xref: /linux/drivers/regulator/core.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 				     suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102 
103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113 
114 static bool have_full_constraints(void)
115 {
116 	return has_full_constraints || of_have_populated_dt();
117 }
118 
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 	if (!rdev->constraints) {
122 		rdev_err(rdev, "no constraints\n");
123 		return false;
124 	}
125 
126 	if (rdev->constraints->valid_ops_mask & ops)
127 		return true;
128 
129 	return false;
130 }
131 
132 /**
133  * regulator_lock_nested - lock a single regulator
134  * @rdev:		regulator source
135  * @ww_ctx:		w/w mutex acquire context
136  *
137  * This function can be called many times by one task on
138  * a single regulator and its mutex will be locked only
139  * once. If a task, which is calling this function is other
140  * than the one, which initially locked the mutex, it will
141  * wait on mutex.
142  */
143 static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 					struct ww_acquire_ctx *ww_ctx)
145 {
146 	bool lock = false;
147 	int ret = 0;
148 
149 	mutex_lock(&regulator_nesting_mutex);
150 
151 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 		if (rdev->mutex_owner == current)
153 			rdev->ref_cnt++;
154 		else
155 			lock = true;
156 
157 		if (lock) {
158 			mutex_unlock(&regulator_nesting_mutex);
159 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 			mutex_lock(&regulator_nesting_mutex);
161 		}
162 	} else {
163 		lock = true;
164 	}
165 
166 	if (lock && ret != -EDEADLK) {
167 		rdev->ref_cnt++;
168 		rdev->mutex_owner = current;
169 	}
170 
171 	mutex_unlock(&regulator_nesting_mutex);
172 
173 	return ret;
174 }
175 
176 /**
177  * regulator_lock - lock a single regulator
178  * @rdev:		regulator source
179  *
180  * This function can be called many times by one task on
181  * a single regulator and its mutex will be locked only
182  * once. If a task, which is calling this function is other
183  * than the one, which initially locked the mutex, it will
184  * wait on mutex.
185  */
186 static void regulator_lock(struct regulator_dev *rdev)
187 {
188 	regulator_lock_nested(rdev, NULL);
189 }
190 
191 /**
192  * regulator_unlock - unlock a single regulator
193  * @rdev:		regulator_source
194  *
195  * This function unlocks the mutex when the
196  * reference counter reaches 0.
197  */
198 static void regulator_unlock(struct regulator_dev *rdev)
199 {
200 	mutex_lock(&regulator_nesting_mutex);
201 
202 	if (--rdev->ref_cnt == 0) {
203 		rdev->mutex_owner = NULL;
204 		ww_mutex_unlock(&rdev->mutex);
205 	}
206 
207 	WARN_ON_ONCE(rdev->ref_cnt < 0);
208 
209 	mutex_unlock(&regulator_nesting_mutex);
210 }
211 
212 /**
213  * regulator_lock_two - lock two regulators
214  * @rdev1:		first regulator
215  * @rdev2:		second regulator
216  * @ww_ctx:		w/w mutex acquire context
217  *
218  * Locks both rdevs using the regulator_ww_class.
219  */
220 static void regulator_lock_two(struct regulator_dev *rdev1,
221 			       struct regulator_dev *rdev2,
222 			       struct ww_acquire_ctx *ww_ctx)
223 {
224 	struct regulator_dev *held, *contended;
225 	int ret;
226 
227 	ww_acquire_init(ww_ctx, &regulator_ww_class);
228 
229 	/* Try to just grab both of them */
230 	ret = regulator_lock_nested(rdev1, ww_ctx);
231 	WARN_ON(ret);
232 	ret = regulator_lock_nested(rdev2, ww_ctx);
233 	if (ret != -EDEADLOCK) {
234 		WARN_ON(ret);
235 		goto exit;
236 	}
237 
238 	held = rdev1;
239 	contended = rdev2;
240 	while (true) {
241 		regulator_unlock(held);
242 
243 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 		contended->ref_cnt++;
245 		contended->mutex_owner = current;
246 		swap(held, contended);
247 		ret = regulator_lock_nested(contended, ww_ctx);
248 
249 		if (ret != -EDEADLOCK) {
250 			WARN_ON(ret);
251 			break;
252 		}
253 	}
254 
255 exit:
256 	ww_acquire_done(ww_ctx);
257 }
258 
259 /**
260  * regulator_unlock_two - unlock two regulators
261  * @rdev1:		first regulator
262  * @rdev2:		second regulator
263  * @ww_ctx:		w/w mutex acquire context
264  *
265  * The inverse of regulator_lock_two().
266  */
267 
268 static void regulator_unlock_two(struct regulator_dev *rdev1,
269 				 struct regulator_dev *rdev2,
270 				 struct ww_acquire_ctx *ww_ctx)
271 {
272 	regulator_unlock(rdev2);
273 	regulator_unlock(rdev1);
274 	ww_acquire_fini(ww_ctx);
275 }
276 
277 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278 {
279 	struct regulator_dev *c_rdev;
280 	int i;
281 
282 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284 
285 		if (rdev->supply->rdev == c_rdev)
286 			return true;
287 	}
288 
289 	return false;
290 }
291 
292 static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 				       unsigned int n_coupled)
294 {
295 	struct regulator_dev *c_rdev, *supply_rdev;
296 	int i, supply_n_coupled;
297 
298 	for (i = n_coupled; i > 0; i--) {
299 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300 
301 		if (!c_rdev)
302 			continue;
303 
304 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 			supply_rdev = c_rdev->supply->rdev;
306 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307 
308 			regulator_unlock_recursive(supply_rdev,
309 						   supply_n_coupled);
310 		}
311 
312 		regulator_unlock(c_rdev);
313 	}
314 }
315 
316 static int regulator_lock_recursive(struct regulator_dev *rdev,
317 				    struct regulator_dev **new_contended_rdev,
318 				    struct regulator_dev **old_contended_rdev,
319 				    struct ww_acquire_ctx *ww_ctx)
320 {
321 	struct regulator_dev *c_rdev;
322 	int i, err;
323 
324 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326 
327 		if (!c_rdev)
328 			continue;
329 
330 		if (c_rdev != *old_contended_rdev) {
331 			err = regulator_lock_nested(c_rdev, ww_ctx);
332 			if (err) {
333 				if (err == -EDEADLK) {
334 					*new_contended_rdev = c_rdev;
335 					goto err_unlock;
336 				}
337 
338 				/* shouldn't happen */
339 				WARN_ON_ONCE(err != -EALREADY);
340 			}
341 		} else {
342 			*old_contended_rdev = NULL;
343 		}
344 
345 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 			err = regulator_lock_recursive(c_rdev->supply->rdev,
347 						       new_contended_rdev,
348 						       old_contended_rdev,
349 						       ww_ctx);
350 			if (err) {
351 				regulator_unlock(c_rdev);
352 				goto err_unlock;
353 			}
354 		}
355 	}
356 
357 	return 0;
358 
359 err_unlock:
360 	regulator_unlock_recursive(rdev, i);
361 
362 	return err;
363 }
364 
365 /**
366  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367  *				regulators
368  * @rdev:			regulator source
369  * @ww_ctx:			w/w mutex acquire context
370  *
371  * Unlock all regulators related with rdev by coupling or supplying.
372  */
373 static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 				       struct ww_acquire_ctx *ww_ctx)
375 {
376 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 	ww_acquire_fini(ww_ctx);
378 }
379 
380 /**
381  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * This function as a wrapper on regulator_lock_recursive(), which locks
386  * all regulators related with rdev by coupling or supplying.
387  */
388 static void regulator_lock_dependent(struct regulator_dev *rdev,
389 				     struct ww_acquire_ctx *ww_ctx)
390 {
391 	struct regulator_dev *new_contended_rdev = NULL;
392 	struct regulator_dev *old_contended_rdev = NULL;
393 	int err;
394 
395 	mutex_lock(&regulator_list_mutex);
396 
397 	ww_acquire_init(ww_ctx, &regulator_ww_class);
398 
399 	do {
400 		if (new_contended_rdev) {
401 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 			old_contended_rdev = new_contended_rdev;
403 			old_contended_rdev->ref_cnt++;
404 			old_contended_rdev->mutex_owner = current;
405 		}
406 
407 		err = regulator_lock_recursive(rdev,
408 					       &new_contended_rdev,
409 					       &old_contended_rdev,
410 					       ww_ctx);
411 
412 		if (old_contended_rdev)
413 			regulator_unlock(old_contended_rdev);
414 
415 	} while (err == -EDEADLK);
416 
417 	ww_acquire_done(ww_ctx);
418 
419 	mutex_unlock(&regulator_list_mutex);
420 }
421 
422 /**
423  * of_get_child_regulator - get a child regulator device node
424  * based on supply name
425  * @parent: Parent device node
426  * @prop_name: Combination regulator supply name and "-supply"
427  *
428  * Traverse all child nodes.
429  * Extract the child regulator device node corresponding to the supply name.
430  * returns the device node corresponding to the regulator if found, else
431  * returns NULL.
432  */
433 static struct device_node *of_get_child_regulator(struct device_node *parent,
434 						  const char *prop_name)
435 {
436 	struct device_node *regnode = NULL;
437 	struct device_node *child = NULL;
438 
439 	for_each_child_of_node(parent, child) {
440 		regnode = of_parse_phandle(child, prop_name, 0);
441 
442 		if (!regnode) {
443 			regnode = of_get_child_regulator(child, prop_name);
444 			if (regnode)
445 				goto err_node_put;
446 		} else {
447 			goto err_node_put;
448 		}
449 	}
450 	return NULL;
451 
452 err_node_put:
453 	of_node_put(child);
454 	return regnode;
455 }
456 
457 /**
458  * of_get_regulator - get a regulator device node based on supply name
459  * @dev: Device pointer for the consumer (of regulator) device
460  * @supply: regulator supply name
461  *
462  * Extract the regulator device node corresponding to the supply name.
463  * returns the device node corresponding to the regulator if found, else
464  * returns NULL.
465  */
466 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467 {
468 	struct device_node *regnode = NULL;
469 	char prop_name[64]; /* 64 is max size of property name */
470 
471 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472 
473 	snprintf(prop_name, 64, "%s-supply", supply);
474 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475 
476 	if (!regnode) {
477 		regnode = of_get_child_regulator(dev->of_node, prop_name);
478 		if (regnode)
479 			return regnode;
480 
481 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 				prop_name, dev->of_node);
483 		return NULL;
484 	}
485 	return regnode;
486 }
487 
488 /* Platform voltage constraint check */
489 int regulator_check_voltage(struct regulator_dev *rdev,
490 			    int *min_uV, int *max_uV)
491 {
492 	BUG_ON(*min_uV > *max_uV);
493 
494 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 		rdev_err(rdev, "voltage operation not allowed\n");
496 		return -EPERM;
497 	}
498 
499 	if (*max_uV > rdev->constraints->max_uV)
500 		*max_uV = rdev->constraints->max_uV;
501 	if (*min_uV < rdev->constraints->min_uV)
502 		*min_uV = rdev->constraints->min_uV;
503 
504 	if (*min_uV > *max_uV) {
505 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 			 *min_uV, *max_uV);
507 		return -EINVAL;
508 	}
509 
510 	return 0;
511 }
512 
513 /* return 0 if the state is valid */
514 static int regulator_check_states(suspend_state_t state)
515 {
516 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517 }
518 
519 /* Make sure we select a voltage that suits the needs of all
520  * regulator consumers
521  */
522 int regulator_check_consumers(struct regulator_dev *rdev,
523 			      int *min_uV, int *max_uV,
524 			      suspend_state_t state)
525 {
526 	struct regulator *regulator;
527 	struct regulator_voltage *voltage;
528 
529 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 		voltage = &regulator->voltage[state];
531 		/*
532 		 * Assume consumers that didn't say anything are OK
533 		 * with anything in the constraint range.
534 		 */
535 		if (!voltage->min_uV && !voltage->max_uV)
536 			continue;
537 
538 		if (*max_uV > voltage->max_uV)
539 			*max_uV = voltage->max_uV;
540 		if (*min_uV < voltage->min_uV)
541 			*min_uV = voltage->min_uV;
542 	}
543 
544 	if (*min_uV > *max_uV) {
545 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 			*min_uV, *max_uV);
547 		return -EINVAL;
548 	}
549 
550 	return 0;
551 }
552 
553 /* current constraint check */
554 static int regulator_check_current_limit(struct regulator_dev *rdev,
555 					int *min_uA, int *max_uA)
556 {
557 	BUG_ON(*min_uA > *max_uA);
558 
559 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 		rdev_err(rdev, "current operation not allowed\n");
561 		return -EPERM;
562 	}
563 
564 	if (*max_uA > rdev->constraints->max_uA)
565 		*max_uA = rdev->constraints->max_uA;
566 	if (*min_uA < rdev->constraints->min_uA)
567 		*min_uA = rdev->constraints->min_uA;
568 
569 	if (*min_uA > *max_uA) {
570 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 			 *min_uA, *max_uA);
572 		return -EINVAL;
573 	}
574 
575 	return 0;
576 }
577 
578 /* operating mode constraint check */
579 static int regulator_mode_constrain(struct regulator_dev *rdev,
580 				    unsigned int *mode)
581 {
582 	switch (*mode) {
583 	case REGULATOR_MODE_FAST:
584 	case REGULATOR_MODE_NORMAL:
585 	case REGULATOR_MODE_IDLE:
586 	case REGULATOR_MODE_STANDBY:
587 		break;
588 	default:
589 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 		return -EINVAL;
591 	}
592 
593 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 		rdev_err(rdev, "mode operation not allowed\n");
595 		return -EPERM;
596 	}
597 
598 	/* The modes are bitmasks, the most power hungry modes having
599 	 * the lowest values. If the requested mode isn't supported
600 	 * try higher modes.
601 	 */
602 	while (*mode) {
603 		if (rdev->constraints->valid_modes_mask & *mode)
604 			return 0;
605 		*mode /= 2;
606 	}
607 
608 	return -EINVAL;
609 }
610 
611 static inline struct regulator_state *
612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613 {
614 	if (rdev->constraints == NULL)
615 		return NULL;
616 
617 	switch (state) {
618 	case PM_SUSPEND_STANDBY:
619 		return &rdev->constraints->state_standby;
620 	case PM_SUSPEND_MEM:
621 		return &rdev->constraints->state_mem;
622 	case PM_SUSPEND_MAX:
623 		return &rdev->constraints->state_disk;
624 	default:
625 		return NULL;
626 	}
627 }
628 
629 static const struct regulator_state *
630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631 {
632 	const struct regulator_state *rstate;
633 
634 	rstate = regulator_get_suspend_state(rdev, state);
635 	if (rstate == NULL)
636 		return NULL;
637 
638 	/* If we have no suspend mode configuration don't set anything;
639 	 * only warn if the driver implements set_suspend_voltage or
640 	 * set_suspend_mode callback.
641 	 */
642 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 	    rstate->enabled != DISABLE_IN_SUSPEND) {
644 		if (rdev->desc->ops->set_suspend_voltage ||
645 		    rdev->desc->ops->set_suspend_mode)
646 			rdev_warn(rdev, "No configuration\n");
647 		return NULL;
648 	}
649 
650 	return rstate;
651 }
652 
653 static ssize_t microvolts_show(struct device *dev,
654 			       struct device_attribute *attr, char *buf)
655 {
656 	struct regulator_dev *rdev = dev_get_drvdata(dev);
657 	int uV;
658 
659 	regulator_lock(rdev);
660 	uV = regulator_get_voltage_rdev(rdev);
661 	regulator_unlock(rdev);
662 
663 	if (uV < 0)
664 		return uV;
665 	return sprintf(buf, "%d\n", uV);
666 }
667 static DEVICE_ATTR_RO(microvolts);
668 
669 static ssize_t microamps_show(struct device *dev,
670 			      struct device_attribute *attr, char *buf)
671 {
672 	struct regulator_dev *rdev = dev_get_drvdata(dev);
673 
674 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675 }
676 static DEVICE_ATTR_RO(microamps);
677 
678 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 			 char *buf)
680 {
681 	struct regulator_dev *rdev = dev_get_drvdata(dev);
682 
683 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
684 }
685 static DEVICE_ATTR_RO(name);
686 
687 static const char *regulator_opmode_to_str(int mode)
688 {
689 	switch (mode) {
690 	case REGULATOR_MODE_FAST:
691 		return "fast";
692 	case REGULATOR_MODE_NORMAL:
693 		return "normal";
694 	case REGULATOR_MODE_IDLE:
695 		return "idle";
696 	case REGULATOR_MODE_STANDBY:
697 		return "standby";
698 	}
699 	return "unknown";
700 }
701 
702 static ssize_t regulator_print_opmode(char *buf, int mode)
703 {
704 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705 }
706 
707 static ssize_t opmode_show(struct device *dev,
708 			   struct device_attribute *attr, char *buf)
709 {
710 	struct regulator_dev *rdev = dev_get_drvdata(dev);
711 
712 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713 }
714 static DEVICE_ATTR_RO(opmode);
715 
716 static ssize_t regulator_print_state(char *buf, int state)
717 {
718 	if (state > 0)
719 		return sprintf(buf, "enabled\n");
720 	else if (state == 0)
721 		return sprintf(buf, "disabled\n");
722 	else
723 		return sprintf(buf, "unknown\n");
724 }
725 
726 static ssize_t state_show(struct device *dev,
727 			  struct device_attribute *attr, char *buf)
728 {
729 	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 	ssize_t ret;
731 
732 	regulator_lock(rdev);
733 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 	regulator_unlock(rdev);
735 
736 	return ret;
737 }
738 static DEVICE_ATTR_RO(state);
739 
740 static ssize_t status_show(struct device *dev,
741 			   struct device_attribute *attr, char *buf)
742 {
743 	struct regulator_dev *rdev = dev_get_drvdata(dev);
744 	int status;
745 	char *label;
746 
747 	status = rdev->desc->ops->get_status(rdev);
748 	if (status < 0)
749 		return status;
750 
751 	switch (status) {
752 	case REGULATOR_STATUS_OFF:
753 		label = "off";
754 		break;
755 	case REGULATOR_STATUS_ON:
756 		label = "on";
757 		break;
758 	case REGULATOR_STATUS_ERROR:
759 		label = "error";
760 		break;
761 	case REGULATOR_STATUS_FAST:
762 		label = "fast";
763 		break;
764 	case REGULATOR_STATUS_NORMAL:
765 		label = "normal";
766 		break;
767 	case REGULATOR_STATUS_IDLE:
768 		label = "idle";
769 		break;
770 	case REGULATOR_STATUS_STANDBY:
771 		label = "standby";
772 		break;
773 	case REGULATOR_STATUS_BYPASS:
774 		label = "bypass";
775 		break;
776 	case REGULATOR_STATUS_UNDEFINED:
777 		label = "undefined";
778 		break;
779 	default:
780 		return -ERANGE;
781 	}
782 
783 	return sprintf(buf, "%s\n", label);
784 }
785 static DEVICE_ATTR_RO(status);
786 
787 static ssize_t min_microamps_show(struct device *dev,
788 				  struct device_attribute *attr, char *buf)
789 {
790 	struct regulator_dev *rdev = dev_get_drvdata(dev);
791 
792 	if (!rdev->constraints)
793 		return sprintf(buf, "constraint not defined\n");
794 
795 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796 }
797 static DEVICE_ATTR_RO(min_microamps);
798 
799 static ssize_t max_microamps_show(struct device *dev,
800 				  struct device_attribute *attr, char *buf)
801 {
802 	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 
804 	if (!rdev->constraints)
805 		return sprintf(buf, "constraint not defined\n");
806 
807 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808 }
809 static DEVICE_ATTR_RO(max_microamps);
810 
811 static ssize_t min_microvolts_show(struct device *dev,
812 				   struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	if (!rdev->constraints)
817 		return sprintf(buf, "constraint not defined\n");
818 
819 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820 }
821 static DEVICE_ATTR_RO(min_microvolts);
822 
823 static ssize_t max_microvolts_show(struct device *dev,
824 				   struct device_attribute *attr, char *buf)
825 {
826 	struct regulator_dev *rdev = dev_get_drvdata(dev);
827 
828 	if (!rdev->constraints)
829 		return sprintf(buf, "constraint not defined\n");
830 
831 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832 }
833 static DEVICE_ATTR_RO(max_microvolts);
834 
835 static ssize_t requested_microamps_show(struct device *dev,
836 					struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 	struct regulator *regulator;
840 	int uA = 0;
841 
842 	regulator_lock(rdev);
843 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 		if (regulator->enable_count)
845 			uA += regulator->uA_load;
846 	}
847 	regulator_unlock(rdev);
848 	return sprintf(buf, "%d\n", uA);
849 }
850 static DEVICE_ATTR_RO(requested_microamps);
851 
852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 			      char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 	return sprintf(buf, "%d\n", rdev->use_count);
857 }
858 static DEVICE_ATTR_RO(num_users);
859 
860 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 			 char *buf)
862 {
863 	struct regulator_dev *rdev = dev_get_drvdata(dev);
864 
865 	switch (rdev->desc->type) {
866 	case REGULATOR_VOLTAGE:
867 		return sprintf(buf, "voltage\n");
868 	case REGULATOR_CURRENT:
869 		return sprintf(buf, "current\n");
870 	}
871 	return sprintf(buf, "unknown\n");
872 }
873 static DEVICE_ATTR_RO(type);
874 
875 static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 					   struct device_attribute *attr, char *buf)
877 {
878 	struct regulator_dev *rdev = dev_get_drvdata(dev);
879 
880 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881 }
882 static DEVICE_ATTR_RO(suspend_mem_microvolts);
883 
884 static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 					    struct device_attribute *attr, char *buf)
886 {
887 	struct regulator_dev *rdev = dev_get_drvdata(dev);
888 
889 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890 }
891 static DEVICE_ATTR_RO(suspend_disk_microvolts);
892 
893 static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 					       struct device_attribute *attr, char *buf)
895 {
896 	struct regulator_dev *rdev = dev_get_drvdata(dev);
897 
898 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899 }
900 static DEVICE_ATTR_RO(suspend_standby_microvolts);
901 
902 static ssize_t suspend_mem_mode_show(struct device *dev,
903 				     struct device_attribute *attr, char *buf)
904 {
905 	struct regulator_dev *rdev = dev_get_drvdata(dev);
906 
907 	return regulator_print_opmode(buf,
908 		rdev->constraints->state_mem.mode);
909 }
910 static DEVICE_ATTR_RO(suspend_mem_mode);
911 
912 static ssize_t suspend_disk_mode_show(struct device *dev,
913 				      struct device_attribute *attr, char *buf)
914 {
915 	struct regulator_dev *rdev = dev_get_drvdata(dev);
916 
917 	return regulator_print_opmode(buf,
918 		rdev->constraints->state_disk.mode);
919 }
920 static DEVICE_ATTR_RO(suspend_disk_mode);
921 
922 static ssize_t suspend_standby_mode_show(struct device *dev,
923 					 struct device_attribute *attr, char *buf)
924 {
925 	struct regulator_dev *rdev = dev_get_drvdata(dev);
926 
927 	return regulator_print_opmode(buf,
928 		rdev->constraints->state_standby.mode);
929 }
930 static DEVICE_ATTR_RO(suspend_standby_mode);
931 
932 static ssize_t suspend_mem_state_show(struct device *dev,
933 				      struct device_attribute *attr, char *buf)
934 {
935 	struct regulator_dev *rdev = dev_get_drvdata(dev);
936 
937 	return regulator_print_state(buf,
938 			rdev->constraints->state_mem.enabled);
939 }
940 static DEVICE_ATTR_RO(suspend_mem_state);
941 
942 static ssize_t suspend_disk_state_show(struct device *dev,
943 				       struct device_attribute *attr, char *buf)
944 {
945 	struct regulator_dev *rdev = dev_get_drvdata(dev);
946 
947 	return regulator_print_state(buf,
948 			rdev->constraints->state_disk.enabled);
949 }
950 static DEVICE_ATTR_RO(suspend_disk_state);
951 
952 static ssize_t suspend_standby_state_show(struct device *dev,
953 					  struct device_attribute *attr, char *buf)
954 {
955 	struct regulator_dev *rdev = dev_get_drvdata(dev);
956 
957 	return regulator_print_state(buf,
958 			rdev->constraints->state_standby.enabled);
959 }
960 static DEVICE_ATTR_RO(suspend_standby_state);
961 
962 static ssize_t bypass_show(struct device *dev,
963 			   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 	const char *report;
967 	bool bypass;
968 	int ret;
969 
970 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971 
972 	if (ret != 0)
973 		report = "unknown";
974 	else if (bypass)
975 		report = "enabled";
976 	else
977 		report = "disabled";
978 
979 	return sprintf(buf, "%s\n", report);
980 }
981 static DEVICE_ATTR_RO(bypass);
982 
983 #define REGULATOR_ERROR_ATTR(name, bit)							\
984 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
985 				   char *buf)						\
986 	{										\
987 		int ret;								\
988 		unsigned int flags;							\
989 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
990 		ret = _regulator_get_error_flags(rdev, &flags);				\
991 		if (ret)								\
992 			return ret;							\
993 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
994 	}										\
995 	static DEVICE_ATTR_RO(name)
996 
997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006 
1007 /* Calculate the new optimum regulator operating mode based on the new total
1008  * consumer load. All locks held by caller
1009  */
1010 static int drms_uA_update(struct regulator_dev *rdev)
1011 {
1012 	struct regulator *sibling;
1013 	int current_uA = 0, output_uV, input_uV, err;
1014 	unsigned int mode;
1015 
1016 	/*
1017 	 * first check to see if we can set modes at all, otherwise just
1018 	 * tell the consumer everything is OK.
1019 	 */
1020 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 		return 0;
1023 	}
1024 
1025 	if (!rdev->desc->ops->get_optimum_mode &&
1026 	    !rdev->desc->ops->set_load)
1027 		return 0;
1028 
1029 	if (!rdev->desc->ops->set_mode &&
1030 	    !rdev->desc->ops->set_load)
1031 		return -EINVAL;
1032 
1033 	/* calc total requested load */
1034 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 		if (sibling->enable_count)
1036 			current_uA += sibling->uA_load;
1037 	}
1038 
1039 	current_uA += rdev->constraints->system_load;
1040 
1041 	if (rdev->desc->ops->set_load) {
1042 		/* set the optimum mode for our new total regulator load */
1043 		err = rdev->desc->ops->set_load(rdev, current_uA);
1044 		if (err < 0)
1045 			rdev_err(rdev, "failed to set load %d: %pe\n",
1046 				 current_uA, ERR_PTR(err));
1047 	} else {
1048 		/*
1049 		 * Unfortunately in some cases the constraints->valid_ops has
1050 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 		 * That's not really legit but we won't consider it a fatal
1052 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 		 * wasn't set.
1054 		 */
1055 		if (!rdev->constraints->valid_modes_mask) {
1056 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 			return 0;
1058 		}
1059 
1060 		/* get output voltage */
1061 		output_uV = regulator_get_voltage_rdev(rdev);
1062 
1063 		/*
1064 		 * Don't return an error; if regulator driver cares about
1065 		 * output_uV then it's up to the driver to validate.
1066 		 */
1067 		if (output_uV <= 0)
1068 			rdev_dbg(rdev, "invalid output voltage found\n");
1069 
1070 		/* get input voltage */
1071 		input_uV = 0;
1072 		if (rdev->supply)
1073 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 		if (input_uV <= 0)
1075 			input_uV = rdev->constraints->input_uV;
1076 
1077 		/*
1078 		 * Don't return an error; if regulator driver cares about
1079 		 * input_uV then it's up to the driver to validate.
1080 		 */
1081 		if (input_uV <= 0)
1082 			rdev_dbg(rdev, "invalid input voltage found\n");
1083 
1084 		/* now get the optimum mode for our new total regulator load */
1085 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 							 output_uV, current_uA);
1087 
1088 		/* check the new mode is allowed */
1089 		err = regulator_mode_constrain(rdev, &mode);
1090 		if (err < 0) {
1091 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 			return err;
1094 		}
1095 
1096 		err = rdev->desc->ops->set_mode(rdev, mode);
1097 		if (err < 0)
1098 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 				 mode, ERR_PTR(err));
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 static int __suspend_set_state(struct regulator_dev *rdev,
1106 			       const struct regulator_state *rstate)
1107 {
1108 	int ret = 0;
1109 
1110 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 		rdev->desc->ops->set_suspend_enable)
1112 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 		rdev->desc->ops->set_suspend_disable)
1115 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 		ret = 0;
1118 
1119 	if (ret < 0) {
1120 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 		return ret;
1122 	}
1123 
1124 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 		if (ret < 0) {
1127 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 		if (ret < 0) {
1135 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 			return ret;
1137 		}
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static int suspend_set_initial_state(struct regulator_dev *rdev)
1144 {
1145 	const struct regulator_state *rstate;
1146 
1147 	rstate = regulator_get_suspend_state_check(rdev,
1148 			rdev->constraints->initial_state);
1149 	if (!rstate)
1150 		return 0;
1151 
1152 	return __suspend_set_state(rdev, rstate);
1153 }
1154 
1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156 static void print_constraints_debug(struct regulator_dev *rdev)
1157 {
1158 	struct regulation_constraints *constraints = rdev->constraints;
1159 	char buf[160] = "";
1160 	size_t len = sizeof(buf) - 1;
1161 	int count = 0;
1162 	int ret;
1163 
1164 	if (constraints->min_uV && constraints->max_uV) {
1165 		if (constraints->min_uV == constraints->max_uV)
1166 			count += scnprintf(buf + count, len - count, "%d mV ",
1167 					   constraints->min_uV / 1000);
1168 		else
1169 			count += scnprintf(buf + count, len - count,
1170 					   "%d <--> %d mV ",
1171 					   constraints->min_uV / 1000,
1172 					   constraints->max_uV / 1000);
1173 	}
1174 
1175 	if (!constraints->min_uV ||
1176 	    constraints->min_uV != constraints->max_uV) {
1177 		ret = regulator_get_voltage_rdev(rdev);
1178 		if (ret > 0)
1179 			count += scnprintf(buf + count, len - count,
1180 					   "at %d mV ", ret / 1000);
1181 	}
1182 
1183 	if (constraints->uV_offset)
1184 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 				   constraints->uV_offset / 1000);
1186 
1187 	if (constraints->min_uA && constraints->max_uA) {
1188 		if (constraints->min_uA == constraints->max_uA)
1189 			count += scnprintf(buf + count, len - count, "%d mA ",
1190 					   constraints->min_uA / 1000);
1191 		else
1192 			count += scnprintf(buf + count, len - count,
1193 					   "%d <--> %d mA ",
1194 					   constraints->min_uA / 1000,
1195 					   constraints->max_uA / 1000);
1196 	}
1197 
1198 	if (!constraints->min_uA ||
1199 	    constraints->min_uA != constraints->max_uA) {
1200 		ret = _regulator_get_current_limit(rdev);
1201 		if (ret > 0)
1202 			count += scnprintf(buf + count, len - count,
1203 					   "at %d mA ", ret / 1000);
1204 	}
1205 
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 		count += scnprintf(buf + count, len - count, "fast ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 		count += scnprintf(buf + count, len - count, "normal ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 		count += scnprintf(buf + count, len - count, "idle ");
1212 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 		count += scnprintf(buf + count, len - count, "standby ");
1214 
1215 	if (!count)
1216 		count = scnprintf(buf, len, "no parameters");
1217 	else
1218 		--count;
1219 
1220 	count += scnprintf(buf + count, len - count, ", %s",
1221 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222 
1223 	rdev_dbg(rdev, "%s\n", buf);
1224 }
1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228 
1229 static void print_constraints(struct regulator_dev *rdev)
1230 {
1231 	struct regulation_constraints *constraints = rdev->constraints;
1232 
1233 	print_constraints_debug(rdev);
1234 
1235 	if ((constraints->min_uV != constraints->max_uV) &&
1236 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 		rdev_warn(rdev,
1238 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239 }
1240 
1241 static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 	struct regulation_constraints *constraints)
1243 {
1244 	const struct regulator_ops *ops = rdev->desc->ops;
1245 	int ret;
1246 
1247 	/* do we need to apply the constraint voltage */
1248 	if (rdev->constraints->apply_uV &&
1249 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 		int target_min, target_max;
1251 		int current_uV = regulator_get_voltage_rdev(rdev);
1252 
1253 		if (current_uV == -ENOTRECOVERABLE) {
1254 			/* This regulator can't be read and must be initialized */
1255 			rdev_info(rdev, "Setting %d-%duV\n",
1256 				  rdev->constraints->min_uV,
1257 				  rdev->constraints->max_uV);
1258 			_regulator_do_set_voltage(rdev,
1259 						  rdev->constraints->min_uV,
1260 						  rdev->constraints->max_uV);
1261 			current_uV = regulator_get_voltage_rdev(rdev);
1262 		}
1263 
1264 		if (current_uV < 0) {
1265 			if (current_uV != -EPROBE_DEFER)
1266 				rdev_err(rdev,
1267 					 "failed to get the current voltage: %pe\n",
1268 					 ERR_PTR(current_uV));
1269 			return current_uV;
1270 		}
1271 
1272 		/*
1273 		 * If we're below the minimum voltage move up to the
1274 		 * minimum voltage, if we're above the maximum voltage
1275 		 * then move down to the maximum.
1276 		 */
1277 		target_min = current_uV;
1278 		target_max = current_uV;
1279 
1280 		if (current_uV < rdev->constraints->min_uV) {
1281 			target_min = rdev->constraints->min_uV;
1282 			target_max = rdev->constraints->min_uV;
1283 		}
1284 
1285 		if (current_uV > rdev->constraints->max_uV) {
1286 			target_min = rdev->constraints->max_uV;
1287 			target_max = rdev->constraints->max_uV;
1288 		}
1289 
1290 		if (target_min != current_uV || target_max != current_uV) {
1291 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 				  current_uV, target_min, target_max);
1293 			ret = _regulator_do_set_voltage(
1294 				rdev, target_min, target_max);
1295 			if (ret < 0) {
1296 				rdev_err(rdev,
1297 					"failed to apply %d-%duV constraint: %pe\n",
1298 					target_min, target_max, ERR_PTR(ret));
1299 				return ret;
1300 			}
1301 		}
1302 	}
1303 
1304 	/* constrain machine-level voltage specs to fit
1305 	 * the actual range supported by this regulator.
1306 	 */
1307 	if (ops->list_voltage && rdev->desc->n_voltages) {
1308 		int	count = rdev->desc->n_voltages;
1309 		int	i;
1310 		int	min_uV = INT_MAX;
1311 		int	max_uV = INT_MIN;
1312 		int	cmin = constraints->min_uV;
1313 		int	cmax = constraints->max_uV;
1314 
1315 		/* it's safe to autoconfigure fixed-voltage supplies
1316 		 * and the constraints are used by list_voltage.
1317 		 */
1318 		if (count == 1 && !cmin) {
1319 			cmin = 1;
1320 			cmax = INT_MAX;
1321 			constraints->min_uV = cmin;
1322 			constraints->max_uV = cmax;
1323 		}
1324 
1325 		/* voltage constraints are optional */
1326 		if ((cmin == 0) && (cmax == 0))
1327 			return 0;
1328 
1329 		/* else require explicit machine-level constraints */
1330 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 			rdev_err(rdev, "invalid voltage constraints\n");
1332 			return -EINVAL;
1333 		}
1334 
1335 		/* no need to loop voltages if range is continuous */
1336 		if (rdev->desc->continuous_voltage_range)
1337 			return 0;
1338 
1339 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 		for (i = 0; i < count; i++) {
1341 			int	value;
1342 
1343 			value = ops->list_voltage(rdev, i);
1344 			if (value <= 0)
1345 				continue;
1346 
1347 			/* maybe adjust [min_uV..max_uV] */
1348 			if (value >= cmin && value < min_uV)
1349 				min_uV = value;
1350 			if (value <= cmax && value > max_uV)
1351 				max_uV = value;
1352 		}
1353 
1354 		/* final: [min_uV..max_uV] valid iff constraints valid */
1355 		if (max_uV < min_uV) {
1356 			rdev_err(rdev,
1357 				 "unsupportable voltage constraints %u-%uuV\n",
1358 				 min_uV, max_uV);
1359 			return -EINVAL;
1360 		}
1361 
1362 		/* use regulator's subset of machine constraints */
1363 		if (constraints->min_uV < min_uV) {
1364 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 				 constraints->min_uV, min_uV);
1366 			constraints->min_uV = min_uV;
1367 		}
1368 		if (constraints->max_uV > max_uV) {
1369 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 				 constraints->max_uV, max_uV);
1371 			constraints->max_uV = max_uV;
1372 		}
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int machine_constraints_current(struct regulator_dev *rdev,
1379 	struct regulation_constraints *constraints)
1380 {
1381 	const struct regulator_ops *ops = rdev->desc->ops;
1382 	int ret;
1383 
1384 	if (!constraints->min_uA && !constraints->max_uA)
1385 		return 0;
1386 
1387 	if (constraints->min_uA > constraints->max_uA) {
1388 		rdev_err(rdev, "Invalid current constraints\n");
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (!ops->set_current_limit || !ops->get_current_limit) {
1393 		rdev_warn(rdev, "Operation of current configuration missing\n");
1394 		return 0;
1395 	}
1396 
1397 	/* Set regulator current in constraints range */
1398 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 			constraints->max_uA);
1400 	if (ret < 0) {
1401 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 		return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int _regulator_do_enable(struct regulator_dev *rdev);
1409 
1410 static int notif_set_limit(struct regulator_dev *rdev,
1411 			   int (*set)(struct regulator_dev *, int, int, bool),
1412 			   int limit, int severity)
1413 {
1414 	bool enable;
1415 
1416 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 		enable = false;
1418 		limit = 0;
1419 	} else {
1420 		enable = true;
1421 	}
1422 
1423 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 		limit = 0;
1425 
1426 	return set(rdev, limit, severity, enable);
1427 }
1428 
1429 static int handle_notify_limits(struct regulator_dev *rdev,
1430 			int (*set)(struct regulator_dev *, int, int, bool),
1431 			struct notification_limit *limits)
1432 {
1433 	int ret = 0;
1434 
1435 	if (!set)
1436 		return -EOPNOTSUPP;
1437 
1438 	if (limits->prot)
1439 		ret = notif_set_limit(rdev, set, limits->prot,
1440 				      REGULATOR_SEVERITY_PROT);
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (limits->err)
1445 		ret = notif_set_limit(rdev, set, limits->err,
1446 				      REGULATOR_SEVERITY_ERR);
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (limits->warn)
1451 		ret = notif_set_limit(rdev, set, limits->warn,
1452 				      REGULATOR_SEVERITY_WARN);
1453 
1454 	return ret;
1455 }
1456 /**
1457  * set_machine_constraints - sets regulator constraints
1458  * @rdev: regulator source
1459  *
1460  * Allows platform initialisation code to define and constrain
1461  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462  * Constraints *must* be set by platform code in order for some
1463  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464  * set_mode.
1465  */
1466 static int set_machine_constraints(struct regulator_dev *rdev)
1467 {
1468 	int ret = 0;
1469 	const struct regulator_ops *ops = rdev->desc->ops;
1470 
1471 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 	if (ret != 0)
1473 		return ret;
1474 
1475 	ret = machine_constraints_current(rdev, rdev->constraints);
1476 	if (ret != 0)
1477 		return ret;
1478 
1479 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 		ret = ops->set_input_current_limit(rdev,
1481 						   rdev->constraints->ilim_uA);
1482 		if (ret < 0) {
1483 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 			return ret;
1485 		}
1486 	}
1487 
1488 	/* do we need to setup our suspend state */
1489 	if (rdev->constraints->initial_state) {
1490 		ret = suspend_set_initial_state(rdev);
1491 		if (ret < 0) {
1492 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 			return ret;
1494 		}
1495 	}
1496 
1497 	if (rdev->constraints->initial_mode) {
1498 		if (!ops->set_mode) {
1499 			rdev_err(rdev, "no set_mode operation\n");
1500 			return -EINVAL;
1501 		}
1502 
1503 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 		if (ret < 0) {
1505 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 			return ret;
1507 		}
1508 	} else if (rdev->constraints->system_load) {
1509 		/*
1510 		 * We'll only apply the initial system load if an
1511 		 * initial mode wasn't specified.
1512 		 */
1513 		drms_uA_update(rdev);
1514 	}
1515 
1516 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 		&& ops->set_ramp_delay) {
1518 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 		if (ret < 0) {
1520 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 			return ret;
1522 		}
1523 	}
1524 
1525 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 		ret = ops->set_pull_down(rdev);
1527 		if (ret < 0) {
1528 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 			return ret;
1530 		}
1531 	}
1532 
1533 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 		ret = ops->set_soft_start(rdev);
1535 		if (ret < 0) {
1536 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 			return ret;
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Existing logic does not warn if over_current_protection is given as
1543 	 * a constraint but driver does not support that. I think we should
1544 	 * warn about this type of issues as it is possible someone changes
1545 	 * PMIC on board to another type - and the another PMIC's driver does
1546 	 * not support setting protection. Board composer may happily believe
1547 	 * the DT limits are respected - especially if the new PMIC HW also
1548 	 * supports protection but the driver does not. I won't change the logic
1549 	 * without hearing more experienced opinion on this though.
1550 	 *
1551 	 * If warning is seen as a good idea then we can merge handling the
1552 	 * over-curret protection and detection and get rid of this special
1553 	 * handling.
1554 	 */
1555 	if (rdev->constraints->over_current_protection
1556 		&& ops->set_over_current_protection) {
1557 		int lim = rdev->constraints->over_curr_limits.prot;
1558 
1559 		ret = ops->set_over_current_protection(rdev, lim,
1560 						       REGULATOR_SEVERITY_PROT,
1561 						       true);
1562 		if (ret < 0) {
1563 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 				 ERR_PTR(ret));
1565 			return ret;
1566 		}
1567 	}
1568 
1569 	if (rdev->constraints->over_current_detection)
1570 		ret = handle_notify_limits(rdev,
1571 					   ops->set_over_current_protection,
1572 					   &rdev->constraints->over_curr_limits);
1573 	if (ret) {
1574 		if (ret != -EOPNOTSUPP) {
1575 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 				 ERR_PTR(ret));
1577 			return ret;
1578 		}
1579 		rdev_warn(rdev,
1580 			  "IC does not support requested over-current limits\n");
1581 	}
1582 
1583 	if (rdev->constraints->over_voltage_detection)
1584 		ret = handle_notify_limits(rdev,
1585 					   ops->set_over_voltage_protection,
1586 					   &rdev->constraints->over_voltage_limits);
1587 	if (ret) {
1588 		if (ret != -EOPNOTSUPP) {
1589 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 				 ERR_PTR(ret));
1591 			return ret;
1592 		}
1593 		rdev_warn(rdev,
1594 			  "IC does not support requested over voltage limits\n");
1595 	}
1596 
1597 	if (rdev->constraints->under_voltage_detection)
1598 		ret = handle_notify_limits(rdev,
1599 					   ops->set_under_voltage_protection,
1600 					   &rdev->constraints->under_voltage_limits);
1601 	if (ret) {
1602 		if (ret != -EOPNOTSUPP) {
1603 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 				 ERR_PTR(ret));
1605 			return ret;
1606 		}
1607 		rdev_warn(rdev,
1608 			  "IC does not support requested under voltage limits\n");
1609 	}
1610 
1611 	if (rdev->constraints->over_temp_detection)
1612 		ret = handle_notify_limits(rdev,
1613 					   ops->set_thermal_protection,
1614 					   &rdev->constraints->temp_limits);
1615 	if (ret) {
1616 		if (ret != -EOPNOTSUPP) {
1617 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 				 ERR_PTR(ret));
1619 			return ret;
1620 		}
1621 		rdev_warn(rdev,
1622 			  "IC does not support requested temperature limits\n");
1623 	}
1624 
1625 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 		bool ad_state = (rdev->constraints->active_discharge ==
1627 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628 
1629 		ret = ops->set_active_discharge(rdev, ad_state);
1630 		if (ret < 0) {
1631 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 			return ret;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * If there is no mechanism for controlling the regulator then
1638 	 * flag it as always_on so we don't end up duplicating checks
1639 	 * for this so much.  Note that we could control the state of
1640 	 * a supply to control the output on a regulator that has no
1641 	 * direct control.
1642 	 */
1643 	if (!rdev->ena_pin && !ops->enable) {
1644 		if (rdev->supply_name && !rdev->supply)
1645 			return -EPROBE_DEFER;
1646 
1647 		if (rdev->supply)
1648 			rdev->constraints->always_on =
1649 				rdev->supply->rdev->constraints->always_on;
1650 		else
1651 			rdev->constraints->always_on = true;
1652 	}
1653 
1654 	/* If the constraints say the regulator should be on at this point
1655 	 * and we have control then make sure it is enabled.
1656 	 */
1657 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 		/* If we want to enable this regulator, make sure that we know
1659 		 * the supplying regulator.
1660 		 */
1661 		if (rdev->supply_name && !rdev->supply)
1662 			return -EPROBE_DEFER;
1663 
1664 		/* If supplying regulator has already been enabled,
1665 		 * it's not intended to have use_count increment
1666 		 * when rdev is only boot-on.
1667 		 */
1668 		if (rdev->supply &&
1669 		    (rdev->constraints->always_on ||
1670 		     !regulator_is_enabled(rdev->supply))) {
1671 			ret = regulator_enable(rdev->supply);
1672 			if (ret < 0) {
1673 				_regulator_put(rdev->supply);
1674 				rdev->supply = NULL;
1675 				return ret;
1676 			}
1677 		}
1678 
1679 		ret = _regulator_do_enable(rdev);
1680 		if (ret < 0 && ret != -EINVAL) {
1681 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 			return ret;
1683 		}
1684 
1685 		if (rdev->constraints->always_on)
1686 			rdev->use_count++;
1687 	} else if (rdev->desc->off_on_delay) {
1688 		rdev->last_off = ktime_get();
1689 	}
1690 
1691 	print_constraints(rdev);
1692 	return 0;
1693 }
1694 
1695 /**
1696  * set_supply - set regulator supply regulator
1697  * @rdev: regulator (locked)
1698  * @supply_rdev: supply regulator (locked))
1699  *
1700  * Called by platform initialisation code to set the supply regulator for this
1701  * regulator. This ensures that a regulators supply will also be enabled by the
1702  * core if it's child is enabled.
1703  */
1704 static int set_supply(struct regulator_dev *rdev,
1705 		      struct regulator_dev *supply_rdev)
1706 {
1707 	int err;
1708 
1709 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710 
1711 	if (!try_module_get(supply_rdev->owner))
1712 		return -ENODEV;
1713 
1714 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 	if (rdev->supply == NULL) {
1716 		module_put(supply_rdev->owner);
1717 		err = -ENOMEM;
1718 		return err;
1719 	}
1720 	supply_rdev->open_count++;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727  * @rdev:         regulator source
1728  * @consumer_dev_name: dev_name() string for device supply applies to
1729  * @supply:       symbolic name for supply
1730  *
1731  * Allows platform initialisation code to map physical regulator
1732  * sources to symbolic names for supplies for use by devices.  Devices
1733  * should use these symbolic names to request regulators, avoiding the
1734  * need to provide board-specific regulator names as platform data.
1735  */
1736 static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 				      const char *consumer_dev_name,
1738 				      const char *supply)
1739 {
1740 	struct regulator_map *node, *new_node;
1741 	int has_dev;
1742 
1743 	if (supply == NULL)
1744 		return -EINVAL;
1745 
1746 	if (consumer_dev_name != NULL)
1747 		has_dev = 1;
1748 	else
1749 		has_dev = 0;
1750 
1751 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 	if (new_node == NULL)
1753 		return -ENOMEM;
1754 
1755 	new_node->regulator = rdev;
1756 	new_node->supply = supply;
1757 
1758 	if (has_dev) {
1759 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 		if (new_node->dev_name == NULL) {
1761 			kfree(new_node);
1762 			return -ENOMEM;
1763 		}
1764 	}
1765 
1766 	mutex_lock(&regulator_list_mutex);
1767 	list_for_each_entry(node, &regulator_map_list, list) {
1768 		if (node->dev_name && consumer_dev_name) {
1769 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 				continue;
1771 		} else if (node->dev_name || consumer_dev_name) {
1772 			continue;
1773 		}
1774 
1775 		if (strcmp(node->supply, supply) != 0)
1776 			continue;
1777 
1778 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 			 consumer_dev_name,
1780 			 dev_name(&node->regulator->dev),
1781 			 node->regulator->desc->name,
1782 			 supply,
1783 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 		goto fail;
1785 	}
1786 
1787 	list_add(&new_node->list, &regulator_map_list);
1788 	mutex_unlock(&regulator_list_mutex);
1789 
1790 	return 0;
1791 
1792 fail:
1793 	mutex_unlock(&regulator_list_mutex);
1794 	kfree(new_node->dev_name);
1795 	kfree(new_node);
1796 	return -EBUSY;
1797 }
1798 
1799 static void unset_regulator_supplies(struct regulator_dev *rdev)
1800 {
1801 	struct regulator_map *node, *n;
1802 
1803 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804 		if (rdev == node->regulator) {
1805 			list_del(&node->list);
1806 			kfree(node->dev_name);
1807 			kfree(node);
1808 		}
1809 	}
1810 }
1811 
1812 #ifdef CONFIG_DEBUG_FS
1813 static ssize_t constraint_flags_read_file(struct file *file,
1814 					  char __user *user_buf,
1815 					  size_t count, loff_t *ppos)
1816 {
1817 	const struct regulator *regulator = file->private_data;
1818 	const struct regulation_constraints *c = regulator->rdev->constraints;
1819 	char *buf;
1820 	ssize_t ret;
1821 
1822 	if (!c)
1823 		return 0;
1824 
1825 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 	if (!buf)
1827 		return -ENOMEM;
1828 
1829 	ret = snprintf(buf, PAGE_SIZE,
1830 			"always_on: %u\n"
1831 			"boot_on: %u\n"
1832 			"apply_uV: %u\n"
1833 			"ramp_disable: %u\n"
1834 			"soft_start: %u\n"
1835 			"pull_down: %u\n"
1836 			"over_current_protection: %u\n",
1837 			c->always_on,
1838 			c->boot_on,
1839 			c->apply_uV,
1840 			c->ramp_disable,
1841 			c->soft_start,
1842 			c->pull_down,
1843 			c->over_current_protection);
1844 
1845 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 	kfree(buf);
1847 
1848 	return ret;
1849 }
1850 
1851 #endif
1852 
1853 static const struct file_operations constraint_flags_fops = {
1854 #ifdef CONFIG_DEBUG_FS
1855 	.open = simple_open,
1856 	.read = constraint_flags_read_file,
1857 	.llseek = default_llseek,
1858 #endif
1859 };
1860 
1861 #define REG_STR_SIZE	64
1862 
1863 static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 					  struct device *dev,
1865 					  const char *supply_name)
1866 {
1867 	struct regulator *regulator;
1868 	int err = 0;
1869 
1870 	lockdep_assert_held_once(&rdev->mutex.base);
1871 
1872 	if (dev) {
1873 		char buf[REG_STR_SIZE];
1874 		int size;
1875 
1876 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 				dev->kobj.name, supply_name);
1878 		if (size >= REG_STR_SIZE)
1879 			return NULL;
1880 
1881 		supply_name = kstrdup(buf, GFP_KERNEL);
1882 		if (supply_name == NULL)
1883 			return NULL;
1884 	} else {
1885 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 		if (supply_name == NULL)
1887 			return NULL;
1888 	}
1889 
1890 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 	if (regulator == NULL) {
1892 		kfree_const(supply_name);
1893 		return NULL;
1894 	}
1895 
1896 	regulator->rdev = rdev;
1897 	regulator->supply_name = supply_name;
1898 
1899 	list_add(&regulator->list, &rdev->consumer_list);
1900 
1901 	if (dev) {
1902 		regulator->dev = dev;
1903 
1904 		/* Add a link to the device sysfs entry */
1905 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 					       supply_name);
1907 		if (err) {
1908 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 				  dev->kobj.name, ERR_PTR(err));
1910 			/* non-fatal */
1911 		}
1912 	}
1913 
1914 	if (err != -EEXIST)
1915 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 	if (IS_ERR(regulator->debugfs))
1917 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 
1919 	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920 			   &regulator->uA_load);
1921 	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922 			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923 	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924 			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925 	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926 			    regulator, &constraint_flags_fops);
1927 
1928 	/*
1929 	 * Check now if the regulator is an always on regulator - if
1930 	 * it is then we don't need to do nearly so much work for
1931 	 * enable/disable calls.
1932 	 */
1933 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 	    _regulator_is_enabled(rdev))
1935 		regulator->always_on = true;
1936 
1937 	return regulator;
1938 }
1939 
1940 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941 {
1942 	if (rdev->constraints && rdev->constraints->enable_time)
1943 		return rdev->constraints->enable_time;
1944 	if (rdev->desc->ops->enable_time)
1945 		return rdev->desc->ops->enable_time(rdev);
1946 	return rdev->desc->enable_time;
1947 }
1948 
1949 static struct regulator_supply_alias *regulator_find_supply_alias(
1950 		struct device *dev, const char *supply)
1951 {
1952 	struct regulator_supply_alias *map;
1953 
1954 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 			return map;
1957 
1958 	return NULL;
1959 }
1960 
1961 static void regulator_supply_alias(struct device **dev, const char **supply)
1962 {
1963 	struct regulator_supply_alias *map;
1964 
1965 	map = regulator_find_supply_alias(*dev, *supply);
1966 	if (map) {
1967 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 				*supply, map->alias_supply,
1969 				dev_name(map->alias_dev));
1970 		*dev = map->alias_dev;
1971 		*supply = map->alias_supply;
1972 	}
1973 }
1974 
1975 static int regulator_match(struct device *dev, const void *data)
1976 {
1977 	struct regulator_dev *r = dev_to_rdev(dev);
1978 
1979 	return strcmp(rdev_get_name(r), data) == 0;
1980 }
1981 
1982 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983 {
1984 	struct device *dev;
1985 
1986 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987 
1988 	return dev ? dev_to_rdev(dev) : NULL;
1989 }
1990 
1991 /**
1992  * regulator_dev_lookup - lookup a regulator device.
1993  * @dev: device for regulator "consumer".
1994  * @supply: Supply name or regulator ID.
1995  *
1996  * If successful, returns a struct regulator_dev that corresponds to the name
1997  * @supply and with the embedded struct device refcount incremented by one.
1998  * The refcount must be dropped by calling put_device().
1999  * On failure one of the following ERR-PTR-encoded values is returned:
2000  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001  * in the future.
2002  */
2003 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 						  const char *supply)
2005 {
2006 	struct regulator_dev *r = NULL;
2007 	struct device_node *node;
2008 	struct regulator_map *map;
2009 	const char *devname = NULL;
2010 
2011 	regulator_supply_alias(&dev, &supply);
2012 
2013 	/* first do a dt based lookup */
2014 	if (dev && dev->of_node) {
2015 		node = of_get_regulator(dev, supply);
2016 		if (node) {
2017 			r = of_find_regulator_by_node(node);
2018 			of_node_put(node);
2019 			if (r)
2020 				return r;
2021 
2022 			/*
2023 			 * We have a node, but there is no device.
2024 			 * assume it has not registered yet.
2025 			 */
2026 			return ERR_PTR(-EPROBE_DEFER);
2027 		}
2028 	}
2029 
2030 	/* if not found, try doing it non-dt way */
2031 	if (dev)
2032 		devname = dev_name(dev);
2033 
2034 	mutex_lock(&regulator_list_mutex);
2035 	list_for_each_entry(map, &regulator_map_list, list) {
2036 		/* If the mapping has a device set up it must match */
2037 		if (map->dev_name &&
2038 		    (!devname || strcmp(map->dev_name, devname)))
2039 			continue;
2040 
2041 		if (strcmp(map->supply, supply) == 0 &&
2042 		    get_device(&map->regulator->dev)) {
2043 			r = map->regulator;
2044 			break;
2045 		}
2046 	}
2047 	mutex_unlock(&regulator_list_mutex);
2048 
2049 	if (r)
2050 		return r;
2051 
2052 	r = regulator_lookup_by_name(supply);
2053 	if (r)
2054 		return r;
2055 
2056 	return ERR_PTR(-ENODEV);
2057 }
2058 
2059 static int regulator_resolve_supply(struct regulator_dev *rdev)
2060 {
2061 	struct regulator_dev *r;
2062 	struct device *dev = rdev->dev.parent;
2063 	struct ww_acquire_ctx ww_ctx;
2064 	int ret = 0;
2065 
2066 	/* No supply to resolve? */
2067 	if (!rdev->supply_name)
2068 		return 0;
2069 
2070 	/* Supply already resolved? (fast-path without locking contention) */
2071 	if (rdev->supply)
2072 		return 0;
2073 
2074 	r = regulator_dev_lookup(dev, rdev->supply_name);
2075 	if (IS_ERR(r)) {
2076 		ret = PTR_ERR(r);
2077 
2078 		/* Did the lookup explicitly defer for us? */
2079 		if (ret == -EPROBE_DEFER)
2080 			goto out;
2081 
2082 		if (have_full_constraints()) {
2083 			r = dummy_regulator_rdev;
2084 			get_device(&r->dev);
2085 		} else {
2086 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 				rdev->supply_name, rdev->desc->name);
2088 			ret = -EPROBE_DEFER;
2089 			goto out;
2090 		}
2091 	}
2092 
2093 	if (r == rdev) {
2094 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 			rdev->desc->name, rdev->supply_name);
2096 		if (!have_full_constraints()) {
2097 			ret = -EINVAL;
2098 			goto out;
2099 		}
2100 		r = dummy_regulator_rdev;
2101 		get_device(&r->dev);
2102 	}
2103 
2104 	/*
2105 	 * If the supply's parent device is not the same as the
2106 	 * regulator's parent device, then ensure the parent device
2107 	 * is bound before we resolve the supply, in case the parent
2108 	 * device get probe deferred and unregisters the supply.
2109 	 */
2110 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 		if (!device_is_bound(r->dev.parent)) {
2112 			put_device(&r->dev);
2113 			ret = -EPROBE_DEFER;
2114 			goto out;
2115 		}
2116 	}
2117 
2118 	/* Recursively resolve the supply of the supply */
2119 	ret = regulator_resolve_supply(r);
2120 	if (ret < 0) {
2121 		put_device(&r->dev);
2122 		goto out;
2123 	}
2124 
2125 	/*
2126 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 	 * between rdev->supply null check and setting rdev->supply in
2128 	 * set_supply() from concurrent tasks.
2129 	 */
2130 	regulator_lock_two(rdev, r, &ww_ctx);
2131 
2132 	/* Supply just resolved by a concurrent task? */
2133 	if (rdev->supply) {
2134 		regulator_unlock_two(rdev, r, &ww_ctx);
2135 		put_device(&r->dev);
2136 		goto out;
2137 	}
2138 
2139 	ret = set_supply(rdev, r);
2140 	if (ret < 0) {
2141 		regulator_unlock_two(rdev, r, &ww_ctx);
2142 		put_device(&r->dev);
2143 		goto out;
2144 	}
2145 
2146 	regulator_unlock_two(rdev, r, &ww_ctx);
2147 
2148 	/*
2149 	 * In set_machine_constraints() we may have turned this regulator on
2150 	 * but we couldn't propagate to the supply if it hadn't been resolved
2151 	 * yet.  Do it now.
2152 	 */
2153 	if (rdev->use_count) {
2154 		ret = regulator_enable(rdev->supply);
2155 		if (ret < 0) {
2156 			_regulator_put(rdev->supply);
2157 			rdev->supply = NULL;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 out:
2163 	return ret;
2164 }
2165 
2166 /* Internal regulator request function */
2167 struct regulator *_regulator_get(struct device *dev, const char *id,
2168 				 enum regulator_get_type get_type)
2169 {
2170 	struct regulator_dev *rdev;
2171 	struct regulator *regulator;
2172 	struct device_link *link;
2173 	int ret;
2174 
2175 	if (get_type >= MAX_GET_TYPE) {
2176 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 		return ERR_PTR(-EINVAL);
2178 	}
2179 
2180 	if (id == NULL) {
2181 		pr_err("get() with no identifier\n");
2182 		return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	rdev = regulator_dev_lookup(dev, id);
2186 	if (IS_ERR(rdev)) {
2187 		ret = PTR_ERR(rdev);
2188 
2189 		/*
2190 		 * If regulator_dev_lookup() fails with error other
2191 		 * than -ENODEV our job here is done, we simply return it.
2192 		 */
2193 		if (ret != -ENODEV)
2194 			return ERR_PTR(ret);
2195 
2196 		if (!have_full_constraints()) {
2197 			dev_warn(dev,
2198 				 "incomplete constraints, dummy supplies not allowed\n");
2199 			return ERR_PTR(-ENODEV);
2200 		}
2201 
2202 		switch (get_type) {
2203 		case NORMAL_GET:
2204 			/*
2205 			 * Assume that a regulator is physically present and
2206 			 * enabled, even if it isn't hooked up, and just
2207 			 * provide a dummy.
2208 			 */
2209 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 			rdev = dummy_regulator_rdev;
2211 			get_device(&rdev->dev);
2212 			break;
2213 
2214 		case EXCLUSIVE_GET:
2215 			dev_warn(dev,
2216 				 "dummy supplies not allowed for exclusive requests\n");
2217 			fallthrough;
2218 
2219 		default:
2220 			return ERR_PTR(-ENODEV);
2221 		}
2222 	}
2223 
2224 	if (rdev->exclusive) {
2225 		regulator = ERR_PTR(-EPERM);
2226 		put_device(&rdev->dev);
2227 		return regulator;
2228 	}
2229 
2230 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 		regulator = ERR_PTR(-EBUSY);
2232 		put_device(&rdev->dev);
2233 		return regulator;
2234 	}
2235 
2236 	mutex_lock(&regulator_list_mutex);
2237 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 	mutex_unlock(&regulator_list_mutex);
2239 
2240 	if (ret != 0) {
2241 		regulator = ERR_PTR(-EPROBE_DEFER);
2242 		put_device(&rdev->dev);
2243 		return regulator;
2244 	}
2245 
2246 	ret = regulator_resolve_supply(rdev);
2247 	if (ret < 0) {
2248 		regulator = ERR_PTR(ret);
2249 		put_device(&rdev->dev);
2250 		return regulator;
2251 	}
2252 
2253 	if (!try_module_get(rdev->owner)) {
2254 		regulator = ERR_PTR(-EPROBE_DEFER);
2255 		put_device(&rdev->dev);
2256 		return regulator;
2257 	}
2258 
2259 	regulator_lock(rdev);
2260 	regulator = create_regulator(rdev, dev, id);
2261 	regulator_unlock(rdev);
2262 	if (regulator == NULL) {
2263 		regulator = ERR_PTR(-ENOMEM);
2264 		module_put(rdev->owner);
2265 		put_device(&rdev->dev);
2266 		return regulator;
2267 	}
2268 
2269 	rdev->open_count++;
2270 	if (get_type == EXCLUSIVE_GET) {
2271 		rdev->exclusive = 1;
2272 
2273 		ret = _regulator_is_enabled(rdev);
2274 		if (ret > 0) {
2275 			rdev->use_count = 1;
2276 			regulator->enable_count = 1;
2277 
2278 			/* Propagate the regulator state to its supply */
2279 			if (rdev->supply) {
2280 				ret = regulator_enable(rdev->supply);
2281 				if (ret < 0) {
2282 					destroy_regulator(regulator);
2283 					module_put(rdev->owner);
2284 					put_device(&rdev->dev);
2285 					return ERR_PTR(ret);
2286 				}
2287 			}
2288 		} else {
2289 			rdev->use_count = 0;
2290 			regulator->enable_count = 0;
2291 		}
2292 	}
2293 
2294 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2295 	if (!IS_ERR_OR_NULL(link))
2296 		regulator->device_link = true;
2297 
2298 	return regulator;
2299 }
2300 
2301 /**
2302  * regulator_get - lookup and obtain a reference to a regulator.
2303  * @dev: device for regulator "consumer"
2304  * @id: Supply name or regulator ID.
2305  *
2306  * Returns a struct regulator corresponding to the regulator producer,
2307  * or IS_ERR() condition containing errno.
2308  *
2309  * Use of supply names configured via set_consumer_device_supply() is
2310  * strongly encouraged.  It is recommended that the supply name used
2311  * should match the name used for the supply and/or the relevant
2312  * device pins in the datasheet.
2313  */
2314 struct regulator *regulator_get(struct device *dev, const char *id)
2315 {
2316 	return _regulator_get(dev, id, NORMAL_GET);
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_get);
2319 
2320 /**
2321  * regulator_get_exclusive - obtain exclusive access to a regulator.
2322  * @dev: device for regulator "consumer"
2323  * @id: Supply name or regulator ID.
2324  *
2325  * Returns a struct regulator corresponding to the regulator producer,
2326  * or IS_ERR() condition containing errno.  Other consumers will be
2327  * unable to obtain this regulator while this reference is held and the
2328  * use count for the regulator will be initialised to reflect the current
2329  * state of the regulator.
2330  *
2331  * This is intended for use by consumers which cannot tolerate shared
2332  * use of the regulator such as those which need to force the
2333  * regulator off for correct operation of the hardware they are
2334  * controlling.
2335  *
2336  * Use of supply names configured via set_consumer_device_supply() is
2337  * strongly encouraged.  It is recommended that the supply name used
2338  * should match the name used for the supply and/or the relevant
2339  * device pins in the datasheet.
2340  */
2341 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2342 {
2343 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2344 }
2345 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2346 
2347 /**
2348  * regulator_get_optional - obtain optional access to a regulator.
2349  * @dev: device for regulator "consumer"
2350  * @id: Supply name or regulator ID.
2351  *
2352  * Returns a struct regulator corresponding to the regulator producer,
2353  * or IS_ERR() condition containing errno.
2354  *
2355  * This is intended for use by consumers for devices which can have
2356  * some supplies unconnected in normal use, such as some MMC devices.
2357  * It can allow the regulator core to provide stub supplies for other
2358  * supplies requested using normal regulator_get() calls without
2359  * disrupting the operation of drivers that can handle absent
2360  * supplies.
2361  *
2362  * Use of supply names configured via set_consumer_device_supply() is
2363  * strongly encouraged.  It is recommended that the supply name used
2364  * should match the name used for the supply and/or the relevant
2365  * device pins in the datasheet.
2366  */
2367 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2368 {
2369 	return _regulator_get(dev, id, OPTIONAL_GET);
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_get_optional);
2372 
2373 static void destroy_regulator(struct regulator *regulator)
2374 {
2375 	struct regulator_dev *rdev = regulator->rdev;
2376 
2377 	debugfs_remove_recursive(regulator->debugfs);
2378 
2379 	if (regulator->dev) {
2380 		if (regulator->device_link)
2381 			device_link_remove(regulator->dev, &rdev->dev);
2382 
2383 		/* remove any sysfs entries */
2384 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2385 	}
2386 
2387 	regulator_lock(rdev);
2388 	list_del(&regulator->list);
2389 
2390 	rdev->open_count--;
2391 	rdev->exclusive = 0;
2392 	regulator_unlock(rdev);
2393 
2394 	kfree_const(regulator->supply_name);
2395 	kfree(regulator);
2396 }
2397 
2398 /* regulator_list_mutex lock held by regulator_put() */
2399 static void _regulator_put(struct regulator *regulator)
2400 {
2401 	struct regulator_dev *rdev;
2402 
2403 	if (IS_ERR_OR_NULL(regulator))
2404 		return;
2405 
2406 	lockdep_assert_held_once(&regulator_list_mutex);
2407 
2408 	/* Docs say you must disable before calling regulator_put() */
2409 	WARN_ON(regulator->enable_count);
2410 
2411 	rdev = regulator->rdev;
2412 
2413 	destroy_regulator(regulator);
2414 
2415 	module_put(rdev->owner);
2416 	put_device(&rdev->dev);
2417 }
2418 
2419 /**
2420  * regulator_put - "free" the regulator source
2421  * @regulator: regulator source
2422  *
2423  * Note: drivers must ensure that all regulator_enable calls made on this
2424  * regulator source are balanced by regulator_disable calls prior to calling
2425  * this function.
2426  */
2427 void regulator_put(struct regulator *regulator)
2428 {
2429 	mutex_lock(&regulator_list_mutex);
2430 	_regulator_put(regulator);
2431 	mutex_unlock(&regulator_list_mutex);
2432 }
2433 EXPORT_SYMBOL_GPL(regulator_put);
2434 
2435 /**
2436  * regulator_register_supply_alias - Provide device alias for supply lookup
2437  *
2438  * @dev: device that will be given as the regulator "consumer"
2439  * @id: Supply name or regulator ID
2440  * @alias_dev: device that should be used to lookup the supply
2441  * @alias_id: Supply name or regulator ID that should be used to lookup the
2442  * supply
2443  *
2444  * All lookups for id on dev will instead be conducted for alias_id on
2445  * alias_dev.
2446  */
2447 int regulator_register_supply_alias(struct device *dev, const char *id,
2448 				    struct device *alias_dev,
2449 				    const char *alias_id)
2450 {
2451 	struct regulator_supply_alias *map;
2452 
2453 	map = regulator_find_supply_alias(dev, id);
2454 	if (map)
2455 		return -EEXIST;
2456 
2457 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2458 	if (!map)
2459 		return -ENOMEM;
2460 
2461 	map->src_dev = dev;
2462 	map->src_supply = id;
2463 	map->alias_dev = alias_dev;
2464 	map->alias_supply = alias_id;
2465 
2466 	list_add(&map->list, &regulator_supply_alias_list);
2467 
2468 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2469 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2470 
2471 	return 0;
2472 }
2473 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2474 
2475 /**
2476  * regulator_unregister_supply_alias - Remove device alias
2477  *
2478  * @dev: device that will be given as the regulator "consumer"
2479  * @id: Supply name or regulator ID
2480  *
2481  * Remove a lookup alias if one exists for id on dev.
2482  */
2483 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2484 {
2485 	struct regulator_supply_alias *map;
2486 
2487 	map = regulator_find_supply_alias(dev, id);
2488 	if (map) {
2489 		list_del(&map->list);
2490 		kfree(map);
2491 	}
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2494 
2495 /**
2496  * regulator_bulk_register_supply_alias - register multiple aliases
2497  *
2498  * @dev: device that will be given as the regulator "consumer"
2499  * @id: List of supply names or regulator IDs
2500  * @alias_dev: device that should be used to lookup the supply
2501  * @alias_id: List of supply names or regulator IDs that should be used to
2502  * lookup the supply
2503  * @num_id: Number of aliases to register
2504  *
2505  * @return 0 on success, an errno on failure.
2506  *
2507  * This helper function allows drivers to register several supply
2508  * aliases in one operation.  If any of the aliases cannot be
2509  * registered any aliases that were registered will be removed
2510  * before returning to the caller.
2511  */
2512 int regulator_bulk_register_supply_alias(struct device *dev,
2513 					 const char *const *id,
2514 					 struct device *alias_dev,
2515 					 const char *const *alias_id,
2516 					 int num_id)
2517 {
2518 	int i;
2519 	int ret;
2520 
2521 	for (i = 0; i < num_id; ++i) {
2522 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2523 						      alias_id[i]);
2524 		if (ret < 0)
2525 			goto err;
2526 	}
2527 
2528 	return 0;
2529 
2530 err:
2531 	dev_err(dev,
2532 		"Failed to create supply alias %s,%s -> %s,%s\n",
2533 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2534 
2535 	while (--i >= 0)
2536 		regulator_unregister_supply_alias(dev, id[i]);
2537 
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2541 
2542 /**
2543  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2544  *
2545  * @dev: device that will be given as the regulator "consumer"
2546  * @id: List of supply names or regulator IDs
2547  * @num_id: Number of aliases to unregister
2548  *
2549  * This helper function allows drivers to unregister several supply
2550  * aliases in one operation.
2551  */
2552 void regulator_bulk_unregister_supply_alias(struct device *dev,
2553 					    const char *const *id,
2554 					    int num_id)
2555 {
2556 	int i;
2557 
2558 	for (i = 0; i < num_id; ++i)
2559 		regulator_unregister_supply_alias(dev, id[i]);
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2562 
2563 
2564 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2565 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2566 				const struct regulator_config *config)
2567 {
2568 	struct regulator_enable_gpio *pin, *new_pin;
2569 	struct gpio_desc *gpiod;
2570 
2571 	gpiod = config->ena_gpiod;
2572 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2573 
2574 	mutex_lock(&regulator_list_mutex);
2575 
2576 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2577 		if (pin->gpiod == gpiod) {
2578 			rdev_dbg(rdev, "GPIO is already used\n");
2579 			goto update_ena_gpio_to_rdev;
2580 		}
2581 	}
2582 
2583 	if (new_pin == NULL) {
2584 		mutex_unlock(&regulator_list_mutex);
2585 		return -ENOMEM;
2586 	}
2587 
2588 	pin = new_pin;
2589 	new_pin = NULL;
2590 
2591 	pin->gpiod = gpiod;
2592 	list_add(&pin->list, &regulator_ena_gpio_list);
2593 
2594 update_ena_gpio_to_rdev:
2595 	pin->request_count++;
2596 	rdev->ena_pin = pin;
2597 
2598 	mutex_unlock(&regulator_list_mutex);
2599 	kfree(new_pin);
2600 
2601 	return 0;
2602 }
2603 
2604 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2605 {
2606 	struct regulator_enable_gpio *pin, *n;
2607 
2608 	if (!rdev->ena_pin)
2609 		return;
2610 
2611 	/* Free the GPIO only in case of no use */
2612 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2613 		if (pin != rdev->ena_pin)
2614 			continue;
2615 
2616 		if (--pin->request_count)
2617 			break;
2618 
2619 		gpiod_put(pin->gpiod);
2620 		list_del(&pin->list);
2621 		kfree(pin);
2622 		break;
2623 	}
2624 
2625 	rdev->ena_pin = NULL;
2626 }
2627 
2628 /**
2629  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2630  * @rdev: regulator_dev structure
2631  * @enable: enable GPIO at initial use?
2632  *
2633  * GPIO is enabled in case of initial use. (enable_count is 0)
2634  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2635  */
2636 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2637 {
2638 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2639 
2640 	if (!pin)
2641 		return -EINVAL;
2642 
2643 	if (enable) {
2644 		/* Enable GPIO at initial use */
2645 		if (pin->enable_count == 0)
2646 			gpiod_set_value_cansleep(pin->gpiod, 1);
2647 
2648 		pin->enable_count++;
2649 	} else {
2650 		if (pin->enable_count > 1) {
2651 			pin->enable_count--;
2652 			return 0;
2653 		}
2654 
2655 		/* Disable GPIO if not used */
2656 		if (pin->enable_count <= 1) {
2657 			gpiod_set_value_cansleep(pin->gpiod, 0);
2658 			pin->enable_count = 0;
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 /**
2666  * _regulator_delay_helper - a delay helper function
2667  * @delay: time to delay in microseconds
2668  *
2669  * Delay for the requested amount of time as per the guidelines in:
2670  *
2671  *     Documentation/timers/timers-howto.rst
2672  *
2673  * The assumption here is that these regulator operations will never used in
2674  * atomic context and therefore sleeping functions can be used.
2675  */
2676 static void _regulator_delay_helper(unsigned int delay)
2677 {
2678 	unsigned int ms = delay / 1000;
2679 	unsigned int us = delay % 1000;
2680 
2681 	if (ms > 0) {
2682 		/*
2683 		 * For small enough values, handle super-millisecond
2684 		 * delays in the usleep_range() call below.
2685 		 */
2686 		if (ms < 20)
2687 			us += ms * 1000;
2688 		else
2689 			msleep(ms);
2690 	}
2691 
2692 	/*
2693 	 * Give the scheduler some room to coalesce with any other
2694 	 * wakeup sources. For delays shorter than 10 us, don't even
2695 	 * bother setting up high-resolution timers and just busy-
2696 	 * loop.
2697 	 */
2698 	if (us >= 10)
2699 		usleep_range(us, us + 100);
2700 	else
2701 		udelay(us);
2702 }
2703 
2704 /**
2705  * _regulator_check_status_enabled
2706  *
2707  * A helper function to check if the regulator status can be interpreted
2708  * as 'regulator is enabled'.
2709  * @rdev: the regulator device to check
2710  *
2711  * Return:
2712  * * 1			- if status shows regulator is in enabled state
2713  * * 0			- if not enabled state
2714  * * Error Value	- as received from ops->get_status()
2715  */
2716 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2717 {
2718 	int ret = rdev->desc->ops->get_status(rdev);
2719 
2720 	if (ret < 0) {
2721 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2722 		return ret;
2723 	}
2724 
2725 	switch (ret) {
2726 	case REGULATOR_STATUS_OFF:
2727 	case REGULATOR_STATUS_ERROR:
2728 	case REGULATOR_STATUS_UNDEFINED:
2729 		return 0;
2730 	default:
2731 		return 1;
2732 	}
2733 }
2734 
2735 static int _regulator_do_enable(struct regulator_dev *rdev)
2736 {
2737 	int ret, delay;
2738 
2739 	/* Query before enabling in case configuration dependent.  */
2740 	ret = _regulator_get_enable_time(rdev);
2741 	if (ret >= 0) {
2742 		delay = ret;
2743 	} else {
2744 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2745 		delay = 0;
2746 	}
2747 
2748 	trace_regulator_enable(rdev_get_name(rdev));
2749 
2750 	if (rdev->desc->off_on_delay) {
2751 		/* if needed, keep a distance of off_on_delay from last time
2752 		 * this regulator was disabled.
2753 		 */
2754 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2755 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2756 
2757 		if (remaining > 0)
2758 			_regulator_delay_helper(remaining);
2759 	}
2760 
2761 	if (rdev->ena_pin) {
2762 		if (!rdev->ena_gpio_state) {
2763 			ret = regulator_ena_gpio_ctrl(rdev, true);
2764 			if (ret < 0)
2765 				return ret;
2766 			rdev->ena_gpio_state = 1;
2767 		}
2768 	} else if (rdev->desc->ops->enable) {
2769 		ret = rdev->desc->ops->enable(rdev);
2770 		if (ret < 0)
2771 			return ret;
2772 	} else {
2773 		return -EINVAL;
2774 	}
2775 
2776 	/* Allow the regulator to ramp; it would be useful to extend
2777 	 * this for bulk operations so that the regulators can ramp
2778 	 * together.
2779 	 */
2780 	trace_regulator_enable_delay(rdev_get_name(rdev));
2781 
2782 	/* If poll_enabled_time is set, poll upto the delay calculated
2783 	 * above, delaying poll_enabled_time uS to check if the regulator
2784 	 * actually got enabled.
2785 	 * If the regulator isn't enabled after our delay helper has expired,
2786 	 * return -ETIMEDOUT.
2787 	 */
2788 	if (rdev->desc->poll_enabled_time) {
2789 		int time_remaining = delay;
2790 
2791 		while (time_remaining > 0) {
2792 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2793 
2794 			if (rdev->desc->ops->get_status) {
2795 				ret = _regulator_check_status_enabled(rdev);
2796 				if (ret < 0)
2797 					return ret;
2798 				else if (ret)
2799 					break;
2800 			} else if (rdev->desc->ops->is_enabled(rdev))
2801 				break;
2802 
2803 			time_remaining -= rdev->desc->poll_enabled_time;
2804 		}
2805 
2806 		if (time_remaining <= 0) {
2807 			rdev_err(rdev, "Enabled check timed out\n");
2808 			return -ETIMEDOUT;
2809 		}
2810 	} else {
2811 		_regulator_delay_helper(delay);
2812 	}
2813 
2814 	trace_regulator_enable_complete(rdev_get_name(rdev));
2815 
2816 	return 0;
2817 }
2818 
2819 /**
2820  * _regulator_handle_consumer_enable - handle that a consumer enabled
2821  * @regulator: regulator source
2822  *
2823  * Some things on a regulator consumer (like the contribution towards total
2824  * load on the regulator) only have an effect when the consumer wants the
2825  * regulator enabled.  Explained in example with two consumers of the same
2826  * regulator:
2827  *   consumer A: set_load(100);       => total load = 0
2828  *   consumer A: regulator_enable();  => total load = 100
2829  *   consumer B: set_load(1000);      => total load = 100
2830  *   consumer B: regulator_enable();  => total load = 1100
2831  *   consumer A: regulator_disable(); => total_load = 1000
2832  *
2833  * This function (together with _regulator_handle_consumer_disable) is
2834  * responsible for keeping track of the refcount for a given regulator consumer
2835  * and applying / unapplying these things.
2836  *
2837  * Returns 0 upon no error; -error upon error.
2838  */
2839 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2840 {
2841 	int ret;
2842 	struct regulator_dev *rdev = regulator->rdev;
2843 
2844 	lockdep_assert_held_once(&rdev->mutex.base);
2845 
2846 	regulator->enable_count++;
2847 	if (regulator->uA_load && regulator->enable_count == 1) {
2848 		ret = drms_uA_update(rdev);
2849 		if (ret)
2850 			regulator->enable_count--;
2851 		return ret;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
2857 /**
2858  * _regulator_handle_consumer_disable - handle that a consumer disabled
2859  * @regulator: regulator source
2860  *
2861  * The opposite of _regulator_handle_consumer_enable().
2862  *
2863  * Returns 0 upon no error; -error upon error.
2864  */
2865 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2866 {
2867 	struct regulator_dev *rdev = regulator->rdev;
2868 
2869 	lockdep_assert_held_once(&rdev->mutex.base);
2870 
2871 	if (!regulator->enable_count) {
2872 		rdev_err(rdev, "Underflow of regulator enable count\n");
2873 		return -EINVAL;
2874 	}
2875 
2876 	regulator->enable_count--;
2877 	if (regulator->uA_load && regulator->enable_count == 0)
2878 		return drms_uA_update(rdev);
2879 
2880 	return 0;
2881 }
2882 
2883 /* locks held by regulator_enable() */
2884 static int _regulator_enable(struct regulator *regulator)
2885 {
2886 	struct regulator_dev *rdev = regulator->rdev;
2887 	int ret;
2888 
2889 	lockdep_assert_held_once(&rdev->mutex.base);
2890 
2891 	if (rdev->use_count == 0 && rdev->supply) {
2892 		ret = _regulator_enable(rdev->supply);
2893 		if (ret < 0)
2894 			return ret;
2895 	}
2896 
2897 	/* balance only if there are regulators coupled */
2898 	if (rdev->coupling_desc.n_coupled > 1) {
2899 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2900 		if (ret < 0)
2901 			goto err_disable_supply;
2902 	}
2903 
2904 	ret = _regulator_handle_consumer_enable(regulator);
2905 	if (ret < 0)
2906 		goto err_disable_supply;
2907 
2908 	if (rdev->use_count == 0) {
2909 		/*
2910 		 * The regulator may already be enabled if it's not switchable
2911 		 * or was left on
2912 		 */
2913 		ret = _regulator_is_enabled(rdev);
2914 		if (ret == -EINVAL || ret == 0) {
2915 			if (!regulator_ops_is_valid(rdev,
2916 					REGULATOR_CHANGE_STATUS)) {
2917 				ret = -EPERM;
2918 				goto err_consumer_disable;
2919 			}
2920 
2921 			ret = _regulator_do_enable(rdev);
2922 			if (ret < 0)
2923 				goto err_consumer_disable;
2924 
2925 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2926 					     NULL);
2927 		} else if (ret < 0) {
2928 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2929 			goto err_consumer_disable;
2930 		}
2931 		/* Fallthrough on positive return values - already enabled */
2932 	}
2933 
2934 	if (regulator->enable_count == 1)
2935 		rdev->use_count++;
2936 
2937 	return 0;
2938 
2939 err_consumer_disable:
2940 	_regulator_handle_consumer_disable(regulator);
2941 
2942 err_disable_supply:
2943 	if (rdev->use_count == 0 && rdev->supply)
2944 		_regulator_disable(rdev->supply);
2945 
2946 	return ret;
2947 }
2948 
2949 /**
2950  * regulator_enable - enable regulator output
2951  * @regulator: regulator source
2952  *
2953  * Request that the regulator be enabled with the regulator output at
2954  * the predefined voltage or current value.  Calls to regulator_enable()
2955  * must be balanced with calls to regulator_disable().
2956  *
2957  * NOTE: the output value can be set by other drivers, boot loader or may be
2958  * hardwired in the regulator.
2959  */
2960 int regulator_enable(struct regulator *regulator)
2961 {
2962 	struct regulator_dev *rdev = regulator->rdev;
2963 	struct ww_acquire_ctx ww_ctx;
2964 	int ret;
2965 
2966 	regulator_lock_dependent(rdev, &ww_ctx);
2967 	ret = _regulator_enable(regulator);
2968 	regulator_unlock_dependent(rdev, &ww_ctx);
2969 
2970 	return ret;
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_enable);
2973 
2974 static int _regulator_do_disable(struct regulator_dev *rdev)
2975 {
2976 	int ret;
2977 
2978 	trace_regulator_disable(rdev_get_name(rdev));
2979 
2980 	if (rdev->ena_pin) {
2981 		if (rdev->ena_gpio_state) {
2982 			ret = regulator_ena_gpio_ctrl(rdev, false);
2983 			if (ret < 0)
2984 				return ret;
2985 			rdev->ena_gpio_state = 0;
2986 		}
2987 
2988 	} else if (rdev->desc->ops->disable) {
2989 		ret = rdev->desc->ops->disable(rdev);
2990 		if (ret != 0)
2991 			return ret;
2992 	}
2993 
2994 	if (rdev->desc->off_on_delay)
2995 		rdev->last_off = ktime_get_boottime();
2996 
2997 	trace_regulator_disable_complete(rdev_get_name(rdev));
2998 
2999 	return 0;
3000 }
3001 
3002 /* locks held by regulator_disable() */
3003 static int _regulator_disable(struct regulator *regulator)
3004 {
3005 	struct regulator_dev *rdev = regulator->rdev;
3006 	int ret = 0;
3007 
3008 	lockdep_assert_held_once(&rdev->mutex.base);
3009 
3010 	if (WARN(regulator->enable_count == 0,
3011 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3012 		return -EIO;
3013 
3014 	if (regulator->enable_count == 1) {
3015 	/* disabling last enable_count from this regulator */
3016 		/* are we the last user and permitted to disable ? */
3017 		if (rdev->use_count == 1 &&
3018 		    (rdev->constraints && !rdev->constraints->always_on)) {
3019 
3020 			/* we are last user */
3021 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3022 				ret = _notifier_call_chain(rdev,
3023 							   REGULATOR_EVENT_PRE_DISABLE,
3024 							   NULL);
3025 				if (ret & NOTIFY_STOP_MASK)
3026 					return -EINVAL;
3027 
3028 				ret = _regulator_do_disable(rdev);
3029 				if (ret < 0) {
3030 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3031 					_notifier_call_chain(rdev,
3032 							REGULATOR_EVENT_ABORT_DISABLE,
3033 							NULL);
3034 					return ret;
3035 				}
3036 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3037 						NULL);
3038 			}
3039 
3040 			rdev->use_count = 0;
3041 		} else if (rdev->use_count > 1) {
3042 			rdev->use_count--;
3043 		}
3044 	}
3045 
3046 	if (ret == 0)
3047 		ret = _regulator_handle_consumer_disable(regulator);
3048 
3049 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3050 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3051 
3052 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3053 		ret = _regulator_disable(rdev->supply);
3054 
3055 	return ret;
3056 }
3057 
3058 /**
3059  * regulator_disable - disable regulator output
3060  * @regulator: regulator source
3061  *
3062  * Disable the regulator output voltage or current.  Calls to
3063  * regulator_enable() must be balanced with calls to
3064  * regulator_disable().
3065  *
3066  * NOTE: this will only disable the regulator output if no other consumer
3067  * devices have it enabled, the regulator device supports disabling and
3068  * machine constraints permit this operation.
3069  */
3070 int regulator_disable(struct regulator *regulator)
3071 {
3072 	struct regulator_dev *rdev = regulator->rdev;
3073 	struct ww_acquire_ctx ww_ctx;
3074 	int ret;
3075 
3076 	regulator_lock_dependent(rdev, &ww_ctx);
3077 	ret = _regulator_disable(regulator);
3078 	regulator_unlock_dependent(rdev, &ww_ctx);
3079 
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_disable);
3083 
3084 /* locks held by regulator_force_disable() */
3085 static int _regulator_force_disable(struct regulator_dev *rdev)
3086 {
3087 	int ret = 0;
3088 
3089 	lockdep_assert_held_once(&rdev->mutex.base);
3090 
3091 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3093 	if (ret & NOTIFY_STOP_MASK)
3094 		return -EINVAL;
3095 
3096 	ret = _regulator_do_disable(rdev);
3097 	if (ret < 0) {
3098 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3099 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3100 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3101 		return ret;
3102 	}
3103 
3104 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 			REGULATOR_EVENT_DISABLE, NULL);
3106 
3107 	return 0;
3108 }
3109 
3110 /**
3111  * regulator_force_disable - force disable regulator output
3112  * @regulator: regulator source
3113  *
3114  * Forcibly disable the regulator output voltage or current.
3115  * NOTE: this *will* disable the regulator output even if other consumer
3116  * devices have it enabled. This should be used for situations when device
3117  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3118  */
3119 int regulator_force_disable(struct regulator *regulator)
3120 {
3121 	struct regulator_dev *rdev = regulator->rdev;
3122 	struct ww_acquire_ctx ww_ctx;
3123 	int ret;
3124 
3125 	regulator_lock_dependent(rdev, &ww_ctx);
3126 
3127 	ret = _regulator_force_disable(regulator->rdev);
3128 
3129 	if (rdev->coupling_desc.n_coupled > 1)
3130 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131 
3132 	if (regulator->uA_load) {
3133 		regulator->uA_load = 0;
3134 		ret = drms_uA_update(rdev);
3135 	}
3136 
3137 	if (rdev->use_count != 0 && rdev->supply)
3138 		_regulator_disable(rdev->supply);
3139 
3140 	regulator_unlock_dependent(rdev, &ww_ctx);
3141 
3142 	return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_force_disable);
3145 
3146 static void regulator_disable_work(struct work_struct *work)
3147 {
3148 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3149 						  disable_work.work);
3150 	struct ww_acquire_ctx ww_ctx;
3151 	int count, i, ret;
3152 	struct regulator *regulator;
3153 	int total_count = 0;
3154 
3155 	regulator_lock_dependent(rdev, &ww_ctx);
3156 
3157 	/*
3158 	 * Workqueue functions queue the new work instance while the previous
3159 	 * work instance is being processed. Cancel the queued work instance
3160 	 * as the work instance under processing does the job of the queued
3161 	 * work instance.
3162 	 */
3163 	cancel_delayed_work(&rdev->disable_work);
3164 
3165 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3166 		count = regulator->deferred_disables;
3167 
3168 		if (!count)
3169 			continue;
3170 
3171 		total_count += count;
3172 		regulator->deferred_disables = 0;
3173 
3174 		for (i = 0; i < count; i++) {
3175 			ret = _regulator_disable(regulator);
3176 			if (ret != 0)
3177 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3178 					 ERR_PTR(ret));
3179 		}
3180 	}
3181 	WARN_ON(!total_count);
3182 
3183 	if (rdev->coupling_desc.n_coupled > 1)
3184 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3185 
3186 	regulator_unlock_dependent(rdev, &ww_ctx);
3187 }
3188 
3189 /**
3190  * regulator_disable_deferred - disable regulator output with delay
3191  * @regulator: regulator source
3192  * @ms: milliseconds until the regulator is disabled
3193  *
3194  * Execute regulator_disable() on the regulator after a delay.  This
3195  * is intended for use with devices that require some time to quiesce.
3196  *
3197  * NOTE: this will only disable the regulator output if no other consumer
3198  * devices have it enabled, the regulator device supports disabling and
3199  * machine constraints permit this operation.
3200  */
3201 int regulator_disable_deferred(struct regulator *regulator, int ms)
3202 {
3203 	struct regulator_dev *rdev = regulator->rdev;
3204 
3205 	if (!ms)
3206 		return regulator_disable(regulator);
3207 
3208 	regulator_lock(rdev);
3209 	regulator->deferred_disables++;
3210 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3211 			 msecs_to_jiffies(ms));
3212 	regulator_unlock(rdev);
3213 
3214 	return 0;
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3217 
3218 static int _regulator_is_enabled(struct regulator_dev *rdev)
3219 {
3220 	/* A GPIO control always takes precedence */
3221 	if (rdev->ena_pin)
3222 		return rdev->ena_gpio_state;
3223 
3224 	/* If we don't know then assume that the regulator is always on */
3225 	if (!rdev->desc->ops->is_enabled)
3226 		return 1;
3227 
3228 	return rdev->desc->ops->is_enabled(rdev);
3229 }
3230 
3231 static int _regulator_list_voltage(struct regulator_dev *rdev,
3232 				   unsigned selector, int lock)
3233 {
3234 	const struct regulator_ops *ops = rdev->desc->ops;
3235 	int ret;
3236 
3237 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3238 		return rdev->desc->fixed_uV;
3239 
3240 	if (ops->list_voltage) {
3241 		if (selector >= rdev->desc->n_voltages)
3242 			return -EINVAL;
3243 		if (selector < rdev->desc->linear_min_sel)
3244 			return 0;
3245 		if (lock)
3246 			regulator_lock(rdev);
3247 		ret = ops->list_voltage(rdev, selector);
3248 		if (lock)
3249 			regulator_unlock(rdev);
3250 	} else if (rdev->is_switch && rdev->supply) {
3251 		ret = _regulator_list_voltage(rdev->supply->rdev,
3252 					      selector, lock);
3253 	} else {
3254 		return -EINVAL;
3255 	}
3256 
3257 	if (ret > 0) {
3258 		if (ret < rdev->constraints->min_uV)
3259 			ret = 0;
3260 		else if (ret > rdev->constraints->max_uV)
3261 			ret = 0;
3262 	}
3263 
3264 	return ret;
3265 }
3266 
3267 /**
3268  * regulator_is_enabled - is the regulator output enabled
3269  * @regulator: regulator source
3270  *
3271  * Returns positive if the regulator driver backing the source/client
3272  * has requested that the device be enabled, zero if it hasn't, else a
3273  * negative errno code.
3274  *
3275  * Note that the device backing this regulator handle can have multiple
3276  * users, so it might be enabled even if regulator_enable() was never
3277  * called for this particular source.
3278  */
3279 int regulator_is_enabled(struct regulator *regulator)
3280 {
3281 	int ret;
3282 
3283 	if (regulator->always_on)
3284 		return 1;
3285 
3286 	regulator_lock(regulator->rdev);
3287 	ret = _regulator_is_enabled(regulator->rdev);
3288 	regulator_unlock(regulator->rdev);
3289 
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3293 
3294 /**
3295  * regulator_count_voltages - count regulator_list_voltage() selectors
3296  * @regulator: regulator source
3297  *
3298  * Returns number of selectors, or negative errno.  Selectors are
3299  * numbered starting at zero, and typically correspond to bitfields
3300  * in hardware registers.
3301  */
3302 int regulator_count_voltages(struct regulator *regulator)
3303 {
3304 	struct regulator_dev	*rdev = regulator->rdev;
3305 
3306 	if (rdev->desc->n_voltages)
3307 		return rdev->desc->n_voltages;
3308 
3309 	if (!rdev->is_switch || !rdev->supply)
3310 		return -EINVAL;
3311 
3312 	return regulator_count_voltages(rdev->supply);
3313 }
3314 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3315 
3316 /**
3317  * regulator_list_voltage - enumerate supported voltages
3318  * @regulator: regulator source
3319  * @selector: identify voltage to list
3320  * Context: can sleep
3321  *
3322  * Returns a voltage that can be passed to @regulator_set_voltage(),
3323  * zero if this selector code can't be used on this system, or a
3324  * negative errno.
3325  */
3326 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3327 {
3328 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3331 
3332 /**
3333  * regulator_get_regmap - get the regulator's register map
3334  * @regulator: regulator source
3335  *
3336  * Returns the register map for the given regulator, or an ERR_PTR value
3337  * if the regulator doesn't use regmap.
3338  */
3339 struct regmap *regulator_get_regmap(struct regulator *regulator)
3340 {
3341 	struct regmap *map = regulator->rdev->regmap;
3342 
3343 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3344 }
3345 
3346 /**
3347  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3348  * @regulator: regulator source
3349  * @vsel_reg: voltage selector register, output parameter
3350  * @vsel_mask: mask for voltage selector bitfield, output parameter
3351  *
3352  * Returns the hardware register offset and bitmask used for setting the
3353  * regulator voltage. This might be useful when configuring voltage-scaling
3354  * hardware or firmware that can make I2C requests behind the kernel's back,
3355  * for example.
3356  *
3357  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3358  * and 0 is returned, otherwise a negative errno is returned.
3359  */
3360 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3361 					 unsigned *vsel_reg,
3362 					 unsigned *vsel_mask)
3363 {
3364 	struct regulator_dev *rdev = regulator->rdev;
3365 	const struct regulator_ops *ops = rdev->desc->ops;
3366 
3367 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3368 		return -EOPNOTSUPP;
3369 
3370 	*vsel_reg = rdev->desc->vsel_reg;
3371 	*vsel_mask = rdev->desc->vsel_mask;
3372 
3373 	return 0;
3374 }
3375 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3376 
3377 /**
3378  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3379  * @regulator: regulator source
3380  * @selector: identify voltage to list
3381  *
3382  * Converts the selector to a hardware-specific voltage selector that can be
3383  * directly written to the regulator registers. The address of the voltage
3384  * register can be determined by calling @regulator_get_hardware_vsel_register.
3385  *
3386  * On error a negative errno is returned.
3387  */
3388 int regulator_list_hardware_vsel(struct regulator *regulator,
3389 				 unsigned selector)
3390 {
3391 	struct regulator_dev *rdev = regulator->rdev;
3392 	const struct regulator_ops *ops = rdev->desc->ops;
3393 
3394 	if (selector >= rdev->desc->n_voltages)
3395 		return -EINVAL;
3396 	if (selector < rdev->desc->linear_min_sel)
3397 		return 0;
3398 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3399 		return -EOPNOTSUPP;
3400 
3401 	return selector;
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3404 
3405 /**
3406  * regulator_get_linear_step - return the voltage step size between VSEL values
3407  * @regulator: regulator source
3408  *
3409  * Returns the voltage step size between VSEL values for linear
3410  * regulators, or return 0 if the regulator isn't a linear regulator.
3411  */
3412 unsigned int regulator_get_linear_step(struct regulator *regulator)
3413 {
3414 	struct regulator_dev *rdev = regulator->rdev;
3415 
3416 	return rdev->desc->uV_step;
3417 }
3418 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3419 
3420 /**
3421  * regulator_is_supported_voltage - check if a voltage range can be supported
3422  *
3423  * @regulator: Regulator to check.
3424  * @min_uV: Minimum required voltage in uV.
3425  * @max_uV: Maximum required voltage in uV.
3426  *
3427  * Returns a boolean.
3428  */
3429 int regulator_is_supported_voltage(struct regulator *regulator,
3430 				   int min_uV, int max_uV)
3431 {
3432 	struct regulator_dev *rdev = regulator->rdev;
3433 	int i, voltages, ret;
3434 
3435 	/* If we can't change voltage check the current voltage */
3436 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3437 		ret = regulator_get_voltage(regulator);
3438 		if (ret >= 0)
3439 			return min_uV <= ret && ret <= max_uV;
3440 		else
3441 			return ret;
3442 	}
3443 
3444 	/* Any voltage within constrains range is fine? */
3445 	if (rdev->desc->continuous_voltage_range)
3446 		return min_uV >= rdev->constraints->min_uV &&
3447 				max_uV <= rdev->constraints->max_uV;
3448 
3449 	ret = regulator_count_voltages(regulator);
3450 	if (ret < 0)
3451 		return 0;
3452 	voltages = ret;
3453 
3454 	for (i = 0; i < voltages; i++) {
3455 		ret = regulator_list_voltage(regulator, i);
3456 
3457 		if (ret >= min_uV && ret <= max_uV)
3458 			return 1;
3459 	}
3460 
3461 	return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3464 
3465 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3466 				 int max_uV)
3467 {
3468 	const struct regulator_desc *desc = rdev->desc;
3469 
3470 	if (desc->ops->map_voltage)
3471 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3472 
3473 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3474 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3475 
3476 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3477 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3478 
3479 	if (desc->ops->list_voltage ==
3480 		regulator_list_voltage_pickable_linear_range)
3481 		return regulator_map_voltage_pickable_linear_range(rdev,
3482 							min_uV, max_uV);
3483 
3484 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3485 }
3486 
3487 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3488 				       int min_uV, int max_uV,
3489 				       unsigned *selector)
3490 {
3491 	struct pre_voltage_change_data data;
3492 	int ret;
3493 
3494 	data.old_uV = regulator_get_voltage_rdev(rdev);
3495 	data.min_uV = min_uV;
3496 	data.max_uV = max_uV;
3497 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3498 				   &data);
3499 	if (ret & NOTIFY_STOP_MASK)
3500 		return -EINVAL;
3501 
3502 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3503 	if (ret >= 0)
3504 		return ret;
3505 
3506 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3507 			     (void *)data.old_uV);
3508 
3509 	return ret;
3510 }
3511 
3512 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3513 					   int uV, unsigned selector)
3514 {
3515 	struct pre_voltage_change_data data;
3516 	int ret;
3517 
3518 	data.old_uV = regulator_get_voltage_rdev(rdev);
3519 	data.min_uV = uV;
3520 	data.max_uV = uV;
3521 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3522 				   &data);
3523 	if (ret & NOTIFY_STOP_MASK)
3524 		return -EINVAL;
3525 
3526 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3527 	if (ret >= 0)
3528 		return ret;
3529 
3530 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3531 			     (void *)data.old_uV);
3532 
3533 	return ret;
3534 }
3535 
3536 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3537 					   int uV, int new_selector)
3538 {
3539 	const struct regulator_ops *ops = rdev->desc->ops;
3540 	int diff, old_sel, curr_sel, ret;
3541 
3542 	/* Stepping is only needed if the regulator is enabled. */
3543 	if (!_regulator_is_enabled(rdev))
3544 		goto final_set;
3545 
3546 	if (!ops->get_voltage_sel)
3547 		return -EINVAL;
3548 
3549 	old_sel = ops->get_voltage_sel(rdev);
3550 	if (old_sel < 0)
3551 		return old_sel;
3552 
3553 	diff = new_selector - old_sel;
3554 	if (diff == 0)
3555 		return 0; /* No change needed. */
3556 
3557 	if (diff > 0) {
3558 		/* Stepping up. */
3559 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3560 		     curr_sel < new_selector;
3561 		     curr_sel += rdev->desc->vsel_step) {
3562 			/*
3563 			 * Call the callback directly instead of using
3564 			 * _regulator_call_set_voltage_sel() as we don't
3565 			 * want to notify anyone yet. Same in the branch
3566 			 * below.
3567 			 */
3568 			ret = ops->set_voltage_sel(rdev, curr_sel);
3569 			if (ret)
3570 				goto try_revert;
3571 		}
3572 	} else {
3573 		/* Stepping down. */
3574 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3575 		     curr_sel > new_selector;
3576 		     curr_sel -= rdev->desc->vsel_step) {
3577 			ret = ops->set_voltage_sel(rdev, curr_sel);
3578 			if (ret)
3579 				goto try_revert;
3580 		}
3581 	}
3582 
3583 final_set:
3584 	/* The final selector will trigger the notifiers. */
3585 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3586 
3587 try_revert:
3588 	/*
3589 	 * At least try to return to the previous voltage if setting a new
3590 	 * one failed.
3591 	 */
3592 	(void)ops->set_voltage_sel(rdev, old_sel);
3593 	return ret;
3594 }
3595 
3596 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3597 				       int old_uV, int new_uV)
3598 {
3599 	unsigned int ramp_delay = 0;
3600 
3601 	if (rdev->constraints->ramp_delay)
3602 		ramp_delay = rdev->constraints->ramp_delay;
3603 	else if (rdev->desc->ramp_delay)
3604 		ramp_delay = rdev->desc->ramp_delay;
3605 	else if (rdev->constraints->settling_time)
3606 		return rdev->constraints->settling_time;
3607 	else if (rdev->constraints->settling_time_up &&
3608 		 (new_uV > old_uV))
3609 		return rdev->constraints->settling_time_up;
3610 	else if (rdev->constraints->settling_time_down &&
3611 		 (new_uV < old_uV))
3612 		return rdev->constraints->settling_time_down;
3613 
3614 	if (ramp_delay == 0)
3615 		return 0;
3616 
3617 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3618 }
3619 
3620 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3621 				     int min_uV, int max_uV)
3622 {
3623 	int ret;
3624 	int delay = 0;
3625 	int best_val = 0;
3626 	unsigned int selector;
3627 	int old_selector = -1;
3628 	const struct regulator_ops *ops = rdev->desc->ops;
3629 	int old_uV = regulator_get_voltage_rdev(rdev);
3630 
3631 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3632 
3633 	min_uV += rdev->constraints->uV_offset;
3634 	max_uV += rdev->constraints->uV_offset;
3635 
3636 	/*
3637 	 * If we can't obtain the old selector there is not enough
3638 	 * info to call set_voltage_time_sel().
3639 	 */
3640 	if (_regulator_is_enabled(rdev) &&
3641 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3642 		old_selector = ops->get_voltage_sel(rdev);
3643 		if (old_selector < 0)
3644 			return old_selector;
3645 	}
3646 
3647 	if (ops->set_voltage) {
3648 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3649 						  &selector);
3650 
3651 		if (ret >= 0) {
3652 			if (ops->list_voltage)
3653 				best_val = ops->list_voltage(rdev,
3654 							     selector);
3655 			else
3656 				best_val = regulator_get_voltage_rdev(rdev);
3657 		}
3658 
3659 	} else if (ops->set_voltage_sel) {
3660 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3661 		if (ret >= 0) {
3662 			best_val = ops->list_voltage(rdev, ret);
3663 			if (min_uV <= best_val && max_uV >= best_val) {
3664 				selector = ret;
3665 				if (old_selector == selector)
3666 					ret = 0;
3667 				else if (rdev->desc->vsel_step)
3668 					ret = _regulator_set_voltage_sel_step(
3669 						rdev, best_val, selector);
3670 				else
3671 					ret = _regulator_call_set_voltage_sel(
3672 						rdev, best_val, selector);
3673 			} else {
3674 				ret = -EINVAL;
3675 			}
3676 		}
3677 	} else {
3678 		ret = -EINVAL;
3679 	}
3680 
3681 	if (ret)
3682 		goto out;
3683 
3684 	if (ops->set_voltage_time_sel) {
3685 		/*
3686 		 * Call set_voltage_time_sel if successfully obtained
3687 		 * old_selector
3688 		 */
3689 		if (old_selector >= 0 && old_selector != selector)
3690 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3691 							  selector);
3692 	} else {
3693 		if (old_uV != best_val) {
3694 			if (ops->set_voltage_time)
3695 				delay = ops->set_voltage_time(rdev, old_uV,
3696 							      best_val);
3697 			else
3698 				delay = _regulator_set_voltage_time(rdev,
3699 								    old_uV,
3700 								    best_val);
3701 		}
3702 	}
3703 
3704 	if (delay < 0) {
3705 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3706 		delay = 0;
3707 	}
3708 
3709 	/* Insert any necessary delays */
3710 	_regulator_delay_helper(delay);
3711 
3712 	if (best_val >= 0) {
3713 		unsigned long data = best_val;
3714 
3715 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3716 				     (void *)data);
3717 	}
3718 
3719 out:
3720 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3721 
3722 	return ret;
3723 }
3724 
3725 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3726 				  int min_uV, int max_uV, suspend_state_t state)
3727 {
3728 	struct regulator_state *rstate;
3729 	int uV, sel;
3730 
3731 	rstate = regulator_get_suspend_state(rdev, state);
3732 	if (rstate == NULL)
3733 		return -EINVAL;
3734 
3735 	if (min_uV < rstate->min_uV)
3736 		min_uV = rstate->min_uV;
3737 	if (max_uV > rstate->max_uV)
3738 		max_uV = rstate->max_uV;
3739 
3740 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3741 	if (sel < 0)
3742 		return sel;
3743 
3744 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3745 	if (uV >= min_uV && uV <= max_uV)
3746 		rstate->uV = uV;
3747 
3748 	return 0;
3749 }
3750 
3751 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3752 					  int min_uV, int max_uV,
3753 					  suspend_state_t state)
3754 {
3755 	struct regulator_dev *rdev = regulator->rdev;
3756 	struct regulator_voltage *voltage = &regulator->voltage[state];
3757 	int ret = 0;
3758 	int old_min_uV, old_max_uV;
3759 	int current_uV;
3760 
3761 	/* If we're setting the same range as last time the change
3762 	 * should be a noop (some cpufreq implementations use the same
3763 	 * voltage for multiple frequencies, for example).
3764 	 */
3765 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3766 		goto out;
3767 
3768 	/* If we're trying to set a range that overlaps the current voltage,
3769 	 * return successfully even though the regulator does not support
3770 	 * changing the voltage.
3771 	 */
3772 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3773 		current_uV = regulator_get_voltage_rdev(rdev);
3774 		if (min_uV <= current_uV && current_uV <= max_uV) {
3775 			voltage->min_uV = min_uV;
3776 			voltage->max_uV = max_uV;
3777 			goto out;
3778 		}
3779 	}
3780 
3781 	/* sanity check */
3782 	if (!rdev->desc->ops->set_voltage &&
3783 	    !rdev->desc->ops->set_voltage_sel) {
3784 		ret = -EINVAL;
3785 		goto out;
3786 	}
3787 
3788 	/* constraints check */
3789 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3790 	if (ret < 0)
3791 		goto out;
3792 
3793 	/* restore original values in case of error */
3794 	old_min_uV = voltage->min_uV;
3795 	old_max_uV = voltage->max_uV;
3796 	voltage->min_uV = min_uV;
3797 	voltage->max_uV = max_uV;
3798 
3799 	/* for not coupled regulators this will just set the voltage */
3800 	ret = regulator_balance_voltage(rdev, state);
3801 	if (ret < 0) {
3802 		voltage->min_uV = old_min_uV;
3803 		voltage->max_uV = old_max_uV;
3804 	}
3805 
3806 out:
3807 	return ret;
3808 }
3809 
3810 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3811 			       int max_uV, suspend_state_t state)
3812 {
3813 	int best_supply_uV = 0;
3814 	int supply_change_uV = 0;
3815 	int ret;
3816 
3817 	if (rdev->supply &&
3818 	    regulator_ops_is_valid(rdev->supply->rdev,
3819 				   REGULATOR_CHANGE_VOLTAGE) &&
3820 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3821 					   rdev->desc->ops->get_voltage_sel))) {
3822 		int current_supply_uV;
3823 		int selector;
3824 
3825 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3826 		if (selector < 0) {
3827 			ret = selector;
3828 			goto out;
3829 		}
3830 
3831 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3832 		if (best_supply_uV < 0) {
3833 			ret = best_supply_uV;
3834 			goto out;
3835 		}
3836 
3837 		best_supply_uV += rdev->desc->min_dropout_uV;
3838 
3839 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3840 		if (current_supply_uV < 0) {
3841 			ret = current_supply_uV;
3842 			goto out;
3843 		}
3844 
3845 		supply_change_uV = best_supply_uV - current_supply_uV;
3846 	}
3847 
3848 	if (supply_change_uV > 0) {
3849 		ret = regulator_set_voltage_unlocked(rdev->supply,
3850 				best_supply_uV, INT_MAX, state);
3851 		if (ret) {
3852 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3853 				ERR_PTR(ret));
3854 			goto out;
3855 		}
3856 	}
3857 
3858 	if (state == PM_SUSPEND_ON)
3859 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3860 	else
3861 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3862 							max_uV, state);
3863 	if (ret < 0)
3864 		goto out;
3865 
3866 	if (supply_change_uV < 0) {
3867 		ret = regulator_set_voltage_unlocked(rdev->supply,
3868 				best_supply_uV, INT_MAX, state);
3869 		if (ret)
3870 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3871 				 ERR_PTR(ret));
3872 		/* No need to fail here */
3873 		ret = 0;
3874 	}
3875 
3876 out:
3877 	return ret;
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3880 
3881 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3882 					int *current_uV, int *min_uV)
3883 {
3884 	struct regulation_constraints *constraints = rdev->constraints;
3885 
3886 	/* Limit voltage change only if necessary */
3887 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3888 		return 1;
3889 
3890 	if (*current_uV < 0) {
3891 		*current_uV = regulator_get_voltage_rdev(rdev);
3892 
3893 		if (*current_uV < 0)
3894 			return *current_uV;
3895 	}
3896 
3897 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3898 		return 1;
3899 
3900 	/* Clamp target voltage within the given step */
3901 	if (*current_uV < *min_uV)
3902 		*min_uV = min(*current_uV + constraints->max_uV_step,
3903 			      *min_uV);
3904 	else
3905 		*min_uV = max(*current_uV - constraints->max_uV_step,
3906 			      *min_uV);
3907 
3908 	return 0;
3909 }
3910 
3911 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3912 					 int *current_uV,
3913 					 int *min_uV, int *max_uV,
3914 					 suspend_state_t state,
3915 					 int n_coupled)
3916 {
3917 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3918 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3919 	struct regulation_constraints *constraints = rdev->constraints;
3920 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3921 	int max_current_uV = 0, min_current_uV = INT_MAX;
3922 	int highest_min_uV = 0, target_uV, possible_uV;
3923 	int i, ret, max_spread;
3924 	bool done;
3925 
3926 	*current_uV = -1;
3927 
3928 	/*
3929 	 * If there are no coupled regulators, simply set the voltage
3930 	 * demanded by consumers.
3931 	 */
3932 	if (n_coupled == 1) {
3933 		/*
3934 		 * If consumers don't provide any demands, set voltage
3935 		 * to min_uV
3936 		 */
3937 		desired_min_uV = constraints->min_uV;
3938 		desired_max_uV = constraints->max_uV;
3939 
3940 		ret = regulator_check_consumers(rdev,
3941 						&desired_min_uV,
3942 						&desired_max_uV, state);
3943 		if (ret < 0)
3944 			return ret;
3945 
3946 		done = true;
3947 
3948 		goto finish;
3949 	}
3950 
3951 	/* Find highest min desired voltage */
3952 	for (i = 0; i < n_coupled; i++) {
3953 		int tmp_min = 0;
3954 		int tmp_max = INT_MAX;
3955 
3956 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3957 
3958 		ret = regulator_check_consumers(c_rdevs[i],
3959 						&tmp_min,
3960 						&tmp_max, state);
3961 		if (ret < 0)
3962 			return ret;
3963 
3964 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3965 		if (ret < 0)
3966 			return ret;
3967 
3968 		highest_min_uV = max(highest_min_uV, tmp_min);
3969 
3970 		if (i == 0) {
3971 			desired_min_uV = tmp_min;
3972 			desired_max_uV = tmp_max;
3973 		}
3974 	}
3975 
3976 	max_spread = constraints->max_spread[0];
3977 
3978 	/*
3979 	 * Let target_uV be equal to the desired one if possible.
3980 	 * If not, set it to minimum voltage, allowed by other coupled
3981 	 * regulators.
3982 	 */
3983 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3984 
3985 	/*
3986 	 * Find min and max voltages, which currently aren't violating
3987 	 * max_spread.
3988 	 */
3989 	for (i = 1; i < n_coupled; i++) {
3990 		int tmp_act;
3991 
3992 		if (!_regulator_is_enabled(c_rdevs[i]))
3993 			continue;
3994 
3995 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3996 		if (tmp_act < 0)
3997 			return tmp_act;
3998 
3999 		min_current_uV = min(tmp_act, min_current_uV);
4000 		max_current_uV = max(tmp_act, max_current_uV);
4001 	}
4002 
4003 	/* There aren't any other regulators enabled */
4004 	if (max_current_uV == 0) {
4005 		possible_uV = target_uV;
4006 	} else {
4007 		/*
4008 		 * Correct target voltage, so as it currently isn't
4009 		 * violating max_spread
4010 		 */
4011 		possible_uV = max(target_uV, max_current_uV - max_spread);
4012 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4013 	}
4014 
4015 	if (possible_uV > desired_max_uV)
4016 		return -EINVAL;
4017 
4018 	done = (possible_uV == target_uV);
4019 	desired_min_uV = possible_uV;
4020 
4021 finish:
4022 	/* Apply max_uV_step constraint if necessary */
4023 	if (state == PM_SUSPEND_ON) {
4024 		ret = regulator_limit_voltage_step(rdev, current_uV,
4025 						   &desired_min_uV);
4026 		if (ret < 0)
4027 			return ret;
4028 
4029 		if (ret == 0)
4030 			done = false;
4031 	}
4032 
4033 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4034 	if (n_coupled > 1 && *current_uV == -1) {
4035 
4036 		if (_regulator_is_enabled(rdev)) {
4037 			ret = regulator_get_voltage_rdev(rdev);
4038 			if (ret < 0)
4039 				return ret;
4040 
4041 			*current_uV = ret;
4042 		} else {
4043 			*current_uV = desired_min_uV;
4044 		}
4045 	}
4046 
4047 	*min_uV = desired_min_uV;
4048 	*max_uV = desired_max_uV;
4049 
4050 	return done;
4051 }
4052 
4053 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4054 				 suspend_state_t state, bool skip_coupled)
4055 {
4056 	struct regulator_dev **c_rdevs;
4057 	struct regulator_dev *best_rdev;
4058 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4059 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4060 	unsigned int delta, best_delta;
4061 	unsigned long c_rdev_done = 0;
4062 	bool best_c_rdev_done;
4063 
4064 	c_rdevs = c_desc->coupled_rdevs;
4065 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4066 
4067 	/*
4068 	 * Find the best possible voltage change on each loop. Leave the loop
4069 	 * if there isn't any possible change.
4070 	 */
4071 	do {
4072 		best_c_rdev_done = false;
4073 		best_delta = 0;
4074 		best_min_uV = 0;
4075 		best_max_uV = 0;
4076 		best_c_rdev = 0;
4077 		best_rdev = NULL;
4078 
4079 		/*
4080 		 * Find highest difference between optimal voltage
4081 		 * and current voltage.
4082 		 */
4083 		for (i = 0; i < n_coupled; i++) {
4084 			/*
4085 			 * optimal_uV is the best voltage that can be set for
4086 			 * i-th regulator at the moment without violating
4087 			 * max_spread constraint in order to balance
4088 			 * the coupled voltages.
4089 			 */
4090 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4091 
4092 			if (test_bit(i, &c_rdev_done))
4093 				continue;
4094 
4095 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4096 							    &current_uV,
4097 							    &optimal_uV,
4098 							    &optimal_max_uV,
4099 							    state, n_coupled);
4100 			if (ret < 0)
4101 				goto out;
4102 
4103 			delta = abs(optimal_uV - current_uV);
4104 
4105 			if (delta && best_delta <= delta) {
4106 				best_c_rdev_done = ret;
4107 				best_delta = delta;
4108 				best_rdev = c_rdevs[i];
4109 				best_min_uV = optimal_uV;
4110 				best_max_uV = optimal_max_uV;
4111 				best_c_rdev = i;
4112 			}
4113 		}
4114 
4115 		/* Nothing to change, return successfully */
4116 		if (!best_rdev) {
4117 			ret = 0;
4118 			goto out;
4119 		}
4120 
4121 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4122 						 best_max_uV, state);
4123 
4124 		if (ret < 0)
4125 			goto out;
4126 
4127 		if (best_c_rdev_done)
4128 			set_bit(best_c_rdev, &c_rdev_done);
4129 
4130 	} while (n_coupled > 1);
4131 
4132 out:
4133 	return ret;
4134 }
4135 
4136 static int regulator_balance_voltage(struct regulator_dev *rdev,
4137 				     suspend_state_t state)
4138 {
4139 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4140 	struct regulator_coupler *coupler = c_desc->coupler;
4141 	bool skip_coupled = false;
4142 
4143 	/*
4144 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4145 	 * other coupled regulators.
4146 	 */
4147 	if (state != PM_SUSPEND_ON)
4148 		skip_coupled = true;
4149 
4150 	if (c_desc->n_resolved < c_desc->n_coupled) {
4151 		rdev_err(rdev, "Not all coupled regulators registered\n");
4152 		return -EPERM;
4153 	}
4154 
4155 	/* Invoke custom balancer for customized couplers */
4156 	if (coupler && coupler->balance_voltage)
4157 		return coupler->balance_voltage(coupler, rdev, state);
4158 
4159 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4160 }
4161 
4162 /**
4163  * regulator_set_voltage - set regulator output voltage
4164  * @regulator: regulator source
4165  * @min_uV: Minimum required voltage in uV
4166  * @max_uV: Maximum acceptable voltage in uV
4167  *
4168  * Sets a voltage regulator to the desired output voltage. This can be set
4169  * during any regulator state. IOW, regulator can be disabled or enabled.
4170  *
4171  * If the regulator is enabled then the voltage will change to the new value
4172  * immediately otherwise if the regulator is disabled the regulator will
4173  * output at the new voltage when enabled.
4174  *
4175  * NOTE: If the regulator is shared between several devices then the lowest
4176  * request voltage that meets the system constraints will be used.
4177  * Regulator system constraints must be set for this regulator before
4178  * calling this function otherwise this call will fail.
4179  */
4180 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4181 {
4182 	struct ww_acquire_ctx ww_ctx;
4183 	int ret;
4184 
4185 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4186 
4187 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4188 					     PM_SUSPEND_ON);
4189 
4190 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4191 
4192 	return ret;
4193 }
4194 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4195 
4196 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4197 					   suspend_state_t state, bool en)
4198 {
4199 	struct regulator_state *rstate;
4200 
4201 	rstate = regulator_get_suspend_state(rdev, state);
4202 	if (rstate == NULL)
4203 		return -EINVAL;
4204 
4205 	if (!rstate->changeable)
4206 		return -EPERM;
4207 
4208 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4209 
4210 	return 0;
4211 }
4212 
4213 int regulator_suspend_enable(struct regulator_dev *rdev,
4214 				    suspend_state_t state)
4215 {
4216 	return regulator_suspend_toggle(rdev, state, true);
4217 }
4218 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4219 
4220 int regulator_suspend_disable(struct regulator_dev *rdev,
4221 				     suspend_state_t state)
4222 {
4223 	struct regulator *regulator;
4224 	struct regulator_voltage *voltage;
4225 
4226 	/*
4227 	 * if any consumer wants this regulator device keeping on in
4228 	 * suspend states, don't set it as disabled.
4229 	 */
4230 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4231 		voltage = &regulator->voltage[state];
4232 		if (voltage->min_uV || voltage->max_uV)
4233 			return 0;
4234 	}
4235 
4236 	return regulator_suspend_toggle(rdev, state, false);
4237 }
4238 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4239 
4240 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4241 					  int min_uV, int max_uV,
4242 					  suspend_state_t state)
4243 {
4244 	struct regulator_dev *rdev = regulator->rdev;
4245 	struct regulator_state *rstate;
4246 
4247 	rstate = regulator_get_suspend_state(rdev, state);
4248 	if (rstate == NULL)
4249 		return -EINVAL;
4250 
4251 	if (rstate->min_uV == rstate->max_uV) {
4252 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4253 		return -EPERM;
4254 	}
4255 
4256 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4257 }
4258 
4259 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4260 				  int max_uV, suspend_state_t state)
4261 {
4262 	struct ww_acquire_ctx ww_ctx;
4263 	int ret;
4264 
4265 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4266 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4267 		return -EINVAL;
4268 
4269 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4270 
4271 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4272 					     max_uV, state);
4273 
4274 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4275 
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4279 
4280 /**
4281  * regulator_set_voltage_time - get raise/fall time
4282  * @regulator: regulator source
4283  * @old_uV: starting voltage in microvolts
4284  * @new_uV: target voltage in microvolts
4285  *
4286  * Provided with the starting and ending voltage, this function attempts to
4287  * calculate the time in microseconds required to rise or fall to this new
4288  * voltage.
4289  */
4290 int regulator_set_voltage_time(struct regulator *regulator,
4291 			       int old_uV, int new_uV)
4292 {
4293 	struct regulator_dev *rdev = regulator->rdev;
4294 	const struct regulator_ops *ops = rdev->desc->ops;
4295 	int old_sel = -1;
4296 	int new_sel = -1;
4297 	int voltage;
4298 	int i;
4299 
4300 	if (ops->set_voltage_time)
4301 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4302 	else if (!ops->set_voltage_time_sel)
4303 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4304 
4305 	/* Currently requires operations to do this */
4306 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4307 		return -EINVAL;
4308 
4309 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4310 		/* We only look for exact voltage matches here */
4311 		if (i < rdev->desc->linear_min_sel)
4312 			continue;
4313 
4314 		if (old_sel >= 0 && new_sel >= 0)
4315 			break;
4316 
4317 		voltage = regulator_list_voltage(regulator, i);
4318 		if (voltage < 0)
4319 			return -EINVAL;
4320 		if (voltage == 0)
4321 			continue;
4322 		if (voltage == old_uV)
4323 			old_sel = i;
4324 		if (voltage == new_uV)
4325 			new_sel = i;
4326 	}
4327 
4328 	if (old_sel < 0 || new_sel < 0)
4329 		return -EINVAL;
4330 
4331 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4332 }
4333 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4334 
4335 /**
4336  * regulator_set_voltage_time_sel - get raise/fall time
4337  * @rdev: regulator source device
4338  * @old_selector: selector for starting voltage
4339  * @new_selector: selector for target voltage
4340  *
4341  * Provided with the starting and target voltage selectors, this function
4342  * returns time in microseconds required to rise or fall to this new voltage
4343  *
4344  * Drivers providing ramp_delay in regulation_constraints can use this as their
4345  * set_voltage_time_sel() operation.
4346  */
4347 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4348 				   unsigned int old_selector,
4349 				   unsigned int new_selector)
4350 {
4351 	int old_volt, new_volt;
4352 
4353 	/* sanity check */
4354 	if (!rdev->desc->ops->list_voltage)
4355 		return -EINVAL;
4356 
4357 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4358 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4359 
4360 	if (rdev->desc->ops->set_voltage_time)
4361 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4362 							 new_volt);
4363 	else
4364 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4367 
4368 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4369 {
4370 	int ret;
4371 
4372 	regulator_lock(rdev);
4373 
4374 	if (!rdev->desc->ops->set_voltage &&
4375 	    !rdev->desc->ops->set_voltage_sel) {
4376 		ret = -EINVAL;
4377 		goto out;
4378 	}
4379 
4380 	/* balance only, if regulator is coupled */
4381 	if (rdev->coupling_desc.n_coupled > 1)
4382 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4383 	else
4384 		ret = -EOPNOTSUPP;
4385 
4386 out:
4387 	regulator_unlock(rdev);
4388 	return ret;
4389 }
4390 
4391 /**
4392  * regulator_sync_voltage - re-apply last regulator output voltage
4393  * @regulator: regulator source
4394  *
4395  * Re-apply the last configured voltage.  This is intended to be used
4396  * where some external control source the consumer is cooperating with
4397  * has caused the configured voltage to change.
4398  */
4399 int regulator_sync_voltage(struct regulator *regulator)
4400 {
4401 	struct regulator_dev *rdev = regulator->rdev;
4402 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4403 	int ret, min_uV, max_uV;
4404 
4405 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4406 		return 0;
4407 
4408 	regulator_lock(rdev);
4409 
4410 	if (!rdev->desc->ops->set_voltage &&
4411 	    !rdev->desc->ops->set_voltage_sel) {
4412 		ret = -EINVAL;
4413 		goto out;
4414 	}
4415 
4416 	/* This is only going to work if we've had a voltage configured. */
4417 	if (!voltage->min_uV && !voltage->max_uV) {
4418 		ret = -EINVAL;
4419 		goto out;
4420 	}
4421 
4422 	min_uV = voltage->min_uV;
4423 	max_uV = voltage->max_uV;
4424 
4425 	/* This should be a paranoia check... */
4426 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4427 	if (ret < 0)
4428 		goto out;
4429 
4430 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4431 	if (ret < 0)
4432 		goto out;
4433 
4434 	/* balance only, if regulator is coupled */
4435 	if (rdev->coupling_desc.n_coupled > 1)
4436 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4437 	else
4438 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4439 
4440 out:
4441 	regulator_unlock(rdev);
4442 	return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4445 
4446 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4447 {
4448 	int sel, ret;
4449 	bool bypassed;
4450 
4451 	if (rdev->desc->ops->get_bypass) {
4452 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4453 		if (ret < 0)
4454 			return ret;
4455 		if (bypassed) {
4456 			/* if bypassed the regulator must have a supply */
4457 			if (!rdev->supply) {
4458 				rdev_err(rdev,
4459 					 "bypassed regulator has no supply!\n");
4460 				return -EPROBE_DEFER;
4461 			}
4462 
4463 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4464 		}
4465 	}
4466 
4467 	if (rdev->desc->ops->get_voltage_sel) {
4468 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4469 		if (sel < 0)
4470 			return sel;
4471 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4472 	} else if (rdev->desc->ops->get_voltage) {
4473 		ret = rdev->desc->ops->get_voltage(rdev);
4474 	} else if (rdev->desc->ops->list_voltage) {
4475 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4476 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4477 		ret = rdev->desc->fixed_uV;
4478 	} else if (rdev->supply) {
4479 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4480 	} else if (rdev->supply_name) {
4481 		return -EPROBE_DEFER;
4482 	} else {
4483 		return -EINVAL;
4484 	}
4485 
4486 	if (ret < 0)
4487 		return ret;
4488 	return ret - rdev->constraints->uV_offset;
4489 }
4490 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4491 
4492 /**
4493  * regulator_get_voltage - get regulator output voltage
4494  * @regulator: regulator source
4495  *
4496  * This returns the current regulator voltage in uV.
4497  *
4498  * NOTE: If the regulator is disabled it will return the voltage value. This
4499  * function should not be used to determine regulator state.
4500  */
4501 int regulator_get_voltage(struct regulator *regulator)
4502 {
4503 	struct ww_acquire_ctx ww_ctx;
4504 	int ret;
4505 
4506 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4507 	ret = regulator_get_voltage_rdev(regulator->rdev);
4508 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4509 
4510 	return ret;
4511 }
4512 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4513 
4514 /**
4515  * regulator_set_current_limit - set regulator output current limit
4516  * @regulator: regulator source
4517  * @min_uA: Minimum supported current in uA
4518  * @max_uA: Maximum supported current in uA
4519  *
4520  * Sets current sink to the desired output current. This can be set during
4521  * any regulator state. IOW, regulator can be disabled or enabled.
4522  *
4523  * If the regulator is enabled then the current will change to the new value
4524  * immediately otherwise if the regulator is disabled the regulator will
4525  * output at the new current when enabled.
4526  *
4527  * NOTE: Regulator system constraints must be set for this regulator before
4528  * calling this function otherwise this call will fail.
4529  */
4530 int regulator_set_current_limit(struct regulator *regulator,
4531 			       int min_uA, int max_uA)
4532 {
4533 	struct regulator_dev *rdev = regulator->rdev;
4534 	int ret;
4535 
4536 	regulator_lock(rdev);
4537 
4538 	/* sanity check */
4539 	if (!rdev->desc->ops->set_current_limit) {
4540 		ret = -EINVAL;
4541 		goto out;
4542 	}
4543 
4544 	/* constraints check */
4545 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4546 	if (ret < 0)
4547 		goto out;
4548 
4549 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4550 out:
4551 	regulator_unlock(rdev);
4552 	return ret;
4553 }
4554 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4555 
4556 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4557 {
4558 	/* sanity check */
4559 	if (!rdev->desc->ops->get_current_limit)
4560 		return -EINVAL;
4561 
4562 	return rdev->desc->ops->get_current_limit(rdev);
4563 }
4564 
4565 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4566 {
4567 	int ret;
4568 
4569 	regulator_lock(rdev);
4570 	ret = _regulator_get_current_limit_unlocked(rdev);
4571 	regulator_unlock(rdev);
4572 
4573 	return ret;
4574 }
4575 
4576 /**
4577  * regulator_get_current_limit - get regulator output current
4578  * @regulator: regulator source
4579  *
4580  * This returns the current supplied by the specified current sink in uA.
4581  *
4582  * NOTE: If the regulator is disabled it will return the current value. This
4583  * function should not be used to determine regulator state.
4584  */
4585 int regulator_get_current_limit(struct regulator *regulator)
4586 {
4587 	return _regulator_get_current_limit(regulator->rdev);
4588 }
4589 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4590 
4591 /**
4592  * regulator_set_mode - set regulator operating mode
4593  * @regulator: regulator source
4594  * @mode: operating mode - one of the REGULATOR_MODE constants
4595  *
4596  * Set regulator operating mode to increase regulator efficiency or improve
4597  * regulation performance.
4598  *
4599  * NOTE: Regulator system constraints must be set for this regulator before
4600  * calling this function otherwise this call will fail.
4601  */
4602 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4603 {
4604 	struct regulator_dev *rdev = regulator->rdev;
4605 	int ret;
4606 	int regulator_curr_mode;
4607 
4608 	regulator_lock(rdev);
4609 
4610 	/* sanity check */
4611 	if (!rdev->desc->ops->set_mode) {
4612 		ret = -EINVAL;
4613 		goto out;
4614 	}
4615 
4616 	/* return if the same mode is requested */
4617 	if (rdev->desc->ops->get_mode) {
4618 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4619 		if (regulator_curr_mode == mode) {
4620 			ret = 0;
4621 			goto out;
4622 		}
4623 	}
4624 
4625 	/* constraints check */
4626 	ret = regulator_mode_constrain(rdev, &mode);
4627 	if (ret < 0)
4628 		goto out;
4629 
4630 	ret = rdev->desc->ops->set_mode(rdev, mode);
4631 out:
4632 	regulator_unlock(rdev);
4633 	return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(regulator_set_mode);
4636 
4637 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4638 {
4639 	/* sanity check */
4640 	if (!rdev->desc->ops->get_mode)
4641 		return -EINVAL;
4642 
4643 	return rdev->desc->ops->get_mode(rdev);
4644 }
4645 
4646 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4647 {
4648 	int ret;
4649 
4650 	regulator_lock(rdev);
4651 	ret = _regulator_get_mode_unlocked(rdev);
4652 	regulator_unlock(rdev);
4653 
4654 	return ret;
4655 }
4656 
4657 /**
4658  * regulator_get_mode - get regulator operating mode
4659  * @regulator: regulator source
4660  *
4661  * Get the current regulator operating mode.
4662  */
4663 unsigned int regulator_get_mode(struct regulator *regulator)
4664 {
4665 	return _regulator_get_mode(regulator->rdev);
4666 }
4667 EXPORT_SYMBOL_GPL(regulator_get_mode);
4668 
4669 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4670 {
4671 	int ret = 0;
4672 
4673 	if (rdev->use_cached_err) {
4674 		spin_lock(&rdev->err_lock);
4675 		ret = rdev->cached_err;
4676 		spin_unlock(&rdev->err_lock);
4677 	}
4678 	return ret;
4679 }
4680 
4681 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4682 					unsigned int *flags)
4683 {
4684 	int cached_flags, ret = 0;
4685 
4686 	regulator_lock(rdev);
4687 
4688 	cached_flags = rdev_get_cached_err_flags(rdev);
4689 
4690 	if (rdev->desc->ops->get_error_flags)
4691 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4692 	else if (!rdev->use_cached_err)
4693 		ret = -EINVAL;
4694 
4695 	*flags |= cached_flags;
4696 
4697 	regulator_unlock(rdev);
4698 
4699 	return ret;
4700 }
4701 
4702 /**
4703  * regulator_get_error_flags - get regulator error information
4704  * @regulator: regulator source
4705  * @flags: pointer to store error flags
4706  *
4707  * Get the current regulator error information.
4708  */
4709 int regulator_get_error_flags(struct regulator *regulator,
4710 				unsigned int *flags)
4711 {
4712 	return _regulator_get_error_flags(regulator->rdev, flags);
4713 }
4714 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4715 
4716 /**
4717  * regulator_set_load - set regulator load
4718  * @regulator: regulator source
4719  * @uA_load: load current
4720  *
4721  * Notifies the regulator core of a new device load. This is then used by
4722  * DRMS (if enabled by constraints) to set the most efficient regulator
4723  * operating mode for the new regulator loading.
4724  *
4725  * Consumer devices notify their supply regulator of the maximum power
4726  * they will require (can be taken from device datasheet in the power
4727  * consumption tables) when they change operational status and hence power
4728  * state. Examples of operational state changes that can affect power
4729  * consumption are :-
4730  *
4731  *    o Device is opened / closed.
4732  *    o Device I/O is about to begin or has just finished.
4733  *    o Device is idling in between work.
4734  *
4735  * This information is also exported via sysfs to userspace.
4736  *
4737  * DRMS will sum the total requested load on the regulator and change
4738  * to the most efficient operating mode if platform constraints allow.
4739  *
4740  * NOTE: when a regulator consumer requests to have a regulator
4741  * disabled then any load that consumer requested no longer counts
4742  * toward the total requested load.  If the regulator is re-enabled
4743  * then the previously requested load will start counting again.
4744  *
4745  * If a regulator is an always-on regulator then an individual consumer's
4746  * load will still be removed if that consumer is fully disabled.
4747  *
4748  * On error a negative errno is returned.
4749  */
4750 int regulator_set_load(struct regulator *regulator, int uA_load)
4751 {
4752 	struct regulator_dev *rdev = regulator->rdev;
4753 	int old_uA_load;
4754 	int ret = 0;
4755 
4756 	regulator_lock(rdev);
4757 	old_uA_load = regulator->uA_load;
4758 	regulator->uA_load = uA_load;
4759 	if (regulator->enable_count && old_uA_load != uA_load) {
4760 		ret = drms_uA_update(rdev);
4761 		if (ret < 0)
4762 			regulator->uA_load = old_uA_load;
4763 	}
4764 	regulator_unlock(rdev);
4765 
4766 	return ret;
4767 }
4768 EXPORT_SYMBOL_GPL(regulator_set_load);
4769 
4770 /**
4771  * regulator_allow_bypass - allow the regulator to go into bypass mode
4772  *
4773  * @regulator: Regulator to configure
4774  * @enable: enable or disable bypass mode
4775  *
4776  * Allow the regulator to go into bypass mode if all other consumers
4777  * for the regulator also enable bypass mode and the machine
4778  * constraints allow this.  Bypass mode means that the regulator is
4779  * simply passing the input directly to the output with no regulation.
4780  */
4781 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4782 {
4783 	struct regulator_dev *rdev = regulator->rdev;
4784 	const char *name = rdev_get_name(rdev);
4785 	int ret = 0;
4786 
4787 	if (!rdev->desc->ops->set_bypass)
4788 		return 0;
4789 
4790 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4791 		return 0;
4792 
4793 	regulator_lock(rdev);
4794 
4795 	if (enable && !regulator->bypass) {
4796 		rdev->bypass_count++;
4797 
4798 		if (rdev->bypass_count == rdev->open_count) {
4799 			trace_regulator_bypass_enable(name);
4800 
4801 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4802 			if (ret != 0)
4803 				rdev->bypass_count--;
4804 			else
4805 				trace_regulator_bypass_enable_complete(name);
4806 		}
4807 
4808 	} else if (!enable && regulator->bypass) {
4809 		rdev->bypass_count--;
4810 
4811 		if (rdev->bypass_count != rdev->open_count) {
4812 			trace_regulator_bypass_disable(name);
4813 
4814 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4815 			if (ret != 0)
4816 				rdev->bypass_count++;
4817 			else
4818 				trace_regulator_bypass_disable_complete(name);
4819 		}
4820 	}
4821 
4822 	if (ret == 0)
4823 		regulator->bypass = enable;
4824 
4825 	regulator_unlock(rdev);
4826 
4827 	return ret;
4828 }
4829 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4830 
4831 /**
4832  * regulator_register_notifier - register regulator event notifier
4833  * @regulator: regulator source
4834  * @nb: notifier block
4835  *
4836  * Register notifier block to receive regulator events.
4837  */
4838 int regulator_register_notifier(struct regulator *regulator,
4839 			      struct notifier_block *nb)
4840 {
4841 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4842 						nb);
4843 }
4844 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4845 
4846 /**
4847  * regulator_unregister_notifier - unregister regulator event notifier
4848  * @regulator: regulator source
4849  * @nb: notifier block
4850  *
4851  * Unregister regulator event notifier block.
4852  */
4853 int regulator_unregister_notifier(struct regulator *regulator,
4854 				struct notifier_block *nb)
4855 {
4856 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4857 						  nb);
4858 }
4859 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4860 
4861 /* notify regulator consumers and downstream regulator consumers.
4862  * Note mutex must be held by caller.
4863  */
4864 static int _notifier_call_chain(struct regulator_dev *rdev,
4865 				  unsigned long event, void *data)
4866 {
4867 	/* call rdev chain first */
4868 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4869 
4870 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4871 		struct device *parent = rdev->dev.parent;
4872 		const char *rname = rdev_get_name(rdev);
4873 		char name[32];
4874 
4875 		/* Avoid duplicate debugfs directory names */
4876 		if (parent && rname == rdev->desc->name) {
4877 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4878 				 rname);
4879 			rname = name;
4880 		}
4881 		reg_generate_netlink_event(rname, event);
4882 	}
4883 
4884 	return ret;
4885 }
4886 
4887 int _regulator_bulk_get(struct device *dev, int num_consumers,
4888 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4889 {
4890 	int i;
4891 	int ret;
4892 
4893 	for (i = 0; i < num_consumers; i++)
4894 		consumers[i].consumer = NULL;
4895 
4896 	for (i = 0; i < num_consumers; i++) {
4897 		consumers[i].consumer = _regulator_get(dev,
4898 						       consumers[i].supply, get_type);
4899 		if (IS_ERR(consumers[i].consumer)) {
4900 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4901 					    "Failed to get supply '%s'",
4902 					    consumers[i].supply);
4903 			consumers[i].consumer = NULL;
4904 			goto err;
4905 		}
4906 
4907 		if (consumers[i].init_load_uA > 0) {
4908 			ret = regulator_set_load(consumers[i].consumer,
4909 						 consumers[i].init_load_uA);
4910 			if (ret) {
4911 				i++;
4912 				goto err;
4913 			}
4914 		}
4915 	}
4916 
4917 	return 0;
4918 
4919 err:
4920 	while (--i >= 0)
4921 		regulator_put(consumers[i].consumer);
4922 
4923 	return ret;
4924 }
4925 
4926 /**
4927  * regulator_bulk_get - get multiple regulator consumers
4928  *
4929  * @dev:           Device to supply
4930  * @num_consumers: Number of consumers to register
4931  * @consumers:     Configuration of consumers; clients are stored here.
4932  *
4933  * @return 0 on success, an errno on failure.
4934  *
4935  * This helper function allows drivers to get several regulator
4936  * consumers in one operation.  If any of the regulators cannot be
4937  * acquired then any regulators that were allocated will be freed
4938  * before returning to the caller.
4939  */
4940 int regulator_bulk_get(struct device *dev, int num_consumers,
4941 		       struct regulator_bulk_data *consumers)
4942 {
4943 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4944 }
4945 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4946 
4947 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4948 {
4949 	struct regulator_bulk_data *bulk = data;
4950 
4951 	bulk->ret = regulator_enable(bulk->consumer);
4952 }
4953 
4954 /**
4955  * regulator_bulk_enable - enable multiple regulator consumers
4956  *
4957  * @num_consumers: Number of consumers
4958  * @consumers:     Consumer data; clients are stored here.
4959  * @return         0 on success, an errno on failure
4960  *
4961  * This convenience API allows consumers to enable multiple regulator
4962  * clients in a single API call.  If any consumers cannot be enabled
4963  * then any others that were enabled will be disabled again prior to
4964  * return.
4965  */
4966 int regulator_bulk_enable(int num_consumers,
4967 			  struct regulator_bulk_data *consumers)
4968 {
4969 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4970 	int i;
4971 	int ret = 0;
4972 
4973 	for (i = 0; i < num_consumers; i++) {
4974 		async_schedule_domain(regulator_bulk_enable_async,
4975 				      &consumers[i], &async_domain);
4976 	}
4977 
4978 	async_synchronize_full_domain(&async_domain);
4979 
4980 	/* If any consumer failed we need to unwind any that succeeded */
4981 	for (i = 0; i < num_consumers; i++) {
4982 		if (consumers[i].ret != 0) {
4983 			ret = consumers[i].ret;
4984 			goto err;
4985 		}
4986 	}
4987 
4988 	return 0;
4989 
4990 err:
4991 	for (i = 0; i < num_consumers; i++) {
4992 		if (consumers[i].ret < 0)
4993 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4994 			       ERR_PTR(consumers[i].ret));
4995 		else
4996 			regulator_disable(consumers[i].consumer);
4997 	}
4998 
4999 	return ret;
5000 }
5001 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5002 
5003 /**
5004  * regulator_bulk_disable - disable multiple regulator consumers
5005  *
5006  * @num_consumers: Number of consumers
5007  * @consumers:     Consumer data; clients are stored here.
5008  * @return         0 on success, an errno on failure
5009  *
5010  * This convenience API allows consumers to disable multiple regulator
5011  * clients in a single API call.  If any consumers cannot be disabled
5012  * then any others that were disabled will be enabled again prior to
5013  * return.
5014  */
5015 int regulator_bulk_disable(int num_consumers,
5016 			   struct regulator_bulk_data *consumers)
5017 {
5018 	int i;
5019 	int ret, r;
5020 
5021 	for (i = num_consumers - 1; i >= 0; --i) {
5022 		ret = regulator_disable(consumers[i].consumer);
5023 		if (ret != 0)
5024 			goto err;
5025 	}
5026 
5027 	return 0;
5028 
5029 err:
5030 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5031 	for (++i; i < num_consumers; ++i) {
5032 		r = regulator_enable(consumers[i].consumer);
5033 		if (r != 0)
5034 			pr_err("Failed to re-enable %s: %pe\n",
5035 			       consumers[i].supply, ERR_PTR(r));
5036 	}
5037 
5038 	return ret;
5039 }
5040 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5041 
5042 /**
5043  * regulator_bulk_force_disable - force disable multiple regulator consumers
5044  *
5045  * @num_consumers: Number of consumers
5046  * @consumers:     Consumer data; clients are stored here.
5047  * @return         0 on success, an errno on failure
5048  *
5049  * This convenience API allows consumers to forcibly disable multiple regulator
5050  * clients in a single API call.
5051  * NOTE: This should be used for situations when device damage will
5052  * likely occur if the regulators are not disabled (e.g. over temp).
5053  * Although regulator_force_disable function call for some consumers can
5054  * return error numbers, the function is called for all consumers.
5055  */
5056 int regulator_bulk_force_disable(int num_consumers,
5057 			   struct regulator_bulk_data *consumers)
5058 {
5059 	int i;
5060 	int ret = 0;
5061 
5062 	for (i = 0; i < num_consumers; i++) {
5063 		consumers[i].ret =
5064 			    regulator_force_disable(consumers[i].consumer);
5065 
5066 		/* Store first error for reporting */
5067 		if (consumers[i].ret && !ret)
5068 			ret = consumers[i].ret;
5069 	}
5070 
5071 	return ret;
5072 }
5073 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5074 
5075 /**
5076  * regulator_bulk_free - free multiple regulator consumers
5077  *
5078  * @num_consumers: Number of consumers
5079  * @consumers:     Consumer data; clients are stored here.
5080  *
5081  * This convenience API allows consumers to free multiple regulator
5082  * clients in a single API call.
5083  */
5084 void regulator_bulk_free(int num_consumers,
5085 			 struct regulator_bulk_data *consumers)
5086 {
5087 	int i;
5088 
5089 	for (i = 0; i < num_consumers; i++) {
5090 		regulator_put(consumers[i].consumer);
5091 		consumers[i].consumer = NULL;
5092 	}
5093 }
5094 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5095 
5096 /**
5097  * regulator_handle_critical - Handle events for system-critical regulators.
5098  * @rdev: The regulator device.
5099  * @event: The event being handled.
5100  *
5101  * This function handles critical events such as under-voltage, over-current,
5102  * and unknown errors for regulators deemed system-critical. On detecting such
5103  * events, it triggers a hardware protection shutdown with a defined timeout.
5104  */
5105 static void regulator_handle_critical(struct regulator_dev *rdev,
5106 				      unsigned long event)
5107 {
5108 	const char *reason = NULL;
5109 
5110 	if (!rdev->constraints->system_critical)
5111 		return;
5112 
5113 	switch (event) {
5114 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5115 		reason = "System critical regulator: voltage drop detected";
5116 		break;
5117 	case REGULATOR_EVENT_OVER_CURRENT:
5118 		reason = "System critical regulator: over-current detected";
5119 		break;
5120 	case REGULATOR_EVENT_FAIL:
5121 		reason = "System critical regulator: unknown error";
5122 	}
5123 
5124 	if (!reason)
5125 		return;
5126 
5127 	hw_protection_shutdown(reason,
5128 			       rdev->constraints->uv_less_critical_window_ms);
5129 }
5130 
5131 /**
5132  * regulator_notifier_call_chain - call regulator event notifier
5133  * @rdev: regulator source
5134  * @event: notifier block
5135  * @data: callback-specific data.
5136  *
5137  * Called by regulator drivers to notify clients a regulator event has
5138  * occurred.
5139  */
5140 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5141 				  unsigned long event, void *data)
5142 {
5143 	regulator_handle_critical(rdev, event);
5144 
5145 	_notifier_call_chain(rdev, event, data);
5146 	return NOTIFY_DONE;
5147 
5148 }
5149 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5150 
5151 /**
5152  * regulator_mode_to_status - convert a regulator mode into a status
5153  *
5154  * @mode: Mode to convert
5155  *
5156  * Convert a regulator mode into a status.
5157  */
5158 int regulator_mode_to_status(unsigned int mode)
5159 {
5160 	switch (mode) {
5161 	case REGULATOR_MODE_FAST:
5162 		return REGULATOR_STATUS_FAST;
5163 	case REGULATOR_MODE_NORMAL:
5164 		return REGULATOR_STATUS_NORMAL;
5165 	case REGULATOR_MODE_IDLE:
5166 		return REGULATOR_STATUS_IDLE;
5167 	case REGULATOR_MODE_STANDBY:
5168 		return REGULATOR_STATUS_STANDBY;
5169 	default:
5170 		return REGULATOR_STATUS_UNDEFINED;
5171 	}
5172 }
5173 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5174 
5175 static struct attribute *regulator_dev_attrs[] = {
5176 	&dev_attr_name.attr,
5177 	&dev_attr_num_users.attr,
5178 	&dev_attr_type.attr,
5179 	&dev_attr_microvolts.attr,
5180 	&dev_attr_microamps.attr,
5181 	&dev_attr_opmode.attr,
5182 	&dev_attr_state.attr,
5183 	&dev_attr_status.attr,
5184 	&dev_attr_bypass.attr,
5185 	&dev_attr_requested_microamps.attr,
5186 	&dev_attr_min_microvolts.attr,
5187 	&dev_attr_max_microvolts.attr,
5188 	&dev_attr_min_microamps.attr,
5189 	&dev_attr_max_microamps.attr,
5190 	&dev_attr_under_voltage.attr,
5191 	&dev_attr_over_current.attr,
5192 	&dev_attr_regulation_out.attr,
5193 	&dev_attr_fail.attr,
5194 	&dev_attr_over_temp.attr,
5195 	&dev_attr_under_voltage_warn.attr,
5196 	&dev_attr_over_current_warn.attr,
5197 	&dev_attr_over_voltage_warn.attr,
5198 	&dev_attr_over_temp_warn.attr,
5199 	&dev_attr_suspend_standby_state.attr,
5200 	&dev_attr_suspend_mem_state.attr,
5201 	&dev_attr_suspend_disk_state.attr,
5202 	&dev_attr_suspend_standby_microvolts.attr,
5203 	&dev_attr_suspend_mem_microvolts.attr,
5204 	&dev_attr_suspend_disk_microvolts.attr,
5205 	&dev_attr_suspend_standby_mode.attr,
5206 	&dev_attr_suspend_mem_mode.attr,
5207 	&dev_attr_suspend_disk_mode.attr,
5208 	NULL
5209 };
5210 
5211 /*
5212  * To avoid cluttering sysfs (and memory) with useless state, only
5213  * create attributes that can be meaningfully displayed.
5214  */
5215 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5216 					 struct attribute *attr, int idx)
5217 {
5218 	struct device *dev = kobj_to_dev(kobj);
5219 	struct regulator_dev *rdev = dev_to_rdev(dev);
5220 	const struct regulator_ops *ops = rdev->desc->ops;
5221 	umode_t mode = attr->mode;
5222 
5223 	/* these three are always present */
5224 	if (attr == &dev_attr_name.attr ||
5225 	    attr == &dev_attr_num_users.attr ||
5226 	    attr == &dev_attr_type.attr)
5227 		return mode;
5228 
5229 	/* some attributes need specific methods to be displayed */
5230 	if (attr == &dev_attr_microvolts.attr) {
5231 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5232 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5233 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5234 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5235 			return mode;
5236 		return 0;
5237 	}
5238 
5239 	if (attr == &dev_attr_microamps.attr)
5240 		return ops->get_current_limit ? mode : 0;
5241 
5242 	if (attr == &dev_attr_opmode.attr)
5243 		return ops->get_mode ? mode : 0;
5244 
5245 	if (attr == &dev_attr_state.attr)
5246 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5247 
5248 	if (attr == &dev_attr_status.attr)
5249 		return ops->get_status ? mode : 0;
5250 
5251 	if (attr == &dev_attr_bypass.attr)
5252 		return ops->get_bypass ? mode : 0;
5253 
5254 	if (attr == &dev_attr_under_voltage.attr ||
5255 	    attr == &dev_attr_over_current.attr ||
5256 	    attr == &dev_attr_regulation_out.attr ||
5257 	    attr == &dev_attr_fail.attr ||
5258 	    attr == &dev_attr_over_temp.attr ||
5259 	    attr == &dev_attr_under_voltage_warn.attr ||
5260 	    attr == &dev_attr_over_current_warn.attr ||
5261 	    attr == &dev_attr_over_voltage_warn.attr ||
5262 	    attr == &dev_attr_over_temp_warn.attr)
5263 		return ops->get_error_flags ? mode : 0;
5264 
5265 	/* constraints need specific supporting methods */
5266 	if (attr == &dev_attr_min_microvolts.attr ||
5267 	    attr == &dev_attr_max_microvolts.attr)
5268 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5269 
5270 	if (attr == &dev_attr_min_microamps.attr ||
5271 	    attr == &dev_attr_max_microamps.attr)
5272 		return ops->set_current_limit ? mode : 0;
5273 
5274 	if (attr == &dev_attr_suspend_standby_state.attr ||
5275 	    attr == &dev_attr_suspend_mem_state.attr ||
5276 	    attr == &dev_attr_suspend_disk_state.attr)
5277 		return mode;
5278 
5279 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5280 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5281 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5282 		return ops->set_suspend_voltage ? mode : 0;
5283 
5284 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5285 	    attr == &dev_attr_suspend_mem_mode.attr ||
5286 	    attr == &dev_attr_suspend_disk_mode.attr)
5287 		return ops->set_suspend_mode ? mode : 0;
5288 
5289 	return mode;
5290 }
5291 
5292 static const struct attribute_group regulator_dev_group = {
5293 	.attrs = regulator_dev_attrs,
5294 	.is_visible = regulator_attr_is_visible,
5295 };
5296 
5297 static const struct attribute_group *regulator_dev_groups[] = {
5298 	&regulator_dev_group,
5299 	NULL
5300 };
5301 
5302 static void regulator_dev_release(struct device *dev)
5303 {
5304 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5305 
5306 	debugfs_remove_recursive(rdev->debugfs);
5307 	kfree(rdev->constraints);
5308 	of_node_put(rdev->dev.of_node);
5309 	kfree(rdev);
5310 }
5311 
5312 static void rdev_init_debugfs(struct regulator_dev *rdev)
5313 {
5314 	struct device *parent = rdev->dev.parent;
5315 	const char *rname = rdev_get_name(rdev);
5316 	char name[NAME_MAX];
5317 
5318 	/* Avoid duplicate debugfs directory names */
5319 	if (parent && rname == rdev->desc->name) {
5320 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5321 			 rname);
5322 		rname = name;
5323 	}
5324 
5325 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5326 	if (IS_ERR(rdev->debugfs))
5327 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5328 
5329 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5330 			   &rdev->use_count);
5331 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5332 			   &rdev->open_count);
5333 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5334 			   &rdev->bypass_count);
5335 }
5336 
5337 static int regulator_register_resolve_supply(struct device *dev, void *data)
5338 {
5339 	struct regulator_dev *rdev = dev_to_rdev(dev);
5340 
5341 	if (regulator_resolve_supply(rdev))
5342 		rdev_dbg(rdev, "unable to resolve supply\n");
5343 
5344 	return 0;
5345 }
5346 
5347 int regulator_coupler_register(struct regulator_coupler *coupler)
5348 {
5349 	mutex_lock(&regulator_list_mutex);
5350 	list_add_tail(&coupler->list, &regulator_coupler_list);
5351 	mutex_unlock(&regulator_list_mutex);
5352 
5353 	return 0;
5354 }
5355 
5356 static struct regulator_coupler *
5357 regulator_find_coupler(struct regulator_dev *rdev)
5358 {
5359 	struct regulator_coupler *coupler;
5360 	int err;
5361 
5362 	/*
5363 	 * Note that regulators are appended to the list and the generic
5364 	 * coupler is registered first, hence it will be attached at last
5365 	 * if nobody cared.
5366 	 */
5367 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5368 		err = coupler->attach_regulator(coupler, rdev);
5369 		if (!err) {
5370 			if (!coupler->balance_voltage &&
5371 			    rdev->coupling_desc.n_coupled > 2)
5372 				goto err_unsupported;
5373 
5374 			return coupler;
5375 		}
5376 
5377 		if (err < 0)
5378 			return ERR_PTR(err);
5379 
5380 		if (err == 1)
5381 			continue;
5382 
5383 		break;
5384 	}
5385 
5386 	return ERR_PTR(-EINVAL);
5387 
5388 err_unsupported:
5389 	if (coupler->detach_regulator)
5390 		coupler->detach_regulator(coupler, rdev);
5391 
5392 	rdev_err(rdev,
5393 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5394 
5395 	return ERR_PTR(-EPERM);
5396 }
5397 
5398 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5399 {
5400 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5401 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5402 	int n_coupled = c_desc->n_coupled;
5403 	struct regulator_dev *c_rdev;
5404 	int i;
5405 
5406 	for (i = 1; i < n_coupled; i++) {
5407 		/* already resolved */
5408 		if (c_desc->coupled_rdevs[i])
5409 			continue;
5410 
5411 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5412 
5413 		if (!c_rdev)
5414 			continue;
5415 
5416 		if (c_rdev->coupling_desc.coupler != coupler) {
5417 			rdev_err(rdev, "coupler mismatch with %s\n",
5418 				 rdev_get_name(c_rdev));
5419 			return;
5420 		}
5421 
5422 		c_desc->coupled_rdevs[i] = c_rdev;
5423 		c_desc->n_resolved++;
5424 
5425 		regulator_resolve_coupling(c_rdev);
5426 	}
5427 }
5428 
5429 static void regulator_remove_coupling(struct regulator_dev *rdev)
5430 {
5431 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5432 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5433 	struct regulator_dev *__c_rdev, *c_rdev;
5434 	unsigned int __n_coupled, n_coupled;
5435 	int i, k;
5436 	int err;
5437 
5438 	n_coupled = c_desc->n_coupled;
5439 
5440 	for (i = 1; i < n_coupled; i++) {
5441 		c_rdev = c_desc->coupled_rdevs[i];
5442 
5443 		if (!c_rdev)
5444 			continue;
5445 
5446 		regulator_lock(c_rdev);
5447 
5448 		__c_desc = &c_rdev->coupling_desc;
5449 		__n_coupled = __c_desc->n_coupled;
5450 
5451 		for (k = 1; k < __n_coupled; k++) {
5452 			__c_rdev = __c_desc->coupled_rdevs[k];
5453 
5454 			if (__c_rdev == rdev) {
5455 				__c_desc->coupled_rdevs[k] = NULL;
5456 				__c_desc->n_resolved--;
5457 				break;
5458 			}
5459 		}
5460 
5461 		regulator_unlock(c_rdev);
5462 
5463 		c_desc->coupled_rdevs[i] = NULL;
5464 		c_desc->n_resolved--;
5465 	}
5466 
5467 	if (coupler && coupler->detach_regulator) {
5468 		err = coupler->detach_regulator(coupler, rdev);
5469 		if (err)
5470 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5471 				 ERR_PTR(err));
5472 	}
5473 
5474 	kfree(rdev->coupling_desc.coupled_rdevs);
5475 	rdev->coupling_desc.coupled_rdevs = NULL;
5476 }
5477 
5478 static int regulator_init_coupling(struct regulator_dev *rdev)
5479 {
5480 	struct regulator_dev **coupled;
5481 	int err, n_phandles;
5482 
5483 	if (!IS_ENABLED(CONFIG_OF))
5484 		n_phandles = 0;
5485 	else
5486 		n_phandles = of_get_n_coupled(rdev);
5487 
5488 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5489 	if (!coupled)
5490 		return -ENOMEM;
5491 
5492 	rdev->coupling_desc.coupled_rdevs = coupled;
5493 
5494 	/*
5495 	 * Every regulator should always have coupling descriptor filled with
5496 	 * at least pointer to itself.
5497 	 */
5498 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5499 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5500 	rdev->coupling_desc.n_resolved++;
5501 
5502 	/* regulator isn't coupled */
5503 	if (n_phandles == 0)
5504 		return 0;
5505 
5506 	if (!of_check_coupling_data(rdev))
5507 		return -EPERM;
5508 
5509 	mutex_lock(&regulator_list_mutex);
5510 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5511 	mutex_unlock(&regulator_list_mutex);
5512 
5513 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5514 		err = PTR_ERR(rdev->coupling_desc.coupler);
5515 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5516 		return err;
5517 	}
5518 
5519 	return 0;
5520 }
5521 
5522 static int generic_coupler_attach(struct regulator_coupler *coupler,
5523 				  struct regulator_dev *rdev)
5524 {
5525 	if (rdev->coupling_desc.n_coupled > 2) {
5526 		rdev_err(rdev,
5527 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5528 		return -EPERM;
5529 	}
5530 
5531 	if (!rdev->constraints->always_on) {
5532 		rdev_err(rdev,
5533 			 "Coupling of a non always-on regulator is unimplemented\n");
5534 		return -ENOTSUPP;
5535 	}
5536 
5537 	return 0;
5538 }
5539 
5540 static struct regulator_coupler generic_regulator_coupler = {
5541 	.attach_regulator = generic_coupler_attach,
5542 };
5543 
5544 /**
5545  * regulator_register - register regulator
5546  * @dev: the device that drive the regulator
5547  * @regulator_desc: regulator to register
5548  * @cfg: runtime configuration for regulator
5549  *
5550  * Called by regulator drivers to register a regulator.
5551  * Returns a valid pointer to struct regulator_dev on success
5552  * or an ERR_PTR() on error.
5553  */
5554 struct regulator_dev *
5555 regulator_register(struct device *dev,
5556 		   const struct regulator_desc *regulator_desc,
5557 		   const struct regulator_config *cfg)
5558 {
5559 	const struct regulator_init_data *init_data;
5560 	struct regulator_config *config = NULL;
5561 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5562 	struct regulator_dev *rdev;
5563 	bool dangling_cfg_gpiod = false;
5564 	bool dangling_of_gpiod = false;
5565 	int ret, i;
5566 	bool resolved_early = false;
5567 
5568 	if (cfg == NULL)
5569 		return ERR_PTR(-EINVAL);
5570 	if (cfg->ena_gpiod)
5571 		dangling_cfg_gpiod = true;
5572 	if (regulator_desc == NULL) {
5573 		ret = -EINVAL;
5574 		goto rinse;
5575 	}
5576 
5577 	WARN_ON(!dev || !cfg->dev);
5578 
5579 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5580 		ret = -EINVAL;
5581 		goto rinse;
5582 	}
5583 
5584 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5585 	    regulator_desc->type != REGULATOR_CURRENT) {
5586 		ret = -EINVAL;
5587 		goto rinse;
5588 	}
5589 
5590 	/* Only one of each should be implemented */
5591 	WARN_ON(regulator_desc->ops->get_voltage &&
5592 		regulator_desc->ops->get_voltage_sel);
5593 	WARN_ON(regulator_desc->ops->set_voltage &&
5594 		regulator_desc->ops->set_voltage_sel);
5595 
5596 	/* If we're using selectors we must implement list_voltage. */
5597 	if (regulator_desc->ops->get_voltage_sel &&
5598 	    !regulator_desc->ops->list_voltage) {
5599 		ret = -EINVAL;
5600 		goto rinse;
5601 	}
5602 	if (regulator_desc->ops->set_voltage_sel &&
5603 	    !regulator_desc->ops->list_voltage) {
5604 		ret = -EINVAL;
5605 		goto rinse;
5606 	}
5607 
5608 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5609 	if (rdev == NULL) {
5610 		ret = -ENOMEM;
5611 		goto rinse;
5612 	}
5613 	device_initialize(&rdev->dev);
5614 	dev_set_drvdata(&rdev->dev, rdev);
5615 	rdev->dev.class = &regulator_class;
5616 	spin_lock_init(&rdev->err_lock);
5617 
5618 	/*
5619 	 * Duplicate the config so the driver could override it after
5620 	 * parsing init data.
5621 	 */
5622 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5623 	if (config == NULL) {
5624 		ret = -ENOMEM;
5625 		goto clean;
5626 	}
5627 
5628 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5629 					       &rdev->dev.of_node);
5630 
5631 	/*
5632 	 * Sometimes not all resources are probed already so we need to take
5633 	 * that into account. This happens most the time if the ena_gpiod comes
5634 	 * from a gpio extender or something else.
5635 	 */
5636 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5637 		ret = -EPROBE_DEFER;
5638 		goto clean;
5639 	}
5640 
5641 	/*
5642 	 * We need to keep track of any GPIO descriptor coming from the
5643 	 * device tree until we have handled it over to the core. If the
5644 	 * config that was passed in to this function DOES NOT contain
5645 	 * a descriptor, and the config after this call DOES contain
5646 	 * a descriptor, we definitely got one from parsing the device
5647 	 * tree.
5648 	 */
5649 	if (!cfg->ena_gpiod && config->ena_gpiod)
5650 		dangling_of_gpiod = true;
5651 	if (!init_data) {
5652 		init_data = config->init_data;
5653 		rdev->dev.of_node = of_node_get(config->of_node);
5654 	}
5655 
5656 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5657 	rdev->reg_data = config->driver_data;
5658 	rdev->owner = regulator_desc->owner;
5659 	rdev->desc = regulator_desc;
5660 	if (config->regmap)
5661 		rdev->regmap = config->regmap;
5662 	else if (dev_get_regmap(dev, NULL))
5663 		rdev->regmap = dev_get_regmap(dev, NULL);
5664 	else if (dev->parent)
5665 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5666 	INIT_LIST_HEAD(&rdev->consumer_list);
5667 	INIT_LIST_HEAD(&rdev->list);
5668 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5669 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5670 
5671 	if (init_data && init_data->supply_regulator)
5672 		rdev->supply_name = init_data->supply_regulator;
5673 	else if (regulator_desc->supply_name)
5674 		rdev->supply_name = regulator_desc->supply_name;
5675 
5676 	/* register with sysfs */
5677 	rdev->dev.parent = config->dev;
5678 	dev_set_name(&rdev->dev, "regulator.%lu",
5679 		    (unsigned long) atomic_inc_return(&regulator_no));
5680 
5681 	/* set regulator constraints */
5682 	if (init_data)
5683 		rdev->constraints = kmemdup(&init_data->constraints,
5684 					    sizeof(*rdev->constraints),
5685 					    GFP_KERNEL);
5686 	else
5687 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5688 					    GFP_KERNEL);
5689 	if (!rdev->constraints) {
5690 		ret = -ENOMEM;
5691 		goto wash;
5692 	}
5693 
5694 	if ((rdev->supply_name && !rdev->supply) &&
5695 		(rdev->constraints->always_on ||
5696 		 rdev->constraints->boot_on)) {
5697 		ret = regulator_resolve_supply(rdev);
5698 		if (ret)
5699 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5700 					 ERR_PTR(ret));
5701 
5702 		resolved_early = true;
5703 	}
5704 
5705 	/* perform any regulator specific init */
5706 	if (init_data && init_data->regulator_init) {
5707 		ret = init_data->regulator_init(rdev->reg_data);
5708 		if (ret < 0)
5709 			goto wash;
5710 	}
5711 
5712 	if (config->ena_gpiod) {
5713 		ret = regulator_ena_gpio_request(rdev, config);
5714 		if (ret != 0) {
5715 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5716 				 ERR_PTR(ret));
5717 			goto wash;
5718 		}
5719 		/* The regulator core took over the GPIO descriptor */
5720 		dangling_cfg_gpiod = false;
5721 		dangling_of_gpiod = false;
5722 	}
5723 
5724 	ret = set_machine_constraints(rdev);
5725 	if (ret == -EPROBE_DEFER && !resolved_early) {
5726 		/* Regulator might be in bypass mode and so needs its supply
5727 		 * to set the constraints
5728 		 */
5729 		/* FIXME: this currently triggers a chicken-and-egg problem
5730 		 * when creating -SUPPLY symlink in sysfs to a regulator
5731 		 * that is just being created
5732 		 */
5733 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5734 			 rdev->supply_name);
5735 		ret = regulator_resolve_supply(rdev);
5736 		if (!ret)
5737 			ret = set_machine_constraints(rdev);
5738 		else
5739 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5740 				 ERR_PTR(ret));
5741 	}
5742 	if (ret < 0)
5743 		goto wash;
5744 
5745 	ret = regulator_init_coupling(rdev);
5746 	if (ret < 0)
5747 		goto wash;
5748 
5749 	/* add consumers devices */
5750 	if (init_data) {
5751 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5752 			ret = set_consumer_device_supply(rdev,
5753 				init_data->consumer_supplies[i].dev_name,
5754 				init_data->consumer_supplies[i].supply);
5755 			if (ret < 0) {
5756 				dev_err(dev, "Failed to set supply %s\n",
5757 					init_data->consumer_supplies[i].supply);
5758 				goto unset_supplies;
5759 			}
5760 		}
5761 	}
5762 
5763 	if (!rdev->desc->ops->get_voltage &&
5764 	    !rdev->desc->ops->list_voltage &&
5765 	    !rdev->desc->fixed_uV)
5766 		rdev->is_switch = true;
5767 
5768 	ret = device_add(&rdev->dev);
5769 	if (ret != 0)
5770 		goto unset_supplies;
5771 
5772 	rdev_init_debugfs(rdev);
5773 
5774 	/* try to resolve regulators coupling since a new one was registered */
5775 	mutex_lock(&regulator_list_mutex);
5776 	regulator_resolve_coupling(rdev);
5777 	mutex_unlock(&regulator_list_mutex);
5778 
5779 	/* try to resolve regulators supply since a new one was registered */
5780 	class_for_each_device(&regulator_class, NULL, NULL,
5781 			      regulator_register_resolve_supply);
5782 	kfree(config);
5783 	return rdev;
5784 
5785 unset_supplies:
5786 	mutex_lock(&regulator_list_mutex);
5787 	unset_regulator_supplies(rdev);
5788 	regulator_remove_coupling(rdev);
5789 	mutex_unlock(&regulator_list_mutex);
5790 wash:
5791 	regulator_put(rdev->supply);
5792 	kfree(rdev->coupling_desc.coupled_rdevs);
5793 	mutex_lock(&regulator_list_mutex);
5794 	regulator_ena_gpio_free(rdev);
5795 	mutex_unlock(&regulator_list_mutex);
5796 clean:
5797 	if (dangling_of_gpiod)
5798 		gpiod_put(config->ena_gpiod);
5799 	kfree(config);
5800 	put_device(&rdev->dev);
5801 rinse:
5802 	if (dangling_cfg_gpiod)
5803 		gpiod_put(cfg->ena_gpiod);
5804 	return ERR_PTR(ret);
5805 }
5806 EXPORT_SYMBOL_GPL(regulator_register);
5807 
5808 /**
5809  * regulator_unregister - unregister regulator
5810  * @rdev: regulator to unregister
5811  *
5812  * Called by regulator drivers to unregister a regulator.
5813  */
5814 void regulator_unregister(struct regulator_dev *rdev)
5815 {
5816 	if (rdev == NULL)
5817 		return;
5818 
5819 	if (rdev->supply) {
5820 		while (rdev->use_count--)
5821 			regulator_disable(rdev->supply);
5822 		regulator_put(rdev->supply);
5823 	}
5824 
5825 	flush_work(&rdev->disable_work.work);
5826 
5827 	mutex_lock(&regulator_list_mutex);
5828 
5829 	WARN_ON(rdev->open_count);
5830 	regulator_remove_coupling(rdev);
5831 	unset_regulator_supplies(rdev);
5832 	list_del(&rdev->list);
5833 	regulator_ena_gpio_free(rdev);
5834 	device_unregister(&rdev->dev);
5835 
5836 	mutex_unlock(&regulator_list_mutex);
5837 }
5838 EXPORT_SYMBOL_GPL(regulator_unregister);
5839 
5840 #ifdef CONFIG_SUSPEND
5841 /**
5842  * regulator_suspend - prepare regulators for system wide suspend
5843  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5844  *
5845  * Configure each regulator with it's suspend operating parameters for state.
5846  */
5847 static int regulator_suspend(struct device *dev)
5848 {
5849 	struct regulator_dev *rdev = dev_to_rdev(dev);
5850 	suspend_state_t state = pm_suspend_target_state;
5851 	int ret;
5852 	const struct regulator_state *rstate;
5853 
5854 	rstate = regulator_get_suspend_state_check(rdev, state);
5855 	if (!rstate)
5856 		return 0;
5857 
5858 	regulator_lock(rdev);
5859 	ret = __suspend_set_state(rdev, rstate);
5860 	regulator_unlock(rdev);
5861 
5862 	return ret;
5863 }
5864 
5865 static int regulator_resume(struct device *dev)
5866 {
5867 	suspend_state_t state = pm_suspend_target_state;
5868 	struct regulator_dev *rdev = dev_to_rdev(dev);
5869 	struct regulator_state *rstate;
5870 	int ret = 0;
5871 
5872 	rstate = regulator_get_suspend_state(rdev, state);
5873 	if (rstate == NULL)
5874 		return 0;
5875 
5876 	/* Avoid grabbing the lock if we don't need to */
5877 	if (!rdev->desc->ops->resume)
5878 		return 0;
5879 
5880 	regulator_lock(rdev);
5881 
5882 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5883 	    rstate->enabled == DISABLE_IN_SUSPEND)
5884 		ret = rdev->desc->ops->resume(rdev);
5885 
5886 	regulator_unlock(rdev);
5887 
5888 	return ret;
5889 }
5890 #else /* !CONFIG_SUSPEND */
5891 
5892 #define regulator_suspend	NULL
5893 #define regulator_resume	NULL
5894 
5895 #endif /* !CONFIG_SUSPEND */
5896 
5897 #ifdef CONFIG_PM
5898 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5899 	.suspend	= regulator_suspend,
5900 	.resume		= regulator_resume,
5901 };
5902 #endif
5903 
5904 const struct class regulator_class = {
5905 	.name = "regulator",
5906 	.dev_release = regulator_dev_release,
5907 	.dev_groups = regulator_dev_groups,
5908 #ifdef CONFIG_PM
5909 	.pm = &regulator_pm_ops,
5910 #endif
5911 };
5912 /**
5913  * regulator_has_full_constraints - the system has fully specified constraints
5914  *
5915  * Calling this function will cause the regulator API to disable all
5916  * regulators which have a zero use count and don't have an always_on
5917  * constraint in a late_initcall.
5918  *
5919  * The intention is that this will become the default behaviour in a
5920  * future kernel release so users are encouraged to use this facility
5921  * now.
5922  */
5923 void regulator_has_full_constraints(void)
5924 {
5925 	has_full_constraints = 1;
5926 }
5927 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5928 
5929 /**
5930  * rdev_get_drvdata - get rdev regulator driver data
5931  * @rdev: regulator
5932  *
5933  * Get rdev regulator driver private data. This call can be used in the
5934  * regulator driver context.
5935  */
5936 void *rdev_get_drvdata(struct regulator_dev *rdev)
5937 {
5938 	return rdev->reg_data;
5939 }
5940 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5941 
5942 /**
5943  * regulator_get_drvdata - get regulator driver data
5944  * @regulator: regulator
5945  *
5946  * Get regulator driver private data. This call can be used in the consumer
5947  * driver context when non API regulator specific functions need to be called.
5948  */
5949 void *regulator_get_drvdata(struct regulator *regulator)
5950 {
5951 	return regulator->rdev->reg_data;
5952 }
5953 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5954 
5955 /**
5956  * regulator_set_drvdata - set regulator driver data
5957  * @regulator: regulator
5958  * @data: data
5959  */
5960 void regulator_set_drvdata(struct regulator *regulator, void *data)
5961 {
5962 	regulator->rdev->reg_data = data;
5963 }
5964 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5965 
5966 /**
5967  * rdev_get_id - get regulator ID
5968  * @rdev: regulator
5969  */
5970 int rdev_get_id(struct regulator_dev *rdev)
5971 {
5972 	return rdev->desc->id;
5973 }
5974 EXPORT_SYMBOL_GPL(rdev_get_id);
5975 
5976 struct device *rdev_get_dev(struct regulator_dev *rdev)
5977 {
5978 	return &rdev->dev;
5979 }
5980 EXPORT_SYMBOL_GPL(rdev_get_dev);
5981 
5982 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5983 {
5984 	return rdev->regmap;
5985 }
5986 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5987 
5988 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5989 {
5990 	return reg_init_data->driver_data;
5991 }
5992 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5993 
5994 #ifdef CONFIG_DEBUG_FS
5995 static int supply_map_show(struct seq_file *sf, void *data)
5996 {
5997 	struct regulator_map *map;
5998 
5999 	list_for_each_entry(map, &regulator_map_list, list) {
6000 		seq_printf(sf, "%s -> %s.%s\n",
6001 				rdev_get_name(map->regulator), map->dev_name,
6002 				map->supply);
6003 	}
6004 
6005 	return 0;
6006 }
6007 DEFINE_SHOW_ATTRIBUTE(supply_map);
6008 
6009 struct summary_data {
6010 	struct seq_file *s;
6011 	struct regulator_dev *parent;
6012 	int level;
6013 };
6014 
6015 static void regulator_summary_show_subtree(struct seq_file *s,
6016 					   struct regulator_dev *rdev,
6017 					   int level);
6018 
6019 static int regulator_summary_show_children(struct device *dev, void *data)
6020 {
6021 	struct regulator_dev *rdev = dev_to_rdev(dev);
6022 	struct summary_data *summary_data = data;
6023 
6024 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6025 		regulator_summary_show_subtree(summary_data->s, rdev,
6026 					       summary_data->level + 1);
6027 
6028 	return 0;
6029 }
6030 
6031 static void regulator_summary_show_subtree(struct seq_file *s,
6032 					   struct regulator_dev *rdev,
6033 					   int level)
6034 {
6035 	struct regulation_constraints *c;
6036 	struct regulator *consumer;
6037 	struct summary_data summary_data;
6038 	unsigned int opmode;
6039 
6040 	if (!rdev)
6041 		return;
6042 
6043 	opmode = _regulator_get_mode_unlocked(rdev);
6044 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6045 		   level * 3 + 1, "",
6046 		   30 - level * 3, rdev_get_name(rdev),
6047 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6048 		   regulator_opmode_to_str(opmode));
6049 
6050 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6051 	seq_printf(s, "%5dmA ",
6052 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6053 
6054 	c = rdev->constraints;
6055 	if (c) {
6056 		switch (rdev->desc->type) {
6057 		case REGULATOR_VOLTAGE:
6058 			seq_printf(s, "%5dmV %5dmV ",
6059 				   c->min_uV / 1000, c->max_uV / 1000);
6060 			break;
6061 		case REGULATOR_CURRENT:
6062 			seq_printf(s, "%5dmA %5dmA ",
6063 				   c->min_uA / 1000, c->max_uA / 1000);
6064 			break;
6065 		}
6066 	}
6067 
6068 	seq_puts(s, "\n");
6069 
6070 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6071 		if (consumer->dev && consumer->dev->class == &regulator_class)
6072 			continue;
6073 
6074 		seq_printf(s, "%*s%-*s ",
6075 			   (level + 1) * 3 + 1, "",
6076 			   30 - (level + 1) * 3,
6077 			   consumer->supply_name ? consumer->supply_name :
6078 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6079 
6080 		switch (rdev->desc->type) {
6081 		case REGULATOR_VOLTAGE:
6082 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6083 				   consumer->enable_count,
6084 				   consumer->uA_load / 1000,
6085 				   consumer->uA_load && !consumer->enable_count ?
6086 				   '*' : ' ',
6087 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6088 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6089 			break;
6090 		case REGULATOR_CURRENT:
6091 			break;
6092 		}
6093 
6094 		seq_puts(s, "\n");
6095 	}
6096 
6097 	summary_data.s = s;
6098 	summary_data.level = level;
6099 	summary_data.parent = rdev;
6100 
6101 	class_for_each_device(&regulator_class, NULL, &summary_data,
6102 			      regulator_summary_show_children);
6103 }
6104 
6105 struct summary_lock_data {
6106 	struct ww_acquire_ctx *ww_ctx;
6107 	struct regulator_dev **new_contended_rdev;
6108 	struct regulator_dev **old_contended_rdev;
6109 };
6110 
6111 static int regulator_summary_lock_one(struct device *dev, void *data)
6112 {
6113 	struct regulator_dev *rdev = dev_to_rdev(dev);
6114 	struct summary_lock_data *lock_data = data;
6115 	int ret = 0;
6116 
6117 	if (rdev != *lock_data->old_contended_rdev) {
6118 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6119 
6120 		if (ret == -EDEADLK)
6121 			*lock_data->new_contended_rdev = rdev;
6122 		else
6123 			WARN_ON_ONCE(ret);
6124 	} else {
6125 		*lock_data->old_contended_rdev = NULL;
6126 	}
6127 
6128 	return ret;
6129 }
6130 
6131 static int regulator_summary_unlock_one(struct device *dev, void *data)
6132 {
6133 	struct regulator_dev *rdev = dev_to_rdev(dev);
6134 	struct summary_lock_data *lock_data = data;
6135 
6136 	if (lock_data) {
6137 		if (rdev == *lock_data->new_contended_rdev)
6138 			return -EDEADLK;
6139 	}
6140 
6141 	regulator_unlock(rdev);
6142 
6143 	return 0;
6144 }
6145 
6146 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6147 				      struct regulator_dev **new_contended_rdev,
6148 				      struct regulator_dev **old_contended_rdev)
6149 {
6150 	struct summary_lock_data lock_data;
6151 	int ret;
6152 
6153 	lock_data.ww_ctx = ww_ctx;
6154 	lock_data.new_contended_rdev = new_contended_rdev;
6155 	lock_data.old_contended_rdev = old_contended_rdev;
6156 
6157 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6158 				    regulator_summary_lock_one);
6159 	if (ret)
6160 		class_for_each_device(&regulator_class, NULL, &lock_data,
6161 				      regulator_summary_unlock_one);
6162 
6163 	return ret;
6164 }
6165 
6166 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6167 {
6168 	struct regulator_dev *new_contended_rdev = NULL;
6169 	struct regulator_dev *old_contended_rdev = NULL;
6170 	int err;
6171 
6172 	mutex_lock(&regulator_list_mutex);
6173 
6174 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6175 
6176 	do {
6177 		if (new_contended_rdev) {
6178 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6179 			old_contended_rdev = new_contended_rdev;
6180 			old_contended_rdev->ref_cnt++;
6181 			old_contended_rdev->mutex_owner = current;
6182 		}
6183 
6184 		err = regulator_summary_lock_all(ww_ctx,
6185 						 &new_contended_rdev,
6186 						 &old_contended_rdev);
6187 
6188 		if (old_contended_rdev)
6189 			regulator_unlock(old_contended_rdev);
6190 
6191 	} while (err == -EDEADLK);
6192 
6193 	ww_acquire_done(ww_ctx);
6194 }
6195 
6196 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6197 {
6198 	class_for_each_device(&regulator_class, NULL, NULL,
6199 			      regulator_summary_unlock_one);
6200 	ww_acquire_fini(ww_ctx);
6201 
6202 	mutex_unlock(&regulator_list_mutex);
6203 }
6204 
6205 static int regulator_summary_show_roots(struct device *dev, void *data)
6206 {
6207 	struct regulator_dev *rdev = dev_to_rdev(dev);
6208 	struct seq_file *s = data;
6209 
6210 	if (!rdev->supply)
6211 		regulator_summary_show_subtree(s, rdev, 0);
6212 
6213 	return 0;
6214 }
6215 
6216 static int regulator_summary_show(struct seq_file *s, void *data)
6217 {
6218 	struct ww_acquire_ctx ww_ctx;
6219 
6220 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6221 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6222 
6223 	regulator_summary_lock(&ww_ctx);
6224 
6225 	class_for_each_device(&regulator_class, NULL, s,
6226 			      regulator_summary_show_roots);
6227 
6228 	regulator_summary_unlock(&ww_ctx);
6229 
6230 	return 0;
6231 }
6232 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6233 #endif /* CONFIG_DEBUG_FS */
6234 
6235 static int __init regulator_init(void)
6236 {
6237 	int ret;
6238 
6239 	ret = class_register(&regulator_class);
6240 
6241 	debugfs_root = debugfs_create_dir("regulator", NULL);
6242 	if (IS_ERR(debugfs_root))
6243 		pr_debug("regulator: Failed to create debugfs directory\n");
6244 
6245 #ifdef CONFIG_DEBUG_FS
6246 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6247 			    &supply_map_fops);
6248 
6249 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6250 			    NULL, &regulator_summary_fops);
6251 #endif
6252 	regulator_dummy_init();
6253 
6254 	regulator_coupler_register(&generic_regulator_coupler);
6255 
6256 	return ret;
6257 }
6258 
6259 /* init early to allow our consumers to complete system booting */
6260 core_initcall(regulator_init);
6261 
6262 static int regulator_late_cleanup(struct device *dev, void *data)
6263 {
6264 	struct regulator_dev *rdev = dev_to_rdev(dev);
6265 	struct regulation_constraints *c = rdev->constraints;
6266 	int ret;
6267 
6268 	if (c && c->always_on)
6269 		return 0;
6270 
6271 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6272 		return 0;
6273 
6274 	regulator_lock(rdev);
6275 
6276 	if (rdev->use_count)
6277 		goto unlock;
6278 
6279 	/* If reading the status failed, assume that it's off. */
6280 	if (_regulator_is_enabled(rdev) <= 0)
6281 		goto unlock;
6282 
6283 	if (have_full_constraints()) {
6284 		/* We log since this may kill the system if it goes
6285 		 * wrong.
6286 		 */
6287 		rdev_info(rdev, "disabling\n");
6288 		ret = _regulator_do_disable(rdev);
6289 		if (ret != 0)
6290 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6291 	} else {
6292 		/* The intention is that in future we will
6293 		 * assume that full constraints are provided
6294 		 * so warn even if we aren't going to do
6295 		 * anything here.
6296 		 */
6297 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6298 	}
6299 
6300 unlock:
6301 	regulator_unlock(rdev);
6302 
6303 	return 0;
6304 }
6305 
6306 static bool regulator_ignore_unused;
6307 static int __init regulator_ignore_unused_setup(char *__unused)
6308 {
6309 	regulator_ignore_unused = true;
6310 	return 1;
6311 }
6312 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6313 
6314 static void regulator_init_complete_work_function(struct work_struct *work)
6315 {
6316 	/*
6317 	 * Regulators may had failed to resolve their input supplies
6318 	 * when were registered, either because the input supply was
6319 	 * not registered yet or because its parent device was not
6320 	 * bound yet. So attempt to resolve the input supplies for
6321 	 * pending regulators before trying to disable unused ones.
6322 	 */
6323 	class_for_each_device(&regulator_class, NULL, NULL,
6324 			      regulator_register_resolve_supply);
6325 
6326 	/*
6327 	 * For debugging purposes, it may be useful to prevent unused
6328 	 * regulators from being disabled.
6329 	 */
6330 	if (regulator_ignore_unused) {
6331 		pr_warn("regulator: Not disabling unused regulators\n");
6332 		return;
6333 	}
6334 
6335 	/* If we have a full configuration then disable any regulators
6336 	 * we have permission to change the status for and which are
6337 	 * not in use or always_on.  This is effectively the default
6338 	 * for DT and ACPI as they have full constraints.
6339 	 */
6340 	class_for_each_device(&regulator_class, NULL, NULL,
6341 			      regulator_late_cleanup);
6342 }
6343 
6344 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6345 			    regulator_init_complete_work_function);
6346 
6347 static int __init regulator_init_complete(void)
6348 {
6349 	/*
6350 	 * Since DT doesn't provide an idiomatic mechanism for
6351 	 * enabling full constraints and since it's much more natural
6352 	 * with DT to provide them just assume that a DT enabled
6353 	 * system has full constraints.
6354 	 */
6355 	if (of_have_populated_dt())
6356 		has_full_constraints = true;
6357 
6358 	/*
6359 	 * We punt completion for an arbitrary amount of time since
6360 	 * systems like distros will load many drivers from userspace
6361 	 * so consumers might not always be ready yet, this is
6362 	 * particularly an issue with laptops where this might bounce
6363 	 * the display off then on.  Ideally we'd get a notification
6364 	 * from userspace when this happens but we don't so just wait
6365 	 * a bit and hope we waited long enough.  It'd be better if
6366 	 * we'd only do this on systems that need it, and a kernel
6367 	 * command line option might be useful.
6368 	 */
6369 	schedule_delayed_work(&regulator_init_complete_work,
6370 			      msecs_to_jiffies(30000));
6371 
6372 	return 0;
6373 }
6374 late_initcall_sync(regulator_init_complete);
6375