; 58 59 /* 60 * struct regulator_enable_gpio 61 * 62 * Management for shared enable GPIO pin 63 */ 64 struct regulator_enable_gpio { 65 struct list_head list; 66 struct gpio_desc *gpiod; 67 u32 enable_count; /* a number of enabled shared GPIO */ 68 u32 request_count; /* a number of requested shared GPIO */ 69 }; 70 71 /* 72 * struct regulator_supply_alias 73 * 74 * Used to map lookups for a supply onto an alternative device. 75 */ 76 struct regulator_supply_alias { 77 struct list_head list; 78 struct device *src_dev; 79 const char *src_supply; 80 struct device *alias_dev; 81 const char *alias_supply; 82 }; 83 84 static int _regulator_is_enabled(struct regulator_dev *rdev); 85 static int _regulator_disable(struct regulator *regulator); 86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); 87 static int _regulator_get_current_limit(struct regulator_dev *rdev); 88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 89 static int _notifier_call_chain(struct regulator_dev *rdev, 90 unsigned long event, void *data); 91 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 92 int min_uV, int max_uV); 93 static int regulator_balance_voltage(struct regulator_dev *rdev, 94 suspend_state_t state); 95 static struct regulator *create_regulator(struct regulator_dev *rdev, 96 struct device *dev, 97 const char *supply_name); 98 static void destroy_regulator(struct regulator *regulator); 99 static void _regulator_put(struct regulator *regulator); 100 101 const char *rdev_get_name(struct regulator_dev *rdev) 102 { 103 if (rdev->constraints && rdev->constraints->name) 104 return rdev->constraints->name; 105 else if (rdev->desc->name) 106 return rdev->desc->name; 107 else 108 return ""; 109 } 110 EXPORT_SYMBOL_GPL(rdev_get_name); 111 112 static bool have_full_constraints(void) 113 { 114 return has_full_constraints || of_have_populated_dt(); 115 } 116 117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) 118 { 119 if (!rdev->constraints) { 120 rdev_err(rdev, "no constraints\n"); 121 return false; 122 } 123 124 if (rdev->constraints->valid_ops_mask & ops) 125 return true; 126 127 return false; 128 } 129 130 /** 131 * regulator_lock_nested - lock a single regulator 132 * @rdev: regulator source 133 * @ww_ctx: w/w mutex acquire context 134 * 135 * This function can be called many times by one task on 136 * a single regulator and its mutex will be locked only 137 * once. If a task, which is calling this function is other 138 * than the one, which initially locked the mutex, it will 139 * wait on mutex. 140 */ 141 static inline int regulator_lock_nested(struct regulator_dev *rdev, 142 struct ww_acquire_ctx *ww_ctx) 143 { 144 bool lock = false; 145 int ret = 0; 146 147 mutex_lock(®ulator_nesting_mutex); 148 149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { 150 if (rdev->mutex_owner == current) 151 rdev->ref_cnt++; 152 else 153 lock = true; 154 155 if (lock) { 156 mutex_unlock(®ulator_nesting_mutex); 157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx); 158 mutex_lock(®ulator_nesting_mutex); 159 } 160 } else { 161 lock = true; 162 } 163 164 if (lock && ret != -EDEADLK) { 165 rdev->ref_cnt++; 166 rdev->mutex_owner = current; 167 } 168 169 mutex_unlock(®ulator_nesting_mutex); 170 171 return ret; 172 } 173 174 /** 175 * regulator_lock - lock a single regulator 176 * @rdev: regulator source 177 * 178 * This function can be called many times by one task on 179 * a single regulator and its mutex will be locked only 180 * once. If a task, which is calling this function is other 181 * than the one, which initially locked the mutex, it will 182 * wait on mutex. 183 */ 184 static void regulator_lock(struct regulator_dev *rdev) 185 { 186 regulator_lock_nested(rdev, NULL); 187 } 188 189 /** 190 * regulator_unlock - unlock a single regulator 191 * @rdev: regulator_source 192 * 193 * This function unlocks the mutex when the 194 * reference counter reaches 0. 195 */ 196 static void regulator_unlock(struct regulator_dev *rdev) 197 { 198 mutex_lock(®ulator_nesting_mutex); 199 200 if (--rdev->ref_cnt == 0) { 201 rdev->mutex_owner = NULL; 202 ww_mutex_unlock(&rdev->mutex); 203 } 204 205 WARN_ON_ONCE(rdev->ref_cnt < 0); 206 207 mutex_unlock(®ulator_nesting_mutex); 208 } 209 210 /** 211 * regulator_lock_two - lock two regulators 212 * @rdev1: first regulator 213 * @rdev2: second regulator 214 * @ww_ctx: w/w mutex acquire context 215 * 216 * Locks both rdevs using the regulator_ww_class. 217 */ 218 static void regulator_lock_two(struct regulator_dev *rdev1, 219 struct regulator_dev *rdev2, 220 struct ww_acquire_ctx *ww_ctx) 221 { 222 struct regulator_dev *held, *contended; 223 int ret; 224 225 ww_acquire_init(ww_ctx, ®ulator_ww_class); 226 227 /* Try to just grab both of them */ 228 ret = regulator_lock_nested(rdev1, ww_ctx); 229 WARN_ON(ret); 230 ret = regulator_lock_nested(rdev2, ww_ctx); 231 if (ret != -EDEADLOCK) { 232 WARN_ON(ret); 233 goto exit; 234 } 235 236 held = rdev1; 237 contended = rdev2; 238 while (true) { 239 regulator_unlock(held); 240 241 ww_mutex_lock_slow(&contended->mutex, ww_ctx); 242 contended->ref_cnt++; 243 contended->mutex_owner = current; 244 swap(held, contended); 245 ret = regulator_lock_nested(contended, ww_ctx); 246 247 if (ret != -EDEADLOCK) { 248 WARN_ON(ret); 249 break; 250 } 251 } 252 253 exit: 254 ww_acquire_done(ww_ctx); 255 } 256 257 /** 258 * regulator_unlock_two - unlock two regulators 259 * @rdev1: first regulator 260 * @rdev2: second regulator 261 * @ww_ctx: w/w mutex acquire context 262 * 263 * The inverse of regulator_lock_two(). 264 */ 265 266 static void regulator_unlock_two(struct regulator_dev *rdev1, 267 struct regulator_dev *rdev2, 268 struct ww_acquire_ctx *ww_ctx) 269 { 270 regulator_unlock(rdev2); 271 regulator_unlock(rdev1); 272 ww_acquire_fini(ww_ctx); 273 } 274 275 static bool regulator_supply_is_couple(struct regulator_dev *rdev) 276 { 277 struct regulator_dev *c_rdev; 278 int i; 279 280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { 281 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 282 283 if (rdev->supply->rdev == c_rdev) 284 return true; 285 } 286 287 return false; 288 } 289 290 static void regulator_unlock_recursive(struct regulator_dev *rdev, 291 unsigned int n_coupled) 292 { 293 struct regulator_dev *c_rdev, *supply_rdev; 294 int i, supply_n_coupled; 295 296 for (i = n_coupled; i > 0; i--) { 297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; 298 299 if (!c_rdev) 300 continue; 301 302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 303 supply_rdev = c_rdev->supply->rdev; 304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled; 305 306 regulator_unlock_recursive(supply_rdev, 307 supply_n_coupled); 308 } 309 310 regulator_unlock(c_rdev); 311 } 312 } 313 314 static int regulator_lock_recursive(struct regulator_dev *rdev, 315 struct regulator_dev **new_contended_rdev, 316 struct regulator_dev **old_contended_rdev, 317 struct ww_acquire_ctx *ww_ctx) 318 { 319 struct regulator_dev *c_rdev; 320 int i, err; 321 322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { 323 c_rdev = rdev->coupling_desc.coupled_rdevs[i]; 324 325 if (!c_rdev) 326 continue; 327 328 if (c_rdev != *old_contended_rdev) { 329 err = regulator_lock_nested(c_rdev, ww_ctx); 330 if (err) { 331 if (err == -EDEADLK) { 332 *new_contended_rdev = c_rdev; 333 goto err_unlock; 334 } 335 336 /* shouldn't happen */ 337 WARN_ON_ONCE(err != -EALREADY); 338 } 339 } else { 340 *old_contended_rdev = NULL; 341 } 342 343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { 344 err = regulator_lock_recursive(c_rdev->supply->rdev, 345 new_contended_rdev, 346 old_contended_rdev, 347 ww_ctx); 348 if (err) { 349 regulator_unlock(c_rdev); 350 goto err_unlock; 351 } 352 } 353 } 354 355 return 0; 356 357 err_unlock: 358 regulator_unlock_recursive(rdev, i); 359 360 return err; 361 } 362 363 /** 364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled 365 * regulators 366 * @rdev: regulator source 367 * @ww_ctx: w/w mutex acquire context 368 * 369 * Unlock all regulators related with rdev by coupling or supplying. 370 */ 371 static void regulator_unlock_dependent(struct regulator_dev *rdev, 372 struct ww_acquire_ctx *ww_ctx) 373 { 374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); 375 ww_acquire_fini(ww_ctx); 376 } 377 378 /** 379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators 380 * @rdev: regulator source 381 * @ww_ctx: w/w mutex acquire context 382 * 383 * This function as a wrapper on regulator_lock_recursive(), which locks 384 * all regulators related with rdev by coupling or supplying. 385 */ 386 static void regulator_lock_dependent(struct regulator_dev *rdev, 387 struct ww_acquire_ctx *ww_ctx) 388 { 389 struct regulator_dev *new_contended_rdev = NULL; 390 struct regulator_dev *old_contended_rdev = NULL; 391 int err; 392 393 mutex_lock(®ulator_list_mutex); 394 395 ww_acquire_init(ww_ctx, ®ulator_ww_class); 396 397 do { 398 if (new_contended_rdev) { 399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 400 old_contended_rdev = new_contended_rdev; 401 old_contended_rdev->ref_cnt++; 402 old_contended_rdev->mutex_owner = current; 403 } 404 405 err = regulator_lock_recursive(rdev, 406 &new_contended_rdev, 407 &old_contended_rdev, 408 ww_ctx); 409 410 if (old_contended_rdev) 411 regulator_unlock(old_contended_rdev); 412 413 } while (err == -EDEADLK); 414 415 ww_acquire_done(ww_ctx); 416 417 mutex_unlock(®ulator_list_mutex); 418 } 419 420 /** 421 * of_get_child_regulator - get a child regulator device node 422 * based on supply name 423 * @parent: Parent device node 424 * @prop_name: Combination regulator supply name and "-supply" 425 * 426 * Traverse all child nodes. 427 * Extract the child regulator device node corresponding to the supply name. 428 * returns the device node corresponding to the regulator if found, else 429 * returns NULL. 430 */ 431 static struct device_node *of_get_child_regulator(struct device_node *parent, 432 const char *prop_name) 433 { 434 struct device_node *regnode = NULL; 435 struct device_node *child = NULL; 436 437 for_each_child_of_node(parent, child) { 438 regnode = of_parse_phandle(child, prop_name, 0); 439 440 if (!regnode) { 441 regnode = of_get_child_regulator(child, prop_name); 442 if (regnode) 443 goto err_node_put; 444 } else { 445 goto err_node_put; 446 } 447 } 448 return NULL; 449 450 err_node_put: 451 of_node_put(child); 452 return regnode; 453 } 454 455 /** 456 * of_get_regulator - get a regulator device node based on supply name 457 * @dev: Device pointer for the consumer (of regulator) device 458 * @supply: regulator supply name 459 * 460 * Extract the regulator device node corresponding to the supply name. 461 * returns the device node corresponding to the regulator if found, else 462 * returns NULL. 463 */ 464 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 465 { 466 struct device_node *regnode = NULL; 467 char prop_name[64]; /* 64 is max size of property name */ 468 469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 470 471 snprintf(prop_name, 64, "%s-supply", supply); 472 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 473 474 if (!regnode) { 475 regnode = of_get_child_regulator(dev->of_node, prop_name); 476 if (regnode) 477 return regnode; 478 479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n", 480 prop_name, dev->of_node); 481 return NULL; 482 } 483 return regnode; 484 } 485 486 /* Platform voltage constraint check */ 487 int regulator_check_voltage(struct regulator_dev *rdev, 488 int *min_uV, int *max_uV) 489 { 490 BUG_ON(*min_uV > *max_uV); 491 492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 493 rdev_err(rdev, "voltage operation not allowed\n"); 494 return -EPERM; 495 } 496 497 if (*max_uV > rdev->constraints->max_uV) 498 *max_uV = rdev->constraints->max_uV; 499 if (*min_uV < rdev->constraints->min_uV) 500 *min_uV = rdev->constraints->min_uV; 501 502 if (*min_uV > *max_uV) { 503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 504 *min_uV, *max_uV); 505 return -EINVAL; 506 } 507 508 return 0; 509 } 510 511 /* return 0 if the state is valid */ 512 static int regulator_check_states(suspend_state_t state) 513 { 514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); 515 } 516 517 /* Make sure we select a voltage that suits the needs of all 518 * regulator consumers 519 */ 520 int regulator_check_consumers(struct regulator_dev *rdev, 521 int *min_uV, int *max_uV, 522 suspend_state_t state) 523 { 524 struct regulator *regulator; 525 struct regulator_voltage *voltage; 526 527 list_for_each_entry(regulator, &rdev->consumer_list, list) { 528 voltage = ®ulator->voltage[state]; 529 /* 530 * Assume consumers that didn't say anything are OK 531 * with anything in the constraint range. 532 */ 533 if (!voltage->min_uV && !voltage->max_uV) 534 continue; 535 536 if (*max_uV > voltage->max_uV) 537 *max_uV = voltage->max_uV; 538 if (*min_uV < voltage->min_uV) 539 *min_uV = voltage->min_uV; 540 } 541 542 if (*min_uV > *max_uV) { 543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 544 *min_uV, *max_uV); 545 return -EINVAL; 546 } 547 548 return 0; 549 } 550 551 /* current constraint check */ 552 static int regulator_check_current_limit(struct regulator_dev *rdev, 553 int *min_uA, int *max_uA) 554 { 555 BUG_ON(*min_uA > *max_uA); 556 557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { 558 rdev_err(rdev, "current operation not allowed\n"); 559 return -EPERM; 560 } 561 562 if (*max_uA > rdev->constraints->max_uA) 563 *max_uA = rdev->constraints->max_uA; 564 if (*min_uA < rdev->constraints->min_uA) 565 *min_uA = rdev->constraints->min_uA; 566 567 if (*min_uA > *max_uA) { 568 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 569 *min_uA, *max_uA); 570 return -EINVAL; 571 } 572 573 return 0; 574 } 575 576 /* operating mode constraint check */ 577 static int regulator_mode_constrain(struct regulator_dev *rdev, 578 unsigned int *mode) 579 { 580 switch (*mode) { 581 case REGULATOR_MODE_FAST: 582 case REGULATOR_MODE_NORMAL: 583 case REGULATOR_MODE_IDLE: 584 case REGULATOR_MODE_STANDBY: 585 break; 586 default: 587 rdev_err(rdev, "invalid mode %x specified\n", *mode); 588 return -EINVAL; 589 } 590 591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { 592 rdev_err(rdev, "mode operation not allowed\n"); 593 return -EPERM; 594 } 595 596 /* The modes are bitmasks, the most power hungry modes having 597 * the lowest values. If the requested mode isn't supported 598 * try higher modes. 599 */ 600 while (*mode) { 601 if (rdev->constraints->valid_modes_mask & *mode) 602 return 0; 603 *mode /= 2; 604 } 605 606 return -EINVAL; 607 } 608 609 static inline struct regulator_state * 610 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) 611 { 612 if (rdev->constraints == NULL) 613 return NULL; 614 615 switch (state) { 616 case PM_SUSPEND_STANDBY: 617 return &rdev->constraints->state_standby; 618 case PM_SUSPEND_MEM: 619 return &rdev->constraints->state_mem; 620 case PM_SUSPEND_MAX: 621 return &rdev->constraints->state_disk; 622 default: 623 return NULL; 624 } 625 } 626 627 static const struct regulator_state * 628 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) 629 { 630 const struct regulator_state *rstate; 631 632 rstate = regulator_get_suspend_state(rdev, state); 633 if (rstate == NULL) 634 return NULL; 635 636 /* If we have no suspend mode configuration don't set anything; 637 * only warn if the driver implements set_suspend_voltage or 638 * set_suspend_mode callback. 639 */ 640 if (rstate->enabled != ENABLE_IN_SUSPEND && 641 rstate->enabled != DISABLE_IN_SUSPEND) { 642 if (rdev->desc->ops->set_suspend_voltage || 643 rdev->desc->ops->set_suspend_mode) 644 rdev_warn(rdev, "No configuration\n"); 645 return NULL; 646 } 647 648 return rstate; 649 } 650 651 static ssize_t microvolts_show(struct device *dev, 652 struct device_attribute *attr, char *buf) 653 { 654 struct regulator_dev *rdev = dev_get_drvdata(dev); 655 int uV; 656 657 regulator_lock(rdev); 658 uV = regulator_get_voltage_rdev(rdev); 659 regulator_unlock(rdev); 660 661 if (uV < 0) 662 return uV; 663 return sprintf(buf, "%d\n", uV); 664 } 665 static DEVICE_ATTR_RO(microvolts); 666 667 static ssize_t microamps_show(struct device *dev, 668 struct device_attribute *attr, char *buf) 669 { 670 struct regulator_dev *rdev = dev_get_drvdata(dev); 671 672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 673 } 674 static DEVICE_ATTR_RO(microamps); 675 676 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 677 char *buf) 678 { 679 struct regulator_dev *rdev = dev_get_drvdata(dev); 680 681 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 682 } 683 static DEVICE_ATTR_RO(name); 684 685 static const char *regulator_opmode_to_str(int mode) 686 { 687 switch (mode) { 688 case REGULATOR_MODE_FAST: 689 return "fast"; 690 case REGULATOR_MODE_NORMAL: 691 return "normal"; 692 case REGULATOR_MODE_IDLE: 693 return "idle"; 694 case REGULATOR_MODE_STANDBY: 695 return "standby"; 696 } 697 return "unknown"; 698 } 699 700 static ssize_t regulator_print_opmode(char *buf, int mode) 701 { 702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); 703 } 704 705 static ssize_t opmode_show(struct device *dev, 706 struct device_attribute *attr, char *buf) 707 { 708 struct regulator_dev *rdev = dev_get_drvdata(dev); 709 710 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 711 } 712 static DEVICE_ATTR_RO(opmode); 713 714 static ssize_t regulator_print_state(char *buf, int state) 715 { 716 if (state > 0) 717 return sprintf(buf, "enabled\n"); 718 else if (state == 0) 719 return sprintf(buf, "disabled\n"); 720 else 721 return sprintf(buf, "unknown\n"); 722 } 723 724 static ssize_t state_show(struct device *dev, 725 struct device_attribute *attr, char *buf) 726 { 727 struct regulator_dev *rdev = dev_get_drvdata(dev); 728 ssize_t ret; 729 730 regulator_lock(rdev); 731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 732 regulator_unlock(rdev); 733 734 return ret; 735 } 736 static DEVICE_ATTR_RO(state); 737 738 static ssize_t status_show(struct device *dev, 739 struct device_attribute *attr, char *buf) 740 { 741 struct regulator_dev *rdev = dev_get_drvdata(dev); 742 int status; 743 char *label; 744 745 status = rdev->desc->ops->get_status(rdev); 746 if (status < 0) 747 return status; 748 749 switch (status) { 750 case REGULATOR_STATUS_OFF: 751 label = "off"; 752 break; 753 case REGULATOR_STATUS_ON: 754 label = "on"; 755 break; 756 case REGULATOR_STATUS_ERROR: 757 label = "error"; 758 break; 759 case REGULATOR_STATUS_FAST: 760 label = "fast"; 761 break; 762 case REGULATOR_STATUS_NORMAL: 763 label = "normal"; 764 break; 765 case REGULATOR_STATUS_IDLE: 766 label = "idle"; 767 break; 768 case REGULATOR_STATUS_STANDBY: 769 label = "standby"; 770 break; 771 case REGULATOR_STATUS_BYPASS: 772 label = "bypass"; 773 break; 774 case REGULATOR_STATUS_UNDEFINED: 775 label = "undefined"; 776 break; 777 default: 778 return -ERANGE; 779 } 780 781 return sprintf(buf, "%s\n", label); 782 } 783 static DEVICE_ATTR_RO(status); 784 785 static ssize_t min_microamps_show(struct device *dev, 786 struct device_attribute *attr, char *buf) 787 { 788 struct regulator_dev *rdev = dev_get_drvdata(dev); 789 790 if (!rdev->constraints) 791 return sprintf(buf, "constraint not defined\n"); 792 793 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 794 } 795 static DEVICE_ATTR_RO(min_microamps); 796 797 static ssize_t max_microamps_show(struct device *dev, 798 struct device_attribute *attr, char *buf) 799 { 800 struct regulator_dev *rdev = dev_get_drvdata(dev); 801 802 if (!rdev->constraints) 803 return sprintf(buf, "constraint not defined\n"); 804 805 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 806 } 807 static DEVICE_ATTR_RO(max_microamps); 808 809 static ssize_t min_microvolts_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct regulator_dev *rdev = dev_get_drvdata(dev); 813 814 if (!rdev->constraints) 815 return sprintf(buf, "constraint not defined\n"); 816 817 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 818 } 819 static DEVICE_ATTR_RO(min_microvolts); 820 821 static ssize_t max_microvolts_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct regulator_dev *rdev = dev_get_drvdata(dev); 825 826 if (!rdev->constraints) 827 return sprintf(buf, "constraint not defined\n"); 828 829 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 830 } 831 static DEVICE_ATTR_RO(max_microvolts); 832 833 static ssize_t requested_microamps_show(struct device *dev, 834 struct device_attribute *attr, char *buf) 835 { 836 struct regulator_dev *rdev = dev_get_drvdata(dev); 837 struct regulator *regulator; 838 int uA = 0; 839 840 regulator_lock(rdev); 841 list_for_each_entry(regulator, &rdev->consumer_list, list) { 842 if (regulator->enable_count) 843 uA += regulator->uA_load; 844 } 845 regulator_unlock(rdev); 846 return sprintf(buf, "%d\n", uA); 847 } 848 static DEVICE_ATTR_RO(requested_microamps); 849 850 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 851 char *buf) 852 { 853 struct regulator_dev *rdev = dev_get_drvdata(dev); 854 return sprintf(buf, "%d\n", rdev->use_count); 855 } 856 static DEVICE_ATTR_RO(num_users); 857 858 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 859 char *buf) 860 { 861 struct regulator_dev *rdev = dev_get_drvdata(dev); 862 863 switch (rdev->desc->type) { 864 case REGULATOR_VOLTAGE: 865 return sprintf(buf, "voltage\n"); 866 case REGULATOR_CURRENT: 867 return sprintf(buf, "current\n"); 868 } 869 return sprintf(buf, "unknown\n"); 870 } 871 static DEVICE_ATTR_RO(type); 872 873 static ssize_t suspend_mem_microvolts_show(struct device *dev, 874 struct device_attribute *attr, char *buf) 875 { 876 struct regulator_dev *rdev = dev_get_drvdata(dev); 877 878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 879 } 880 static DEVICE_ATTR_RO(suspend_mem_microvolts); 881 882 static ssize_t suspend_disk_microvolts_show(struct device *dev, 883 struct device_attribute *attr, char *buf) 884 { 885 struct regulator_dev *rdev = dev_get_drvdata(dev); 886 887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 888 } 889 static DEVICE_ATTR_RO(suspend_disk_microvolts); 890 891 static ssize_t suspend_standby_microvolts_show(struct device *dev, 892 struct device_attribute *attr, char *buf) 893 { 894 struct regulator_dev *rdev = dev_get_drvdata(dev); 895 896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 897 } 898 static DEVICE_ATTR_RO(suspend_standby_microvolts); 899 900 static ssize_t suspend_mem_mode_show(struct device *dev, 901 struct device_attribute *attr, char *buf) 902 { 903 struct regulator_dev *rdev = dev_get_drvdata(dev); 904 905 return regulator_print_opmode(buf, 906 rdev->constraints->state_mem.mode); 907 } 908 static DEVICE_ATTR_RO(suspend_mem_mode); 909 910 static ssize_t suspend_disk_mode_show(struct device *dev, 911 struct device_attribute *attr, char *buf) 912 { 913 struct regulator_dev *rdev = dev_get_drvdata(dev); 914 915 return regulator_print_opmode(buf, 916 rdev->constraints->state_disk.mode); 917 } 918 static DEVICE_ATTR_RO(suspend_disk_mode); 919 920 static ssize_t suspend_standby_mode_show(struct device *dev, 921 struct device_attribute *attr, char *buf) 922 { 923 struct regulator_dev *rdev = dev_get_drvdata(dev); 924 925 return regulator_print_opmode(buf, 926 rdev->constraints->state_standby.mode); 927 } 928 static DEVICE_ATTR_RO(suspend_standby_mode); 929 930 static ssize_t suspend_mem_state_show(struct device *dev, 931 struct device_attribute *attr, char *buf) 932 { 933 struct regulator_dev *rdev = dev_get_drvdata(dev); 934 935 return regulator_print_state(buf, 936 rdev->constraints->state_mem.enabled); 937 } 938 static DEVICE_ATTR_RO(suspend_mem_state); 939 940 static ssize_t suspend_disk_state_show(struct device *dev, 941 struct device_attribute *attr, char *buf) 942 { 943 struct regulator_dev *rdev = dev_get_drvdata(dev); 944 945 return regulator_print_state(buf, 946 rdev->constraints->state_disk.enabled); 947 } 948 static DEVICE_ATTR_RO(suspend_disk_state); 949 950 static ssize_t suspend_standby_state_show(struct device *dev, 951 struct device_attribute *attr, char *buf) 952 { 953 struct regulator_dev *rdev = dev_get_drvdata(dev); 954 955 return regulator_print_state(buf, 956 rdev->constraints->state_standby.enabled); 957 } 958 static DEVICE_ATTR_RO(suspend_standby_state); 959 960 static ssize_t bypass_show(struct device *dev, 961 struct device_attribute *attr, char *buf) 962 { 963 struct regulator_dev *rdev = dev_get_drvdata(dev); 964 const char *report; 965 bool bypass; 966 int ret; 967 968 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 969 970 if (ret != 0) 971 report = "unknown"; 972 else if (bypass) 973 report = "enabled"; 974 else 975 report = "disabled"; 976 977 return sprintf(buf, "%s\n", report); 978 } 979 static DEVICE_ATTR_RO(bypass); 980 981 #define REGULATOR_ERROR_ATTR(name, bit) \ 982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ 983 char *buf) \ 984 { \ 985 int ret; \ 986 unsigned int flags; \ 987 struct regulator_dev *rdev = dev_get_drvdata(dev); \ 988 ret = _regulator_get_error_flags(rdev, &flags); \ 989 if (ret) \ 990 return ret; \ 991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ 992 } \ 993 static DEVICE_ATTR_RO(name) 994 995 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); 996 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); 997 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); 998 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); 999 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); 1000 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); 1001 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); 1002 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); 1003 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); 1004 1005 /* Calculate the new optimum regulator operating mode based on the new total 1006 * consumer load. All locks held by caller 1007 */ 1008 static int drms_uA_update(struct regulator_dev *rdev) 1009 { 1010 struct regulator *sibling; 1011 int current_uA = 0, output_uV, input_uV, err; 1012 unsigned int mode; 1013 1014 /* 1015 * first check to see if we can set modes at all, otherwise just 1016 * tell the consumer everything is OK. 1017 */ 1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { 1019 rdev_dbg(rdev, "DRMS operation not allowed\n"); 1020 return 0; 1021 } 1022 1023 if (!rdev->desc->ops->get_optimum_mode && 1024 !rdev->desc->ops->set_load) 1025 return 0; 1026 1027 if (!rdev->desc->ops->set_mode && 1028 !rdev->desc->ops->set_load) 1029 return -EINVAL; 1030 1031 /* calc total requested load */ 1032 list_for_each_entry(sibling, &rdev->consumer_list, list) { 1033 if (sibling->enable_count) 1034 current_uA += sibling->uA_load; 1035 } 1036 1037 current_uA += rdev->constraints->system_load; 1038 1039 if (rdev->desc->ops->set_load) { 1040 /* set the optimum mode for our new total regulator load */ 1041 err = rdev->desc->ops->set_load(rdev, current_uA); 1042 if (err < 0) 1043 rdev_err(rdev, "failed to set load %d: %pe\n", 1044 current_uA, ERR_PTR(err)); 1045 } else { 1046 /* 1047 * Unfortunately in some cases the constraints->valid_ops has 1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed. 1049 * That's not really legit but we won't consider it a fatal 1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS 1051 * wasn't set. 1052 */ 1053 if (!rdev->constraints->valid_modes_mask) { 1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n"); 1055 return 0; 1056 } 1057 1058 /* get output voltage */ 1059 output_uV = regulator_get_voltage_rdev(rdev); 1060 1061 /* 1062 * Don't return an error; if regulator driver cares about 1063 * output_uV then it's up to the driver to validate. 1064 */ 1065 if (output_uV <= 0) 1066 rdev_dbg(rdev, "invalid output voltage found\n"); 1067 1068 /* get input voltage */ 1069 input_uV = 0; 1070 if (rdev->supply) 1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 1072 if (input_uV <= 0) 1073 input_uV = rdev->constraints->input_uV; 1074 1075 /* 1076 * Don't return an error; if regulator driver cares about 1077 * input_uV then it's up to the driver to validate. 1078 */ 1079 if (input_uV <= 0) 1080 rdev_dbg(rdev, "invalid input voltage found\n"); 1081 1082 /* now get the optimum mode for our new total regulator load */ 1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 1084 output_uV, current_uA); 1085 1086 /* check the new mode is allowed */ 1087 err = regulator_mode_constrain(rdev, &mode); 1088 if (err < 0) { 1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", 1090 current_uA, input_uV, output_uV, ERR_PTR(err)); 1091 return err; 1092 } 1093 1094 err = rdev->desc->ops->set_mode(rdev, mode); 1095 if (err < 0) 1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n", 1097 mode, ERR_PTR(err)); 1098 } 1099 1100 return err; 1101 } 1102 1103 static int __suspend_set_state(struct regulator_dev *rdev, 1104 const struct regulator_state *rstate) 1105 { 1106 int ret = 0; 1107 1108 if (rstate->enabled == ENABLE_IN_SUSPEND && 1109 rdev->desc->ops->set_suspend_enable) 1110 ret = rdev->desc->ops->set_suspend_enable(rdev); 1111 else if (rstate->enabled == DISABLE_IN_SUSPEND && 1112 rdev->desc->ops->set_suspend_disable) 1113 ret = rdev->desc->ops->set_suspend_disable(rdev); 1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 1115 ret = 0; 1116 1117 if (ret < 0) { 1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); 1119 return ret; 1120 } 1121 1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 1124 if (ret < 0) { 1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); 1126 return ret; 1127 } 1128 } 1129 1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 1132 if (ret < 0) { 1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); 1134 return ret; 1135 } 1136 } 1137 1138 return ret; 1139 } 1140 1141 static int suspend_set_initial_state(struct regulator_dev *rdev) 1142 { 1143 const struct regulator_state *rstate; 1144 1145 rstate = regulator_get_suspend_state_check(rdev, 1146 rdev->constraints->initial_state); 1147 if (!rstate) 1148 return 0; 1149 1150 return __suspend_set_state(rdev, rstate); 1151 } 1152 1153 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) 1154 static void print_constraints_debug(struct regulator_dev *rdev) 1155 { 1156 struct regulation_constraints *constraints = rdev->constraints; 1157 char buf[160] = ""; 1158 size_t len = sizeof(buf) - 1; 1159 int count = 0; 1160 int ret; 1161 1162 if (constraints->min_uV && constraints->max_uV) { 1163 if (constraints->min_uV == constraints->max_uV) 1164 count += scnprintf(buf + count, len - count, "%d mV ", 1165 constraints->min_uV / 1000); 1166 else 1167 count += scnprintf(buf + count, len - count, 1168 "%d <--> %d mV ", 1169 constraints->min_uV / 1000, 1170 constraints->max_uV / 1000); 1171 } 1172 1173 if (!constraints->min_uV || 1174 constraints->min_uV != constraints->max_uV) { 1175 ret = regulator_get_voltage_rdev(rdev); 1176 if (ret > 0) 1177 count += scnprintf(buf + count, len - count, 1178 "at %d mV ", ret / 1000); 1179 } 1180 1181 if (constraints->uV_offset) 1182 count += scnprintf(buf + count, len - count, "%dmV offset ", 1183 constraints->uV_offset / 1000); 1184 1185 if (constraints->min_uA && constraints->max_uA) { 1186 if (constraints->min_uA == constraints->max_uA) 1187 count += scnprintf(buf + count, len - count, "%d mA ", 1188 constraints->min_uA / 1000); 1189 else 1190 count += scnprintf(buf + count, len - count, 1191 "%d <--> %d mA ", 1192 constraints->min_uA / 1000, 1193 constraints->max_uA / 1000); 1194 } 1195 1196 if (!constraints->min_uA || 1197 constraints->min_uA != constraints->max_uA) { 1198 ret = _regulator_get_current_limit(rdev); 1199 if (ret > 0) 1200 count += scnprintf(buf + count, len - count, 1201 "at %d mA ", ret / 1000); 1202 } 1203 1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 1205 count += scnprintf(buf + count, len - count, "fast "); 1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 1207 count += scnprintf(buf + count, len - count, "normal "); 1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 1209 count += scnprintf(buf + count, len - count, "idle "); 1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 1211 count += scnprintf(buf + count, len - count, "standby "); 1212 1213 if (!count) 1214 count = scnprintf(buf, len, "no parameters"); 1215 else 1216 --count; 1217 1218 count += scnprintf(buf + count, len - count, ", %s", 1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled"); 1220 1221 rdev_dbg(rdev, "%s\n", buf); 1222 } 1223 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1224 static inline void print_constraints_debug(struct regulator_dev *rdev) {} 1225 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ 1226 1227 static void print_constraints(struct regulator_dev *rdev) 1228 { 1229 struct regulation_constraints *constraints = rdev->constraints; 1230 1231 print_constraints_debug(rdev); 1232 1233 if ((constraints->min_uV != constraints->max_uV) && 1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 1235 rdev_warn(rdev, 1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 1237 } 1238 1239 static int machine_constraints_voltage(struct regulator_dev *rdev, 1240 struct regulation_constraints *constraints) 1241 { 1242 const struct regulator_ops *ops = rdev->desc->ops; 1243 int ret; 1244 1245 /* do we need to apply the constraint voltage */ 1246 if (rdev->constraints->apply_uV && 1247 rdev->constraints->min_uV && rdev->constraints->max_uV) { 1248 int target_min, target_max; 1249 int current_uV = regulator_get_voltage_rdev(rdev); 1250 1251 if (current_uV == -ENOTRECOVERABLE) { 1252 /* This regulator can't be read and must be initialized */ 1253 rdev_info(rdev, "Setting %d-%duV\n", 1254 rdev->constraints->min_uV, 1255 rdev->constraints->max_uV); 1256 _regulator_do_set_voltage(rdev, 1257 rdev->constraints->min_uV, 1258 rdev->constraints->max_uV); 1259 current_uV = regulator_get_voltage_rdev(rdev); 1260 } 1261 1262 if (current_uV < 0) { 1263 if (current_uV != -EPROBE_DEFER) 1264 rdev_err(rdev, 1265 "failed to get the current voltage: %pe\n", 1266 ERR_PTR(current_uV)); 1267 return current_uV; 1268 } 1269 1270 /* 1271 * If we're below the minimum voltage move up to the 1272 * minimum voltage, if we're above the maximum voltage 1273 * then move down to the maximum. 1274 */ 1275 target_min = current_uV; 1276 target_max = current_uV; 1277 1278 if (current_uV < rdev->constraints->min_uV) { 1279 target_min = rdev->constraints->min_uV; 1280 target_max = rdev->constraints->min_uV; 1281 } 1282 1283 if (current_uV > rdev->constraints->max_uV) { 1284 target_min = rdev->constraints->max_uV; 1285 target_max = rdev->constraints->max_uV; 1286 } 1287 1288 if (target_min != current_uV || target_max != current_uV) { 1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n", 1290 current_uV, target_min, target_max); 1291 ret = _regulator_do_set_voltage( 1292 rdev, target_min, target_max); 1293 if (ret < 0) { 1294 rdev_err(rdev, 1295 "failed to apply %d-%duV constraint: %pe\n", 1296 target_min, target_max, ERR_PTR(ret)); 1297 return ret; 1298 } 1299 } 1300 } 1301 1302 /* constrain machine-level voltage specs to fit 1303 * the actual range supported by this regulator. 1304 */ 1305 if (ops->list_voltage && rdev->desc->n_voltages) { 1306 int count = rdev->desc->n_voltages; 1307 int i; 1308 int min_uV = INT_MAX; 1309 int max_uV = INT_MIN; 1310 int cmin = constraints->min_uV; 1311 int cmax = constraints->max_uV; 1312 1313 /* it's safe to autoconfigure fixed-voltage supplies 1314 * and the constraints are used by list_voltage. 1315 */ 1316 if (count == 1 && !cmin) { 1317 cmin = 1; 1318 cmax = INT_MAX; 1319 constraints->min_uV = cmin; 1320 constraints->max_uV = cmax; 1321 } 1322 1323 /* voltage constraints are optional */ 1324 if ((cmin == 0) && (cmax == 0)) 1325 return 0; 1326 1327 /* else require explicit machine-level constraints */ 1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 1329 rdev_err(rdev, "invalid voltage constraints\n"); 1330 return -EINVAL; 1331 } 1332 1333 /* no need to loop voltages if range is continuous */ 1334 if (rdev->desc->continuous_voltage_range) 1335 return 0; 1336 1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 1338 for (i = 0; i < count; i++) { 1339 int value; 1340 1341 value = ops->list_voltage(rdev, i); 1342 if (value <= 0) 1343 continue; 1344 1345 /* maybe adjust [min_uV..max_uV] */ 1346 if (value >= cmin && value < min_uV) 1347 min_uV = value; 1348 if (value <= cmax && value > max_uV) 1349 max_uV = value; 1350 } 1351 1352 /* final: [min_uV..max_uV] valid iff constraints valid */ 1353 if (max_uV < min_uV) { 1354 rdev_err(rdev, 1355 "unsupportable voltage constraints %u-%uuV\n", 1356 min_uV, max_uV); 1357 return -EINVAL; 1358 } 1359 1360 /* use regulator's subset of machine constraints */ 1361 if (constraints->min_uV < min_uV) { 1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 1363 constraints->min_uV, min_uV); 1364 constraints->min_uV = min_uV; 1365 } 1366 if (constraints->max_uV > max_uV) { 1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 1368 constraints->max_uV, max_uV); 1369 constraints->max_uV = max_uV; 1370 } 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int machine_constraints_current(struct regulator_dev *rdev, 1377 struct regulation_constraints *constraints) 1378 { 1379 const struct regulator_ops *ops = rdev->desc->ops; 1380 int ret; 1381 1382 if (!constraints->min_uA && !constraints->max_uA) 1383 return 0; 1384 1385 if (constraints->min_uA > constraints->max_uA) { 1386 rdev_err(rdev, "Invalid current constraints\n"); 1387 return -EINVAL; 1388 } 1389 1390 if (!ops->set_current_limit || !ops->get_current_limit) { 1391 rdev_warn(rdev, "Operation of current configuration missing\n"); 1392 return 0; 1393 } 1394 1395 /* Set regulator current in constraints range */ 1396 ret = ops->set_current_limit(rdev, constraints->min_uA, 1397 constraints->max_uA); 1398 if (ret < 0) { 1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 1400 return ret; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int _regulator_do_enable(struct regulator_dev *rdev); 1407 1408 static int notif_set_limit(struct regulator_dev *rdev, 1409 int (*set)(struct regulator_dev *, int, int, bool), 1410 int limit, int severity) 1411 { 1412 bool enable; 1413 1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { 1415 enable = false; 1416 limit = 0; 1417 } else { 1418 enable = true; 1419 } 1420 1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) 1422 limit = 0; 1423 1424 return set(rdev, limit, severity, enable); 1425 } 1426 1427 static int handle_notify_limits(struct regulator_dev *rdev, 1428 int (*set)(struct regulator_dev *, int, int, bool), 1429 struct notification_limit *limits) 1430 { 1431 int ret = 0; 1432 1433 if (!set) 1434 return -EOPNOTSUPP; 1435 1436 if (limits->prot) 1437 ret = notif_set_limit(rdev, set, limits->prot, 1438 REGULATOR_SEVERITY_PROT); 1439 if (ret) 1440 return ret; 1441 1442 if (limits->err) 1443 ret = notif_set_limit(rdev, set, limits->err, 1444 REGULATOR_SEVERITY_ERR); 1445 if (ret) 1446 return ret; 1447 1448 if (limits->warn) 1449 ret = notif_set_limit(rdev, set, limits->warn, 1450 REGULATOR_SEVERITY_WARN); 1451 1452 return ret; 1453 } 1454 /** 1455 * set_machine_constraints - sets regulator constraints 1456 * @rdev: regulator source 1457 * 1458 * Allows platform initialisation code to define and constrain 1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 1460 * Constraints *must* be set by platform code in order for some 1461 * regulator operations to proceed i.e. set_voltage, set_current_limit, 1462 * set_mode. 1463 */ 1464 static int set_machine_constraints(struct regulator_dev *rdev) 1465 { 1466 int ret = 0; 1467 const struct regulator_ops *ops = rdev->desc->ops; 1468 1469 ret = machine_constraints_voltage(rdev, rdev->constraints); 1470 if (ret != 0) 1471 return ret; 1472 1473 ret = machine_constraints_current(rdev, rdev->constraints); 1474 if (ret != 0) 1475 return ret; 1476 1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1478 ret = ops->set_input_current_limit(rdev, 1479 rdev->constraints->ilim_uA); 1480 if (ret < 0) { 1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); 1482 return ret; 1483 } 1484 } 1485 1486 /* do we need to setup our suspend state */ 1487 if (rdev->constraints->initial_state) { 1488 ret = suspend_set_initial_state(rdev); 1489 if (ret < 0) { 1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); 1491 return ret; 1492 } 1493 } 1494 1495 if (rdev->constraints->initial_mode) { 1496 if (!ops->set_mode) { 1497 rdev_err(rdev, "no set_mode operation\n"); 1498 return -EINVAL; 1499 } 1500 1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1502 if (ret < 0) { 1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); 1504 return ret; 1505 } 1506 } else if (rdev->constraints->system_load) { 1507 /* 1508 * We'll only apply the initial system load if an 1509 * initial mode wasn't specified. 1510 */ 1511 drms_uA_update(rdev); 1512 } 1513 1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1515 && ops->set_ramp_delay) { 1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1517 if (ret < 0) { 1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); 1519 return ret; 1520 } 1521 } 1522 1523 if (rdev->constraints->pull_down && ops->set_pull_down) { 1524 ret = ops->set_pull_down(rdev); 1525 if (ret < 0) { 1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); 1527 return ret; 1528 } 1529 } 1530 1531 if (rdev->constraints->soft_start && ops->set_soft_start) { 1532 ret = ops->set_soft_start(rdev); 1533 if (ret < 0) { 1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); 1535 return ret; 1536 } 1537 } 1538 1539 /* 1540 * Existing logic does not warn if over_current_protection is given as 1541 * a constraint but driver does not support that. I think we should 1542 * warn about this type of issues as it is possible someone changes 1543 * PMIC on board to another type - and the another PMIC's driver does 1544 * not support setting protection. Board composer may happily believe 1545 * the DT limits are respected - especially if the new PMIC HW also 1546 * supports protection but the driver does not. I won't change the logic 1547 * without hearing more experienced opinion on this though. 1548 * 1549 * If warning is seen as a good idea then we can merge handling the 1550 * over-curret protection and detection and get rid of this special 1551 * handling. 1552 */ 1553 if (rdev->constraints->over_current_protection 1554 && ops->set_over_current_protection) { 1555 int lim = rdev->constraints->over_curr_limits.prot; 1556 1557 ret = ops->set_over_current_protection(rdev, lim, 1558 REGULATOR_SEVERITY_PROT, 1559 true); 1560 if (ret < 0) { 1561 rdev_err(rdev, "failed to set over current protection: %pe\n", 1562 ERR_PTR(ret)); 1563 return ret; 1564 } 1565 } 1566 1567 if (rdev->constraints->over_current_detection) 1568 ret = handle_notify_limits(rdev, 1569 ops->set_over_current_protection, 1570 &rdev->constraints->over_curr_limits); 1571 if (ret) { 1572 if (ret != -EOPNOTSUPP) { 1573 rdev_err(rdev, "failed to set over current limits: %pe\n", 1574 ERR_PTR(ret)); 1575 return ret; 1576 } 1577 rdev_warn(rdev, 1578 "IC does not support requested over-current limits\n"); 1579 } 1580 1581 if (rdev->constraints->over_voltage_detection) 1582 ret = handle_notify_limits(rdev, 1583 ops->set_over_voltage_protection, 1584 &rdev->constraints->over_voltage_limits); 1585 if (ret) { 1586 if (ret != -EOPNOTSUPP) { 1587 rdev_err(rdev, "failed to set over voltage limits %pe\n", 1588 ERR_PTR(ret)); 1589 return ret; 1590 } 1591 rdev_warn(rdev, 1592 "IC does not support requested over voltage limits\n"); 1593 } 1594 1595 if (rdev->constraints->under_voltage_detection) 1596 ret = handle_notify_limits(rdev, 1597 ops->set_under_voltage_protection, 1598 &rdev->constraints->under_voltage_limits); 1599 if (ret) { 1600 if (ret != -EOPNOTSUPP) { 1601 rdev_err(rdev, "failed to set under voltage limits %pe\n", 1602 ERR_PTR(ret)); 1603 return ret; 1604 } 1605 rdev_warn(rdev, 1606 "IC does not support requested under voltage limits\n"); 1607 } 1608 1609 if (rdev->constraints->over_temp_detection) 1610 ret = handle_notify_limits(rdev, 1611 ops->set_thermal_protection, 1612 &rdev->constraints->temp_limits); 1613 if (ret) { 1614 if (ret != -EOPNOTSUPP) { 1615 rdev_err(rdev, "failed to set temperature limits %pe\n", 1616 ERR_PTR(ret)); 1617 return ret; 1618 } 1619 rdev_warn(rdev, 1620 "IC does not support requested temperature limits\n"); 1621 } 1622 1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) { 1624 bool ad_state = (rdev->constraints->active_discharge == 1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; 1626 1627 ret = ops->set_active_discharge(rdev, ad_state); 1628 if (ret < 0) { 1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); 1630 return ret; 1631 } 1632 } 1633 1634 /* 1635 * If there is no mechanism for controlling the regulator then 1636 * flag it as always_on so we don't end up duplicating checks 1637 * for this so much. Note that we could control the state of 1638 * a supply to control the output on a regulator that has no 1639 * direct control. 1640 */ 1641 if (!rdev->ena_pin && !ops->enable) { 1642 if (rdev->supply_name && !rdev->supply) 1643 return -EPROBE_DEFER; 1644 1645 if (rdev->supply) 1646 rdev->constraints->always_on = 1647 rdev->supply->rdev->constraints->always_on; 1648 else 1649 rdev->constraints->always_on = true; 1650 } 1651 1652 /* If the constraints say the regulator should be on at this point 1653 * and we have control then make sure it is enabled. 1654 */ 1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1656 /* If we want to enable this regulator, make sure that we know 1657 * the supplying regulator. 1658 */ 1659 if (rdev->supply_name && !rdev->supply) 1660 return -EPROBE_DEFER; 1661 1662 /* If supplying regulator has already been enabled, 1663 * it's not intended to have use_count increment 1664 * when rdev is only boot-on. 1665 */ 1666 if (rdev->supply && 1667 (rdev->constraints->always_on || 1668 !regulator_is_enabled(rdev->supply))) { 1669 ret = regulator_enable(rdev->supply); 1670 if (ret < 0) { 1671 _regulator_put(rdev->supply); 1672 rdev->supply = NULL; 1673 return ret; 1674 } 1675 } 1676 1677 ret = _regulator_do_enable(rdev); 1678 if (ret < 0 && ret != -EINVAL) { 1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); 1680 return ret; 1681 } 1682 1683 if (rdev->constraints->always_on) 1684 rdev->use_count++; 1685 } else if (rdev->desc->off_on_delay) { 1686 rdev->last_off = ktime_get(); 1687 } 1688 1689 print_constraints(rdev); 1690 return 0; 1691 } 1692 1693 /** 1694 * set_supply - set regulator supply regulator 1695 * @rdev: regulator (locked) 1696 * @supply_rdev: supply regulator (locked)) 1697 * 1698 * Called by platform initialisation code to set the supply regulator for this 1699 * regulator. This ensures that a regulators supply will also be enabled by the 1700 * core if it's child is enabled. 1701 */ 1702 static int set_supply(struct regulator_dev *rdev, 1703 struct regulator_dev *supply_rdev) 1704 { 1705 int err; 1706 1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1708 1709 if (!try_module_get(supply_rdev->owner)) 1710 return -ENODEV; 1711 1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1713 if (rdev->supply == NULL) { 1714 module_put(supply_rdev->owner); 1715 err = -ENOMEM; 1716 return err; 1717 } 1718 supply_rdev->open_count++; 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1725 * @rdev: regulator source 1726 * @consumer_dev_name: dev_name() string for device supply applies to 1727 * @supply: symbolic name for supply 1728 * 1729 * Allows platform initialisation code to map physical regulator 1730 * sources to symbolic names for supplies for use by devices. Devices 1731 * should use these symbolic names to request regulators, avoiding the 1732 * need to provide board-specific regulator names as platform data. 1733 */ 1734 static int set_consumer_device_supply(struct regulator_dev *rdev, 1735 const char *consumer_dev_name, 1736 const char *supply) 1737 { 1738 struct regulator_map *node, *new_node; 1739 int has_dev; 1740 1741 if (supply == NULL) 1742 return -EINVAL; 1743 1744 if (consumer_dev_name != NULL) 1745 has_dev = 1; 1746 else 1747 has_dev = 0; 1748 1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1750 if (new_node == NULL) 1751 return -ENOMEM; 1752 1753 new_node->regulator = rdev; 1754 new_node->supply = supply; 1755 1756 if (has_dev) { 1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1758 if (new_node->dev_name == NULL) { 1759 kfree(new_node); 1760 return -ENOMEM; 1761 } 1762 } 1763 1764 mutex_lock(®ulator_list_mutex); 1765 list_for_each_entry(node, ®ulator_map_list, list) { 1766 if (node->dev_name && consumer_dev_name) { 1767 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1768 continue; 1769 } else if (node->dev_name || consumer_dev_name) { 1770 continue; 1771 } 1772 1773 if (strcmp(node->supply, supply) != 0) 1774 continue; 1775 1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1777 consumer_dev_name, 1778 dev_name(&node->regulator->dev), 1779 node->regulator->desc->name, 1780 supply, 1781 dev_name(&rdev->dev), rdev_get_name(rdev)); 1782 goto fail; 1783 } 1784 1785 list_add(&new_node->list, ®ulator_map_list); 1786 mutex_unlock(®ulator_list_mutex); 1787 1788 return 0; 1789 1790 fail: 1791 mutex_unlock(®ulator_list_mutex); 1792 kfree(new_node->dev_name); 1793 kfree(new_node); 1794 return -EBUSY; 1795 } 1796 1797 static void unset_regulator_supplies(struct regulator_dev *rdev) 1798 { 1799 struct regulator_map *node, *n; 1800 1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1802 if (rdev == node->regulator) { 1803 list_del(&node->list); 1804 kfree(node->dev_name); 1805 kfree(node); 1806 } 1807 } 1808 } 1809 1810 #ifdef CONFIG_DEBUG_FS 1811 static ssize_t constraint_flags_read_file(struct file *file, 1812 char __user *user_buf, 1813 size_t count, loff_t *ppos) 1814 { 1815 const struct regulator *regulator = file->private_data; 1816 const struct regulation_constraints *c = regulator->rdev->constraints; 1817 char *buf; 1818 ssize_t ret; 1819 1820 if (!c) 1821 return 0; 1822 1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1824 if (!buf) 1825 return -ENOMEM; 1826 1827 ret = snprintf(buf, PAGE_SIZE, 1828 "always_on: %u\n" 1829 "boot_on: %u\n" 1830 "apply_uV: %u\n" 1831 "ramp_disable: %u\n" 1832 "soft_start: %u\n" 1833 "pull_down: %u\n" 1834 "over_current_protection: %u\n", 1835 c->always_on, 1836 c->boot_on, 1837 c->apply_uV, 1838 c->ramp_disable, 1839 c->soft_start, 1840 c->pull_down, 1841 c->over_current_protection); 1842 1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 1844 kfree(buf); 1845 1846 return ret; 1847 } 1848 1849 #endif 1850 1851 static const struct file_operations constraint_flags_fops = { 1852 #ifdef CONFIG_DEBUG_FS 1853 .open = simple_open, 1854 .read = constraint_flags_read_file, 1855 .llseek = default_llseek, 1856 #endif 1857 }; 1858 1859 #define REG_STR_SIZE 64 1860 1861 static struct regulator *create_regulator(struct regulator_dev *rdev, 1862 struct device *dev, 1863 const char *supply_name) 1864 { 1865 struct regulator *regulator; 1866 int err = 0; 1867 1868 lockdep_assert_held_once(&rdev->mutex.base); 1869 1870 if (dev) { 1871 char buf[REG_STR_SIZE]; 1872 int size; 1873 1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s", 1875 dev->kobj.name, supply_name); 1876 if (size >= REG_STR_SIZE) 1877 return NULL; 1878 1879 supply_name = kstrdup(buf, GFP_KERNEL); 1880 if (supply_name == NULL) 1881 return NULL; 1882 } else { 1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL); 1884 if (supply_name == NULL) 1885 return NULL; 1886 } 1887 1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1889 if (regulator == NULL) { 1890 kfree_const(supply_name); 1891 return NULL; 1892 } 1893 1894 regulator->rdev = rdev; 1895 regulator->supply_name = supply_name; 1896 1897 list_add(®ulator->list, &rdev->consumer_list); 1898 1899 if (dev) { 1900 regulator->dev = dev; 1901 1902 /* Add a link to the device sysfs entry */ 1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1904 supply_name); 1905 if (err) { 1906 rdev_dbg(rdev, "could not add device link %s: %pe\n", 1907 dev->kobj.name, ERR_PTR(err)); 1908 /* non-fatal */ 1909 } 1910 } 1911 1912 if (err != -EEXIST) 1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); 1914 if (IS_ERR(regulator->debugfs)) 1915 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 1916 1917 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1918 ®ulator->uA_load); 1919 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1920 ®ulator->voltage[PM_SUSPEND_ON].min_uV); 1921 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1922 ®ulator->voltage[PM_SUSPEND_ON].max_uV); 1923 debugfs_create_file("constraint_flags", 0444, regulator->debugfs, 1924 regulator, &constraint_flags_fops); 1925 1926 /* 1927 * Check now if the regulator is an always on regulator - if 1928 * it is then we don't need to do nearly so much work for 1929 * enable/disable calls. 1930 */ 1931 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && 1932 _regulator_is_enabled(rdev)) 1933 regulator->always_on = true; 1934 1935 return regulator; 1936 } 1937 1938 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1939 { 1940 if (rdev->constraints && rdev->constraints->enable_time) 1941 return rdev->constraints->enable_time; 1942 if (rdev->desc->ops->enable_time) 1943 return rdev->desc->ops->enable_time(rdev); 1944 return rdev->desc->enable_time; 1945 } 1946 1947 static struct regulator_supply_alias *regulator_find_supply_alias( 1948 struct device *dev, const char *supply) 1949 { 1950 struct regulator_supply_alias *map; 1951 1952 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1953 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1954 return map; 1955 1956 return NULL; 1957 } 1958 1959 static void regulator_supply_alias(struct device **dev, const char **supply) 1960 { 1961 struct regulator_supply_alias *map; 1962 1963 map = regulator_find_supply_alias(*dev, *supply); 1964 if (map) { 1965 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1966 *supply, map->alias_supply, 1967 dev_name(map->alias_dev)); 1968 *dev = map->alias_dev; 1969 *supply = map->alias_supply; 1970 } 1971 } 1972 1973 static int regulator_match(struct device *dev, const void *data) 1974 { 1975 struct regulator_dev *r = dev_to_rdev(dev); 1976 1977 return strcmp(rdev_get_name(r), data) == 0; 1978 } 1979 1980 static struct regulator_dev *regulator_lookup_by_name(const char *name) 1981 { 1982 struct device *dev; 1983 1984 dev = class_find_device(®ulator_class, NULL, name, regulator_match); 1985 1986 return dev ? dev_to_rdev(dev) : NULL; 1987 } 1988 1989 /** 1990 * regulator_dev_lookup - lookup a regulator device. 1991 * @dev: device for regulator "consumer". 1992 * @supply: Supply name or regulator ID. 1993 * 1994 * If successful, returns a struct regulator_dev that corresponds to the name 1995 * @supply and with the embedded struct device refcount incremented by one. 1996 * The refcount must be dropped by calling put_device(). 1997 * On failure one of the following ERR-PTR-encoded values is returned: 1998 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed 1999 * in the future. 2000 */ 2001 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 2002 const char *supply) 2003 { 2004 struct regulator_dev *r = NULL; 2005 struct device_node *node; 2006 struct regulator_map *map; 2007 const char *devname = NULL; 2008 2009 regulator_supply_alias(&dev, &supply); 2010 2011 /* first do a dt based lookup */ 2012 if (dev && dev->of_node) { 2013 node = of_get_regulator(dev, supply); 2014 if (node) { 2015 r = of_find_regulator_by_node(node); 2016 of_node_put(node); 2017 if (r) 2018 return r; 2019 2020 /* 2021 * We have a node, but there is no device. 2022 * assume it has not registered yet. 2023 */ 2024 return ERR_PTR(-EPROBE_DEFER); 2025 } 2026 } 2027 2028 /* if not found, try doing it non-dt way */ 2029 if (dev) 2030 devname = dev_name(dev); 2031 2032 mutex_lock(®ulator_list_mutex); 2033 list_for_each_entry(map, ®ulator_map_list, list) { 2034 /* If the mapping has a device set up it must match */ 2035 if (map->dev_name && 2036 (!devname || strcmp(map->dev_name, devname))) 2037 continue; 2038 2039 if (strcmp(map->supply, supply) == 0 && 2040 get_device(&map->regulator->dev)) { 2041 r = map->regulator; 2042 break; 2043 } 2044 } 2045 mutex_unlock(®ulator_list_mutex); 2046 2047 if (r) 2048 return r; 2049 2050 r = regulator_lookup_by_name(supply); 2051 if (r) 2052 return r; 2053 2054 return ERR_PTR(-ENODEV); 2055 } 2056 2057 static int regulator_resolve_supply(struct regulator_dev *rdev) 2058 { 2059 struct regulator_dev *r; 2060 struct device *dev = rdev->dev.parent; 2061 struct ww_acquire_ctx ww_ctx; 2062 int ret = 0; 2063 2064 /* No supply to resolve? */ 2065 if (!rdev->supply_name) 2066 return 0; 2067 2068 /* Supply already resolved? (fast-path without locking contention) */ 2069 if (rdev->supply) 2070 return 0; 2071 2072 r = regulator_dev_lookup(dev, rdev->supply_name); 2073 if (IS_ERR(r)) { 2074 ret = PTR_ERR(r); 2075 2076 /* Did the lookup explicitly defer for us? */ 2077 if (ret == -EPROBE_DEFER) 2078 goto out; 2079 2080 if (have_full_constraints()) { 2081 r = dummy_regulator_rdev; 2082 get_device(&r->dev); 2083 } else { 2084 dev_err(dev, "Failed to resolve %s-supply for %s\n", 2085 rdev->supply_name, rdev->desc->name); 2086 ret = -EPROBE_DEFER; 2087 goto out; 2088 } 2089 } 2090 2091 if (r == rdev) { 2092 dev_err(dev, "Supply for %s (%s) resolved to itself\n", 2093 rdev->desc->name, rdev->supply_name); 2094 if (!have_full_constraints()) { 2095 ret = -EINVAL; 2096 goto out; 2097 } 2098 r = dummy_regulator_rdev; 2099 get_device(&r->dev); 2100 } 2101 2102 /* 2103 * If the supply's parent device is not the same as the 2104 * regulator's parent device, then ensure the parent device 2105 * is bound before we resolve the supply, in case the parent 2106 * device get probe deferred and unregisters the supply. 2107 */ 2108 if (r->dev.parent && r->dev.parent != rdev->dev.parent) { 2109 if (!device_is_bound(r->dev.parent)) { 2110 put_device(&r->dev); 2111 ret = -EPROBE_DEFER; 2112 goto out; 2113 } 2114 } 2115 2116 /* Recursively resolve the supply of the supply */ 2117 ret = regulator_resolve_supply(r); 2118 if (ret < 0) { 2119 put_device(&r->dev); 2120 goto out; 2121 } 2122 2123 /* 2124 * Recheck rdev->supply with rdev->mutex lock held to avoid a race 2125 * between rdev->supply null check and setting rdev->supply in 2126 * set_supply() from concurrent tasks. 2127 */ 2128 regulator_lock_two(rdev, r, &ww_ctx); 2129 2130 /* Supply just resolved by a concurrent task? */ 2131 if (rdev->supply) { 2132 regulator_unlock_two(rdev, r, &ww_ctx); 2133 put_device(&r->dev); 2134 goto out; 2135 } 2136 2137 ret = set_supply(rdev, r); 2138 if (ret < 0) { 2139 regulator_unlock_two(rdev, r, &ww_ctx); 2140 put_device(&r->dev); 2141 goto out; 2142 } 2143 2144 regulator_unlock_two(rdev, r, &ww_ctx); 2145 2146 /* 2147 * In set_machine_constraints() we may have turned this regulator on 2148 * but we couldn't propagate to the supply if it hadn't been resolved 2149 * yet. Do it now. 2150 */ 2151 if (rdev->use_count) { 2152 ret = regulator_enable(rdev->supply); 2153 if (ret < 0) { 2154 _regulator_put(rdev->supply); 2155 rdev->supply = NULL; 2156 goto out; 2157 } 2158 } 2159 2160 out: 2161 return ret; 2162 } 2163 2164 /* Internal regulator request function */ 2165 struct regulator *_regulator_get(struct device *dev, const char *id, 2166 enum regulator_get_type get_type) 2167 { 2168 struct regulator_dev *rdev; 2169 struct regulator *regulator; 2170 struct device_link *link; 2171 int ret; 2172 2173 if (get_type >= MAX_GET_TYPE) { 2174 dev_err(dev, "invalid type %d in %s\n", get_type, __func__); 2175 return ERR_PTR(-EINVAL); 2176 } 2177 2178 if (id == NULL) { 2179 pr_err("get() with no identifier\n"); 2180 return ERR_PTR(-EINVAL); 2181 } 2182 2183 rdev = regulator_dev_lookup(dev, id); 2184 if (IS_ERR(rdev)) { 2185 ret = PTR_ERR(rdev); 2186 2187 /* 2188 * If regulator_dev_lookup() fails with error other 2189 * than -ENODEV our job here is done, we simply return it. 2190 */ 2191 if (ret != -ENODEV) 2192 return ERR_PTR(ret); 2193 2194 if (!have_full_constraints()) { 2195 dev_warn(dev, 2196 "incomplete constraints, dummy supplies not allowed\n"); 2197 return ERR_PTR(-ENODEV); 2198 } 2199 2200 switch (get_type) { 2201 case NORMAL_GET: 2202 /* 2203 * Assume that a regulator is physically present and 2204 * enabled, even if it isn't hooked up, and just 2205 * provide a dummy. 2206 */ 2207 dev_warn(dev, "supply %s not found, using dummy regulator\n", id); 2208 rdev = dummy_regulator_rdev; 2209 get_device(&rdev->dev); 2210 break; 2211 2212 case EXCLUSIVE_GET: 2213 dev_warn(dev, 2214 "dummy supplies not allowed for exclusive requests\n"); 2215 fallthrough; 2216 2217 default: 2218 return ERR_PTR(-ENODEV); 2219 } 2220 } 2221 2222 if (rdev->exclusive) { 2223 regulator = ERR_PTR(-EPERM); 2224 put_device(&rdev->dev); 2225 return regulator; 2226 } 2227 2228 if (get_type == EXCLUSIVE_GET && rdev->open_count) { 2229 regulator = ERR_PTR(-EBUSY); 2230 put_device(&rdev->dev); 2231 return regulator; 2232 } 2233 2234 mutex_lock(®ulator_list_mutex); 2235 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); 2236 mutex_unlock(®ulator_list_mutex); 2237 2238 if (ret != 0) { 2239 regulator = ERR_PTR(-EPROBE_DEFER); 2240 put_device(&rdev->dev); 2241 return regulator; 2242 } 2243 2244 ret = regulator_resolve_supply(rdev); 2245 if (ret < 0) { 2246 regulator = ERR_PTR(ret); 2247 put_device(&rdev->dev); 2248 return regulator; 2249 } 2250 2251 if (!try_module_get(rdev->owner)) { 2252 regulator = ERR_PTR(-EPROBE_DEFER); 2253 put_device(&rdev->dev); 2254 return regulator; 2255 } 2256 2257 regulator_lock(rdev); 2258 regulator = create_regulator(rdev, dev, id); 2259 regulator_unlock(rdev); 2260 if (regulator == NULL) { 2261 regulator = ERR_PTR(-ENOMEM); 2262 module_put(rdev->owner); 2263 put_device(&rdev->dev); 2264 return regulator; 2265 } 2266 2267 rdev->open_count++; 2268 if (get_type == EXCLUSIVE_GET) { 2269 rdev->exclusive = 1; 2270 2271 ret = _regulator_is_enabled(rdev); 2272 if (ret > 0) { 2273 rdev->use_count = 1; 2274 regulator->enable_count = 1; 2275 } else { 2276 rdev->use_count = 0; 2277 regulator->enable_count = 0; 2278 } 2279 } 2280 2281 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); 2282 if (!IS_ERR_OR_NULL(link)) 2283 regulator->device_link = true; 2284 2285 return regulator; 2286 } 2287 2288 /** 2289 * regulator_get - lookup and obtain a reference to a regulator. 2290 * @dev: device for regulator "consumer" 2291 * @id: Supply name or regulator ID. 2292 * 2293 * Returns a struct regulator corresponding to the regulator producer, 2294 * or IS_ERR() condition containing errno. 2295 * 2296 * Use of supply names configured via set_consumer_device_supply() is 2297 * strongly encouraged. It is recommended that the supply name used 2298 * should match the name used for the supply and/or the relevant 2299 * device pins in the datasheet. 2300 */ 2301 struct regulator *regulator_get(struct device *dev, const char *id) 2302 { 2303 return _regulator_get(dev, id, NORMAL_GET); 2304 } 2305 EXPORT_SYMBOL_GPL(regulator_get); 2306 2307 /** 2308 * regulator_get_exclusive - obtain exclusive access to a regulator. 2309 * @dev: device for regulator "consumer" 2310 * @id: Supply name or regulator ID. 2311 * 2312 * Returns a struct regulator corresponding to the regulator producer, 2313 * or IS_ERR() condition containing errno. Other consumers will be 2314 * unable to obtain this regulator while this reference is held and the 2315 * use count for the regulator will be initialised to reflect the current 2316 * state of the regulator. 2317 * 2318 * This is intended for use by consumers which cannot tolerate shared 2319 * use of the regulator such as those which need to force the 2320 * regulator off for correct operation of the hardware they are 2321 * controlling. 2322 * 2323 * Use of supply names configured via set_consumer_device_supply() is 2324 * strongly encouraged. It is recommended that the supply name used 2325 * should match the name used for the supply and/or the relevant 2326 * device pins in the datasheet. 2327 */ 2328 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 2329 { 2330 return _regulator_get(dev, id, EXCLUSIVE_GET); 2331 } 2332 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 2333 2334 /** 2335 * regulator_get_optional - obtain optional access to a regulator. 2336 * @dev: device for regulator "consumer" 2337 * @id: Supply name or regulator ID. 2338 * 2339 * Returns a struct regulator corresponding to the regulator producer, 2340 * or IS_ERR() condition containing errno. 2341 * 2342 * This is intended for use by consumers for devices which can have 2343 * some supplies unconnected in normal use, such as some MMC devices. 2344 * It can allow the regulator core to provide stub supplies for other 2345 * supplies requested using normal regulator_get() calls without 2346 * disrupting the operation of drivers that can handle absent 2347 * supplies. 2348 * 2349 * Use of supply names configured via set_consumer_device_supply() is 2350 * strongly encouraged. It is recommended that the supply name used 2351 * should match the name used for the supply and/or the relevant 2352 * device pins in the datasheet. 2353 */ 2354 struct regulator *regulator_get_optional(struct device *dev, const char *id) 2355 { 2356 return _regulator_get(dev, id, OPTIONAL_GET); 2357 } 2358 EXPORT_SYMBOL_GPL(regulator_get_optional); 2359 2360 static void destroy_regulator(struct regulator *regulator) 2361 { 2362 struct regulator_dev *rdev = regulator->rdev; 2363 2364 debugfs_remove_recursive(regulator->debugfs); 2365 2366 if (regulator->dev) { 2367 if (regulator->device_link) 2368 device_link_remove(regulator->dev, &rdev->dev); 2369 2370 /* remove any sysfs entries */ 2371 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 2372 } 2373 2374 regulator_lock(rdev); 2375 list_del(®ulator->list); 2376 2377 rdev->open_count--; 2378 rdev->exclusive = 0; 2379 regulator_unlock(rdev); 2380 2381 kfree_const(regulator->supply_name); 2382 kfree(regulator); 2383 } 2384 2385 /* regulator_list_mutex lock held by regulator_put() */ 2386 static void _regulator_put(struct regulator *regulator) 2387 { 2388 struct regulator_dev *rdev; 2389 2390 if (IS_ERR_OR_NULL(regulator)) 2391 return; 2392 2393 lockdep_assert_held_once(®ulator_list_mutex); 2394 2395 /* Docs say you must disable before calling regulator_put() */ 2396 WARN_ON(regulator->enable_count); 2397 2398 rdev = regulator->rdev; 2399 2400 destroy_regulator(regulator); 2401 2402 module_put(rdev->owner); 2403 put_device(&rdev->dev); 2404 } 2405 2406 /** 2407 * regulator_put - "free" the regulator source 2408 * @regulator: regulator source 2409 * 2410 * Note: drivers must ensure that all regulator_enable calls made on this 2411 * regulator source are balanced by regulator_disable calls prior to calling 2412 * this function. 2413 */ 2414 void regulator_put(struct regulator *regulator) 2415 { 2416 mutex_lock(®ulator_list_mutex); 2417 _regulator_put(regulator); 2418 mutex_unlock(®ulator_list_mutex); 2419 } 2420 EXPORT_SYMBOL_GPL(regulator_put); 2421 2422 /** 2423 * regulator_register_supply_alias - Provide device alias for supply lookup 2424 * 2425 * @dev: device that will be given as the regulator "consumer" 2426 * @id: Supply name or regulator ID 2427 * @alias_dev: device that should be used to lookup the supply 2428 * @alias_id: Supply name or regulator ID that should be used to lookup the 2429 * supply 2430 * 2431 * All lookups for id on dev will instead be conducted for alias_id on 2432 * alias_dev. 2433 */ 2434 int regulator_register_supply_alias(struct device *dev, const char *id, 2435 struct device *alias_dev, 2436 const char *alias_id) 2437 { 2438 struct regulator_supply_alias *map; 2439 2440 map = regulator_find_supply_alias(dev, id); 2441 if (map) 2442 return -EEXIST; 2443 2444 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 2445 if (!map) 2446 return -ENOMEM; 2447 2448 map->src_dev = dev; 2449 map->src_supply = id; 2450 map->alias_dev = alias_dev; 2451 map->alias_supply = alias_id; 2452 2453 list_add(&map->list, ®ulator_supply_alias_list); 2454 2455 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 2456 id, dev_name(dev), alias_id, dev_name(alias_dev)); 2457 2458 return 0; 2459 } 2460 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 2461 2462 /** 2463 * regulator_unregister_supply_alias - Remove device alias 2464 * 2465 * @dev: device that will be given as the regulator "consumer" 2466 * @id: Supply name or regulator ID 2467 * 2468 * Remove a lookup alias if one exists for id on dev. 2469 */ 2470 void regulator_unregister_supply_alias(struct device *dev, const char *id) 2471 { 2472 struct regulator_supply_alias *map; 2473 2474 map = regulator_find_supply_alias(dev, id); 2475 if (map) { 2476 list_del(&map->list); 2477 kfree(map); 2478 } 2479 } 2480 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 2481 2482 /** 2483 * regulator_bulk_register_supply_alias - register multiple aliases 2484 * 2485 * @dev: device that will be given as the regulator "consumer" 2486 * @id: List of supply names or regulator IDs 2487 * @alias_dev: device that should be used to lookup the supply 2488 * @alias_id: List of supply names or regulator IDs that should be used to 2489 * lookup the supply 2490 * @num_id: Number of aliases to register 2491 * 2492 * @return 0 on success, an errno on failure. 2493 * 2494 * This helper function allows drivers to register several supply 2495 * aliases in one operation. If any of the aliases cannot be 2496 * registered any aliases that were registered will be removed 2497 * before returning to the caller. 2498 */ 2499 int regulator_bulk_register_supply_alias(struct device *dev, 2500 const char *const *id, 2501 struct device *alias_dev, 2502 const char *const *alias_id, 2503 int num_id) 2504 { 2505 int i; 2506 int ret; 2507 2508 for (i = 0; i < num_id; ++i) { 2509 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 2510 alias_id[i]); 2511 if (ret < 0) 2512 goto err; 2513 } 2514 2515 return 0; 2516 2517 err: 2518 dev_err(dev, 2519 "Failed to create supply alias %s,%s -> %s,%s\n", 2520 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 2521 2522 while (--i >= 0) 2523 regulator_unregister_supply_alias(dev, id[i]); 2524 2525 return ret; 2526 } 2527 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 2528 2529 /** 2530 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 2531 * 2532 * @dev: device that will be given as the regulator "consumer" 2533 * @id: List of supply names or regulator IDs 2534 * @num_id: Number of aliases to unregister 2535 * 2536 * This helper function allows drivers to unregister several supply 2537 * aliases in one operation. 2538 */ 2539 void regulator_bulk_unregister_supply_alias(struct device *dev, 2540 const char *const *id, 2541 int num_id) 2542 { 2543 int i; 2544 2545 for (i = 0; i < num_id; ++i) 2546 regulator_unregister_supply_alias(dev, id[i]); 2547 } 2548 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 2549 2550 2551 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 2552 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 2553 const struct regulator_config *config) 2554 { 2555 struct regulator_enable_gpio *pin, *new_pin; 2556 struct gpio_desc *gpiod; 2557 2558 gpiod = config->ena_gpiod; 2559 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); 2560 2561 mutex_lock(®ulator_list_mutex); 2562 2563 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 2564 if (pin->gpiod == gpiod) { 2565 rdev_dbg(rdev, "GPIO is already used\n"); 2566 goto update_ena_gpio_to_rdev; 2567 } 2568 } 2569 2570 if (new_pin == NULL) { 2571 mutex_unlock(®ulator_list_mutex); 2572 return -ENOMEM; 2573 } 2574 2575 pin = new_pin; 2576 new_pin = NULL; 2577 2578 pin->gpiod = gpiod; 2579 list_add(&pin->list, ®ulator_ena_gpio_list); 2580 2581 update_ena_gpio_to_rdev: 2582 pin->request_count++; 2583 rdev->ena_pin = pin; 2584 2585 mutex_unlock(®ulator_list_mutex); 2586 kfree(new_pin); 2587 2588 return 0; 2589 } 2590 2591 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 2592 { 2593 struct regulator_enable_gpio *pin, *n; 2594 2595 if (!rdev->ena_pin) 2596 return; 2597 2598 /* Free the GPIO only in case of no use */ 2599 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 2600 if (pin != rdev->ena_pin) 2601 continue; 2602 2603 if (--pin->request_count) 2604 break; 2605 2606 gpiod_put(pin->gpiod); 2607 list_del(&pin->list); 2608 kfree(pin); 2609 break; 2610 } 2611 2612 rdev->ena_pin = NULL; 2613 } 2614 2615 /** 2616 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 2617 * @rdev: regulator_dev structure 2618 * @enable: enable GPIO at initial use? 2619 * 2620 * GPIO is enabled in case of initial use. (enable_count is 0) 2621 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 2622 */ 2623 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 2624 { 2625 struct regulator_enable_gpio *pin = rdev->ena_pin; 2626 2627 if (!pin) 2628 return -EINVAL; 2629 2630 if (enable) { 2631 /* Enable GPIO at initial use */ 2632 if (pin->enable_count == 0) 2633 gpiod_set_value_cansleep(pin->gpiod, 1); 2634 2635 pin->enable_count++; 2636 } else { 2637 if (pin->enable_count > 1) { 2638 pin->enable_count--; 2639 return 0; 2640 } 2641 2642 /* Disable GPIO if not used */ 2643 if (pin->enable_count <= 1) { 2644 gpiod_set_value_cansleep(pin->gpiod, 0); 2645 pin->enable_count = 0; 2646 } 2647 } 2648 2649 return 0; 2650 } 2651 2652 /** 2653 * _regulator_delay_helper - a delay helper function 2654 * @delay: time to delay in microseconds 2655 * 2656 * Delay for the requested amount of time as per the guidelines in: 2657 * 2658 * Documentation/timers/timers-howto.rst 2659 * 2660 * The assumption here is that these regulator operations will never used in 2661 * atomic context and therefore sleeping functions can be used. 2662 */ 2663 static void _regulator_delay_helper(unsigned int delay) 2664 { 2665 unsigned int ms = delay / 1000; 2666 unsigned int us = delay % 1000; 2667 2668 if (ms > 0) { 2669 /* 2670 * For small enough values, handle super-millisecond 2671 * delays in the usleep_range() call below. 2672 */ 2673 if (ms < 20) 2674 us += ms * 1000; 2675 else 2676 msleep(ms); 2677 } 2678 2679 /* 2680 * Give the scheduler some room to coalesce with any other 2681 * wakeup sources. For delays shorter than 10 us, don't even 2682 * bother setting up high-resolution timers and just busy- 2683 * loop. 2684 */ 2685 if (us >= 10) 2686 usleep_range(us, us + 100); 2687 else 2688 udelay(us); 2689 } 2690 2691 /** 2692 * _regulator_check_status_enabled 2693 * 2694 * A helper function to check if the regulator status can be interpreted 2695 * as 'regulator is enabled'. 2696 * @rdev: the regulator device to check 2697 * 2698 * Return: 2699 * * 1 - if status shows regulator is in enabled state 2700 * * 0 - if not enabled state 2701 * * Error Value - as received from ops->get_status() 2702 */ 2703 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) 2704 { 2705 int ret = rdev->desc->ops->get_status(rdev); 2706 2707 if (ret < 0) { 2708 rdev_info(rdev, "get_status returned error: %d\n", ret); 2709 return ret; 2710 } 2711 2712 switch (ret) { 2713 case REGULATOR_STATUS_OFF: 2714 case REGULATOR_STATUS_ERROR: 2715 case REGULATOR_STATUS_UNDEFINED: 2716 return 0; 2717 default: 2718 return 1; 2719 } 2720 } 2721 2722 static int _regulator_do_enable(struct regulator_dev *rdev) 2723 { 2724 int ret, delay; 2725 2726 /* Query before enabling in case configuration dependent. */ 2727 ret = _regulator_get_enable_time(rdev); 2728 if (ret >= 0) { 2729 delay = ret; 2730 } else { 2731 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); 2732 delay = 0; 2733 } 2734 2735 trace_regulator_enable(rdev_get_name(rdev)); 2736 2737 if (rdev->desc->off_on_delay) { 2738 /* if needed, keep a distance of off_on_delay from last time 2739 * this regulator was disabled. 2740 */ 2741 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); 2742 s64 remaining = ktime_us_delta(end, ktime_get_boottime()); 2743 2744 if (remaining > 0) 2745 _regulator_delay_helper(remaining); 2746 } 2747 2748 if (rdev->ena_pin) { 2749 if (!rdev->ena_gpio_state) { 2750 ret = regulator_ena_gpio_ctrl(rdev, true); 2751 if (ret < 0) 2752 return ret; 2753 rdev->ena_gpio_state = 1; 2754 } 2755 } else if (rdev->desc->ops->enable) { 2756 ret = rdev->desc->ops->enable(rdev); 2757 if (ret < 0) 2758 return ret; 2759 } else { 2760 return -EINVAL; 2761 } 2762 2763 /* Allow the regulator to ramp; it would be useful to extend 2764 * this for bulk operations so that the regulators can ramp 2765 * together. 2766 */ 2767 trace_regulator_enable_delay(rdev_get_name(rdev)); 2768 2769 /* If poll_enabled_time is set, poll upto the delay calculated 2770 * above, delaying poll_enabled_time uS to check if the regulator 2771 * actually got enabled. 2772 * If the regulator isn't enabled after our delay helper has expired, 2773 * return -ETIMEDOUT. 2774 */ 2775 if (rdev->desc->poll_enabled_time) { 2776 int time_remaining = delay; 2777 2778 while (time_remaining > 0) { 2779 _regulator_delay_helper(rdev->desc->poll_enabled_time); 2780 2781 if (rdev->desc->ops->get_status) { 2782 ret = _regulator_check_status_enabled(rdev); 2783 if (ret < 0) 2784 return ret; 2785 else if (ret) 2786 break; 2787 } else if (rdev->desc->ops->is_enabled(rdev)) 2788 break; 2789 2790 time_remaining -= rdev->desc->poll_enabled_time; 2791 } 2792 2793 if (time_remaining <= 0) { 2794 rdev_err(rdev, "Enabled check timed out\n"); 2795 return -ETIMEDOUT; 2796 } 2797 } else { 2798 _regulator_delay_helper(delay); 2799 } 2800 2801 trace_regulator_enable_complete(rdev_get_name(rdev)); 2802 2803 return 0; 2804 } 2805 2806 /** 2807 * _regulator_handle_consumer_enable - handle that a consumer enabled 2808 * @regulator: regulator source 2809 * 2810 * Some things on a regulator consumer (like the contribution towards total 2811 * load on the regulator) only have an effect when the consumer wants the 2812 * regulator enabled. Explained in example with two consumers of the same 2813 * regulator: 2814 * consumer A: set_load(100); => total load = 0 2815 * consumer A: regulator_enable(); => total load = 100 2816 * consumer B: set_load(1000); => total load = 100 2817 * consumer B: regulator_enable(); => total load = 1100 2818 * consumer A: regulator_disable(); => total_load = 1000 2819 * 2820 * This function (together with _regulator_handle_consumer_disable) is 2821 * responsible for keeping track of the refcount for a given regulator consumer 2822 * and applying / unapplying these things. 2823 * 2824 * Returns 0 upon no error; -error upon error. 2825 */ 2826 static int _regulator_handle_consumer_enable(struct regulator *regulator) 2827 { 2828 int ret; 2829 struct regulator_dev *rdev = regulator->rdev; 2830 2831 lockdep_assert_held_once(&rdev->mutex.base); 2832 2833 regulator->enable_count++; 2834 if (regulator->uA_load && regulator->enable_count == 1) { 2835 ret = drms_uA_update(rdev); 2836 if (ret) 2837 regulator->enable_count--; 2838 return ret; 2839 } 2840 2841 return 0; 2842 } 2843 2844 /** 2845 * _regulator_handle_consumer_disable - handle that a consumer disabled 2846 * @regulator: regulator source 2847 * 2848 * The opposite of _regulator_handle_consumer_enable(). 2849 * 2850 * Returns 0 upon no error; -error upon error. 2851 */ 2852 static int _regulator_handle_consumer_disable(struct regulator *regulator) 2853 { 2854 struct regulator_dev *rdev = regulator->rdev; 2855 2856 lockdep_assert_held_once(&rdev->mutex.base); 2857 2858 if (!regulator->enable_count) { 2859 rdev_err(rdev, "Underflow of regulator enable count\n"); 2860 return -EINVAL; 2861 } 2862 2863 regulator->enable_count--; 2864 if (regulator->uA_load && regulator->enable_count == 0) 2865 return drms_uA_update(rdev); 2866 2867 return 0; 2868 } 2869 2870 /* locks held by regulator_enable() */ 2871 static int _regulator_enable(struct regulator *regulator) 2872 { 2873 struct regulator_dev *rdev = regulator->rdev; 2874 int ret; 2875 2876 lockdep_assert_held_once(&rdev->mutex.base); 2877 2878 if (rdev->use_count == 0 && rdev->supply) { 2879 ret = _regulator_enable(rdev->supply); 2880 if (ret < 0) 2881 return ret; 2882 } 2883 2884 /* balance only if there are regulators coupled */ 2885 if (rdev->coupling_desc.n_coupled > 1) { 2886 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 2887 if (ret < 0) 2888 goto err_disable_supply; 2889 } 2890 2891 ret = _regulator_handle_consumer_enable(regulator); 2892 if (ret < 0) 2893 goto err_disable_supply; 2894 2895 if (rdev->use_count == 0) { 2896 /* 2897 * The regulator may already be enabled if it's not switchable 2898 * or was left on 2899 */ 2900 ret = _regulator_is_enabled(rdev); 2901 if (ret == -EINVAL || ret == 0) { 2902 if (!regulator_ops_is_valid(rdev, 2903 REGULATOR_CHANGE_STATUS)) { 2904 ret = -EPERM; 2905 goto err_consumer_disable; 2906 } 2907 2908 ret = _regulator_do_enable(rdev); 2909 if (ret < 0) 2910 goto err_consumer_disable; 2911 2912 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, 2913 NULL); 2914 } else if (ret < 0) { 2915 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); 2916 goto err_consumer_disable; 2917 } 2918 /* Fallthrough on positive return values - already enabled */ 2919 } 2920 2921 rdev->use_count++; 2922 2923 return 0; 2924 2925 err_consumer_disable: 2926 _regulator_handle_consumer_disable(regulator); 2927 2928 err_disable_supply: 2929 if (rdev->use_count == 0 && rdev->supply) 2930 _regulator_disable(rdev->supply); 2931 2932 return ret; 2933 } 2934 2935 /** 2936 * regulator_enable - enable regulator output 2937 * @regulator: regulator source 2938 * 2939 * Request that the regulator be enabled with the regulator output at 2940 * the predefined voltage or current value. Calls to regulator_enable() 2941 * must be balanced with calls to regulator_disable(). 2942 * 2943 * NOTE: the output value can be set by other drivers, boot loader or may be 2944 * hardwired in the regulator. 2945 */ 2946 int regulator_enable(struct regulator *regulator) 2947 { 2948 struct regulator_dev *rdev = regulator->rdev; 2949 struct ww_acquire_ctx ww_ctx; 2950 int ret; 2951 2952 regulator_lock_dependent(rdev, &ww_ctx); 2953 ret = _regulator_enable(regulator); 2954 regulator_unlock_dependent(rdev, &ww_ctx); 2955 2956 return ret; 2957 } 2958 EXPORT_SYMBOL_GPL(regulator_enable); 2959 2960 static int _regulator_do_disable(struct regulator_dev *rdev) 2961 { 2962 int ret; 2963 2964 trace_regulator_disable(rdev_get_name(rdev)); 2965 2966 if (rdev->ena_pin) { 2967 if (rdev->ena_gpio_state) { 2968 ret = regulator_ena_gpio_ctrl(rdev, false); 2969 if (ret < 0) 2970 return ret; 2971 rdev->ena_gpio_state = 0; 2972 } 2973 2974 } else if (rdev->desc->ops->disable) { 2975 ret = rdev->desc->ops->disable(rdev); 2976 if (ret != 0) 2977 return ret; 2978 } 2979 2980 if (rdev->desc->off_on_delay) 2981 rdev->last_off = ktime_get_boottime(); 2982 2983 trace_regulator_disable_complete(rdev_get_name(rdev)); 2984 2985 return 0; 2986 } 2987 2988 /* locks held by regulator_disable() */ 2989 static int _regulator_disable(struct regulator *regulator) 2990 { 2991 struct regulator_dev *rdev = regulator->rdev; 2992 int ret = 0; 2993 2994 lockdep_assert_held_once(&rdev->mutex.base); 2995 2996 if (WARN(rdev->use_count <= 0, 2997 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2998 return -EIO; 2999 3000 /* are we the last user and permitted to disable ? */ 3001 if (rdev->use_count == 1 && 3002 (rdev->constraints && !rdev->constraints->always_on)) { 3003 3004 /* we are last user */ 3005 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { 3006 ret = _notifier_call_chain(rdev, 3007 REGULATOR_EVENT_PRE_DISABLE, 3008 NULL); 3009 if (ret & NOTIFY_STOP_MASK) 3010 return -EINVAL; 3011 3012 ret = _regulator_do_disable(rdev); 3013 if (ret < 0) { 3014 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); 3015 _notifier_call_chain(rdev, 3016 REGULATOR_EVENT_ABORT_DISABLE, 3017 NULL); 3018 return ret; 3019 } 3020 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 3021 NULL); 3022 } 3023 3024 rdev->use_count = 0; 3025 } else if (rdev->use_count > 1) { 3026 rdev->use_count--; 3027 } 3028 3029 if (ret == 0) 3030 ret = _regulator_handle_consumer_disable(regulator); 3031 3032 if (ret == 0 && rdev->coupling_desc.n_coupled > 1) 3033 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3034 3035 if (ret == 0 && rdev->use_count == 0 && rdev->supply) 3036 ret = _regulator_disable(rdev->supply); 3037 3038 return ret; 3039 } 3040 3041 /** 3042 * regulator_disable - disable regulator output 3043 * @regulator: regulator source 3044 * 3045 * Disable the regulator output voltage or current. Calls to 3046 * regulator_enable() must be balanced with calls to 3047 * regulator_disable(). 3048 * 3049 * NOTE: this will only disable the regulator output if no other consumer 3050 * devices have it enabled, the regulator device supports disabling and 3051 * machine constraints permit this operation. 3052 */ 3053 int regulator_disable(struct regulator *regulator) 3054 { 3055 struct regulator_dev *rdev = regulator->rdev; 3056 struct ww_acquire_ctx ww_ctx; 3057 int ret; 3058 3059 regulator_lock_dependent(rdev, &ww_ctx); 3060 ret = _regulator_disable(regulator); 3061 regulator_unlock_dependent(rdev, &ww_ctx); 3062 3063 return ret; 3064 } 3065 EXPORT_SYMBOL_GPL(regulator_disable); 3066 3067 /* locks held by regulator_force_disable() */ 3068 static int _regulator_force_disable(struct regulator_dev *rdev) 3069 { 3070 int ret = 0; 3071 3072 lockdep_assert_held_once(&rdev->mutex.base); 3073 3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3075 REGULATOR_EVENT_PRE_DISABLE, NULL); 3076 if (ret & NOTIFY_STOP_MASK) 3077 return -EINVAL; 3078 3079 ret = _regulator_do_disable(rdev); 3080 if (ret < 0) { 3081 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); 3082 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3083 REGULATOR_EVENT_ABORT_DISABLE, NULL); 3084 return ret; 3085 } 3086 3087 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 3088 REGULATOR_EVENT_DISABLE, NULL); 3089 3090 return 0; 3091 } 3092 3093 /** 3094 * regulator_force_disable - force disable regulator output 3095 * @regulator: regulator source 3096 * 3097 * Forcibly disable the regulator output voltage or current. 3098 * NOTE: this *will* disable the regulator output even if other consumer 3099 * devices have it enabled. This should be used for situations when device 3100 * damage will likely occur if the regulator is not disabled (e.g. over temp). 3101 */ 3102 int regulator_force_disable(struct regulator *regulator) 3103 { 3104 struct regulator_dev *rdev = regulator->rdev; 3105 struct ww_acquire_ctx ww_ctx; 3106 int ret; 3107 3108 regulator_lock_dependent(rdev, &ww_ctx); 3109 3110 ret = _regulator_force_disable(regulator->rdev); 3111 3112 if (rdev->coupling_desc.n_coupled > 1) 3113 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3114 3115 if (regulator->uA_load) { 3116 regulator->uA_load = 0; 3117 ret = drms_uA_update(rdev); 3118 } 3119 3120 if (rdev->use_count != 0 && rdev->supply) 3121 _regulator_disable(rdev->supply); 3122 3123 regulator_unlock_dependent(rdev, &ww_ctx); 3124 3125 return ret; 3126 } 3127 EXPORT_SYMBOL_GPL(regulator_force_disable); 3128 3129 static void regulator_disable_work(struct work_struct *work) 3130 { 3131 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 3132 disable_work.work); 3133 struct ww_acquire_ctx ww_ctx; 3134 int count, i, ret; 3135 struct regulator *regulator; 3136 int total_count = 0; 3137 3138 regulator_lock_dependent(rdev, &ww_ctx); 3139 3140 /* 3141 * Workqueue functions queue the new work instance while the previous 3142 * work instance is being processed. Cancel the queued work instance 3143 * as the work instance under processing does the job of the queued 3144 * work instance. 3145 */ 3146 cancel_delayed_work(&rdev->disable_work); 3147 3148 list_for_each_entry(regulator, &rdev->consumer_list, list) { 3149 count = regulator->deferred_disables; 3150 3151 if (!count) 3152 continue; 3153 3154 total_count += count; 3155 regulator->deferred_disables = 0; 3156 3157 for (i = 0; i < count; i++) { 3158 ret = _regulator_disable(regulator); 3159 if (ret != 0) 3160 rdev_err(rdev, "Deferred disable failed: %pe\n", 3161 ERR_PTR(ret)); 3162 } 3163 } 3164 WARN_ON(!total_count); 3165 3166 if (rdev->coupling_desc.n_coupled > 1) 3167 regulator_balance_voltage(rdev, PM_SUSPEND_ON); 3168 3169 regulator_unlock_dependent(rdev, &ww_ctx); 3170 } 3171 3172 /** 3173 * regulator_disable_deferred - disable regulator output with delay 3174 * @regulator: regulator source 3175 * @ms: milliseconds until the regulator is disabled 3176 * 3177 * Execute regulator_disable() on the regulator after a delay. This 3178 * is intended for use with devices that require some time to quiesce. 3179 * 3180 * NOTE: this will only disable the regulator output if no other consumer 3181 * devices have it enabled, the regulator device supports disabling and 3182 * machine constraints permit this operation. 3183 */ 3184 int regulator_disable_deferred(struct regulator *regulator, int ms) 3185 { 3186 struct regulator_dev *rdev = regulator->rdev; 3187 3188 if (!ms) 3189 return regulator_disable(regulator); 3190 3191 regulator_lock(rdev); 3192 regulator->deferred_disables++; 3193 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, 3194 msecs_to_jiffies(ms)); 3195 regulator_unlock(rdev); 3196 3197 return 0; 3198 } 3199 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 3200 3201 static int _regulator_is_enabled(struct regulator_dev *rdev) 3202 { 3203 /* A GPIO control always takes precedence */ 3204 if (rdev->ena_pin) 3205 return rdev->ena_gpio_state; 3206 3207 /* If we don't know then assume that the regulator is always on */ 3208 if (!rdev->desc->ops->is_enabled) 3209 return 1; 3210 3211 return rdev->desc->ops->is_enabled(rdev); 3212 } 3213 3214 static int _regulator_list_voltage(struct regulator_dev *rdev, 3215 unsigned selector, int lock) 3216 { 3217 const struct regulator_ops *ops = rdev->desc->ops; 3218 int ret; 3219 3220 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 3221 return rdev->desc->fixed_uV; 3222 3223 if (ops->list_voltage) { 3224 if (selector >= rdev->desc->n_voltages) 3225 return -EINVAL; 3226 if (selector < rdev->desc->linear_min_sel) 3227 return 0; 3228 if (lock) 3229 regulator_lock(rdev); 3230 ret = ops->list_voltage(rdev, selector); 3231 if (lock) 3232 regulator_unlock(rdev); 3233 } else if (rdev->is_switch && rdev->supply) { 3234 ret = _regulator_list_voltage(rdev->supply->rdev, 3235 selector, lock); 3236 } else { 3237 return -EINVAL; 3238 } 3239 3240 if (ret > 0) { 3241 if (ret < rdev->constraints->min_uV) 3242 ret = 0; 3243 else if (ret > rdev->constraints->max_uV) 3244 ret = 0; 3245 } 3246 3247 return ret; 3248 } 3249 3250 /** 3251 * regulator_is_enabled - is the regulator output enabled 3252 * @regulator: regulator source 3253 * 3254 * Returns positive if the regulator driver backing the source/client 3255 * has requested that the device be enabled, zero if it hasn't, else a 3256 * negative errno code. 3257 * 3258 * Note that the device backing this regulator handle can have multiple 3259 * users, so it might be enabled even if regulator_enable() was never 3260 * called for this particular source. 3261 */ 3262 int regulator_is_enabled(struct regulator *regulator) 3263 { 3264 int ret; 3265 3266 if (regulator->always_on) 3267 return 1; 3268 3269 regulator_lock(regulator->rdev); 3270 ret = _regulator_is_enabled(regulator->rdev); 3271 regulator_unlock(regulator->rdev); 3272 3273 return ret; 3274 } 3275 EXPORT_SYMBOL_GPL(regulator_is_enabled); 3276 3277 /** 3278 * regulator_count_voltages - count regulator_list_voltage() selectors 3279 * @regulator: regulator source 3280 * 3281 * Returns number of selectors, or negative errno. Selectors are 3282 * numbered starting at zero, and typically correspond to bitfields 3283 * in hardware registers. 3284 */ 3285 int regulator_count_voltages(struct regulator *regulator) 3286 { 3287 struct regulator_dev *rdev = regulator->rdev; 3288 3289 if (rdev->desc->n_voltages) 3290 return rdev->desc->n_voltages; 3291 3292 if (!rdev->is_switch || !rdev->supply) 3293 return -EINVAL; 3294 3295 return regulator_count_voltages(rdev->supply); 3296 } 3297 EXPORT_SYMBOL_GPL(regulator_count_voltages); 3298 3299 /** 3300 * regulator_list_voltage - enumerate supported voltages 3301 * @regulator: regulator source 3302 * @selector: identify voltage to list 3303 * Context: can sleep 3304 * 3305 * Returns a voltage that can be passed to @regulator_set_voltage(), 3306 * zero if this selector code can't be used on this system, or a 3307 * negative errno. 3308 */ 3309 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 3310 { 3311 return _regulator_list_voltage(regulator->rdev, selector, 1); 3312 } 3313 EXPORT_SYMBOL_GPL(regulator_list_voltage); 3314 3315 /** 3316 * regulator_get_regmap - get the regulator's register map 3317 * @regulator: regulator source 3318 * 3319 * Returns the register map for the given regulator, or an ERR_PTR value 3320 * if the regulator doesn't use regmap. 3321 */ 3322 struct regmap *regulator_get_regmap(struct regulator *regulator) 3323 { 3324 struct regmap *map = regulator->rdev->regmap; 3325 3326 return map ? map : ERR_PTR(-EOPNOTSUPP); 3327 } 3328 3329 /** 3330 * regulator_get_hardware_vsel_register - get the HW voltage selector register 3331 * @regulator: regulator source 3332 * @vsel_reg: voltage selector register, output parameter 3333 * @vsel_mask: mask for voltage selector bitfield, output parameter 3334 * 3335 * Returns the hardware register offset and bitmask used for setting the 3336 * regulator voltage. This might be useful when configuring voltage-scaling 3337 * hardware or firmware that can make I2C requests behind the kernel's back, 3338 * for example. 3339 * 3340 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 3341 * and 0 is returned, otherwise a negative errno is returned. 3342 */ 3343 int regulator_get_hardware_vsel_register(struct regulator *regulator, 3344 unsigned *vsel_reg, 3345 unsigned *vsel_mask) 3346 { 3347 struct regulator_dev *rdev = regulator->rdev; 3348 const struct regulator_ops *ops = rdev->desc->ops; 3349 3350 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3351 return -EOPNOTSUPP; 3352 3353 *vsel_reg = rdev->desc->vsel_reg; 3354 *vsel_mask = rdev->desc->vsel_mask; 3355 3356 return 0; 3357 } 3358 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 3359 3360 /** 3361 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 3362 * @regulator: regulator source 3363 * @selector: identify voltage to list 3364 * 3365 * Converts the selector to a hardware-specific voltage selector that can be 3366 * directly written to the regulator registers. The address of the voltage 3367 * register can be determined by calling @regulator_get_hardware_vsel_register. 3368 * 3369 * On error a negative errno is returned. 3370 */ 3371 int regulator_list_hardware_vsel(struct regulator *regulator, 3372 unsigned selector) 3373 { 3374 struct regulator_dev *rdev = regulator->rdev; 3375 const struct regulator_ops *ops = rdev->desc->ops; 3376 3377 if (selector >= rdev->desc->n_voltages) 3378 return -EINVAL; 3379 if (selector < rdev->desc->linear_min_sel) 3380 return 0; 3381 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 3382 return -EOPNOTSUPP; 3383 3384 return selector; 3385 } 3386 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 3387 3388 /** 3389 * regulator_get_linear_step - return the voltage step size between VSEL values 3390 * @regulator: regulator source 3391 * 3392 * Returns the voltage step size between VSEL values for linear 3393 * regulators, or return 0 if the regulator isn't a linear regulator. 3394 */ 3395 unsigned int regulator_get_linear_step(struct regulator *regulator) 3396 { 3397 struct regulator_dev *rdev = regulator->rdev; 3398 3399 return rdev->desc->uV_step; 3400 } 3401 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 3402 3403 /** 3404 * regulator_is_supported_voltage - check if a voltage range can be supported 3405 * 3406 * @regulator: Regulator to check. 3407 * @min_uV: Minimum required voltage in uV. 3408 * @max_uV: Maximum required voltage in uV. 3409 * 3410 * Returns a boolean. 3411 */ 3412 int regulator_is_supported_voltage(struct regulator *regulator, 3413 int min_uV, int max_uV) 3414 { 3415 struct regulator_dev *rdev = regulator->rdev; 3416 int i, voltages, ret; 3417 3418 /* If we can't change voltage check the current voltage */ 3419 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3420 ret = regulator_get_voltage(regulator); 3421 if (ret >= 0) 3422 return min_uV <= ret && ret <= max_uV; 3423 else 3424 return ret; 3425 } 3426 3427 /* Any voltage within constrains range is fine? */ 3428 if (rdev->desc->continuous_voltage_range) 3429 return min_uV >= rdev->constraints->min_uV && 3430 max_uV <= rdev->constraints->max_uV; 3431 3432 ret = regulator_count_voltages(regulator); 3433 if (ret < 0) 3434 return 0; 3435 voltages = ret; 3436 3437 for (i = 0; i < voltages; i++) { 3438 ret = regulator_list_voltage(regulator, i); 3439 3440 if (ret >= min_uV && ret <= max_uV) 3441 return 1; 3442 } 3443 3444 return 0; 3445 } 3446 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 3447 3448 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, 3449 int max_uV) 3450 { 3451 const struct regulator_desc *desc = rdev->desc; 3452 3453 if (desc->ops->map_voltage) 3454 return desc->ops->map_voltage(rdev, min_uV, max_uV); 3455 3456 if (desc->ops->list_voltage == regulator_list_voltage_linear) 3457 return regulator_map_voltage_linear(rdev, min_uV, max_uV); 3458 3459 if (desc->ops->list_voltage == regulator_list_voltage_linear_range) 3460 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); 3461 3462 if (desc->ops->list_voltage == 3463 regulator_list_voltage_pickable_linear_range) 3464 return regulator_map_voltage_pickable_linear_range(rdev, 3465 min_uV, max_uV); 3466 3467 return regulator_map_voltage_iterate(rdev, min_uV, max_uV); 3468 } 3469 3470 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 3471 int min_uV, int max_uV, 3472 unsigned *selector) 3473 { 3474 struct pre_voltage_change_data data; 3475 int ret; 3476 3477 data.old_uV = regulator_get_voltage_rdev(rdev); 3478 data.min_uV = min_uV; 3479 data.max_uV = max_uV; 3480 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3481 &data); 3482 if (ret & NOTIFY_STOP_MASK) 3483 return -EINVAL; 3484 3485 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 3486 if (ret >= 0) 3487 return ret; 3488 3489 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3490 (void *)data.old_uV); 3491 3492 return ret; 3493 } 3494 3495 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 3496 int uV, unsigned selector) 3497 { 3498 struct pre_voltage_change_data data; 3499 int ret; 3500 3501 data.old_uV = regulator_get_voltage_rdev(rdev); 3502 data.min_uV = uV; 3503 data.max_uV = uV; 3504 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 3505 &data); 3506 if (ret & NOTIFY_STOP_MASK) 3507 return -EINVAL; 3508 3509 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 3510 if (ret >= 0) 3511 return ret; 3512 3513 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 3514 (void *)data.old_uV); 3515 3516 return ret; 3517 } 3518 3519 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, 3520 int uV, int new_selector) 3521 { 3522 const struct regulator_ops *ops = rdev->desc->ops; 3523 int diff, old_sel, curr_sel, ret; 3524 3525 /* Stepping is only needed if the regulator is enabled. */ 3526 if (!_regulator_is_enabled(rdev)) 3527 goto final_set; 3528 3529 if (!ops->get_voltage_sel) 3530 return -EINVAL; 3531 3532 old_sel = ops->get_voltage_sel(rdev); 3533 if (old_sel < 0) 3534 return old_sel; 3535 3536 diff = new_selector - old_sel; 3537 if (diff == 0) 3538 return 0; /* No change needed. */ 3539 3540 if (diff > 0) { 3541 /* Stepping up. */ 3542 for (curr_sel = old_sel + rdev->desc->vsel_step; 3543 curr_sel < new_selector; 3544 curr_sel += rdev->desc->vsel_step) { 3545 /* 3546 * Call the callback directly instead of using 3547 * _regulator_call_set_voltage_sel() as we don't 3548 * want to notify anyone yet. Same in the branch 3549 * below. 3550 */ 3551 ret = ops->set_voltage_sel(rdev, curr_sel); 3552 if (ret) 3553 goto try_revert; 3554 } 3555 } else { 3556 /* Stepping down. */ 3557 for (curr_sel = old_sel - rdev->desc->vsel_step; 3558 curr_sel > new_selector; 3559 curr_sel -= rdev->desc->vsel_step) { 3560 ret = ops->set_voltage_sel(rdev, curr_sel); 3561 if (ret) 3562 goto try_revert; 3563 } 3564 } 3565 3566 final_set: 3567 /* The final selector will trigger the notifiers. */ 3568 return _regulator_call_set_voltage_sel(rdev, uV, new_selector); 3569 3570 try_revert: 3571 /* 3572 * At least try to return to the previous voltage if setting a new 3573 * one failed. 3574 */ 3575 (void)ops->set_voltage_sel(rdev, old_sel); 3576 return ret; 3577 } 3578 3579 static int _regulator_set_voltage_time(struct regulator_dev *rdev, 3580 int old_uV, int new_uV) 3581 { 3582 unsigned int ramp_delay = 0; 3583 3584 if (rdev->constraints->ramp_delay) 3585 ramp_delay = rdev->constraints->ramp_delay; 3586 else if (rdev->desc->ramp_delay) 3587 ramp_delay = rdev->desc->ramp_delay; 3588 else if (rdev->constraints->settling_time) 3589 return rdev->constraints->settling_time; 3590 else if (rdev->constraints->settling_time_up && 3591 (new_uV > old_uV)) 3592 return rdev->constraints->settling_time_up; 3593 else if (rdev->constraints->settling_time_down && 3594 (new_uV < old_uV)) 3595 return rdev->constraints->settling_time_down; 3596 3597 if (ramp_delay == 0) 3598 return 0; 3599 3600 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); 3601 } 3602 3603 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 3604 int min_uV, int max_uV) 3605 { 3606 int ret; 3607 int delay = 0; 3608 int best_val = 0; 3609 unsigned int selector; 3610 int old_selector = -1; 3611 const struct regulator_ops *ops = rdev->desc->ops; 3612 int old_uV = regulator_get_voltage_rdev(rdev); 3613 3614 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 3615 3616 min_uV += rdev->constraints->uV_offset; 3617 max_uV += rdev->constraints->uV_offset; 3618 3619 /* 3620 * If we can't obtain the old selector there is not enough 3621 * info to call set_voltage_time_sel(). 3622 */ 3623 if (_regulator_is_enabled(rdev) && 3624 ops->set_voltage_time_sel && ops->get_voltage_sel) { 3625 old_selector = ops->get_voltage_sel(rdev); 3626 if (old_selector < 0) 3627 return old_selector; 3628 } 3629 3630 if (ops->set_voltage) { 3631 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 3632 &selector); 3633 3634 if (ret >= 0) { 3635 if (ops->list_voltage) 3636 best_val = ops->list_voltage(rdev, 3637 selector); 3638 else 3639 best_val = regulator_get_voltage_rdev(rdev); 3640 } 3641 3642 } else if (ops->set_voltage_sel) { 3643 ret = regulator_map_voltage(rdev, min_uV, max_uV); 3644 if (ret >= 0) { 3645 best_val = ops->list_voltage(rdev, ret); 3646 if (min_uV <= best_val && max_uV >= best_val) { 3647 selector = ret; 3648 if (old_selector == selector) 3649 ret = 0; 3650 else if (rdev->desc->vsel_step) 3651 ret = _regulator_set_voltage_sel_step( 3652 rdev, best_val, selector); 3653 else 3654 ret = _regulator_call_set_voltage_sel( 3655 rdev, best_val, selector); 3656 } else { 3657 ret = -EINVAL; 3658 } 3659 } 3660 } else { 3661 ret = -EINVAL; 3662 } 3663 3664 if (ret) 3665 goto out; 3666 3667 if (ops->set_voltage_time_sel) { 3668 /* 3669 * Call set_voltage_time_sel if successfully obtained 3670 * old_selector 3671 */ 3672 if (old_selector >= 0 && old_selector != selector) 3673 delay = ops->set_voltage_time_sel(rdev, old_selector, 3674 selector); 3675 } else { 3676 if (old_uV != best_val) { 3677 if (ops->set_voltage_time) 3678 delay = ops->set_voltage_time(rdev, old_uV, 3679 best_val); 3680 else 3681 delay = _regulator_set_voltage_time(rdev, 3682 old_uV, 3683 best_val); 3684 } 3685 } 3686 3687 if (delay < 0) { 3688 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); 3689 delay = 0; 3690 } 3691 3692 /* Insert any necessary delays */ 3693 _regulator_delay_helper(delay); 3694 3695 if (best_val >= 0) { 3696 unsigned long data = best_val; 3697 3698 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 3699 (void *)data); 3700 } 3701 3702 out: 3703 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 3704 3705 return ret; 3706 } 3707 3708 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, 3709 int min_uV, int max_uV, suspend_state_t state) 3710 { 3711 struct regulator_state *rstate; 3712 int uV, sel; 3713 3714 rstate = regulator_get_suspend_state(rdev, state); 3715 if (rstate == NULL) 3716 return -EINVAL; 3717 3718 if (min_uV < rstate->min_uV) 3719 min_uV = rstate->min_uV; 3720 if (max_uV > rstate->max_uV) 3721 max_uV = rstate->max_uV; 3722 3723 sel = regulator_map_voltage(rdev, min_uV, max_uV); 3724 if (sel < 0) 3725 return sel; 3726 3727 uV = rdev->desc->ops->list_voltage(rdev, sel); 3728 if (uV >= min_uV && uV <= max_uV) 3729 rstate->uV = uV; 3730 3731 return 0; 3732 } 3733 3734 static int regulator_set_voltage_unlocked(struct regulator *regulator, 3735 int min_uV, int max_uV, 3736 suspend_state_t state) 3737 { 3738 struct regulator_dev *rdev = regulator->rdev; 3739 struct regulator_voltage *voltage = ®ulator->voltage[state]; 3740 int ret = 0; 3741 int old_min_uV, old_max_uV; 3742 int current_uV; 3743 3744 /* If we're setting the same range as last time the change 3745 * should be a noop (some cpufreq implementations use the same 3746 * voltage for multiple frequencies, for example). 3747 */ 3748 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) 3749 goto out; 3750 3751 /* If we're trying to set a range that overlaps the current voltage, 3752 * return successfully even though the regulator does not support 3753 * changing the voltage. 3754 */ 3755 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { 3756 current_uV = regulator_get_voltage_rdev(rdev); 3757 if (min_uV <= current_uV && current_uV <= max_uV) { 3758 voltage->min_uV = min_uV; 3759 voltage->max_uV = max_uV; 3760 goto out; 3761 } 3762 } 3763 3764 /* sanity check */ 3765 if (!rdev->desc->ops->set_voltage && 3766 !rdev->desc->ops->set_voltage_sel) { 3767 ret = -EINVAL; 3768 goto out; 3769 } 3770 3771 /* constraints check */ 3772 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 3773 if (ret < 0) 3774 goto out; 3775 3776 /* restore original values in case of error */ 3777 old_min_uV = voltage->min_uV; 3778 old_max_uV = voltage->max_uV; 3779 voltage->min_uV = min_uV; 3780 voltage->max_uV = max_uV; 3781 3782 /* for not coupled regulators this will just set the voltage */ 3783 ret = regulator_balance_voltage(rdev, state); 3784 if (ret < 0) { 3785 voltage->min_uV = old_min_uV; 3786 voltage->max_uV = old_max_uV; 3787 } 3788 3789 out: 3790 return ret; 3791 } 3792 3793 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, 3794 int max_uV, suspend_state_t state) 3795 { 3796 int best_supply_uV = 0; 3797 int supply_change_uV = 0; 3798 int ret; 3799 3800 if (rdev->supply && 3801 regulator_ops_is_valid(rdev->supply->rdev, 3802 REGULATOR_CHANGE_VOLTAGE) && 3803 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || 3804 rdev->desc->ops->get_voltage_sel))) { 3805 int current_supply_uV; 3806 int selector; 3807 3808 selector = regulator_map_voltage(rdev, min_uV, max_uV); 3809 if (selector < 0) { 3810 ret = selector; 3811 goto out; 3812 } 3813 3814 best_supply_uV = _regulator_list_voltage(rdev, selector, 0); 3815 if (best_supply_uV < 0) { 3816 ret = best_supply_uV; 3817 goto out; 3818 } 3819 3820 best_supply_uV += rdev->desc->min_dropout_uV; 3821 3822 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); 3823 if (current_supply_uV < 0) { 3824 ret = current_supply_uV; 3825 goto out; 3826 } 3827 3828 supply_change_uV = best_supply_uV - current_supply_uV; 3829 } 3830 3831 if (supply_change_uV > 0) { 3832 ret = regulator_set_voltage_unlocked(rdev->supply, 3833 best_supply_uV, INT_MAX, state); 3834 if (ret) { 3835 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", 3836 ERR_PTR(ret)); 3837 goto out; 3838 } 3839 } 3840 3841 if (state == PM_SUSPEND_ON) 3842 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 3843 else 3844 ret = _regulator_do_set_suspend_voltage(rdev, min_uV, 3845 max_uV, state); 3846 if (ret < 0) 3847 goto out; 3848 3849 if (supply_change_uV < 0) { 3850 ret = regulator_set_voltage_unlocked(rdev->supply, 3851 best_supply_uV, INT_MAX, state); 3852 if (ret) 3853 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", 3854 ERR_PTR(ret)); 3855 /* No need to fail here */ 3856 ret = 0; 3857 } 3858 3859 out: 3860 return ret; 3861 } 3862 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); 3863 3864 static int regulator_limit_voltage_step(struct regulator_dev *rdev, 3865 int *current_uV, int *min_uV) 3866 { 3867 struct regulation_constraints *constraints = rdev->constraints; 3868 3869 /* Limit voltage change only if necessary */ 3870 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) 3871 return 1; 3872 3873 if (*current_uV < 0) { 3874 *current_uV = regulator_get_voltage_rdev(rdev); 3875 3876 if (*current_uV < 0) 3877 return *current_uV; 3878 } 3879 3880 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) 3881 return 1; 3882 3883 /* Clamp target voltage within the given step */ 3884 if (*current_uV < *min_uV) 3885 *min_uV = min(*current_uV + constraints->max_uV_step, 3886 *min_uV); 3887 else 3888 *min_uV = max(*current_uV - constraints->max_uV_step, 3889 *min_uV); 3890 3891 return 0; 3892 } 3893 3894 static int regulator_get_optimal_voltage(struct regulator_dev *rdev, 3895 int *current_uV, 3896 int *min_uV, int *max_uV, 3897 suspend_state_t state, 3898 int n_coupled) 3899 { 3900 struct coupling_desc *c_desc = &rdev->coupling_desc; 3901 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; 3902 struct regulation_constraints *constraints = rdev->constraints; 3903 int desired_min_uV = 0, desired_max_uV = INT_MAX; 3904 int max_current_uV = 0, min_current_uV = INT_MAX; 3905 int highest_min_uV = 0, target_uV, possible_uV; 3906 int i, ret, max_spread; 3907 bool done; 3908 3909 *current_uV = -1; 3910 3911 /* 3912 * If there are no coupled regulators, simply set the voltage 3913 * demanded by consumers. 3914 */ 3915 if (n_coupled == 1) { 3916 /* 3917 * If consumers don't provide any demands, set voltage 3918 * to min_uV 3919 */ 3920 desired_min_uV = constraints->min_uV; 3921 desired_max_uV = constraints->max_uV; 3922 3923 ret = regulator_check_consumers(rdev, 3924 &desired_min_uV, 3925 &desired_max_uV, state); 3926 if (ret < 0) 3927 return ret; 3928 3929 possible_uV = desired_min_uV; 3930 done = true; 3931 3932 goto finish; 3933 } 3934 3935 /* Find highest min desired voltage */ 3936 for (i = 0; i < n_coupled; i++) { 3937 int tmp_min = 0; 3938 int tmp_max = INT_MAX; 3939 3940 lockdep_assert_held_once(&c_rdevs[i]->mutex.base); 3941 3942 ret = regulator_check_consumers(c_rdevs[i], 3943 &tmp_min, 3944 &tmp_max, state); 3945 if (ret < 0) 3946 return ret; 3947 3948 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); 3949 if (ret < 0) 3950 return ret; 3951 3952 highest_min_uV = max(highest_min_uV, tmp_min); 3953 3954 if (i == 0) { 3955 desired_min_uV = tmp_min; 3956 desired_max_uV = tmp_max; 3957 } 3958 } 3959 3960 max_spread = constraints->max_spread[0]; 3961 3962 /* 3963 * Let target_uV be equal to the desired one if possible. 3964 * If not, set it to minimum voltage, allowed by other coupled 3965 * regulators. 3966 */ 3967 target_uV = max(desired_min_uV, highest_min_uV - max_spread); 3968 3969 /* 3970 * Find min and max voltages, which currently aren't violating 3971 * max_spread. 3972 */ 3973 for (i = 1; i < n_coupled; i++) { 3974 int tmp_act; 3975 3976 if (!_regulator_is_enabled(c_rdevs[i])) 3977 continue; 3978 3979 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); 3980 if (tmp_act < 0) 3981 return tmp_act; 3982 3983 min_current_uV = min(tmp_act, min_current_uV); 3984 max_current_uV = max(tmp_act, max_current_uV); 3985 } 3986 3987 /* There aren't any other regulators enabled */ 3988 if (max_current_uV == 0) { 3989 possible_uV = target_uV; 3990 } else { 3991 /* 3992 * Correct target voltage, so as it currently isn't 3993 * violating max_spread 3994 */ 3995 possible_uV = max(target_uV, max_current_uV - max_spread); 3996 possible_uV = min(possible_uV, min_current_uV + max_spread); 3997 } 3998 3999 if (possible_uV > desired_max_uV) 4000 return -EINVAL; 4001 4002 done = (possible_uV == target_uV); 4003 desired_min_uV = possible_uV; 4004 4005 finish: 4006 /* Apply max_uV_step constraint if necessary */ 4007 if (state == PM_SUSPEND_ON) { 4008 ret = regulator_limit_voltage_step(rdev, current_uV, 4009 &desired_min_uV); 4010 if (ret < 0) 4011 return ret; 4012 4013 if (ret == 0) 4014 done = false; 4015 } 4016 4017 /* Set current_uV if wasn't done earlier in the code and if necessary */ 4018 if (n_coupled > 1 && *current_uV == -1) { 4019 4020 if (_regulator_is_enabled(rdev)) { 4021 ret = regulator_get_voltage_rdev(rdev); 4022 if (ret < 0) 4023 return ret; 4024 4025 *current_uV = ret; 4026 } else { 4027 *current_uV = desired_min_uV; 4028 } 4029 } 4030 4031 *min_uV = desired_min_uV; 4032 *max_uV = desired_max_uV; 4033 4034 return done; 4035 } 4036 4037 int regulator_do_balance_voltage(struct regulator_dev *rdev, 4038 suspend_state_t state, bool skip_coupled) 4039 { 4040 struct regulator_dev **c_rdevs; 4041 struct regulator_dev *best_rdev; 4042 struct coupling_desc *c_desc = &rdev->coupling_desc; 4043 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; 4044 unsigned int delta, best_delta; 4045 unsigned long c_rdev_done = 0; 4046 bool best_c_rdev_done; 4047 4048 c_rdevs = c_desc->coupled_rdevs; 4049 n_coupled = skip_coupled ? 1 : c_desc->n_coupled; 4050 4051 /* 4052 * Find the best possible voltage change on each loop. Leave the loop 4053 * if there isn't any possible change. 4054 */ 4055 do { 4056 best_c_rdev_done = false; 4057 best_delta = 0; 4058 best_min_uV = 0; 4059 best_max_uV = 0; 4060 best_c_rdev = 0; 4061 best_rdev = NULL; 4062 4063 /* 4064 * Find highest difference between optimal voltage 4065 * and current voltage. 4066 */ 4067 for (i = 0; i < n_coupled; i++) { 4068 /* 4069 * optimal_uV is the best voltage that can be set for 4070 * i-th regulator at the moment without violating 4071 * max_spread constraint in order to balance 4072 * the coupled voltages. 4073 */ 4074 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; 4075 4076 if (test_bit(i, &c_rdev_done)) 4077 continue; 4078 4079 ret = regulator_get_optimal_voltage(c_rdevs[i], 4080 ¤t_uV, 4081 &optimal_uV, 4082 &optimal_max_uV, 4083 state, n_coupled); 4084 if (ret < 0) 4085 goto out; 4086 4087 delta = abs(optimal_uV - current_uV); 4088 4089 if (delta && best_delta <= delta) { 4090 best_c_rdev_done = ret; 4091 best_delta = delta; 4092 best_rdev = c_rdevs[i]; 4093 best_min_uV = optimal_uV; 4094 best_max_uV = optimal_max_uV; 4095 best_c_rdev = i; 4096 } 4097 } 4098 4099 /* Nothing to change, return successfully */ 4100 if (!best_rdev) { 4101 ret = 0; 4102 goto out; 4103 } 4104 4105 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, 4106 best_max_uV, state); 4107 4108 if (ret < 0) 4109 goto out; 4110 4111 if (best_c_rdev_done) 4112 set_bit(best_c_rdev, &c_rdev_done); 4113 4114 } while (n_coupled > 1); 4115 4116 out: 4117 return ret; 4118 } 4119 4120 static int regulator_balance_voltage(struct regulator_dev *rdev, 4121 suspend_state_t state) 4122 { 4123 struct coupling_desc *c_desc = &rdev->coupling_desc; 4124 struct regulator_coupler *coupler = c_desc->coupler; 4125 bool skip_coupled = false; 4126 4127 /* 4128 * If system is in a state other than PM_SUSPEND_ON, don't check 4129 * other coupled regulators. 4130 */ 4131 if (state != PM_SUSPEND_ON) 4132 skip_coupled = true; 4133 4134 if (c_desc->n_resolved < c_desc->n_coupled) { 4135 rdev_err(rdev, "Not all coupled regulators registered\n"); 4136 return -EPERM; 4137 } 4138 4139 /* Invoke custom balancer for customized couplers */ 4140 if (coupler && coupler->balance_voltage) 4141 return coupler->balance_voltage(coupler, rdev, state); 4142 4143 return regulator_do_balance_voltage(rdev, state, skip_coupled); 4144 } 4145 4146 /** 4147 * regulator_set_voltage - set regulator output voltage 4148 * @regulator: regulator source 4149 * @min_uV: Minimum required voltage in uV 4150 * @max_uV: Maximum acceptable voltage in uV 4151 * 4152 * Sets a voltage regulator to the desired output voltage. This can be set 4153 * during any regulator state. IOW, regulator can be disabled or enabled. 4154 * 4155 * If the regulator is enabled then the voltage will change to the new value 4156 * immediately otherwise if the regulator is disabled the regulator will 4157 * output at the new voltage when enabled. 4158 * 4159 * NOTE: If the regulator is shared between several devices then the lowest 4160 * request voltage that meets the system constraints will be used. 4161 * Regulator system constraints must be set for this regulator before 4162 * calling this function otherwise this call will fail. 4163 */ 4164 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 4165 { 4166 struct ww_acquire_ctx ww_ctx; 4167 int ret; 4168 4169 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4170 4171 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, 4172 PM_SUSPEND_ON); 4173 4174 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4175 4176 return ret; 4177 } 4178 EXPORT_SYMBOL_GPL(regulator_set_voltage); 4179 4180 static inline int regulator_suspend_toggle(struct regulator_dev *rdev, 4181 suspend_state_t state, bool en) 4182 { 4183 struct regulator_state *rstate; 4184 4185 rstate = regulator_get_suspend_state(rdev, state); 4186 if (rstate == NULL) 4187 return -EINVAL; 4188 4189 if (!rstate->changeable) 4190 return -EPERM; 4191 4192 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; 4193 4194 return 0; 4195 } 4196 4197 int regulator_suspend_enable(struct regulator_dev *rdev, 4198 suspend_state_t state) 4199 { 4200 return regulator_suspend_toggle(rdev, state, true); 4201 } 4202 EXPORT_SYMBOL_GPL(regulator_suspend_enable); 4203 4204 int regulator_suspend_disable(struct regulator_dev *rdev, 4205 suspend_state_t state) 4206 { 4207 struct regulator *regulator; 4208 struct regulator_voltage *voltage; 4209 4210 /* 4211 * if any consumer wants this regulator device keeping on in 4212 * suspend states, don't set it as disabled. 4213 */ 4214 list_for_each_entry(regulator, &rdev->consumer_list, list) { 4215 voltage = ®ulator->voltage[state]; 4216 if (voltage->min_uV || voltage->max_uV) 4217 return 0; 4218 } 4219 4220 return regulator_suspend_toggle(rdev, state, false); 4221 } 4222 EXPORT_SYMBOL_GPL(regulator_suspend_disable); 4223 4224 static int _regulator_set_suspend_voltage(struct regulator *regulator, 4225 int min_uV, int max_uV, 4226 suspend_state_t state) 4227 { 4228 struct regulator_dev *rdev = regulator->rdev; 4229 struct regulator_state *rstate; 4230 4231 rstate = regulator_get_suspend_state(rdev, state); 4232 if (rstate == NULL) 4233 return -EINVAL; 4234 4235 if (rstate->min_uV == rstate->max_uV) { 4236 rdev_err(rdev, "The suspend voltage can't be changed!\n"); 4237 return -EPERM; 4238 } 4239 4240 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); 4241 } 4242 4243 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, 4244 int max_uV, suspend_state_t state) 4245 { 4246 struct ww_acquire_ctx ww_ctx; 4247 int ret; 4248 4249 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ 4250 if (regulator_check_states(state) || state == PM_SUSPEND_ON) 4251 return -EINVAL; 4252 4253 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4254 4255 ret = _regulator_set_suspend_voltage(regulator, min_uV, 4256 max_uV, state); 4257 4258 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4259 4260 return ret; 4261 } 4262 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); 4263 4264 /** 4265 * regulator_set_voltage_time - get raise/fall time 4266 * @regulator: regulator source 4267 * @old_uV: starting voltage in microvolts 4268 * @new_uV: target voltage in microvolts 4269 * 4270 * Provided with the starting and ending voltage, this function attempts to 4271 * calculate the time in microseconds required to rise or fall to this new 4272 * voltage. 4273 */ 4274 int regulator_set_voltage_time(struct regulator *regulator, 4275 int old_uV, int new_uV) 4276 { 4277 struct regulator_dev *rdev = regulator->rdev; 4278 const struct regulator_ops *ops = rdev->desc->ops; 4279 int old_sel = -1; 4280 int new_sel = -1; 4281 int voltage; 4282 int i; 4283 4284 if (ops->set_voltage_time) 4285 return ops->set_voltage_time(rdev, old_uV, new_uV); 4286 else if (!ops->set_voltage_time_sel) 4287 return _regulator_set_voltage_time(rdev, old_uV, new_uV); 4288 4289 /* Currently requires operations to do this */ 4290 if (!ops->list_voltage || !rdev->desc->n_voltages) 4291 return -EINVAL; 4292 4293 for (i = 0; i < rdev->desc->n_voltages; i++) { 4294 /* We only look for exact voltage matches here */ 4295 if (i < rdev->desc->linear_min_sel) 4296 continue; 4297 4298 if (old_sel >= 0 && new_sel >= 0) 4299 break; 4300 4301 voltage = regulator_list_voltage(regulator, i); 4302 if (voltage < 0) 4303 return -EINVAL; 4304 if (voltage == 0) 4305 continue; 4306 if (voltage == old_uV) 4307 old_sel = i; 4308 if (voltage == new_uV) 4309 new_sel = i; 4310 } 4311 4312 if (old_sel < 0 || new_sel < 0) 4313 return -EINVAL; 4314 4315 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 4316 } 4317 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 4318 4319 /** 4320 * regulator_set_voltage_time_sel - get raise/fall time 4321 * @rdev: regulator source device 4322 * @old_selector: selector for starting voltage 4323 * @new_selector: selector for target voltage 4324 * 4325 * Provided with the starting and target voltage selectors, this function 4326 * returns time in microseconds required to rise or fall to this new voltage 4327 * 4328 * Drivers providing ramp_delay in regulation_constraints can use this as their 4329 * set_voltage_time_sel() operation. 4330 */ 4331 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 4332 unsigned int old_selector, 4333 unsigned int new_selector) 4334 { 4335 int old_volt, new_volt; 4336 4337 /* sanity check */ 4338 if (!rdev->desc->ops->list_voltage) 4339 return -EINVAL; 4340 4341 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 4342 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 4343 4344 if (rdev->desc->ops->set_voltage_time) 4345 return rdev->desc->ops->set_voltage_time(rdev, old_volt, 4346 new_volt); 4347 else 4348 return _regulator_set_voltage_time(rdev, old_volt, new_volt); 4349 } 4350 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 4351 4352 int regulator_sync_voltage_rdev(struct regulator_dev *rdev) 4353 { 4354 int ret; 4355 4356 regulator_lock(rdev); 4357 4358 if (!rdev->desc->ops->set_voltage && 4359 !rdev->desc->ops->set_voltage_sel) { 4360 ret = -EINVAL; 4361 goto out; 4362 } 4363 4364 /* balance only, if regulator is coupled */ 4365 if (rdev->coupling_desc.n_coupled > 1) 4366 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4367 else 4368 ret = -EOPNOTSUPP; 4369 4370 out: 4371 regulator_unlock(rdev); 4372 return ret; 4373 } 4374 4375 /** 4376 * regulator_sync_voltage - re-apply last regulator output voltage 4377 * @regulator: regulator source 4378 * 4379 * Re-apply the last configured voltage. This is intended to be used 4380 * where some external control source the consumer is cooperating with 4381 * has caused the configured voltage to change. 4382 */ 4383 int regulator_sync_voltage(struct regulator *regulator) 4384 { 4385 struct regulator_dev *rdev = regulator->rdev; 4386 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; 4387 int ret, min_uV, max_uV; 4388 4389 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) 4390 return 0; 4391 4392 regulator_lock(rdev); 4393 4394 if (!rdev->desc->ops->set_voltage && 4395 !rdev->desc->ops->set_voltage_sel) { 4396 ret = -EINVAL; 4397 goto out; 4398 } 4399 4400 /* This is only going to work if we've had a voltage configured. */ 4401 if (!voltage->min_uV && !voltage->max_uV) { 4402 ret = -EINVAL; 4403 goto out; 4404 } 4405 4406 min_uV = voltage->min_uV; 4407 max_uV = voltage->max_uV; 4408 4409 /* This should be a paranoia check... */ 4410 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 4411 if (ret < 0) 4412 goto out; 4413 4414 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); 4415 if (ret < 0) 4416 goto out; 4417 4418 /* balance only, if regulator is coupled */ 4419 if (rdev->coupling_desc.n_coupled > 1) 4420 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); 4421 else 4422 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 4423 4424 out: 4425 regulator_unlock(rdev); 4426 return ret; 4427 } 4428 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 4429 4430 int regulator_get_voltage_rdev(struct regulator_dev *rdev) 4431 { 4432 int sel, ret; 4433 bool bypassed; 4434 4435 if (rdev->desc->ops->get_bypass) { 4436 ret = rdev->desc->ops->get_bypass(rdev, &bypassed); 4437 if (ret < 0) 4438 return ret; 4439 if (bypassed) { 4440 /* if bypassed the regulator must have a supply */ 4441 if (!rdev->supply) { 4442 rdev_err(rdev, 4443 "bypassed regulator has no supply!\n"); 4444 return -EPROBE_DEFER; 4445 } 4446 4447 return regulator_get_voltage_rdev(rdev->supply->rdev); 4448 } 4449 } 4450 4451 if (rdev->desc->ops->get_voltage_sel) { 4452 sel = rdev->desc->ops->get_voltage_sel(rdev); 4453 if (sel < 0) 4454 return sel; 4455 ret = rdev->desc->ops->list_voltage(rdev, sel); 4456 } else if (rdev->desc->ops->get_voltage) { 4457 ret = rdev->desc->ops->get_voltage(rdev); 4458 } else if (rdev->desc->ops->list_voltage) { 4459 ret = rdev->desc->ops->list_voltage(rdev, 0); 4460 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 4461 ret = rdev->desc->fixed_uV; 4462 } else if (rdev->supply) { 4463 ret = regulator_get_voltage_rdev(rdev->supply->rdev); 4464 } else if (rdev->supply_name) { 4465 return -EPROBE_DEFER; 4466 } else { 4467 return -EINVAL; 4468 } 4469 4470 if (ret < 0) 4471 return ret; 4472 return ret - rdev->constraints->uV_offset; 4473 } 4474 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); 4475 4476 /** 4477 * regulator_get_voltage - get regulator output voltage 4478 * @regulator: regulator source 4479 * 4480 * This returns the current regulator voltage in uV. 4481 * 4482 * NOTE: If the regulator is disabled it will return the voltage value. This 4483 * function should not be used to determine regulator state. 4484 */ 4485 int regulator_get_voltage(struct regulator *regulator) 4486 { 4487 struct ww_acquire_ctx ww_ctx; 4488 int ret; 4489 4490 regulator_lock_dependent(regulator->rdev, &ww_ctx); 4491 ret = regulator_get_voltage_rdev(regulator->rdev); 4492 regulator_unlock_dependent(regulator->rdev, &ww_ctx); 4493 4494 return ret; 4495 } 4496 EXPORT_SYMBOL_GPL(regulator_get_voltage); 4497 4498 /** 4499 * regulator_set_current_limit - set regulator output current limit 4500 * @regulator: regulator source 4501 * @min_uA: Minimum supported current in uA 4502 * @max_uA: Maximum supported current in uA 4503 * 4504 * Sets current sink to the desired output current. This can be set during 4505 * any regulator state. IOW, regulator can be disabled or enabled. 4506 * 4507 * If the regulator is enabled then the current will change to the new value 4508 * immediately otherwise if the regulator is disabled the regulator will 4509 * output at the new current when enabled. 4510 * 4511 * NOTE: Regulator system constraints must be set for this regulator before 4512 * calling this function otherwise this call will fail. 4513 */ 4514 int regulator_set_current_limit(struct regulator *regulator, 4515 int min_uA, int max_uA) 4516 { 4517 struct regulator_dev *rdev = regulator->rdev; 4518 int ret; 4519 4520 regulator_lock(rdev); 4521 4522 /* sanity check */ 4523 if (!rdev->desc->ops->set_current_limit) { 4524 ret = -EINVAL; 4525 goto out; 4526 } 4527 4528 /* constraints check */ 4529 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 4530 if (ret < 0) 4531 goto out; 4532 4533 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 4534 out: 4535 regulator_unlock(rdev); 4536 return ret; 4537 } 4538 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 4539 4540 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) 4541 { 4542 /* sanity check */ 4543 if (!rdev->desc->ops->get_current_limit) 4544 return -EINVAL; 4545 4546 return rdev->desc->ops->get_current_limit(rdev); 4547 } 4548 4549 static int _regulator_get_current_limit(struct regulator_dev *rdev) 4550 { 4551 int ret; 4552 4553 regulator_lock(rdev); 4554 ret = _regulator_get_current_limit_unlocked(rdev); 4555 regulator_unlock(rdev); 4556 4557 return ret; 4558 } 4559 4560 /** 4561 * regulator_get_current_limit - get regulator output current 4562 * @regulator: regulator source 4563 * 4564 * This returns the current supplied by the specified current sink in uA. 4565 * 4566 * NOTE: If the regulator is disabled it will return the current value. This 4567 * function should not be used to determine regulator state. 4568 */ 4569 int regulator_get_current_limit(struct regulator *regulator) 4570 { 4571 return _regulator_get_current_limit(regulator->rdev); 4572 } 4573 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 4574 4575 /** 4576 * regulator_set_mode - set regulator operating mode 4577 * @regulator: regulator source 4578 * @mode: operating mode - one of the REGULATOR_MODE constants 4579 * 4580 * Set regulator operating mode to increase regulator efficiency or improve 4581 * regulation performance. 4582 * 4583 * NOTE: Regulator system constraints must be set for this regulator before 4584 * calling this function otherwise this call will fail. 4585 */ 4586 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 4587 { 4588 struct regulator_dev *rdev = regulator->rdev; 4589 int ret; 4590 int regulator_curr_mode; 4591 4592 regulator_lock(rdev); 4593 4594 /* sanity check */ 4595 if (!rdev->desc->ops->set_mode) { 4596 ret = -EINVAL; 4597 goto out; 4598 } 4599 4600 /* return if the same mode is requested */ 4601 if (rdev->desc->ops->get_mode) { 4602 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 4603 if (regulator_curr_mode == mode) { 4604 ret = 0; 4605 goto out; 4606 } 4607 } 4608 4609 /* constraints check */ 4610 ret = regulator_mode_constrain(rdev, &mode); 4611 if (ret < 0) 4612 goto out; 4613 4614 ret = rdev->desc->ops->set_mode(rdev, mode); 4615 out: 4616 regulator_unlock(rdev); 4617 return ret; 4618 } 4619 EXPORT_SYMBOL_GPL(regulator_set_mode); 4620 4621 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) 4622 { 4623 /* sanity check */ 4624 if (!rdev->desc->ops->get_mode) 4625 return -EINVAL; 4626 4627 return rdev->desc->ops->get_mode(rdev); 4628 } 4629 4630 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 4631 { 4632 int ret; 4633 4634 regulator_lock(rdev); 4635 ret = _regulator_get_mode_unlocked(rdev); 4636 regulator_unlock(rdev); 4637 4638 return ret; 4639 } 4640 4641 /** 4642 * regulator_get_mode - get regulator operating mode 4643 * @regulator: regulator source 4644 * 4645 * Get the current regulator operating mode. 4646 */ 4647 unsigned int regulator_get_mode(struct regulator *regulator) 4648 { 4649 return _regulator_get_mode(regulator->rdev); 4650 } 4651 EXPORT_SYMBOL_GPL(regulator_get_mode); 4652 4653 static int rdev_get_cached_err_flags(struct regulator_dev *rdev) 4654 { 4655 int ret = 0; 4656 4657 if (rdev->use_cached_err) { 4658 spin_lock(&rdev->err_lock); 4659 ret = rdev->cached_err; 4660 spin_unlock(&rdev->err_lock); 4661 } 4662 return ret; 4663 } 4664 4665 static int _regulator_get_error_flags(struct regulator_dev *rdev, 4666 unsigned int *flags) 4667 { 4668 int cached_flags, ret = 0; 4669 4670 regulator_lock(rdev); 4671 4672 cached_flags = rdev_get_cached_err_flags(rdev); 4673 4674 if (rdev->desc->ops->get_error_flags) 4675 ret = rdev->desc->ops->get_error_flags(rdev, flags); 4676 else if (!rdev->use_cached_err) 4677 ret = -EINVAL; 4678 4679 *flags |= cached_flags; 4680 4681 regulator_unlock(rdev); 4682 4683 return ret; 4684 } 4685 4686 /** 4687 * regulator_get_error_flags - get regulator error information 4688 * @regulator: regulator source 4689 * @flags: pointer to store error flags 4690 * 4691 * Get the current regulator error information. 4692 */ 4693 int regulator_get_error_flags(struct regulator *regulator, 4694 unsigned int *flags) 4695 { 4696 return _regulator_get_error_flags(regulator->rdev, flags); 4697 } 4698 EXPORT_SYMBOL_GPL(regulator_get_error_flags); 4699 4700 /** 4701 * regulator_set_load - set regulator load 4702 * @regulator: regulator source 4703 * @uA_load: load current 4704 * 4705 * Notifies the regulator core of a new device load. This is then used by 4706 * DRMS (if enabled by constraints) to set the most efficient regulator 4707 * operating mode for the new regulator loading. 4708 * 4709 * Consumer devices notify their supply regulator of the maximum power 4710 * they will require (can be taken from device datasheet in the power 4711 * consumption tables) when they change operational status and hence power 4712 * state. Examples of operational state changes that can affect power 4713 * consumption are :- 4714 * 4715 * o Device is opened / closed. 4716 * o Device I/O is about to begin or has just finished. 4717 * o Device is idling in between work. 4718 * 4719 * This information is also exported via sysfs to userspace. 4720 * 4721 * DRMS will sum the total requested load on the regulator and change 4722 * to the most efficient operating mode if platform constraints allow. 4723 * 4724 * NOTE: when a regulator consumer requests to have a regulator 4725 * disabled then any load that consumer requested no longer counts 4726 * toward the total requested load. If the regulator is re-enabled 4727 * then the previously requested load will start counting again. 4728 * 4729 * If a regulator is an always-on regulator then an individual consumer's 4730 * load will still be removed if that consumer is fully disabled. 4731 * 4732 * On error a negative errno is returned. 4733 */ 4734 int regulator_set_load(struct regulator *regulator, int uA_load) 4735 { 4736 struct regulator_dev *rdev = regulator->rdev; 4737 int old_uA_load; 4738 int ret = 0; 4739 4740 regulator_lock(rdev); 4741 old_uA_load = regulator->uA_load; 4742 regulator->uA_load = uA_load; 4743 if (regulator->enable_count && old_uA_load != uA_load) { 4744 ret = drms_uA_update(rdev); 4745 if (ret < 0) 4746 regulator->uA_load = old_uA_load; 4747 } 4748 regulator_unlock(rdev); 4749 4750 return ret; 4751 } 4752 EXPORT_SYMBOL_GPL(regulator_set_load); 4753 4754 /** 4755 * regulator_allow_bypass - allow the regulator to go into bypass mode 4756 * 4757 * @regulator: Regulator to configure 4758 * @enable: enable or disable bypass mode 4759 * 4760 * Allow the regulator to go into bypass mode if all other consumers 4761 * for the regulator also enable bypass mode and the machine 4762 * constraints allow this. Bypass mode means that the regulator is 4763 * simply passing the input directly to the output with no regulation. 4764 */ 4765 int regulator_allow_bypass(struct regulator *regulator, bool enable) 4766 { 4767 struct regulator_dev *rdev = regulator->rdev; 4768 const char *name = rdev_get_name(rdev); 4769 int ret = 0; 4770 4771 if (!rdev->desc->ops->set_bypass) 4772 return 0; 4773 4774 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) 4775 return 0; 4776 4777 regulator_lock(rdev); 4778 4779 if (enable && !regulator->bypass) { 4780 rdev->bypass_count++; 4781 4782 if (rdev->bypass_count == rdev->open_count) { 4783 trace_regulator_bypass_enable(name); 4784 4785 ret = rdev->desc->ops->set_bypass(rdev, enable); 4786 if (ret != 0) 4787 rdev->bypass_count--; 4788 else 4789 trace_regulator_bypass_enable_complete(name); 4790 } 4791 4792 } else if (!enable && regulator->bypass) { 4793 rdev->bypass_count--; 4794 4795 if (rdev->bypass_count != rdev->open_count) { 4796 trace_regulator_bypass_disable(name); 4797 4798 ret = rdev->desc->ops->set_bypass(rdev, enable); 4799 if (ret != 0) 4800 rdev->bypass_count++; 4801 else 4802 trace_regulator_bypass_disable_complete(name); 4803 } 4804 } 4805 4806 if (ret == 0) 4807 regulator->bypass = enable; 4808 4809 regulator_unlock(rdev); 4810 4811 return ret; 4812 } 4813 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 4814 4815 /** 4816 * regulator_register_notifier - register regulator event notifier 4817 * @regulator: regulator source 4818 * @nb: notifier block 4819 * 4820 * Register notifier block to receive regulator events. 4821 */ 4822 int regulator_register_notifier(struct regulator *regulator, 4823 struct notifier_block *nb) 4824 { 4825 return blocking_notifier_chain_register(®ulator->rdev->notifier, 4826 nb); 4827 } 4828 EXPORT_SYMBOL_GPL(regulator_register_notifier); 4829 4830 /** 4831 * regulator_unregister_notifier - unregister regulator event notifier 4832 * @regulator: regulator source 4833 * @nb: notifier block 4834 * 4835 * Unregister regulator event notifier block. 4836 */ 4837 int regulator_unregister_notifier(struct regulator *regulator, 4838 struct notifier_block *nb) 4839 { 4840 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 4841 nb); 4842 } 4843 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 4844 4845 /* notify regulator consumers and downstream regulator consumers. 4846 * Note mutex must be held by caller. 4847 */ 4848 static int _notifier_call_chain(struct regulator_dev *rdev, 4849 unsigned long event, void *data) 4850 { 4851 /* call rdev chain first */ 4852 return blocking_notifier_call_chain(&rdev->notifier, event, data); 4853 } 4854 4855 int _regulator_bulk_get(struct device *dev, int num_consumers, 4856 struct regulator_bulk_data *consumers, enum regulator_get_type get_type) 4857 { 4858 int i; 4859 int ret; 4860 4861 for (i = 0; i < num_consumers; i++) 4862 consumers[i].consumer = NULL; 4863 4864 for (i = 0; i < num_consumers; i++) { 4865 consumers[i].consumer = _regulator_get(dev, 4866 consumers[i].supply, get_type); 4867 if (IS_ERR(consumers[i].consumer)) { 4868 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), 4869 "Failed to get supply '%s'", 4870 consumers[i].supply); 4871 consumers[i].consumer = NULL; 4872 goto err; 4873 } 4874 4875 if (consumers[i].init_load_uA > 0) { 4876 ret = regulator_set_load(consumers[i].consumer, 4877 consumers[i].init_load_uA); 4878 if (ret) { 4879 i++; 4880 goto err; 4881 } 4882 } 4883 } 4884 4885 return 0; 4886 4887 err: 4888 while (--i >= 0) 4889 regulator_put(consumers[i].consumer); 4890 4891 return ret; 4892 } 4893 4894 /** 4895 * regulator_bulk_get - get multiple regulator consumers 4896 * 4897 * @dev: Device to supply 4898 * @num_consumers: Number of consumers to register 4899 * @consumers: Configuration of consumers; clients are stored here. 4900 * 4901 * @return 0 on success, an errno on failure. 4902 * 4903 * This helper function allows drivers to get several regulator 4904 * consumers in one operation. If any of the regulators cannot be 4905 * acquired then any regulators that were allocated will be freed 4906 * before returning to the caller. 4907 */ 4908 int regulator_bulk_get(struct device *dev, int num_consumers, 4909 struct regulator_bulk_data *consumers) 4910 { 4911 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); 4912 } 4913 EXPORT_SYMBOL_GPL(regulator_bulk_get); 4914 4915 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 4916 { 4917 struct regulator_bulk_data *bulk = data; 4918 4919 bulk->ret = regulator_enable(bulk->consumer); 4920 } 4921 4922 /** 4923 * regulator_bulk_enable - enable multiple regulator consumers 4924 * 4925 * @num_consumers: Number of consumers 4926 * @consumers: Consumer data; clients are stored here. 4927 * @return 0 on success, an errno on failure 4928 * 4929 * This convenience API allows consumers to enable multiple regulator 4930 * clients in a single API call. If any consumers cannot be enabled 4931 * then any others that were enabled will be disabled again prior to 4932 * return. 4933 */ 4934 int regulator_bulk_enable(int num_consumers, 4935 struct regulator_bulk_data *consumers) 4936 { 4937 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 4938 int i; 4939 int ret = 0; 4940 4941 for (i = 0; i < num_consumers; i++) { 4942 async_schedule_domain(regulator_bulk_enable_async, 4943 &consumers[i], &async_domain); 4944 } 4945 4946 async_synchronize_full_domain(&async_domain); 4947 4948 /* If any consumer failed we need to unwind any that succeeded */ 4949 for (i = 0; i < num_consumers; i++) { 4950 if (consumers[i].ret != 0) { 4951 ret = consumers[i].ret; 4952 goto err; 4953 } 4954 } 4955 4956 return 0; 4957 4958 err: 4959 for (i = 0; i < num_consumers; i++) { 4960 if (consumers[i].ret < 0) 4961 pr_err("Failed to enable %s: %pe\n", consumers[i].supply, 4962 ERR_PTR(consumers[i].ret)); 4963 else 4964 regulator_disable(consumers[i].consumer); 4965 } 4966 4967 return ret; 4968 } 4969 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 4970 4971 /** 4972 * regulator_bulk_disable - disable multiple regulator consumers 4973 * 4974 * @num_consumers: Number of consumers 4975 * @consumers: Consumer data; clients are stored here. 4976 * @return 0 on success, an errno on failure 4977 * 4978 * This convenience API allows consumers to disable multiple regulator 4979 * clients in a single API call. If any consumers cannot be disabled 4980 * then any others that were disabled will be enabled again prior to 4981 * return. 4982 */ 4983 int regulator_bulk_disable(int num_consumers, 4984 struct regulator_bulk_data *consumers) 4985 { 4986 int i; 4987 int ret, r; 4988 4989 for (i = num_consumers - 1; i >= 0; --i) { 4990 ret = regulator_disable(consumers[i].consumer); 4991 if (ret != 0) 4992 goto err; 4993 } 4994 4995 return 0; 4996 4997 err: 4998 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); 4999 for (++i; i < num_consumers; ++i) { 5000 r = regulator_enable(consumers[i].consumer); 5001 if (r != 0) 5002 pr_err("Failed to re-enable %s: %pe\n", 5003 consumers[i].supply, ERR_PTR(r)); 5004 } 5005 5006 return ret; 5007 } 5008 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 5009 5010 /** 5011 * regulator_bulk_force_disable - force disable multiple regulator consumers 5012 * 5013 * @num_consumers: Number of consumers 5014 * @consumers: Consumer data; clients are stored here. 5015 * @return 0 on success, an errno on failure 5016 * 5017 * This convenience API allows consumers to forcibly disable multiple regulator 5018 * clients in a single API call. 5019 * NOTE: This should be used for situations when device damage will 5020 * likely occur if the regulators are not disabled (e.g. over temp). 5021 * Although regulator_force_disable function call for some consumers can 5022 * return error numbers, the function is called for all consumers. 5023 */ 5024 int regulator_bulk_force_disable(int num_consumers, 5025 struct regulator_bulk_data *consumers) 5026 { 5027 int i; 5028 int ret = 0; 5029 5030 for (i = 0; i < num_consumers; i++) { 5031 consumers[i].ret = 5032 regulator_force_disable(consumers[i].consumer); 5033 5034 /* Store first error for reporting */ 5035 if (consumers[i].ret && !ret) 5036 ret = consumers[i].ret; 5037 } 5038 5039 return ret; 5040 } 5041 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 5042 5043 /** 5044 * regulator_bulk_free - free multiple regulator consumers 5045 * 5046 * @num_consumers: Number of consumers 5047 * @consumers: Consumer data; clients are stored here. 5048 * 5049 * This convenience API allows consumers to free multiple regulator 5050 * clients in a single API call. 5051 */ 5052 void regulator_bulk_free(int num_consumers, 5053 struct regulator_bulk_data *consumers) 5054 { 5055 int i; 5056 5057 for (i = 0; i < num_consumers; i++) { 5058 regulator_put(consumers[i].consumer); 5059 consumers[i].consumer = NULL; 5060 } 5061 } 5062 EXPORT_SYMBOL_GPL(regulator_bulk_free); 5063 5064 /** 5065 * regulator_notifier_call_chain - call regulator event notifier 5066 * @rdev: regulator source 5067 * @event: notifier block 5068 * @data: callback-specific data. 5069 * 5070 * Called by regulator drivers to notify clients a regulator event has 5071 * occurred. 5072 */ 5073 int regulator_notifier_call_chain(struct regulator_dev *rdev, 5074 unsigned long event, void *data) 5075 { 5076 _notifier_call_chain(rdev, event, data); 5077 return NOTIFY_DONE; 5078 5079 } 5080 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 5081 5082 /** 5083 * regulator_mode_to_status - convert a regulator mode into a status 5084 * 5085 * @mode: Mode to convert 5086 * 5087 * Convert a regulator mode into a status. 5088 */ 5089 int regulator_mode_to_status(unsigned int mode) 5090 { 5091 switch (mode) { 5092 case REGULATOR_MODE_FAST: 5093 return REGULATOR_STATUS_FAST; 5094 case REGULATOR_MODE_NORMAL: 5095 return REGULATOR_STATUS_NORMAL; 5096 case REGULATOR_MODE_IDLE: 5097 return REGULATOR_STATUS_IDLE; 5098 case REGULATOR_MODE_STANDBY: 5099 return REGULATOR_STATUS_STANDBY; 5100 default: 5101 return REGULATOR_STATUS_UNDEFINED; 5102 } 5103 } 5104 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 5105 5106 static struct attribute *regulator_dev_attrs[] = { 5107 &dev_attr_name.attr, 5108 &dev_attr_num_users.attr, 5109 &dev_attr_type.attr, 5110 &dev_attr_microvolts.attr, 5111 &dev_attr_microamps.attr, 5112 &dev_attr_opmode.attr, 5113 &dev_attr_state.attr, 5114 &dev_attr_status.attr, 5115 &dev_attr_bypass.attr, 5116 &dev_attr_requested_microamps.attr, 5117 &dev_attr_min_microvolts.attr, 5118 &dev_attr_max_microvolts.attr, 5119 &dev_attr_min_microamps.attr, 5120 &dev_attr_max_microamps.attr, 5121 &dev_attr_under_voltage.attr, 5122 &dev_attr_over_current.attr, 5123 &dev_attr_regulation_out.attr, 5124 &dev_attr_fail.attr, 5125 &dev_attr_over_temp.attr, 5126 &dev_attr_under_voltage_warn.attr, 5127 &dev_attr_over_current_warn.attr, 5128 &dev_attr_over_voltage_warn.attr, 5129 &dev_attr_over_temp_warn.attr, 5130 &dev_attr_suspend_standby_state.attr, 5131 &dev_attr_suspend_mem_state.attr, 5132 &dev_attr_suspend_disk_state.attr, 5133 &dev_attr_suspend_standby_microvolts.attr, 5134 &dev_attr_suspend_mem_microvolts.attr, 5135 &dev_attr_suspend_disk_microvolts.attr, 5136 &dev_attr_suspend_standby_mode.attr, 5137 &dev_attr_suspend_mem_mode.attr, 5138 &dev_attr_suspend_disk_mode.attr, 5139 NULL 5140 }; 5141 5142 /* 5143 * To avoid cluttering sysfs (and memory) with useless state, only 5144 * create attributes that can be meaningfully displayed. 5145 */ 5146 static umode_t regulator_attr_is_visible(struct kobject *kobj, 5147 struct attribute *attr, int idx) 5148 { 5149 struct device *dev = kobj_to_dev(kobj); 5150 struct regulator_dev *rdev = dev_to_rdev(dev); 5151 const struct regulator_ops *ops = rdev->desc->ops; 5152 umode_t mode = attr->mode; 5153 5154 /* these three are always present */ 5155 if (attr == &dev_attr_name.attr || 5156 attr == &dev_attr_num_users.attr || 5157 attr == &dev_attr_type.attr) 5158 return mode; 5159 5160 /* some attributes need specific methods to be displayed */ 5161 if (attr == &dev_attr_microvolts.attr) { 5162 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 5163 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 5164 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 5165 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 5166 return mode; 5167 return 0; 5168 } 5169 5170 if (attr == &dev_attr_microamps.attr) 5171 return ops->get_current_limit ? mode : 0; 5172 5173 if (attr == &dev_attr_opmode.attr) 5174 return ops->get_mode ? mode : 0; 5175 5176 if (attr == &dev_attr_state.attr) 5177 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 5178 5179 if (attr == &dev_attr_status.attr) 5180 return ops->get_status ? mode : 0; 5181 5182 if (attr == &dev_attr_bypass.attr) 5183 return ops->get_bypass ? mode : 0; 5184 5185 if (attr == &dev_attr_under_voltage.attr || 5186 attr == &dev_attr_over_current.attr || 5187 attr == &dev_attr_regulation_out.attr || 5188 attr == &dev_attr_fail.attr || 5189 attr == &dev_attr_over_temp.attr || 5190 attr == &dev_attr_under_voltage_warn.attr || 5191 attr == &dev_attr_over_current_warn.attr || 5192 attr == &dev_attr_over_voltage_warn.attr || 5193 attr == &dev_attr_over_temp_warn.attr) 5194 return ops->get_error_flags ? mode : 0; 5195 5196 /* constraints need specific supporting methods */ 5197 if (attr == &dev_attr_min_microvolts.attr || 5198 attr == &dev_attr_max_microvolts.attr) 5199 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 5200 5201 if (attr == &dev_attr_min_microamps.attr || 5202 attr == &dev_attr_max_microamps.attr) 5203 return ops->set_current_limit ? mode : 0; 5204 5205 if (attr == &dev_attr_suspend_standby_state.attr || 5206 attr == &dev_attr_suspend_mem_state.attr || 5207 attr == &dev_attr_suspend_disk_state.attr) 5208 return mode; 5209 5210 if (attr == &dev_attr_suspend_standby_microvolts.attr || 5211 attr == &dev_attr_suspend_mem_microvolts.attr || 5212 attr == &dev_attr_suspend_disk_microvolts.attr) 5213 return ops->set_suspend_voltage ? mode : 0; 5214 5215 if (attr == &dev_attr_suspend_standby_mode.attr || 5216 attr == &dev_attr_suspend_mem_mode.attr || 5217 attr == &dev_attr_suspend_disk_mode.attr) 5218 return ops->set_suspend_mode ? mode : 0; 5219 5220 return mode; 5221 } 5222 5223 static const struct attribute_group regulator_dev_group = { 5224 .attrs = regulator_dev_attrs, 5225 .is_visible = regulator_attr_is_visible, 5226 }; 5227 5228 static const struct attribute_group *regulator_dev_groups[] = { 5229 ®ulator_dev_group, 5230 NULL 5231 }; 5232 5233 static void regulator_dev_release(struct device *dev) 5234 { 5235 struct regulator_dev *rdev = dev_get_drvdata(dev); 5236 5237 debugfs_remove_recursive(rdev->debugfs); 5238 kfree(rdev->constraints); 5239 of_node_put(rdev->dev.of_node); 5240 kfree(rdev); 5241 } 5242 5243 static void rdev_init_debugfs(struct regulator_dev *rdev) 5244 { 5245 struct device *parent = rdev->dev.parent; 5246 const char *rname = rdev_get_name(rdev); 5247 char name[NAME_MAX]; 5248 5249 /* Avoid duplicate debugfs directory names */ 5250 if (parent && rname == rdev->desc->name) { 5251 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 5252 rname); 5253 rname = name; 5254 } 5255 5256 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 5257 if (IS_ERR(rdev->debugfs)) 5258 rdev_dbg(rdev, "Failed to create debugfs directory\n"); 5259 5260 debugfs_create_u32("use_count", 0444, rdev->debugfs, 5261 &rdev->use_count); 5262 debugfs_create_u32("open_count", 0444, rdev->debugfs, 5263 &rdev->open_count); 5264 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 5265 &rdev->bypass_count); 5266 } 5267 5268 static int regulator_register_resolve_supply(struct device *dev, void *data) 5269 { 5270 struct regulator_dev *rdev = dev_to_rdev(dev); 5271 5272 if (regulator_resolve_supply(rdev)) 5273 rdev_dbg(rdev, "unable to resolve supply\n"); 5274 5275 return 0; 5276 } 5277 5278 int regulator_coupler_register(struct regulator_coupler *coupler) 5279 { 5280 mutex_lock(®ulator_list_mutex); 5281 list_add_tail(&coupler->list, ®ulator_coupler_list); 5282 mutex_unlock(®ulator_list_mutex); 5283 5284 return 0; 5285 } 5286 5287 static struct regulator_coupler * 5288 regulator_find_coupler(struct regulator_dev *rdev) 5289 { 5290 struct regulator_coupler *coupler; 5291 int err; 5292 5293 /* 5294 * Note that regulators are appended to the list and the generic 5295 * coupler is registered first, hence it will be attached at last 5296 * if nobody cared. 5297 */ 5298 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { 5299 err = coupler->attach_regulator(coupler, rdev); 5300 if (!err) { 5301 if (!coupler->balance_voltage && 5302 rdev->coupling_desc.n_coupled > 2) 5303 goto err_unsupported; 5304 5305 return coupler; 5306 } 5307 5308 if (err < 0) 5309 return ERR_PTR(err); 5310 5311 if (err == 1) 5312 continue; 5313 5314 break; 5315 } 5316 5317 return ERR_PTR(-EINVAL); 5318 5319 err_unsupported: 5320 if (coupler->detach_regulator) 5321 coupler->detach_regulator(coupler, rdev); 5322 5323 rdev_err(rdev, 5324 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5325 5326 return ERR_PTR(-EPERM); 5327 } 5328 5329 static void regulator_resolve_coupling(struct regulator_dev *rdev) 5330 { 5331 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5332 struct coupling_desc *c_desc = &rdev->coupling_desc; 5333 int n_coupled = c_desc->n_coupled; 5334 struct regulator_dev *c_rdev; 5335 int i; 5336 5337 for (i = 1; i < n_coupled; i++) { 5338 /* already resolved */ 5339 if (c_desc->coupled_rdevs[i]) 5340 continue; 5341 5342 c_rdev = of_parse_coupled_regulator(rdev, i - 1); 5343 5344 if (!c_rdev) 5345 continue; 5346 5347 if (c_rdev->coupling_desc.coupler != coupler) { 5348 rdev_err(rdev, "coupler mismatch with %s\n", 5349 rdev_get_name(c_rdev)); 5350 return; 5351 } 5352 5353 c_desc->coupled_rdevs[i] = c_rdev; 5354 c_desc->n_resolved++; 5355 5356 regulator_resolve_coupling(c_rdev); 5357 } 5358 } 5359 5360 static void regulator_remove_coupling(struct regulator_dev *rdev) 5361 { 5362 struct regulator_coupler *coupler = rdev->coupling_desc.coupler; 5363 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; 5364 struct regulator_dev *__c_rdev, *c_rdev; 5365 unsigned int __n_coupled, n_coupled; 5366 int i, k; 5367 int err; 5368 5369 n_coupled = c_desc->n_coupled; 5370 5371 for (i = 1; i < n_coupled; i++) { 5372 c_rdev = c_desc->coupled_rdevs[i]; 5373 5374 if (!c_rdev) 5375 continue; 5376 5377 regulator_lock(c_rdev); 5378 5379 __c_desc = &c_rdev->coupling_desc; 5380 __n_coupled = __c_desc->n_coupled; 5381 5382 for (k = 1; k < __n_coupled; k++) { 5383 __c_rdev = __c_desc->coupled_rdevs[k]; 5384 5385 if (__c_rdev == rdev) { 5386 __c_desc->coupled_rdevs[k] = NULL; 5387 __c_desc->n_resolved--; 5388 break; 5389 } 5390 } 5391 5392 regulator_unlock(c_rdev); 5393 5394 c_desc->coupled_rdevs[i] = NULL; 5395 c_desc->n_resolved--; 5396 } 5397 5398 if (coupler && coupler->detach_regulator) { 5399 err = coupler->detach_regulator(coupler, rdev); 5400 if (err) 5401 rdev_err(rdev, "failed to detach from coupler: %pe\n", 5402 ERR_PTR(err)); 5403 } 5404 5405 kfree(rdev->coupling_desc.coupled_rdevs); 5406 rdev->coupling_desc.coupled_rdevs = NULL; 5407 } 5408 5409 static int regulator_init_coupling(struct regulator_dev *rdev) 5410 { 5411 struct regulator_dev **coupled; 5412 int err, n_phandles; 5413 5414 if (!IS_ENABLED(CONFIG_OF)) 5415 n_phandles = 0; 5416 else 5417 n_phandles = of_get_n_coupled(rdev); 5418 5419 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); 5420 if (!coupled) 5421 return -ENOMEM; 5422 5423 rdev->coupling_desc.coupled_rdevs = coupled; 5424 5425 /* 5426 * Every regulator should always have coupling descriptor filled with 5427 * at least pointer to itself. 5428 */ 5429 rdev->coupling_desc.coupled_rdevs[0] = rdev; 5430 rdev->coupling_desc.n_coupled = n_phandles + 1; 5431 rdev->coupling_desc.n_resolved++; 5432 5433 /* regulator isn't coupled */ 5434 if (n_phandles == 0) 5435 return 0; 5436 5437 if (!of_check_coupling_data(rdev)) 5438 return -EPERM; 5439 5440 mutex_lock(®ulator_list_mutex); 5441 rdev->coupling_desc.coupler = regulator_find_coupler(rdev); 5442 mutex_unlock(®ulator_list_mutex); 5443 5444 if (IS_ERR(rdev->coupling_desc.coupler)) { 5445 err = PTR_ERR(rdev->coupling_desc.coupler); 5446 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); 5447 return err; 5448 } 5449 5450 return 0; 5451 } 5452 5453 static int generic_coupler_attach(struct regulator_coupler *coupler, 5454 struct regulator_dev *rdev) 5455 { 5456 if (rdev->coupling_desc.n_coupled > 2) { 5457 rdev_err(rdev, 5458 "Voltage balancing for multiple regulator couples is unimplemented\n"); 5459 return -EPERM; 5460 } 5461 5462 if (!rdev->constraints->always_on) { 5463 rdev_err(rdev, 5464 "Coupling of a non always-on regulator is unimplemented\n"); 5465 return -ENOTSUPP; 5466 } 5467 5468 return 0; 5469 } 5470 5471 static struct regulator_coupler generic_regulator_coupler = { 5472 .attach_regulator = generic_coupler_attach, 5473 }; 5474 5475 /** 5476 * regulator_register - register regulator 5477 * @dev: the device that drive the regulator 5478 * @regulator_desc: regulator to register 5479 * @cfg: runtime configuration for regulator 5480 * 5481 * Called by regulator drivers to register a regulator. 5482 * Returns a valid pointer to struct regulator_dev on success 5483 * or an ERR_PTR() on error. 5484 */ 5485 struct regulator_dev * 5486 regulator_register(struct device *dev, 5487 const struct regulator_desc *regulator_desc, 5488 const struct regulator_config *cfg) 5489 { 5490 const struct regulator_init_data *init_data; 5491 struct regulator_config *config = NULL; 5492 static atomic_t regulator_no = ATOMIC_INIT(-1); 5493 struct regulator_dev *rdev; 5494 bool dangling_cfg_gpiod = false; 5495 bool dangling_of_gpiod = false; 5496 int ret, i; 5497 bool resolved_early = false; 5498 5499 if (cfg == NULL) 5500 return ERR_PTR(-EINVAL); 5501 if (cfg->ena_gpiod) 5502 dangling_cfg_gpiod = true; 5503 if (regulator_desc == NULL) { 5504 ret = -EINVAL; 5505 goto rinse; 5506 } 5507 5508 WARN_ON(!dev || !cfg->dev); 5509 5510 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { 5511 ret = -EINVAL; 5512 goto rinse; 5513 } 5514 5515 if (regulator_desc->type != REGULATOR_VOLTAGE && 5516 regulator_desc->type != REGULATOR_CURRENT) { 5517 ret = -EINVAL; 5518 goto rinse; 5519 } 5520 5521 /* Only one of each should be implemented */ 5522 WARN_ON(regulator_desc->ops->get_voltage && 5523 regulator_desc->ops->get_voltage_sel); 5524 WARN_ON(regulator_desc->ops->set_voltage && 5525 regulator_desc->ops->set_voltage_sel); 5526 5527 /* If we're using selectors we must implement list_voltage. */ 5528 if (regulator_desc->ops->get_voltage_sel && 5529 !regulator_desc->ops->list_voltage) { 5530 ret = -EINVAL; 5531 goto rinse; 5532 } 5533 if (regulator_desc->ops->set_voltage_sel && 5534 !regulator_desc->ops->list_voltage) { 5535 ret = -EINVAL; 5536 goto rinse; 5537 } 5538 5539 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 5540 if (rdev == NULL) { 5541 ret = -ENOMEM; 5542 goto rinse; 5543 } 5544 device_initialize(&rdev->dev); 5545 spin_lock_init(&rdev->err_lock); 5546 5547 /* 5548 * Duplicate the config so the driver could override it after 5549 * parsing init data. 5550 */ 5551 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 5552 if (config == NULL) { 5553 ret = -ENOMEM; 5554 goto clean; 5555 } 5556 5557 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 5558 &rdev->dev.of_node); 5559 5560 /* 5561 * Sometimes not all resources are probed already so we need to take 5562 * that into account. This happens most the time if the ena_gpiod comes 5563 * from a gpio extender or something else. 5564 */ 5565 if (PTR_ERR(init_data) == -EPROBE_DEFER) { 5566 ret = -EPROBE_DEFER; 5567 goto clean; 5568 } 5569 5570 /* 5571 * We need to keep track of any GPIO descriptor coming from the 5572 * device tree until we have handled it over to the core. If the 5573 * config that was passed in to this function DOES NOT contain 5574 * a descriptor, and the config after this call DOES contain 5575 * a descriptor, we definitely got one from parsing the device 5576 * tree. 5577 */ 5578 if (!cfg->ena_gpiod && config->ena_gpiod) 5579 dangling_of_gpiod = true; 5580 if (!init_data) { 5581 init_data = config->init_data; 5582 rdev->dev.of_node = of_node_get(config->of_node); 5583 } 5584 5585 ww_mutex_init(&rdev->mutex, ®ulator_ww_class); 5586 rdev->reg_data = config->driver_data; 5587 rdev->owner = regulator_desc->owner; 5588 rdev->desc = regulator_desc; 5589 if (config->regmap) 5590 rdev->regmap = config->regmap; 5591 else if (dev_get_regmap(dev, NULL)) 5592 rdev->regmap = dev_get_regmap(dev, NULL); 5593 else if (dev->parent) 5594 rdev->regmap = dev_get_regmap(dev->parent, NULL); 5595 INIT_LIST_HEAD(&rdev->consumer_list); 5596 INIT_LIST_HEAD(&rdev->list); 5597 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 5598 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 5599 5600 if (init_data && init_data->supply_regulator) 5601 rdev->supply_name = init_data->supply_regulator; 5602 else if (regulator_desc->supply_name) 5603 rdev->supply_name = regulator_desc->supply_name; 5604 5605 /* register with sysfs */ 5606 rdev->dev.class = ®ulator_class; 5607 rdev->dev.parent = config->dev; 5608 dev_set_name(&rdev->dev, "regulator.%lu", 5609 (unsigned long) atomic_inc_return(®ulator_no)); 5610 dev_set_drvdata(&rdev->dev, rdev); 5611 5612 /* set regulator constraints */ 5613 if (init_data) 5614 rdev->constraints = kmemdup(&init_data->constraints, 5615 sizeof(*rdev->constraints), 5616 GFP_KERNEL); 5617 else 5618 rdev->constraints = kzalloc(sizeof(*rdev->constraints), 5619 GFP_KERNEL); 5620 if (!rdev->constraints) { 5621 ret = -ENOMEM; 5622 goto wash; 5623 } 5624 5625 if ((rdev->supply_name && !rdev->supply) && 5626 (rdev->constraints->always_on || 5627 rdev->constraints->boot_on)) { 5628 ret = regulator_resolve_supply(rdev); 5629 if (ret) 5630 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5631 ERR_PTR(ret)); 5632 5633 resolved_early = true; 5634 } 5635 5636 /* perform any regulator specific init */ 5637 if (init_data && init_data->regulator_init) { 5638 ret = init_data->regulator_init(rdev->reg_data); 5639 if (ret < 0) 5640 goto wash; 5641 } 5642 5643 if (config->ena_gpiod) { 5644 ret = regulator_ena_gpio_request(rdev, config); 5645 if (ret != 0) { 5646 rdev_err(rdev, "Failed to request enable GPIO: %pe\n", 5647 ERR_PTR(ret)); 5648 goto wash; 5649 } 5650 /* The regulator core took over the GPIO descriptor */ 5651 dangling_cfg_gpiod = false; 5652 dangling_of_gpiod = false; 5653 } 5654 5655 ret = set_machine_constraints(rdev); 5656 if (ret == -EPROBE_DEFER && !resolved_early) { 5657 /* Regulator might be in bypass mode and so needs its supply 5658 * to set the constraints 5659 */ 5660 /* FIXME: this currently triggers a chicken-and-egg problem 5661 * when creating -SUPPLY symlink in sysfs to a regulator 5662 * that is just being created 5663 */ 5664 rdev_dbg(rdev, "will resolve supply early: %s\n", 5665 rdev->supply_name); 5666 ret = regulator_resolve_supply(rdev); 5667 if (!ret) 5668 ret = set_machine_constraints(rdev); 5669 else 5670 rdev_dbg(rdev, "unable to resolve supply early: %pe\n", 5671 ERR_PTR(ret)); 5672 } 5673 if (ret < 0) 5674 goto wash; 5675 5676 ret = regulator_init_coupling(rdev); 5677 if (ret < 0) 5678 goto wash; 5679 5680 /* add consumers devices */ 5681 if (init_data) { 5682 for (i = 0; i < init_data->num_consumer_supplies; i++) { 5683 ret = set_consumer_device_supply(rdev, 5684 init_data->consumer_supplies[i].dev_name, 5685 init_data->consumer_supplies[i].supply); 5686 if (ret < 0) { 5687 dev_err(dev, "Failed to set supply %s\n", 5688 init_data->consumer_supplies[i].supply); 5689 goto unset_supplies; 5690 } 5691 } 5692 } 5693 5694 if (!rdev->desc->ops->get_voltage && 5695 !rdev->desc->ops->list_voltage && 5696 !rdev->desc->fixed_uV) 5697 rdev->is_switch = true; 5698 5699 ret = device_add(&rdev->dev); 5700 if (ret != 0) 5701 goto unset_supplies; 5702 5703 rdev_init_debugfs(rdev); 5704 5705 /* try to resolve regulators coupling since a new one was registered */ 5706 mutex_lock(®ulator_list_mutex); 5707 regulator_resolve_coupling(rdev); 5708 mutex_unlock(®ulator_list_mutex); 5709 5710 /* try to resolve regulators supply since a new one was registered */ 5711 class_for_each_device(®ulator_class, NULL, NULL, 5712 regulator_register_resolve_supply); 5713 kfree(config); 5714 return rdev; 5715 5716 unset_supplies: 5717 mutex_lock(®ulator_list_mutex); 5718 unset_regulator_supplies(rdev); 5719 regulator_remove_coupling(rdev); 5720 mutex_unlock(®ulator_list_mutex); 5721 wash: 5722 regulator_put(rdev->supply); 5723 kfree(rdev->coupling_desc.coupled_rdevs); 5724 mutex_lock(®ulator_list_mutex); 5725 regulator_ena_gpio_free(rdev); 5726 mutex_unlock(®ulator_list_mutex); 5727 put_device(&rdev->dev); 5728 rdev = NULL; 5729 clean: 5730 if (dangling_of_gpiod) 5731 gpiod_put(config->ena_gpiod); 5732 if (rdev && rdev->dev.of_node) 5733 of_node_put(rdev->dev.of_node); 5734 kfree(rdev); 5735 kfree(config); 5736 rinse: 5737 if (dangling_cfg_gpiod) 5738 gpiod_put(cfg->ena_gpiod); 5739 return ERR_PTR(ret); 5740 } 5741 EXPORT_SYMBOL_GPL(regulator_register); 5742 5743 /** 5744 * regulator_unregister - unregister regulator 5745 * @rdev: regulator to unregister 5746 * 5747 * Called by regulator drivers to unregister a regulator. 5748 */ 5749 void regulator_unregister(struct regulator_dev *rdev) 5750 { 5751 if (rdev == NULL) 5752 return; 5753 5754 if (rdev->supply) { 5755 while (rdev->use_count--) 5756 regulator_disable(rdev->supply); 5757 regulator_put(rdev->supply); 5758 } 5759 5760 flush_work(&rdev->disable_work.work); 5761 5762 mutex_lock(®ulator_list_mutex); 5763 5764 WARN_ON(rdev->open_count); 5765 regulator_remove_coupling(rdev); 5766 unset_regulator_supplies(rdev); 5767 list_del(&rdev->list); 5768 regulator_ena_gpio_free(rdev); 5769 device_unregister(&rdev->dev); 5770 5771 mutex_unlock(®ulator_list_mutex); 5772 } 5773 EXPORT_SYMBOL_GPL(regulator_unregister); 5774 5775 #ifdef CONFIG_SUSPEND 5776 /** 5777 * regulator_suspend - prepare regulators for system wide suspend 5778 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() 5779 * 5780 * Configure each regulator with it's suspend operating parameters for state. 5781 */ 5782 static int regulator_suspend(struct device *dev) 5783 { 5784 struct regulator_dev *rdev = dev_to_rdev(dev); 5785 suspend_state_t state = pm_suspend_target_state; 5786 int ret; 5787 const struct regulator_state *rstate; 5788 5789 rstate = regulator_get_suspend_state_check(rdev, state); 5790 if (!rstate) 5791 return 0; 5792 5793 regulator_lock(rdev); 5794 ret = __suspend_set_state(rdev, rstate); 5795 regulator_unlock(rdev); 5796 5797 return ret; 5798 } 5799 5800 static int regulator_resume(struct device *dev) 5801 { 5802 suspend_state_t state = pm_suspend_target_state; 5803 struct regulator_dev *rdev = dev_to_rdev(dev); 5804 struct regulator_state *rstate; 5805 int ret = 0; 5806 5807 rstate = regulator_get_suspend_state(rdev, state); 5808 if (rstate == NULL) 5809 return 0; 5810 5811 /* Avoid grabbing the lock if we don't need to */ 5812 if (!rdev->desc->ops->resume) 5813 return 0; 5814 5815 regulator_lock(rdev); 5816 5817 if (rstate->enabled == ENABLE_IN_SUSPEND || 5818 rstate->enabled == DISABLE_IN_SUSPEND) 5819 ret = rdev->desc->ops->resume(rdev); 5820 5821 regulator_unlock(rdev); 5822 5823 return ret; 5824 } 5825 #else /* !CONFIG_SUSPEND */ 5826 5827 #define regulator_suspend NULL 5828 #define regulator_resume NULL 5829 5830 #endif /* !CONFIG_SUSPEND */ 5831 5832 #ifdef CONFIG_PM 5833 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { 5834 .suspend = regulator_suspend, 5835 .resume = regulator_resume, 5836 }; 5837 #endif 5838 5839 struct class regulator_class = { 5840 .name = "regulator", 5841 .dev_release = regulator_dev_release, 5842 .dev_groups = regulator_dev_groups, 5843 #ifdef CONFIG_PM 5844 .pm = ®ulator_pm_ops, 5845 #endif 5846 }; 5847 /** 5848 * regulator_has_full_constraints - the system has fully specified constraints 5849 * 5850 * Calling this function will cause the regulator API to disable all 5851 * regulators which have a zero use count and don't have an always_on 5852 * constraint in a late_initcall. 5853 * 5854 * The intention is that this will become the default behaviour in a 5855 * future kernel release so users are encouraged to use this facility 5856 * now. 5857 */ 5858 void regulator_has_full_constraints(void) 5859 { 5860 has_full_constraints = 1; 5861 } 5862 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 5863 5864 /** 5865 * rdev_get_drvdata - get rdev regulator driver data 5866 * @rdev: regulator 5867 * 5868 * Get rdev regulator driver private data. This call can be used in the 5869 * regulator driver context. 5870 */ 5871 void *rdev_get_drvdata(struct regulator_dev *rdev) 5872 { 5873 return rdev->reg_data; 5874 } 5875 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 5876 5877 /** 5878 * regulator_get_drvdata - get regulator driver data 5879 * @regulator: regulator 5880 * 5881 * Get regulator driver private data. This call can be used in the consumer 5882 * driver context when non API regulator specific functions need to be called. 5883 */ 5884 void *regulator_get_drvdata(struct regulator *regulator) 5885 { 5886 return regulator->rdev->reg_data; 5887 } 5888 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 5889 5890 /** 5891 * regulator_set_drvdata - set regulator driver data 5892 * @regulator: regulator 5893 * @data: data 5894 */ 5895 void regulator_set_drvdata(struct regulator *regulator, void *data) 5896 { 5897 regulator->rdev->reg_data = data; 5898 } 5899 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 5900 5901 /** 5902 * rdev_get_id - get regulator ID 5903 * @rdev: regulator 5904 */ 5905 int rdev_get_id(struct regulator_dev *rdev) 5906 { 5907 return rdev->desc->id; 5908 } 5909 EXPORT_SYMBOL_GPL(rdev_get_id); 5910 5911 struct device *rdev_get_dev(struct regulator_dev *rdev) 5912 { 5913 return &rdev->dev; 5914 } 5915 EXPORT_SYMBOL_GPL(rdev_get_dev); 5916 5917 struct regmap *rdev_get_regmap(struct regulator_dev *rdev) 5918 { 5919 return rdev->regmap; 5920 } 5921 EXPORT_SYMBOL_GPL(rdev_get_regmap); 5922 5923 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 5924 { 5925 return reg_init_data->driver_data; 5926 } 5927 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 5928 5929 #ifdef CONFIG_DEBUG_FS 5930 static int supply_map_show(struct seq_file *sf, void *data) 5931 { 5932 struct regulator_map *map; 5933 5934 list_for_each_entry(map, ®ulator_map_list, list) { 5935 seq_printf(sf, "%s -> %s.%s\n", 5936 rdev_get_name(map->regulator), map->dev_name, 5937 map->supply); 5938 } 5939 5940 return 0; 5941 } 5942 DEFINE_SHOW_ATTRIBUTE(supply_map); 5943 5944 struct summary_data { 5945 struct seq_file *s; 5946 struct regulator_dev *parent; 5947 int level; 5948 }; 5949 5950 static void regulator_summary_show_subtree(struct seq_file *s, 5951 struct regulator_dev *rdev, 5952 int level); 5953 5954 static int regulator_summary_show_children(struct device *dev, void *data) 5955 { 5956 struct regulator_dev *rdev = dev_to_rdev(dev); 5957 struct summary_data *summary_data = data; 5958 5959 if (rdev->supply && rdev->supply->rdev == summary_data->parent) 5960 regulator_summary_show_subtree(summary_data->s, rdev, 5961 summary_data->level + 1); 5962 5963 return 0; 5964 } 5965 5966 static void regulator_summary_show_subtree(struct seq_file *s, 5967 struct regulator_dev *rdev, 5968 int level) 5969 { 5970 struct regulation_constraints *c; 5971 struct regulator *consumer; 5972 struct summary_data summary_data; 5973 unsigned int opmode; 5974 5975 if (!rdev) 5976 return; 5977 5978 opmode = _regulator_get_mode_unlocked(rdev); 5979 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", 5980 level * 3 + 1, "", 5981 30 - level * 3, rdev_get_name(rdev), 5982 rdev->use_count, rdev->open_count, rdev->bypass_count, 5983 regulator_opmode_to_str(opmode)); 5984 5985 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); 5986 seq_printf(s, "%5dmA ", 5987 _regulator_get_current_limit_unlocked(rdev) / 1000); 5988 5989 c = rdev->constraints; 5990 if (c) { 5991 switch (rdev->desc->type) { 5992 case REGULATOR_VOLTAGE: 5993 seq_printf(s, "%5dmV %5dmV ", 5994 c->min_uV / 1000, c->max_uV / 1000); 5995 break; 5996 case REGULATOR_CURRENT: 5997 seq_printf(s, "%5dmA %5dmA ", 5998 c->min_uA / 1000, c->max_uA / 1000); 5999 break; 6000 } 6001 } 6002 6003 seq_puts(s, "\n"); 6004 6005 list_for_each_entry(consumer, &rdev->consumer_list, list) { 6006 if (consumer->dev && consumer->dev->class == ®ulator_class) 6007 continue; 6008 6009 seq_printf(s, "%*s%-*s ", 6010 (level + 1) * 3 + 1, "", 6011 30 - (level + 1) * 3, 6012 consumer->supply_name ? consumer->supply_name : 6013 consumer->dev ? dev_name(consumer->dev) : "deviceless"); 6014 6015 switch (rdev->desc->type) { 6016 case REGULATOR_VOLTAGE: 6017 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", 6018 consumer->enable_count, 6019 consumer->uA_load / 1000, 6020 consumer->uA_load && !consumer->enable_count ? 6021 '*' : ' ', 6022 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, 6023 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); 6024 break; 6025 case REGULATOR_CURRENT: 6026 break; 6027 } 6028 6029 seq_puts(s, "\n"); 6030 } 6031 6032 summary_data.s = s; 6033 summary_data.level = level; 6034 summary_data.parent = rdev; 6035 6036 class_for_each_device(®ulator_class, NULL, &summary_data, 6037 regulator_summary_show_children); 6038 } 6039 6040 struct summary_lock_data { 6041 struct ww_acquire_ctx *ww_ctx; 6042 struct regulator_dev **new_contended_rdev; 6043 struct regulator_dev **old_contended_rdev; 6044 }; 6045 6046 static int regulator_summary_lock_one(struct device *dev, void *data) 6047 { 6048 struct regulator_dev *rdev = dev_to_rdev(dev); 6049 struct summary_lock_data *lock_data = data; 6050 int ret = 0; 6051 6052 if (rdev != *lock_data->old_contended_rdev) { 6053 ret = regulator_lock_nested(rdev, lock_data->ww_ctx); 6054 6055 if (ret == -EDEADLK) 6056 *lock_data->new_contended_rdev = rdev; 6057 else 6058 WARN_ON_ONCE(ret); 6059 } else { 6060 *lock_data->old_contended_rdev = NULL; 6061 } 6062 6063 return ret; 6064 } 6065 6066 static int regulator_summary_unlock_one(struct device *dev, void *data) 6067 { 6068 struct regulator_dev *rdev = dev_to_rdev(dev); 6069 struct summary_lock_data *lock_data = data; 6070 6071 if (lock_data) { 6072 if (rdev == *lock_data->new_contended_rdev) 6073 return -EDEADLK; 6074 } 6075 6076 regulator_unlock(rdev); 6077 6078 return 0; 6079 } 6080 6081 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, 6082 struct regulator_dev **new_contended_rdev, 6083 struct regulator_dev **old_contended_rdev) 6084 { 6085 struct summary_lock_data lock_data; 6086 int ret; 6087 6088 lock_data.ww_ctx = ww_ctx; 6089 lock_data.new_contended_rdev = new_contended_rdev; 6090 lock_data.old_contended_rdev = old_contended_rdev; 6091 6092 ret = class_for_each_device(®ulator_class, NULL, &lock_data, 6093 regulator_summary_lock_one); 6094 if (ret) 6095 class_for_each_device(®ulator_class, NULL, &lock_data, 6096 regulator_summary_unlock_one); 6097 6098 return ret; 6099 } 6100 6101 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) 6102 { 6103 struct regulator_dev *new_contended_rdev = NULL; 6104 struct regulator_dev *old_contended_rdev = NULL; 6105 int err; 6106 6107 mutex_lock(®ulator_list_mutex); 6108 6109 ww_acquire_init(ww_ctx, ®ulator_ww_class); 6110 6111 do { 6112 if (new_contended_rdev) { 6113 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); 6114 old_contended_rdev = new_contended_rdev; 6115 old_contended_rdev->ref_cnt++; 6116 old_contended_rdev->mutex_owner = current; 6117 } 6118 6119 err = regulator_summary_lock_all(ww_ctx, 6120 &new_contended_rdev, 6121 &old_contended_rdev); 6122 6123 if (old_contended_rdev) 6124 regulator_unlock(old_contended_rdev); 6125 6126 } while (err == -EDEADLK); 6127 6128 ww_acquire_done(ww_ctx); 6129 } 6130 6131 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) 6132 { 6133 class_for_each_device(®ulator_class, NULL, NULL, 6134 regulator_summary_unlock_one); 6135 ww_acquire_fini(ww_ctx); 6136 6137 mutex_unlock(®ulator_list_mutex); 6138 } 6139 6140 static int regulator_summary_show_roots(struct device *dev, void *data) 6141 { 6142 struct regulator_dev *rdev = dev_to_rdev(dev); 6143 struct seq_file *s = data; 6144 6145 if (!rdev->supply) 6146 regulator_summary_show_subtree(s, rdev, 0); 6147 6148 return 0; 6149 } 6150 6151 static int regulator_summary_show(struct seq_file *s, void *data) 6152 { 6153 struct ww_acquire_ctx ww_ctx; 6154 6155 seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); 6156 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 6157 6158 regulator_summary_lock(&ww_ctx); 6159 6160 class_for_each_device(®ulator_class, NULL, s, 6161 regulator_summary_show_roots); 6162 6163 regulator_summary_unlock(&ww_ctx); 6164 6165 return 0; 6166 } 6167 DEFINE_SHOW_ATTRIBUTE(regulator_summary); 6168 #endif /* CONFIG_DEBUG_FS */ 6169 6170 static int __init regulator_init(void) 6171 { 6172 int ret; 6173 6174 ret = class_register(®ulator_class); 6175 6176 debugfs_root = debugfs_create_dir("regulator", NULL); 6177 if (IS_ERR(debugfs_root)) 6178 pr_debug("regulator: Failed to create debugfs directory\n"); 6179 6180 #ifdef CONFIG_DEBUG_FS 6181 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 6182 &supply_map_fops); 6183 6184 debugfs_create_file("regulator_summary", 0444, debugfs_root, 6185 NULL, ®ulator_summary_fops); 6186 #endif 6187 regulator_dummy_init(); 6188 6189 regulator_coupler_register(&generic_regulator_coupler); 6190 6191 return ret; 6192 } 6193 6194 /* init early to allow our consumers to complete system booting */ 6195 core_initcall(regulator_init); 6196 6197 static int regulator_late_cleanup(struct device *dev, void *data) 6198 { 6199 struct regulator_dev *rdev = dev_to_rdev(dev); 6200 struct regulation_constraints *c = rdev->constraints; 6201 int ret; 6202 6203 if (c && c->always_on) 6204 return 0; 6205 6206 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) 6207 return 0; 6208 6209 regulator_lock(rdev); 6210 6211 if (rdev->use_count) 6212 goto unlock; 6213 6214 /* If reading the status failed, assume that it's off. */ 6215 if (_regulator_is_enabled(rdev) <= 0) 6216 goto unlock; 6217 6218 if (have_full_constraints()) { 6219 /* We log since this may kill the system if it goes 6220 * wrong. 6221 */ 6222 rdev_info(rdev, "disabling\n"); 6223 ret = _regulator_do_disable(rdev); 6224 if (ret != 0) 6225 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); 6226 } else { 6227 /* The intention is that in future we will 6228 * assume that full constraints are provided 6229 * so warn even if we aren't going to do 6230 * anything here. 6231 */ 6232 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 6233 } 6234 6235 unlock: 6236 regulator_unlock(rdev); 6237 6238 return 0; 6239 } 6240 6241 static void regulator_init_complete_work_function(struct work_struct *work) 6242 { 6243 /* 6244 * Regulators may had failed to resolve their input supplies 6245 * when were registered, either because the input supply was 6246 * not registered yet or because its parent device was not 6247 * bound yet. So attempt to resolve the input supplies for 6248 * pending regulators before trying to disable unused ones. 6249 */ 6250 class_for_each_device(®ulator_class, NULL, NULL, 6251 regulator_register_resolve_supply); 6252 6253 /* If we have a full configuration then disable any regulators 6254 * we have permission to change the status for and which are 6255 * not in use or always_on. This is effectively the default 6256 * for DT and ACPI as they have full constraints. 6257 */ 6258 class_for_each_device(®ulator_class, NULL, NULL, 6259 regulator_late_cleanup); 6260 } 6261 6262 static DECLARE_DELAYED_WORK(regulator_init_complete_work, 6263 regulator_init_complete_work_function); 6264 6265 static int __init regulator_init_complete(void) 6266 { 6267 /* 6268 * Since DT doesn't provide an idiomatic mechanism for 6269 * enabling full constraints and since it's much more natural 6270 * with DT to provide them just assume that a DT enabled 6271 * system has full constraints. 6272 */ 6273 if (of_have_populated_dt()) 6274 has_full_constraints = true; 6275 6276 /* 6277 * We punt completion for an arbitrary amount of time since 6278 * systems like distros will load many drivers from userspace 6279 * so consumers might not always be ready yet, this is 6280 * particularly an issue with laptops where this might bounce 6281 * the display off then on. Ideally we'd get a notification 6282 * from userspace when this happens but we don't so just wait 6283 * a bit and hope we waited long enough. It'd be better if 6284 * we'd only do this on systems that need it, and a kernel 6285 * command line option might be useful. 6286 */ 6287 schedule_delayed_work(®ulator_init_complete_work, 6288 msecs_to_jiffies(30000)); 6289 6290 return 0; 6291 } 6292 late_initcall_sync(regulator_init_complete); 6293