xref: /linux/drivers/regulator/core.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57 
58 static struct dentry *debugfs_root;
59 
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66 	struct list_head list;
67 	const char *dev_name;   /* The dev_name() for the consumer */
68 	const char *supply;
69 	struct regulator_dev *regulator;
70 };
71 
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78 	struct list_head list;
79 	int gpio;
80 	u32 enable_count;	/* a number of enabled shared GPIO */
81 	u32 request_count;	/* a number of requested shared GPIO */
82 	unsigned int ena_gpio_invert:1;
83 };
84 
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91 	struct device *dev;
92 	struct list_head list;
93 	unsigned int always_on:1;
94 	unsigned int bypass:1;
95 	int uA_load;
96 	int min_uV;
97 	int max_uV;
98 	char *supply_name;
99 	struct device_attribute dev_attr;
100 	struct regulator_dev *rdev;
101 	struct dentry *debugfs;
102 };
103 
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 				  unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 				     int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 					  struct device *dev,
115 					  const char *supply_name);
116 
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 	if (rdev->constraints && rdev->constraints->name)
120 		return rdev->constraints->name;
121 	else if (rdev->desc->name)
122 		return rdev->desc->name;
123 	else
124 		return "";
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t regulator_name_show(struct device *dev,
327 			     struct device_attribute *attr, char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336 	switch (mode) {
337 	case REGULATOR_MODE_FAST:
338 		return sprintf(buf, "fast\n");
339 	case REGULATOR_MODE_NORMAL:
340 		return sprintf(buf, "normal\n");
341 	case REGULATOR_MODE_IDLE:
342 		return sprintf(buf, "idle\n");
343 	case REGULATOR_MODE_STANDBY:
344 		return sprintf(buf, "standby\n");
345 	}
346 	return sprintf(buf, "unknown\n");
347 }
348 
349 static ssize_t regulator_opmode_show(struct device *dev,
350 				    struct device_attribute *attr, char *buf)
351 {
352 	struct regulator_dev *rdev = dev_get_drvdata(dev);
353 
354 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357 
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360 	if (state > 0)
361 		return sprintf(buf, "enabled\n");
362 	else if (state == 0)
363 		return sprintf(buf, "disabled\n");
364 	else
365 		return sprintf(buf, "unknown\n");
366 }
367 
368 static ssize_t regulator_state_show(struct device *dev,
369 				   struct device_attribute *attr, char *buf)
370 {
371 	struct regulator_dev *rdev = dev_get_drvdata(dev);
372 	ssize_t ret;
373 
374 	mutex_lock(&rdev->mutex);
375 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 	mutex_unlock(&rdev->mutex);
377 
378 	return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381 
382 static ssize_t regulator_status_show(struct device *dev,
383 				   struct device_attribute *attr, char *buf)
384 {
385 	struct regulator_dev *rdev = dev_get_drvdata(dev);
386 	int status;
387 	char *label;
388 
389 	status = rdev->desc->ops->get_status(rdev);
390 	if (status < 0)
391 		return status;
392 
393 	switch (status) {
394 	case REGULATOR_STATUS_OFF:
395 		label = "off";
396 		break;
397 	case REGULATOR_STATUS_ON:
398 		label = "on";
399 		break;
400 	case REGULATOR_STATUS_ERROR:
401 		label = "error";
402 		break;
403 	case REGULATOR_STATUS_FAST:
404 		label = "fast";
405 		break;
406 	case REGULATOR_STATUS_NORMAL:
407 		label = "normal";
408 		break;
409 	case REGULATOR_STATUS_IDLE:
410 		label = "idle";
411 		break;
412 	case REGULATOR_STATUS_STANDBY:
413 		label = "standby";
414 		break;
415 	case REGULATOR_STATUS_BYPASS:
416 		label = "bypass";
417 		break;
418 	case REGULATOR_STATUS_UNDEFINED:
419 		label = "undefined";
420 		break;
421 	default:
422 		return -ERANGE;
423 	}
424 
425 	return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428 
429 static ssize_t regulator_min_uA_show(struct device *dev,
430 				    struct device_attribute *attr, char *buf)
431 {
432 	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 
434 	if (!rdev->constraints)
435 		return sprintf(buf, "constraint not defined\n");
436 
437 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440 
441 static ssize_t regulator_max_uA_show(struct device *dev,
442 				    struct device_attribute *attr, char *buf)
443 {
444 	struct regulator_dev *rdev = dev_get_drvdata(dev);
445 
446 	if (!rdev->constraints)
447 		return sprintf(buf, "constraint not defined\n");
448 
449 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452 
453 static ssize_t regulator_min_uV_show(struct device *dev,
454 				    struct device_attribute *attr, char *buf)
455 {
456 	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 
458 	if (!rdev->constraints)
459 		return sprintf(buf, "constraint not defined\n");
460 
461 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464 
465 static ssize_t regulator_max_uV_show(struct device *dev,
466 				    struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	if (!rdev->constraints)
471 		return sprintf(buf, "constraint not defined\n");
472 
473 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476 
477 static ssize_t regulator_total_uA_show(struct device *dev,
478 				      struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 	struct regulator *regulator;
482 	int uA = 0;
483 
484 	mutex_lock(&rdev->mutex);
485 	list_for_each_entry(regulator, &rdev->consumer_list, list)
486 		uA += regulator->uA_load;
487 	mutex_unlock(&rdev->mutex);
488 	return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491 
492 static ssize_t regulator_num_users_show(struct device *dev,
493 				      struct device_attribute *attr, char *buf)
494 {
495 	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 	return sprintf(buf, "%d\n", rdev->use_count);
497 }
498 
499 static ssize_t regulator_type_show(struct device *dev,
500 				  struct device_attribute *attr, char *buf)
501 {
502 	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 
504 	switch (rdev->desc->type) {
505 	case REGULATOR_VOLTAGE:
506 		return sprintf(buf, "voltage\n");
507 	case REGULATOR_CURRENT:
508 		return sprintf(buf, "current\n");
509 	}
510 	return sprintf(buf, "unknown\n");
511 }
512 
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 				struct device_attribute *attr, char *buf)
515 {
516 	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 
518 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 		regulator_suspend_mem_uV_show, NULL);
522 
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 				struct device_attribute *attr, char *buf)
525 {
526 	struct regulator_dev *rdev = dev_get_drvdata(dev);
527 
528 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 		regulator_suspend_disk_uV_show, NULL);
532 
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 				struct device_attribute *attr, char *buf)
535 {
536 	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 
538 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 		regulator_suspend_standby_uV_show, NULL);
542 
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 				struct device_attribute *attr, char *buf)
545 {
546 	struct regulator_dev *rdev = dev_get_drvdata(dev);
547 
548 	return regulator_print_opmode(buf,
549 		rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 		regulator_suspend_mem_mode_show, NULL);
553 
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 				struct device_attribute *attr, char *buf)
556 {
557 	struct regulator_dev *rdev = dev_get_drvdata(dev);
558 
559 	return regulator_print_opmode(buf,
560 		rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 		regulator_suspend_disk_mode_show, NULL);
564 
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 				struct device_attribute *attr, char *buf)
567 {
568 	struct regulator_dev *rdev = dev_get_drvdata(dev);
569 
570 	return regulator_print_opmode(buf,
571 		rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 		regulator_suspend_standby_mode_show, NULL);
575 
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 				   struct device_attribute *attr, char *buf)
578 {
579 	struct regulator_dev *rdev = dev_get_drvdata(dev);
580 
581 	return regulator_print_state(buf,
582 			rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 		regulator_suspend_mem_state_show, NULL);
586 
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 				   struct device_attribute *attr, char *buf)
589 {
590 	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 
592 	return regulator_print_state(buf,
593 			rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 		regulator_suspend_disk_state_show, NULL);
597 
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 				   struct device_attribute *attr, char *buf)
600 {
601 	struct regulator_dev *rdev = dev_get_drvdata(dev);
602 
603 	return regulator_print_state(buf,
604 			rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 		regulator_suspend_standby_state_show, NULL);
608 
609 static ssize_t regulator_bypass_show(struct device *dev,
610 				     struct device_attribute *attr, char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 	const char *report;
614 	bool bypass;
615 	int ret;
616 
617 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618 
619 	if (ret != 0)
620 		report = "unknown";
621 	else if (bypass)
622 		report = "enabled";
623 	else
624 		report = "disabled";
625 
626 	return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629 		   regulator_bypass_show, NULL);
630 
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636 	__ATTR(name, 0444, regulator_name_show, NULL),
637 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 	__ATTR(type, 0444, regulator_type_show, NULL),
639 	__ATTR_NULL,
640 };
641 
642 static void regulator_dev_release(struct device *dev)
643 {
644 	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 	kfree(rdev);
646 }
647 
648 static struct class regulator_class = {
649 	.name = "regulator",
650 	.dev_release = regulator_dev_release,
651 	.dev_attrs = regulator_dev_attrs,
652 };
653 
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658 	struct regulator *sibling;
659 	int current_uA = 0, output_uV, input_uV, err;
660 	unsigned int mode;
661 
662 	err = regulator_check_drms(rdev);
663 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 	    (!rdev->desc->ops->get_voltage &&
665 	     !rdev->desc->ops->get_voltage_sel) ||
666 	    !rdev->desc->ops->set_mode)
667 		return;
668 
669 	/* get output voltage */
670 	output_uV = _regulator_get_voltage(rdev);
671 	if (output_uV <= 0)
672 		return;
673 
674 	/* get input voltage */
675 	input_uV = 0;
676 	if (rdev->supply)
677 		input_uV = regulator_get_voltage(rdev->supply);
678 	if (input_uV <= 0)
679 		input_uV = rdev->constraints->input_uV;
680 	if (input_uV <= 0)
681 		return;
682 
683 	/* calc total requested load */
684 	list_for_each_entry(sibling, &rdev->consumer_list, list)
685 		current_uA += sibling->uA_load;
686 
687 	/* now get the optimum mode for our new total regulator load */
688 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 						  output_uV, current_uA);
690 
691 	/* check the new mode is allowed */
692 	err = regulator_mode_constrain(rdev, &mode);
693 	if (err == 0)
694 		rdev->desc->ops->set_mode(rdev, mode);
695 }
696 
697 static int suspend_set_state(struct regulator_dev *rdev,
698 	struct regulator_state *rstate)
699 {
700 	int ret = 0;
701 
702 	/* If we have no suspend mode configration don't set anything;
703 	 * only warn if the driver implements set_suspend_voltage or
704 	 * set_suspend_mode callback.
705 	 */
706 	if (!rstate->enabled && !rstate->disabled) {
707 		if (rdev->desc->ops->set_suspend_voltage ||
708 		    rdev->desc->ops->set_suspend_mode)
709 			rdev_warn(rdev, "No configuration\n");
710 		return 0;
711 	}
712 
713 	if (rstate->enabled && rstate->disabled) {
714 		rdev_err(rdev, "invalid configuration\n");
715 		return -EINVAL;
716 	}
717 
718 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 		ret = rdev->desc->ops->set_suspend_enable(rdev);
720 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 		ret = rdev->desc->ops->set_suspend_disable(rdev);
722 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 		ret = 0;
724 
725 	if (ret < 0) {
726 		rdev_err(rdev, "failed to enabled/disable\n");
727 		return ret;
728 	}
729 
730 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 		if (ret < 0) {
733 			rdev_err(rdev, "failed to set voltage\n");
734 			return ret;
735 		}
736 	}
737 
738 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 		if (ret < 0) {
741 			rdev_err(rdev, "failed to set mode\n");
742 			return ret;
743 		}
744 	}
745 	return ret;
746 }
747 
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751 	if (!rdev->constraints)
752 		return -EINVAL;
753 
754 	switch (state) {
755 	case PM_SUSPEND_STANDBY:
756 		return suspend_set_state(rdev,
757 			&rdev->constraints->state_standby);
758 	case PM_SUSPEND_MEM:
759 		return suspend_set_state(rdev,
760 			&rdev->constraints->state_mem);
761 	case PM_SUSPEND_MAX:
762 		return suspend_set_state(rdev,
763 			&rdev->constraints->state_disk);
764 	default:
765 		return -EINVAL;
766 	}
767 }
768 
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771 	struct regulation_constraints *constraints = rdev->constraints;
772 	char buf[80] = "";
773 	int count = 0;
774 	int ret;
775 
776 	if (constraints->min_uV && constraints->max_uV) {
777 		if (constraints->min_uV == constraints->max_uV)
778 			count += sprintf(buf + count, "%d mV ",
779 					 constraints->min_uV / 1000);
780 		else
781 			count += sprintf(buf + count, "%d <--> %d mV ",
782 					 constraints->min_uV / 1000,
783 					 constraints->max_uV / 1000);
784 	}
785 
786 	if (!constraints->min_uV ||
787 	    constraints->min_uV != constraints->max_uV) {
788 		ret = _regulator_get_voltage(rdev);
789 		if (ret > 0)
790 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
791 	}
792 
793 	if (constraints->uV_offset)
794 		count += sprintf(buf, "%dmV offset ",
795 				 constraints->uV_offset / 1000);
796 
797 	if (constraints->min_uA && constraints->max_uA) {
798 		if (constraints->min_uA == constraints->max_uA)
799 			count += sprintf(buf + count, "%d mA ",
800 					 constraints->min_uA / 1000);
801 		else
802 			count += sprintf(buf + count, "%d <--> %d mA ",
803 					 constraints->min_uA / 1000,
804 					 constraints->max_uA / 1000);
805 	}
806 
807 	if (!constraints->min_uA ||
808 	    constraints->min_uA != constraints->max_uA) {
809 		ret = _regulator_get_current_limit(rdev);
810 		if (ret > 0)
811 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
812 	}
813 
814 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 		count += sprintf(buf + count, "fast ");
816 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 		count += sprintf(buf + count, "normal ");
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 		count += sprintf(buf + count, "idle ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 		count += sprintf(buf + count, "standby");
822 
823 	if (!count)
824 		sprintf(buf, "no parameters");
825 
826 	rdev_info(rdev, "%s\n", buf);
827 
828 	if ((constraints->min_uV != constraints->max_uV) &&
829 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 		rdev_warn(rdev,
831 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833 
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 	struct regulation_constraints *constraints)
836 {
837 	struct regulator_ops *ops = rdev->desc->ops;
838 	int ret;
839 
840 	/* do we need to apply the constraint voltage */
841 	if (rdev->constraints->apply_uV &&
842 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 		ret = _regulator_do_set_voltage(rdev,
844 						rdev->constraints->min_uV,
845 						rdev->constraints->max_uV);
846 		if (ret < 0) {
847 			rdev_err(rdev, "failed to apply %duV constraint\n",
848 				 rdev->constraints->min_uV);
849 			return ret;
850 		}
851 	}
852 
853 	/* constrain machine-level voltage specs to fit
854 	 * the actual range supported by this regulator.
855 	 */
856 	if (ops->list_voltage && rdev->desc->n_voltages) {
857 		int	count = rdev->desc->n_voltages;
858 		int	i;
859 		int	min_uV = INT_MAX;
860 		int	max_uV = INT_MIN;
861 		int	cmin = constraints->min_uV;
862 		int	cmax = constraints->max_uV;
863 
864 		/* it's safe to autoconfigure fixed-voltage supplies
865 		   and the constraints are used by list_voltage. */
866 		if (count == 1 && !cmin) {
867 			cmin = 1;
868 			cmax = INT_MAX;
869 			constraints->min_uV = cmin;
870 			constraints->max_uV = cmax;
871 		}
872 
873 		/* voltage constraints are optional */
874 		if ((cmin == 0) && (cmax == 0))
875 			return 0;
876 
877 		/* else require explicit machine-level constraints */
878 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 			rdev_err(rdev, "invalid voltage constraints\n");
880 			return -EINVAL;
881 		}
882 
883 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 		for (i = 0; i < count; i++) {
885 			int	value;
886 
887 			value = ops->list_voltage(rdev, i);
888 			if (value <= 0)
889 				continue;
890 
891 			/* maybe adjust [min_uV..max_uV] */
892 			if (value >= cmin && value < min_uV)
893 				min_uV = value;
894 			if (value <= cmax && value > max_uV)
895 				max_uV = value;
896 		}
897 
898 		/* final: [min_uV..max_uV] valid iff constraints valid */
899 		if (max_uV < min_uV) {
900 			rdev_err(rdev,
901 				 "unsupportable voltage constraints %u-%uuV\n",
902 				 min_uV, max_uV);
903 			return -EINVAL;
904 		}
905 
906 		/* use regulator's subset of machine constraints */
907 		if (constraints->min_uV < min_uV) {
908 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 				 constraints->min_uV, min_uV);
910 			constraints->min_uV = min_uV;
911 		}
912 		if (constraints->max_uV > max_uV) {
913 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 				 constraints->max_uV, max_uV);
915 			constraints->max_uV = max_uV;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 /**
923  * set_machine_constraints - sets regulator constraints
924  * @rdev: regulator source
925  * @constraints: constraints to apply
926  *
927  * Allows platform initialisation code to define and constrain
928  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929  * Constraints *must* be set by platform code in order for some
930  * regulator operations to proceed i.e. set_voltage, set_current_limit,
931  * set_mode.
932  */
933 static int set_machine_constraints(struct regulator_dev *rdev,
934 	const struct regulation_constraints *constraints)
935 {
936 	int ret = 0;
937 	struct regulator_ops *ops = rdev->desc->ops;
938 
939 	if (constraints)
940 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941 					    GFP_KERNEL);
942 	else
943 		rdev->constraints = kzalloc(sizeof(*constraints),
944 					    GFP_KERNEL);
945 	if (!rdev->constraints)
946 		return -ENOMEM;
947 
948 	ret = machine_constraints_voltage(rdev, rdev->constraints);
949 	if (ret != 0)
950 		goto out;
951 
952 	/* do we need to setup our suspend state */
953 	if (rdev->constraints->initial_state) {
954 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955 		if (ret < 0) {
956 			rdev_err(rdev, "failed to set suspend state\n");
957 			goto out;
958 		}
959 	}
960 
961 	if (rdev->constraints->initial_mode) {
962 		if (!ops->set_mode) {
963 			rdev_err(rdev, "no set_mode operation\n");
964 			ret = -EINVAL;
965 			goto out;
966 		}
967 
968 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969 		if (ret < 0) {
970 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971 			goto out;
972 		}
973 	}
974 
975 	/* If the constraints say the regulator should be on at this point
976 	 * and we have control then make sure it is enabled.
977 	 */
978 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979 	    ops->enable) {
980 		ret = ops->enable(rdev);
981 		if (ret < 0) {
982 			rdev_err(rdev, "failed to enable\n");
983 			goto out;
984 		}
985 	}
986 
987 	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989 		if (ret < 0) {
990 			rdev_err(rdev, "failed to set ramp_delay\n");
991 			goto out;
992 		}
993 	}
994 
995 	print_constraints(rdev);
996 	return 0;
997 out:
998 	kfree(rdev->constraints);
999 	rdev->constraints = NULL;
1000 	return ret;
1001 }
1002 
1003 /**
1004  * set_supply - set regulator supply regulator
1005  * @rdev: regulator name
1006  * @supply_rdev: supply regulator name
1007  *
1008  * Called by platform initialisation code to set the supply regulator for this
1009  * regulator. This ensures that a regulators supply will also be enabled by the
1010  * core if it's child is enabled.
1011  */
1012 static int set_supply(struct regulator_dev *rdev,
1013 		      struct regulator_dev *supply_rdev)
1014 {
1015 	int err;
1016 
1017 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018 
1019 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020 	if (rdev->supply == NULL) {
1021 		err = -ENOMEM;
1022 		return err;
1023 	}
1024 	supply_rdev->open_count++;
1025 
1026 	return 0;
1027 }
1028 
1029 /**
1030  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031  * @rdev:         regulator source
1032  * @consumer_dev_name: dev_name() string for device supply applies to
1033  * @supply:       symbolic name for supply
1034  *
1035  * Allows platform initialisation code to map physical regulator
1036  * sources to symbolic names for supplies for use by devices.  Devices
1037  * should use these symbolic names to request regulators, avoiding the
1038  * need to provide board-specific regulator names as platform data.
1039  */
1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041 				      const char *consumer_dev_name,
1042 				      const char *supply)
1043 {
1044 	struct regulator_map *node;
1045 	int has_dev;
1046 
1047 	if (supply == NULL)
1048 		return -EINVAL;
1049 
1050 	if (consumer_dev_name != NULL)
1051 		has_dev = 1;
1052 	else
1053 		has_dev = 0;
1054 
1055 	list_for_each_entry(node, &regulator_map_list, list) {
1056 		if (node->dev_name && consumer_dev_name) {
1057 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058 				continue;
1059 		} else if (node->dev_name || consumer_dev_name) {
1060 			continue;
1061 		}
1062 
1063 		if (strcmp(node->supply, supply) != 0)
1064 			continue;
1065 
1066 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067 			 consumer_dev_name,
1068 			 dev_name(&node->regulator->dev),
1069 			 node->regulator->desc->name,
1070 			 supply,
1071 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1072 		return -EBUSY;
1073 	}
1074 
1075 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076 	if (node == NULL)
1077 		return -ENOMEM;
1078 
1079 	node->regulator = rdev;
1080 	node->supply = supply;
1081 
1082 	if (has_dev) {
1083 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084 		if (node->dev_name == NULL) {
1085 			kfree(node);
1086 			return -ENOMEM;
1087 		}
1088 	}
1089 
1090 	list_add(&node->list, &regulator_map_list);
1091 	return 0;
1092 }
1093 
1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1095 {
1096 	struct regulator_map *node, *n;
1097 
1098 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099 		if (rdev == node->regulator) {
1100 			list_del(&node->list);
1101 			kfree(node->dev_name);
1102 			kfree(node);
1103 		}
1104 	}
1105 }
1106 
1107 #define REG_STR_SIZE	64
1108 
1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110 					  struct device *dev,
1111 					  const char *supply_name)
1112 {
1113 	struct regulator *regulator;
1114 	char buf[REG_STR_SIZE];
1115 	int err, size;
1116 
1117 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118 	if (regulator == NULL)
1119 		return NULL;
1120 
1121 	mutex_lock(&rdev->mutex);
1122 	regulator->rdev = rdev;
1123 	list_add(&regulator->list, &rdev->consumer_list);
1124 
1125 	if (dev) {
1126 		regulator->dev = dev;
1127 
1128 		/* Add a link to the device sysfs entry */
1129 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130 				 dev->kobj.name, supply_name);
1131 		if (size >= REG_STR_SIZE)
1132 			goto overflow_err;
1133 
1134 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135 		if (regulator->supply_name == NULL)
1136 			goto overflow_err;
1137 
1138 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139 					buf);
1140 		if (err) {
1141 			rdev_warn(rdev, "could not add device link %s err %d\n",
1142 				  dev->kobj.name, err);
1143 			/* non-fatal */
1144 		}
1145 	} else {
1146 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147 		if (regulator->supply_name == NULL)
1148 			goto overflow_err;
1149 	}
1150 
1151 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152 						rdev->debugfs);
1153 	if (!regulator->debugfs) {
1154 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1155 	} else {
1156 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157 				   &regulator->uA_load);
1158 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159 				   &regulator->min_uV);
1160 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161 				   &regulator->max_uV);
1162 	}
1163 
1164 	/*
1165 	 * Check now if the regulator is an always on regulator - if
1166 	 * it is then we don't need to do nearly so much work for
1167 	 * enable/disable calls.
1168 	 */
1169 	if (!_regulator_can_change_status(rdev) &&
1170 	    _regulator_is_enabled(rdev))
1171 		regulator->always_on = true;
1172 
1173 	mutex_unlock(&rdev->mutex);
1174 	return regulator;
1175 overflow_err:
1176 	list_del(&regulator->list);
1177 	kfree(regulator);
1178 	mutex_unlock(&rdev->mutex);
1179 	return NULL;
1180 }
1181 
1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183 {
1184 	if (!rdev->desc->ops->enable_time)
1185 		return rdev->desc->enable_time;
1186 	return rdev->desc->ops->enable_time(rdev);
1187 }
1188 
1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190 						  const char *supply,
1191 						  int *ret)
1192 {
1193 	struct regulator_dev *r;
1194 	struct device_node *node;
1195 	struct regulator_map *map;
1196 	const char *devname = NULL;
1197 
1198 	/* first do a dt based lookup */
1199 	if (dev && dev->of_node) {
1200 		node = of_get_regulator(dev, supply);
1201 		if (node) {
1202 			list_for_each_entry(r, &regulator_list, list)
1203 				if (r->dev.parent &&
1204 					node == r->dev.of_node)
1205 					return r;
1206 		} else {
1207 			/*
1208 			 * If we couldn't even get the node then it's
1209 			 * not just that the device didn't register
1210 			 * yet, there's no node and we'll never
1211 			 * succeed.
1212 			 */
1213 			*ret = -ENODEV;
1214 		}
1215 	}
1216 
1217 	/* if not found, try doing it non-dt way */
1218 	if (dev)
1219 		devname = dev_name(dev);
1220 
1221 	list_for_each_entry(r, &regulator_list, list)
1222 		if (strcmp(rdev_get_name(r), supply) == 0)
1223 			return r;
1224 
1225 	list_for_each_entry(map, &regulator_map_list, list) {
1226 		/* If the mapping has a device set up it must match */
1227 		if (map->dev_name &&
1228 		    (!devname || strcmp(map->dev_name, devname)))
1229 			continue;
1230 
1231 		if (strcmp(map->supply, supply) == 0)
1232 			return map->regulator;
1233 	}
1234 
1235 
1236 	return NULL;
1237 }
1238 
1239 /* Internal regulator request function */
1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241 					int exclusive)
1242 {
1243 	struct regulator_dev *rdev;
1244 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245 	const char *devname = NULL;
1246 	int ret = 0;
1247 
1248 	if (id == NULL) {
1249 		pr_err("get() with no identifier\n");
1250 		return regulator;
1251 	}
1252 
1253 	if (dev)
1254 		devname = dev_name(dev);
1255 
1256 	mutex_lock(&regulator_list_mutex);
1257 
1258 	rdev = regulator_dev_lookup(dev, id, &ret);
1259 	if (rdev)
1260 		goto found;
1261 
1262 	/*
1263 	 * If we have return value from dev_lookup fail, we do not expect to
1264 	 * succeed, so, quit with appropriate error value
1265 	 */
1266 	if (ret) {
1267 		regulator = ERR_PTR(ret);
1268 		goto out;
1269 	}
1270 
1271 	if (board_wants_dummy_regulator) {
1272 		rdev = dummy_regulator_rdev;
1273 		goto found;
1274 	}
1275 
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277 	if (!devname)
1278 		devname = "deviceless";
1279 
1280 	/* If the board didn't flag that it was fully constrained then
1281 	 * substitute in a dummy regulator so consumers can continue.
1282 	 */
1283 	if (!has_full_constraints) {
1284 		pr_warn("%s supply %s not found, using dummy regulator\n",
1285 			devname, id);
1286 		rdev = dummy_regulator_rdev;
1287 		goto found;
1288 	}
1289 #endif
1290 
1291 	mutex_unlock(&regulator_list_mutex);
1292 	return regulator;
1293 
1294 found:
1295 	if (rdev->exclusive) {
1296 		regulator = ERR_PTR(-EPERM);
1297 		goto out;
1298 	}
1299 
1300 	if (exclusive && rdev->open_count) {
1301 		regulator = ERR_PTR(-EBUSY);
1302 		goto out;
1303 	}
1304 
1305 	if (!try_module_get(rdev->owner))
1306 		goto out;
1307 
1308 	regulator = create_regulator(rdev, dev, id);
1309 	if (regulator == NULL) {
1310 		regulator = ERR_PTR(-ENOMEM);
1311 		module_put(rdev->owner);
1312 		goto out;
1313 	}
1314 
1315 	rdev->open_count++;
1316 	if (exclusive) {
1317 		rdev->exclusive = 1;
1318 
1319 		ret = _regulator_is_enabled(rdev);
1320 		if (ret > 0)
1321 			rdev->use_count = 1;
1322 		else
1323 			rdev->use_count = 0;
1324 	}
1325 
1326 out:
1327 	mutex_unlock(&regulator_list_mutex);
1328 
1329 	return regulator;
1330 }
1331 
1332 /**
1333  * regulator_get - lookup and obtain a reference to a regulator.
1334  * @dev: device for regulator "consumer"
1335  * @id: Supply name or regulator ID.
1336  *
1337  * Returns a struct regulator corresponding to the regulator producer,
1338  * or IS_ERR() condition containing errno.
1339  *
1340  * Use of supply names configured via regulator_set_device_supply() is
1341  * strongly encouraged.  It is recommended that the supply name used
1342  * should match the name used for the supply and/or the relevant
1343  * device pins in the datasheet.
1344  */
1345 struct regulator *regulator_get(struct device *dev, const char *id)
1346 {
1347 	return _regulator_get(dev, id, 0);
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_get);
1350 
1351 static void devm_regulator_release(struct device *dev, void *res)
1352 {
1353 	regulator_put(*(struct regulator **)res);
1354 }
1355 
1356 /**
1357  * devm_regulator_get - Resource managed regulator_get()
1358  * @dev: device for regulator "consumer"
1359  * @id: Supply name or regulator ID.
1360  *
1361  * Managed regulator_get(). Regulators returned from this function are
1362  * automatically regulator_put() on driver detach. See regulator_get() for more
1363  * information.
1364  */
1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366 {
1367 	struct regulator **ptr, *regulator;
1368 
1369 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370 	if (!ptr)
1371 		return ERR_PTR(-ENOMEM);
1372 
1373 	regulator = regulator_get(dev, id);
1374 	if (!IS_ERR(regulator)) {
1375 		*ptr = regulator;
1376 		devres_add(dev, ptr);
1377 	} else {
1378 		devres_free(ptr);
1379 	}
1380 
1381 	return regulator;
1382 }
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1384 
1385 /**
1386  * regulator_get_exclusive - obtain exclusive access to a regulator.
1387  * @dev: device for regulator "consumer"
1388  * @id: Supply name or regulator ID.
1389  *
1390  * Returns a struct regulator corresponding to the regulator producer,
1391  * or IS_ERR() condition containing errno.  Other consumers will be
1392  * unable to obtain this reference is held and the use count for the
1393  * regulator will be initialised to reflect the current state of the
1394  * regulator.
1395  *
1396  * This is intended for use by consumers which cannot tolerate shared
1397  * use of the regulator such as those which need to force the
1398  * regulator off for correct operation of the hardware they are
1399  * controlling.
1400  *
1401  * Use of supply names configured via regulator_set_device_supply() is
1402  * strongly encouraged.  It is recommended that the supply name used
1403  * should match the name used for the supply and/or the relevant
1404  * device pins in the datasheet.
1405  */
1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407 {
1408 	return _regulator_get(dev, id, 1);
1409 }
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411 
1412 /* Locks held by regulator_put() */
1413 static void _regulator_put(struct regulator *regulator)
1414 {
1415 	struct regulator_dev *rdev;
1416 
1417 	if (regulator == NULL || IS_ERR(regulator))
1418 		return;
1419 
1420 	rdev = regulator->rdev;
1421 
1422 	debugfs_remove_recursive(regulator->debugfs);
1423 
1424 	/* remove any sysfs entries */
1425 	if (regulator->dev)
1426 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427 	kfree(regulator->supply_name);
1428 	list_del(&regulator->list);
1429 	kfree(regulator);
1430 
1431 	rdev->open_count--;
1432 	rdev->exclusive = 0;
1433 
1434 	module_put(rdev->owner);
1435 }
1436 
1437 /**
1438  * regulator_put - "free" the regulator source
1439  * @regulator: regulator source
1440  *
1441  * Note: drivers must ensure that all regulator_enable calls made on this
1442  * regulator source are balanced by regulator_disable calls prior to calling
1443  * this function.
1444  */
1445 void regulator_put(struct regulator *regulator)
1446 {
1447 	mutex_lock(&regulator_list_mutex);
1448 	_regulator_put(regulator);
1449 	mutex_unlock(&regulator_list_mutex);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_put);
1452 
1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1454 {
1455 	struct regulator **r = res;
1456 	if (!r || !*r) {
1457 		WARN_ON(!r || !*r);
1458 		return 0;
1459 	}
1460 	return *r == data;
1461 }
1462 
1463 /**
1464  * devm_regulator_put - Resource managed regulator_put()
1465  * @regulator: regulator to free
1466  *
1467  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468  * this function will not need to be called and the resource management
1469  * code will ensure that the resource is freed.
1470  */
1471 void devm_regulator_put(struct regulator *regulator)
1472 {
1473 	int rc;
1474 
1475 	rc = devres_release(regulator->dev, devm_regulator_release,
1476 			    devm_regulator_match, regulator);
1477 	if (rc != 0)
1478 		WARN_ON(rc);
1479 }
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1481 
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484 				const struct regulator_config *config)
1485 {
1486 	struct regulator_enable_gpio *pin;
1487 	int ret;
1488 
1489 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490 		if (pin->gpio == config->ena_gpio) {
1491 			rdev_dbg(rdev, "GPIO %d is already used\n",
1492 				config->ena_gpio);
1493 			goto update_ena_gpio_to_rdev;
1494 		}
1495 	}
1496 
1497 	ret = gpio_request_one(config->ena_gpio,
1498 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1499 				rdev_get_name(rdev));
1500 	if (ret)
1501 		return ret;
1502 
1503 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504 	if (pin == NULL) {
1505 		gpio_free(config->ena_gpio);
1506 		return -ENOMEM;
1507 	}
1508 
1509 	pin->gpio = config->ena_gpio;
1510 	pin->ena_gpio_invert = config->ena_gpio_invert;
1511 	list_add(&pin->list, &regulator_ena_gpio_list);
1512 
1513 update_ena_gpio_to_rdev:
1514 	pin->request_count++;
1515 	rdev->ena_pin = pin;
1516 	return 0;
1517 }
1518 
1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520 {
1521 	struct regulator_enable_gpio *pin, *n;
1522 
1523 	if (!rdev->ena_pin)
1524 		return;
1525 
1526 	/* Free the GPIO only in case of no use */
1527 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528 		if (pin->gpio == rdev->ena_pin->gpio) {
1529 			if (pin->request_count <= 1) {
1530 				pin->request_count = 0;
1531 				gpio_free(pin->gpio);
1532 				list_del(&pin->list);
1533 				kfree(pin);
1534 			} else {
1535 				pin->request_count--;
1536 			}
1537 		}
1538 	}
1539 }
1540 
1541 /**
1542  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543  * @rdev: regulator_dev structure
1544  * @enable: enable GPIO at initial use?
1545  *
1546  * GPIO is enabled in case of initial use. (enable_count is 0)
1547  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1548  */
1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1550 {
1551 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1552 
1553 	if (!pin)
1554 		return -EINVAL;
1555 
1556 	if (enable) {
1557 		/* Enable GPIO at initial use */
1558 		if (pin->enable_count == 0)
1559 			gpio_set_value_cansleep(pin->gpio,
1560 						!pin->ena_gpio_invert);
1561 
1562 		pin->enable_count++;
1563 	} else {
1564 		if (pin->enable_count > 1) {
1565 			pin->enable_count--;
1566 			return 0;
1567 		}
1568 
1569 		/* Disable GPIO if not used */
1570 		if (pin->enable_count <= 1) {
1571 			gpio_set_value_cansleep(pin->gpio,
1572 						pin->ena_gpio_invert);
1573 			pin->enable_count = 0;
1574 		}
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int _regulator_do_enable(struct regulator_dev *rdev)
1581 {
1582 	int ret, delay;
1583 
1584 	/* Query before enabling in case configuration dependent.  */
1585 	ret = _regulator_get_enable_time(rdev);
1586 	if (ret >= 0) {
1587 		delay = ret;
1588 	} else {
1589 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590 		delay = 0;
1591 	}
1592 
1593 	trace_regulator_enable(rdev_get_name(rdev));
1594 
1595 	if (rdev->ena_pin) {
1596 		ret = regulator_ena_gpio_ctrl(rdev, true);
1597 		if (ret < 0)
1598 			return ret;
1599 		rdev->ena_gpio_state = 1;
1600 	} else if (rdev->desc->ops->enable) {
1601 		ret = rdev->desc->ops->enable(rdev);
1602 		if (ret < 0)
1603 			return ret;
1604 	} else {
1605 		return -EINVAL;
1606 	}
1607 
1608 	/* Allow the regulator to ramp; it would be useful to extend
1609 	 * this for bulk operations so that the regulators can ramp
1610 	 * together.  */
1611 	trace_regulator_enable_delay(rdev_get_name(rdev));
1612 
1613 	if (delay >= 1000) {
1614 		mdelay(delay / 1000);
1615 		udelay(delay % 1000);
1616 	} else if (delay) {
1617 		udelay(delay);
1618 	}
1619 
1620 	trace_regulator_enable_complete(rdev_get_name(rdev));
1621 
1622 	return 0;
1623 }
1624 
1625 /* locks held by regulator_enable() */
1626 static int _regulator_enable(struct regulator_dev *rdev)
1627 {
1628 	int ret;
1629 
1630 	/* check voltage and requested load before enabling */
1631 	if (rdev->constraints &&
1632 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633 		drms_uA_update(rdev);
1634 
1635 	if (rdev->use_count == 0) {
1636 		/* The regulator may on if it's not switchable or left on */
1637 		ret = _regulator_is_enabled(rdev);
1638 		if (ret == -EINVAL || ret == 0) {
1639 			if (!_regulator_can_change_status(rdev))
1640 				return -EPERM;
1641 
1642 			ret = _regulator_do_enable(rdev);
1643 			if (ret < 0)
1644 				return ret;
1645 
1646 		} else if (ret < 0) {
1647 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648 			return ret;
1649 		}
1650 		/* Fallthrough on positive return values - already enabled */
1651 	}
1652 
1653 	rdev->use_count++;
1654 
1655 	return 0;
1656 }
1657 
1658 /**
1659  * regulator_enable - enable regulator output
1660  * @regulator: regulator source
1661  *
1662  * Request that the regulator be enabled with the regulator output at
1663  * the predefined voltage or current value.  Calls to regulator_enable()
1664  * must be balanced with calls to regulator_disable().
1665  *
1666  * NOTE: the output value can be set by other drivers, boot loader or may be
1667  * hardwired in the regulator.
1668  */
1669 int regulator_enable(struct regulator *regulator)
1670 {
1671 	struct regulator_dev *rdev = regulator->rdev;
1672 	int ret = 0;
1673 
1674 	if (regulator->always_on)
1675 		return 0;
1676 
1677 	if (rdev->supply) {
1678 		ret = regulator_enable(rdev->supply);
1679 		if (ret != 0)
1680 			return ret;
1681 	}
1682 
1683 	mutex_lock(&rdev->mutex);
1684 	ret = _regulator_enable(rdev);
1685 	mutex_unlock(&rdev->mutex);
1686 
1687 	if (ret != 0 && rdev->supply)
1688 		regulator_disable(rdev->supply);
1689 
1690 	return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(regulator_enable);
1693 
1694 static int _regulator_do_disable(struct regulator_dev *rdev)
1695 {
1696 	int ret;
1697 
1698 	trace_regulator_disable(rdev_get_name(rdev));
1699 
1700 	if (rdev->ena_pin) {
1701 		ret = regulator_ena_gpio_ctrl(rdev, false);
1702 		if (ret < 0)
1703 			return ret;
1704 		rdev->ena_gpio_state = 0;
1705 
1706 	} else if (rdev->desc->ops->disable) {
1707 		ret = rdev->desc->ops->disable(rdev);
1708 		if (ret != 0)
1709 			return ret;
1710 	}
1711 
1712 	trace_regulator_disable_complete(rdev_get_name(rdev));
1713 
1714 	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715 			     NULL);
1716 	return 0;
1717 }
1718 
1719 /* locks held by regulator_disable() */
1720 static int _regulator_disable(struct regulator_dev *rdev)
1721 {
1722 	int ret = 0;
1723 
1724 	if (WARN(rdev->use_count <= 0,
1725 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726 		return -EIO;
1727 
1728 	/* are we the last user and permitted to disable ? */
1729 	if (rdev->use_count == 1 &&
1730 	    (rdev->constraints && !rdev->constraints->always_on)) {
1731 
1732 		/* we are last user */
1733 		if (_regulator_can_change_status(rdev)) {
1734 			ret = _regulator_do_disable(rdev);
1735 			if (ret < 0) {
1736 				rdev_err(rdev, "failed to disable\n");
1737 				return ret;
1738 			}
1739 		}
1740 
1741 		rdev->use_count = 0;
1742 	} else if (rdev->use_count > 1) {
1743 
1744 		if (rdev->constraints &&
1745 			(rdev->constraints->valid_ops_mask &
1746 			REGULATOR_CHANGE_DRMS))
1747 			drms_uA_update(rdev);
1748 
1749 		rdev->use_count--;
1750 	}
1751 
1752 	return ret;
1753 }
1754 
1755 /**
1756  * regulator_disable - disable regulator output
1757  * @regulator: regulator source
1758  *
1759  * Disable the regulator output voltage or current.  Calls to
1760  * regulator_enable() must be balanced with calls to
1761  * regulator_disable().
1762  *
1763  * NOTE: this will only disable the regulator output if no other consumer
1764  * devices have it enabled, the regulator device supports disabling and
1765  * machine constraints permit this operation.
1766  */
1767 int regulator_disable(struct regulator *regulator)
1768 {
1769 	struct regulator_dev *rdev = regulator->rdev;
1770 	int ret = 0;
1771 
1772 	if (regulator->always_on)
1773 		return 0;
1774 
1775 	mutex_lock(&rdev->mutex);
1776 	ret = _regulator_disable(rdev);
1777 	mutex_unlock(&rdev->mutex);
1778 
1779 	if (ret == 0 && rdev->supply)
1780 		regulator_disable(rdev->supply);
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(regulator_disable);
1785 
1786 /* locks held by regulator_force_disable() */
1787 static int _regulator_force_disable(struct regulator_dev *rdev)
1788 {
1789 	int ret = 0;
1790 
1791 	/* force disable */
1792 	if (rdev->desc->ops->disable) {
1793 		/* ah well, who wants to live forever... */
1794 		ret = rdev->desc->ops->disable(rdev);
1795 		if (ret < 0) {
1796 			rdev_err(rdev, "failed to force disable\n");
1797 			return ret;
1798 		}
1799 		/* notify other consumers that power has been forced off */
1800 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801 			REGULATOR_EVENT_DISABLE, NULL);
1802 	}
1803 
1804 	return ret;
1805 }
1806 
1807 /**
1808  * regulator_force_disable - force disable regulator output
1809  * @regulator: regulator source
1810  *
1811  * Forcibly disable the regulator output voltage or current.
1812  * NOTE: this *will* disable the regulator output even if other consumer
1813  * devices have it enabled. This should be used for situations when device
1814  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815  */
1816 int regulator_force_disable(struct regulator *regulator)
1817 {
1818 	struct regulator_dev *rdev = regulator->rdev;
1819 	int ret;
1820 
1821 	mutex_lock(&rdev->mutex);
1822 	regulator->uA_load = 0;
1823 	ret = _regulator_force_disable(regulator->rdev);
1824 	mutex_unlock(&rdev->mutex);
1825 
1826 	if (rdev->supply)
1827 		while (rdev->open_count--)
1828 			regulator_disable(rdev->supply);
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_force_disable);
1833 
1834 static void regulator_disable_work(struct work_struct *work)
1835 {
1836 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837 						  disable_work.work);
1838 	int count, i, ret;
1839 
1840 	mutex_lock(&rdev->mutex);
1841 
1842 	BUG_ON(!rdev->deferred_disables);
1843 
1844 	count = rdev->deferred_disables;
1845 	rdev->deferred_disables = 0;
1846 
1847 	for (i = 0; i < count; i++) {
1848 		ret = _regulator_disable(rdev);
1849 		if (ret != 0)
1850 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851 	}
1852 
1853 	mutex_unlock(&rdev->mutex);
1854 
1855 	if (rdev->supply) {
1856 		for (i = 0; i < count; i++) {
1857 			ret = regulator_disable(rdev->supply);
1858 			if (ret != 0) {
1859 				rdev_err(rdev,
1860 					 "Supply disable failed: %d\n", ret);
1861 			}
1862 		}
1863 	}
1864 }
1865 
1866 /**
1867  * regulator_disable_deferred - disable regulator output with delay
1868  * @regulator: regulator source
1869  * @ms: miliseconds until the regulator is disabled
1870  *
1871  * Execute regulator_disable() on the regulator after a delay.  This
1872  * is intended for use with devices that require some time to quiesce.
1873  *
1874  * NOTE: this will only disable the regulator output if no other consumer
1875  * devices have it enabled, the regulator device supports disabling and
1876  * machine constraints permit this operation.
1877  */
1878 int regulator_disable_deferred(struct regulator *regulator, int ms)
1879 {
1880 	struct regulator_dev *rdev = regulator->rdev;
1881 	int ret;
1882 
1883 	if (regulator->always_on)
1884 		return 0;
1885 
1886 	if (!ms)
1887 		return regulator_disable(regulator);
1888 
1889 	mutex_lock(&rdev->mutex);
1890 	rdev->deferred_disables++;
1891 	mutex_unlock(&rdev->mutex);
1892 
1893 	ret = schedule_delayed_work(&rdev->disable_work,
1894 				    msecs_to_jiffies(ms));
1895 	if (ret < 0)
1896 		return ret;
1897 	else
1898 		return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1901 
1902 /**
1903  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1904  *
1905  * @rdev: regulator to operate on
1906  *
1907  * Regulators that use regmap for their register I/O can set the
1908  * enable_reg and enable_mask fields in their descriptor and then use
1909  * this as their is_enabled operation, saving some code.
1910  */
1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1912 {
1913 	unsigned int val;
1914 	int ret;
1915 
1916 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917 	if (ret != 0)
1918 		return ret;
1919 
1920 	if (rdev->desc->enable_is_inverted)
1921 		return (val & rdev->desc->enable_mask) == 0;
1922 	else
1923 		return (val & rdev->desc->enable_mask) != 0;
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1926 
1927 /**
1928  * regulator_enable_regmap - standard enable() for regmap users
1929  *
1930  * @rdev: regulator to operate on
1931  *
1932  * Regulators that use regmap for their register I/O can set the
1933  * enable_reg and enable_mask fields in their descriptor and then use
1934  * this as their enable() operation, saving some code.
1935  */
1936 int regulator_enable_regmap(struct regulator_dev *rdev)
1937 {
1938 	unsigned int val;
1939 
1940 	if (rdev->desc->enable_is_inverted)
1941 		val = 0;
1942 	else
1943 		val = rdev->desc->enable_mask;
1944 
1945 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946 				  rdev->desc->enable_mask, val);
1947 }
1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1949 
1950 /**
1951  * regulator_disable_regmap - standard disable() for regmap users
1952  *
1953  * @rdev: regulator to operate on
1954  *
1955  * Regulators that use regmap for their register I/O can set the
1956  * enable_reg and enable_mask fields in their descriptor and then use
1957  * this as their disable() operation, saving some code.
1958  */
1959 int regulator_disable_regmap(struct regulator_dev *rdev)
1960 {
1961 	unsigned int val;
1962 
1963 	if (rdev->desc->enable_is_inverted)
1964 		val = rdev->desc->enable_mask;
1965 	else
1966 		val = 0;
1967 
1968 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969 				  rdev->desc->enable_mask, val);
1970 }
1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1972 
1973 static int _regulator_is_enabled(struct regulator_dev *rdev)
1974 {
1975 	/* A GPIO control always takes precedence */
1976 	if (rdev->ena_pin)
1977 		return rdev->ena_gpio_state;
1978 
1979 	/* If we don't know then assume that the regulator is always on */
1980 	if (!rdev->desc->ops->is_enabled)
1981 		return 1;
1982 
1983 	return rdev->desc->ops->is_enabled(rdev);
1984 }
1985 
1986 /**
1987  * regulator_is_enabled - is the regulator output enabled
1988  * @regulator: regulator source
1989  *
1990  * Returns positive if the regulator driver backing the source/client
1991  * has requested that the device be enabled, zero if it hasn't, else a
1992  * negative errno code.
1993  *
1994  * Note that the device backing this regulator handle can have multiple
1995  * users, so it might be enabled even if regulator_enable() was never
1996  * called for this particular source.
1997  */
1998 int regulator_is_enabled(struct regulator *regulator)
1999 {
2000 	int ret;
2001 
2002 	if (regulator->always_on)
2003 		return 1;
2004 
2005 	mutex_lock(&regulator->rdev->mutex);
2006 	ret = _regulator_is_enabled(regulator->rdev);
2007 	mutex_unlock(&regulator->rdev->mutex);
2008 
2009 	return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2012 
2013 /**
2014  * regulator_can_change_voltage - check if regulator can change voltage
2015  * @regulator: regulator source
2016  *
2017  * Returns positive if the regulator driver backing the source/client
2018  * can change its voltage, false otherwise. Usefull for detecting fixed
2019  * or dummy regulators and disabling voltage change logic in the client
2020  * driver.
2021  */
2022 int regulator_can_change_voltage(struct regulator *regulator)
2023 {
2024 	struct regulator_dev	*rdev = regulator->rdev;
2025 
2026 	if (rdev->constraints &&
2027 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029 			return 1;
2030 
2031 		if (rdev->desc->continuous_voltage_range &&
2032 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2034 			return 1;
2035 	}
2036 
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2040 
2041 /**
2042  * regulator_count_voltages - count regulator_list_voltage() selectors
2043  * @regulator: regulator source
2044  *
2045  * Returns number of selectors, or negative errno.  Selectors are
2046  * numbered starting at zero, and typically correspond to bitfields
2047  * in hardware registers.
2048  */
2049 int regulator_count_voltages(struct regulator *regulator)
2050 {
2051 	struct regulator_dev	*rdev = regulator->rdev;
2052 
2053 	return rdev->desc->n_voltages ? : -EINVAL;
2054 }
2055 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2056 
2057 /**
2058  * regulator_list_voltage_linear - List voltages with simple calculation
2059  *
2060  * @rdev: Regulator device
2061  * @selector: Selector to convert into a voltage
2062  *
2063  * Regulators with a simple linear mapping between voltages and
2064  * selectors can set min_uV and uV_step in the regulator descriptor
2065  * and then use this function as their list_voltage() operation,
2066  */
2067 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068 				  unsigned int selector)
2069 {
2070 	if (selector >= rdev->desc->n_voltages)
2071 		return -EINVAL;
2072 	if (selector < rdev->desc->linear_min_sel)
2073 		return 0;
2074 
2075 	selector -= rdev->desc->linear_min_sel;
2076 
2077 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2080 
2081 /**
2082  * regulator_list_voltage_table - List voltages with table based mapping
2083  *
2084  * @rdev: Regulator device
2085  * @selector: Selector to convert into a voltage
2086  *
2087  * Regulators with table based mapping between voltages and
2088  * selectors can set volt_table in the regulator descriptor
2089  * and then use this function as their list_voltage() operation.
2090  */
2091 int regulator_list_voltage_table(struct regulator_dev *rdev,
2092 				 unsigned int selector)
2093 {
2094 	if (!rdev->desc->volt_table) {
2095 		BUG_ON(!rdev->desc->volt_table);
2096 		return -EINVAL;
2097 	}
2098 
2099 	if (selector >= rdev->desc->n_voltages)
2100 		return -EINVAL;
2101 
2102 	return rdev->desc->volt_table[selector];
2103 }
2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2105 
2106 /**
2107  * regulator_list_voltage - enumerate supported voltages
2108  * @regulator: regulator source
2109  * @selector: identify voltage to list
2110  * Context: can sleep
2111  *
2112  * Returns a voltage that can be passed to @regulator_set_voltage(),
2113  * zero if this selector code can't be used on this system, or a
2114  * negative errno.
2115  */
2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2117 {
2118 	struct regulator_dev	*rdev = regulator->rdev;
2119 	struct regulator_ops	*ops = rdev->desc->ops;
2120 	int			ret;
2121 
2122 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123 		return -EINVAL;
2124 
2125 	mutex_lock(&rdev->mutex);
2126 	ret = ops->list_voltage(rdev, selector);
2127 	mutex_unlock(&rdev->mutex);
2128 
2129 	if (ret > 0) {
2130 		if (ret < rdev->constraints->min_uV)
2131 			ret = 0;
2132 		else if (ret > rdev->constraints->max_uV)
2133 			ret = 0;
2134 	}
2135 
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2139 
2140 /**
2141  * regulator_get_linear_step - return the voltage step size between VSEL values
2142  * @regulator: regulator source
2143  *
2144  * Returns the voltage step size between VSEL values for linear
2145  * regulators, or return 0 if the regulator isn't a linear regulator.
2146  */
2147 unsigned int regulator_get_linear_step(struct regulator *regulator)
2148 {
2149 	struct regulator_dev *rdev = regulator->rdev;
2150 
2151 	return rdev->desc->uV_step;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2154 
2155 /**
2156  * regulator_is_supported_voltage - check if a voltage range can be supported
2157  *
2158  * @regulator: Regulator to check.
2159  * @min_uV: Minimum required voltage in uV.
2160  * @max_uV: Maximum required voltage in uV.
2161  *
2162  * Returns a boolean or a negative error code.
2163  */
2164 int regulator_is_supported_voltage(struct regulator *regulator,
2165 				   int min_uV, int max_uV)
2166 {
2167 	struct regulator_dev *rdev = regulator->rdev;
2168 	int i, voltages, ret;
2169 
2170 	/* If we can't change voltage check the current voltage */
2171 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2172 		ret = regulator_get_voltage(regulator);
2173 		if (ret >= 0)
2174 			return (min_uV <= ret && ret <= max_uV);
2175 		else
2176 			return ret;
2177 	}
2178 
2179 	/* Any voltage within constrains range is fine? */
2180 	if (rdev->desc->continuous_voltage_range)
2181 		return min_uV >= rdev->constraints->min_uV &&
2182 				max_uV <= rdev->constraints->max_uV;
2183 
2184 	ret = regulator_count_voltages(regulator);
2185 	if (ret < 0)
2186 		return ret;
2187 	voltages = ret;
2188 
2189 	for (i = 0; i < voltages; i++) {
2190 		ret = regulator_list_voltage(regulator, i);
2191 
2192 		if (ret >= min_uV && ret <= max_uV)
2193 			return 1;
2194 	}
2195 
2196 	return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2199 
2200 /**
2201  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2202  *
2203  * @rdev: regulator to operate on
2204  *
2205  * Regulators that use regmap for their register I/O can set the
2206  * vsel_reg and vsel_mask fields in their descriptor and then use this
2207  * as their get_voltage_vsel operation, saving some code.
2208  */
2209 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2210 {
2211 	unsigned int val;
2212 	int ret;
2213 
2214 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2215 	if (ret != 0)
2216 		return ret;
2217 
2218 	val &= rdev->desc->vsel_mask;
2219 	val >>= ffs(rdev->desc->vsel_mask) - 1;
2220 
2221 	return val;
2222 }
2223 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2224 
2225 /**
2226  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2227  *
2228  * @rdev: regulator to operate on
2229  * @sel: Selector to set
2230  *
2231  * Regulators that use regmap for their register I/O can set the
2232  * vsel_reg and vsel_mask fields in their descriptor and then use this
2233  * as their set_voltage_vsel operation, saving some code.
2234  */
2235 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2236 {
2237 	int ret;
2238 
2239 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2240 
2241 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2242 				  rdev->desc->vsel_mask, sel);
2243 	if (ret)
2244 		return ret;
2245 
2246 	if (rdev->desc->apply_bit)
2247 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2248 					 rdev->desc->apply_bit,
2249 					 rdev->desc->apply_bit);
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2253 
2254 /**
2255  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2256  *
2257  * @rdev: Regulator to operate on
2258  * @min_uV: Lower bound for voltage
2259  * @max_uV: Upper bound for voltage
2260  *
2261  * Drivers implementing set_voltage_sel() and list_voltage() can use
2262  * this as their map_voltage() operation.  It will find a suitable
2263  * voltage by calling list_voltage() until it gets something in bounds
2264  * for the requested voltages.
2265  */
2266 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2267 				  int min_uV, int max_uV)
2268 {
2269 	int best_val = INT_MAX;
2270 	int selector = 0;
2271 	int i, ret;
2272 
2273 	/* Find the smallest voltage that falls within the specified
2274 	 * range.
2275 	 */
2276 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2277 		ret = rdev->desc->ops->list_voltage(rdev, i);
2278 		if (ret < 0)
2279 			continue;
2280 
2281 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2282 			best_val = ret;
2283 			selector = i;
2284 		}
2285 	}
2286 
2287 	if (best_val != INT_MAX)
2288 		return selector;
2289 	else
2290 		return -EINVAL;
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2293 
2294 /**
2295  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2296  *
2297  * @rdev: Regulator to operate on
2298  * @min_uV: Lower bound for voltage
2299  * @max_uV: Upper bound for voltage
2300  *
2301  * Drivers that have ascendant voltage list can use this as their
2302  * map_voltage() operation.
2303  */
2304 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2305 				 int min_uV, int max_uV)
2306 {
2307 	int i, ret;
2308 
2309 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2310 		ret = rdev->desc->ops->list_voltage(rdev, i);
2311 		if (ret < 0)
2312 			continue;
2313 
2314 		if (ret > max_uV)
2315 			break;
2316 
2317 		if (ret >= min_uV && ret <= max_uV)
2318 			return i;
2319 	}
2320 
2321 	return -EINVAL;
2322 }
2323 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2324 
2325 /**
2326  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2327  *
2328  * @rdev: Regulator to operate on
2329  * @min_uV: Lower bound for voltage
2330  * @max_uV: Upper bound for voltage
2331  *
2332  * Drivers providing min_uV and uV_step in their regulator_desc can
2333  * use this as their map_voltage() operation.
2334  */
2335 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2336 				 int min_uV, int max_uV)
2337 {
2338 	int ret, voltage;
2339 
2340 	/* Allow uV_step to be 0 for fixed voltage */
2341 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2342 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2343 			return 0;
2344 		else
2345 			return -EINVAL;
2346 	}
2347 
2348 	if (!rdev->desc->uV_step) {
2349 		BUG_ON(!rdev->desc->uV_step);
2350 		return -EINVAL;
2351 	}
2352 
2353 	if (min_uV < rdev->desc->min_uV)
2354 		min_uV = rdev->desc->min_uV;
2355 
2356 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2357 	if (ret < 0)
2358 		return ret;
2359 
2360 	ret += rdev->desc->linear_min_sel;
2361 
2362 	/* Map back into a voltage to verify we're still in bounds */
2363 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2364 	if (voltage < min_uV || voltage > max_uV)
2365 		return -EINVAL;
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2370 
2371 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2372 				     int min_uV, int max_uV)
2373 {
2374 	int ret;
2375 	int delay = 0;
2376 	int best_val = 0;
2377 	unsigned int selector;
2378 	int old_selector = -1;
2379 
2380 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2381 
2382 	min_uV += rdev->constraints->uV_offset;
2383 	max_uV += rdev->constraints->uV_offset;
2384 
2385 	/*
2386 	 * If we can't obtain the old selector there is not enough
2387 	 * info to call set_voltage_time_sel().
2388 	 */
2389 	if (_regulator_is_enabled(rdev) &&
2390 	    rdev->desc->ops->set_voltage_time_sel &&
2391 	    rdev->desc->ops->get_voltage_sel) {
2392 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2393 		if (old_selector < 0)
2394 			return old_selector;
2395 	}
2396 
2397 	if (rdev->desc->ops->set_voltage) {
2398 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2399 						   &selector);
2400 
2401 		if (ret >= 0) {
2402 			if (rdev->desc->ops->list_voltage)
2403 				best_val = rdev->desc->ops->list_voltage(rdev,
2404 									 selector);
2405 			else
2406 				best_val = _regulator_get_voltage(rdev);
2407 		}
2408 
2409 	} else if (rdev->desc->ops->set_voltage_sel) {
2410 		if (rdev->desc->ops->map_voltage) {
2411 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2412 							   max_uV);
2413 		} else {
2414 			if (rdev->desc->ops->list_voltage ==
2415 			    regulator_list_voltage_linear)
2416 				ret = regulator_map_voltage_linear(rdev,
2417 								min_uV, max_uV);
2418 			else
2419 				ret = regulator_map_voltage_iterate(rdev,
2420 								min_uV, max_uV);
2421 		}
2422 
2423 		if (ret >= 0) {
2424 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2425 			if (min_uV <= best_val && max_uV >= best_val) {
2426 				selector = ret;
2427 				if (old_selector == selector)
2428 					ret = 0;
2429 				else
2430 					ret = rdev->desc->ops->set_voltage_sel(
2431 								rdev, ret);
2432 			} else {
2433 				ret = -EINVAL;
2434 			}
2435 		}
2436 	} else {
2437 		ret = -EINVAL;
2438 	}
2439 
2440 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2441 	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2442 	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2443 
2444 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2445 						old_selector, selector);
2446 		if (delay < 0) {
2447 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2448 				  delay);
2449 			delay = 0;
2450 		}
2451 
2452 		/* Insert any necessary delays */
2453 		if (delay >= 1000) {
2454 			mdelay(delay / 1000);
2455 			udelay(delay % 1000);
2456 		} else if (delay) {
2457 			udelay(delay);
2458 		}
2459 	}
2460 
2461 	if (ret == 0 && best_val >= 0) {
2462 		unsigned long data = best_val;
2463 
2464 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2465 				     (void *)data);
2466 	}
2467 
2468 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2469 
2470 	return ret;
2471 }
2472 
2473 /**
2474  * regulator_set_voltage - set regulator output voltage
2475  * @regulator: regulator source
2476  * @min_uV: Minimum required voltage in uV
2477  * @max_uV: Maximum acceptable voltage in uV
2478  *
2479  * Sets a voltage regulator to the desired output voltage. This can be set
2480  * during any regulator state. IOW, regulator can be disabled or enabled.
2481  *
2482  * If the regulator is enabled then the voltage will change to the new value
2483  * immediately otherwise if the regulator is disabled the regulator will
2484  * output at the new voltage when enabled.
2485  *
2486  * NOTE: If the regulator is shared between several devices then the lowest
2487  * request voltage that meets the system constraints will be used.
2488  * Regulator system constraints must be set for this regulator before
2489  * calling this function otherwise this call will fail.
2490  */
2491 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2492 {
2493 	struct regulator_dev *rdev = regulator->rdev;
2494 	int ret = 0;
2495 	int old_min_uV, old_max_uV;
2496 
2497 	mutex_lock(&rdev->mutex);
2498 
2499 	/* If we're setting the same range as last time the change
2500 	 * should be a noop (some cpufreq implementations use the same
2501 	 * voltage for multiple frequencies, for example).
2502 	 */
2503 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2504 		goto out;
2505 
2506 	/* sanity check */
2507 	if (!rdev->desc->ops->set_voltage &&
2508 	    !rdev->desc->ops->set_voltage_sel) {
2509 		ret = -EINVAL;
2510 		goto out;
2511 	}
2512 
2513 	/* constraints check */
2514 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2515 	if (ret < 0)
2516 		goto out;
2517 
2518 	/* restore original values in case of error */
2519 	old_min_uV = regulator->min_uV;
2520 	old_max_uV = regulator->max_uV;
2521 	regulator->min_uV = min_uV;
2522 	regulator->max_uV = max_uV;
2523 
2524 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2525 	if (ret < 0)
2526 		goto out2;
2527 
2528 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2529 	if (ret < 0)
2530 		goto out2;
2531 
2532 out:
2533 	mutex_unlock(&rdev->mutex);
2534 	return ret;
2535 out2:
2536 	regulator->min_uV = old_min_uV;
2537 	regulator->max_uV = old_max_uV;
2538 	mutex_unlock(&rdev->mutex);
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2542 
2543 /**
2544  * regulator_set_voltage_time - get raise/fall time
2545  * @regulator: regulator source
2546  * @old_uV: starting voltage in microvolts
2547  * @new_uV: target voltage in microvolts
2548  *
2549  * Provided with the starting and ending voltage, this function attempts to
2550  * calculate the time in microseconds required to rise or fall to this new
2551  * voltage.
2552  */
2553 int regulator_set_voltage_time(struct regulator *regulator,
2554 			       int old_uV, int new_uV)
2555 {
2556 	struct regulator_dev	*rdev = regulator->rdev;
2557 	struct regulator_ops	*ops = rdev->desc->ops;
2558 	int old_sel = -1;
2559 	int new_sel = -1;
2560 	int voltage;
2561 	int i;
2562 
2563 	/* Currently requires operations to do this */
2564 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2565 	    || !rdev->desc->n_voltages)
2566 		return -EINVAL;
2567 
2568 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2569 		/* We only look for exact voltage matches here */
2570 		voltage = regulator_list_voltage(regulator, i);
2571 		if (voltage < 0)
2572 			return -EINVAL;
2573 		if (voltage == 0)
2574 			continue;
2575 		if (voltage == old_uV)
2576 			old_sel = i;
2577 		if (voltage == new_uV)
2578 			new_sel = i;
2579 	}
2580 
2581 	if (old_sel < 0 || new_sel < 0)
2582 		return -EINVAL;
2583 
2584 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2585 }
2586 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2587 
2588 /**
2589  * regulator_set_voltage_time_sel - get raise/fall time
2590  * @rdev: regulator source device
2591  * @old_selector: selector for starting voltage
2592  * @new_selector: selector for target voltage
2593  *
2594  * Provided with the starting and target voltage selectors, this function
2595  * returns time in microseconds required to rise or fall to this new voltage
2596  *
2597  * Drivers providing ramp_delay in regulation_constraints can use this as their
2598  * set_voltage_time_sel() operation.
2599  */
2600 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2601 				   unsigned int old_selector,
2602 				   unsigned int new_selector)
2603 {
2604 	unsigned int ramp_delay = 0;
2605 	int old_volt, new_volt;
2606 
2607 	if (rdev->constraints->ramp_delay)
2608 		ramp_delay = rdev->constraints->ramp_delay;
2609 	else if (rdev->desc->ramp_delay)
2610 		ramp_delay = rdev->desc->ramp_delay;
2611 
2612 	if (ramp_delay == 0) {
2613 		rdev_warn(rdev, "ramp_delay not set\n");
2614 		return 0;
2615 	}
2616 
2617 	/* sanity check */
2618 	if (!rdev->desc->ops->list_voltage)
2619 		return -EINVAL;
2620 
2621 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2622 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2623 
2624 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2627 
2628 /**
2629  * regulator_sync_voltage - re-apply last regulator output voltage
2630  * @regulator: regulator source
2631  *
2632  * Re-apply the last configured voltage.  This is intended to be used
2633  * where some external control source the consumer is cooperating with
2634  * has caused the configured voltage to change.
2635  */
2636 int regulator_sync_voltage(struct regulator *regulator)
2637 {
2638 	struct regulator_dev *rdev = regulator->rdev;
2639 	int ret, min_uV, max_uV;
2640 
2641 	mutex_lock(&rdev->mutex);
2642 
2643 	if (!rdev->desc->ops->set_voltage &&
2644 	    !rdev->desc->ops->set_voltage_sel) {
2645 		ret = -EINVAL;
2646 		goto out;
2647 	}
2648 
2649 	/* This is only going to work if we've had a voltage configured. */
2650 	if (!regulator->min_uV && !regulator->max_uV) {
2651 		ret = -EINVAL;
2652 		goto out;
2653 	}
2654 
2655 	min_uV = regulator->min_uV;
2656 	max_uV = regulator->max_uV;
2657 
2658 	/* This should be a paranoia check... */
2659 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2664 	if (ret < 0)
2665 		goto out;
2666 
2667 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2668 
2669 out:
2670 	mutex_unlock(&rdev->mutex);
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2674 
2675 static int _regulator_get_voltage(struct regulator_dev *rdev)
2676 {
2677 	int sel, ret;
2678 
2679 	if (rdev->desc->ops->get_voltage_sel) {
2680 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2681 		if (sel < 0)
2682 			return sel;
2683 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2684 	} else if (rdev->desc->ops->get_voltage) {
2685 		ret = rdev->desc->ops->get_voltage(rdev);
2686 	} else if (rdev->desc->ops->list_voltage) {
2687 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2688 	} else {
2689 		return -EINVAL;
2690 	}
2691 
2692 	if (ret < 0)
2693 		return ret;
2694 	return ret - rdev->constraints->uV_offset;
2695 }
2696 
2697 /**
2698  * regulator_get_voltage - get regulator output voltage
2699  * @regulator: regulator source
2700  *
2701  * This returns the current regulator voltage in uV.
2702  *
2703  * NOTE: If the regulator is disabled it will return the voltage value. This
2704  * function should not be used to determine regulator state.
2705  */
2706 int regulator_get_voltage(struct regulator *regulator)
2707 {
2708 	int ret;
2709 
2710 	mutex_lock(&regulator->rdev->mutex);
2711 
2712 	ret = _regulator_get_voltage(regulator->rdev);
2713 
2714 	mutex_unlock(&regulator->rdev->mutex);
2715 
2716 	return ret;
2717 }
2718 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2719 
2720 /**
2721  * regulator_set_current_limit - set regulator output current limit
2722  * @regulator: regulator source
2723  * @min_uA: Minimum supported current in uA
2724  * @max_uA: Maximum supported current in uA
2725  *
2726  * Sets current sink to the desired output current. This can be set during
2727  * any regulator state. IOW, regulator can be disabled or enabled.
2728  *
2729  * If the regulator is enabled then the current will change to the new value
2730  * immediately otherwise if the regulator is disabled the regulator will
2731  * output at the new current when enabled.
2732  *
2733  * NOTE: Regulator system constraints must be set for this regulator before
2734  * calling this function otherwise this call will fail.
2735  */
2736 int regulator_set_current_limit(struct regulator *regulator,
2737 			       int min_uA, int max_uA)
2738 {
2739 	struct regulator_dev *rdev = regulator->rdev;
2740 	int ret;
2741 
2742 	mutex_lock(&rdev->mutex);
2743 
2744 	/* sanity check */
2745 	if (!rdev->desc->ops->set_current_limit) {
2746 		ret = -EINVAL;
2747 		goto out;
2748 	}
2749 
2750 	/* constraints check */
2751 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2752 	if (ret < 0)
2753 		goto out;
2754 
2755 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2756 out:
2757 	mutex_unlock(&rdev->mutex);
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2761 
2762 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2763 {
2764 	int ret;
2765 
2766 	mutex_lock(&rdev->mutex);
2767 
2768 	/* sanity check */
2769 	if (!rdev->desc->ops->get_current_limit) {
2770 		ret = -EINVAL;
2771 		goto out;
2772 	}
2773 
2774 	ret = rdev->desc->ops->get_current_limit(rdev);
2775 out:
2776 	mutex_unlock(&rdev->mutex);
2777 	return ret;
2778 }
2779 
2780 /**
2781  * regulator_get_current_limit - get regulator output current
2782  * @regulator: regulator source
2783  *
2784  * This returns the current supplied by the specified current sink in uA.
2785  *
2786  * NOTE: If the regulator is disabled it will return the current value. This
2787  * function should not be used to determine regulator state.
2788  */
2789 int regulator_get_current_limit(struct regulator *regulator)
2790 {
2791 	return _regulator_get_current_limit(regulator->rdev);
2792 }
2793 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2794 
2795 /**
2796  * regulator_set_mode - set regulator operating mode
2797  * @regulator: regulator source
2798  * @mode: operating mode - one of the REGULATOR_MODE constants
2799  *
2800  * Set regulator operating mode to increase regulator efficiency or improve
2801  * regulation performance.
2802  *
2803  * NOTE: Regulator system constraints must be set for this regulator before
2804  * calling this function otherwise this call will fail.
2805  */
2806 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2807 {
2808 	struct regulator_dev *rdev = regulator->rdev;
2809 	int ret;
2810 	int regulator_curr_mode;
2811 
2812 	mutex_lock(&rdev->mutex);
2813 
2814 	/* sanity check */
2815 	if (!rdev->desc->ops->set_mode) {
2816 		ret = -EINVAL;
2817 		goto out;
2818 	}
2819 
2820 	/* return if the same mode is requested */
2821 	if (rdev->desc->ops->get_mode) {
2822 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2823 		if (regulator_curr_mode == mode) {
2824 			ret = 0;
2825 			goto out;
2826 		}
2827 	}
2828 
2829 	/* constraints check */
2830 	ret = regulator_mode_constrain(rdev, &mode);
2831 	if (ret < 0)
2832 		goto out;
2833 
2834 	ret = rdev->desc->ops->set_mode(rdev, mode);
2835 out:
2836 	mutex_unlock(&rdev->mutex);
2837 	return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(regulator_set_mode);
2840 
2841 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2842 {
2843 	int ret;
2844 
2845 	mutex_lock(&rdev->mutex);
2846 
2847 	/* sanity check */
2848 	if (!rdev->desc->ops->get_mode) {
2849 		ret = -EINVAL;
2850 		goto out;
2851 	}
2852 
2853 	ret = rdev->desc->ops->get_mode(rdev);
2854 out:
2855 	mutex_unlock(&rdev->mutex);
2856 	return ret;
2857 }
2858 
2859 /**
2860  * regulator_get_mode - get regulator operating mode
2861  * @regulator: regulator source
2862  *
2863  * Get the current regulator operating mode.
2864  */
2865 unsigned int regulator_get_mode(struct regulator *regulator)
2866 {
2867 	return _regulator_get_mode(regulator->rdev);
2868 }
2869 EXPORT_SYMBOL_GPL(regulator_get_mode);
2870 
2871 /**
2872  * regulator_set_optimum_mode - set regulator optimum operating mode
2873  * @regulator: regulator source
2874  * @uA_load: load current
2875  *
2876  * Notifies the regulator core of a new device load. This is then used by
2877  * DRMS (if enabled by constraints) to set the most efficient regulator
2878  * operating mode for the new regulator loading.
2879  *
2880  * Consumer devices notify their supply regulator of the maximum power
2881  * they will require (can be taken from device datasheet in the power
2882  * consumption tables) when they change operational status and hence power
2883  * state. Examples of operational state changes that can affect power
2884  * consumption are :-
2885  *
2886  *    o Device is opened / closed.
2887  *    o Device I/O is about to begin or has just finished.
2888  *    o Device is idling in between work.
2889  *
2890  * This information is also exported via sysfs to userspace.
2891  *
2892  * DRMS will sum the total requested load on the regulator and change
2893  * to the most efficient operating mode if platform constraints allow.
2894  *
2895  * Returns the new regulator mode or error.
2896  */
2897 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2898 {
2899 	struct regulator_dev *rdev = regulator->rdev;
2900 	struct regulator *consumer;
2901 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2902 	unsigned int mode;
2903 
2904 	if (rdev->supply)
2905 		input_uV = regulator_get_voltage(rdev->supply);
2906 
2907 	mutex_lock(&rdev->mutex);
2908 
2909 	/*
2910 	 * first check to see if we can set modes at all, otherwise just
2911 	 * tell the consumer everything is OK.
2912 	 */
2913 	regulator->uA_load = uA_load;
2914 	ret = regulator_check_drms(rdev);
2915 	if (ret < 0) {
2916 		ret = 0;
2917 		goto out;
2918 	}
2919 
2920 	if (!rdev->desc->ops->get_optimum_mode)
2921 		goto out;
2922 
2923 	/*
2924 	 * we can actually do this so any errors are indicators of
2925 	 * potential real failure.
2926 	 */
2927 	ret = -EINVAL;
2928 
2929 	if (!rdev->desc->ops->set_mode)
2930 		goto out;
2931 
2932 	/* get output voltage */
2933 	output_uV = _regulator_get_voltage(rdev);
2934 	if (output_uV <= 0) {
2935 		rdev_err(rdev, "invalid output voltage found\n");
2936 		goto out;
2937 	}
2938 
2939 	/* No supply? Use constraint voltage */
2940 	if (input_uV <= 0)
2941 		input_uV = rdev->constraints->input_uV;
2942 	if (input_uV <= 0) {
2943 		rdev_err(rdev, "invalid input voltage found\n");
2944 		goto out;
2945 	}
2946 
2947 	/* calc total requested load for this regulator */
2948 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2949 		total_uA_load += consumer->uA_load;
2950 
2951 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2952 						 input_uV, output_uV,
2953 						 total_uA_load);
2954 	ret = regulator_mode_constrain(rdev, &mode);
2955 	if (ret < 0) {
2956 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2957 			 total_uA_load, input_uV, output_uV);
2958 		goto out;
2959 	}
2960 
2961 	ret = rdev->desc->ops->set_mode(rdev, mode);
2962 	if (ret < 0) {
2963 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2964 		goto out;
2965 	}
2966 	ret = mode;
2967 out:
2968 	mutex_unlock(&rdev->mutex);
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2972 
2973 /**
2974  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2975  *
2976  * @rdev: device to operate on.
2977  * @enable: state to set.
2978  */
2979 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2980 {
2981 	unsigned int val;
2982 
2983 	if (enable)
2984 		val = rdev->desc->bypass_mask;
2985 	else
2986 		val = 0;
2987 
2988 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2989 				  rdev->desc->bypass_mask, val);
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2992 
2993 /**
2994  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2995  *
2996  * @rdev: device to operate on.
2997  * @enable: current state.
2998  */
2999 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3000 {
3001 	unsigned int val;
3002 	int ret;
3003 
3004 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3005 	if (ret != 0)
3006 		return ret;
3007 
3008 	*enable = val & rdev->desc->bypass_mask;
3009 
3010 	return 0;
3011 }
3012 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3013 
3014 /**
3015  * regulator_allow_bypass - allow the regulator to go into bypass mode
3016  *
3017  * @regulator: Regulator to configure
3018  * @enable: enable or disable bypass mode
3019  *
3020  * Allow the regulator to go into bypass mode if all other consumers
3021  * for the regulator also enable bypass mode and the machine
3022  * constraints allow this.  Bypass mode means that the regulator is
3023  * simply passing the input directly to the output with no regulation.
3024  */
3025 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3026 {
3027 	struct regulator_dev *rdev = regulator->rdev;
3028 	int ret = 0;
3029 
3030 	if (!rdev->desc->ops->set_bypass)
3031 		return 0;
3032 
3033 	if (rdev->constraints &&
3034 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3035 		return 0;
3036 
3037 	mutex_lock(&rdev->mutex);
3038 
3039 	if (enable && !regulator->bypass) {
3040 		rdev->bypass_count++;
3041 
3042 		if (rdev->bypass_count == rdev->open_count) {
3043 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3044 			if (ret != 0)
3045 				rdev->bypass_count--;
3046 		}
3047 
3048 	} else if (!enable && regulator->bypass) {
3049 		rdev->bypass_count--;
3050 
3051 		if (rdev->bypass_count != rdev->open_count) {
3052 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3053 			if (ret != 0)
3054 				rdev->bypass_count++;
3055 		}
3056 	}
3057 
3058 	if (ret == 0)
3059 		regulator->bypass = enable;
3060 
3061 	mutex_unlock(&rdev->mutex);
3062 
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3066 
3067 /**
3068  * regulator_register_notifier - register regulator event notifier
3069  * @regulator: regulator source
3070  * @nb: notifier block
3071  *
3072  * Register notifier block to receive regulator events.
3073  */
3074 int regulator_register_notifier(struct regulator *regulator,
3075 			      struct notifier_block *nb)
3076 {
3077 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3078 						nb);
3079 }
3080 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3081 
3082 /**
3083  * regulator_unregister_notifier - unregister regulator event notifier
3084  * @regulator: regulator source
3085  * @nb: notifier block
3086  *
3087  * Unregister regulator event notifier block.
3088  */
3089 int regulator_unregister_notifier(struct regulator *regulator,
3090 				struct notifier_block *nb)
3091 {
3092 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3093 						  nb);
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3096 
3097 /* notify regulator consumers and downstream regulator consumers.
3098  * Note mutex must be held by caller.
3099  */
3100 static void _notifier_call_chain(struct regulator_dev *rdev,
3101 				  unsigned long event, void *data)
3102 {
3103 	/* call rdev chain first */
3104 	blocking_notifier_call_chain(&rdev->notifier, event, data);
3105 }
3106 
3107 /**
3108  * regulator_bulk_get - get multiple regulator consumers
3109  *
3110  * @dev:           Device to supply
3111  * @num_consumers: Number of consumers to register
3112  * @consumers:     Configuration of consumers; clients are stored here.
3113  *
3114  * @return 0 on success, an errno on failure.
3115  *
3116  * This helper function allows drivers to get several regulator
3117  * consumers in one operation.  If any of the regulators cannot be
3118  * acquired then any regulators that were allocated will be freed
3119  * before returning to the caller.
3120  */
3121 int regulator_bulk_get(struct device *dev, int num_consumers,
3122 		       struct regulator_bulk_data *consumers)
3123 {
3124 	int i;
3125 	int ret;
3126 
3127 	for (i = 0; i < num_consumers; i++)
3128 		consumers[i].consumer = NULL;
3129 
3130 	for (i = 0; i < num_consumers; i++) {
3131 		consumers[i].consumer = regulator_get(dev,
3132 						      consumers[i].supply);
3133 		if (IS_ERR(consumers[i].consumer)) {
3134 			ret = PTR_ERR(consumers[i].consumer);
3135 			dev_err(dev, "Failed to get supply '%s': %d\n",
3136 				consumers[i].supply, ret);
3137 			consumers[i].consumer = NULL;
3138 			goto err;
3139 		}
3140 	}
3141 
3142 	return 0;
3143 
3144 err:
3145 	while (--i >= 0)
3146 		regulator_put(consumers[i].consumer);
3147 
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3151 
3152 /**
3153  * devm_regulator_bulk_get - managed get multiple regulator consumers
3154  *
3155  * @dev:           Device to supply
3156  * @num_consumers: Number of consumers to register
3157  * @consumers:     Configuration of consumers; clients are stored here.
3158  *
3159  * @return 0 on success, an errno on failure.
3160  *
3161  * This helper function allows drivers to get several regulator
3162  * consumers in one operation with management, the regulators will
3163  * automatically be freed when the device is unbound.  If any of the
3164  * regulators cannot be acquired then any regulators that were
3165  * allocated will be freed before returning to the caller.
3166  */
3167 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3168 			    struct regulator_bulk_data *consumers)
3169 {
3170 	int i;
3171 	int ret;
3172 
3173 	for (i = 0; i < num_consumers; i++)
3174 		consumers[i].consumer = NULL;
3175 
3176 	for (i = 0; i < num_consumers; i++) {
3177 		consumers[i].consumer = devm_regulator_get(dev,
3178 							   consumers[i].supply);
3179 		if (IS_ERR(consumers[i].consumer)) {
3180 			ret = PTR_ERR(consumers[i].consumer);
3181 			dev_err(dev, "Failed to get supply '%s': %d\n",
3182 				consumers[i].supply, ret);
3183 			consumers[i].consumer = NULL;
3184 			goto err;
3185 		}
3186 	}
3187 
3188 	return 0;
3189 
3190 err:
3191 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3192 		devm_regulator_put(consumers[i].consumer);
3193 
3194 	return ret;
3195 }
3196 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3197 
3198 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3199 {
3200 	struct regulator_bulk_data *bulk = data;
3201 
3202 	bulk->ret = regulator_enable(bulk->consumer);
3203 }
3204 
3205 /**
3206  * regulator_bulk_enable - enable multiple regulator consumers
3207  *
3208  * @num_consumers: Number of consumers
3209  * @consumers:     Consumer data; clients are stored here.
3210  * @return         0 on success, an errno on failure
3211  *
3212  * This convenience API allows consumers to enable multiple regulator
3213  * clients in a single API call.  If any consumers cannot be enabled
3214  * then any others that were enabled will be disabled again prior to
3215  * return.
3216  */
3217 int regulator_bulk_enable(int num_consumers,
3218 			  struct regulator_bulk_data *consumers)
3219 {
3220 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3221 	int i;
3222 	int ret = 0;
3223 
3224 	for (i = 0; i < num_consumers; i++) {
3225 		if (consumers[i].consumer->always_on)
3226 			consumers[i].ret = 0;
3227 		else
3228 			async_schedule_domain(regulator_bulk_enable_async,
3229 					      &consumers[i], &async_domain);
3230 	}
3231 
3232 	async_synchronize_full_domain(&async_domain);
3233 
3234 	/* If any consumer failed we need to unwind any that succeeded */
3235 	for (i = 0; i < num_consumers; i++) {
3236 		if (consumers[i].ret != 0) {
3237 			ret = consumers[i].ret;
3238 			goto err;
3239 		}
3240 	}
3241 
3242 	return 0;
3243 
3244 err:
3245 	for (i = 0; i < num_consumers; i++) {
3246 		if (consumers[i].ret < 0)
3247 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3248 			       consumers[i].ret);
3249 		else
3250 			regulator_disable(consumers[i].consumer);
3251 	}
3252 
3253 	return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3256 
3257 /**
3258  * regulator_bulk_disable - disable multiple regulator consumers
3259  *
3260  * @num_consumers: Number of consumers
3261  * @consumers:     Consumer data; clients are stored here.
3262  * @return         0 on success, an errno on failure
3263  *
3264  * This convenience API allows consumers to disable multiple regulator
3265  * clients in a single API call.  If any consumers cannot be disabled
3266  * then any others that were disabled will be enabled again prior to
3267  * return.
3268  */
3269 int regulator_bulk_disable(int num_consumers,
3270 			   struct regulator_bulk_data *consumers)
3271 {
3272 	int i;
3273 	int ret, r;
3274 
3275 	for (i = num_consumers - 1; i >= 0; --i) {
3276 		ret = regulator_disable(consumers[i].consumer);
3277 		if (ret != 0)
3278 			goto err;
3279 	}
3280 
3281 	return 0;
3282 
3283 err:
3284 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3285 	for (++i; i < num_consumers; ++i) {
3286 		r = regulator_enable(consumers[i].consumer);
3287 		if (r != 0)
3288 			pr_err("Failed to reename %s: %d\n",
3289 			       consumers[i].supply, r);
3290 	}
3291 
3292 	return ret;
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3295 
3296 /**
3297  * regulator_bulk_force_disable - force disable multiple regulator consumers
3298  *
3299  * @num_consumers: Number of consumers
3300  * @consumers:     Consumer data; clients are stored here.
3301  * @return         0 on success, an errno on failure
3302  *
3303  * This convenience API allows consumers to forcibly disable multiple regulator
3304  * clients in a single API call.
3305  * NOTE: This should be used for situations when device damage will
3306  * likely occur if the regulators are not disabled (e.g. over temp).
3307  * Although regulator_force_disable function call for some consumers can
3308  * return error numbers, the function is called for all consumers.
3309  */
3310 int regulator_bulk_force_disable(int num_consumers,
3311 			   struct regulator_bulk_data *consumers)
3312 {
3313 	int i;
3314 	int ret;
3315 
3316 	for (i = 0; i < num_consumers; i++)
3317 		consumers[i].ret =
3318 			    regulator_force_disable(consumers[i].consumer);
3319 
3320 	for (i = 0; i < num_consumers; i++) {
3321 		if (consumers[i].ret != 0) {
3322 			ret = consumers[i].ret;
3323 			goto out;
3324 		}
3325 	}
3326 
3327 	return 0;
3328 out:
3329 	return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3332 
3333 /**
3334  * regulator_bulk_free - free multiple regulator consumers
3335  *
3336  * @num_consumers: Number of consumers
3337  * @consumers:     Consumer data; clients are stored here.
3338  *
3339  * This convenience API allows consumers to free multiple regulator
3340  * clients in a single API call.
3341  */
3342 void regulator_bulk_free(int num_consumers,
3343 			 struct regulator_bulk_data *consumers)
3344 {
3345 	int i;
3346 
3347 	for (i = 0; i < num_consumers; i++) {
3348 		regulator_put(consumers[i].consumer);
3349 		consumers[i].consumer = NULL;
3350 	}
3351 }
3352 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3353 
3354 /**
3355  * regulator_notifier_call_chain - call regulator event notifier
3356  * @rdev: regulator source
3357  * @event: notifier block
3358  * @data: callback-specific data.
3359  *
3360  * Called by regulator drivers to notify clients a regulator event has
3361  * occurred. We also notify regulator clients downstream.
3362  * Note lock must be held by caller.
3363  */
3364 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3365 				  unsigned long event, void *data)
3366 {
3367 	_notifier_call_chain(rdev, event, data);
3368 	return NOTIFY_DONE;
3369 
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3372 
3373 /**
3374  * regulator_mode_to_status - convert a regulator mode into a status
3375  *
3376  * @mode: Mode to convert
3377  *
3378  * Convert a regulator mode into a status.
3379  */
3380 int regulator_mode_to_status(unsigned int mode)
3381 {
3382 	switch (mode) {
3383 	case REGULATOR_MODE_FAST:
3384 		return REGULATOR_STATUS_FAST;
3385 	case REGULATOR_MODE_NORMAL:
3386 		return REGULATOR_STATUS_NORMAL;
3387 	case REGULATOR_MODE_IDLE:
3388 		return REGULATOR_STATUS_IDLE;
3389 	case REGULATOR_MODE_STANDBY:
3390 		return REGULATOR_STATUS_STANDBY;
3391 	default:
3392 		return REGULATOR_STATUS_UNDEFINED;
3393 	}
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3396 
3397 /*
3398  * To avoid cluttering sysfs (and memory) with useless state, only
3399  * create attributes that can be meaningfully displayed.
3400  */
3401 static int add_regulator_attributes(struct regulator_dev *rdev)
3402 {
3403 	struct device		*dev = &rdev->dev;
3404 	struct regulator_ops	*ops = rdev->desc->ops;
3405 	int			status = 0;
3406 
3407 	/* some attributes need specific methods to be displayed */
3408 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3409 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3410 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3411 		status = device_create_file(dev, &dev_attr_microvolts);
3412 		if (status < 0)
3413 			return status;
3414 	}
3415 	if (ops->get_current_limit) {
3416 		status = device_create_file(dev, &dev_attr_microamps);
3417 		if (status < 0)
3418 			return status;
3419 	}
3420 	if (ops->get_mode) {
3421 		status = device_create_file(dev, &dev_attr_opmode);
3422 		if (status < 0)
3423 			return status;
3424 	}
3425 	if (rdev->ena_pin || ops->is_enabled) {
3426 		status = device_create_file(dev, &dev_attr_state);
3427 		if (status < 0)
3428 			return status;
3429 	}
3430 	if (ops->get_status) {
3431 		status = device_create_file(dev, &dev_attr_status);
3432 		if (status < 0)
3433 			return status;
3434 	}
3435 	if (ops->get_bypass) {
3436 		status = device_create_file(dev, &dev_attr_bypass);
3437 		if (status < 0)
3438 			return status;
3439 	}
3440 
3441 	/* some attributes are type-specific */
3442 	if (rdev->desc->type == REGULATOR_CURRENT) {
3443 		status = device_create_file(dev, &dev_attr_requested_microamps);
3444 		if (status < 0)
3445 			return status;
3446 	}
3447 
3448 	/* all the other attributes exist to support constraints;
3449 	 * don't show them if there are no constraints, or if the
3450 	 * relevant supporting methods are missing.
3451 	 */
3452 	if (!rdev->constraints)
3453 		return status;
3454 
3455 	/* constraints need specific supporting methods */
3456 	if (ops->set_voltage || ops->set_voltage_sel) {
3457 		status = device_create_file(dev, &dev_attr_min_microvolts);
3458 		if (status < 0)
3459 			return status;
3460 		status = device_create_file(dev, &dev_attr_max_microvolts);
3461 		if (status < 0)
3462 			return status;
3463 	}
3464 	if (ops->set_current_limit) {
3465 		status = device_create_file(dev, &dev_attr_min_microamps);
3466 		if (status < 0)
3467 			return status;
3468 		status = device_create_file(dev, &dev_attr_max_microamps);
3469 		if (status < 0)
3470 			return status;
3471 	}
3472 
3473 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3474 	if (status < 0)
3475 		return status;
3476 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3477 	if (status < 0)
3478 		return status;
3479 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3480 	if (status < 0)
3481 		return status;
3482 
3483 	if (ops->set_suspend_voltage) {
3484 		status = device_create_file(dev,
3485 				&dev_attr_suspend_standby_microvolts);
3486 		if (status < 0)
3487 			return status;
3488 		status = device_create_file(dev,
3489 				&dev_attr_suspend_mem_microvolts);
3490 		if (status < 0)
3491 			return status;
3492 		status = device_create_file(dev,
3493 				&dev_attr_suspend_disk_microvolts);
3494 		if (status < 0)
3495 			return status;
3496 	}
3497 
3498 	if (ops->set_suspend_mode) {
3499 		status = device_create_file(dev,
3500 				&dev_attr_suspend_standby_mode);
3501 		if (status < 0)
3502 			return status;
3503 		status = device_create_file(dev,
3504 				&dev_attr_suspend_mem_mode);
3505 		if (status < 0)
3506 			return status;
3507 		status = device_create_file(dev,
3508 				&dev_attr_suspend_disk_mode);
3509 		if (status < 0)
3510 			return status;
3511 	}
3512 
3513 	return status;
3514 }
3515 
3516 static void rdev_init_debugfs(struct regulator_dev *rdev)
3517 {
3518 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3519 	if (!rdev->debugfs) {
3520 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3521 		return;
3522 	}
3523 
3524 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3525 			   &rdev->use_count);
3526 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3527 			   &rdev->open_count);
3528 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3529 			   &rdev->bypass_count);
3530 }
3531 
3532 /**
3533  * regulator_register - register regulator
3534  * @regulator_desc: regulator to register
3535  * @config: runtime configuration for regulator
3536  *
3537  * Called by regulator drivers to register a regulator.
3538  * Returns a valid pointer to struct regulator_dev on success
3539  * or an ERR_PTR() on error.
3540  */
3541 struct regulator_dev *
3542 regulator_register(const struct regulator_desc *regulator_desc,
3543 		   const struct regulator_config *config)
3544 {
3545 	const struct regulation_constraints *constraints = NULL;
3546 	const struct regulator_init_data *init_data;
3547 	static atomic_t regulator_no = ATOMIC_INIT(0);
3548 	struct regulator_dev *rdev;
3549 	struct device *dev;
3550 	int ret, i;
3551 	const char *supply = NULL;
3552 
3553 	if (regulator_desc == NULL || config == NULL)
3554 		return ERR_PTR(-EINVAL);
3555 
3556 	dev = config->dev;
3557 	WARN_ON(!dev);
3558 
3559 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3560 		return ERR_PTR(-EINVAL);
3561 
3562 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3563 	    regulator_desc->type != REGULATOR_CURRENT)
3564 		return ERR_PTR(-EINVAL);
3565 
3566 	/* Only one of each should be implemented */
3567 	WARN_ON(regulator_desc->ops->get_voltage &&
3568 		regulator_desc->ops->get_voltage_sel);
3569 	WARN_ON(regulator_desc->ops->set_voltage &&
3570 		regulator_desc->ops->set_voltage_sel);
3571 
3572 	/* If we're using selectors we must implement list_voltage. */
3573 	if (regulator_desc->ops->get_voltage_sel &&
3574 	    !regulator_desc->ops->list_voltage) {
3575 		return ERR_PTR(-EINVAL);
3576 	}
3577 	if (regulator_desc->ops->set_voltage_sel &&
3578 	    !regulator_desc->ops->list_voltage) {
3579 		return ERR_PTR(-EINVAL);
3580 	}
3581 
3582 	init_data = config->init_data;
3583 
3584 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3585 	if (rdev == NULL)
3586 		return ERR_PTR(-ENOMEM);
3587 
3588 	mutex_lock(&regulator_list_mutex);
3589 
3590 	mutex_init(&rdev->mutex);
3591 	rdev->reg_data = config->driver_data;
3592 	rdev->owner = regulator_desc->owner;
3593 	rdev->desc = regulator_desc;
3594 	if (config->regmap)
3595 		rdev->regmap = config->regmap;
3596 	else if (dev_get_regmap(dev, NULL))
3597 		rdev->regmap = dev_get_regmap(dev, NULL);
3598 	else if (dev->parent)
3599 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3600 	INIT_LIST_HEAD(&rdev->consumer_list);
3601 	INIT_LIST_HEAD(&rdev->list);
3602 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3603 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3604 
3605 	/* preform any regulator specific init */
3606 	if (init_data && init_data->regulator_init) {
3607 		ret = init_data->regulator_init(rdev->reg_data);
3608 		if (ret < 0)
3609 			goto clean;
3610 	}
3611 
3612 	/* register with sysfs */
3613 	rdev->dev.class = &regulator_class;
3614 	rdev->dev.of_node = config->of_node;
3615 	rdev->dev.parent = dev;
3616 	dev_set_name(&rdev->dev, "regulator.%d",
3617 		     atomic_inc_return(&regulator_no) - 1);
3618 	ret = device_register(&rdev->dev);
3619 	if (ret != 0) {
3620 		put_device(&rdev->dev);
3621 		goto clean;
3622 	}
3623 
3624 	dev_set_drvdata(&rdev->dev, rdev);
3625 
3626 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3627 		ret = regulator_ena_gpio_request(rdev, config);
3628 		if (ret != 0) {
3629 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3630 				 config->ena_gpio, ret);
3631 			goto wash;
3632 		}
3633 
3634 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3635 			rdev->ena_gpio_state = 1;
3636 
3637 		if (config->ena_gpio_invert)
3638 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3639 	}
3640 
3641 	/* set regulator constraints */
3642 	if (init_data)
3643 		constraints = &init_data->constraints;
3644 
3645 	ret = set_machine_constraints(rdev, constraints);
3646 	if (ret < 0)
3647 		goto scrub;
3648 
3649 	/* add attributes supported by this regulator */
3650 	ret = add_regulator_attributes(rdev);
3651 	if (ret < 0)
3652 		goto scrub;
3653 
3654 	if (init_data && init_data->supply_regulator)
3655 		supply = init_data->supply_regulator;
3656 	else if (regulator_desc->supply_name)
3657 		supply = regulator_desc->supply_name;
3658 
3659 	if (supply) {
3660 		struct regulator_dev *r;
3661 
3662 		r = regulator_dev_lookup(dev, supply, &ret);
3663 
3664 		if (ret == -ENODEV) {
3665 			/*
3666 			 * No supply was specified for this regulator and
3667 			 * there will never be one.
3668 			 */
3669 			ret = 0;
3670 			goto add_dev;
3671 		} else if (!r) {
3672 			dev_err(dev, "Failed to find supply %s\n", supply);
3673 			ret = -EPROBE_DEFER;
3674 			goto scrub;
3675 		}
3676 
3677 		ret = set_supply(rdev, r);
3678 		if (ret < 0)
3679 			goto scrub;
3680 
3681 		/* Enable supply if rail is enabled */
3682 		if (_regulator_is_enabled(rdev)) {
3683 			ret = regulator_enable(rdev->supply);
3684 			if (ret < 0)
3685 				goto scrub;
3686 		}
3687 	}
3688 
3689 add_dev:
3690 	/* add consumers devices */
3691 	if (init_data) {
3692 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3693 			ret = set_consumer_device_supply(rdev,
3694 				init_data->consumer_supplies[i].dev_name,
3695 				init_data->consumer_supplies[i].supply);
3696 			if (ret < 0) {
3697 				dev_err(dev, "Failed to set supply %s\n",
3698 					init_data->consumer_supplies[i].supply);
3699 				goto unset_supplies;
3700 			}
3701 		}
3702 	}
3703 
3704 	list_add(&rdev->list, &regulator_list);
3705 
3706 	rdev_init_debugfs(rdev);
3707 out:
3708 	mutex_unlock(&regulator_list_mutex);
3709 	return rdev;
3710 
3711 unset_supplies:
3712 	unset_regulator_supplies(rdev);
3713 
3714 scrub:
3715 	if (rdev->supply)
3716 		_regulator_put(rdev->supply);
3717 	regulator_ena_gpio_free(rdev);
3718 	kfree(rdev->constraints);
3719 wash:
3720 	device_unregister(&rdev->dev);
3721 	/* device core frees rdev */
3722 	rdev = ERR_PTR(ret);
3723 	goto out;
3724 
3725 clean:
3726 	kfree(rdev);
3727 	rdev = ERR_PTR(ret);
3728 	goto out;
3729 }
3730 EXPORT_SYMBOL_GPL(regulator_register);
3731 
3732 /**
3733  * regulator_unregister - unregister regulator
3734  * @rdev: regulator to unregister
3735  *
3736  * Called by regulator drivers to unregister a regulator.
3737  */
3738 void regulator_unregister(struct regulator_dev *rdev)
3739 {
3740 	if (rdev == NULL)
3741 		return;
3742 
3743 	if (rdev->supply)
3744 		regulator_put(rdev->supply);
3745 	mutex_lock(&regulator_list_mutex);
3746 	debugfs_remove_recursive(rdev->debugfs);
3747 	flush_work(&rdev->disable_work.work);
3748 	WARN_ON(rdev->open_count);
3749 	unset_regulator_supplies(rdev);
3750 	list_del(&rdev->list);
3751 	kfree(rdev->constraints);
3752 	regulator_ena_gpio_free(rdev);
3753 	device_unregister(&rdev->dev);
3754 	mutex_unlock(&regulator_list_mutex);
3755 }
3756 EXPORT_SYMBOL_GPL(regulator_unregister);
3757 
3758 /**
3759  * regulator_suspend_prepare - prepare regulators for system wide suspend
3760  * @state: system suspend state
3761  *
3762  * Configure each regulator with it's suspend operating parameters for state.
3763  * This will usually be called by machine suspend code prior to supending.
3764  */
3765 int regulator_suspend_prepare(suspend_state_t state)
3766 {
3767 	struct regulator_dev *rdev;
3768 	int ret = 0;
3769 
3770 	/* ON is handled by regulator active state */
3771 	if (state == PM_SUSPEND_ON)
3772 		return -EINVAL;
3773 
3774 	mutex_lock(&regulator_list_mutex);
3775 	list_for_each_entry(rdev, &regulator_list, list) {
3776 
3777 		mutex_lock(&rdev->mutex);
3778 		ret = suspend_prepare(rdev, state);
3779 		mutex_unlock(&rdev->mutex);
3780 
3781 		if (ret < 0) {
3782 			rdev_err(rdev, "failed to prepare\n");
3783 			goto out;
3784 		}
3785 	}
3786 out:
3787 	mutex_unlock(&regulator_list_mutex);
3788 	return ret;
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3791 
3792 /**
3793  * regulator_suspend_finish - resume regulators from system wide suspend
3794  *
3795  * Turn on regulators that might be turned off by regulator_suspend_prepare
3796  * and that should be turned on according to the regulators properties.
3797  */
3798 int regulator_suspend_finish(void)
3799 {
3800 	struct regulator_dev *rdev;
3801 	int ret = 0, error;
3802 
3803 	mutex_lock(&regulator_list_mutex);
3804 	list_for_each_entry(rdev, &regulator_list, list) {
3805 		struct regulator_ops *ops = rdev->desc->ops;
3806 
3807 		mutex_lock(&rdev->mutex);
3808 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3809 				ops->enable) {
3810 			error = ops->enable(rdev);
3811 			if (error)
3812 				ret = error;
3813 		} else {
3814 			if (!has_full_constraints)
3815 				goto unlock;
3816 			if (!ops->disable)
3817 				goto unlock;
3818 			if (!_regulator_is_enabled(rdev))
3819 				goto unlock;
3820 
3821 			error = ops->disable(rdev);
3822 			if (error)
3823 				ret = error;
3824 		}
3825 unlock:
3826 		mutex_unlock(&rdev->mutex);
3827 	}
3828 	mutex_unlock(&regulator_list_mutex);
3829 	return ret;
3830 }
3831 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3832 
3833 /**
3834  * regulator_has_full_constraints - the system has fully specified constraints
3835  *
3836  * Calling this function will cause the regulator API to disable all
3837  * regulators which have a zero use count and don't have an always_on
3838  * constraint in a late_initcall.
3839  *
3840  * The intention is that this will become the default behaviour in a
3841  * future kernel release so users are encouraged to use this facility
3842  * now.
3843  */
3844 void regulator_has_full_constraints(void)
3845 {
3846 	has_full_constraints = 1;
3847 }
3848 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3849 
3850 /**
3851  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3852  *
3853  * Calling this function will cause the regulator API to provide a
3854  * dummy regulator to consumers if no physical regulator is found,
3855  * allowing most consumers to proceed as though a regulator were
3856  * configured.  This allows systems such as those with software
3857  * controllable regulators for the CPU core only to be brought up more
3858  * readily.
3859  */
3860 void regulator_use_dummy_regulator(void)
3861 {
3862 	board_wants_dummy_regulator = true;
3863 }
3864 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3865 
3866 /**
3867  * rdev_get_drvdata - get rdev regulator driver data
3868  * @rdev: regulator
3869  *
3870  * Get rdev regulator driver private data. This call can be used in the
3871  * regulator driver context.
3872  */
3873 void *rdev_get_drvdata(struct regulator_dev *rdev)
3874 {
3875 	return rdev->reg_data;
3876 }
3877 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3878 
3879 /**
3880  * regulator_get_drvdata - get regulator driver data
3881  * @regulator: regulator
3882  *
3883  * Get regulator driver private data. This call can be used in the consumer
3884  * driver context when non API regulator specific functions need to be called.
3885  */
3886 void *regulator_get_drvdata(struct regulator *regulator)
3887 {
3888 	return regulator->rdev->reg_data;
3889 }
3890 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3891 
3892 /**
3893  * regulator_set_drvdata - set regulator driver data
3894  * @regulator: regulator
3895  * @data: data
3896  */
3897 void regulator_set_drvdata(struct regulator *regulator, void *data)
3898 {
3899 	regulator->rdev->reg_data = data;
3900 }
3901 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3902 
3903 /**
3904  * regulator_get_id - get regulator ID
3905  * @rdev: regulator
3906  */
3907 int rdev_get_id(struct regulator_dev *rdev)
3908 {
3909 	return rdev->desc->id;
3910 }
3911 EXPORT_SYMBOL_GPL(rdev_get_id);
3912 
3913 struct device *rdev_get_dev(struct regulator_dev *rdev)
3914 {
3915 	return &rdev->dev;
3916 }
3917 EXPORT_SYMBOL_GPL(rdev_get_dev);
3918 
3919 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3920 {
3921 	return reg_init_data->driver_data;
3922 }
3923 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3924 
3925 #ifdef CONFIG_DEBUG_FS
3926 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3927 				    size_t count, loff_t *ppos)
3928 {
3929 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3930 	ssize_t len, ret = 0;
3931 	struct regulator_map *map;
3932 
3933 	if (!buf)
3934 		return -ENOMEM;
3935 
3936 	list_for_each_entry(map, &regulator_map_list, list) {
3937 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3938 			       "%s -> %s.%s\n",
3939 			       rdev_get_name(map->regulator), map->dev_name,
3940 			       map->supply);
3941 		if (len >= 0)
3942 			ret += len;
3943 		if (ret > PAGE_SIZE) {
3944 			ret = PAGE_SIZE;
3945 			break;
3946 		}
3947 	}
3948 
3949 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3950 
3951 	kfree(buf);
3952 
3953 	return ret;
3954 }
3955 #endif
3956 
3957 static const struct file_operations supply_map_fops = {
3958 #ifdef CONFIG_DEBUG_FS
3959 	.read = supply_map_read_file,
3960 	.llseek = default_llseek,
3961 #endif
3962 };
3963 
3964 static int __init regulator_init(void)
3965 {
3966 	int ret;
3967 
3968 	ret = class_register(&regulator_class);
3969 
3970 	debugfs_root = debugfs_create_dir("regulator", NULL);
3971 	if (!debugfs_root)
3972 		pr_warn("regulator: Failed to create debugfs directory\n");
3973 
3974 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3975 			    &supply_map_fops);
3976 
3977 	regulator_dummy_init();
3978 
3979 	return ret;
3980 }
3981 
3982 /* init early to allow our consumers to complete system booting */
3983 core_initcall(regulator_init);
3984 
3985 static int __init regulator_init_complete(void)
3986 {
3987 	struct regulator_dev *rdev;
3988 	struct regulator_ops *ops;
3989 	struct regulation_constraints *c;
3990 	int enabled, ret;
3991 
3992 	/*
3993 	 * Since DT doesn't provide an idiomatic mechanism for
3994 	 * enabling full constraints and since it's much more natural
3995 	 * with DT to provide them just assume that a DT enabled
3996 	 * system has full constraints.
3997 	 */
3998 	if (of_have_populated_dt())
3999 		has_full_constraints = true;
4000 
4001 	mutex_lock(&regulator_list_mutex);
4002 
4003 	/* If we have a full configuration then disable any regulators
4004 	 * which are not in use or always_on.  This will become the
4005 	 * default behaviour in the future.
4006 	 */
4007 	list_for_each_entry(rdev, &regulator_list, list) {
4008 		ops = rdev->desc->ops;
4009 		c = rdev->constraints;
4010 
4011 		if (!ops->disable || (c && c->always_on))
4012 			continue;
4013 
4014 		mutex_lock(&rdev->mutex);
4015 
4016 		if (rdev->use_count)
4017 			goto unlock;
4018 
4019 		/* If we can't read the status assume it's on. */
4020 		if (ops->is_enabled)
4021 			enabled = ops->is_enabled(rdev);
4022 		else
4023 			enabled = 1;
4024 
4025 		if (!enabled)
4026 			goto unlock;
4027 
4028 		if (has_full_constraints) {
4029 			/* We log since this may kill the system if it
4030 			 * goes wrong. */
4031 			rdev_info(rdev, "disabling\n");
4032 			ret = ops->disable(rdev);
4033 			if (ret != 0) {
4034 				rdev_err(rdev, "couldn't disable: %d\n", ret);
4035 			}
4036 		} else {
4037 			/* The intention is that in future we will
4038 			 * assume that full constraints are provided
4039 			 * so warn even if we aren't going to do
4040 			 * anything here.
4041 			 */
4042 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4043 		}
4044 
4045 unlock:
4046 		mutex_unlock(&rdev->mutex);
4047 	}
4048 
4049 	mutex_unlock(&regulator_list_mutex);
4050 
4051 	return 0;
4052 }
4053 late_initcall(regulator_init_complete);
4054