xref: /linux/drivers/regulator/core.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 
36 #define rdev_err(rdev, fmt, ...)					\
37 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)					\
39 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)					\
41 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)					\
43 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50 
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54 
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61 	struct list_head list;
62 	const char *dev_name;   /* The dev_name() for the consumer */
63 	const char *supply;
64 	struct regulator_dev *regulator;
65 };
66 
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73 	struct device *dev;
74 	struct list_head list;
75 	int uA_load;
76 	int min_uV;
77 	int max_uV;
78 	char *supply_name;
79 	struct device_attribute dev_attr;
80 	struct regulator_dev *rdev;
81 };
82 
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 		struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 				  unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 				     int min_uV, int max_uV);
93 
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96 	if (rdev->constraints && rdev->constraints->name)
97 		return rdev->constraints->name;
98 	else if (rdev->desc->name)
99 		return rdev->desc->name;
100 	else
101 		return "";
102 }
103 
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107 	struct regulator *regulator = NULL;
108 	struct regulator_dev *rdev;
109 
110 	mutex_lock(&regulator_list_mutex);
111 	list_for_each_entry(rdev, &regulator_list, list) {
112 		mutex_lock(&rdev->mutex);
113 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 			if (regulator->dev == dev) {
115 				mutex_unlock(&rdev->mutex);
116 				mutex_unlock(&regulator_list_mutex);
117 				return regulator;
118 			}
119 		}
120 		mutex_unlock(&rdev->mutex);
121 	}
122 	mutex_unlock(&regulator_list_mutex);
123 	return NULL;
124 }
125 
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 				   int *min_uV, int *max_uV)
129 {
130 	BUG_ON(*min_uV > *max_uV);
131 
132 	if (!rdev->constraints) {
133 		rdev_err(rdev, "no constraints\n");
134 		return -ENODEV;
135 	}
136 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 		rdev_err(rdev, "operation not allowed\n");
138 		return -EPERM;
139 	}
140 
141 	if (*max_uV > rdev->constraints->max_uV)
142 		*max_uV = rdev->constraints->max_uV;
143 	if (*min_uV < rdev->constraints->min_uV)
144 		*min_uV = rdev->constraints->min_uV;
145 
146 	if (*min_uV > *max_uV)
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 				     int *min_uV, int *max_uV)
157 {
158 	struct regulator *regulator;
159 
160 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161 		if (*max_uV > regulator->max_uV)
162 			*max_uV = regulator->max_uV;
163 		if (*min_uV < regulator->min_uV)
164 			*min_uV = regulator->min_uV;
165 	}
166 
167 	if (*min_uV > *max_uV)
168 		return -EINVAL;
169 
170 	return 0;
171 }
172 
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175 					int *min_uA, int *max_uA)
176 {
177 	BUG_ON(*min_uA > *max_uA);
178 
179 	if (!rdev->constraints) {
180 		rdev_err(rdev, "no constraints\n");
181 		return -ENODEV;
182 	}
183 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184 		rdev_err(rdev, "operation not allowed\n");
185 		return -EPERM;
186 	}
187 
188 	if (*max_uA > rdev->constraints->max_uA)
189 		*max_uA = rdev->constraints->max_uA;
190 	if (*min_uA < rdev->constraints->min_uA)
191 		*min_uA = rdev->constraints->min_uA;
192 
193 	if (*min_uA > *max_uA)
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
199 /* operating mode constraint check */
200 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
201 {
202 	switch (*mode) {
203 	case REGULATOR_MODE_FAST:
204 	case REGULATOR_MODE_NORMAL:
205 	case REGULATOR_MODE_IDLE:
206 	case REGULATOR_MODE_STANDBY:
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	if (!rdev->constraints) {
213 		rdev_err(rdev, "no constraints\n");
214 		return -ENODEV;
215 	}
216 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217 		rdev_err(rdev, "operation not allowed\n");
218 		return -EPERM;
219 	}
220 
221 	/* The modes are bitmasks, the most power hungry modes having
222 	 * the lowest values. If the requested mode isn't supported
223 	 * try higher modes. */
224 	while (*mode) {
225 		if (rdev->constraints->valid_modes_mask & *mode)
226 			return 0;
227 		*mode /= 2;
228 	}
229 
230 	return -EINVAL;
231 }
232 
233 /* dynamic regulator mode switching constraint check */
234 static int regulator_check_drms(struct regulator_dev *rdev)
235 {
236 	if (!rdev->constraints) {
237 		rdev_err(rdev, "no constraints\n");
238 		return -ENODEV;
239 	}
240 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
241 		rdev_err(rdev, "operation not allowed\n");
242 		return -EPERM;
243 	}
244 	return 0;
245 }
246 
247 static ssize_t device_requested_uA_show(struct device *dev,
248 			     struct device_attribute *attr, char *buf)
249 {
250 	struct regulator *regulator;
251 
252 	regulator = get_device_regulator(dev);
253 	if (regulator == NULL)
254 		return 0;
255 
256 	return sprintf(buf, "%d\n", regulator->uA_load);
257 }
258 
259 static ssize_t regulator_uV_show(struct device *dev,
260 				struct device_attribute *attr, char *buf)
261 {
262 	struct regulator_dev *rdev = dev_get_drvdata(dev);
263 	ssize_t ret;
264 
265 	mutex_lock(&rdev->mutex);
266 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
267 	mutex_unlock(&rdev->mutex);
268 
269 	return ret;
270 }
271 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
272 
273 static ssize_t regulator_uA_show(struct device *dev,
274 				struct device_attribute *attr, char *buf)
275 {
276 	struct regulator_dev *rdev = dev_get_drvdata(dev);
277 
278 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
279 }
280 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
281 
282 static ssize_t regulator_name_show(struct device *dev,
283 			     struct device_attribute *attr, char *buf)
284 {
285 	struct regulator_dev *rdev = dev_get_drvdata(dev);
286 
287 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
288 }
289 
290 static ssize_t regulator_print_opmode(char *buf, int mode)
291 {
292 	switch (mode) {
293 	case REGULATOR_MODE_FAST:
294 		return sprintf(buf, "fast\n");
295 	case REGULATOR_MODE_NORMAL:
296 		return sprintf(buf, "normal\n");
297 	case REGULATOR_MODE_IDLE:
298 		return sprintf(buf, "idle\n");
299 	case REGULATOR_MODE_STANDBY:
300 		return sprintf(buf, "standby\n");
301 	}
302 	return sprintf(buf, "unknown\n");
303 }
304 
305 static ssize_t regulator_opmode_show(struct device *dev,
306 				    struct device_attribute *attr, char *buf)
307 {
308 	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 
310 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
311 }
312 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
313 
314 static ssize_t regulator_print_state(char *buf, int state)
315 {
316 	if (state > 0)
317 		return sprintf(buf, "enabled\n");
318 	else if (state == 0)
319 		return sprintf(buf, "disabled\n");
320 	else
321 		return sprintf(buf, "unknown\n");
322 }
323 
324 static ssize_t regulator_state_show(struct device *dev,
325 				   struct device_attribute *attr, char *buf)
326 {
327 	struct regulator_dev *rdev = dev_get_drvdata(dev);
328 	ssize_t ret;
329 
330 	mutex_lock(&rdev->mutex);
331 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
332 	mutex_unlock(&rdev->mutex);
333 
334 	return ret;
335 }
336 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
337 
338 static ssize_t regulator_status_show(struct device *dev,
339 				   struct device_attribute *attr, char *buf)
340 {
341 	struct regulator_dev *rdev = dev_get_drvdata(dev);
342 	int status;
343 	char *label;
344 
345 	status = rdev->desc->ops->get_status(rdev);
346 	if (status < 0)
347 		return status;
348 
349 	switch (status) {
350 	case REGULATOR_STATUS_OFF:
351 		label = "off";
352 		break;
353 	case REGULATOR_STATUS_ON:
354 		label = "on";
355 		break;
356 	case REGULATOR_STATUS_ERROR:
357 		label = "error";
358 		break;
359 	case REGULATOR_STATUS_FAST:
360 		label = "fast";
361 		break;
362 	case REGULATOR_STATUS_NORMAL:
363 		label = "normal";
364 		break;
365 	case REGULATOR_STATUS_IDLE:
366 		label = "idle";
367 		break;
368 	case REGULATOR_STATUS_STANDBY:
369 		label = "standby";
370 		break;
371 	default:
372 		return -ERANGE;
373 	}
374 
375 	return sprintf(buf, "%s\n", label);
376 }
377 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
378 
379 static ssize_t regulator_min_uA_show(struct device *dev,
380 				    struct device_attribute *attr, char *buf)
381 {
382 	struct regulator_dev *rdev = dev_get_drvdata(dev);
383 
384 	if (!rdev->constraints)
385 		return sprintf(buf, "constraint not defined\n");
386 
387 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
388 }
389 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
390 
391 static ssize_t regulator_max_uA_show(struct device *dev,
392 				    struct device_attribute *attr, char *buf)
393 {
394 	struct regulator_dev *rdev = dev_get_drvdata(dev);
395 
396 	if (!rdev->constraints)
397 		return sprintf(buf, "constraint not defined\n");
398 
399 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
400 }
401 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
402 
403 static ssize_t regulator_min_uV_show(struct device *dev,
404 				    struct device_attribute *attr, char *buf)
405 {
406 	struct regulator_dev *rdev = dev_get_drvdata(dev);
407 
408 	if (!rdev->constraints)
409 		return sprintf(buf, "constraint not defined\n");
410 
411 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
412 }
413 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
414 
415 static ssize_t regulator_max_uV_show(struct device *dev,
416 				    struct device_attribute *attr, char *buf)
417 {
418 	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 
420 	if (!rdev->constraints)
421 		return sprintf(buf, "constraint not defined\n");
422 
423 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
424 }
425 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
426 
427 static ssize_t regulator_total_uA_show(struct device *dev,
428 				      struct device_attribute *attr, char *buf)
429 {
430 	struct regulator_dev *rdev = dev_get_drvdata(dev);
431 	struct regulator *regulator;
432 	int uA = 0;
433 
434 	mutex_lock(&rdev->mutex);
435 	list_for_each_entry(regulator, &rdev->consumer_list, list)
436 		uA += regulator->uA_load;
437 	mutex_unlock(&rdev->mutex);
438 	return sprintf(buf, "%d\n", uA);
439 }
440 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
441 
442 static ssize_t regulator_num_users_show(struct device *dev,
443 				      struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 	return sprintf(buf, "%d\n", rdev->use_count);
447 }
448 
449 static ssize_t regulator_type_show(struct device *dev,
450 				  struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 
454 	switch (rdev->desc->type) {
455 	case REGULATOR_VOLTAGE:
456 		return sprintf(buf, "voltage\n");
457 	case REGULATOR_CURRENT:
458 		return sprintf(buf, "current\n");
459 	}
460 	return sprintf(buf, "unknown\n");
461 }
462 
463 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
464 				struct device_attribute *attr, char *buf)
465 {
466 	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 
468 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
469 }
470 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
471 		regulator_suspend_mem_uV_show, NULL);
472 
473 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
474 				struct device_attribute *attr, char *buf)
475 {
476 	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 
478 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
479 }
480 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
481 		regulator_suspend_disk_uV_show, NULL);
482 
483 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
484 				struct device_attribute *attr, char *buf)
485 {
486 	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 
488 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
489 }
490 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
491 		regulator_suspend_standby_uV_show, NULL);
492 
493 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
494 				struct device_attribute *attr, char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 
498 	return regulator_print_opmode(buf,
499 		rdev->constraints->state_mem.mode);
500 }
501 static DEVICE_ATTR(suspend_mem_mode, 0444,
502 		regulator_suspend_mem_mode_show, NULL);
503 
504 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
505 				struct device_attribute *attr, char *buf)
506 {
507 	struct regulator_dev *rdev = dev_get_drvdata(dev);
508 
509 	return regulator_print_opmode(buf,
510 		rdev->constraints->state_disk.mode);
511 }
512 static DEVICE_ATTR(suspend_disk_mode, 0444,
513 		regulator_suspend_disk_mode_show, NULL);
514 
515 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
516 				struct device_attribute *attr, char *buf)
517 {
518 	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 
520 	return regulator_print_opmode(buf,
521 		rdev->constraints->state_standby.mode);
522 }
523 static DEVICE_ATTR(suspend_standby_mode, 0444,
524 		regulator_suspend_standby_mode_show, NULL);
525 
526 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
527 				   struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return regulator_print_state(buf,
532 			rdev->constraints->state_mem.enabled);
533 }
534 static DEVICE_ATTR(suspend_mem_state, 0444,
535 		regulator_suspend_mem_state_show, NULL);
536 
537 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
538 				   struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return regulator_print_state(buf,
543 			rdev->constraints->state_disk.enabled);
544 }
545 static DEVICE_ATTR(suspend_disk_state, 0444,
546 		regulator_suspend_disk_state_show, NULL);
547 
548 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
549 				   struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	return regulator_print_state(buf,
554 			rdev->constraints->state_standby.enabled);
555 }
556 static DEVICE_ATTR(suspend_standby_state, 0444,
557 		regulator_suspend_standby_state_show, NULL);
558 
559 
560 /*
561  * These are the only attributes are present for all regulators.
562  * Other attributes are a function of regulator functionality.
563  */
564 static struct device_attribute regulator_dev_attrs[] = {
565 	__ATTR(name, 0444, regulator_name_show, NULL),
566 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
567 	__ATTR(type, 0444, regulator_type_show, NULL),
568 	__ATTR_NULL,
569 };
570 
571 static void regulator_dev_release(struct device *dev)
572 {
573 	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 	kfree(rdev);
575 }
576 
577 static struct class regulator_class = {
578 	.name = "regulator",
579 	.dev_release = regulator_dev_release,
580 	.dev_attrs = regulator_dev_attrs,
581 };
582 
583 /* Calculate the new optimum regulator operating mode based on the new total
584  * consumer load. All locks held by caller */
585 static void drms_uA_update(struct regulator_dev *rdev)
586 {
587 	struct regulator *sibling;
588 	int current_uA = 0, output_uV, input_uV, err;
589 	unsigned int mode;
590 
591 	err = regulator_check_drms(rdev);
592 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
593 	    (!rdev->desc->ops->get_voltage &&
594 	     !rdev->desc->ops->get_voltage_sel) ||
595 	    !rdev->desc->ops->set_mode)
596 		return;
597 
598 	/* get output voltage */
599 	output_uV = _regulator_get_voltage(rdev);
600 	if (output_uV <= 0)
601 		return;
602 
603 	/* get input voltage */
604 	input_uV = 0;
605 	if (rdev->supply)
606 		input_uV = _regulator_get_voltage(rdev);
607 	if (input_uV <= 0)
608 		input_uV = rdev->constraints->input_uV;
609 	if (input_uV <= 0)
610 		return;
611 
612 	/* calc total requested load */
613 	list_for_each_entry(sibling, &rdev->consumer_list, list)
614 		current_uA += sibling->uA_load;
615 
616 	/* now get the optimum mode for our new total regulator load */
617 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
618 						  output_uV, current_uA);
619 
620 	/* check the new mode is allowed */
621 	err = regulator_mode_constrain(rdev, &mode);
622 	if (err == 0)
623 		rdev->desc->ops->set_mode(rdev, mode);
624 }
625 
626 static int suspend_set_state(struct regulator_dev *rdev,
627 	struct regulator_state *rstate)
628 {
629 	int ret = 0;
630 	bool can_set_state;
631 
632 	can_set_state = rdev->desc->ops->set_suspend_enable &&
633 		rdev->desc->ops->set_suspend_disable;
634 
635 	/* If we have no suspend mode configration don't set anything;
636 	 * only warn if the driver actually makes the suspend mode
637 	 * configurable.
638 	 */
639 	if (!rstate->enabled && !rstate->disabled) {
640 		if (can_set_state)
641 			rdev_warn(rdev, "No configuration\n");
642 		return 0;
643 	}
644 
645 	if (rstate->enabled && rstate->disabled) {
646 		rdev_err(rdev, "invalid configuration\n");
647 		return -EINVAL;
648 	}
649 
650 	if (!can_set_state) {
651 		rdev_err(rdev, "no way to set suspend state\n");
652 		return -EINVAL;
653 	}
654 
655 	if (rstate->enabled)
656 		ret = rdev->desc->ops->set_suspend_enable(rdev);
657 	else
658 		ret = rdev->desc->ops->set_suspend_disable(rdev);
659 	if (ret < 0) {
660 		rdev_err(rdev, "failed to enabled/disable\n");
661 		return ret;
662 	}
663 
664 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
665 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
666 		if (ret < 0) {
667 			rdev_err(rdev, "failed to set voltage\n");
668 			return ret;
669 		}
670 	}
671 
672 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
673 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
674 		if (ret < 0) {
675 			rdev_err(rdev, "failed to set mode\n");
676 			return ret;
677 		}
678 	}
679 	return ret;
680 }
681 
682 /* locks held by caller */
683 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
684 {
685 	if (!rdev->constraints)
686 		return -EINVAL;
687 
688 	switch (state) {
689 	case PM_SUSPEND_STANDBY:
690 		return suspend_set_state(rdev,
691 			&rdev->constraints->state_standby);
692 	case PM_SUSPEND_MEM:
693 		return suspend_set_state(rdev,
694 			&rdev->constraints->state_mem);
695 	case PM_SUSPEND_MAX:
696 		return suspend_set_state(rdev,
697 			&rdev->constraints->state_disk);
698 	default:
699 		return -EINVAL;
700 	}
701 }
702 
703 static void print_constraints(struct regulator_dev *rdev)
704 {
705 	struct regulation_constraints *constraints = rdev->constraints;
706 	char buf[80] = "";
707 	int count = 0;
708 	int ret;
709 
710 	if (constraints->min_uV && constraints->max_uV) {
711 		if (constraints->min_uV == constraints->max_uV)
712 			count += sprintf(buf + count, "%d mV ",
713 					 constraints->min_uV / 1000);
714 		else
715 			count += sprintf(buf + count, "%d <--> %d mV ",
716 					 constraints->min_uV / 1000,
717 					 constraints->max_uV / 1000);
718 	}
719 
720 	if (!constraints->min_uV ||
721 	    constraints->min_uV != constraints->max_uV) {
722 		ret = _regulator_get_voltage(rdev);
723 		if (ret > 0)
724 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
725 	}
726 
727 	if (constraints->min_uA && constraints->max_uA) {
728 		if (constraints->min_uA == constraints->max_uA)
729 			count += sprintf(buf + count, "%d mA ",
730 					 constraints->min_uA / 1000);
731 		else
732 			count += sprintf(buf + count, "%d <--> %d mA ",
733 					 constraints->min_uA / 1000,
734 					 constraints->max_uA / 1000);
735 	}
736 
737 	if (!constraints->min_uA ||
738 	    constraints->min_uA != constraints->max_uA) {
739 		ret = _regulator_get_current_limit(rdev);
740 		if (ret > 0)
741 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
742 	}
743 
744 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
745 		count += sprintf(buf + count, "fast ");
746 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
747 		count += sprintf(buf + count, "normal ");
748 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
749 		count += sprintf(buf + count, "idle ");
750 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
751 		count += sprintf(buf + count, "standby");
752 
753 	rdev_info(rdev, "%s\n", buf);
754 }
755 
756 static int machine_constraints_voltage(struct regulator_dev *rdev,
757 	struct regulation_constraints *constraints)
758 {
759 	struct regulator_ops *ops = rdev->desc->ops;
760 	int ret;
761 
762 	/* do we need to apply the constraint voltage */
763 	if (rdev->constraints->apply_uV &&
764 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
765 		ret = _regulator_do_set_voltage(rdev,
766 						rdev->constraints->min_uV,
767 						rdev->constraints->max_uV);
768 		if (ret < 0) {
769 			rdev_err(rdev, "failed to apply %duV constraint\n",
770 				 rdev->constraints->min_uV);
771 			rdev->constraints = NULL;
772 			return ret;
773 		}
774 	}
775 
776 	/* constrain machine-level voltage specs to fit
777 	 * the actual range supported by this regulator.
778 	 */
779 	if (ops->list_voltage && rdev->desc->n_voltages) {
780 		int	count = rdev->desc->n_voltages;
781 		int	i;
782 		int	min_uV = INT_MAX;
783 		int	max_uV = INT_MIN;
784 		int	cmin = constraints->min_uV;
785 		int	cmax = constraints->max_uV;
786 
787 		/* it's safe to autoconfigure fixed-voltage supplies
788 		   and the constraints are used by list_voltage. */
789 		if (count == 1 && !cmin) {
790 			cmin = 1;
791 			cmax = INT_MAX;
792 			constraints->min_uV = cmin;
793 			constraints->max_uV = cmax;
794 		}
795 
796 		/* voltage constraints are optional */
797 		if ((cmin == 0) && (cmax == 0))
798 			return 0;
799 
800 		/* else require explicit machine-level constraints */
801 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
802 			rdev_err(rdev, "invalid voltage constraints\n");
803 			return -EINVAL;
804 		}
805 
806 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
807 		for (i = 0; i < count; i++) {
808 			int	value;
809 
810 			value = ops->list_voltage(rdev, i);
811 			if (value <= 0)
812 				continue;
813 
814 			/* maybe adjust [min_uV..max_uV] */
815 			if (value >= cmin && value < min_uV)
816 				min_uV = value;
817 			if (value <= cmax && value > max_uV)
818 				max_uV = value;
819 		}
820 
821 		/* final: [min_uV..max_uV] valid iff constraints valid */
822 		if (max_uV < min_uV) {
823 			rdev_err(rdev, "unsupportable voltage constraints\n");
824 			return -EINVAL;
825 		}
826 
827 		/* use regulator's subset of machine constraints */
828 		if (constraints->min_uV < min_uV) {
829 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
830 				 constraints->min_uV, min_uV);
831 			constraints->min_uV = min_uV;
832 		}
833 		if (constraints->max_uV > max_uV) {
834 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
835 				 constraints->max_uV, max_uV);
836 			constraints->max_uV = max_uV;
837 		}
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  * set_machine_constraints - sets regulator constraints
845  * @rdev: regulator source
846  * @constraints: constraints to apply
847  *
848  * Allows platform initialisation code to define and constrain
849  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
850  * Constraints *must* be set by platform code in order for some
851  * regulator operations to proceed i.e. set_voltage, set_current_limit,
852  * set_mode.
853  */
854 static int set_machine_constraints(struct regulator_dev *rdev,
855 	const struct regulation_constraints *constraints)
856 {
857 	int ret = 0;
858 	struct regulator_ops *ops = rdev->desc->ops;
859 
860 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
861 				    GFP_KERNEL);
862 	if (!rdev->constraints)
863 		return -ENOMEM;
864 
865 	ret = machine_constraints_voltage(rdev, rdev->constraints);
866 	if (ret != 0)
867 		goto out;
868 
869 	/* do we need to setup our suspend state */
870 	if (constraints->initial_state) {
871 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
872 		if (ret < 0) {
873 			rdev_err(rdev, "failed to set suspend state\n");
874 			rdev->constraints = NULL;
875 			goto out;
876 		}
877 	}
878 
879 	if (constraints->initial_mode) {
880 		if (!ops->set_mode) {
881 			rdev_err(rdev, "no set_mode operation\n");
882 			ret = -EINVAL;
883 			goto out;
884 		}
885 
886 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
887 		if (ret < 0) {
888 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
889 			goto out;
890 		}
891 	}
892 
893 	/* If the constraints say the regulator should be on at this point
894 	 * and we have control then make sure it is enabled.
895 	 */
896 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
897 	    ops->enable) {
898 		ret = ops->enable(rdev);
899 		if (ret < 0) {
900 			rdev_err(rdev, "failed to enable\n");
901 			rdev->constraints = NULL;
902 			goto out;
903 		}
904 	}
905 
906 	print_constraints(rdev);
907 out:
908 	return ret;
909 }
910 
911 /**
912  * set_supply - set regulator supply regulator
913  * @rdev: regulator name
914  * @supply_rdev: supply regulator name
915  *
916  * Called by platform initialisation code to set the supply regulator for this
917  * regulator. This ensures that a regulators supply will also be enabled by the
918  * core if it's child is enabled.
919  */
920 static int set_supply(struct regulator_dev *rdev,
921 	struct regulator_dev *supply_rdev)
922 {
923 	int err;
924 
925 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
926 				"supply");
927 	if (err) {
928 		rdev_err(rdev, "could not add device link %s err %d\n",
929 			 supply_rdev->dev.kobj.name, err);
930 		       goto out;
931 	}
932 	rdev->supply = supply_rdev;
933 	list_add(&rdev->slist, &supply_rdev->supply_list);
934 out:
935 	return err;
936 }
937 
938 /**
939  * set_consumer_device_supply - Bind a regulator to a symbolic supply
940  * @rdev:         regulator source
941  * @consumer_dev: device the supply applies to
942  * @consumer_dev_name: dev_name() string for device supply applies to
943  * @supply:       symbolic name for supply
944  *
945  * Allows platform initialisation code to map physical regulator
946  * sources to symbolic names for supplies for use by devices.  Devices
947  * should use these symbolic names to request regulators, avoiding the
948  * need to provide board-specific regulator names as platform data.
949  *
950  * Only one of consumer_dev and consumer_dev_name may be specified.
951  */
952 static int set_consumer_device_supply(struct regulator_dev *rdev,
953 	struct device *consumer_dev, const char *consumer_dev_name,
954 	const char *supply)
955 {
956 	struct regulator_map *node;
957 	int has_dev;
958 
959 	if (consumer_dev && consumer_dev_name)
960 		return -EINVAL;
961 
962 	if (!consumer_dev_name && consumer_dev)
963 		consumer_dev_name = dev_name(consumer_dev);
964 
965 	if (supply == NULL)
966 		return -EINVAL;
967 
968 	if (consumer_dev_name != NULL)
969 		has_dev = 1;
970 	else
971 		has_dev = 0;
972 
973 	list_for_each_entry(node, &regulator_map_list, list) {
974 		if (node->dev_name && consumer_dev_name) {
975 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
976 				continue;
977 		} else if (node->dev_name || consumer_dev_name) {
978 			continue;
979 		}
980 
981 		if (strcmp(node->supply, supply) != 0)
982 			continue;
983 
984 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
985 			dev_name(&node->regulator->dev),
986 			node->regulator->desc->name,
987 			supply,
988 			dev_name(&rdev->dev), rdev_get_name(rdev));
989 		return -EBUSY;
990 	}
991 
992 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
993 	if (node == NULL)
994 		return -ENOMEM;
995 
996 	node->regulator = rdev;
997 	node->supply = supply;
998 
999 	if (has_dev) {
1000 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1001 		if (node->dev_name == NULL) {
1002 			kfree(node);
1003 			return -ENOMEM;
1004 		}
1005 	}
1006 
1007 	list_add(&node->list, &regulator_map_list);
1008 	return 0;
1009 }
1010 
1011 static void unset_regulator_supplies(struct regulator_dev *rdev)
1012 {
1013 	struct regulator_map *node, *n;
1014 
1015 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1016 		if (rdev == node->regulator) {
1017 			list_del(&node->list);
1018 			kfree(node->dev_name);
1019 			kfree(node);
1020 		}
1021 	}
1022 }
1023 
1024 #define REG_STR_SIZE	32
1025 
1026 static struct regulator *create_regulator(struct regulator_dev *rdev,
1027 					  struct device *dev,
1028 					  const char *supply_name)
1029 {
1030 	struct regulator *regulator;
1031 	char buf[REG_STR_SIZE];
1032 	int err, size;
1033 
1034 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1035 	if (regulator == NULL)
1036 		return NULL;
1037 
1038 	mutex_lock(&rdev->mutex);
1039 	regulator->rdev = rdev;
1040 	list_add(&regulator->list, &rdev->consumer_list);
1041 
1042 	if (dev) {
1043 		/* create a 'requested_microamps_name' sysfs entry */
1044 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1045 			supply_name);
1046 		if (size >= REG_STR_SIZE)
1047 			goto overflow_err;
1048 
1049 		regulator->dev = dev;
1050 		sysfs_attr_init(&regulator->dev_attr.attr);
1051 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1052 		if (regulator->dev_attr.attr.name == NULL)
1053 			goto attr_name_err;
1054 
1055 		regulator->dev_attr.attr.mode = 0444;
1056 		regulator->dev_attr.show = device_requested_uA_show;
1057 		err = device_create_file(dev, &regulator->dev_attr);
1058 		if (err < 0) {
1059 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1060 			goto attr_name_err;
1061 		}
1062 
1063 		/* also add a link to the device sysfs entry */
1064 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1065 				 dev->kobj.name, supply_name);
1066 		if (size >= REG_STR_SIZE)
1067 			goto attr_err;
1068 
1069 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1070 		if (regulator->supply_name == NULL)
1071 			goto attr_err;
1072 
1073 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1074 					buf);
1075 		if (err) {
1076 			rdev_warn(rdev, "could not add device link %s err %d\n",
1077 				  dev->kobj.name, err);
1078 			goto link_name_err;
1079 		}
1080 	}
1081 	mutex_unlock(&rdev->mutex);
1082 	return regulator;
1083 link_name_err:
1084 	kfree(regulator->supply_name);
1085 attr_err:
1086 	device_remove_file(regulator->dev, &regulator->dev_attr);
1087 attr_name_err:
1088 	kfree(regulator->dev_attr.attr.name);
1089 overflow_err:
1090 	list_del(&regulator->list);
1091 	kfree(regulator);
1092 	mutex_unlock(&rdev->mutex);
1093 	return NULL;
1094 }
1095 
1096 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1097 {
1098 	if (!rdev->desc->ops->enable_time)
1099 		return 0;
1100 	return rdev->desc->ops->enable_time(rdev);
1101 }
1102 
1103 /* Internal regulator request function */
1104 static struct regulator *_regulator_get(struct device *dev, const char *id,
1105 					int exclusive)
1106 {
1107 	struct regulator_dev *rdev;
1108 	struct regulator_map *map;
1109 	struct regulator *regulator = ERR_PTR(-ENODEV);
1110 	const char *devname = NULL;
1111 	int ret;
1112 
1113 	if (id == NULL) {
1114 		pr_err("get() with no identifier\n");
1115 		return regulator;
1116 	}
1117 
1118 	if (dev)
1119 		devname = dev_name(dev);
1120 
1121 	mutex_lock(&regulator_list_mutex);
1122 
1123 	list_for_each_entry(map, &regulator_map_list, list) {
1124 		/* If the mapping has a device set up it must match */
1125 		if (map->dev_name &&
1126 		    (!devname || strcmp(map->dev_name, devname)))
1127 			continue;
1128 
1129 		if (strcmp(map->supply, id) == 0) {
1130 			rdev = map->regulator;
1131 			goto found;
1132 		}
1133 	}
1134 
1135 	if (board_wants_dummy_regulator) {
1136 		rdev = dummy_regulator_rdev;
1137 		goto found;
1138 	}
1139 
1140 #ifdef CONFIG_REGULATOR_DUMMY
1141 	if (!devname)
1142 		devname = "deviceless";
1143 
1144 	/* If the board didn't flag that it was fully constrained then
1145 	 * substitute in a dummy regulator so consumers can continue.
1146 	 */
1147 	if (!has_full_constraints) {
1148 		pr_warn("%s supply %s not found, using dummy regulator\n",
1149 			devname, id);
1150 		rdev = dummy_regulator_rdev;
1151 		goto found;
1152 	}
1153 #endif
1154 
1155 	mutex_unlock(&regulator_list_mutex);
1156 	return regulator;
1157 
1158 found:
1159 	if (rdev->exclusive) {
1160 		regulator = ERR_PTR(-EPERM);
1161 		goto out;
1162 	}
1163 
1164 	if (exclusive && rdev->open_count) {
1165 		regulator = ERR_PTR(-EBUSY);
1166 		goto out;
1167 	}
1168 
1169 	if (!try_module_get(rdev->owner))
1170 		goto out;
1171 
1172 	regulator = create_regulator(rdev, dev, id);
1173 	if (regulator == NULL) {
1174 		regulator = ERR_PTR(-ENOMEM);
1175 		module_put(rdev->owner);
1176 	}
1177 
1178 	rdev->open_count++;
1179 	if (exclusive) {
1180 		rdev->exclusive = 1;
1181 
1182 		ret = _regulator_is_enabled(rdev);
1183 		if (ret > 0)
1184 			rdev->use_count = 1;
1185 		else
1186 			rdev->use_count = 0;
1187 	}
1188 
1189 out:
1190 	mutex_unlock(&regulator_list_mutex);
1191 
1192 	return regulator;
1193 }
1194 
1195 /**
1196  * regulator_get - lookup and obtain a reference to a regulator.
1197  * @dev: device for regulator "consumer"
1198  * @id: Supply name or regulator ID.
1199  *
1200  * Returns a struct regulator corresponding to the regulator producer,
1201  * or IS_ERR() condition containing errno.
1202  *
1203  * Use of supply names configured via regulator_set_device_supply() is
1204  * strongly encouraged.  It is recommended that the supply name used
1205  * should match the name used for the supply and/or the relevant
1206  * device pins in the datasheet.
1207  */
1208 struct regulator *regulator_get(struct device *dev, const char *id)
1209 {
1210 	return _regulator_get(dev, id, 0);
1211 }
1212 EXPORT_SYMBOL_GPL(regulator_get);
1213 
1214 /**
1215  * regulator_get_exclusive - obtain exclusive access to a regulator.
1216  * @dev: device for regulator "consumer"
1217  * @id: Supply name or regulator ID.
1218  *
1219  * Returns a struct regulator corresponding to the regulator producer,
1220  * or IS_ERR() condition containing errno.  Other consumers will be
1221  * unable to obtain this reference is held and the use count for the
1222  * regulator will be initialised to reflect the current state of the
1223  * regulator.
1224  *
1225  * This is intended for use by consumers which cannot tolerate shared
1226  * use of the regulator such as those which need to force the
1227  * regulator off for correct operation of the hardware they are
1228  * controlling.
1229  *
1230  * Use of supply names configured via regulator_set_device_supply() is
1231  * strongly encouraged.  It is recommended that the supply name used
1232  * should match the name used for the supply and/or the relevant
1233  * device pins in the datasheet.
1234  */
1235 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1236 {
1237 	return _regulator_get(dev, id, 1);
1238 }
1239 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1240 
1241 /**
1242  * regulator_put - "free" the regulator source
1243  * @regulator: regulator source
1244  *
1245  * Note: drivers must ensure that all regulator_enable calls made on this
1246  * regulator source are balanced by regulator_disable calls prior to calling
1247  * this function.
1248  */
1249 void regulator_put(struct regulator *regulator)
1250 {
1251 	struct regulator_dev *rdev;
1252 
1253 	if (regulator == NULL || IS_ERR(regulator))
1254 		return;
1255 
1256 	mutex_lock(&regulator_list_mutex);
1257 	rdev = regulator->rdev;
1258 
1259 	/* remove any sysfs entries */
1260 	if (regulator->dev) {
1261 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1262 		kfree(regulator->supply_name);
1263 		device_remove_file(regulator->dev, &regulator->dev_attr);
1264 		kfree(regulator->dev_attr.attr.name);
1265 	}
1266 	list_del(&regulator->list);
1267 	kfree(regulator);
1268 
1269 	rdev->open_count--;
1270 	rdev->exclusive = 0;
1271 
1272 	module_put(rdev->owner);
1273 	mutex_unlock(&regulator_list_mutex);
1274 }
1275 EXPORT_SYMBOL_GPL(regulator_put);
1276 
1277 static int _regulator_can_change_status(struct regulator_dev *rdev)
1278 {
1279 	if (!rdev->constraints)
1280 		return 0;
1281 
1282 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1283 		return 1;
1284 	else
1285 		return 0;
1286 }
1287 
1288 /* locks held by regulator_enable() */
1289 static int _regulator_enable(struct regulator_dev *rdev)
1290 {
1291 	int ret, delay;
1292 
1293 	if (rdev->use_count == 0) {
1294 		/* do we need to enable the supply regulator first */
1295 		if (rdev->supply) {
1296 			mutex_lock(&rdev->supply->mutex);
1297 			ret = _regulator_enable(rdev->supply);
1298 			mutex_unlock(&rdev->supply->mutex);
1299 			if (ret < 0) {
1300 				rdev_err(rdev, "failed to enable: %d\n", ret);
1301 				return ret;
1302 			}
1303 		}
1304 	}
1305 
1306 	/* check voltage and requested load before enabling */
1307 	if (rdev->constraints &&
1308 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1309 		drms_uA_update(rdev);
1310 
1311 	if (rdev->use_count == 0) {
1312 		/* The regulator may on if it's not switchable or left on */
1313 		ret = _regulator_is_enabled(rdev);
1314 		if (ret == -EINVAL || ret == 0) {
1315 			if (!_regulator_can_change_status(rdev))
1316 				return -EPERM;
1317 
1318 			if (!rdev->desc->ops->enable)
1319 				return -EINVAL;
1320 
1321 			/* Query before enabling in case configuration
1322 			 * dependent.  */
1323 			ret = _regulator_get_enable_time(rdev);
1324 			if (ret >= 0) {
1325 				delay = ret;
1326 			} else {
1327 				rdev_warn(rdev, "enable_time() failed: %d\n",
1328 					   ret);
1329 				delay = 0;
1330 			}
1331 
1332 			trace_regulator_enable(rdev_get_name(rdev));
1333 
1334 			/* Allow the regulator to ramp; it would be useful
1335 			 * to extend this for bulk operations so that the
1336 			 * regulators can ramp together.  */
1337 			ret = rdev->desc->ops->enable(rdev);
1338 			if (ret < 0)
1339 				return ret;
1340 
1341 			trace_regulator_enable_delay(rdev_get_name(rdev));
1342 
1343 			if (delay >= 1000) {
1344 				mdelay(delay / 1000);
1345 				udelay(delay % 1000);
1346 			} else if (delay) {
1347 				udelay(delay);
1348 			}
1349 
1350 			trace_regulator_enable_complete(rdev_get_name(rdev));
1351 
1352 		} else if (ret < 0) {
1353 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1354 			return ret;
1355 		}
1356 		/* Fallthrough on positive return values - already enabled */
1357 	}
1358 
1359 	rdev->use_count++;
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * regulator_enable - enable regulator output
1366  * @regulator: regulator source
1367  *
1368  * Request that the regulator be enabled with the regulator output at
1369  * the predefined voltage or current value.  Calls to regulator_enable()
1370  * must be balanced with calls to regulator_disable().
1371  *
1372  * NOTE: the output value can be set by other drivers, boot loader or may be
1373  * hardwired in the regulator.
1374  */
1375 int regulator_enable(struct regulator *regulator)
1376 {
1377 	struct regulator_dev *rdev = regulator->rdev;
1378 	int ret = 0;
1379 
1380 	mutex_lock(&rdev->mutex);
1381 	ret = _regulator_enable(rdev);
1382 	mutex_unlock(&rdev->mutex);
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(regulator_enable);
1386 
1387 /* locks held by regulator_disable() */
1388 static int _regulator_disable(struct regulator_dev *rdev,
1389 		struct regulator_dev **supply_rdev_ptr)
1390 {
1391 	int ret = 0;
1392 	*supply_rdev_ptr = NULL;
1393 
1394 	if (WARN(rdev->use_count <= 0,
1395 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1396 		return -EIO;
1397 
1398 	/* are we the last user and permitted to disable ? */
1399 	if (rdev->use_count == 1 &&
1400 	    (rdev->constraints && !rdev->constraints->always_on)) {
1401 
1402 		/* we are last user */
1403 		if (_regulator_can_change_status(rdev) &&
1404 		    rdev->desc->ops->disable) {
1405 			trace_regulator_disable(rdev_get_name(rdev));
1406 
1407 			ret = rdev->desc->ops->disable(rdev);
1408 			if (ret < 0) {
1409 				rdev_err(rdev, "failed to disable\n");
1410 				return ret;
1411 			}
1412 
1413 			trace_regulator_disable_complete(rdev_get_name(rdev));
1414 
1415 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1416 					     NULL);
1417 		}
1418 
1419 		/* decrease our supplies ref count and disable if required */
1420 		*supply_rdev_ptr = rdev->supply;
1421 
1422 		rdev->use_count = 0;
1423 	} else if (rdev->use_count > 1) {
1424 
1425 		if (rdev->constraints &&
1426 			(rdev->constraints->valid_ops_mask &
1427 			REGULATOR_CHANGE_DRMS))
1428 			drms_uA_update(rdev);
1429 
1430 		rdev->use_count--;
1431 	}
1432 	return ret;
1433 }
1434 
1435 /**
1436  * regulator_disable - disable regulator output
1437  * @regulator: regulator source
1438  *
1439  * Disable the regulator output voltage or current.  Calls to
1440  * regulator_enable() must be balanced with calls to
1441  * regulator_disable().
1442  *
1443  * NOTE: this will only disable the regulator output if no other consumer
1444  * devices have it enabled, the regulator device supports disabling and
1445  * machine constraints permit this operation.
1446  */
1447 int regulator_disable(struct regulator *regulator)
1448 {
1449 	struct regulator_dev *rdev = regulator->rdev;
1450 	struct regulator_dev *supply_rdev = NULL;
1451 	int ret = 0;
1452 
1453 	mutex_lock(&rdev->mutex);
1454 	ret = _regulator_disable(rdev, &supply_rdev);
1455 	mutex_unlock(&rdev->mutex);
1456 
1457 	/* decrease our supplies ref count and disable if required */
1458 	while (supply_rdev != NULL) {
1459 		rdev = supply_rdev;
1460 
1461 		mutex_lock(&rdev->mutex);
1462 		_regulator_disable(rdev, &supply_rdev);
1463 		mutex_unlock(&rdev->mutex);
1464 	}
1465 
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_disable);
1469 
1470 /* locks held by regulator_force_disable() */
1471 static int _regulator_force_disable(struct regulator_dev *rdev,
1472 		struct regulator_dev **supply_rdev_ptr)
1473 {
1474 	int ret = 0;
1475 
1476 	/* force disable */
1477 	if (rdev->desc->ops->disable) {
1478 		/* ah well, who wants to live forever... */
1479 		ret = rdev->desc->ops->disable(rdev);
1480 		if (ret < 0) {
1481 			rdev_err(rdev, "failed to force disable\n");
1482 			return ret;
1483 		}
1484 		/* notify other consumers that power has been forced off */
1485 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1486 			REGULATOR_EVENT_DISABLE, NULL);
1487 	}
1488 
1489 	/* decrease our supplies ref count and disable if required */
1490 	*supply_rdev_ptr = rdev->supply;
1491 
1492 	rdev->use_count = 0;
1493 	return ret;
1494 }
1495 
1496 /**
1497  * regulator_force_disable - force disable regulator output
1498  * @regulator: regulator source
1499  *
1500  * Forcibly disable the regulator output voltage or current.
1501  * NOTE: this *will* disable the regulator output even if other consumer
1502  * devices have it enabled. This should be used for situations when device
1503  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1504  */
1505 int regulator_force_disable(struct regulator *regulator)
1506 {
1507 	struct regulator_dev *rdev = regulator->rdev;
1508 	struct regulator_dev *supply_rdev = NULL;
1509 	int ret;
1510 
1511 	mutex_lock(&rdev->mutex);
1512 	regulator->uA_load = 0;
1513 	ret = _regulator_force_disable(rdev, &supply_rdev);
1514 	mutex_unlock(&rdev->mutex);
1515 
1516 	if (supply_rdev)
1517 		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_force_disable);
1522 
1523 static int _regulator_is_enabled(struct regulator_dev *rdev)
1524 {
1525 	/* If we don't know then assume that the regulator is always on */
1526 	if (!rdev->desc->ops->is_enabled)
1527 		return 1;
1528 
1529 	return rdev->desc->ops->is_enabled(rdev);
1530 }
1531 
1532 /**
1533  * regulator_is_enabled - is the regulator output enabled
1534  * @regulator: regulator source
1535  *
1536  * Returns positive if the regulator driver backing the source/client
1537  * has requested that the device be enabled, zero if it hasn't, else a
1538  * negative errno code.
1539  *
1540  * Note that the device backing this regulator handle can have multiple
1541  * users, so it might be enabled even if regulator_enable() was never
1542  * called for this particular source.
1543  */
1544 int regulator_is_enabled(struct regulator *regulator)
1545 {
1546 	int ret;
1547 
1548 	mutex_lock(&regulator->rdev->mutex);
1549 	ret = _regulator_is_enabled(regulator->rdev);
1550 	mutex_unlock(&regulator->rdev->mutex);
1551 
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1555 
1556 /**
1557  * regulator_count_voltages - count regulator_list_voltage() selectors
1558  * @regulator: regulator source
1559  *
1560  * Returns number of selectors, or negative errno.  Selectors are
1561  * numbered starting at zero, and typically correspond to bitfields
1562  * in hardware registers.
1563  */
1564 int regulator_count_voltages(struct regulator *regulator)
1565 {
1566 	struct regulator_dev	*rdev = regulator->rdev;
1567 
1568 	return rdev->desc->n_voltages ? : -EINVAL;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1571 
1572 /**
1573  * regulator_list_voltage - enumerate supported voltages
1574  * @regulator: regulator source
1575  * @selector: identify voltage to list
1576  * Context: can sleep
1577  *
1578  * Returns a voltage that can be passed to @regulator_set_voltage(),
1579  * zero if this selector code can't be used on this system, or a
1580  * negative errno.
1581  */
1582 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1583 {
1584 	struct regulator_dev	*rdev = regulator->rdev;
1585 	struct regulator_ops	*ops = rdev->desc->ops;
1586 	int			ret;
1587 
1588 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1589 		return -EINVAL;
1590 
1591 	mutex_lock(&rdev->mutex);
1592 	ret = ops->list_voltage(rdev, selector);
1593 	mutex_unlock(&rdev->mutex);
1594 
1595 	if (ret > 0) {
1596 		if (ret < rdev->constraints->min_uV)
1597 			ret = 0;
1598 		else if (ret > rdev->constraints->max_uV)
1599 			ret = 0;
1600 	}
1601 
1602 	return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1605 
1606 /**
1607  * regulator_is_supported_voltage - check if a voltage range can be supported
1608  *
1609  * @regulator: Regulator to check.
1610  * @min_uV: Minimum required voltage in uV.
1611  * @max_uV: Maximum required voltage in uV.
1612  *
1613  * Returns a boolean or a negative error code.
1614  */
1615 int regulator_is_supported_voltage(struct regulator *regulator,
1616 				   int min_uV, int max_uV)
1617 {
1618 	int i, voltages, ret;
1619 
1620 	ret = regulator_count_voltages(regulator);
1621 	if (ret < 0)
1622 		return ret;
1623 	voltages = ret;
1624 
1625 	for (i = 0; i < voltages; i++) {
1626 		ret = regulator_list_voltage(regulator, i);
1627 
1628 		if (ret >= min_uV && ret <= max_uV)
1629 			return 1;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1636 				     int min_uV, int max_uV)
1637 {
1638 	int ret;
1639 	int delay = 0;
1640 	unsigned int selector;
1641 
1642 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1643 
1644 	if (rdev->desc->ops->set_voltage) {
1645 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1646 						   &selector);
1647 
1648 		if (rdev->desc->ops->list_voltage)
1649 			selector = rdev->desc->ops->list_voltage(rdev,
1650 								 selector);
1651 		else
1652 			selector = -1;
1653 	} else if (rdev->desc->ops->set_voltage_sel) {
1654 		int best_val = INT_MAX;
1655 		int i;
1656 
1657 		selector = 0;
1658 
1659 		/* Find the smallest voltage that falls within the specified
1660 		 * range.
1661 		 */
1662 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1663 			ret = rdev->desc->ops->list_voltage(rdev, i);
1664 			if (ret < 0)
1665 				continue;
1666 
1667 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1668 				best_val = ret;
1669 				selector = i;
1670 			}
1671 		}
1672 
1673 		/*
1674 		 * If we can't obtain the old selector there is not enough
1675 		 * info to call set_voltage_time_sel().
1676 		 */
1677 		if (rdev->desc->ops->set_voltage_time_sel &&
1678 		    rdev->desc->ops->get_voltage_sel) {
1679 			unsigned int old_selector = 0;
1680 
1681 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1682 			if (ret < 0)
1683 				return ret;
1684 			old_selector = ret;
1685 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1686 						old_selector, selector);
1687 		}
1688 
1689 		if (best_val != INT_MAX) {
1690 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1691 			selector = best_val;
1692 		} else {
1693 			ret = -EINVAL;
1694 		}
1695 	} else {
1696 		ret = -EINVAL;
1697 	}
1698 
1699 	/* Insert any necessary delays */
1700 	if (delay >= 1000) {
1701 		mdelay(delay / 1000);
1702 		udelay(delay % 1000);
1703 	} else if (delay) {
1704 		udelay(delay);
1705 	}
1706 
1707 	if (ret == 0)
1708 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1709 				     NULL);
1710 
1711 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1712 
1713 	return ret;
1714 }
1715 
1716 /**
1717  * regulator_set_voltage - set regulator output voltage
1718  * @regulator: regulator source
1719  * @min_uV: Minimum required voltage in uV
1720  * @max_uV: Maximum acceptable voltage in uV
1721  *
1722  * Sets a voltage regulator to the desired output voltage. This can be set
1723  * during any regulator state. IOW, regulator can be disabled or enabled.
1724  *
1725  * If the regulator is enabled then the voltage will change to the new value
1726  * immediately otherwise if the regulator is disabled the regulator will
1727  * output at the new voltage when enabled.
1728  *
1729  * NOTE: If the regulator is shared between several devices then the lowest
1730  * request voltage that meets the system constraints will be used.
1731  * Regulator system constraints must be set for this regulator before
1732  * calling this function otherwise this call will fail.
1733  */
1734 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1735 {
1736 	struct regulator_dev *rdev = regulator->rdev;
1737 	int ret = 0;
1738 
1739 	mutex_lock(&rdev->mutex);
1740 
1741 	/* If we're setting the same range as last time the change
1742 	 * should be a noop (some cpufreq implementations use the same
1743 	 * voltage for multiple frequencies, for example).
1744 	 */
1745 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1746 		goto out;
1747 
1748 	/* sanity check */
1749 	if (!rdev->desc->ops->set_voltage &&
1750 	    !rdev->desc->ops->set_voltage_sel) {
1751 		ret = -EINVAL;
1752 		goto out;
1753 	}
1754 
1755 	/* constraints check */
1756 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1757 	if (ret < 0)
1758 		goto out;
1759 	regulator->min_uV = min_uV;
1760 	regulator->max_uV = max_uV;
1761 
1762 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1763 	if (ret < 0)
1764 		goto out;
1765 
1766 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1767 
1768 out:
1769 	mutex_unlock(&rdev->mutex);
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1773 
1774 /**
1775  * regulator_set_voltage_time - get raise/fall time
1776  * @regulator: regulator source
1777  * @old_uV: starting voltage in microvolts
1778  * @new_uV: target voltage in microvolts
1779  *
1780  * Provided with the starting and ending voltage, this function attempts to
1781  * calculate the time in microseconds required to rise or fall to this new
1782  * voltage.
1783  */
1784 int regulator_set_voltage_time(struct regulator *regulator,
1785 			       int old_uV, int new_uV)
1786 {
1787 	struct regulator_dev	*rdev = regulator->rdev;
1788 	struct regulator_ops	*ops = rdev->desc->ops;
1789 	int old_sel = -1;
1790 	int new_sel = -1;
1791 	int voltage;
1792 	int i;
1793 
1794 	/* Currently requires operations to do this */
1795 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1796 	    || !rdev->desc->n_voltages)
1797 		return -EINVAL;
1798 
1799 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1800 		/* We only look for exact voltage matches here */
1801 		voltage = regulator_list_voltage(regulator, i);
1802 		if (voltage < 0)
1803 			return -EINVAL;
1804 		if (voltage == 0)
1805 			continue;
1806 		if (voltage == old_uV)
1807 			old_sel = i;
1808 		if (voltage == new_uV)
1809 			new_sel = i;
1810 	}
1811 
1812 	if (old_sel < 0 || new_sel < 0)
1813 		return -EINVAL;
1814 
1815 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1816 }
1817 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1818 
1819 /**
1820  * regulator_sync_voltage - re-apply last regulator output voltage
1821  * @regulator: regulator source
1822  *
1823  * Re-apply the last configured voltage.  This is intended to be used
1824  * where some external control source the consumer is cooperating with
1825  * has caused the configured voltage to change.
1826  */
1827 int regulator_sync_voltage(struct regulator *regulator)
1828 {
1829 	struct regulator_dev *rdev = regulator->rdev;
1830 	int ret, min_uV, max_uV;
1831 
1832 	mutex_lock(&rdev->mutex);
1833 
1834 	if (!rdev->desc->ops->set_voltage &&
1835 	    !rdev->desc->ops->set_voltage_sel) {
1836 		ret = -EINVAL;
1837 		goto out;
1838 	}
1839 
1840 	/* This is only going to work if we've had a voltage configured. */
1841 	if (!regulator->min_uV && !regulator->max_uV) {
1842 		ret = -EINVAL;
1843 		goto out;
1844 	}
1845 
1846 	min_uV = regulator->min_uV;
1847 	max_uV = regulator->max_uV;
1848 
1849 	/* This should be a paranoia check... */
1850 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1851 	if (ret < 0)
1852 		goto out;
1853 
1854 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1855 	if (ret < 0)
1856 		goto out;
1857 
1858 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1859 
1860 out:
1861 	mutex_unlock(&rdev->mutex);
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1865 
1866 static int _regulator_get_voltage(struct regulator_dev *rdev)
1867 {
1868 	int sel;
1869 
1870 	if (rdev->desc->ops->get_voltage_sel) {
1871 		sel = rdev->desc->ops->get_voltage_sel(rdev);
1872 		if (sel < 0)
1873 			return sel;
1874 		return rdev->desc->ops->list_voltage(rdev, sel);
1875 	}
1876 	if (rdev->desc->ops->get_voltage)
1877 		return rdev->desc->ops->get_voltage(rdev);
1878 	else
1879 		return -EINVAL;
1880 }
1881 
1882 /**
1883  * regulator_get_voltage - get regulator output voltage
1884  * @regulator: regulator source
1885  *
1886  * This returns the current regulator voltage in uV.
1887  *
1888  * NOTE: If the regulator is disabled it will return the voltage value. This
1889  * function should not be used to determine regulator state.
1890  */
1891 int regulator_get_voltage(struct regulator *regulator)
1892 {
1893 	int ret;
1894 
1895 	mutex_lock(&regulator->rdev->mutex);
1896 
1897 	ret = _regulator_get_voltage(regulator->rdev);
1898 
1899 	mutex_unlock(&regulator->rdev->mutex);
1900 
1901 	return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1904 
1905 /**
1906  * regulator_set_current_limit - set regulator output current limit
1907  * @regulator: regulator source
1908  * @min_uA: Minimuum supported current in uA
1909  * @max_uA: Maximum supported current in uA
1910  *
1911  * Sets current sink to the desired output current. This can be set during
1912  * any regulator state. IOW, regulator can be disabled or enabled.
1913  *
1914  * If the regulator is enabled then the current will change to the new value
1915  * immediately otherwise if the regulator is disabled the regulator will
1916  * output at the new current when enabled.
1917  *
1918  * NOTE: Regulator system constraints must be set for this regulator before
1919  * calling this function otherwise this call will fail.
1920  */
1921 int regulator_set_current_limit(struct regulator *regulator,
1922 			       int min_uA, int max_uA)
1923 {
1924 	struct regulator_dev *rdev = regulator->rdev;
1925 	int ret;
1926 
1927 	mutex_lock(&rdev->mutex);
1928 
1929 	/* sanity check */
1930 	if (!rdev->desc->ops->set_current_limit) {
1931 		ret = -EINVAL;
1932 		goto out;
1933 	}
1934 
1935 	/* constraints check */
1936 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1937 	if (ret < 0)
1938 		goto out;
1939 
1940 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1941 out:
1942 	mutex_unlock(&rdev->mutex);
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1946 
1947 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1948 {
1949 	int ret;
1950 
1951 	mutex_lock(&rdev->mutex);
1952 
1953 	/* sanity check */
1954 	if (!rdev->desc->ops->get_current_limit) {
1955 		ret = -EINVAL;
1956 		goto out;
1957 	}
1958 
1959 	ret = rdev->desc->ops->get_current_limit(rdev);
1960 out:
1961 	mutex_unlock(&rdev->mutex);
1962 	return ret;
1963 }
1964 
1965 /**
1966  * regulator_get_current_limit - get regulator output current
1967  * @regulator: regulator source
1968  *
1969  * This returns the current supplied by the specified current sink in uA.
1970  *
1971  * NOTE: If the regulator is disabled it will return the current value. This
1972  * function should not be used to determine regulator state.
1973  */
1974 int regulator_get_current_limit(struct regulator *regulator)
1975 {
1976 	return _regulator_get_current_limit(regulator->rdev);
1977 }
1978 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1979 
1980 /**
1981  * regulator_set_mode - set regulator operating mode
1982  * @regulator: regulator source
1983  * @mode: operating mode - one of the REGULATOR_MODE constants
1984  *
1985  * Set regulator operating mode to increase regulator efficiency or improve
1986  * regulation performance.
1987  *
1988  * NOTE: Regulator system constraints must be set for this regulator before
1989  * calling this function otherwise this call will fail.
1990  */
1991 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1992 {
1993 	struct regulator_dev *rdev = regulator->rdev;
1994 	int ret;
1995 	int regulator_curr_mode;
1996 
1997 	mutex_lock(&rdev->mutex);
1998 
1999 	/* sanity check */
2000 	if (!rdev->desc->ops->set_mode) {
2001 		ret = -EINVAL;
2002 		goto out;
2003 	}
2004 
2005 	/* return if the same mode is requested */
2006 	if (rdev->desc->ops->get_mode) {
2007 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2008 		if (regulator_curr_mode == mode) {
2009 			ret = 0;
2010 			goto out;
2011 		}
2012 	}
2013 
2014 	/* constraints check */
2015 	ret = regulator_mode_constrain(rdev, &mode);
2016 	if (ret < 0)
2017 		goto out;
2018 
2019 	ret = rdev->desc->ops->set_mode(rdev, mode);
2020 out:
2021 	mutex_unlock(&rdev->mutex);
2022 	return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(regulator_set_mode);
2025 
2026 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2027 {
2028 	int ret;
2029 
2030 	mutex_lock(&rdev->mutex);
2031 
2032 	/* sanity check */
2033 	if (!rdev->desc->ops->get_mode) {
2034 		ret = -EINVAL;
2035 		goto out;
2036 	}
2037 
2038 	ret = rdev->desc->ops->get_mode(rdev);
2039 out:
2040 	mutex_unlock(&rdev->mutex);
2041 	return ret;
2042 }
2043 
2044 /**
2045  * regulator_get_mode - get regulator operating mode
2046  * @regulator: regulator source
2047  *
2048  * Get the current regulator operating mode.
2049  */
2050 unsigned int regulator_get_mode(struct regulator *regulator)
2051 {
2052 	return _regulator_get_mode(regulator->rdev);
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get_mode);
2055 
2056 /**
2057  * regulator_set_optimum_mode - set regulator optimum operating mode
2058  * @regulator: regulator source
2059  * @uA_load: load current
2060  *
2061  * Notifies the regulator core of a new device load. This is then used by
2062  * DRMS (if enabled by constraints) to set the most efficient regulator
2063  * operating mode for the new regulator loading.
2064  *
2065  * Consumer devices notify their supply regulator of the maximum power
2066  * they will require (can be taken from device datasheet in the power
2067  * consumption tables) when they change operational status and hence power
2068  * state. Examples of operational state changes that can affect power
2069  * consumption are :-
2070  *
2071  *    o Device is opened / closed.
2072  *    o Device I/O is about to begin or has just finished.
2073  *    o Device is idling in between work.
2074  *
2075  * This information is also exported via sysfs to userspace.
2076  *
2077  * DRMS will sum the total requested load on the regulator and change
2078  * to the most efficient operating mode if platform constraints allow.
2079  *
2080  * Returns the new regulator mode or error.
2081  */
2082 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2083 {
2084 	struct regulator_dev *rdev = regulator->rdev;
2085 	struct regulator *consumer;
2086 	int ret, output_uV, input_uV, total_uA_load = 0;
2087 	unsigned int mode;
2088 
2089 	mutex_lock(&rdev->mutex);
2090 
2091 	regulator->uA_load = uA_load;
2092 	ret = regulator_check_drms(rdev);
2093 	if (ret < 0)
2094 		goto out;
2095 	ret = -EINVAL;
2096 
2097 	/* sanity check */
2098 	if (!rdev->desc->ops->get_optimum_mode)
2099 		goto out;
2100 
2101 	/* get output voltage */
2102 	output_uV = _regulator_get_voltage(rdev);
2103 	if (output_uV <= 0) {
2104 		rdev_err(rdev, "invalid output voltage found\n");
2105 		goto out;
2106 	}
2107 
2108 	/* get input voltage */
2109 	input_uV = 0;
2110 	if (rdev->supply)
2111 		input_uV = _regulator_get_voltage(rdev->supply);
2112 	if (input_uV <= 0)
2113 		input_uV = rdev->constraints->input_uV;
2114 	if (input_uV <= 0) {
2115 		rdev_err(rdev, "invalid input voltage found\n");
2116 		goto out;
2117 	}
2118 
2119 	/* calc total requested load for this regulator */
2120 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2121 		total_uA_load += consumer->uA_load;
2122 
2123 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2124 						 input_uV, output_uV,
2125 						 total_uA_load);
2126 	ret = regulator_mode_constrain(rdev, &mode);
2127 	if (ret < 0) {
2128 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2129 			 total_uA_load, input_uV, output_uV);
2130 		goto out;
2131 	}
2132 
2133 	ret = rdev->desc->ops->set_mode(rdev, mode);
2134 	if (ret < 0) {
2135 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2136 		goto out;
2137 	}
2138 	ret = mode;
2139 out:
2140 	mutex_unlock(&rdev->mutex);
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2144 
2145 /**
2146  * regulator_register_notifier - register regulator event notifier
2147  * @regulator: regulator source
2148  * @nb: notifier block
2149  *
2150  * Register notifier block to receive regulator events.
2151  */
2152 int regulator_register_notifier(struct regulator *regulator,
2153 			      struct notifier_block *nb)
2154 {
2155 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2156 						nb);
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2159 
2160 /**
2161  * regulator_unregister_notifier - unregister regulator event notifier
2162  * @regulator: regulator source
2163  * @nb: notifier block
2164  *
2165  * Unregister regulator event notifier block.
2166  */
2167 int regulator_unregister_notifier(struct regulator *regulator,
2168 				struct notifier_block *nb)
2169 {
2170 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2171 						  nb);
2172 }
2173 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2174 
2175 /* notify regulator consumers and downstream regulator consumers.
2176  * Note mutex must be held by caller.
2177  */
2178 static void _notifier_call_chain(struct regulator_dev *rdev,
2179 				  unsigned long event, void *data)
2180 {
2181 	struct regulator_dev *_rdev;
2182 
2183 	/* call rdev chain first */
2184 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2185 
2186 	/* now notify regulator we supply */
2187 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2188 		mutex_lock(&_rdev->mutex);
2189 		_notifier_call_chain(_rdev, event, data);
2190 		mutex_unlock(&_rdev->mutex);
2191 	}
2192 }
2193 
2194 /**
2195  * regulator_bulk_get - get multiple regulator consumers
2196  *
2197  * @dev:           Device to supply
2198  * @num_consumers: Number of consumers to register
2199  * @consumers:     Configuration of consumers; clients are stored here.
2200  *
2201  * @return 0 on success, an errno on failure.
2202  *
2203  * This helper function allows drivers to get several regulator
2204  * consumers in one operation.  If any of the regulators cannot be
2205  * acquired then any regulators that were allocated will be freed
2206  * before returning to the caller.
2207  */
2208 int regulator_bulk_get(struct device *dev, int num_consumers,
2209 		       struct regulator_bulk_data *consumers)
2210 {
2211 	int i;
2212 	int ret;
2213 
2214 	for (i = 0; i < num_consumers; i++)
2215 		consumers[i].consumer = NULL;
2216 
2217 	for (i = 0; i < num_consumers; i++) {
2218 		consumers[i].consumer = regulator_get(dev,
2219 						      consumers[i].supply);
2220 		if (IS_ERR(consumers[i].consumer)) {
2221 			ret = PTR_ERR(consumers[i].consumer);
2222 			dev_err(dev, "Failed to get supply '%s': %d\n",
2223 				consumers[i].supply, ret);
2224 			consumers[i].consumer = NULL;
2225 			goto err;
2226 		}
2227 	}
2228 
2229 	return 0;
2230 
2231 err:
2232 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2233 		regulator_put(consumers[i].consumer);
2234 
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2238 
2239 /**
2240  * regulator_bulk_enable - enable multiple regulator consumers
2241  *
2242  * @num_consumers: Number of consumers
2243  * @consumers:     Consumer data; clients are stored here.
2244  * @return         0 on success, an errno on failure
2245  *
2246  * This convenience API allows consumers to enable multiple regulator
2247  * clients in a single API call.  If any consumers cannot be enabled
2248  * then any others that were enabled will be disabled again prior to
2249  * return.
2250  */
2251 int regulator_bulk_enable(int num_consumers,
2252 			  struct regulator_bulk_data *consumers)
2253 {
2254 	int i;
2255 	int ret;
2256 
2257 	for (i = 0; i < num_consumers; i++) {
2258 		ret = regulator_enable(consumers[i].consumer);
2259 		if (ret != 0)
2260 			goto err;
2261 	}
2262 
2263 	return 0;
2264 
2265 err:
2266 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2267 	for (--i; i >= 0; --i)
2268 		regulator_disable(consumers[i].consumer);
2269 
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2273 
2274 /**
2275  * regulator_bulk_disable - disable multiple regulator consumers
2276  *
2277  * @num_consumers: Number of consumers
2278  * @consumers:     Consumer data; clients are stored here.
2279  * @return         0 on success, an errno on failure
2280  *
2281  * This convenience API allows consumers to disable multiple regulator
2282  * clients in a single API call.  If any consumers cannot be enabled
2283  * then any others that were disabled will be disabled again prior to
2284  * return.
2285  */
2286 int regulator_bulk_disable(int num_consumers,
2287 			   struct regulator_bulk_data *consumers)
2288 {
2289 	int i;
2290 	int ret;
2291 
2292 	for (i = 0; i < num_consumers; i++) {
2293 		ret = regulator_disable(consumers[i].consumer);
2294 		if (ret != 0)
2295 			goto err;
2296 	}
2297 
2298 	return 0;
2299 
2300 err:
2301 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2302 	for (--i; i >= 0; --i)
2303 		regulator_enable(consumers[i].consumer);
2304 
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2308 
2309 /**
2310  * regulator_bulk_free - free multiple regulator consumers
2311  *
2312  * @num_consumers: Number of consumers
2313  * @consumers:     Consumer data; clients are stored here.
2314  *
2315  * This convenience API allows consumers to free multiple regulator
2316  * clients in a single API call.
2317  */
2318 void regulator_bulk_free(int num_consumers,
2319 			 struct regulator_bulk_data *consumers)
2320 {
2321 	int i;
2322 
2323 	for (i = 0; i < num_consumers; i++) {
2324 		regulator_put(consumers[i].consumer);
2325 		consumers[i].consumer = NULL;
2326 	}
2327 }
2328 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2329 
2330 /**
2331  * regulator_notifier_call_chain - call regulator event notifier
2332  * @rdev: regulator source
2333  * @event: notifier block
2334  * @data: callback-specific data.
2335  *
2336  * Called by regulator drivers to notify clients a regulator event has
2337  * occurred. We also notify regulator clients downstream.
2338  * Note lock must be held by caller.
2339  */
2340 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2341 				  unsigned long event, void *data)
2342 {
2343 	_notifier_call_chain(rdev, event, data);
2344 	return NOTIFY_DONE;
2345 
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2348 
2349 /**
2350  * regulator_mode_to_status - convert a regulator mode into a status
2351  *
2352  * @mode: Mode to convert
2353  *
2354  * Convert a regulator mode into a status.
2355  */
2356 int regulator_mode_to_status(unsigned int mode)
2357 {
2358 	switch (mode) {
2359 	case REGULATOR_MODE_FAST:
2360 		return REGULATOR_STATUS_FAST;
2361 	case REGULATOR_MODE_NORMAL:
2362 		return REGULATOR_STATUS_NORMAL;
2363 	case REGULATOR_MODE_IDLE:
2364 		return REGULATOR_STATUS_IDLE;
2365 	case REGULATOR_STATUS_STANDBY:
2366 		return REGULATOR_STATUS_STANDBY;
2367 	default:
2368 		return 0;
2369 	}
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2372 
2373 /*
2374  * To avoid cluttering sysfs (and memory) with useless state, only
2375  * create attributes that can be meaningfully displayed.
2376  */
2377 static int add_regulator_attributes(struct regulator_dev *rdev)
2378 {
2379 	struct device		*dev = &rdev->dev;
2380 	struct regulator_ops	*ops = rdev->desc->ops;
2381 	int			status = 0;
2382 
2383 	/* some attributes need specific methods to be displayed */
2384 	if (ops->get_voltage || ops->get_voltage_sel) {
2385 		status = device_create_file(dev, &dev_attr_microvolts);
2386 		if (status < 0)
2387 			return status;
2388 	}
2389 	if (ops->get_current_limit) {
2390 		status = device_create_file(dev, &dev_attr_microamps);
2391 		if (status < 0)
2392 			return status;
2393 	}
2394 	if (ops->get_mode) {
2395 		status = device_create_file(dev, &dev_attr_opmode);
2396 		if (status < 0)
2397 			return status;
2398 	}
2399 	if (ops->is_enabled) {
2400 		status = device_create_file(dev, &dev_attr_state);
2401 		if (status < 0)
2402 			return status;
2403 	}
2404 	if (ops->get_status) {
2405 		status = device_create_file(dev, &dev_attr_status);
2406 		if (status < 0)
2407 			return status;
2408 	}
2409 
2410 	/* some attributes are type-specific */
2411 	if (rdev->desc->type == REGULATOR_CURRENT) {
2412 		status = device_create_file(dev, &dev_attr_requested_microamps);
2413 		if (status < 0)
2414 			return status;
2415 	}
2416 
2417 	/* all the other attributes exist to support constraints;
2418 	 * don't show them if there are no constraints, or if the
2419 	 * relevant supporting methods are missing.
2420 	 */
2421 	if (!rdev->constraints)
2422 		return status;
2423 
2424 	/* constraints need specific supporting methods */
2425 	if (ops->set_voltage || ops->set_voltage_sel) {
2426 		status = device_create_file(dev, &dev_attr_min_microvolts);
2427 		if (status < 0)
2428 			return status;
2429 		status = device_create_file(dev, &dev_attr_max_microvolts);
2430 		if (status < 0)
2431 			return status;
2432 	}
2433 	if (ops->set_current_limit) {
2434 		status = device_create_file(dev, &dev_attr_min_microamps);
2435 		if (status < 0)
2436 			return status;
2437 		status = device_create_file(dev, &dev_attr_max_microamps);
2438 		if (status < 0)
2439 			return status;
2440 	}
2441 
2442 	/* suspend mode constraints need multiple supporting methods */
2443 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2444 		return status;
2445 
2446 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2447 	if (status < 0)
2448 		return status;
2449 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2450 	if (status < 0)
2451 		return status;
2452 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2453 	if (status < 0)
2454 		return status;
2455 
2456 	if (ops->set_suspend_voltage) {
2457 		status = device_create_file(dev,
2458 				&dev_attr_suspend_standby_microvolts);
2459 		if (status < 0)
2460 			return status;
2461 		status = device_create_file(dev,
2462 				&dev_attr_suspend_mem_microvolts);
2463 		if (status < 0)
2464 			return status;
2465 		status = device_create_file(dev,
2466 				&dev_attr_suspend_disk_microvolts);
2467 		if (status < 0)
2468 			return status;
2469 	}
2470 
2471 	if (ops->set_suspend_mode) {
2472 		status = device_create_file(dev,
2473 				&dev_attr_suspend_standby_mode);
2474 		if (status < 0)
2475 			return status;
2476 		status = device_create_file(dev,
2477 				&dev_attr_suspend_mem_mode);
2478 		if (status < 0)
2479 			return status;
2480 		status = device_create_file(dev,
2481 				&dev_attr_suspend_disk_mode);
2482 		if (status < 0)
2483 			return status;
2484 	}
2485 
2486 	return status;
2487 }
2488 
2489 static void rdev_init_debugfs(struct regulator_dev *rdev)
2490 {
2491 #ifdef CONFIG_DEBUG_FS
2492 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2493 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2494 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2495 		rdev->debugfs = NULL;
2496 		return;
2497 	}
2498 
2499 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2500 			   &rdev->use_count);
2501 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2502 			   &rdev->open_count);
2503 #endif
2504 }
2505 
2506 /**
2507  * regulator_register - register regulator
2508  * @regulator_desc: regulator to register
2509  * @dev: struct device for the regulator
2510  * @init_data: platform provided init data, passed through by driver
2511  * @driver_data: private regulator data
2512  *
2513  * Called by regulator drivers to register a regulator.
2514  * Returns 0 on success.
2515  */
2516 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2517 	struct device *dev, const struct regulator_init_data *init_data,
2518 	void *driver_data)
2519 {
2520 	static atomic_t regulator_no = ATOMIC_INIT(0);
2521 	struct regulator_dev *rdev;
2522 	int ret, i;
2523 
2524 	if (regulator_desc == NULL)
2525 		return ERR_PTR(-EINVAL);
2526 
2527 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2528 		return ERR_PTR(-EINVAL);
2529 
2530 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2531 	    regulator_desc->type != REGULATOR_CURRENT)
2532 		return ERR_PTR(-EINVAL);
2533 
2534 	if (!init_data)
2535 		return ERR_PTR(-EINVAL);
2536 
2537 	/* Only one of each should be implemented */
2538 	WARN_ON(regulator_desc->ops->get_voltage &&
2539 		regulator_desc->ops->get_voltage_sel);
2540 	WARN_ON(regulator_desc->ops->set_voltage &&
2541 		regulator_desc->ops->set_voltage_sel);
2542 
2543 	/* If we're using selectors we must implement list_voltage. */
2544 	if (regulator_desc->ops->get_voltage_sel &&
2545 	    !regulator_desc->ops->list_voltage) {
2546 		return ERR_PTR(-EINVAL);
2547 	}
2548 	if (regulator_desc->ops->set_voltage_sel &&
2549 	    !regulator_desc->ops->list_voltage) {
2550 		return ERR_PTR(-EINVAL);
2551 	}
2552 
2553 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2554 	if (rdev == NULL)
2555 		return ERR_PTR(-ENOMEM);
2556 
2557 	mutex_lock(&regulator_list_mutex);
2558 
2559 	mutex_init(&rdev->mutex);
2560 	rdev->reg_data = driver_data;
2561 	rdev->owner = regulator_desc->owner;
2562 	rdev->desc = regulator_desc;
2563 	INIT_LIST_HEAD(&rdev->consumer_list);
2564 	INIT_LIST_HEAD(&rdev->supply_list);
2565 	INIT_LIST_HEAD(&rdev->list);
2566 	INIT_LIST_HEAD(&rdev->slist);
2567 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2568 
2569 	/* preform any regulator specific init */
2570 	if (init_data->regulator_init) {
2571 		ret = init_data->regulator_init(rdev->reg_data);
2572 		if (ret < 0)
2573 			goto clean;
2574 	}
2575 
2576 	/* register with sysfs */
2577 	rdev->dev.class = &regulator_class;
2578 	rdev->dev.parent = dev;
2579 	dev_set_name(&rdev->dev, "regulator.%d",
2580 		     atomic_inc_return(&regulator_no) - 1);
2581 	ret = device_register(&rdev->dev);
2582 	if (ret != 0) {
2583 		put_device(&rdev->dev);
2584 		goto clean;
2585 	}
2586 
2587 	dev_set_drvdata(&rdev->dev, rdev);
2588 
2589 	/* set regulator constraints */
2590 	ret = set_machine_constraints(rdev, &init_data->constraints);
2591 	if (ret < 0)
2592 		goto scrub;
2593 
2594 	/* add attributes supported by this regulator */
2595 	ret = add_regulator_attributes(rdev);
2596 	if (ret < 0)
2597 		goto scrub;
2598 
2599 	if (init_data->supply_regulator) {
2600 		struct regulator_dev *r;
2601 		int found = 0;
2602 
2603 		list_for_each_entry(r, &regulator_list, list) {
2604 			if (strcmp(rdev_get_name(r),
2605 				   init_data->supply_regulator) == 0) {
2606 				found = 1;
2607 				break;
2608 			}
2609 		}
2610 
2611 		if (!found) {
2612 			dev_err(dev, "Failed to find supply %s\n",
2613 				init_data->supply_regulator);
2614 			ret = -ENODEV;
2615 			goto scrub;
2616 		}
2617 
2618 		ret = set_supply(rdev, r);
2619 		if (ret < 0)
2620 			goto scrub;
2621 	}
2622 
2623 	/* add consumers devices */
2624 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2625 		ret = set_consumer_device_supply(rdev,
2626 			init_data->consumer_supplies[i].dev,
2627 			init_data->consumer_supplies[i].dev_name,
2628 			init_data->consumer_supplies[i].supply);
2629 		if (ret < 0) {
2630 			dev_err(dev, "Failed to set supply %s\n",
2631 				init_data->consumer_supplies[i].supply);
2632 			goto unset_supplies;
2633 		}
2634 	}
2635 
2636 	list_add(&rdev->list, &regulator_list);
2637 
2638 	rdev_init_debugfs(rdev);
2639 out:
2640 	mutex_unlock(&regulator_list_mutex);
2641 	return rdev;
2642 
2643 unset_supplies:
2644 	unset_regulator_supplies(rdev);
2645 
2646 scrub:
2647 	device_unregister(&rdev->dev);
2648 	/* device core frees rdev */
2649 	rdev = ERR_PTR(ret);
2650 	goto out;
2651 
2652 clean:
2653 	kfree(rdev);
2654 	rdev = ERR_PTR(ret);
2655 	goto out;
2656 }
2657 EXPORT_SYMBOL_GPL(regulator_register);
2658 
2659 /**
2660  * regulator_unregister - unregister regulator
2661  * @rdev: regulator to unregister
2662  *
2663  * Called by regulator drivers to unregister a regulator.
2664  */
2665 void regulator_unregister(struct regulator_dev *rdev)
2666 {
2667 	if (rdev == NULL)
2668 		return;
2669 
2670 	mutex_lock(&regulator_list_mutex);
2671 #ifdef CONFIG_DEBUG_FS
2672 	debugfs_remove_recursive(rdev->debugfs);
2673 #endif
2674 	WARN_ON(rdev->open_count);
2675 	unset_regulator_supplies(rdev);
2676 	list_del(&rdev->list);
2677 	if (rdev->supply)
2678 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2679 	device_unregister(&rdev->dev);
2680 	kfree(rdev->constraints);
2681 	mutex_unlock(&regulator_list_mutex);
2682 }
2683 EXPORT_SYMBOL_GPL(regulator_unregister);
2684 
2685 /**
2686  * regulator_suspend_prepare - prepare regulators for system wide suspend
2687  * @state: system suspend state
2688  *
2689  * Configure each regulator with it's suspend operating parameters for state.
2690  * This will usually be called by machine suspend code prior to supending.
2691  */
2692 int regulator_suspend_prepare(suspend_state_t state)
2693 {
2694 	struct regulator_dev *rdev;
2695 	int ret = 0;
2696 
2697 	/* ON is handled by regulator active state */
2698 	if (state == PM_SUSPEND_ON)
2699 		return -EINVAL;
2700 
2701 	mutex_lock(&regulator_list_mutex);
2702 	list_for_each_entry(rdev, &regulator_list, list) {
2703 
2704 		mutex_lock(&rdev->mutex);
2705 		ret = suspend_prepare(rdev, state);
2706 		mutex_unlock(&rdev->mutex);
2707 
2708 		if (ret < 0) {
2709 			rdev_err(rdev, "failed to prepare\n");
2710 			goto out;
2711 		}
2712 	}
2713 out:
2714 	mutex_unlock(&regulator_list_mutex);
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2718 
2719 /**
2720  * regulator_suspend_finish - resume regulators from system wide suspend
2721  *
2722  * Turn on regulators that might be turned off by regulator_suspend_prepare
2723  * and that should be turned on according to the regulators properties.
2724  */
2725 int regulator_suspend_finish(void)
2726 {
2727 	struct regulator_dev *rdev;
2728 	int ret = 0, error;
2729 
2730 	mutex_lock(&regulator_list_mutex);
2731 	list_for_each_entry(rdev, &regulator_list, list) {
2732 		struct regulator_ops *ops = rdev->desc->ops;
2733 
2734 		mutex_lock(&rdev->mutex);
2735 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2736 				ops->enable) {
2737 			error = ops->enable(rdev);
2738 			if (error)
2739 				ret = error;
2740 		} else {
2741 			if (!has_full_constraints)
2742 				goto unlock;
2743 			if (!ops->disable)
2744 				goto unlock;
2745 			if (ops->is_enabled && !ops->is_enabled(rdev))
2746 				goto unlock;
2747 
2748 			error = ops->disable(rdev);
2749 			if (error)
2750 				ret = error;
2751 		}
2752 unlock:
2753 		mutex_unlock(&rdev->mutex);
2754 	}
2755 	mutex_unlock(&regulator_list_mutex);
2756 	return ret;
2757 }
2758 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2759 
2760 /**
2761  * regulator_has_full_constraints - the system has fully specified constraints
2762  *
2763  * Calling this function will cause the regulator API to disable all
2764  * regulators which have a zero use count and don't have an always_on
2765  * constraint in a late_initcall.
2766  *
2767  * The intention is that this will become the default behaviour in a
2768  * future kernel release so users are encouraged to use this facility
2769  * now.
2770  */
2771 void regulator_has_full_constraints(void)
2772 {
2773 	has_full_constraints = 1;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2776 
2777 /**
2778  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2779  *
2780  * Calling this function will cause the regulator API to provide a
2781  * dummy regulator to consumers if no physical regulator is found,
2782  * allowing most consumers to proceed as though a regulator were
2783  * configured.  This allows systems such as those with software
2784  * controllable regulators for the CPU core only to be brought up more
2785  * readily.
2786  */
2787 void regulator_use_dummy_regulator(void)
2788 {
2789 	board_wants_dummy_regulator = true;
2790 }
2791 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2792 
2793 /**
2794  * rdev_get_drvdata - get rdev regulator driver data
2795  * @rdev: regulator
2796  *
2797  * Get rdev regulator driver private data. This call can be used in the
2798  * regulator driver context.
2799  */
2800 void *rdev_get_drvdata(struct regulator_dev *rdev)
2801 {
2802 	return rdev->reg_data;
2803 }
2804 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2805 
2806 /**
2807  * regulator_get_drvdata - get regulator driver data
2808  * @regulator: regulator
2809  *
2810  * Get regulator driver private data. This call can be used in the consumer
2811  * driver context when non API regulator specific functions need to be called.
2812  */
2813 void *regulator_get_drvdata(struct regulator *regulator)
2814 {
2815 	return regulator->rdev->reg_data;
2816 }
2817 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2818 
2819 /**
2820  * regulator_set_drvdata - set regulator driver data
2821  * @regulator: regulator
2822  * @data: data
2823  */
2824 void regulator_set_drvdata(struct regulator *regulator, void *data)
2825 {
2826 	regulator->rdev->reg_data = data;
2827 }
2828 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2829 
2830 /**
2831  * regulator_get_id - get regulator ID
2832  * @rdev: regulator
2833  */
2834 int rdev_get_id(struct regulator_dev *rdev)
2835 {
2836 	return rdev->desc->id;
2837 }
2838 EXPORT_SYMBOL_GPL(rdev_get_id);
2839 
2840 struct device *rdev_get_dev(struct regulator_dev *rdev)
2841 {
2842 	return &rdev->dev;
2843 }
2844 EXPORT_SYMBOL_GPL(rdev_get_dev);
2845 
2846 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2847 {
2848 	return reg_init_data->driver_data;
2849 }
2850 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2851 
2852 static int __init regulator_init(void)
2853 {
2854 	int ret;
2855 
2856 	ret = class_register(&regulator_class);
2857 
2858 #ifdef CONFIG_DEBUG_FS
2859 	debugfs_root = debugfs_create_dir("regulator", NULL);
2860 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2861 		pr_warn("regulator: Failed to create debugfs directory\n");
2862 		debugfs_root = NULL;
2863 	}
2864 #endif
2865 
2866 	regulator_dummy_init();
2867 
2868 	return ret;
2869 }
2870 
2871 /* init early to allow our consumers to complete system booting */
2872 core_initcall(regulator_init);
2873 
2874 static int __init regulator_init_complete(void)
2875 {
2876 	struct regulator_dev *rdev;
2877 	struct regulator_ops *ops;
2878 	struct regulation_constraints *c;
2879 	int enabled, ret;
2880 
2881 	mutex_lock(&regulator_list_mutex);
2882 
2883 	/* If we have a full configuration then disable any regulators
2884 	 * which are not in use or always_on.  This will become the
2885 	 * default behaviour in the future.
2886 	 */
2887 	list_for_each_entry(rdev, &regulator_list, list) {
2888 		ops = rdev->desc->ops;
2889 		c = rdev->constraints;
2890 
2891 		if (!ops->disable || (c && c->always_on))
2892 			continue;
2893 
2894 		mutex_lock(&rdev->mutex);
2895 
2896 		if (rdev->use_count)
2897 			goto unlock;
2898 
2899 		/* If we can't read the status assume it's on. */
2900 		if (ops->is_enabled)
2901 			enabled = ops->is_enabled(rdev);
2902 		else
2903 			enabled = 1;
2904 
2905 		if (!enabled)
2906 			goto unlock;
2907 
2908 		if (has_full_constraints) {
2909 			/* We log since this may kill the system if it
2910 			 * goes wrong. */
2911 			rdev_info(rdev, "disabling\n");
2912 			ret = ops->disable(rdev);
2913 			if (ret != 0) {
2914 				rdev_err(rdev, "couldn't disable: %d\n", ret);
2915 			}
2916 		} else {
2917 			/* The intention is that in future we will
2918 			 * assume that full constraints are provided
2919 			 * so warn even if we aren't going to do
2920 			 * anything here.
2921 			 */
2922 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2923 		}
2924 
2925 unlock:
2926 		mutex_unlock(&rdev->mutex);
2927 	}
2928 
2929 	mutex_unlock(&regulator_list_mutex);
2930 
2931 	return 0;
2932 }
2933 late_initcall(regulator_init_complete);
2934