xref: /linux/drivers/regulator/core.c (revision 2504075d383fcefd746dac42a0cd1c3bdc006bd1)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27 
28 #include "dummy.h"
29 
30 #define REGULATOR_VERSION "0.5"
31 
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37 
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44 	struct list_head list;
45 	const char *dev_name;   /* The dev_name() for the consumer */
46 	const char *supply;
47 	struct regulator_dev *regulator;
48 };
49 
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56 	struct device *dev;
57 	struct list_head list;
58 	int uA_load;
59 	int min_uV;
60 	int max_uV;
61 	char *supply_name;
62 	struct device_attribute dev_attr;
63 	struct regulator_dev *rdev;
64 };
65 
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68 		struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73 				  unsigned long event, void *data);
74 
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77 	if (rdev->constraints && rdev->constraints->name)
78 		return rdev->constraints->name;
79 	else if (rdev->desc->name)
80 		return rdev->desc->name;
81 	else
82 		return "";
83 }
84 
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88 	struct regulator *regulator = NULL;
89 	struct regulator_dev *rdev;
90 
91 	mutex_lock(&regulator_list_mutex);
92 	list_for_each_entry(rdev, &regulator_list, list) {
93 		mutex_lock(&rdev->mutex);
94 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
95 			if (regulator->dev == dev) {
96 				mutex_unlock(&rdev->mutex);
97 				mutex_unlock(&regulator_list_mutex);
98 				return regulator;
99 			}
100 		}
101 		mutex_unlock(&rdev->mutex);
102 	}
103 	mutex_unlock(&regulator_list_mutex);
104 	return NULL;
105 }
106 
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109 				   int *min_uV, int *max_uV)
110 {
111 	BUG_ON(*min_uV > *max_uV);
112 
113 	if (!rdev->constraints) {
114 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115 		       rdev_get_name(rdev));
116 		return -ENODEV;
117 	}
118 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119 		printk(KERN_ERR "%s: operation not allowed for %s\n",
120 		       __func__, rdev_get_name(rdev));
121 		return -EPERM;
122 	}
123 
124 	if (*max_uV > rdev->constraints->max_uV)
125 		*max_uV = rdev->constraints->max_uV;
126 	if (*min_uV < rdev->constraints->min_uV)
127 		*min_uV = rdev->constraints->min_uV;
128 
129 	if (*min_uV > *max_uV)
130 		return -EINVAL;
131 
132 	return 0;
133 }
134 
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137 					int *min_uA, int *max_uA)
138 {
139 	BUG_ON(*min_uA > *max_uA);
140 
141 	if (!rdev->constraints) {
142 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143 		       rdev_get_name(rdev));
144 		return -ENODEV;
145 	}
146 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147 		printk(KERN_ERR "%s: operation not allowed for %s\n",
148 		       __func__, rdev_get_name(rdev));
149 		return -EPERM;
150 	}
151 
152 	if (*max_uA > rdev->constraints->max_uA)
153 		*max_uA = rdev->constraints->max_uA;
154 	if (*min_uA < rdev->constraints->min_uA)
155 		*min_uA = rdev->constraints->min_uA;
156 
157 	if (*min_uA > *max_uA)
158 		return -EINVAL;
159 
160 	return 0;
161 }
162 
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166 	switch (mode) {
167 	case REGULATOR_MODE_FAST:
168 	case REGULATOR_MODE_NORMAL:
169 	case REGULATOR_MODE_IDLE:
170 	case REGULATOR_MODE_STANDBY:
171 		break;
172 	default:
173 		return -EINVAL;
174 	}
175 
176 	if (!rdev->constraints) {
177 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178 		       rdev_get_name(rdev));
179 		return -ENODEV;
180 	}
181 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182 		printk(KERN_ERR "%s: operation not allowed for %s\n",
183 		       __func__, rdev_get_name(rdev));
184 		return -EPERM;
185 	}
186 	if (!(rdev->constraints->valid_modes_mask & mode)) {
187 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
188 		       __func__, mode, rdev_get_name(rdev));
189 		return -EINVAL;
190 	}
191 	return 0;
192 }
193 
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197 	if (!rdev->constraints) {
198 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199 		       rdev_get_name(rdev));
200 		return -ENODEV;
201 	}
202 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203 		printk(KERN_ERR "%s: operation not allowed for %s\n",
204 		       __func__, rdev_get_name(rdev));
205 		return -EPERM;
206 	}
207 	return 0;
208 }
209 
210 static ssize_t device_requested_uA_show(struct device *dev,
211 			     struct device_attribute *attr, char *buf)
212 {
213 	struct regulator *regulator;
214 
215 	regulator = get_device_regulator(dev);
216 	if (regulator == NULL)
217 		return 0;
218 
219 	return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221 
222 static ssize_t regulator_uV_show(struct device *dev,
223 				struct device_attribute *attr, char *buf)
224 {
225 	struct regulator_dev *rdev = dev_get_drvdata(dev);
226 	ssize_t ret;
227 
228 	mutex_lock(&rdev->mutex);
229 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230 	mutex_unlock(&rdev->mutex);
231 
232 	return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235 
236 static ssize_t regulator_uA_show(struct device *dev,
237 				struct device_attribute *attr, char *buf)
238 {
239 	struct regulator_dev *rdev = dev_get_drvdata(dev);
240 
241 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244 
245 static ssize_t regulator_name_show(struct device *dev,
246 			     struct device_attribute *attr, char *buf)
247 {
248 	struct regulator_dev *rdev = dev_get_drvdata(dev);
249 
250 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252 
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255 	switch (mode) {
256 	case REGULATOR_MODE_FAST:
257 		return sprintf(buf, "fast\n");
258 	case REGULATOR_MODE_NORMAL:
259 		return sprintf(buf, "normal\n");
260 	case REGULATOR_MODE_IDLE:
261 		return sprintf(buf, "idle\n");
262 	case REGULATOR_MODE_STANDBY:
263 		return sprintf(buf, "standby\n");
264 	}
265 	return sprintf(buf, "unknown\n");
266 }
267 
268 static ssize_t regulator_opmode_show(struct device *dev,
269 				    struct device_attribute *attr, char *buf)
270 {
271 	struct regulator_dev *rdev = dev_get_drvdata(dev);
272 
273 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276 
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279 	if (state > 0)
280 		return sprintf(buf, "enabled\n");
281 	else if (state == 0)
282 		return sprintf(buf, "disabled\n");
283 	else
284 		return sprintf(buf, "unknown\n");
285 }
286 
287 static ssize_t regulator_state_show(struct device *dev,
288 				   struct device_attribute *attr, char *buf)
289 {
290 	struct regulator_dev *rdev = dev_get_drvdata(dev);
291 	ssize_t ret;
292 
293 	mutex_lock(&rdev->mutex);
294 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295 	mutex_unlock(&rdev->mutex);
296 
297 	return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300 
301 static ssize_t regulator_status_show(struct device *dev,
302 				   struct device_attribute *attr, char *buf)
303 {
304 	struct regulator_dev *rdev = dev_get_drvdata(dev);
305 	int status;
306 	char *label;
307 
308 	status = rdev->desc->ops->get_status(rdev);
309 	if (status < 0)
310 		return status;
311 
312 	switch (status) {
313 	case REGULATOR_STATUS_OFF:
314 		label = "off";
315 		break;
316 	case REGULATOR_STATUS_ON:
317 		label = "on";
318 		break;
319 	case REGULATOR_STATUS_ERROR:
320 		label = "error";
321 		break;
322 	case REGULATOR_STATUS_FAST:
323 		label = "fast";
324 		break;
325 	case REGULATOR_STATUS_NORMAL:
326 		label = "normal";
327 		break;
328 	case REGULATOR_STATUS_IDLE:
329 		label = "idle";
330 		break;
331 	case REGULATOR_STATUS_STANDBY:
332 		label = "standby";
333 		break;
334 	default:
335 		return -ERANGE;
336 	}
337 
338 	return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341 
342 static ssize_t regulator_min_uA_show(struct device *dev,
343 				    struct device_attribute *attr, char *buf)
344 {
345 	struct regulator_dev *rdev = dev_get_drvdata(dev);
346 
347 	if (!rdev->constraints)
348 		return sprintf(buf, "constraint not defined\n");
349 
350 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353 
354 static ssize_t regulator_max_uA_show(struct device *dev,
355 				    struct device_attribute *attr, char *buf)
356 {
357 	struct regulator_dev *rdev = dev_get_drvdata(dev);
358 
359 	if (!rdev->constraints)
360 		return sprintf(buf, "constraint not defined\n");
361 
362 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365 
366 static ssize_t regulator_min_uV_show(struct device *dev,
367 				    struct device_attribute *attr, char *buf)
368 {
369 	struct regulator_dev *rdev = dev_get_drvdata(dev);
370 
371 	if (!rdev->constraints)
372 		return sprintf(buf, "constraint not defined\n");
373 
374 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377 
378 static ssize_t regulator_max_uV_show(struct device *dev,
379 				    struct device_attribute *attr, char *buf)
380 {
381 	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 
383 	if (!rdev->constraints)
384 		return sprintf(buf, "constraint not defined\n");
385 
386 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389 
390 static ssize_t regulator_total_uA_show(struct device *dev,
391 				      struct device_attribute *attr, char *buf)
392 {
393 	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 	struct regulator *regulator;
395 	int uA = 0;
396 
397 	mutex_lock(&rdev->mutex);
398 	list_for_each_entry(regulator, &rdev->consumer_list, list)
399 		uA += regulator->uA_load;
400 	mutex_unlock(&rdev->mutex);
401 	return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404 
405 static ssize_t regulator_num_users_show(struct device *dev,
406 				      struct device_attribute *attr, char *buf)
407 {
408 	struct regulator_dev *rdev = dev_get_drvdata(dev);
409 	return sprintf(buf, "%d\n", rdev->use_count);
410 }
411 
412 static ssize_t regulator_type_show(struct device *dev,
413 				  struct device_attribute *attr, char *buf)
414 {
415 	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 
417 	switch (rdev->desc->type) {
418 	case REGULATOR_VOLTAGE:
419 		return sprintf(buf, "voltage\n");
420 	case REGULATOR_CURRENT:
421 		return sprintf(buf, "current\n");
422 	}
423 	return sprintf(buf, "unknown\n");
424 }
425 
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427 				struct device_attribute *attr, char *buf)
428 {
429 	struct regulator_dev *rdev = dev_get_drvdata(dev);
430 
431 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434 		regulator_suspend_mem_uV_show, NULL);
435 
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437 				struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 
441 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444 		regulator_suspend_disk_uV_show, NULL);
445 
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447 				struct device_attribute *attr, char *buf)
448 {
449 	struct regulator_dev *rdev = dev_get_drvdata(dev);
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454 		regulator_suspend_standby_uV_show, NULL);
455 
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457 				struct device_attribute *attr, char *buf)
458 {
459 	struct regulator_dev *rdev = dev_get_drvdata(dev);
460 
461 	return regulator_print_opmode(buf,
462 		rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465 		regulator_suspend_mem_mode_show, NULL);
466 
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468 				struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	return regulator_print_opmode(buf,
473 		rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476 		regulator_suspend_disk_mode_show, NULL);
477 
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479 				struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 
483 	return regulator_print_opmode(buf,
484 		rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487 		regulator_suspend_standby_mode_show, NULL);
488 
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490 				   struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	return regulator_print_state(buf,
495 			rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498 		regulator_suspend_mem_state_show, NULL);
499 
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501 				   struct device_attribute *attr, char *buf)
502 {
503 	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 
505 	return regulator_print_state(buf,
506 			rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509 		regulator_suspend_disk_state_show, NULL);
510 
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512 				   struct device_attribute *attr, char *buf)
513 {
514 	struct regulator_dev *rdev = dev_get_drvdata(dev);
515 
516 	return regulator_print_state(buf,
517 			rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520 		regulator_suspend_standby_state_show, NULL);
521 
522 
523 /*
524  * These are the only attributes are present for all regulators.
525  * Other attributes are a function of regulator functionality.
526  */
527 static struct device_attribute regulator_dev_attrs[] = {
528 	__ATTR(name, 0444, regulator_name_show, NULL),
529 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
530 	__ATTR(type, 0444, regulator_type_show, NULL),
531 	__ATTR_NULL,
532 };
533 
534 static void regulator_dev_release(struct device *dev)
535 {
536 	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 	kfree(rdev);
538 }
539 
540 static struct class regulator_class = {
541 	.name = "regulator",
542 	.dev_release = regulator_dev_release,
543 	.dev_attrs = regulator_dev_attrs,
544 };
545 
546 /* Calculate the new optimum regulator operating mode based on the new total
547  * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550 	struct regulator *sibling;
551 	int current_uA = 0, output_uV, input_uV, err;
552 	unsigned int mode;
553 
554 	err = regulator_check_drms(rdev);
555 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557 		return;
558 
559 	/* get output voltage */
560 	output_uV = rdev->desc->ops->get_voltage(rdev);
561 	if (output_uV <= 0)
562 		return;
563 
564 	/* get input voltage */
565 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567 	else
568 		input_uV = rdev->constraints->input_uV;
569 	if (input_uV <= 0)
570 		return;
571 
572 	/* calc total requested load */
573 	list_for_each_entry(sibling, &rdev->consumer_list, list)
574 		current_uA += sibling->uA_load;
575 
576 	/* now get the optimum mode for our new total regulator load */
577 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578 						  output_uV, current_uA);
579 
580 	/* check the new mode is allowed */
581 	err = regulator_check_mode(rdev, mode);
582 	if (err == 0)
583 		rdev->desc->ops->set_mode(rdev, mode);
584 }
585 
586 static int suspend_set_state(struct regulator_dev *rdev,
587 	struct regulator_state *rstate)
588 {
589 	int ret = 0;
590 	bool can_set_state;
591 
592 	can_set_state = rdev->desc->ops->set_suspend_enable &&
593 		rdev->desc->ops->set_suspend_disable;
594 
595 	/* If we have no suspend mode configration don't set anything;
596 	 * only warn if the driver actually makes the suspend mode
597 	 * configurable.
598 	 */
599 	if (!rstate->enabled && !rstate->disabled) {
600 		if (can_set_state)
601 			printk(KERN_WARNING "%s: No configuration for %s\n",
602 			       __func__, rdev_get_name(rdev));
603 		return 0;
604 	}
605 
606 	if (rstate->enabled && rstate->disabled) {
607 		printk(KERN_ERR "%s: invalid configuration for %s\n",
608 		       __func__, rdev_get_name(rdev));
609 		return -EINVAL;
610 	}
611 
612 	if (!can_set_state) {
613 		printk(KERN_ERR "%s: no way to set suspend state\n",
614 			__func__);
615 		return -EINVAL;
616 	}
617 
618 	if (rstate->enabled)
619 		ret = rdev->desc->ops->set_suspend_enable(rdev);
620 	else
621 		ret = rdev->desc->ops->set_suspend_disable(rdev);
622 	if (ret < 0) {
623 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624 		return ret;
625 	}
626 
627 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629 		if (ret < 0) {
630 			printk(KERN_ERR "%s: failed to set voltage\n",
631 				__func__);
632 			return ret;
633 		}
634 	}
635 
636 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638 		if (ret < 0) {
639 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
640 			return ret;
641 		}
642 	}
643 	return ret;
644 }
645 
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649 	if (!rdev->constraints)
650 		return -EINVAL;
651 
652 	switch (state) {
653 	case PM_SUSPEND_STANDBY:
654 		return suspend_set_state(rdev,
655 			&rdev->constraints->state_standby);
656 	case PM_SUSPEND_MEM:
657 		return suspend_set_state(rdev,
658 			&rdev->constraints->state_mem);
659 	case PM_SUSPEND_MAX:
660 		return suspend_set_state(rdev,
661 			&rdev->constraints->state_disk);
662 	default:
663 		return -EINVAL;
664 	}
665 }
666 
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669 	struct regulation_constraints *constraints = rdev->constraints;
670 	char buf[80] = "";
671 	int count = 0;
672 	int ret;
673 
674 	if (constraints->min_uV && constraints->max_uV) {
675 		if (constraints->min_uV == constraints->max_uV)
676 			count += sprintf(buf + count, "%d mV ",
677 					 constraints->min_uV / 1000);
678 		else
679 			count += sprintf(buf + count, "%d <--> %d mV ",
680 					 constraints->min_uV / 1000,
681 					 constraints->max_uV / 1000);
682 	}
683 
684 	if (!constraints->min_uV ||
685 	    constraints->min_uV != constraints->max_uV) {
686 		ret = _regulator_get_voltage(rdev);
687 		if (ret > 0)
688 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 	}
690 
691 	if (constraints->min_uA && constraints->max_uA) {
692 		if (constraints->min_uA == constraints->max_uA)
693 			count += sprintf(buf + count, "%d mA ",
694 					 constraints->min_uA / 1000);
695 		else
696 			count += sprintf(buf + count, "%d <--> %d mA ",
697 					 constraints->min_uA / 1000,
698 					 constraints->max_uA / 1000);
699 	}
700 
701 	if (!constraints->min_uA ||
702 	    constraints->min_uA != constraints->max_uA) {
703 		ret = _regulator_get_current_limit(rdev);
704 		if (ret > 0)
705 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
706 	}
707 
708 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709 		count += sprintf(buf + count, "fast ");
710 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711 		count += sprintf(buf + count, "normal ");
712 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713 		count += sprintf(buf + count, "idle ");
714 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715 		count += sprintf(buf + count, "standby");
716 
717 	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719 
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721 	struct regulation_constraints *constraints)
722 {
723 	struct regulator_ops *ops = rdev->desc->ops;
724 	const char *name = rdev_get_name(rdev);
725 	int ret;
726 
727 	/* do we need to apply the constraint voltage */
728 	if (rdev->constraints->apply_uV &&
729 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
730 		ops->set_voltage) {
731 		ret = ops->set_voltage(rdev,
732 			rdev->constraints->min_uV, rdev->constraints->max_uV);
733 			if (ret < 0) {
734 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735 				       __func__,
736 				       rdev->constraints->min_uV, name);
737 				rdev->constraints = NULL;
738 				return ret;
739 			}
740 	}
741 
742 	/* constrain machine-level voltage specs to fit
743 	 * the actual range supported by this regulator.
744 	 */
745 	if (ops->list_voltage && rdev->desc->n_voltages) {
746 		int	count = rdev->desc->n_voltages;
747 		int	i;
748 		int	min_uV = INT_MAX;
749 		int	max_uV = INT_MIN;
750 		int	cmin = constraints->min_uV;
751 		int	cmax = constraints->max_uV;
752 
753 		/* it's safe to autoconfigure fixed-voltage supplies
754 		   and the constraints are used by list_voltage. */
755 		if (count == 1 && !cmin) {
756 			cmin = 1;
757 			cmax = INT_MAX;
758 			constraints->min_uV = cmin;
759 			constraints->max_uV = cmax;
760 		}
761 
762 		/* voltage constraints are optional */
763 		if ((cmin == 0) && (cmax == 0))
764 			return 0;
765 
766 		/* else require explicit machine-level constraints */
767 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 			pr_err("%s: %s '%s' voltage constraints\n",
769 				       __func__, "invalid", name);
770 			return -EINVAL;
771 		}
772 
773 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774 		for (i = 0; i < count; i++) {
775 			int	value;
776 
777 			value = ops->list_voltage(rdev, i);
778 			if (value <= 0)
779 				continue;
780 
781 			/* maybe adjust [min_uV..max_uV] */
782 			if (value >= cmin && value < min_uV)
783 				min_uV = value;
784 			if (value <= cmax && value > max_uV)
785 				max_uV = value;
786 		}
787 
788 		/* final: [min_uV..max_uV] valid iff constraints valid */
789 		if (max_uV < min_uV) {
790 			pr_err("%s: %s '%s' voltage constraints\n",
791 				       __func__, "unsupportable", name);
792 			return -EINVAL;
793 		}
794 
795 		/* use regulator's subset of machine constraints */
796 		if (constraints->min_uV < min_uV) {
797 			pr_debug("%s: override '%s' %s, %d -> %d\n",
798 				       __func__, name, "min_uV",
799 					constraints->min_uV, min_uV);
800 			constraints->min_uV = min_uV;
801 		}
802 		if (constraints->max_uV > max_uV) {
803 			pr_debug("%s: override '%s' %s, %d -> %d\n",
804 				       __func__, name, "max_uV",
805 					constraints->max_uV, max_uV);
806 			constraints->max_uV = max_uV;
807 		}
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  * set_machine_constraints - sets regulator constraints
815  * @rdev: regulator source
816  * @constraints: constraints to apply
817  *
818  * Allows platform initialisation code to define and constrain
819  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820  * Constraints *must* be set by platform code in order for some
821  * regulator operations to proceed i.e. set_voltage, set_current_limit,
822  * set_mode.
823  */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825 	struct regulation_constraints *constraints)
826 {
827 	int ret = 0;
828 	const char *name;
829 	struct regulator_ops *ops = rdev->desc->ops;
830 
831 	rdev->constraints = constraints;
832 
833 	name = rdev_get_name(rdev);
834 
835 	ret = machine_constraints_voltage(rdev, constraints);
836 	if (ret != 0)
837 		goto out;
838 
839 	/* do we need to setup our suspend state */
840 	if (constraints->initial_state) {
841 		ret = suspend_prepare(rdev, constraints->initial_state);
842 		if (ret < 0) {
843 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844 			       __func__, name);
845 			rdev->constraints = NULL;
846 			goto out;
847 		}
848 	}
849 
850 	if (constraints->initial_mode) {
851 		if (!ops->set_mode) {
852 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
853 			       __func__, name);
854 			ret = -EINVAL;
855 			goto out;
856 		}
857 
858 		ret = ops->set_mode(rdev, constraints->initial_mode);
859 		if (ret < 0) {
860 			printk(KERN_ERR
861 			       "%s: failed to set initial mode for %s: %d\n",
862 			       __func__, name, ret);
863 			goto out;
864 		}
865 	}
866 
867 	/* If the constraints say the regulator should be on at this point
868 	 * and we have control then make sure it is enabled.
869 	 */
870 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 		ret = ops->enable(rdev);
872 		if (ret < 0) {
873 			printk(KERN_ERR "%s: failed to enable %s\n",
874 			       __func__, name);
875 			rdev->constraints = NULL;
876 			goto out;
877 		}
878 	}
879 
880 	print_constraints(rdev);
881 out:
882 	return ret;
883 }
884 
885 /**
886  * set_supply - set regulator supply regulator
887  * @rdev: regulator name
888  * @supply_rdev: supply regulator name
889  *
890  * Called by platform initialisation code to set the supply regulator for this
891  * regulator. This ensures that a regulators supply will also be enabled by the
892  * core if it's child is enabled.
893  */
894 static int set_supply(struct regulator_dev *rdev,
895 	struct regulator_dev *supply_rdev)
896 {
897 	int err;
898 
899 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900 				"supply");
901 	if (err) {
902 		printk(KERN_ERR
903 		       "%s: could not add device link %s err %d\n",
904 		       __func__, supply_rdev->dev.kobj.name, err);
905 		       goto out;
906 	}
907 	rdev->supply = supply_rdev;
908 	list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910 	return err;
911 }
912 
913 /**
914  * set_consumer_device_supply: Bind a regulator to a symbolic supply
915  * @rdev:         regulator source
916  * @consumer_dev: device the supply applies to
917  * @consumer_dev_name: dev_name() string for device supply applies to
918  * @supply:       symbolic name for supply
919  *
920  * Allows platform initialisation code to map physical regulator
921  * sources to symbolic names for supplies for use by devices.  Devices
922  * should use these symbolic names to request regulators, avoiding the
923  * need to provide board-specific regulator names as platform data.
924  *
925  * Only one of consumer_dev and consumer_dev_name may be specified.
926  */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928 	struct device *consumer_dev, const char *consumer_dev_name,
929 	const char *supply)
930 {
931 	struct regulator_map *node;
932 	int has_dev;
933 
934 	if (consumer_dev && consumer_dev_name)
935 		return -EINVAL;
936 
937 	if (!consumer_dev_name && consumer_dev)
938 		consumer_dev_name = dev_name(consumer_dev);
939 
940 	if (supply == NULL)
941 		return -EINVAL;
942 
943 	if (consumer_dev_name != NULL)
944 		has_dev = 1;
945 	else
946 		has_dev = 0;
947 
948 	list_for_each_entry(node, &regulator_map_list, list) {
949 		if (node->dev_name && consumer_dev_name) {
950 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
951 				continue;
952 		} else if (node->dev_name || consumer_dev_name) {
953 			continue;
954 		}
955 
956 		if (strcmp(node->supply, supply) != 0)
957 			continue;
958 
959 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960 				dev_name(&node->regulator->dev),
961 				node->regulator->desc->name,
962 				supply,
963 				dev_name(&rdev->dev), rdev_get_name(rdev));
964 		return -EBUSY;
965 	}
966 
967 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968 	if (node == NULL)
969 		return -ENOMEM;
970 
971 	node->regulator = rdev;
972 	node->supply = supply;
973 
974 	if (has_dev) {
975 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976 		if (node->dev_name == NULL) {
977 			kfree(node);
978 			return -ENOMEM;
979 		}
980 	}
981 
982 	list_add(&node->list, &regulator_map_list);
983 	return 0;
984 }
985 
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988 	struct regulator_map *node, *n;
989 
990 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991 		if (rdev == node->regulator) {
992 			list_del(&node->list);
993 			kfree(node->dev_name);
994 			kfree(node);
995 		}
996 	}
997 }
998 
999 #define REG_STR_SIZE	32
1000 
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002 					  struct device *dev,
1003 					  const char *supply_name)
1004 {
1005 	struct regulator *regulator;
1006 	char buf[REG_STR_SIZE];
1007 	int err, size;
1008 
1009 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010 	if (regulator == NULL)
1011 		return NULL;
1012 
1013 	mutex_lock(&rdev->mutex);
1014 	regulator->rdev = rdev;
1015 	list_add(&regulator->list, &rdev->consumer_list);
1016 
1017 	if (dev) {
1018 		/* create a 'requested_microamps_name' sysfs entry */
1019 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020 			supply_name);
1021 		if (size >= REG_STR_SIZE)
1022 			goto overflow_err;
1023 
1024 		regulator->dev = dev;
1025 		sysfs_attr_init(&regulator->dev_attr.attr);
1026 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027 		if (regulator->dev_attr.attr.name == NULL)
1028 			goto attr_name_err;
1029 
1030 		regulator->dev_attr.attr.mode = 0444;
1031 		regulator->dev_attr.show = device_requested_uA_show;
1032 		err = device_create_file(dev, &regulator->dev_attr);
1033 		if (err < 0) {
1034 			printk(KERN_WARNING "%s: could not add regulator_dev"
1035 				" load sysfs\n", __func__);
1036 			goto attr_name_err;
1037 		}
1038 
1039 		/* also add a link to the device sysfs entry */
1040 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041 				 dev->kobj.name, supply_name);
1042 		if (size >= REG_STR_SIZE)
1043 			goto attr_err;
1044 
1045 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046 		if (regulator->supply_name == NULL)
1047 			goto attr_err;
1048 
1049 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050 					buf);
1051 		if (err) {
1052 			printk(KERN_WARNING
1053 			       "%s: could not add device link %s err %d\n",
1054 			       __func__, dev->kobj.name, err);
1055 			device_remove_file(dev, &regulator->dev_attr);
1056 			goto link_name_err;
1057 		}
1058 	}
1059 	mutex_unlock(&rdev->mutex);
1060 	return regulator;
1061 link_name_err:
1062 	kfree(regulator->supply_name);
1063 attr_err:
1064 	device_remove_file(regulator->dev, &regulator->dev_attr);
1065 attr_name_err:
1066 	kfree(regulator->dev_attr.attr.name);
1067 overflow_err:
1068 	list_del(&regulator->list);
1069 	kfree(regulator);
1070 	mutex_unlock(&rdev->mutex);
1071 	return NULL;
1072 }
1073 
1074 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075 {
1076 	if (!rdev->desc->ops->enable_time)
1077 		return 0;
1078 	return rdev->desc->ops->enable_time(rdev);
1079 }
1080 
1081 /* Internal regulator request function */
1082 static struct regulator *_regulator_get(struct device *dev, const char *id,
1083 					int exclusive)
1084 {
1085 	struct regulator_dev *rdev;
1086 	struct regulator_map *map;
1087 	struct regulator *regulator = ERR_PTR(-ENODEV);
1088 	const char *devname = NULL;
1089 	int ret;
1090 
1091 	if (id == NULL) {
1092 		printk(KERN_ERR "regulator: get() with no identifier\n");
1093 		return regulator;
1094 	}
1095 
1096 	if (dev)
1097 		devname = dev_name(dev);
1098 
1099 	mutex_lock(&regulator_list_mutex);
1100 
1101 	list_for_each_entry(map, &regulator_map_list, list) {
1102 		/* If the mapping has a device set up it must match */
1103 		if (map->dev_name &&
1104 		    (!devname || strcmp(map->dev_name, devname)))
1105 			continue;
1106 
1107 		if (strcmp(map->supply, id) == 0) {
1108 			rdev = map->regulator;
1109 			goto found;
1110 		}
1111 	}
1112 
1113 	if (board_wants_dummy_regulator) {
1114 		rdev = dummy_regulator_rdev;
1115 		goto found;
1116 	}
1117 
1118 #ifdef CONFIG_REGULATOR_DUMMY
1119 	if (!devname)
1120 		devname = "deviceless";
1121 
1122 	/* If the board didn't flag that it was fully constrained then
1123 	 * substitute in a dummy regulator so consumers can continue.
1124 	 */
1125 	if (!has_full_constraints) {
1126 		pr_warning("%s supply %s not found, using dummy regulator\n",
1127 			   devname, id);
1128 		rdev = dummy_regulator_rdev;
1129 		goto found;
1130 	}
1131 #endif
1132 
1133 	mutex_unlock(&regulator_list_mutex);
1134 	return regulator;
1135 
1136 found:
1137 	if (rdev->exclusive) {
1138 		regulator = ERR_PTR(-EPERM);
1139 		goto out;
1140 	}
1141 
1142 	if (exclusive && rdev->open_count) {
1143 		regulator = ERR_PTR(-EBUSY);
1144 		goto out;
1145 	}
1146 
1147 	if (!try_module_get(rdev->owner))
1148 		goto out;
1149 
1150 	regulator = create_regulator(rdev, dev, id);
1151 	if (regulator == NULL) {
1152 		regulator = ERR_PTR(-ENOMEM);
1153 		module_put(rdev->owner);
1154 	}
1155 
1156 	rdev->open_count++;
1157 	if (exclusive) {
1158 		rdev->exclusive = 1;
1159 
1160 		ret = _regulator_is_enabled(rdev);
1161 		if (ret > 0)
1162 			rdev->use_count = 1;
1163 		else
1164 			rdev->use_count = 0;
1165 	}
1166 
1167 out:
1168 	mutex_unlock(&regulator_list_mutex);
1169 
1170 	return regulator;
1171 }
1172 
1173 /**
1174  * regulator_get - lookup and obtain a reference to a regulator.
1175  * @dev: device for regulator "consumer"
1176  * @id: Supply name or regulator ID.
1177  *
1178  * Returns a struct regulator corresponding to the regulator producer,
1179  * or IS_ERR() condition containing errno.
1180  *
1181  * Use of supply names configured via regulator_set_device_supply() is
1182  * strongly encouraged.  It is recommended that the supply name used
1183  * should match the name used for the supply and/or the relevant
1184  * device pins in the datasheet.
1185  */
1186 struct regulator *regulator_get(struct device *dev, const char *id)
1187 {
1188 	return _regulator_get(dev, id, 0);
1189 }
1190 EXPORT_SYMBOL_GPL(regulator_get);
1191 
1192 /**
1193  * regulator_get_exclusive - obtain exclusive access to a regulator.
1194  * @dev: device for regulator "consumer"
1195  * @id: Supply name or regulator ID.
1196  *
1197  * Returns a struct regulator corresponding to the regulator producer,
1198  * or IS_ERR() condition containing errno.  Other consumers will be
1199  * unable to obtain this reference is held and the use count for the
1200  * regulator will be initialised to reflect the current state of the
1201  * regulator.
1202  *
1203  * This is intended for use by consumers which cannot tolerate shared
1204  * use of the regulator such as those which need to force the
1205  * regulator off for correct operation of the hardware they are
1206  * controlling.
1207  *
1208  * Use of supply names configured via regulator_set_device_supply() is
1209  * strongly encouraged.  It is recommended that the supply name used
1210  * should match the name used for the supply and/or the relevant
1211  * device pins in the datasheet.
1212  */
1213 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1214 {
1215 	return _regulator_get(dev, id, 1);
1216 }
1217 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1218 
1219 /**
1220  * regulator_put - "free" the regulator source
1221  * @regulator: regulator source
1222  *
1223  * Note: drivers must ensure that all regulator_enable calls made on this
1224  * regulator source are balanced by regulator_disable calls prior to calling
1225  * this function.
1226  */
1227 void regulator_put(struct regulator *regulator)
1228 {
1229 	struct regulator_dev *rdev;
1230 
1231 	if (regulator == NULL || IS_ERR(regulator))
1232 		return;
1233 
1234 	mutex_lock(&regulator_list_mutex);
1235 	rdev = regulator->rdev;
1236 
1237 	/* remove any sysfs entries */
1238 	if (regulator->dev) {
1239 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1240 		kfree(regulator->supply_name);
1241 		device_remove_file(regulator->dev, &regulator->dev_attr);
1242 		kfree(regulator->dev_attr.attr.name);
1243 	}
1244 	list_del(&regulator->list);
1245 	kfree(regulator);
1246 
1247 	rdev->open_count--;
1248 	rdev->exclusive = 0;
1249 
1250 	module_put(rdev->owner);
1251 	mutex_unlock(&regulator_list_mutex);
1252 }
1253 EXPORT_SYMBOL_GPL(regulator_put);
1254 
1255 static int _regulator_can_change_status(struct regulator_dev *rdev)
1256 {
1257 	if (!rdev->constraints)
1258 		return 0;
1259 
1260 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1261 		return 1;
1262 	else
1263 		return 0;
1264 }
1265 
1266 /* locks held by regulator_enable() */
1267 static int _regulator_enable(struct regulator_dev *rdev)
1268 {
1269 	int ret, delay;
1270 
1271 	/* do we need to enable the supply regulator first */
1272 	if (rdev->supply) {
1273 		ret = _regulator_enable(rdev->supply);
1274 		if (ret < 0) {
1275 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1276 			       __func__, rdev_get_name(rdev), ret);
1277 			return ret;
1278 		}
1279 	}
1280 
1281 	/* check voltage and requested load before enabling */
1282 	if (rdev->constraints &&
1283 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1284 		drms_uA_update(rdev);
1285 
1286 	if (rdev->use_count == 0) {
1287 		/* The regulator may on if it's not switchable or left on */
1288 		ret = _regulator_is_enabled(rdev);
1289 		if (ret == -EINVAL || ret == 0) {
1290 			if (!_regulator_can_change_status(rdev))
1291 				return -EPERM;
1292 
1293 			if (!rdev->desc->ops->enable)
1294 				return -EINVAL;
1295 
1296 			/* Query before enabling in case configuration
1297 			 * dependant.  */
1298 			ret = _regulator_get_enable_time(rdev);
1299 			if (ret >= 0) {
1300 				delay = ret;
1301 			} else {
1302 				printk(KERN_WARNING
1303 					"%s: enable_time() failed for %s: %d\n",
1304 					__func__, rdev_get_name(rdev),
1305 					ret);
1306 				delay = 0;
1307 			}
1308 
1309 			/* Allow the regulator to ramp; it would be useful
1310 			 * to extend this for bulk operations so that the
1311 			 * regulators can ramp together.  */
1312 			ret = rdev->desc->ops->enable(rdev);
1313 			if (ret < 0)
1314 				return ret;
1315 
1316 			if (delay >= 1000)
1317 				mdelay(delay / 1000);
1318 			else if (delay)
1319 				udelay(delay);
1320 
1321 		} else if (ret < 0) {
1322 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1323 			       __func__, rdev_get_name(rdev), ret);
1324 			return ret;
1325 		}
1326 		/* Fallthrough on positive return values - already enabled */
1327 	}
1328 
1329 	rdev->use_count++;
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * regulator_enable - enable regulator output
1336  * @regulator: regulator source
1337  *
1338  * Request that the regulator be enabled with the regulator output at
1339  * the predefined voltage or current value.  Calls to regulator_enable()
1340  * must be balanced with calls to regulator_disable().
1341  *
1342  * NOTE: the output value can be set by other drivers, boot loader or may be
1343  * hardwired in the regulator.
1344  */
1345 int regulator_enable(struct regulator *regulator)
1346 {
1347 	struct regulator_dev *rdev = regulator->rdev;
1348 	int ret = 0;
1349 
1350 	mutex_lock(&rdev->mutex);
1351 	ret = _regulator_enable(rdev);
1352 	mutex_unlock(&rdev->mutex);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(regulator_enable);
1356 
1357 /* locks held by regulator_disable() */
1358 static int _regulator_disable(struct regulator_dev *rdev,
1359 		struct regulator_dev **supply_rdev_ptr)
1360 {
1361 	int ret = 0;
1362 
1363 	if (WARN(rdev->use_count <= 0,
1364 			"unbalanced disables for %s\n",
1365 			rdev_get_name(rdev)))
1366 		return -EIO;
1367 
1368 	/* are we the last user and permitted to disable ? */
1369 	if (rdev->use_count == 1 &&
1370 	    (rdev->constraints && !rdev->constraints->always_on)) {
1371 
1372 		/* we are last user */
1373 		if (_regulator_can_change_status(rdev) &&
1374 		    rdev->desc->ops->disable) {
1375 			ret = rdev->desc->ops->disable(rdev);
1376 			if (ret < 0) {
1377 				printk(KERN_ERR "%s: failed to disable %s\n",
1378 				       __func__, rdev_get_name(rdev));
1379 				return ret;
1380 			}
1381 
1382 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1383 					     NULL);
1384 		}
1385 
1386 		/* decrease our supplies ref count and disable if required */
1387 		*supply_rdev_ptr = rdev->supply;
1388 
1389 		rdev->use_count = 0;
1390 	} else if (rdev->use_count > 1) {
1391 
1392 		if (rdev->constraints &&
1393 			(rdev->constraints->valid_ops_mask &
1394 			REGULATOR_CHANGE_DRMS))
1395 			drms_uA_update(rdev);
1396 
1397 		rdev->use_count--;
1398 	}
1399 	return ret;
1400 }
1401 
1402 /**
1403  * regulator_disable - disable regulator output
1404  * @regulator: regulator source
1405  *
1406  * Disable the regulator output voltage or current.  Calls to
1407  * regulator_enable() must be balanced with calls to
1408  * regulator_disable().
1409  *
1410  * NOTE: this will only disable the regulator output if no other consumer
1411  * devices have it enabled, the regulator device supports disabling and
1412  * machine constraints permit this operation.
1413  */
1414 int regulator_disable(struct regulator *regulator)
1415 {
1416 	struct regulator_dev *rdev = regulator->rdev;
1417 	struct regulator_dev *supply_rdev = NULL;
1418 	int ret = 0;
1419 
1420 	mutex_lock(&rdev->mutex);
1421 	ret = _regulator_disable(rdev, &supply_rdev);
1422 	mutex_unlock(&rdev->mutex);
1423 
1424 	/* decrease our supplies ref count and disable if required */
1425 	while (supply_rdev != NULL) {
1426 		rdev = supply_rdev;
1427 
1428 		mutex_lock(&rdev->mutex);
1429 		_regulator_disable(rdev, &supply_rdev);
1430 		mutex_unlock(&rdev->mutex);
1431 	}
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_disable);
1436 
1437 /* locks held by regulator_force_disable() */
1438 static int _regulator_force_disable(struct regulator_dev *rdev,
1439 		struct regulator_dev **supply_rdev_ptr)
1440 {
1441 	int ret = 0;
1442 
1443 	/* force disable */
1444 	if (rdev->desc->ops->disable) {
1445 		/* ah well, who wants to live forever... */
1446 		ret = rdev->desc->ops->disable(rdev);
1447 		if (ret < 0) {
1448 			printk(KERN_ERR "%s: failed to force disable %s\n",
1449 			       __func__, rdev_get_name(rdev));
1450 			return ret;
1451 		}
1452 		/* notify other consumers that power has been forced off */
1453 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1454 			REGULATOR_EVENT_DISABLE, NULL);
1455 	}
1456 
1457 	/* decrease our supplies ref count and disable if required */
1458 	*supply_rdev_ptr = rdev->supply;
1459 
1460 	rdev->use_count = 0;
1461 	return ret;
1462 }
1463 
1464 /**
1465  * regulator_force_disable - force disable regulator output
1466  * @regulator: regulator source
1467  *
1468  * Forcibly disable the regulator output voltage or current.
1469  * NOTE: this *will* disable the regulator output even if other consumer
1470  * devices have it enabled. This should be used for situations when device
1471  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1472  */
1473 int regulator_force_disable(struct regulator *regulator)
1474 {
1475 	struct regulator_dev *supply_rdev = NULL;
1476 	int ret;
1477 
1478 	mutex_lock(&regulator->rdev->mutex);
1479 	regulator->uA_load = 0;
1480 	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1481 	mutex_unlock(&regulator->rdev->mutex);
1482 
1483 	if (supply_rdev)
1484 		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(regulator_force_disable);
1489 
1490 static int _regulator_is_enabled(struct regulator_dev *rdev)
1491 {
1492 	/* If we don't know then assume that the regulator is always on */
1493 	if (!rdev->desc->ops->is_enabled)
1494 		return 1;
1495 
1496 	return rdev->desc->ops->is_enabled(rdev);
1497 }
1498 
1499 /**
1500  * regulator_is_enabled - is the regulator output enabled
1501  * @regulator: regulator source
1502  *
1503  * Returns positive if the regulator driver backing the source/client
1504  * has requested that the device be enabled, zero if it hasn't, else a
1505  * negative errno code.
1506  *
1507  * Note that the device backing this regulator handle can have multiple
1508  * users, so it might be enabled even if regulator_enable() was never
1509  * called for this particular source.
1510  */
1511 int regulator_is_enabled(struct regulator *regulator)
1512 {
1513 	int ret;
1514 
1515 	mutex_lock(&regulator->rdev->mutex);
1516 	ret = _regulator_is_enabled(regulator->rdev);
1517 	mutex_unlock(&regulator->rdev->mutex);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1522 
1523 /**
1524  * regulator_count_voltages - count regulator_list_voltage() selectors
1525  * @regulator: regulator source
1526  *
1527  * Returns number of selectors, or negative errno.  Selectors are
1528  * numbered starting at zero, and typically correspond to bitfields
1529  * in hardware registers.
1530  */
1531 int regulator_count_voltages(struct regulator *regulator)
1532 {
1533 	struct regulator_dev	*rdev = regulator->rdev;
1534 
1535 	return rdev->desc->n_voltages ? : -EINVAL;
1536 }
1537 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1538 
1539 /**
1540  * regulator_list_voltage - enumerate supported voltages
1541  * @regulator: regulator source
1542  * @selector: identify voltage to list
1543  * Context: can sleep
1544  *
1545  * Returns a voltage that can be passed to @regulator_set_voltage(),
1546  * zero if this selector code can't be used on this system, or a
1547  * negative errno.
1548  */
1549 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1550 {
1551 	struct regulator_dev	*rdev = regulator->rdev;
1552 	struct regulator_ops	*ops = rdev->desc->ops;
1553 	int			ret;
1554 
1555 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1556 		return -EINVAL;
1557 
1558 	mutex_lock(&rdev->mutex);
1559 	ret = ops->list_voltage(rdev, selector);
1560 	mutex_unlock(&rdev->mutex);
1561 
1562 	if (ret > 0) {
1563 		if (ret < rdev->constraints->min_uV)
1564 			ret = 0;
1565 		else if (ret > rdev->constraints->max_uV)
1566 			ret = 0;
1567 	}
1568 
1569 	return ret;
1570 }
1571 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1572 
1573 /**
1574  * regulator_is_supported_voltage - check if a voltage range can be supported
1575  *
1576  * @regulator: Regulator to check.
1577  * @min_uV: Minimum required voltage in uV.
1578  * @max_uV: Maximum required voltage in uV.
1579  *
1580  * Returns a boolean or a negative error code.
1581  */
1582 int regulator_is_supported_voltage(struct regulator *regulator,
1583 				   int min_uV, int max_uV)
1584 {
1585 	int i, voltages, ret;
1586 
1587 	ret = regulator_count_voltages(regulator);
1588 	if (ret < 0)
1589 		return ret;
1590 	voltages = ret;
1591 
1592 	for (i = 0; i < voltages; i++) {
1593 		ret = regulator_list_voltage(regulator, i);
1594 
1595 		if (ret >= min_uV && ret <= max_uV)
1596 			return 1;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 /**
1603  * regulator_set_voltage - set regulator output voltage
1604  * @regulator: regulator source
1605  * @min_uV: Minimum required voltage in uV
1606  * @max_uV: Maximum acceptable voltage in uV
1607  *
1608  * Sets a voltage regulator to the desired output voltage. This can be set
1609  * during any regulator state. IOW, regulator can be disabled or enabled.
1610  *
1611  * If the regulator is enabled then the voltage will change to the new value
1612  * immediately otherwise if the regulator is disabled the regulator will
1613  * output at the new voltage when enabled.
1614  *
1615  * NOTE: If the regulator is shared between several devices then the lowest
1616  * request voltage that meets the system constraints will be used.
1617  * Regulator system constraints must be set for this regulator before
1618  * calling this function otherwise this call will fail.
1619  */
1620 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1621 {
1622 	struct regulator_dev *rdev = regulator->rdev;
1623 	int ret;
1624 
1625 	mutex_lock(&rdev->mutex);
1626 
1627 	/* sanity check */
1628 	if (!rdev->desc->ops->set_voltage) {
1629 		ret = -EINVAL;
1630 		goto out;
1631 	}
1632 
1633 	/* constraints check */
1634 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1635 	if (ret < 0)
1636 		goto out;
1637 	regulator->min_uV = min_uV;
1638 	regulator->max_uV = max_uV;
1639 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1640 
1641 out:
1642 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1643 	mutex_unlock(&rdev->mutex);
1644 	return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1647 
1648 static int _regulator_get_voltage(struct regulator_dev *rdev)
1649 {
1650 	/* sanity check */
1651 	if (rdev->desc->ops->get_voltage)
1652 		return rdev->desc->ops->get_voltage(rdev);
1653 	else
1654 		return -EINVAL;
1655 }
1656 
1657 /**
1658  * regulator_get_voltage - get regulator output voltage
1659  * @regulator: regulator source
1660  *
1661  * This returns the current regulator voltage in uV.
1662  *
1663  * NOTE: If the regulator is disabled it will return the voltage value. This
1664  * function should not be used to determine regulator state.
1665  */
1666 int regulator_get_voltage(struct regulator *regulator)
1667 {
1668 	int ret;
1669 
1670 	mutex_lock(&regulator->rdev->mutex);
1671 
1672 	ret = _regulator_get_voltage(regulator->rdev);
1673 
1674 	mutex_unlock(&regulator->rdev->mutex);
1675 
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1679 
1680 /**
1681  * regulator_set_current_limit - set regulator output current limit
1682  * @regulator: regulator source
1683  * @min_uA: Minimuum supported current in uA
1684  * @max_uA: Maximum supported current in uA
1685  *
1686  * Sets current sink to the desired output current. This can be set during
1687  * any regulator state. IOW, regulator can be disabled or enabled.
1688  *
1689  * If the regulator is enabled then the current will change to the new value
1690  * immediately otherwise if the regulator is disabled the regulator will
1691  * output at the new current when enabled.
1692  *
1693  * NOTE: Regulator system constraints must be set for this regulator before
1694  * calling this function otherwise this call will fail.
1695  */
1696 int regulator_set_current_limit(struct regulator *regulator,
1697 			       int min_uA, int max_uA)
1698 {
1699 	struct regulator_dev *rdev = regulator->rdev;
1700 	int ret;
1701 
1702 	mutex_lock(&rdev->mutex);
1703 
1704 	/* sanity check */
1705 	if (!rdev->desc->ops->set_current_limit) {
1706 		ret = -EINVAL;
1707 		goto out;
1708 	}
1709 
1710 	/* constraints check */
1711 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1712 	if (ret < 0)
1713 		goto out;
1714 
1715 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1716 out:
1717 	mutex_unlock(&rdev->mutex);
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1721 
1722 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1723 {
1724 	int ret;
1725 
1726 	mutex_lock(&rdev->mutex);
1727 
1728 	/* sanity check */
1729 	if (!rdev->desc->ops->get_current_limit) {
1730 		ret = -EINVAL;
1731 		goto out;
1732 	}
1733 
1734 	ret = rdev->desc->ops->get_current_limit(rdev);
1735 out:
1736 	mutex_unlock(&rdev->mutex);
1737 	return ret;
1738 }
1739 
1740 /**
1741  * regulator_get_current_limit - get regulator output current
1742  * @regulator: regulator source
1743  *
1744  * This returns the current supplied by the specified current sink in uA.
1745  *
1746  * NOTE: If the regulator is disabled it will return the current value. This
1747  * function should not be used to determine regulator state.
1748  */
1749 int regulator_get_current_limit(struct regulator *regulator)
1750 {
1751 	return _regulator_get_current_limit(regulator->rdev);
1752 }
1753 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1754 
1755 /**
1756  * regulator_set_mode - set regulator operating mode
1757  * @regulator: regulator source
1758  * @mode: operating mode - one of the REGULATOR_MODE constants
1759  *
1760  * Set regulator operating mode to increase regulator efficiency or improve
1761  * regulation performance.
1762  *
1763  * NOTE: Regulator system constraints must be set for this regulator before
1764  * calling this function otherwise this call will fail.
1765  */
1766 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1767 {
1768 	struct regulator_dev *rdev = regulator->rdev;
1769 	int ret;
1770 	int regulator_curr_mode;
1771 
1772 	mutex_lock(&rdev->mutex);
1773 
1774 	/* sanity check */
1775 	if (!rdev->desc->ops->set_mode) {
1776 		ret = -EINVAL;
1777 		goto out;
1778 	}
1779 
1780 	/* return if the same mode is requested */
1781 	if (rdev->desc->ops->get_mode) {
1782 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1783 		if (regulator_curr_mode == mode) {
1784 			ret = 0;
1785 			goto out;
1786 		}
1787 	}
1788 
1789 	/* constraints check */
1790 	ret = regulator_check_mode(rdev, mode);
1791 	if (ret < 0)
1792 		goto out;
1793 
1794 	ret = rdev->desc->ops->set_mode(rdev, mode);
1795 out:
1796 	mutex_unlock(&rdev->mutex);
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_set_mode);
1800 
1801 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1802 {
1803 	int ret;
1804 
1805 	mutex_lock(&rdev->mutex);
1806 
1807 	/* sanity check */
1808 	if (!rdev->desc->ops->get_mode) {
1809 		ret = -EINVAL;
1810 		goto out;
1811 	}
1812 
1813 	ret = rdev->desc->ops->get_mode(rdev);
1814 out:
1815 	mutex_unlock(&rdev->mutex);
1816 	return ret;
1817 }
1818 
1819 /**
1820  * regulator_get_mode - get regulator operating mode
1821  * @regulator: regulator source
1822  *
1823  * Get the current regulator operating mode.
1824  */
1825 unsigned int regulator_get_mode(struct regulator *regulator)
1826 {
1827 	return _regulator_get_mode(regulator->rdev);
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_get_mode);
1830 
1831 /**
1832  * regulator_set_optimum_mode - set regulator optimum operating mode
1833  * @regulator: regulator source
1834  * @uA_load: load current
1835  *
1836  * Notifies the regulator core of a new device load. This is then used by
1837  * DRMS (if enabled by constraints) to set the most efficient regulator
1838  * operating mode for the new regulator loading.
1839  *
1840  * Consumer devices notify their supply regulator of the maximum power
1841  * they will require (can be taken from device datasheet in the power
1842  * consumption tables) when they change operational status and hence power
1843  * state. Examples of operational state changes that can affect power
1844  * consumption are :-
1845  *
1846  *    o Device is opened / closed.
1847  *    o Device I/O is about to begin or has just finished.
1848  *    o Device is idling in between work.
1849  *
1850  * This information is also exported via sysfs to userspace.
1851  *
1852  * DRMS will sum the total requested load on the regulator and change
1853  * to the most efficient operating mode if platform constraints allow.
1854  *
1855  * Returns the new regulator mode or error.
1856  */
1857 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1858 {
1859 	struct regulator_dev *rdev = regulator->rdev;
1860 	struct regulator *consumer;
1861 	int ret, output_uV, input_uV, total_uA_load = 0;
1862 	unsigned int mode;
1863 
1864 	mutex_lock(&rdev->mutex);
1865 
1866 	regulator->uA_load = uA_load;
1867 	ret = regulator_check_drms(rdev);
1868 	if (ret < 0)
1869 		goto out;
1870 	ret = -EINVAL;
1871 
1872 	/* sanity check */
1873 	if (!rdev->desc->ops->get_optimum_mode)
1874 		goto out;
1875 
1876 	/* get output voltage */
1877 	output_uV = rdev->desc->ops->get_voltage(rdev);
1878 	if (output_uV <= 0) {
1879 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1880 			__func__, rdev_get_name(rdev));
1881 		goto out;
1882 	}
1883 
1884 	/* get input voltage */
1885 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1886 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1887 	else
1888 		input_uV = rdev->constraints->input_uV;
1889 	if (input_uV <= 0) {
1890 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1891 			__func__, rdev_get_name(rdev));
1892 		goto out;
1893 	}
1894 
1895 	/* calc total requested load for this regulator */
1896 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1897 		total_uA_load += consumer->uA_load;
1898 
1899 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1900 						 input_uV, output_uV,
1901 						 total_uA_load);
1902 	ret = regulator_check_mode(rdev, mode);
1903 	if (ret < 0) {
1904 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1905 			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1906 			total_uA_load, input_uV, output_uV);
1907 		goto out;
1908 	}
1909 
1910 	ret = rdev->desc->ops->set_mode(rdev, mode);
1911 	if (ret < 0) {
1912 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1913 			__func__, mode, rdev_get_name(rdev));
1914 		goto out;
1915 	}
1916 	ret = mode;
1917 out:
1918 	mutex_unlock(&rdev->mutex);
1919 	return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1922 
1923 /**
1924  * regulator_register_notifier - register regulator event notifier
1925  * @regulator: regulator source
1926  * @nb: notifier block
1927  *
1928  * Register notifier block to receive regulator events.
1929  */
1930 int regulator_register_notifier(struct regulator *regulator,
1931 			      struct notifier_block *nb)
1932 {
1933 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1934 						nb);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1937 
1938 /**
1939  * regulator_unregister_notifier - unregister regulator event notifier
1940  * @regulator: regulator source
1941  * @nb: notifier block
1942  *
1943  * Unregister regulator event notifier block.
1944  */
1945 int regulator_unregister_notifier(struct regulator *regulator,
1946 				struct notifier_block *nb)
1947 {
1948 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1949 						  nb);
1950 }
1951 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1952 
1953 /* notify regulator consumers and downstream regulator consumers.
1954  * Note mutex must be held by caller.
1955  */
1956 static void _notifier_call_chain(struct regulator_dev *rdev,
1957 				  unsigned long event, void *data)
1958 {
1959 	struct regulator_dev *_rdev;
1960 
1961 	/* call rdev chain first */
1962 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1963 
1964 	/* now notify regulator we supply */
1965 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1966 		mutex_lock(&_rdev->mutex);
1967 		_notifier_call_chain(_rdev, event, data);
1968 		mutex_unlock(&_rdev->mutex);
1969 	}
1970 }
1971 
1972 /**
1973  * regulator_bulk_get - get multiple regulator consumers
1974  *
1975  * @dev:           Device to supply
1976  * @num_consumers: Number of consumers to register
1977  * @consumers:     Configuration of consumers; clients are stored here.
1978  *
1979  * @return 0 on success, an errno on failure.
1980  *
1981  * This helper function allows drivers to get several regulator
1982  * consumers in one operation.  If any of the regulators cannot be
1983  * acquired then any regulators that were allocated will be freed
1984  * before returning to the caller.
1985  */
1986 int regulator_bulk_get(struct device *dev, int num_consumers,
1987 		       struct regulator_bulk_data *consumers)
1988 {
1989 	int i;
1990 	int ret;
1991 
1992 	for (i = 0; i < num_consumers; i++)
1993 		consumers[i].consumer = NULL;
1994 
1995 	for (i = 0; i < num_consumers; i++) {
1996 		consumers[i].consumer = regulator_get(dev,
1997 						      consumers[i].supply);
1998 		if (IS_ERR(consumers[i].consumer)) {
1999 			ret = PTR_ERR(consumers[i].consumer);
2000 			dev_err(dev, "Failed to get supply '%s': %d\n",
2001 				consumers[i].supply, ret);
2002 			consumers[i].consumer = NULL;
2003 			goto err;
2004 		}
2005 	}
2006 
2007 	return 0;
2008 
2009 err:
2010 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2011 		regulator_put(consumers[i].consumer);
2012 
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2016 
2017 /**
2018  * regulator_bulk_enable - enable multiple regulator consumers
2019  *
2020  * @num_consumers: Number of consumers
2021  * @consumers:     Consumer data; clients are stored here.
2022  * @return         0 on success, an errno on failure
2023  *
2024  * This convenience API allows consumers to enable multiple regulator
2025  * clients in a single API call.  If any consumers cannot be enabled
2026  * then any others that were enabled will be disabled again prior to
2027  * return.
2028  */
2029 int regulator_bulk_enable(int num_consumers,
2030 			  struct regulator_bulk_data *consumers)
2031 {
2032 	int i;
2033 	int ret;
2034 
2035 	for (i = 0; i < num_consumers; i++) {
2036 		ret = regulator_enable(consumers[i].consumer);
2037 		if (ret != 0)
2038 			goto err;
2039 	}
2040 
2041 	return 0;
2042 
2043 err:
2044 	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2045 	for (--i; i >= 0; --i)
2046 		regulator_disable(consumers[i].consumer);
2047 
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2051 
2052 /**
2053  * regulator_bulk_disable - disable multiple regulator consumers
2054  *
2055  * @num_consumers: Number of consumers
2056  * @consumers:     Consumer data; clients are stored here.
2057  * @return         0 on success, an errno on failure
2058  *
2059  * This convenience API allows consumers to disable multiple regulator
2060  * clients in a single API call.  If any consumers cannot be enabled
2061  * then any others that were disabled will be disabled again prior to
2062  * return.
2063  */
2064 int regulator_bulk_disable(int num_consumers,
2065 			   struct regulator_bulk_data *consumers)
2066 {
2067 	int i;
2068 	int ret;
2069 
2070 	for (i = 0; i < num_consumers; i++) {
2071 		ret = regulator_disable(consumers[i].consumer);
2072 		if (ret != 0)
2073 			goto err;
2074 	}
2075 
2076 	return 0;
2077 
2078 err:
2079 	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2080 	       ret);
2081 	for (--i; i >= 0; --i)
2082 		regulator_enable(consumers[i].consumer);
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2087 
2088 /**
2089  * regulator_bulk_free - free multiple regulator consumers
2090  *
2091  * @num_consumers: Number of consumers
2092  * @consumers:     Consumer data; clients are stored here.
2093  *
2094  * This convenience API allows consumers to free multiple regulator
2095  * clients in a single API call.
2096  */
2097 void regulator_bulk_free(int num_consumers,
2098 			 struct regulator_bulk_data *consumers)
2099 {
2100 	int i;
2101 
2102 	for (i = 0; i < num_consumers; i++) {
2103 		regulator_put(consumers[i].consumer);
2104 		consumers[i].consumer = NULL;
2105 	}
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2108 
2109 /**
2110  * regulator_notifier_call_chain - call regulator event notifier
2111  * @rdev: regulator source
2112  * @event: notifier block
2113  * @data: callback-specific data.
2114  *
2115  * Called by regulator drivers to notify clients a regulator event has
2116  * occurred. We also notify regulator clients downstream.
2117  * Note lock must be held by caller.
2118  */
2119 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2120 				  unsigned long event, void *data)
2121 {
2122 	_notifier_call_chain(rdev, event, data);
2123 	return NOTIFY_DONE;
2124 
2125 }
2126 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2127 
2128 /**
2129  * regulator_mode_to_status - convert a regulator mode into a status
2130  *
2131  * @mode: Mode to convert
2132  *
2133  * Convert a regulator mode into a status.
2134  */
2135 int regulator_mode_to_status(unsigned int mode)
2136 {
2137 	switch (mode) {
2138 	case REGULATOR_MODE_FAST:
2139 		return REGULATOR_STATUS_FAST;
2140 	case REGULATOR_MODE_NORMAL:
2141 		return REGULATOR_STATUS_NORMAL;
2142 	case REGULATOR_MODE_IDLE:
2143 		return REGULATOR_STATUS_IDLE;
2144 	case REGULATOR_STATUS_STANDBY:
2145 		return REGULATOR_STATUS_STANDBY;
2146 	default:
2147 		return 0;
2148 	}
2149 }
2150 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2151 
2152 /*
2153  * To avoid cluttering sysfs (and memory) with useless state, only
2154  * create attributes that can be meaningfully displayed.
2155  */
2156 static int add_regulator_attributes(struct regulator_dev *rdev)
2157 {
2158 	struct device		*dev = &rdev->dev;
2159 	struct regulator_ops	*ops = rdev->desc->ops;
2160 	int			status = 0;
2161 
2162 	/* some attributes need specific methods to be displayed */
2163 	if (ops->get_voltage) {
2164 		status = device_create_file(dev, &dev_attr_microvolts);
2165 		if (status < 0)
2166 			return status;
2167 	}
2168 	if (ops->get_current_limit) {
2169 		status = device_create_file(dev, &dev_attr_microamps);
2170 		if (status < 0)
2171 			return status;
2172 	}
2173 	if (ops->get_mode) {
2174 		status = device_create_file(dev, &dev_attr_opmode);
2175 		if (status < 0)
2176 			return status;
2177 	}
2178 	if (ops->is_enabled) {
2179 		status = device_create_file(dev, &dev_attr_state);
2180 		if (status < 0)
2181 			return status;
2182 	}
2183 	if (ops->get_status) {
2184 		status = device_create_file(dev, &dev_attr_status);
2185 		if (status < 0)
2186 			return status;
2187 	}
2188 
2189 	/* some attributes are type-specific */
2190 	if (rdev->desc->type == REGULATOR_CURRENT) {
2191 		status = device_create_file(dev, &dev_attr_requested_microamps);
2192 		if (status < 0)
2193 			return status;
2194 	}
2195 
2196 	/* all the other attributes exist to support constraints;
2197 	 * don't show them if there are no constraints, or if the
2198 	 * relevant supporting methods are missing.
2199 	 */
2200 	if (!rdev->constraints)
2201 		return status;
2202 
2203 	/* constraints need specific supporting methods */
2204 	if (ops->set_voltage) {
2205 		status = device_create_file(dev, &dev_attr_min_microvolts);
2206 		if (status < 0)
2207 			return status;
2208 		status = device_create_file(dev, &dev_attr_max_microvolts);
2209 		if (status < 0)
2210 			return status;
2211 	}
2212 	if (ops->set_current_limit) {
2213 		status = device_create_file(dev, &dev_attr_min_microamps);
2214 		if (status < 0)
2215 			return status;
2216 		status = device_create_file(dev, &dev_attr_max_microamps);
2217 		if (status < 0)
2218 			return status;
2219 	}
2220 
2221 	/* suspend mode constraints need multiple supporting methods */
2222 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2223 		return status;
2224 
2225 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2226 	if (status < 0)
2227 		return status;
2228 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2229 	if (status < 0)
2230 		return status;
2231 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2232 	if (status < 0)
2233 		return status;
2234 
2235 	if (ops->set_suspend_voltage) {
2236 		status = device_create_file(dev,
2237 				&dev_attr_suspend_standby_microvolts);
2238 		if (status < 0)
2239 			return status;
2240 		status = device_create_file(dev,
2241 				&dev_attr_suspend_mem_microvolts);
2242 		if (status < 0)
2243 			return status;
2244 		status = device_create_file(dev,
2245 				&dev_attr_suspend_disk_microvolts);
2246 		if (status < 0)
2247 			return status;
2248 	}
2249 
2250 	if (ops->set_suspend_mode) {
2251 		status = device_create_file(dev,
2252 				&dev_attr_suspend_standby_mode);
2253 		if (status < 0)
2254 			return status;
2255 		status = device_create_file(dev,
2256 				&dev_attr_suspend_mem_mode);
2257 		if (status < 0)
2258 			return status;
2259 		status = device_create_file(dev,
2260 				&dev_attr_suspend_disk_mode);
2261 		if (status < 0)
2262 			return status;
2263 	}
2264 
2265 	return status;
2266 }
2267 
2268 /**
2269  * regulator_register - register regulator
2270  * @regulator_desc: regulator to register
2271  * @dev: struct device for the regulator
2272  * @init_data: platform provided init data, passed through by driver
2273  * @driver_data: private regulator data
2274  *
2275  * Called by regulator drivers to register a regulator.
2276  * Returns 0 on success.
2277  */
2278 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2279 	struct device *dev, struct regulator_init_data *init_data,
2280 	void *driver_data)
2281 {
2282 	static atomic_t regulator_no = ATOMIC_INIT(0);
2283 	struct regulator_dev *rdev;
2284 	int ret, i;
2285 
2286 	if (regulator_desc == NULL)
2287 		return ERR_PTR(-EINVAL);
2288 
2289 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2290 		return ERR_PTR(-EINVAL);
2291 
2292 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2293 	    regulator_desc->type != REGULATOR_CURRENT)
2294 		return ERR_PTR(-EINVAL);
2295 
2296 	if (!init_data)
2297 		return ERR_PTR(-EINVAL);
2298 
2299 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2300 	if (rdev == NULL)
2301 		return ERR_PTR(-ENOMEM);
2302 
2303 	mutex_lock(&regulator_list_mutex);
2304 
2305 	mutex_init(&rdev->mutex);
2306 	rdev->reg_data = driver_data;
2307 	rdev->owner = regulator_desc->owner;
2308 	rdev->desc = regulator_desc;
2309 	INIT_LIST_HEAD(&rdev->consumer_list);
2310 	INIT_LIST_HEAD(&rdev->supply_list);
2311 	INIT_LIST_HEAD(&rdev->list);
2312 	INIT_LIST_HEAD(&rdev->slist);
2313 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2314 
2315 	/* preform any regulator specific init */
2316 	if (init_data->regulator_init) {
2317 		ret = init_data->regulator_init(rdev->reg_data);
2318 		if (ret < 0)
2319 			goto clean;
2320 	}
2321 
2322 	/* register with sysfs */
2323 	rdev->dev.class = &regulator_class;
2324 	rdev->dev.parent = dev;
2325 	dev_set_name(&rdev->dev, "regulator.%d",
2326 		     atomic_inc_return(&regulator_no) - 1);
2327 	ret = device_register(&rdev->dev);
2328 	if (ret != 0) {
2329 		put_device(&rdev->dev);
2330 		goto clean;
2331 	}
2332 
2333 	dev_set_drvdata(&rdev->dev, rdev);
2334 
2335 	/* set regulator constraints */
2336 	ret = set_machine_constraints(rdev, &init_data->constraints);
2337 	if (ret < 0)
2338 		goto scrub;
2339 
2340 	/* add attributes supported by this regulator */
2341 	ret = add_regulator_attributes(rdev);
2342 	if (ret < 0)
2343 		goto scrub;
2344 
2345 	/* set supply regulator if it exists */
2346 	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2347 		dev_err(dev,
2348 			"Supply regulator specified by both name and dev\n");
2349 		goto scrub;
2350 	}
2351 
2352 	if (init_data->supply_regulator) {
2353 		struct regulator_dev *r;
2354 		int found = 0;
2355 
2356 		list_for_each_entry(r, &regulator_list, list) {
2357 			if (strcmp(rdev_get_name(r),
2358 				   init_data->supply_regulator) == 0) {
2359 				found = 1;
2360 				break;
2361 			}
2362 		}
2363 
2364 		if (!found) {
2365 			dev_err(dev, "Failed to find supply %s\n",
2366 				init_data->supply_regulator);
2367 			goto scrub;
2368 		}
2369 
2370 		ret = set_supply(rdev, r);
2371 		if (ret < 0)
2372 			goto scrub;
2373 	}
2374 
2375 	if (init_data->supply_regulator_dev) {
2376 		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2377 		ret = set_supply(rdev,
2378 			dev_get_drvdata(init_data->supply_regulator_dev));
2379 		if (ret < 0)
2380 			goto scrub;
2381 	}
2382 
2383 	/* add consumers devices */
2384 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2385 		ret = set_consumer_device_supply(rdev,
2386 			init_data->consumer_supplies[i].dev,
2387 			init_data->consumer_supplies[i].dev_name,
2388 			init_data->consumer_supplies[i].supply);
2389 		if (ret < 0)
2390 			goto unset_supplies;
2391 	}
2392 
2393 	list_add(&rdev->list, &regulator_list);
2394 out:
2395 	mutex_unlock(&regulator_list_mutex);
2396 	return rdev;
2397 
2398 unset_supplies:
2399 	unset_regulator_supplies(rdev);
2400 
2401 scrub:
2402 	device_unregister(&rdev->dev);
2403 	/* device core frees rdev */
2404 	rdev = ERR_PTR(ret);
2405 	goto out;
2406 
2407 clean:
2408 	kfree(rdev);
2409 	rdev = ERR_PTR(ret);
2410 	goto out;
2411 }
2412 EXPORT_SYMBOL_GPL(regulator_register);
2413 
2414 /**
2415  * regulator_unregister - unregister regulator
2416  * @rdev: regulator to unregister
2417  *
2418  * Called by regulator drivers to unregister a regulator.
2419  */
2420 void regulator_unregister(struct regulator_dev *rdev)
2421 {
2422 	if (rdev == NULL)
2423 		return;
2424 
2425 	mutex_lock(&regulator_list_mutex);
2426 	WARN_ON(rdev->open_count);
2427 	unset_regulator_supplies(rdev);
2428 	list_del(&rdev->list);
2429 	if (rdev->supply)
2430 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2431 	device_unregister(&rdev->dev);
2432 	mutex_unlock(&regulator_list_mutex);
2433 }
2434 EXPORT_SYMBOL_GPL(regulator_unregister);
2435 
2436 /**
2437  * regulator_suspend_prepare - prepare regulators for system wide suspend
2438  * @state: system suspend state
2439  *
2440  * Configure each regulator with it's suspend operating parameters for state.
2441  * This will usually be called by machine suspend code prior to supending.
2442  */
2443 int regulator_suspend_prepare(suspend_state_t state)
2444 {
2445 	struct regulator_dev *rdev;
2446 	int ret = 0;
2447 
2448 	/* ON is handled by regulator active state */
2449 	if (state == PM_SUSPEND_ON)
2450 		return -EINVAL;
2451 
2452 	mutex_lock(&regulator_list_mutex);
2453 	list_for_each_entry(rdev, &regulator_list, list) {
2454 
2455 		mutex_lock(&rdev->mutex);
2456 		ret = suspend_prepare(rdev, state);
2457 		mutex_unlock(&rdev->mutex);
2458 
2459 		if (ret < 0) {
2460 			printk(KERN_ERR "%s: failed to prepare %s\n",
2461 				__func__, rdev_get_name(rdev));
2462 			goto out;
2463 		}
2464 	}
2465 out:
2466 	mutex_unlock(&regulator_list_mutex);
2467 	return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2470 
2471 /**
2472  * regulator_has_full_constraints - the system has fully specified constraints
2473  *
2474  * Calling this function will cause the regulator API to disable all
2475  * regulators which have a zero use count and don't have an always_on
2476  * constraint in a late_initcall.
2477  *
2478  * The intention is that this will become the default behaviour in a
2479  * future kernel release so users are encouraged to use this facility
2480  * now.
2481  */
2482 void regulator_has_full_constraints(void)
2483 {
2484 	has_full_constraints = 1;
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2487 
2488 /**
2489  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2490  *
2491  * Calling this function will cause the regulator API to provide a
2492  * dummy regulator to consumers if no physical regulator is found,
2493  * allowing most consumers to proceed as though a regulator were
2494  * configured.  This allows systems such as those with software
2495  * controllable regulators for the CPU core only to be brought up more
2496  * readily.
2497  */
2498 void regulator_use_dummy_regulator(void)
2499 {
2500 	board_wants_dummy_regulator = true;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2503 
2504 /**
2505  * rdev_get_drvdata - get rdev regulator driver data
2506  * @rdev: regulator
2507  *
2508  * Get rdev regulator driver private data. This call can be used in the
2509  * regulator driver context.
2510  */
2511 void *rdev_get_drvdata(struct regulator_dev *rdev)
2512 {
2513 	return rdev->reg_data;
2514 }
2515 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2516 
2517 /**
2518  * regulator_get_drvdata - get regulator driver data
2519  * @regulator: regulator
2520  *
2521  * Get regulator driver private data. This call can be used in the consumer
2522  * driver context when non API regulator specific functions need to be called.
2523  */
2524 void *regulator_get_drvdata(struct regulator *regulator)
2525 {
2526 	return regulator->rdev->reg_data;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2529 
2530 /**
2531  * regulator_set_drvdata - set regulator driver data
2532  * @regulator: regulator
2533  * @data: data
2534  */
2535 void regulator_set_drvdata(struct regulator *regulator, void *data)
2536 {
2537 	regulator->rdev->reg_data = data;
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2540 
2541 /**
2542  * regulator_get_id - get regulator ID
2543  * @rdev: regulator
2544  */
2545 int rdev_get_id(struct regulator_dev *rdev)
2546 {
2547 	return rdev->desc->id;
2548 }
2549 EXPORT_SYMBOL_GPL(rdev_get_id);
2550 
2551 struct device *rdev_get_dev(struct regulator_dev *rdev)
2552 {
2553 	return &rdev->dev;
2554 }
2555 EXPORT_SYMBOL_GPL(rdev_get_dev);
2556 
2557 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2558 {
2559 	return reg_init_data->driver_data;
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2562 
2563 static int __init regulator_init(void)
2564 {
2565 	int ret;
2566 
2567 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2568 
2569 	ret = class_register(&regulator_class);
2570 
2571 	regulator_dummy_init();
2572 
2573 	return ret;
2574 }
2575 
2576 /* init early to allow our consumers to complete system booting */
2577 core_initcall(regulator_init);
2578 
2579 static int __init regulator_init_complete(void)
2580 {
2581 	struct regulator_dev *rdev;
2582 	struct regulator_ops *ops;
2583 	struct regulation_constraints *c;
2584 	int enabled, ret;
2585 	const char *name;
2586 
2587 	mutex_lock(&regulator_list_mutex);
2588 
2589 	/* If we have a full configuration then disable any regulators
2590 	 * which are not in use or always_on.  This will become the
2591 	 * default behaviour in the future.
2592 	 */
2593 	list_for_each_entry(rdev, &regulator_list, list) {
2594 		ops = rdev->desc->ops;
2595 		c = rdev->constraints;
2596 
2597 		name = rdev_get_name(rdev);
2598 
2599 		if (!ops->disable || (c && c->always_on))
2600 			continue;
2601 
2602 		mutex_lock(&rdev->mutex);
2603 
2604 		if (rdev->use_count)
2605 			goto unlock;
2606 
2607 		/* If we can't read the status assume it's on. */
2608 		if (ops->is_enabled)
2609 			enabled = ops->is_enabled(rdev);
2610 		else
2611 			enabled = 1;
2612 
2613 		if (!enabled)
2614 			goto unlock;
2615 
2616 		if (has_full_constraints) {
2617 			/* We log since this may kill the system if it
2618 			 * goes wrong. */
2619 			printk(KERN_INFO "%s: disabling %s\n",
2620 			       __func__, name);
2621 			ret = ops->disable(rdev);
2622 			if (ret != 0) {
2623 				printk(KERN_ERR
2624 				       "%s: couldn't disable %s: %d\n",
2625 				       __func__, name, ret);
2626 			}
2627 		} else {
2628 			/* The intention is that in future we will
2629 			 * assume that full constraints are provided
2630 			 * so warn even if we aren't going to do
2631 			 * anything here.
2632 			 */
2633 			printk(KERN_WARNING
2634 			       "%s: incomplete constraints, leaving %s on\n",
2635 			       __func__, name);
2636 		}
2637 
2638 unlock:
2639 		mutex_unlock(&rdev->mutex);
2640 	}
2641 
2642 	mutex_unlock(&regulator_list_mutex);
2643 
2644 	return 0;
2645 }
2646 late_initcall(regulator_init_complete);
2647