xref: /linux/drivers/regulator/core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
36 
37 #include "dummy.h"
38 
39 #define rdev_crit(rdev, fmt, ...)					\
40 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...)					\
42 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...)					\
44 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...)					\
46 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...)					\
48 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
55 
56 static struct dentry *debugfs_root;
57 
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64 	struct list_head list;
65 	const char *dev_name;   /* The dev_name() for the consumer */
66 	const char *supply;
67 	struct regulator_dev *regulator;
68 };
69 
70 /*
71  * struct regulator
72  *
73  * One for each consumer device.
74  */
75 struct regulator {
76 	struct device *dev;
77 	struct list_head list;
78 	unsigned int always_on:1;
79 	int uA_load;
80 	int min_uV;
81 	int max_uV;
82 	char *supply_name;
83 	struct device_attribute dev_attr;
84 	struct regulator_dev *rdev;
85 	struct dentry *debugfs;
86 };
87 
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 				  unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 				     int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 
101 static const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 	if (rdev->constraints && rdev->constraints->name)
104 		return rdev->constraints->name;
105 	else if (rdev->desc->name)
106 		return rdev->desc->name;
107 	else
108 		return "";
109 }
110 
111 /* gets the regulator for a given consumer device */
112 static struct regulator *get_device_regulator(struct device *dev)
113 {
114 	struct regulator *regulator = NULL;
115 	struct regulator_dev *rdev;
116 
117 	mutex_lock(&regulator_list_mutex);
118 	list_for_each_entry(rdev, &regulator_list, list) {
119 		mutex_lock(&rdev->mutex);
120 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121 			if (regulator->dev == dev) {
122 				mutex_unlock(&rdev->mutex);
123 				mutex_unlock(&regulator_list_mutex);
124 				return regulator;
125 			}
126 		}
127 		mutex_unlock(&rdev->mutex);
128 	}
129 	mutex_unlock(&regulator_list_mutex);
130 	return NULL;
131 }
132 
133 /**
134  * of_get_regulator - get a regulator device node based on supply name
135  * @dev: Device pointer for the consumer (of regulator) device
136  * @supply: regulator supply name
137  *
138  * Extract the regulator device node corresponding to the supply name.
139  * retruns the device node corresponding to the regulator if found, else
140  * returns NULL.
141  */
142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 	struct device_node *regnode = NULL;
145 	char prop_name[32]; /* 32 is max size of property name */
146 
147 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148 
149 	snprintf(prop_name, 32, "%s-supply", supply);
150 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151 
152 	if (!regnode) {
153 		dev_dbg(dev, "Looking up %s property in node %s failed",
154 				prop_name, dev->of_node->full_name);
155 		return NULL;
156 	}
157 	return regnode;
158 }
159 
160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 	if (!rdev->constraints)
163 		return 0;
164 
165 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 		return 1;
167 	else
168 		return 0;
169 }
170 
171 /* Platform voltage constraint check */
172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 				   int *min_uV, int *max_uV)
174 {
175 	BUG_ON(*min_uV > *max_uV);
176 
177 	if (!rdev->constraints) {
178 		rdev_err(rdev, "no constraints\n");
179 		return -ENODEV;
180 	}
181 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 		rdev_err(rdev, "operation not allowed\n");
183 		return -EPERM;
184 	}
185 
186 	if (*max_uV > rdev->constraints->max_uV)
187 		*max_uV = rdev->constraints->max_uV;
188 	if (*min_uV < rdev->constraints->min_uV)
189 		*min_uV = rdev->constraints->min_uV;
190 
191 	if (*min_uV > *max_uV) {
192 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 			 *min_uV, *max_uV);
194 		return -EINVAL;
195 	}
196 
197 	return 0;
198 }
199 
200 /* Make sure we select a voltage that suits the needs of all
201  * regulator consumers
202  */
203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 				     int *min_uV, int *max_uV)
205 {
206 	struct regulator *regulator;
207 
208 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 		/*
210 		 * Assume consumers that didn't say anything are OK
211 		 * with anything in the constraint range.
212 		 */
213 		if (!regulator->min_uV && !regulator->max_uV)
214 			continue;
215 
216 		if (*max_uV > regulator->max_uV)
217 			*max_uV = regulator->max_uV;
218 		if (*min_uV < regulator->min_uV)
219 			*min_uV = regulator->min_uV;
220 	}
221 
222 	if (*min_uV > *max_uV)
223 		return -EINVAL;
224 
225 	return 0;
226 }
227 
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230 					int *min_uA, int *max_uA)
231 {
232 	BUG_ON(*min_uA > *max_uA);
233 
234 	if (!rdev->constraints) {
235 		rdev_err(rdev, "no constraints\n");
236 		return -ENODEV;
237 	}
238 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239 		rdev_err(rdev, "operation not allowed\n");
240 		return -EPERM;
241 	}
242 
243 	if (*max_uA > rdev->constraints->max_uA)
244 		*max_uA = rdev->constraints->max_uA;
245 	if (*min_uA < rdev->constraints->min_uA)
246 		*min_uA = rdev->constraints->min_uA;
247 
248 	if (*min_uA > *max_uA) {
249 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250 			 *min_uA, *max_uA);
251 		return -EINVAL;
252 	}
253 
254 	return 0;
255 }
256 
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260 	switch (*mode) {
261 	case REGULATOR_MODE_FAST:
262 	case REGULATOR_MODE_NORMAL:
263 	case REGULATOR_MODE_IDLE:
264 	case REGULATOR_MODE_STANDBY:
265 		break;
266 	default:
267 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268 		return -EINVAL;
269 	}
270 
271 	if (!rdev->constraints) {
272 		rdev_err(rdev, "no constraints\n");
273 		return -ENODEV;
274 	}
275 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276 		rdev_err(rdev, "operation not allowed\n");
277 		return -EPERM;
278 	}
279 
280 	/* The modes are bitmasks, the most power hungry modes having
281 	 * the lowest values. If the requested mode isn't supported
282 	 * try higher modes. */
283 	while (*mode) {
284 		if (rdev->constraints->valid_modes_mask & *mode)
285 			return 0;
286 		*mode /= 2;
287 	}
288 
289 	return -EINVAL;
290 }
291 
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295 	if (!rdev->constraints) {
296 		rdev_err(rdev, "no constraints\n");
297 		return -ENODEV;
298 	}
299 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300 		rdev_err(rdev, "operation not allowed\n");
301 		return -EPERM;
302 	}
303 	return 0;
304 }
305 
306 static ssize_t device_requested_uA_show(struct device *dev,
307 			     struct device_attribute *attr, char *buf)
308 {
309 	struct regulator *regulator;
310 
311 	regulator = get_device_regulator(dev);
312 	if (regulator == NULL)
313 		return 0;
314 
315 	return sprintf(buf, "%d\n", regulator->uA_load);
316 }
317 
318 static ssize_t regulator_uV_show(struct device *dev,
319 				struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 	ssize_t ret;
323 
324 	mutex_lock(&rdev->mutex);
325 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326 	mutex_unlock(&rdev->mutex);
327 
328 	return ret;
329 }
330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331 
332 static ssize_t regulator_uA_show(struct device *dev,
333 				struct device_attribute *attr, char *buf)
334 {
335 	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 
337 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338 }
339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340 
341 static ssize_t regulator_name_show(struct device *dev,
342 			     struct device_attribute *attr, char *buf)
343 {
344 	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 
346 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 }
348 
349 static ssize_t regulator_print_opmode(char *buf, int mode)
350 {
351 	switch (mode) {
352 	case REGULATOR_MODE_FAST:
353 		return sprintf(buf, "fast\n");
354 	case REGULATOR_MODE_NORMAL:
355 		return sprintf(buf, "normal\n");
356 	case REGULATOR_MODE_IDLE:
357 		return sprintf(buf, "idle\n");
358 	case REGULATOR_MODE_STANDBY:
359 		return sprintf(buf, "standby\n");
360 	}
361 	return sprintf(buf, "unknown\n");
362 }
363 
364 static ssize_t regulator_opmode_show(struct device *dev,
365 				    struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 
369 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370 }
371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372 
373 static ssize_t regulator_print_state(char *buf, int state)
374 {
375 	if (state > 0)
376 		return sprintf(buf, "enabled\n");
377 	else if (state == 0)
378 		return sprintf(buf, "disabled\n");
379 	else
380 		return sprintf(buf, "unknown\n");
381 }
382 
383 static ssize_t regulator_state_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	ssize_t ret;
388 
389 	mutex_lock(&rdev->mutex);
390 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391 	mutex_unlock(&rdev->mutex);
392 
393 	return ret;
394 }
395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396 
397 static ssize_t regulator_status_show(struct device *dev,
398 				   struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	int status;
402 	char *label;
403 
404 	status = rdev->desc->ops->get_status(rdev);
405 	if (status < 0)
406 		return status;
407 
408 	switch (status) {
409 	case REGULATOR_STATUS_OFF:
410 		label = "off";
411 		break;
412 	case REGULATOR_STATUS_ON:
413 		label = "on";
414 		break;
415 	case REGULATOR_STATUS_ERROR:
416 		label = "error";
417 		break;
418 	case REGULATOR_STATUS_FAST:
419 		label = "fast";
420 		break;
421 	case REGULATOR_STATUS_NORMAL:
422 		label = "normal";
423 		break;
424 	case REGULATOR_STATUS_IDLE:
425 		label = "idle";
426 		break;
427 	case REGULATOR_STATUS_STANDBY:
428 		label = "standby";
429 		break;
430 	default:
431 		return -ERANGE;
432 	}
433 
434 	return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437 
438 static ssize_t regulator_min_uA_show(struct device *dev,
439 				    struct device_attribute *attr, char *buf)
440 {
441 	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 
443 	if (!rdev->constraints)
444 		return sprintf(buf, "constraint not defined\n");
445 
446 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449 
450 static ssize_t regulator_max_uA_show(struct device *dev,
451 				    struct device_attribute *attr, char *buf)
452 {
453 	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 
455 	if (!rdev->constraints)
456 		return sprintf(buf, "constraint not defined\n");
457 
458 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461 
462 static ssize_t regulator_min_uV_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct regulator_dev *rdev = dev_get_drvdata(dev);
466 
467 	if (!rdev->constraints)
468 		return sprintf(buf, "constraint not defined\n");
469 
470 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473 
474 static ssize_t regulator_max_uV_show(struct device *dev,
475 				    struct device_attribute *attr, char *buf)
476 {
477 	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 
479 	if (!rdev->constraints)
480 		return sprintf(buf, "constraint not defined\n");
481 
482 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485 
486 static ssize_t regulator_total_uA_show(struct device *dev,
487 				      struct device_attribute *attr, char *buf)
488 {
489 	struct regulator_dev *rdev = dev_get_drvdata(dev);
490 	struct regulator *regulator;
491 	int uA = 0;
492 
493 	mutex_lock(&rdev->mutex);
494 	list_for_each_entry(regulator, &rdev->consumer_list, list)
495 		uA += regulator->uA_load;
496 	mutex_unlock(&rdev->mutex);
497 	return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500 
501 static ssize_t regulator_num_users_show(struct device *dev,
502 				      struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 	return sprintf(buf, "%d\n", rdev->use_count);
506 }
507 
508 static ssize_t regulator_type_show(struct device *dev,
509 				  struct device_attribute *attr, char *buf)
510 {
511 	struct regulator_dev *rdev = dev_get_drvdata(dev);
512 
513 	switch (rdev->desc->type) {
514 	case REGULATOR_VOLTAGE:
515 		return sprintf(buf, "voltage\n");
516 	case REGULATOR_CURRENT:
517 		return sprintf(buf, "current\n");
518 	}
519 	return sprintf(buf, "unknown\n");
520 }
521 
522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 
527 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 		regulator_suspend_mem_uV_show, NULL);
531 
532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 				struct device_attribute *attr, char *buf)
534 {
535 	struct regulator_dev *rdev = dev_get_drvdata(dev);
536 
537 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 		regulator_suspend_disk_uV_show, NULL);
541 
542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 				struct device_attribute *attr, char *buf)
544 {
545 	struct regulator_dev *rdev = dev_get_drvdata(dev);
546 
547 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 		regulator_suspend_standby_uV_show, NULL);
551 
552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct regulator_dev *rdev = dev_get_drvdata(dev);
556 
557 	return regulator_print_opmode(buf,
558 		rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 		regulator_suspend_mem_mode_show, NULL);
562 
563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return regulator_print_opmode(buf,
569 		rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 		regulator_suspend_disk_mode_show, NULL);
573 
574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 				struct device_attribute *attr, char *buf)
576 {
577 	struct regulator_dev *rdev = dev_get_drvdata(dev);
578 
579 	return regulator_print_opmode(buf,
580 		rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 		regulator_suspend_standby_mode_show, NULL);
584 
585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 				   struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return regulator_print_state(buf,
591 			rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 		regulator_suspend_mem_state_show, NULL);
595 
596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 				   struct device_attribute *attr, char *buf)
598 {
599 	struct regulator_dev *rdev = dev_get_drvdata(dev);
600 
601 	return regulator_print_state(buf,
602 			rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 		regulator_suspend_disk_state_show, NULL);
606 
607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 				   struct device_attribute *attr, char *buf)
609 {
610 	struct regulator_dev *rdev = dev_get_drvdata(dev);
611 
612 	return regulator_print_state(buf,
613 			rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 		regulator_suspend_standby_state_show, NULL);
617 
618 
619 /*
620  * These are the only attributes are present for all regulators.
621  * Other attributes are a function of regulator functionality.
622  */
623 static struct device_attribute regulator_dev_attrs[] = {
624 	__ATTR(name, 0444, regulator_name_show, NULL),
625 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626 	__ATTR(type, 0444, regulator_type_show, NULL),
627 	__ATTR_NULL,
628 };
629 
630 static void regulator_dev_release(struct device *dev)
631 {
632 	struct regulator_dev *rdev = dev_get_drvdata(dev);
633 	kfree(rdev);
634 }
635 
636 static struct class regulator_class = {
637 	.name = "regulator",
638 	.dev_release = regulator_dev_release,
639 	.dev_attrs = regulator_dev_attrs,
640 };
641 
642 /* Calculate the new optimum regulator operating mode based on the new total
643  * consumer load. All locks held by caller */
644 static void drms_uA_update(struct regulator_dev *rdev)
645 {
646 	struct regulator *sibling;
647 	int current_uA = 0, output_uV, input_uV, err;
648 	unsigned int mode;
649 
650 	err = regulator_check_drms(rdev);
651 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652 	    (!rdev->desc->ops->get_voltage &&
653 	     !rdev->desc->ops->get_voltage_sel) ||
654 	    !rdev->desc->ops->set_mode)
655 		return;
656 
657 	/* get output voltage */
658 	output_uV = _regulator_get_voltage(rdev);
659 	if (output_uV <= 0)
660 		return;
661 
662 	/* get input voltage */
663 	input_uV = 0;
664 	if (rdev->supply)
665 		input_uV = regulator_get_voltage(rdev->supply);
666 	if (input_uV <= 0)
667 		input_uV = rdev->constraints->input_uV;
668 	if (input_uV <= 0)
669 		return;
670 
671 	/* calc total requested load */
672 	list_for_each_entry(sibling, &rdev->consumer_list, list)
673 		current_uA += sibling->uA_load;
674 
675 	/* now get the optimum mode for our new total regulator load */
676 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677 						  output_uV, current_uA);
678 
679 	/* check the new mode is allowed */
680 	err = regulator_mode_constrain(rdev, &mode);
681 	if (err == 0)
682 		rdev->desc->ops->set_mode(rdev, mode);
683 }
684 
685 static int suspend_set_state(struct regulator_dev *rdev,
686 	struct regulator_state *rstate)
687 {
688 	int ret = 0;
689 
690 	/* If we have no suspend mode configration don't set anything;
691 	 * only warn if the driver implements set_suspend_voltage or
692 	 * set_suspend_mode callback.
693 	 */
694 	if (!rstate->enabled && !rstate->disabled) {
695 		if (rdev->desc->ops->set_suspend_voltage ||
696 		    rdev->desc->ops->set_suspend_mode)
697 			rdev_warn(rdev, "No configuration\n");
698 		return 0;
699 	}
700 
701 	if (rstate->enabled && rstate->disabled) {
702 		rdev_err(rdev, "invalid configuration\n");
703 		return -EINVAL;
704 	}
705 
706 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707 		ret = rdev->desc->ops->set_suspend_enable(rdev);
708 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709 		ret = rdev->desc->ops->set_suspend_disable(rdev);
710 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711 		ret = 0;
712 
713 	if (ret < 0) {
714 		rdev_err(rdev, "failed to enabled/disable\n");
715 		return ret;
716 	}
717 
718 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720 		if (ret < 0) {
721 			rdev_err(rdev, "failed to set voltage\n");
722 			return ret;
723 		}
724 	}
725 
726 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728 		if (ret < 0) {
729 			rdev_err(rdev, "failed to set mode\n");
730 			return ret;
731 		}
732 	}
733 	return ret;
734 }
735 
736 /* locks held by caller */
737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738 {
739 	if (!rdev->constraints)
740 		return -EINVAL;
741 
742 	switch (state) {
743 	case PM_SUSPEND_STANDBY:
744 		return suspend_set_state(rdev,
745 			&rdev->constraints->state_standby);
746 	case PM_SUSPEND_MEM:
747 		return suspend_set_state(rdev,
748 			&rdev->constraints->state_mem);
749 	case PM_SUSPEND_MAX:
750 		return suspend_set_state(rdev,
751 			&rdev->constraints->state_disk);
752 	default:
753 		return -EINVAL;
754 	}
755 }
756 
757 static void print_constraints(struct regulator_dev *rdev)
758 {
759 	struct regulation_constraints *constraints = rdev->constraints;
760 	char buf[80] = "";
761 	int count = 0;
762 	int ret;
763 
764 	if (constraints->min_uV && constraints->max_uV) {
765 		if (constraints->min_uV == constraints->max_uV)
766 			count += sprintf(buf + count, "%d mV ",
767 					 constraints->min_uV / 1000);
768 		else
769 			count += sprintf(buf + count, "%d <--> %d mV ",
770 					 constraints->min_uV / 1000,
771 					 constraints->max_uV / 1000);
772 	}
773 
774 	if (!constraints->min_uV ||
775 	    constraints->min_uV != constraints->max_uV) {
776 		ret = _regulator_get_voltage(rdev);
777 		if (ret > 0)
778 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779 	}
780 
781 	if (constraints->uV_offset)
782 		count += sprintf(buf, "%dmV offset ",
783 				 constraints->uV_offset / 1000);
784 
785 	if (constraints->min_uA && constraints->max_uA) {
786 		if (constraints->min_uA == constraints->max_uA)
787 			count += sprintf(buf + count, "%d mA ",
788 					 constraints->min_uA / 1000);
789 		else
790 			count += sprintf(buf + count, "%d <--> %d mA ",
791 					 constraints->min_uA / 1000,
792 					 constraints->max_uA / 1000);
793 	}
794 
795 	if (!constraints->min_uA ||
796 	    constraints->min_uA != constraints->max_uA) {
797 		ret = _regulator_get_current_limit(rdev);
798 		if (ret > 0)
799 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800 	}
801 
802 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803 		count += sprintf(buf + count, "fast ");
804 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805 		count += sprintf(buf + count, "normal ");
806 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807 		count += sprintf(buf + count, "idle ");
808 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809 		count += sprintf(buf + count, "standby");
810 
811 	rdev_info(rdev, "%s\n", buf);
812 
813 	if ((constraints->min_uV != constraints->max_uV) &&
814 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815 		rdev_warn(rdev,
816 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 }
818 
819 static int machine_constraints_voltage(struct regulator_dev *rdev,
820 	struct regulation_constraints *constraints)
821 {
822 	struct regulator_ops *ops = rdev->desc->ops;
823 	int ret;
824 
825 	/* do we need to apply the constraint voltage */
826 	if (rdev->constraints->apply_uV &&
827 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828 		ret = _regulator_do_set_voltage(rdev,
829 						rdev->constraints->min_uV,
830 						rdev->constraints->max_uV);
831 		if (ret < 0) {
832 			rdev_err(rdev, "failed to apply %duV constraint\n",
833 				 rdev->constraints->min_uV);
834 			return ret;
835 		}
836 	}
837 
838 	/* constrain machine-level voltage specs to fit
839 	 * the actual range supported by this regulator.
840 	 */
841 	if (ops->list_voltage && rdev->desc->n_voltages) {
842 		int	count = rdev->desc->n_voltages;
843 		int	i;
844 		int	min_uV = INT_MAX;
845 		int	max_uV = INT_MIN;
846 		int	cmin = constraints->min_uV;
847 		int	cmax = constraints->max_uV;
848 
849 		/* it's safe to autoconfigure fixed-voltage supplies
850 		   and the constraints are used by list_voltage. */
851 		if (count == 1 && !cmin) {
852 			cmin = 1;
853 			cmax = INT_MAX;
854 			constraints->min_uV = cmin;
855 			constraints->max_uV = cmax;
856 		}
857 
858 		/* voltage constraints are optional */
859 		if ((cmin == 0) && (cmax == 0))
860 			return 0;
861 
862 		/* else require explicit machine-level constraints */
863 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864 			rdev_err(rdev, "invalid voltage constraints\n");
865 			return -EINVAL;
866 		}
867 
868 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869 		for (i = 0; i < count; i++) {
870 			int	value;
871 
872 			value = ops->list_voltage(rdev, i);
873 			if (value <= 0)
874 				continue;
875 
876 			/* maybe adjust [min_uV..max_uV] */
877 			if (value >= cmin && value < min_uV)
878 				min_uV = value;
879 			if (value <= cmax && value > max_uV)
880 				max_uV = value;
881 		}
882 
883 		/* final: [min_uV..max_uV] valid iff constraints valid */
884 		if (max_uV < min_uV) {
885 			rdev_err(rdev, "unsupportable voltage constraints\n");
886 			return -EINVAL;
887 		}
888 
889 		/* use regulator's subset of machine constraints */
890 		if (constraints->min_uV < min_uV) {
891 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892 				 constraints->min_uV, min_uV);
893 			constraints->min_uV = min_uV;
894 		}
895 		if (constraints->max_uV > max_uV) {
896 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897 				 constraints->max_uV, max_uV);
898 			constraints->max_uV = max_uV;
899 		}
900 	}
901 
902 	return 0;
903 }
904 
905 /**
906  * set_machine_constraints - sets regulator constraints
907  * @rdev: regulator source
908  * @constraints: constraints to apply
909  *
910  * Allows platform initialisation code to define and constrain
911  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912  * Constraints *must* be set by platform code in order for some
913  * regulator operations to proceed i.e. set_voltage, set_current_limit,
914  * set_mode.
915  */
916 static int set_machine_constraints(struct regulator_dev *rdev,
917 	const struct regulation_constraints *constraints)
918 {
919 	int ret = 0;
920 	struct regulator_ops *ops = rdev->desc->ops;
921 
922 	if (constraints)
923 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924 					    GFP_KERNEL);
925 	else
926 		rdev->constraints = kzalloc(sizeof(*constraints),
927 					    GFP_KERNEL);
928 	if (!rdev->constraints)
929 		return -ENOMEM;
930 
931 	ret = machine_constraints_voltage(rdev, rdev->constraints);
932 	if (ret != 0)
933 		goto out;
934 
935 	/* do we need to setup our suspend state */
936 	if (rdev->constraints->initial_state) {
937 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938 		if (ret < 0) {
939 			rdev_err(rdev, "failed to set suspend state\n");
940 			goto out;
941 		}
942 	}
943 
944 	if (rdev->constraints->initial_mode) {
945 		if (!ops->set_mode) {
946 			rdev_err(rdev, "no set_mode operation\n");
947 			ret = -EINVAL;
948 			goto out;
949 		}
950 
951 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952 		if (ret < 0) {
953 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954 			goto out;
955 		}
956 	}
957 
958 	/* If the constraints say the regulator should be on at this point
959 	 * and we have control then make sure it is enabled.
960 	 */
961 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962 	    ops->enable) {
963 		ret = ops->enable(rdev);
964 		if (ret < 0) {
965 			rdev_err(rdev, "failed to enable\n");
966 			goto out;
967 		}
968 	}
969 
970 	print_constraints(rdev);
971 	return 0;
972 out:
973 	kfree(rdev->constraints);
974 	rdev->constraints = NULL;
975 	return ret;
976 }
977 
978 /**
979  * set_supply - set regulator supply regulator
980  * @rdev: regulator name
981  * @supply_rdev: supply regulator name
982  *
983  * Called by platform initialisation code to set the supply regulator for this
984  * regulator. This ensures that a regulators supply will also be enabled by the
985  * core if it's child is enabled.
986  */
987 static int set_supply(struct regulator_dev *rdev,
988 		      struct regulator_dev *supply_rdev)
989 {
990 	int err;
991 
992 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993 
994 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995 	if (rdev->supply == NULL) {
996 		err = -ENOMEM;
997 		return err;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005  * @rdev:         regulator source
1006  * @consumer_dev_name: dev_name() string for device supply applies to
1007  * @supply:       symbolic name for supply
1008  *
1009  * Allows platform initialisation code to map physical regulator
1010  * sources to symbolic names for supplies for use by devices.  Devices
1011  * should use these symbolic names to request regulators, avoiding the
1012  * need to provide board-specific regulator names as platform data.
1013  */
1014 static int set_consumer_device_supply(struct regulator_dev *rdev,
1015 				      const char *consumer_dev_name,
1016 				      const char *supply)
1017 {
1018 	struct regulator_map *node;
1019 	int has_dev;
1020 
1021 	if (supply == NULL)
1022 		return -EINVAL;
1023 
1024 	if (consumer_dev_name != NULL)
1025 		has_dev = 1;
1026 	else
1027 		has_dev = 0;
1028 
1029 	list_for_each_entry(node, &regulator_map_list, list) {
1030 		if (node->dev_name && consumer_dev_name) {
1031 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032 				continue;
1033 		} else if (node->dev_name || consumer_dev_name) {
1034 			continue;
1035 		}
1036 
1037 		if (strcmp(node->supply, supply) != 0)
1038 			continue;
1039 
1040 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041 			 consumer_dev_name,
1042 			 dev_name(&node->regulator->dev),
1043 			 node->regulator->desc->name,
1044 			 supply,
1045 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046 		return -EBUSY;
1047 	}
1048 
1049 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050 	if (node == NULL)
1051 		return -ENOMEM;
1052 
1053 	node->regulator = rdev;
1054 	node->supply = supply;
1055 
1056 	if (has_dev) {
1057 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058 		if (node->dev_name == NULL) {
1059 			kfree(node);
1060 			return -ENOMEM;
1061 		}
1062 	}
1063 
1064 	list_add(&node->list, &regulator_map_list);
1065 	return 0;
1066 }
1067 
1068 static void unset_regulator_supplies(struct regulator_dev *rdev)
1069 {
1070 	struct regulator_map *node, *n;
1071 
1072 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073 		if (rdev == node->regulator) {
1074 			list_del(&node->list);
1075 			kfree(node->dev_name);
1076 			kfree(node);
1077 		}
1078 	}
1079 }
1080 
1081 #define REG_STR_SIZE	64
1082 
1083 static struct regulator *create_regulator(struct regulator_dev *rdev,
1084 					  struct device *dev,
1085 					  const char *supply_name)
1086 {
1087 	struct regulator *regulator;
1088 	char buf[REG_STR_SIZE];
1089 	int err, size;
1090 
1091 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092 	if (regulator == NULL)
1093 		return NULL;
1094 
1095 	mutex_lock(&rdev->mutex);
1096 	regulator->rdev = rdev;
1097 	list_add(&regulator->list, &rdev->consumer_list);
1098 
1099 	if (dev) {
1100 		/* create a 'requested_microamps_name' sysfs entry */
1101 		size = scnprintf(buf, REG_STR_SIZE,
1102 				 "microamps_requested_%s-%s",
1103 				 dev_name(dev), supply_name);
1104 		if (size >= REG_STR_SIZE)
1105 			goto overflow_err;
1106 
1107 		regulator->dev = dev;
1108 		sysfs_attr_init(&regulator->dev_attr.attr);
1109 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110 		if (regulator->dev_attr.attr.name == NULL)
1111 			goto attr_name_err;
1112 
1113 		regulator->dev_attr.attr.mode = 0444;
1114 		regulator->dev_attr.show = device_requested_uA_show;
1115 		err = device_create_file(dev, &regulator->dev_attr);
1116 		if (err < 0) {
1117 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118 			goto attr_name_err;
1119 		}
1120 
1121 		/* also add a link to the device sysfs entry */
1122 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123 				 dev->kobj.name, supply_name);
1124 		if (size >= REG_STR_SIZE)
1125 			goto attr_err;
1126 
1127 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128 		if (regulator->supply_name == NULL)
1129 			goto attr_err;
1130 
1131 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132 					buf);
1133 		if (err) {
1134 			rdev_warn(rdev, "could not add device link %s err %d\n",
1135 				  dev->kobj.name, err);
1136 			goto link_name_err;
1137 		}
1138 	} else {
1139 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140 		if (regulator->supply_name == NULL)
1141 			goto attr_err;
1142 	}
1143 
1144 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145 						rdev->debugfs);
1146 	if (!regulator->debugfs) {
1147 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148 	} else {
1149 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150 				   &regulator->uA_load);
1151 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152 				   &regulator->min_uV);
1153 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154 				   &regulator->max_uV);
1155 	}
1156 
1157 	/*
1158 	 * Check now if the regulator is an always on regulator - if
1159 	 * it is then we don't need to do nearly so much work for
1160 	 * enable/disable calls.
1161 	 */
1162 	if (!_regulator_can_change_status(rdev) &&
1163 	    _regulator_is_enabled(rdev))
1164 		regulator->always_on = true;
1165 
1166 	mutex_unlock(&rdev->mutex);
1167 	return regulator;
1168 link_name_err:
1169 	kfree(regulator->supply_name);
1170 attr_err:
1171 	device_remove_file(regulator->dev, &regulator->dev_attr);
1172 attr_name_err:
1173 	kfree(regulator->dev_attr.attr.name);
1174 overflow_err:
1175 	list_del(&regulator->list);
1176 	kfree(regulator);
1177 	mutex_unlock(&rdev->mutex);
1178 	return NULL;
1179 }
1180 
1181 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182 {
1183 	if (!rdev->desc->ops->enable_time)
1184 		return 0;
1185 	return rdev->desc->ops->enable_time(rdev);
1186 }
1187 
1188 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189 						  const char *supply,
1190 						  int *ret)
1191 {
1192 	struct regulator_dev *r;
1193 	struct device_node *node;
1194 	struct regulator_map *map;
1195 	const char *devname = NULL;
1196 
1197 	/* first do a dt based lookup */
1198 	if (dev && dev->of_node) {
1199 		node = of_get_regulator(dev, supply);
1200 		if (node) {
1201 			list_for_each_entry(r, &regulator_list, list)
1202 				if (r->dev.parent &&
1203 					node == r->dev.of_node)
1204 					return r;
1205 		} else {
1206 			/*
1207 			 * If we couldn't even get the node then it's
1208 			 * not just that the device didn't register
1209 			 * yet, there's no node and we'll never
1210 			 * succeed.
1211 			 */
1212 			*ret = -ENODEV;
1213 		}
1214 	}
1215 
1216 	/* if not found, try doing it non-dt way */
1217 	if (dev)
1218 		devname = dev_name(dev);
1219 
1220 	list_for_each_entry(r, &regulator_list, list)
1221 		if (strcmp(rdev_get_name(r), supply) == 0)
1222 			return r;
1223 
1224 	list_for_each_entry(map, &regulator_map_list, list) {
1225 		/* If the mapping has a device set up it must match */
1226 		if (map->dev_name &&
1227 		    (!devname || strcmp(map->dev_name, devname)))
1228 			continue;
1229 
1230 		if (strcmp(map->supply, supply) == 0)
1231 			return map->regulator;
1232 	}
1233 
1234 
1235 	return NULL;
1236 }
1237 
1238 /* Internal regulator request function */
1239 static struct regulator *_regulator_get(struct device *dev, const char *id,
1240 					int exclusive)
1241 {
1242 	struct regulator_dev *rdev;
1243 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244 	const char *devname = NULL;
1245 	int ret;
1246 
1247 	if (id == NULL) {
1248 		pr_err("get() with no identifier\n");
1249 		return regulator;
1250 	}
1251 
1252 	if (dev)
1253 		devname = dev_name(dev);
1254 
1255 	mutex_lock(&regulator_list_mutex);
1256 
1257 	rdev = regulator_dev_lookup(dev, id, &ret);
1258 	if (rdev)
1259 		goto found;
1260 
1261 	if (board_wants_dummy_regulator) {
1262 		rdev = dummy_regulator_rdev;
1263 		goto found;
1264 	}
1265 
1266 #ifdef CONFIG_REGULATOR_DUMMY
1267 	if (!devname)
1268 		devname = "deviceless";
1269 
1270 	/* If the board didn't flag that it was fully constrained then
1271 	 * substitute in a dummy regulator so consumers can continue.
1272 	 */
1273 	if (!has_full_constraints) {
1274 		pr_warn("%s supply %s not found, using dummy regulator\n",
1275 			devname, id);
1276 		rdev = dummy_regulator_rdev;
1277 		goto found;
1278 	}
1279 #endif
1280 
1281 	mutex_unlock(&regulator_list_mutex);
1282 	return regulator;
1283 
1284 found:
1285 	if (rdev->exclusive) {
1286 		regulator = ERR_PTR(-EPERM);
1287 		goto out;
1288 	}
1289 
1290 	if (exclusive && rdev->open_count) {
1291 		regulator = ERR_PTR(-EBUSY);
1292 		goto out;
1293 	}
1294 
1295 	if (!try_module_get(rdev->owner))
1296 		goto out;
1297 
1298 	regulator = create_regulator(rdev, dev, id);
1299 	if (regulator == NULL) {
1300 		regulator = ERR_PTR(-ENOMEM);
1301 		module_put(rdev->owner);
1302 		goto out;
1303 	}
1304 
1305 	rdev->open_count++;
1306 	if (exclusive) {
1307 		rdev->exclusive = 1;
1308 
1309 		ret = _regulator_is_enabled(rdev);
1310 		if (ret > 0)
1311 			rdev->use_count = 1;
1312 		else
1313 			rdev->use_count = 0;
1314 	}
1315 
1316 out:
1317 	mutex_unlock(&regulator_list_mutex);
1318 
1319 	return regulator;
1320 }
1321 
1322 /**
1323  * regulator_get - lookup and obtain a reference to a regulator.
1324  * @dev: device for regulator "consumer"
1325  * @id: Supply name or regulator ID.
1326  *
1327  * Returns a struct regulator corresponding to the regulator producer,
1328  * or IS_ERR() condition containing errno.
1329  *
1330  * Use of supply names configured via regulator_set_device_supply() is
1331  * strongly encouraged.  It is recommended that the supply name used
1332  * should match the name used for the supply and/or the relevant
1333  * device pins in the datasheet.
1334  */
1335 struct regulator *regulator_get(struct device *dev, const char *id)
1336 {
1337 	return _regulator_get(dev, id, 0);
1338 }
1339 EXPORT_SYMBOL_GPL(regulator_get);
1340 
1341 static void devm_regulator_release(struct device *dev, void *res)
1342 {
1343 	regulator_put(*(struct regulator **)res);
1344 }
1345 
1346 /**
1347  * devm_regulator_get - Resource managed regulator_get()
1348  * @dev: device for regulator "consumer"
1349  * @id: Supply name or regulator ID.
1350  *
1351  * Managed regulator_get(). Regulators returned from this function are
1352  * automatically regulator_put() on driver detach. See regulator_get() for more
1353  * information.
1354  */
1355 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356 {
1357 	struct regulator **ptr, *regulator;
1358 
1359 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360 	if (!ptr)
1361 		return ERR_PTR(-ENOMEM);
1362 
1363 	regulator = regulator_get(dev, id);
1364 	if (!IS_ERR(regulator)) {
1365 		*ptr = regulator;
1366 		devres_add(dev, ptr);
1367 	} else {
1368 		devres_free(ptr);
1369 	}
1370 
1371 	return regulator;
1372 }
1373 EXPORT_SYMBOL_GPL(devm_regulator_get);
1374 
1375 /**
1376  * regulator_get_exclusive - obtain exclusive access to a regulator.
1377  * @dev: device for regulator "consumer"
1378  * @id: Supply name or regulator ID.
1379  *
1380  * Returns a struct regulator corresponding to the regulator producer,
1381  * or IS_ERR() condition containing errno.  Other consumers will be
1382  * unable to obtain this reference is held and the use count for the
1383  * regulator will be initialised to reflect the current state of the
1384  * regulator.
1385  *
1386  * This is intended for use by consumers which cannot tolerate shared
1387  * use of the regulator such as those which need to force the
1388  * regulator off for correct operation of the hardware they are
1389  * controlling.
1390  *
1391  * Use of supply names configured via regulator_set_device_supply() is
1392  * strongly encouraged.  It is recommended that the supply name used
1393  * should match the name used for the supply and/or the relevant
1394  * device pins in the datasheet.
1395  */
1396 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397 {
1398 	return _regulator_get(dev, id, 1);
1399 }
1400 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401 
1402 /**
1403  * regulator_put - "free" the regulator source
1404  * @regulator: regulator source
1405  *
1406  * Note: drivers must ensure that all regulator_enable calls made on this
1407  * regulator source are balanced by regulator_disable calls prior to calling
1408  * this function.
1409  */
1410 void regulator_put(struct regulator *regulator)
1411 {
1412 	struct regulator_dev *rdev;
1413 
1414 	if (regulator == NULL || IS_ERR(regulator))
1415 		return;
1416 
1417 	mutex_lock(&regulator_list_mutex);
1418 	rdev = regulator->rdev;
1419 
1420 	debugfs_remove_recursive(regulator->debugfs);
1421 
1422 	/* remove any sysfs entries */
1423 	if (regulator->dev) {
1424 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425 		device_remove_file(regulator->dev, &regulator->dev_attr);
1426 		kfree(regulator->dev_attr.attr.name);
1427 	}
1428 	kfree(regulator->supply_name);
1429 	list_del(&regulator->list);
1430 	kfree(regulator);
1431 
1432 	rdev->open_count--;
1433 	rdev->exclusive = 0;
1434 
1435 	module_put(rdev->owner);
1436 	mutex_unlock(&regulator_list_mutex);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_put);
1439 
1440 static int devm_regulator_match(struct device *dev, void *res, void *data)
1441 {
1442 	struct regulator **r = res;
1443 	if (!r || !*r) {
1444 		WARN_ON(!r || !*r);
1445 		return 0;
1446 	}
1447 	return *r == data;
1448 }
1449 
1450 /**
1451  * devm_regulator_put - Resource managed regulator_put()
1452  * @regulator: regulator to free
1453  *
1454  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455  * this function will not need to be called and the resource management
1456  * code will ensure that the resource is freed.
1457  */
1458 void devm_regulator_put(struct regulator *regulator)
1459 {
1460 	int rc;
1461 
1462 	rc = devres_destroy(regulator->dev, devm_regulator_release,
1463 			    devm_regulator_match, regulator);
1464 	if (rc == 0)
1465 		regulator_put(regulator);
1466 	else
1467 		WARN_ON(rc);
1468 }
1469 EXPORT_SYMBOL_GPL(devm_regulator_put);
1470 
1471 /* locks held by regulator_enable() */
1472 static int _regulator_enable(struct regulator_dev *rdev)
1473 {
1474 	int ret, delay;
1475 
1476 	/* check voltage and requested load before enabling */
1477 	if (rdev->constraints &&
1478 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479 		drms_uA_update(rdev);
1480 
1481 	if (rdev->use_count == 0) {
1482 		/* The regulator may on if it's not switchable or left on */
1483 		ret = _regulator_is_enabled(rdev);
1484 		if (ret == -EINVAL || ret == 0) {
1485 			if (!_regulator_can_change_status(rdev))
1486 				return -EPERM;
1487 
1488 			if (!rdev->desc->ops->enable)
1489 				return -EINVAL;
1490 
1491 			/* Query before enabling in case configuration
1492 			 * dependent.  */
1493 			ret = _regulator_get_enable_time(rdev);
1494 			if (ret >= 0) {
1495 				delay = ret;
1496 			} else {
1497 				rdev_warn(rdev, "enable_time() failed: %d\n",
1498 					   ret);
1499 				delay = 0;
1500 			}
1501 
1502 			trace_regulator_enable(rdev_get_name(rdev));
1503 
1504 			/* Allow the regulator to ramp; it would be useful
1505 			 * to extend this for bulk operations so that the
1506 			 * regulators can ramp together.  */
1507 			ret = rdev->desc->ops->enable(rdev);
1508 			if (ret < 0)
1509 				return ret;
1510 
1511 			trace_regulator_enable_delay(rdev_get_name(rdev));
1512 
1513 			if (delay >= 1000) {
1514 				mdelay(delay / 1000);
1515 				udelay(delay % 1000);
1516 			} else if (delay) {
1517 				udelay(delay);
1518 			}
1519 
1520 			trace_regulator_enable_complete(rdev_get_name(rdev));
1521 
1522 		} else if (ret < 0) {
1523 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524 			return ret;
1525 		}
1526 		/* Fallthrough on positive return values - already enabled */
1527 	}
1528 
1529 	rdev->use_count++;
1530 
1531 	return 0;
1532 }
1533 
1534 /**
1535  * regulator_enable - enable regulator output
1536  * @regulator: regulator source
1537  *
1538  * Request that the regulator be enabled with the regulator output at
1539  * the predefined voltage or current value.  Calls to regulator_enable()
1540  * must be balanced with calls to regulator_disable().
1541  *
1542  * NOTE: the output value can be set by other drivers, boot loader or may be
1543  * hardwired in the regulator.
1544  */
1545 int regulator_enable(struct regulator *regulator)
1546 {
1547 	struct regulator_dev *rdev = regulator->rdev;
1548 	int ret = 0;
1549 
1550 	if (regulator->always_on)
1551 		return 0;
1552 
1553 	if (rdev->supply) {
1554 		ret = regulator_enable(rdev->supply);
1555 		if (ret != 0)
1556 			return ret;
1557 	}
1558 
1559 	mutex_lock(&rdev->mutex);
1560 	ret = _regulator_enable(rdev);
1561 	mutex_unlock(&rdev->mutex);
1562 
1563 	if (ret != 0 && rdev->supply)
1564 		regulator_disable(rdev->supply);
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_enable);
1569 
1570 /* locks held by regulator_disable() */
1571 static int _regulator_disable(struct regulator_dev *rdev)
1572 {
1573 	int ret = 0;
1574 
1575 	if (WARN(rdev->use_count <= 0,
1576 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577 		return -EIO;
1578 
1579 	/* are we the last user and permitted to disable ? */
1580 	if (rdev->use_count == 1 &&
1581 	    (rdev->constraints && !rdev->constraints->always_on)) {
1582 
1583 		/* we are last user */
1584 		if (_regulator_can_change_status(rdev) &&
1585 		    rdev->desc->ops->disable) {
1586 			trace_regulator_disable(rdev_get_name(rdev));
1587 
1588 			ret = rdev->desc->ops->disable(rdev);
1589 			if (ret < 0) {
1590 				rdev_err(rdev, "failed to disable\n");
1591 				return ret;
1592 			}
1593 
1594 			trace_regulator_disable_complete(rdev_get_name(rdev));
1595 
1596 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597 					     NULL);
1598 		}
1599 
1600 		rdev->use_count = 0;
1601 	} else if (rdev->use_count > 1) {
1602 
1603 		if (rdev->constraints &&
1604 			(rdev->constraints->valid_ops_mask &
1605 			REGULATOR_CHANGE_DRMS))
1606 			drms_uA_update(rdev);
1607 
1608 		rdev->use_count--;
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 /**
1615  * regulator_disable - disable regulator output
1616  * @regulator: regulator source
1617  *
1618  * Disable the regulator output voltage or current.  Calls to
1619  * regulator_enable() must be balanced with calls to
1620  * regulator_disable().
1621  *
1622  * NOTE: this will only disable the regulator output if no other consumer
1623  * devices have it enabled, the regulator device supports disabling and
1624  * machine constraints permit this operation.
1625  */
1626 int regulator_disable(struct regulator *regulator)
1627 {
1628 	struct regulator_dev *rdev = regulator->rdev;
1629 	int ret = 0;
1630 
1631 	if (regulator->always_on)
1632 		return 0;
1633 
1634 	mutex_lock(&rdev->mutex);
1635 	ret = _regulator_disable(rdev);
1636 	mutex_unlock(&rdev->mutex);
1637 
1638 	if (ret == 0 && rdev->supply)
1639 		regulator_disable(rdev->supply);
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regulator_disable);
1644 
1645 /* locks held by regulator_force_disable() */
1646 static int _regulator_force_disable(struct regulator_dev *rdev)
1647 {
1648 	int ret = 0;
1649 
1650 	/* force disable */
1651 	if (rdev->desc->ops->disable) {
1652 		/* ah well, who wants to live forever... */
1653 		ret = rdev->desc->ops->disable(rdev);
1654 		if (ret < 0) {
1655 			rdev_err(rdev, "failed to force disable\n");
1656 			return ret;
1657 		}
1658 		/* notify other consumers that power has been forced off */
1659 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1660 			REGULATOR_EVENT_DISABLE, NULL);
1661 	}
1662 
1663 	return ret;
1664 }
1665 
1666 /**
1667  * regulator_force_disable - force disable regulator output
1668  * @regulator: regulator source
1669  *
1670  * Forcibly disable the regulator output voltage or current.
1671  * NOTE: this *will* disable the regulator output even if other consumer
1672  * devices have it enabled. This should be used for situations when device
1673  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674  */
1675 int regulator_force_disable(struct regulator *regulator)
1676 {
1677 	struct regulator_dev *rdev = regulator->rdev;
1678 	int ret;
1679 
1680 	mutex_lock(&rdev->mutex);
1681 	regulator->uA_load = 0;
1682 	ret = _regulator_force_disable(regulator->rdev);
1683 	mutex_unlock(&rdev->mutex);
1684 
1685 	if (rdev->supply)
1686 		while (rdev->open_count--)
1687 			regulator_disable(rdev->supply);
1688 
1689 	return ret;
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_force_disable);
1692 
1693 static void regulator_disable_work(struct work_struct *work)
1694 {
1695 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696 						  disable_work.work);
1697 	int count, i, ret;
1698 
1699 	mutex_lock(&rdev->mutex);
1700 
1701 	BUG_ON(!rdev->deferred_disables);
1702 
1703 	count = rdev->deferred_disables;
1704 	rdev->deferred_disables = 0;
1705 
1706 	for (i = 0; i < count; i++) {
1707 		ret = _regulator_disable(rdev);
1708 		if (ret != 0)
1709 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710 	}
1711 
1712 	mutex_unlock(&rdev->mutex);
1713 
1714 	if (rdev->supply) {
1715 		for (i = 0; i < count; i++) {
1716 			ret = regulator_disable(rdev->supply);
1717 			if (ret != 0) {
1718 				rdev_err(rdev,
1719 					 "Supply disable failed: %d\n", ret);
1720 			}
1721 		}
1722 	}
1723 }
1724 
1725 /**
1726  * regulator_disable_deferred - disable regulator output with delay
1727  * @regulator: regulator source
1728  * @ms: miliseconds until the regulator is disabled
1729  *
1730  * Execute regulator_disable() on the regulator after a delay.  This
1731  * is intended for use with devices that require some time to quiesce.
1732  *
1733  * NOTE: this will only disable the regulator output if no other consumer
1734  * devices have it enabled, the regulator device supports disabling and
1735  * machine constraints permit this operation.
1736  */
1737 int regulator_disable_deferred(struct regulator *regulator, int ms)
1738 {
1739 	struct regulator_dev *rdev = regulator->rdev;
1740 	int ret;
1741 
1742 	if (regulator->always_on)
1743 		return 0;
1744 
1745 	mutex_lock(&rdev->mutex);
1746 	rdev->deferred_disables++;
1747 	mutex_unlock(&rdev->mutex);
1748 
1749 	ret = schedule_delayed_work(&rdev->disable_work,
1750 				    msecs_to_jiffies(ms));
1751 	if (ret < 0)
1752 		return ret;
1753 	else
1754 		return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757 
1758 /**
1759  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760  *
1761  * @rdev: regulator to operate on
1762  *
1763  * Regulators that use regmap for their register I/O can set the
1764  * enable_reg and enable_mask fields in their descriptor and then use
1765  * this as their is_enabled operation, saving some code.
1766  */
1767 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768 {
1769 	unsigned int val;
1770 	int ret;
1771 
1772 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773 	if (ret != 0)
1774 		return ret;
1775 
1776 	return (val & rdev->desc->enable_mask) != 0;
1777 }
1778 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779 
1780 /**
1781  * regulator_enable_regmap - standard enable() for regmap users
1782  *
1783  * @rdev: regulator to operate on
1784  *
1785  * Regulators that use regmap for their register I/O can set the
1786  * enable_reg and enable_mask fields in their descriptor and then use
1787  * this as their enable() operation, saving some code.
1788  */
1789 int regulator_enable_regmap(struct regulator_dev *rdev)
1790 {
1791 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792 				  rdev->desc->enable_mask,
1793 				  rdev->desc->enable_mask);
1794 }
1795 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1796 
1797 /**
1798  * regulator_disable_regmap - standard disable() for regmap users
1799  *
1800  * @rdev: regulator to operate on
1801  *
1802  * Regulators that use regmap for their register I/O can set the
1803  * enable_reg and enable_mask fields in their descriptor and then use
1804  * this as their disable() operation, saving some code.
1805  */
1806 int regulator_disable_regmap(struct regulator_dev *rdev)
1807 {
1808 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809 				  rdev->desc->enable_mask, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812 
1813 static int _regulator_is_enabled(struct regulator_dev *rdev)
1814 {
1815 	/* If we don't know then assume that the regulator is always on */
1816 	if (!rdev->desc->ops->is_enabled)
1817 		return 1;
1818 
1819 	return rdev->desc->ops->is_enabled(rdev);
1820 }
1821 
1822 /**
1823  * regulator_is_enabled - is the regulator output enabled
1824  * @regulator: regulator source
1825  *
1826  * Returns positive if the regulator driver backing the source/client
1827  * has requested that the device be enabled, zero if it hasn't, else a
1828  * negative errno code.
1829  *
1830  * Note that the device backing this regulator handle can have multiple
1831  * users, so it might be enabled even if regulator_enable() was never
1832  * called for this particular source.
1833  */
1834 int regulator_is_enabled(struct regulator *regulator)
1835 {
1836 	int ret;
1837 
1838 	if (regulator->always_on)
1839 		return 1;
1840 
1841 	mutex_lock(&regulator->rdev->mutex);
1842 	ret = _regulator_is_enabled(regulator->rdev);
1843 	mutex_unlock(&regulator->rdev->mutex);
1844 
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848 
1849 /**
1850  * regulator_count_voltages - count regulator_list_voltage() selectors
1851  * @regulator: regulator source
1852  *
1853  * Returns number of selectors, or negative errno.  Selectors are
1854  * numbered starting at zero, and typically correspond to bitfields
1855  * in hardware registers.
1856  */
1857 int regulator_count_voltages(struct regulator *regulator)
1858 {
1859 	struct regulator_dev	*rdev = regulator->rdev;
1860 
1861 	return rdev->desc->n_voltages ? : -EINVAL;
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864 
1865 /**
1866  * regulator_list_voltage_linear - List voltages with simple calculation
1867  *
1868  * @rdev: Regulator device
1869  * @selector: Selector to convert into a voltage
1870  *
1871  * Regulators with a simple linear mapping between voltages and
1872  * selectors can set min_uV and uV_step in the regulator descriptor
1873  * and then use this function as their list_voltage() operation,
1874  */
1875 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876 				  unsigned int selector)
1877 {
1878 	if (selector >= rdev->desc->n_voltages)
1879 		return -EINVAL;
1880 
1881 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884 
1885 /**
1886  * regulator_list_voltage - enumerate supported voltages
1887  * @regulator: regulator source
1888  * @selector: identify voltage to list
1889  * Context: can sleep
1890  *
1891  * Returns a voltage that can be passed to @regulator_set_voltage(),
1892  * zero if this selector code can't be used on this system, or a
1893  * negative errno.
1894  */
1895 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1896 {
1897 	struct regulator_dev	*rdev = regulator->rdev;
1898 	struct regulator_ops	*ops = rdev->desc->ops;
1899 	int			ret;
1900 
1901 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902 		return -EINVAL;
1903 
1904 	mutex_lock(&rdev->mutex);
1905 	ret = ops->list_voltage(rdev, selector);
1906 	mutex_unlock(&rdev->mutex);
1907 
1908 	if (ret > 0) {
1909 		if (ret < rdev->constraints->min_uV)
1910 			ret = 0;
1911 		else if (ret > rdev->constraints->max_uV)
1912 			ret = 0;
1913 	}
1914 
1915 	return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918 
1919 /**
1920  * regulator_is_supported_voltage - check if a voltage range can be supported
1921  *
1922  * @regulator: Regulator to check.
1923  * @min_uV: Minimum required voltage in uV.
1924  * @max_uV: Maximum required voltage in uV.
1925  *
1926  * Returns a boolean or a negative error code.
1927  */
1928 int regulator_is_supported_voltage(struct regulator *regulator,
1929 				   int min_uV, int max_uV)
1930 {
1931 	int i, voltages, ret;
1932 
1933 	ret = regulator_count_voltages(regulator);
1934 	if (ret < 0)
1935 		return ret;
1936 	voltages = ret;
1937 
1938 	for (i = 0; i < voltages; i++) {
1939 		ret = regulator_list_voltage(regulator, i);
1940 
1941 		if (ret >= min_uV && ret <= max_uV)
1942 			return 1;
1943 	}
1944 
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948 
1949 /**
1950  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951  *
1952  * @rdev: regulator to operate on
1953  *
1954  * Regulators that use regmap for their register I/O can set the
1955  * vsel_reg and vsel_mask fields in their descriptor and then use this
1956  * as their get_voltage_vsel operation, saving some code.
1957  */
1958 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959 {
1960 	unsigned int val;
1961 	int ret;
1962 
1963 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964 	if (ret != 0)
1965 		return ret;
1966 
1967 	val &= rdev->desc->vsel_mask;
1968 	val >>= ffs(rdev->desc->vsel_mask) - 1;
1969 
1970 	return val;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973 
1974 /**
1975  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976  *
1977  * @rdev: regulator to operate on
1978  * @sel: Selector to set
1979  *
1980  * Regulators that use regmap for their register I/O can set the
1981  * vsel_reg and vsel_mask fields in their descriptor and then use this
1982  * as their set_voltage_vsel operation, saving some code.
1983  */
1984 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985 {
1986 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1987 
1988 	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989 				  rdev->desc->vsel_mask, sel);
1990 }
1991 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1992 
1993 /**
1994  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995  *
1996  * @rdev: Regulator to operate on
1997  * @min_uV: Lower bound for voltage
1998  * @max_uV: Upper bound for voltage
1999  *
2000  * Drivers implementing set_voltage_sel() and list_voltage() can use
2001  * this as their map_voltage() operation.  It will find a suitable
2002  * voltage by calling list_voltage() until it gets something in bounds
2003  * for the requested voltages.
2004  */
2005 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006 				  int min_uV, int max_uV)
2007 {
2008 	int best_val = INT_MAX;
2009 	int selector = 0;
2010 	int i, ret;
2011 
2012 	/* Find the smallest voltage that falls within the specified
2013 	 * range.
2014 	 */
2015 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2016 		ret = rdev->desc->ops->list_voltage(rdev, i);
2017 		if (ret < 0)
2018 			continue;
2019 
2020 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021 			best_val = ret;
2022 			selector = i;
2023 		}
2024 	}
2025 
2026 	if (best_val != INT_MAX)
2027 		return selector;
2028 	else
2029 		return -EINVAL;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032 
2033 /**
2034  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035  *
2036  * @rdev: Regulator to operate on
2037  * @min_uV: Lower bound for voltage
2038  * @max_uV: Upper bound for voltage
2039  *
2040  * Drivers providing min_uV and uV_step in their regulator_desc can
2041  * use this as their map_voltage() operation.
2042  */
2043 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044 				 int min_uV, int max_uV)
2045 {
2046 	int ret, voltage;
2047 
2048 	if (!rdev->desc->uV_step) {
2049 		BUG_ON(!rdev->desc->uV_step);
2050 		return -EINVAL;
2051 	}
2052 
2053 	if (min_uV < rdev->desc->min_uV)
2054 		min_uV = rdev->desc->min_uV;
2055 
2056 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2057 	if (ret < 0)
2058 		return ret;
2059 
2060 	/* Map back into a voltage to verify we're still in bounds */
2061 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2062 	if (voltage < min_uV || voltage > max_uV)
2063 		return -EINVAL;
2064 
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2068 
2069 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2070 				     int min_uV, int max_uV)
2071 {
2072 	int ret;
2073 	int delay = 0;
2074 	int best_val;
2075 	unsigned int selector;
2076 	int old_selector = -1;
2077 
2078 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2079 
2080 	min_uV += rdev->constraints->uV_offset;
2081 	max_uV += rdev->constraints->uV_offset;
2082 
2083 	/*
2084 	 * If we can't obtain the old selector there is not enough
2085 	 * info to call set_voltage_time_sel().
2086 	 */
2087 	if (rdev->desc->ops->set_voltage_time_sel &&
2088 	    rdev->desc->ops->get_voltage_sel) {
2089 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2090 		if (old_selector < 0)
2091 			return old_selector;
2092 	}
2093 
2094 	if (rdev->desc->ops->set_voltage) {
2095 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2096 						   &selector);
2097 	} else if (rdev->desc->ops->set_voltage_sel) {
2098 		if (rdev->desc->ops->map_voltage)
2099 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2100 							   max_uV);
2101 		else
2102 			ret = regulator_map_voltage_iterate(rdev, min_uV,
2103 							    max_uV);
2104 
2105 		if (ret >= 0) {
2106 			selector = ret;
2107 			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2108 		}
2109 	} else {
2110 		ret = -EINVAL;
2111 	}
2112 
2113 	if (rdev->desc->ops->list_voltage)
2114 		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2115 	else
2116 		best_val = -1;
2117 
2118 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2119 	if (ret == 0 && old_selector >= 0 &&
2120 	    rdev->desc->ops->set_voltage_time_sel) {
2121 
2122 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2123 						old_selector, selector);
2124 		if (delay < 0) {
2125 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2126 				  delay);
2127 			delay = 0;
2128 		}
2129 	}
2130 
2131 	/* Insert any necessary delays */
2132 	if (delay >= 1000) {
2133 		mdelay(delay / 1000);
2134 		udelay(delay % 1000);
2135 	} else if (delay) {
2136 		udelay(delay);
2137 	}
2138 
2139 	if (ret == 0)
2140 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2141 				     NULL);
2142 
2143 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2144 
2145 	return ret;
2146 }
2147 
2148 /**
2149  * regulator_set_voltage - set regulator output voltage
2150  * @regulator: regulator source
2151  * @min_uV: Minimum required voltage in uV
2152  * @max_uV: Maximum acceptable voltage in uV
2153  *
2154  * Sets a voltage regulator to the desired output voltage. This can be set
2155  * during any regulator state. IOW, regulator can be disabled or enabled.
2156  *
2157  * If the regulator is enabled then the voltage will change to the new value
2158  * immediately otherwise if the regulator is disabled the regulator will
2159  * output at the new voltage when enabled.
2160  *
2161  * NOTE: If the regulator is shared between several devices then the lowest
2162  * request voltage that meets the system constraints will be used.
2163  * Regulator system constraints must be set for this regulator before
2164  * calling this function otherwise this call will fail.
2165  */
2166 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2167 {
2168 	struct regulator_dev *rdev = regulator->rdev;
2169 	int ret = 0;
2170 
2171 	mutex_lock(&rdev->mutex);
2172 
2173 	/* If we're setting the same range as last time the change
2174 	 * should be a noop (some cpufreq implementations use the same
2175 	 * voltage for multiple frequencies, for example).
2176 	 */
2177 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2178 		goto out;
2179 
2180 	/* sanity check */
2181 	if (!rdev->desc->ops->set_voltage &&
2182 	    !rdev->desc->ops->set_voltage_sel) {
2183 		ret = -EINVAL;
2184 		goto out;
2185 	}
2186 
2187 	/* constraints check */
2188 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2189 	if (ret < 0)
2190 		goto out;
2191 	regulator->min_uV = min_uV;
2192 	regulator->max_uV = max_uV;
2193 
2194 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2195 	if (ret < 0)
2196 		goto out;
2197 
2198 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2199 
2200 out:
2201 	mutex_unlock(&rdev->mutex);
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2205 
2206 /**
2207  * regulator_set_voltage_time - get raise/fall time
2208  * @regulator: regulator source
2209  * @old_uV: starting voltage in microvolts
2210  * @new_uV: target voltage in microvolts
2211  *
2212  * Provided with the starting and ending voltage, this function attempts to
2213  * calculate the time in microseconds required to rise or fall to this new
2214  * voltage.
2215  */
2216 int regulator_set_voltage_time(struct regulator *regulator,
2217 			       int old_uV, int new_uV)
2218 {
2219 	struct regulator_dev	*rdev = regulator->rdev;
2220 	struct regulator_ops	*ops = rdev->desc->ops;
2221 	int old_sel = -1;
2222 	int new_sel = -1;
2223 	int voltage;
2224 	int i;
2225 
2226 	/* Currently requires operations to do this */
2227 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2228 	    || !rdev->desc->n_voltages)
2229 		return -EINVAL;
2230 
2231 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2232 		/* We only look for exact voltage matches here */
2233 		voltage = regulator_list_voltage(regulator, i);
2234 		if (voltage < 0)
2235 			return -EINVAL;
2236 		if (voltage == 0)
2237 			continue;
2238 		if (voltage == old_uV)
2239 			old_sel = i;
2240 		if (voltage == new_uV)
2241 			new_sel = i;
2242 	}
2243 
2244 	if (old_sel < 0 || new_sel < 0)
2245 		return -EINVAL;
2246 
2247 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2248 }
2249 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2250 
2251 /**
2252  * regulator_sync_voltage - re-apply last regulator output voltage
2253  * @regulator: regulator source
2254  *
2255  * Re-apply the last configured voltage.  This is intended to be used
2256  * where some external control source the consumer is cooperating with
2257  * has caused the configured voltage to change.
2258  */
2259 int regulator_sync_voltage(struct regulator *regulator)
2260 {
2261 	struct regulator_dev *rdev = regulator->rdev;
2262 	int ret, min_uV, max_uV;
2263 
2264 	mutex_lock(&rdev->mutex);
2265 
2266 	if (!rdev->desc->ops->set_voltage &&
2267 	    !rdev->desc->ops->set_voltage_sel) {
2268 		ret = -EINVAL;
2269 		goto out;
2270 	}
2271 
2272 	/* This is only going to work if we've had a voltage configured. */
2273 	if (!regulator->min_uV && !regulator->max_uV) {
2274 		ret = -EINVAL;
2275 		goto out;
2276 	}
2277 
2278 	min_uV = regulator->min_uV;
2279 	max_uV = regulator->max_uV;
2280 
2281 	/* This should be a paranoia check... */
2282 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2283 	if (ret < 0)
2284 		goto out;
2285 
2286 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2287 	if (ret < 0)
2288 		goto out;
2289 
2290 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2291 
2292 out:
2293 	mutex_unlock(&rdev->mutex);
2294 	return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2297 
2298 static int _regulator_get_voltage(struct regulator_dev *rdev)
2299 {
2300 	int sel, ret;
2301 
2302 	if (rdev->desc->ops->get_voltage_sel) {
2303 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2304 		if (sel < 0)
2305 			return sel;
2306 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2307 	} else if (rdev->desc->ops->get_voltage) {
2308 		ret = rdev->desc->ops->get_voltage(rdev);
2309 	} else {
2310 		return -EINVAL;
2311 	}
2312 
2313 	if (ret < 0)
2314 		return ret;
2315 	return ret - rdev->constraints->uV_offset;
2316 }
2317 
2318 /**
2319  * regulator_get_voltage - get regulator output voltage
2320  * @regulator: regulator source
2321  *
2322  * This returns the current regulator voltage in uV.
2323  *
2324  * NOTE: If the regulator is disabled it will return the voltage value. This
2325  * function should not be used to determine regulator state.
2326  */
2327 int regulator_get_voltage(struct regulator *regulator)
2328 {
2329 	int ret;
2330 
2331 	mutex_lock(&regulator->rdev->mutex);
2332 
2333 	ret = _regulator_get_voltage(regulator->rdev);
2334 
2335 	mutex_unlock(&regulator->rdev->mutex);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2340 
2341 /**
2342  * regulator_set_current_limit - set regulator output current limit
2343  * @regulator: regulator source
2344  * @min_uA: Minimuum supported current in uA
2345  * @max_uA: Maximum supported current in uA
2346  *
2347  * Sets current sink to the desired output current. This can be set during
2348  * any regulator state. IOW, regulator can be disabled or enabled.
2349  *
2350  * If the regulator is enabled then the current will change to the new value
2351  * immediately otherwise if the regulator is disabled the regulator will
2352  * output at the new current when enabled.
2353  *
2354  * NOTE: Regulator system constraints must be set for this regulator before
2355  * calling this function otherwise this call will fail.
2356  */
2357 int regulator_set_current_limit(struct regulator *regulator,
2358 			       int min_uA, int max_uA)
2359 {
2360 	struct regulator_dev *rdev = regulator->rdev;
2361 	int ret;
2362 
2363 	mutex_lock(&rdev->mutex);
2364 
2365 	/* sanity check */
2366 	if (!rdev->desc->ops->set_current_limit) {
2367 		ret = -EINVAL;
2368 		goto out;
2369 	}
2370 
2371 	/* constraints check */
2372 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2373 	if (ret < 0)
2374 		goto out;
2375 
2376 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2377 out:
2378 	mutex_unlock(&rdev->mutex);
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2382 
2383 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2384 {
2385 	int ret;
2386 
2387 	mutex_lock(&rdev->mutex);
2388 
2389 	/* sanity check */
2390 	if (!rdev->desc->ops->get_current_limit) {
2391 		ret = -EINVAL;
2392 		goto out;
2393 	}
2394 
2395 	ret = rdev->desc->ops->get_current_limit(rdev);
2396 out:
2397 	mutex_unlock(&rdev->mutex);
2398 	return ret;
2399 }
2400 
2401 /**
2402  * regulator_get_current_limit - get regulator output current
2403  * @regulator: regulator source
2404  *
2405  * This returns the current supplied by the specified current sink in uA.
2406  *
2407  * NOTE: If the regulator is disabled it will return the current value. This
2408  * function should not be used to determine regulator state.
2409  */
2410 int regulator_get_current_limit(struct regulator *regulator)
2411 {
2412 	return _regulator_get_current_limit(regulator->rdev);
2413 }
2414 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2415 
2416 /**
2417  * regulator_set_mode - set regulator operating mode
2418  * @regulator: regulator source
2419  * @mode: operating mode - one of the REGULATOR_MODE constants
2420  *
2421  * Set regulator operating mode to increase regulator efficiency or improve
2422  * regulation performance.
2423  *
2424  * NOTE: Regulator system constraints must be set for this regulator before
2425  * calling this function otherwise this call will fail.
2426  */
2427 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2428 {
2429 	struct regulator_dev *rdev = regulator->rdev;
2430 	int ret;
2431 	int regulator_curr_mode;
2432 
2433 	mutex_lock(&rdev->mutex);
2434 
2435 	/* sanity check */
2436 	if (!rdev->desc->ops->set_mode) {
2437 		ret = -EINVAL;
2438 		goto out;
2439 	}
2440 
2441 	/* return if the same mode is requested */
2442 	if (rdev->desc->ops->get_mode) {
2443 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2444 		if (regulator_curr_mode == mode) {
2445 			ret = 0;
2446 			goto out;
2447 		}
2448 	}
2449 
2450 	/* constraints check */
2451 	ret = regulator_mode_constrain(rdev, &mode);
2452 	if (ret < 0)
2453 		goto out;
2454 
2455 	ret = rdev->desc->ops->set_mode(rdev, mode);
2456 out:
2457 	mutex_unlock(&rdev->mutex);
2458 	return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_set_mode);
2461 
2462 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2463 {
2464 	int ret;
2465 
2466 	mutex_lock(&rdev->mutex);
2467 
2468 	/* sanity check */
2469 	if (!rdev->desc->ops->get_mode) {
2470 		ret = -EINVAL;
2471 		goto out;
2472 	}
2473 
2474 	ret = rdev->desc->ops->get_mode(rdev);
2475 out:
2476 	mutex_unlock(&rdev->mutex);
2477 	return ret;
2478 }
2479 
2480 /**
2481  * regulator_get_mode - get regulator operating mode
2482  * @regulator: regulator source
2483  *
2484  * Get the current regulator operating mode.
2485  */
2486 unsigned int regulator_get_mode(struct regulator *regulator)
2487 {
2488 	return _regulator_get_mode(regulator->rdev);
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_get_mode);
2491 
2492 /**
2493  * regulator_set_optimum_mode - set regulator optimum operating mode
2494  * @regulator: regulator source
2495  * @uA_load: load current
2496  *
2497  * Notifies the regulator core of a new device load. This is then used by
2498  * DRMS (if enabled by constraints) to set the most efficient regulator
2499  * operating mode for the new regulator loading.
2500  *
2501  * Consumer devices notify their supply regulator of the maximum power
2502  * they will require (can be taken from device datasheet in the power
2503  * consumption tables) when they change operational status and hence power
2504  * state. Examples of operational state changes that can affect power
2505  * consumption are :-
2506  *
2507  *    o Device is opened / closed.
2508  *    o Device I/O is about to begin or has just finished.
2509  *    o Device is idling in between work.
2510  *
2511  * This information is also exported via sysfs to userspace.
2512  *
2513  * DRMS will sum the total requested load on the regulator and change
2514  * to the most efficient operating mode if platform constraints allow.
2515  *
2516  * Returns the new regulator mode or error.
2517  */
2518 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2519 {
2520 	struct regulator_dev *rdev = regulator->rdev;
2521 	struct regulator *consumer;
2522 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2523 	unsigned int mode;
2524 
2525 	if (rdev->supply)
2526 		input_uV = regulator_get_voltage(rdev->supply);
2527 
2528 	mutex_lock(&rdev->mutex);
2529 
2530 	/*
2531 	 * first check to see if we can set modes at all, otherwise just
2532 	 * tell the consumer everything is OK.
2533 	 */
2534 	regulator->uA_load = uA_load;
2535 	ret = regulator_check_drms(rdev);
2536 	if (ret < 0) {
2537 		ret = 0;
2538 		goto out;
2539 	}
2540 
2541 	if (!rdev->desc->ops->get_optimum_mode)
2542 		goto out;
2543 
2544 	/*
2545 	 * we can actually do this so any errors are indicators of
2546 	 * potential real failure.
2547 	 */
2548 	ret = -EINVAL;
2549 
2550 	if (!rdev->desc->ops->set_mode)
2551 		goto out;
2552 
2553 	/* get output voltage */
2554 	output_uV = _regulator_get_voltage(rdev);
2555 	if (output_uV <= 0) {
2556 		rdev_err(rdev, "invalid output voltage found\n");
2557 		goto out;
2558 	}
2559 
2560 	/* No supply? Use constraint voltage */
2561 	if (input_uV <= 0)
2562 		input_uV = rdev->constraints->input_uV;
2563 	if (input_uV <= 0) {
2564 		rdev_err(rdev, "invalid input voltage found\n");
2565 		goto out;
2566 	}
2567 
2568 	/* calc total requested load for this regulator */
2569 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2570 		total_uA_load += consumer->uA_load;
2571 
2572 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2573 						 input_uV, output_uV,
2574 						 total_uA_load);
2575 	ret = regulator_mode_constrain(rdev, &mode);
2576 	if (ret < 0) {
2577 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2578 			 total_uA_load, input_uV, output_uV);
2579 		goto out;
2580 	}
2581 
2582 	ret = rdev->desc->ops->set_mode(rdev, mode);
2583 	if (ret < 0) {
2584 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2585 		goto out;
2586 	}
2587 	ret = mode;
2588 out:
2589 	mutex_unlock(&rdev->mutex);
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2593 
2594 /**
2595  * regulator_register_notifier - register regulator event notifier
2596  * @regulator: regulator source
2597  * @nb: notifier block
2598  *
2599  * Register notifier block to receive regulator events.
2600  */
2601 int regulator_register_notifier(struct regulator *regulator,
2602 			      struct notifier_block *nb)
2603 {
2604 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2605 						nb);
2606 }
2607 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2608 
2609 /**
2610  * regulator_unregister_notifier - unregister regulator event notifier
2611  * @regulator: regulator source
2612  * @nb: notifier block
2613  *
2614  * Unregister regulator event notifier block.
2615  */
2616 int regulator_unregister_notifier(struct regulator *regulator,
2617 				struct notifier_block *nb)
2618 {
2619 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2620 						  nb);
2621 }
2622 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2623 
2624 /* notify regulator consumers and downstream regulator consumers.
2625  * Note mutex must be held by caller.
2626  */
2627 static void _notifier_call_chain(struct regulator_dev *rdev,
2628 				  unsigned long event, void *data)
2629 {
2630 	/* call rdev chain first */
2631 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2632 }
2633 
2634 /**
2635  * regulator_bulk_get - get multiple regulator consumers
2636  *
2637  * @dev:           Device to supply
2638  * @num_consumers: Number of consumers to register
2639  * @consumers:     Configuration of consumers; clients are stored here.
2640  *
2641  * @return 0 on success, an errno on failure.
2642  *
2643  * This helper function allows drivers to get several regulator
2644  * consumers in one operation.  If any of the regulators cannot be
2645  * acquired then any regulators that were allocated will be freed
2646  * before returning to the caller.
2647  */
2648 int regulator_bulk_get(struct device *dev, int num_consumers,
2649 		       struct regulator_bulk_data *consumers)
2650 {
2651 	int i;
2652 	int ret;
2653 
2654 	for (i = 0; i < num_consumers; i++)
2655 		consumers[i].consumer = NULL;
2656 
2657 	for (i = 0; i < num_consumers; i++) {
2658 		consumers[i].consumer = regulator_get(dev,
2659 						      consumers[i].supply);
2660 		if (IS_ERR(consumers[i].consumer)) {
2661 			ret = PTR_ERR(consumers[i].consumer);
2662 			dev_err(dev, "Failed to get supply '%s': %d\n",
2663 				consumers[i].supply, ret);
2664 			consumers[i].consumer = NULL;
2665 			goto err;
2666 		}
2667 	}
2668 
2669 	return 0;
2670 
2671 err:
2672 	while (--i >= 0)
2673 		regulator_put(consumers[i].consumer);
2674 
2675 	return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2678 
2679 /**
2680  * devm_regulator_bulk_get - managed get multiple regulator consumers
2681  *
2682  * @dev:           Device to supply
2683  * @num_consumers: Number of consumers to register
2684  * @consumers:     Configuration of consumers; clients are stored here.
2685  *
2686  * @return 0 on success, an errno on failure.
2687  *
2688  * This helper function allows drivers to get several regulator
2689  * consumers in one operation with management, the regulators will
2690  * automatically be freed when the device is unbound.  If any of the
2691  * regulators cannot be acquired then any regulators that were
2692  * allocated will be freed before returning to the caller.
2693  */
2694 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2695 			    struct regulator_bulk_data *consumers)
2696 {
2697 	int i;
2698 	int ret;
2699 
2700 	for (i = 0; i < num_consumers; i++)
2701 		consumers[i].consumer = NULL;
2702 
2703 	for (i = 0; i < num_consumers; i++) {
2704 		consumers[i].consumer = devm_regulator_get(dev,
2705 							   consumers[i].supply);
2706 		if (IS_ERR(consumers[i].consumer)) {
2707 			ret = PTR_ERR(consumers[i].consumer);
2708 			dev_err(dev, "Failed to get supply '%s': %d\n",
2709 				consumers[i].supply, ret);
2710 			consumers[i].consumer = NULL;
2711 			goto err;
2712 		}
2713 	}
2714 
2715 	return 0;
2716 
2717 err:
2718 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2719 		devm_regulator_put(consumers[i].consumer);
2720 
2721 	return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2724 
2725 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2726 {
2727 	struct regulator_bulk_data *bulk = data;
2728 
2729 	bulk->ret = regulator_enable(bulk->consumer);
2730 }
2731 
2732 /**
2733  * regulator_bulk_enable - enable multiple regulator consumers
2734  *
2735  * @num_consumers: Number of consumers
2736  * @consumers:     Consumer data; clients are stored here.
2737  * @return         0 on success, an errno on failure
2738  *
2739  * This convenience API allows consumers to enable multiple regulator
2740  * clients in a single API call.  If any consumers cannot be enabled
2741  * then any others that were enabled will be disabled again prior to
2742  * return.
2743  */
2744 int regulator_bulk_enable(int num_consumers,
2745 			  struct regulator_bulk_data *consumers)
2746 {
2747 	LIST_HEAD(async_domain);
2748 	int i;
2749 	int ret = 0;
2750 
2751 	for (i = 0; i < num_consumers; i++) {
2752 		if (consumers[i].consumer->always_on)
2753 			consumers[i].ret = 0;
2754 		else
2755 			async_schedule_domain(regulator_bulk_enable_async,
2756 					      &consumers[i], &async_domain);
2757 	}
2758 
2759 	async_synchronize_full_domain(&async_domain);
2760 
2761 	/* If any consumer failed we need to unwind any that succeeded */
2762 	for (i = 0; i < num_consumers; i++) {
2763 		if (consumers[i].ret != 0) {
2764 			ret = consumers[i].ret;
2765 			goto err;
2766 		}
2767 	}
2768 
2769 	return 0;
2770 
2771 err:
2772 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2773 	while (--i >= 0)
2774 		regulator_disable(consumers[i].consumer);
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2779 
2780 /**
2781  * regulator_bulk_disable - disable multiple regulator consumers
2782  *
2783  * @num_consumers: Number of consumers
2784  * @consumers:     Consumer data; clients are stored here.
2785  * @return         0 on success, an errno on failure
2786  *
2787  * This convenience API allows consumers to disable multiple regulator
2788  * clients in a single API call.  If any consumers cannot be disabled
2789  * then any others that were disabled will be enabled again prior to
2790  * return.
2791  */
2792 int regulator_bulk_disable(int num_consumers,
2793 			   struct regulator_bulk_data *consumers)
2794 {
2795 	int i;
2796 	int ret, r;
2797 
2798 	for (i = num_consumers - 1; i >= 0; --i) {
2799 		ret = regulator_disable(consumers[i].consumer);
2800 		if (ret != 0)
2801 			goto err;
2802 	}
2803 
2804 	return 0;
2805 
2806 err:
2807 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2808 	for (++i; i < num_consumers; ++i) {
2809 		r = regulator_enable(consumers[i].consumer);
2810 		if (r != 0)
2811 			pr_err("Failed to reename %s: %d\n",
2812 			       consumers[i].supply, r);
2813 	}
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2818 
2819 /**
2820  * regulator_bulk_force_disable - force disable multiple regulator consumers
2821  *
2822  * @num_consumers: Number of consumers
2823  * @consumers:     Consumer data; clients are stored here.
2824  * @return         0 on success, an errno on failure
2825  *
2826  * This convenience API allows consumers to forcibly disable multiple regulator
2827  * clients in a single API call.
2828  * NOTE: This should be used for situations when device damage will
2829  * likely occur if the regulators are not disabled (e.g. over temp).
2830  * Although regulator_force_disable function call for some consumers can
2831  * return error numbers, the function is called for all consumers.
2832  */
2833 int regulator_bulk_force_disable(int num_consumers,
2834 			   struct regulator_bulk_data *consumers)
2835 {
2836 	int i;
2837 	int ret;
2838 
2839 	for (i = 0; i < num_consumers; i++)
2840 		consumers[i].ret =
2841 			    regulator_force_disable(consumers[i].consumer);
2842 
2843 	for (i = 0; i < num_consumers; i++) {
2844 		if (consumers[i].ret != 0) {
2845 			ret = consumers[i].ret;
2846 			goto out;
2847 		}
2848 	}
2849 
2850 	return 0;
2851 out:
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2855 
2856 /**
2857  * regulator_bulk_free - free multiple regulator consumers
2858  *
2859  * @num_consumers: Number of consumers
2860  * @consumers:     Consumer data; clients are stored here.
2861  *
2862  * This convenience API allows consumers to free multiple regulator
2863  * clients in a single API call.
2864  */
2865 void regulator_bulk_free(int num_consumers,
2866 			 struct regulator_bulk_data *consumers)
2867 {
2868 	int i;
2869 
2870 	for (i = 0; i < num_consumers; i++) {
2871 		regulator_put(consumers[i].consumer);
2872 		consumers[i].consumer = NULL;
2873 	}
2874 }
2875 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2876 
2877 /**
2878  * regulator_notifier_call_chain - call regulator event notifier
2879  * @rdev: regulator source
2880  * @event: notifier block
2881  * @data: callback-specific data.
2882  *
2883  * Called by regulator drivers to notify clients a regulator event has
2884  * occurred. We also notify regulator clients downstream.
2885  * Note lock must be held by caller.
2886  */
2887 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2888 				  unsigned long event, void *data)
2889 {
2890 	_notifier_call_chain(rdev, event, data);
2891 	return NOTIFY_DONE;
2892 
2893 }
2894 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2895 
2896 /**
2897  * regulator_mode_to_status - convert a regulator mode into a status
2898  *
2899  * @mode: Mode to convert
2900  *
2901  * Convert a regulator mode into a status.
2902  */
2903 int regulator_mode_to_status(unsigned int mode)
2904 {
2905 	switch (mode) {
2906 	case REGULATOR_MODE_FAST:
2907 		return REGULATOR_STATUS_FAST;
2908 	case REGULATOR_MODE_NORMAL:
2909 		return REGULATOR_STATUS_NORMAL;
2910 	case REGULATOR_MODE_IDLE:
2911 		return REGULATOR_STATUS_IDLE;
2912 	case REGULATOR_STATUS_STANDBY:
2913 		return REGULATOR_STATUS_STANDBY;
2914 	default:
2915 		return 0;
2916 	}
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2919 
2920 /*
2921  * To avoid cluttering sysfs (and memory) with useless state, only
2922  * create attributes that can be meaningfully displayed.
2923  */
2924 static int add_regulator_attributes(struct regulator_dev *rdev)
2925 {
2926 	struct device		*dev = &rdev->dev;
2927 	struct regulator_ops	*ops = rdev->desc->ops;
2928 	int			status = 0;
2929 
2930 	/* some attributes need specific methods to be displayed */
2931 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2932 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2933 		status = device_create_file(dev, &dev_attr_microvolts);
2934 		if (status < 0)
2935 			return status;
2936 	}
2937 	if (ops->get_current_limit) {
2938 		status = device_create_file(dev, &dev_attr_microamps);
2939 		if (status < 0)
2940 			return status;
2941 	}
2942 	if (ops->get_mode) {
2943 		status = device_create_file(dev, &dev_attr_opmode);
2944 		if (status < 0)
2945 			return status;
2946 	}
2947 	if (ops->is_enabled) {
2948 		status = device_create_file(dev, &dev_attr_state);
2949 		if (status < 0)
2950 			return status;
2951 	}
2952 	if (ops->get_status) {
2953 		status = device_create_file(dev, &dev_attr_status);
2954 		if (status < 0)
2955 			return status;
2956 	}
2957 
2958 	/* some attributes are type-specific */
2959 	if (rdev->desc->type == REGULATOR_CURRENT) {
2960 		status = device_create_file(dev, &dev_attr_requested_microamps);
2961 		if (status < 0)
2962 			return status;
2963 	}
2964 
2965 	/* all the other attributes exist to support constraints;
2966 	 * don't show them if there are no constraints, or if the
2967 	 * relevant supporting methods are missing.
2968 	 */
2969 	if (!rdev->constraints)
2970 		return status;
2971 
2972 	/* constraints need specific supporting methods */
2973 	if (ops->set_voltage || ops->set_voltage_sel) {
2974 		status = device_create_file(dev, &dev_attr_min_microvolts);
2975 		if (status < 0)
2976 			return status;
2977 		status = device_create_file(dev, &dev_attr_max_microvolts);
2978 		if (status < 0)
2979 			return status;
2980 	}
2981 	if (ops->set_current_limit) {
2982 		status = device_create_file(dev, &dev_attr_min_microamps);
2983 		if (status < 0)
2984 			return status;
2985 		status = device_create_file(dev, &dev_attr_max_microamps);
2986 		if (status < 0)
2987 			return status;
2988 	}
2989 
2990 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2991 	if (status < 0)
2992 		return status;
2993 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2994 	if (status < 0)
2995 		return status;
2996 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2997 	if (status < 0)
2998 		return status;
2999 
3000 	if (ops->set_suspend_voltage) {
3001 		status = device_create_file(dev,
3002 				&dev_attr_suspend_standby_microvolts);
3003 		if (status < 0)
3004 			return status;
3005 		status = device_create_file(dev,
3006 				&dev_attr_suspend_mem_microvolts);
3007 		if (status < 0)
3008 			return status;
3009 		status = device_create_file(dev,
3010 				&dev_attr_suspend_disk_microvolts);
3011 		if (status < 0)
3012 			return status;
3013 	}
3014 
3015 	if (ops->set_suspend_mode) {
3016 		status = device_create_file(dev,
3017 				&dev_attr_suspend_standby_mode);
3018 		if (status < 0)
3019 			return status;
3020 		status = device_create_file(dev,
3021 				&dev_attr_suspend_mem_mode);
3022 		if (status < 0)
3023 			return status;
3024 		status = device_create_file(dev,
3025 				&dev_attr_suspend_disk_mode);
3026 		if (status < 0)
3027 			return status;
3028 	}
3029 
3030 	return status;
3031 }
3032 
3033 static void rdev_init_debugfs(struct regulator_dev *rdev)
3034 {
3035 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3036 	if (!rdev->debugfs) {
3037 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3038 		return;
3039 	}
3040 
3041 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3042 			   &rdev->use_count);
3043 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3044 			   &rdev->open_count);
3045 }
3046 
3047 /**
3048  * regulator_register - register regulator
3049  * @regulator_desc: regulator to register
3050  * @config: runtime configuration for regulator
3051  *
3052  * Called by regulator drivers to register a regulator.
3053  * Returns 0 on success.
3054  */
3055 struct regulator_dev *
3056 regulator_register(const struct regulator_desc *regulator_desc,
3057 		   const struct regulator_config *config)
3058 {
3059 	const struct regulation_constraints *constraints = NULL;
3060 	const struct regulator_init_data *init_data;
3061 	static atomic_t regulator_no = ATOMIC_INIT(0);
3062 	struct regulator_dev *rdev;
3063 	struct device *dev;
3064 	int ret, i;
3065 	const char *supply = NULL;
3066 
3067 	if (regulator_desc == NULL || config == NULL)
3068 		return ERR_PTR(-EINVAL);
3069 
3070 	dev = config->dev;
3071 	WARN_ON(!dev);
3072 
3073 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3074 		return ERR_PTR(-EINVAL);
3075 
3076 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3077 	    regulator_desc->type != REGULATOR_CURRENT)
3078 		return ERR_PTR(-EINVAL);
3079 
3080 	/* Only one of each should be implemented */
3081 	WARN_ON(regulator_desc->ops->get_voltage &&
3082 		regulator_desc->ops->get_voltage_sel);
3083 	WARN_ON(regulator_desc->ops->set_voltage &&
3084 		regulator_desc->ops->set_voltage_sel);
3085 
3086 	/* If we're using selectors we must implement list_voltage. */
3087 	if (regulator_desc->ops->get_voltage_sel &&
3088 	    !regulator_desc->ops->list_voltage) {
3089 		return ERR_PTR(-EINVAL);
3090 	}
3091 	if (regulator_desc->ops->set_voltage_sel &&
3092 	    !regulator_desc->ops->list_voltage) {
3093 		return ERR_PTR(-EINVAL);
3094 	}
3095 
3096 	init_data = config->init_data;
3097 
3098 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3099 	if (rdev == NULL)
3100 		return ERR_PTR(-ENOMEM);
3101 
3102 	mutex_lock(&regulator_list_mutex);
3103 
3104 	mutex_init(&rdev->mutex);
3105 	rdev->reg_data = config->driver_data;
3106 	rdev->owner = regulator_desc->owner;
3107 	rdev->desc = regulator_desc;
3108 	rdev->regmap = config->regmap;
3109 	INIT_LIST_HEAD(&rdev->consumer_list);
3110 	INIT_LIST_HEAD(&rdev->list);
3111 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3112 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3113 
3114 	/* preform any regulator specific init */
3115 	if (init_data && init_data->regulator_init) {
3116 		ret = init_data->regulator_init(rdev->reg_data);
3117 		if (ret < 0)
3118 			goto clean;
3119 	}
3120 
3121 	/* register with sysfs */
3122 	rdev->dev.class = &regulator_class;
3123 	rdev->dev.of_node = config->of_node;
3124 	rdev->dev.parent = dev;
3125 	dev_set_name(&rdev->dev, "regulator.%d",
3126 		     atomic_inc_return(&regulator_no) - 1);
3127 	ret = device_register(&rdev->dev);
3128 	if (ret != 0) {
3129 		put_device(&rdev->dev);
3130 		goto clean;
3131 	}
3132 
3133 	dev_set_drvdata(&rdev->dev, rdev);
3134 
3135 	/* set regulator constraints */
3136 	if (init_data)
3137 		constraints = &init_data->constraints;
3138 
3139 	ret = set_machine_constraints(rdev, constraints);
3140 	if (ret < 0)
3141 		goto scrub;
3142 
3143 	/* add attributes supported by this regulator */
3144 	ret = add_regulator_attributes(rdev);
3145 	if (ret < 0)
3146 		goto scrub;
3147 
3148 	if (init_data && init_data->supply_regulator)
3149 		supply = init_data->supply_regulator;
3150 	else if (regulator_desc->supply_name)
3151 		supply = regulator_desc->supply_name;
3152 
3153 	if (supply) {
3154 		struct regulator_dev *r;
3155 
3156 		r = regulator_dev_lookup(dev, supply, &ret);
3157 
3158 		if (!r) {
3159 			dev_err(dev, "Failed to find supply %s\n", supply);
3160 			ret = -EPROBE_DEFER;
3161 			goto scrub;
3162 		}
3163 
3164 		ret = set_supply(rdev, r);
3165 		if (ret < 0)
3166 			goto scrub;
3167 
3168 		/* Enable supply if rail is enabled */
3169 		if (_regulator_is_enabled(rdev)) {
3170 			ret = regulator_enable(rdev->supply);
3171 			if (ret < 0)
3172 				goto scrub;
3173 		}
3174 	}
3175 
3176 	/* add consumers devices */
3177 	if (init_data) {
3178 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3179 			ret = set_consumer_device_supply(rdev,
3180 				init_data->consumer_supplies[i].dev_name,
3181 				init_data->consumer_supplies[i].supply);
3182 			if (ret < 0) {
3183 				dev_err(dev, "Failed to set supply %s\n",
3184 					init_data->consumer_supplies[i].supply);
3185 				goto unset_supplies;
3186 			}
3187 		}
3188 	}
3189 
3190 	list_add(&rdev->list, &regulator_list);
3191 
3192 	rdev_init_debugfs(rdev);
3193 out:
3194 	mutex_unlock(&regulator_list_mutex);
3195 	return rdev;
3196 
3197 unset_supplies:
3198 	unset_regulator_supplies(rdev);
3199 
3200 scrub:
3201 	if (rdev->supply)
3202 		regulator_put(rdev->supply);
3203 	kfree(rdev->constraints);
3204 	device_unregister(&rdev->dev);
3205 	/* device core frees rdev */
3206 	rdev = ERR_PTR(ret);
3207 	goto out;
3208 
3209 clean:
3210 	kfree(rdev);
3211 	rdev = ERR_PTR(ret);
3212 	goto out;
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_register);
3215 
3216 /**
3217  * regulator_unregister - unregister regulator
3218  * @rdev: regulator to unregister
3219  *
3220  * Called by regulator drivers to unregister a regulator.
3221  */
3222 void regulator_unregister(struct regulator_dev *rdev)
3223 {
3224 	if (rdev == NULL)
3225 		return;
3226 
3227 	if (rdev->supply)
3228 		regulator_put(rdev->supply);
3229 	mutex_lock(&regulator_list_mutex);
3230 	debugfs_remove_recursive(rdev->debugfs);
3231 	flush_work_sync(&rdev->disable_work.work);
3232 	WARN_ON(rdev->open_count);
3233 	unset_regulator_supplies(rdev);
3234 	list_del(&rdev->list);
3235 	kfree(rdev->constraints);
3236 	device_unregister(&rdev->dev);
3237 	mutex_unlock(&regulator_list_mutex);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_unregister);
3240 
3241 /**
3242  * regulator_suspend_prepare - prepare regulators for system wide suspend
3243  * @state: system suspend state
3244  *
3245  * Configure each regulator with it's suspend operating parameters for state.
3246  * This will usually be called by machine suspend code prior to supending.
3247  */
3248 int regulator_suspend_prepare(suspend_state_t state)
3249 {
3250 	struct regulator_dev *rdev;
3251 	int ret = 0;
3252 
3253 	/* ON is handled by regulator active state */
3254 	if (state == PM_SUSPEND_ON)
3255 		return -EINVAL;
3256 
3257 	mutex_lock(&regulator_list_mutex);
3258 	list_for_each_entry(rdev, &regulator_list, list) {
3259 
3260 		mutex_lock(&rdev->mutex);
3261 		ret = suspend_prepare(rdev, state);
3262 		mutex_unlock(&rdev->mutex);
3263 
3264 		if (ret < 0) {
3265 			rdev_err(rdev, "failed to prepare\n");
3266 			goto out;
3267 		}
3268 	}
3269 out:
3270 	mutex_unlock(&regulator_list_mutex);
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3274 
3275 /**
3276  * regulator_suspend_finish - resume regulators from system wide suspend
3277  *
3278  * Turn on regulators that might be turned off by regulator_suspend_prepare
3279  * and that should be turned on according to the regulators properties.
3280  */
3281 int regulator_suspend_finish(void)
3282 {
3283 	struct regulator_dev *rdev;
3284 	int ret = 0, error;
3285 
3286 	mutex_lock(&regulator_list_mutex);
3287 	list_for_each_entry(rdev, &regulator_list, list) {
3288 		struct regulator_ops *ops = rdev->desc->ops;
3289 
3290 		mutex_lock(&rdev->mutex);
3291 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3292 				ops->enable) {
3293 			error = ops->enable(rdev);
3294 			if (error)
3295 				ret = error;
3296 		} else {
3297 			if (!has_full_constraints)
3298 				goto unlock;
3299 			if (!ops->disable)
3300 				goto unlock;
3301 			if (!_regulator_is_enabled(rdev))
3302 				goto unlock;
3303 
3304 			error = ops->disable(rdev);
3305 			if (error)
3306 				ret = error;
3307 		}
3308 unlock:
3309 		mutex_unlock(&rdev->mutex);
3310 	}
3311 	mutex_unlock(&regulator_list_mutex);
3312 	return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3315 
3316 /**
3317  * regulator_has_full_constraints - the system has fully specified constraints
3318  *
3319  * Calling this function will cause the regulator API to disable all
3320  * regulators which have a zero use count and don't have an always_on
3321  * constraint in a late_initcall.
3322  *
3323  * The intention is that this will become the default behaviour in a
3324  * future kernel release so users are encouraged to use this facility
3325  * now.
3326  */
3327 void regulator_has_full_constraints(void)
3328 {
3329 	has_full_constraints = 1;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3332 
3333 /**
3334  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3335  *
3336  * Calling this function will cause the regulator API to provide a
3337  * dummy regulator to consumers if no physical regulator is found,
3338  * allowing most consumers to proceed as though a regulator were
3339  * configured.  This allows systems such as those with software
3340  * controllable regulators for the CPU core only to be brought up more
3341  * readily.
3342  */
3343 void regulator_use_dummy_regulator(void)
3344 {
3345 	board_wants_dummy_regulator = true;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3348 
3349 /**
3350  * rdev_get_drvdata - get rdev regulator driver data
3351  * @rdev: regulator
3352  *
3353  * Get rdev regulator driver private data. This call can be used in the
3354  * regulator driver context.
3355  */
3356 void *rdev_get_drvdata(struct regulator_dev *rdev)
3357 {
3358 	return rdev->reg_data;
3359 }
3360 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3361 
3362 /**
3363  * regulator_get_drvdata - get regulator driver data
3364  * @regulator: regulator
3365  *
3366  * Get regulator driver private data. This call can be used in the consumer
3367  * driver context when non API regulator specific functions need to be called.
3368  */
3369 void *regulator_get_drvdata(struct regulator *regulator)
3370 {
3371 	return regulator->rdev->reg_data;
3372 }
3373 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3374 
3375 /**
3376  * regulator_set_drvdata - set regulator driver data
3377  * @regulator: regulator
3378  * @data: data
3379  */
3380 void regulator_set_drvdata(struct regulator *regulator, void *data)
3381 {
3382 	regulator->rdev->reg_data = data;
3383 }
3384 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3385 
3386 /**
3387  * regulator_get_id - get regulator ID
3388  * @rdev: regulator
3389  */
3390 int rdev_get_id(struct regulator_dev *rdev)
3391 {
3392 	return rdev->desc->id;
3393 }
3394 EXPORT_SYMBOL_GPL(rdev_get_id);
3395 
3396 struct device *rdev_get_dev(struct regulator_dev *rdev)
3397 {
3398 	return &rdev->dev;
3399 }
3400 EXPORT_SYMBOL_GPL(rdev_get_dev);
3401 
3402 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3403 {
3404 	return reg_init_data->driver_data;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3407 
3408 #ifdef CONFIG_DEBUG_FS
3409 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3410 				    size_t count, loff_t *ppos)
3411 {
3412 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3413 	ssize_t len, ret = 0;
3414 	struct regulator_map *map;
3415 
3416 	if (!buf)
3417 		return -ENOMEM;
3418 
3419 	list_for_each_entry(map, &regulator_map_list, list) {
3420 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3421 			       "%s -> %s.%s\n",
3422 			       rdev_get_name(map->regulator), map->dev_name,
3423 			       map->supply);
3424 		if (len >= 0)
3425 			ret += len;
3426 		if (ret > PAGE_SIZE) {
3427 			ret = PAGE_SIZE;
3428 			break;
3429 		}
3430 	}
3431 
3432 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3433 
3434 	kfree(buf);
3435 
3436 	return ret;
3437 }
3438 #endif
3439 
3440 static const struct file_operations supply_map_fops = {
3441 #ifdef CONFIG_DEBUG_FS
3442 	.read = supply_map_read_file,
3443 	.llseek = default_llseek,
3444 #endif
3445 };
3446 
3447 static int __init regulator_init(void)
3448 {
3449 	int ret;
3450 
3451 	ret = class_register(&regulator_class);
3452 
3453 	debugfs_root = debugfs_create_dir("regulator", NULL);
3454 	if (!debugfs_root)
3455 		pr_warn("regulator: Failed to create debugfs directory\n");
3456 
3457 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3458 			    &supply_map_fops);
3459 
3460 	regulator_dummy_init();
3461 
3462 	return ret;
3463 }
3464 
3465 /* init early to allow our consumers to complete system booting */
3466 core_initcall(regulator_init);
3467 
3468 static int __init regulator_init_complete(void)
3469 {
3470 	struct regulator_dev *rdev;
3471 	struct regulator_ops *ops;
3472 	struct regulation_constraints *c;
3473 	int enabled, ret;
3474 
3475 	mutex_lock(&regulator_list_mutex);
3476 
3477 	/* If we have a full configuration then disable any regulators
3478 	 * which are not in use or always_on.  This will become the
3479 	 * default behaviour in the future.
3480 	 */
3481 	list_for_each_entry(rdev, &regulator_list, list) {
3482 		ops = rdev->desc->ops;
3483 		c = rdev->constraints;
3484 
3485 		if (!ops->disable || (c && c->always_on))
3486 			continue;
3487 
3488 		mutex_lock(&rdev->mutex);
3489 
3490 		if (rdev->use_count)
3491 			goto unlock;
3492 
3493 		/* If we can't read the status assume it's on. */
3494 		if (ops->is_enabled)
3495 			enabled = ops->is_enabled(rdev);
3496 		else
3497 			enabled = 1;
3498 
3499 		if (!enabled)
3500 			goto unlock;
3501 
3502 		if (has_full_constraints) {
3503 			/* We log since this may kill the system if it
3504 			 * goes wrong. */
3505 			rdev_info(rdev, "disabling\n");
3506 			ret = ops->disable(rdev);
3507 			if (ret != 0) {
3508 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3509 			}
3510 		} else {
3511 			/* The intention is that in future we will
3512 			 * assume that full constraints are provided
3513 			 * so warn even if we aren't going to do
3514 			 * anything here.
3515 			 */
3516 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3517 		}
3518 
3519 unlock:
3520 		mutex_unlock(&rdev->mutex);
3521 	}
3522 
3523 	mutex_unlock(&regulator_list_mutex);
3524 
3525 	return 0;
3526 }
3527 late_initcall(regulator_init_complete);
3528