1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/of.h> 28 #include <linux/regmap.h> 29 #include <linux/regulator/of_regulator.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/regulator/driver.h> 32 #include <linux/regulator/machine.h> 33 #include <linux/module.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/regulator.h> 37 38 #include "dummy.h" 39 40 #define rdev_crit(rdev, fmt, ...) \ 41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 42 #define rdev_err(rdev, fmt, ...) \ 43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_warn(rdev, fmt, ...) \ 45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_info(rdev, fmt, ...) \ 47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_dbg(rdev, fmt, ...) \ 49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 51 static DEFINE_MUTEX(regulator_list_mutex); 52 static LIST_HEAD(regulator_list); 53 static LIST_HEAD(regulator_map_list); 54 static LIST_HEAD(regulator_ena_gpio_list); 55 static bool has_full_constraints; 56 static bool board_wants_dummy_regulator; 57 58 static struct dentry *debugfs_root; 59 60 /* 61 * struct regulator_map 62 * 63 * Used to provide symbolic supply names to devices. 64 */ 65 struct regulator_map { 66 struct list_head list; 67 const char *dev_name; /* The dev_name() for the consumer */ 68 const char *supply; 69 struct regulator_dev *regulator; 70 }; 71 72 /* 73 * struct regulator_enable_gpio 74 * 75 * Management for shared enable GPIO pin 76 */ 77 struct regulator_enable_gpio { 78 struct list_head list; 79 int gpio; 80 u32 enable_count; /* a number of enabled shared GPIO */ 81 u32 request_count; /* a number of requested shared GPIO */ 82 unsigned int ena_gpio_invert:1; 83 }; 84 85 /* 86 * struct regulator 87 * 88 * One for each consumer device. 89 */ 90 struct regulator { 91 struct device *dev; 92 struct list_head list; 93 unsigned int always_on:1; 94 unsigned int bypass:1; 95 int uA_load; 96 int min_uV; 97 int max_uV; 98 char *supply_name; 99 struct device_attribute dev_attr; 100 struct regulator_dev *rdev; 101 struct dentry *debugfs; 102 }; 103 104 static int _regulator_is_enabled(struct regulator_dev *rdev); 105 static int _regulator_disable(struct regulator_dev *rdev); 106 static int _regulator_get_voltage(struct regulator_dev *rdev); 107 static int _regulator_get_current_limit(struct regulator_dev *rdev); 108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 109 static void _notifier_call_chain(struct regulator_dev *rdev, 110 unsigned long event, void *data); 111 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 112 int min_uV, int max_uV); 113 static struct regulator *create_regulator(struct regulator_dev *rdev, 114 struct device *dev, 115 const char *supply_name); 116 117 static const char *rdev_get_name(struct regulator_dev *rdev) 118 { 119 if (rdev->constraints && rdev->constraints->name) 120 return rdev->constraints->name; 121 else if (rdev->desc->name) 122 return rdev->desc->name; 123 else 124 return ""; 125 } 126 127 /** 128 * of_get_regulator - get a regulator device node based on supply name 129 * @dev: Device pointer for the consumer (of regulator) device 130 * @supply: regulator supply name 131 * 132 * Extract the regulator device node corresponding to the supply name. 133 * returns the device node corresponding to the regulator if found, else 134 * returns NULL. 135 */ 136 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 137 { 138 struct device_node *regnode = NULL; 139 char prop_name[32]; /* 32 is max size of property name */ 140 141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 142 143 snprintf(prop_name, 32, "%s-supply", supply); 144 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 145 146 if (!regnode) { 147 dev_dbg(dev, "Looking up %s property in node %s failed", 148 prop_name, dev->of_node->full_name); 149 return NULL; 150 } 151 return regnode; 152 } 153 154 static int _regulator_can_change_status(struct regulator_dev *rdev) 155 { 156 if (!rdev->constraints) 157 return 0; 158 159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 160 return 1; 161 else 162 return 0; 163 } 164 165 /* Platform voltage constraint check */ 166 static int regulator_check_voltage(struct regulator_dev *rdev, 167 int *min_uV, int *max_uV) 168 { 169 BUG_ON(*min_uV > *max_uV); 170 171 if (!rdev->constraints) { 172 rdev_err(rdev, "no constraints\n"); 173 return -ENODEV; 174 } 175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 176 rdev_err(rdev, "operation not allowed\n"); 177 return -EPERM; 178 } 179 180 if (*max_uV > rdev->constraints->max_uV) 181 *max_uV = rdev->constraints->max_uV; 182 if (*min_uV < rdev->constraints->min_uV) 183 *min_uV = rdev->constraints->min_uV; 184 185 if (*min_uV > *max_uV) { 186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 187 *min_uV, *max_uV); 188 return -EINVAL; 189 } 190 191 return 0; 192 } 193 194 /* Make sure we select a voltage that suits the needs of all 195 * regulator consumers 196 */ 197 static int regulator_check_consumers(struct regulator_dev *rdev, 198 int *min_uV, int *max_uV) 199 { 200 struct regulator *regulator; 201 202 list_for_each_entry(regulator, &rdev->consumer_list, list) { 203 /* 204 * Assume consumers that didn't say anything are OK 205 * with anything in the constraint range. 206 */ 207 if (!regulator->min_uV && !regulator->max_uV) 208 continue; 209 210 if (*max_uV > regulator->max_uV) 211 *max_uV = regulator->max_uV; 212 if (*min_uV < regulator->min_uV) 213 *min_uV = regulator->min_uV; 214 } 215 216 if (*min_uV > *max_uV) { 217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 218 *min_uV, *max_uV); 219 return -EINVAL; 220 } 221 222 return 0; 223 } 224 225 /* current constraint check */ 226 static int regulator_check_current_limit(struct regulator_dev *rdev, 227 int *min_uA, int *max_uA) 228 { 229 BUG_ON(*min_uA > *max_uA); 230 231 if (!rdev->constraints) { 232 rdev_err(rdev, "no constraints\n"); 233 return -ENODEV; 234 } 235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 236 rdev_err(rdev, "operation not allowed\n"); 237 return -EPERM; 238 } 239 240 if (*max_uA > rdev->constraints->max_uA) 241 *max_uA = rdev->constraints->max_uA; 242 if (*min_uA < rdev->constraints->min_uA) 243 *min_uA = rdev->constraints->min_uA; 244 245 if (*min_uA > *max_uA) { 246 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 247 *min_uA, *max_uA); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* operating mode constraint check */ 255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 256 { 257 switch (*mode) { 258 case REGULATOR_MODE_FAST: 259 case REGULATOR_MODE_NORMAL: 260 case REGULATOR_MODE_IDLE: 261 case REGULATOR_MODE_STANDBY: 262 break; 263 default: 264 rdev_err(rdev, "invalid mode %x specified\n", *mode); 265 return -EINVAL; 266 } 267 268 if (!rdev->constraints) { 269 rdev_err(rdev, "no constraints\n"); 270 return -ENODEV; 271 } 272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 273 rdev_err(rdev, "operation not allowed\n"); 274 return -EPERM; 275 } 276 277 /* The modes are bitmasks, the most power hungry modes having 278 * the lowest values. If the requested mode isn't supported 279 * try higher modes. */ 280 while (*mode) { 281 if (rdev->constraints->valid_modes_mask & *mode) 282 return 0; 283 *mode /= 2; 284 } 285 286 return -EINVAL; 287 } 288 289 /* dynamic regulator mode switching constraint check */ 290 static int regulator_check_drms(struct regulator_dev *rdev) 291 { 292 if (!rdev->constraints) { 293 rdev_err(rdev, "no constraints\n"); 294 return -ENODEV; 295 } 296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 297 rdev_err(rdev, "operation not allowed\n"); 298 return -EPERM; 299 } 300 return 0; 301 } 302 303 static ssize_t regulator_uV_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 struct regulator_dev *rdev = dev_get_drvdata(dev); 307 ssize_t ret; 308 309 mutex_lock(&rdev->mutex); 310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 311 mutex_unlock(&rdev->mutex); 312 313 return ret; 314 } 315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 316 317 static ssize_t regulator_uA_show(struct device *dev, 318 struct device_attribute *attr, char *buf) 319 { 320 struct regulator_dev *rdev = dev_get_drvdata(dev); 321 322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 323 } 324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 325 326 static ssize_t regulator_name_show(struct device *dev, 327 struct device_attribute *attr, char *buf) 328 { 329 struct regulator_dev *rdev = dev_get_drvdata(dev); 330 331 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 332 } 333 334 static ssize_t regulator_print_opmode(char *buf, int mode) 335 { 336 switch (mode) { 337 case REGULATOR_MODE_FAST: 338 return sprintf(buf, "fast\n"); 339 case REGULATOR_MODE_NORMAL: 340 return sprintf(buf, "normal\n"); 341 case REGULATOR_MODE_IDLE: 342 return sprintf(buf, "idle\n"); 343 case REGULATOR_MODE_STANDBY: 344 return sprintf(buf, "standby\n"); 345 } 346 return sprintf(buf, "unknown\n"); 347 } 348 349 static ssize_t regulator_opmode_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 struct regulator_dev *rdev = dev_get_drvdata(dev); 353 354 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 355 } 356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 357 358 static ssize_t regulator_print_state(char *buf, int state) 359 { 360 if (state > 0) 361 return sprintf(buf, "enabled\n"); 362 else if (state == 0) 363 return sprintf(buf, "disabled\n"); 364 else 365 return sprintf(buf, "unknown\n"); 366 } 367 368 static ssize_t regulator_state_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct regulator_dev *rdev = dev_get_drvdata(dev); 372 ssize_t ret; 373 374 mutex_lock(&rdev->mutex); 375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 376 mutex_unlock(&rdev->mutex); 377 378 return ret; 379 } 380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 381 382 static ssize_t regulator_status_show(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct regulator_dev *rdev = dev_get_drvdata(dev); 386 int status; 387 char *label; 388 389 status = rdev->desc->ops->get_status(rdev); 390 if (status < 0) 391 return status; 392 393 switch (status) { 394 case REGULATOR_STATUS_OFF: 395 label = "off"; 396 break; 397 case REGULATOR_STATUS_ON: 398 label = "on"; 399 break; 400 case REGULATOR_STATUS_ERROR: 401 label = "error"; 402 break; 403 case REGULATOR_STATUS_FAST: 404 label = "fast"; 405 break; 406 case REGULATOR_STATUS_NORMAL: 407 label = "normal"; 408 break; 409 case REGULATOR_STATUS_IDLE: 410 label = "idle"; 411 break; 412 case REGULATOR_STATUS_STANDBY: 413 label = "standby"; 414 break; 415 case REGULATOR_STATUS_BYPASS: 416 label = "bypass"; 417 break; 418 case REGULATOR_STATUS_UNDEFINED: 419 label = "undefined"; 420 break; 421 default: 422 return -ERANGE; 423 } 424 425 return sprintf(buf, "%s\n", label); 426 } 427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 428 429 static ssize_t regulator_min_uA_show(struct device *dev, 430 struct device_attribute *attr, char *buf) 431 { 432 struct regulator_dev *rdev = dev_get_drvdata(dev); 433 434 if (!rdev->constraints) 435 return sprintf(buf, "constraint not defined\n"); 436 437 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 438 } 439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 440 441 static ssize_t regulator_max_uA_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct regulator_dev *rdev = dev_get_drvdata(dev); 445 446 if (!rdev->constraints) 447 return sprintf(buf, "constraint not defined\n"); 448 449 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 450 } 451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 452 453 static ssize_t regulator_min_uV_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct regulator_dev *rdev = dev_get_drvdata(dev); 457 458 if (!rdev->constraints) 459 return sprintf(buf, "constraint not defined\n"); 460 461 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 462 } 463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 464 465 static ssize_t regulator_max_uV_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct regulator_dev *rdev = dev_get_drvdata(dev); 469 470 if (!rdev->constraints) 471 return sprintf(buf, "constraint not defined\n"); 472 473 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 474 } 475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 476 477 static ssize_t regulator_total_uA_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct regulator_dev *rdev = dev_get_drvdata(dev); 481 struct regulator *regulator; 482 int uA = 0; 483 484 mutex_lock(&rdev->mutex); 485 list_for_each_entry(regulator, &rdev->consumer_list, list) 486 uA += regulator->uA_load; 487 mutex_unlock(&rdev->mutex); 488 return sprintf(buf, "%d\n", uA); 489 } 490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 491 492 static ssize_t regulator_num_users_show(struct device *dev, 493 struct device_attribute *attr, char *buf) 494 { 495 struct regulator_dev *rdev = dev_get_drvdata(dev); 496 return sprintf(buf, "%d\n", rdev->use_count); 497 } 498 499 static ssize_t regulator_type_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct regulator_dev *rdev = dev_get_drvdata(dev); 503 504 switch (rdev->desc->type) { 505 case REGULATOR_VOLTAGE: 506 return sprintf(buf, "voltage\n"); 507 case REGULATOR_CURRENT: 508 return sprintf(buf, "current\n"); 509 } 510 return sprintf(buf, "unknown\n"); 511 } 512 513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 struct regulator_dev *rdev = dev_get_drvdata(dev); 517 518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 519 } 520 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 521 regulator_suspend_mem_uV_show, NULL); 522 523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct regulator_dev *rdev = dev_get_drvdata(dev); 527 528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 529 } 530 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 531 regulator_suspend_disk_uV_show, NULL); 532 533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct regulator_dev *rdev = dev_get_drvdata(dev); 537 538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 539 } 540 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 541 regulator_suspend_standby_uV_show, NULL); 542 543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct regulator_dev *rdev = dev_get_drvdata(dev); 547 548 return regulator_print_opmode(buf, 549 rdev->constraints->state_mem.mode); 550 } 551 static DEVICE_ATTR(suspend_mem_mode, 0444, 552 regulator_suspend_mem_mode_show, NULL); 553 554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct regulator_dev *rdev = dev_get_drvdata(dev); 558 559 return regulator_print_opmode(buf, 560 rdev->constraints->state_disk.mode); 561 } 562 static DEVICE_ATTR(suspend_disk_mode, 0444, 563 regulator_suspend_disk_mode_show, NULL); 564 565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 566 struct device_attribute *attr, char *buf) 567 { 568 struct regulator_dev *rdev = dev_get_drvdata(dev); 569 570 return regulator_print_opmode(buf, 571 rdev->constraints->state_standby.mode); 572 } 573 static DEVICE_ATTR(suspend_standby_mode, 0444, 574 regulator_suspend_standby_mode_show, NULL); 575 576 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct regulator_dev *rdev = dev_get_drvdata(dev); 580 581 return regulator_print_state(buf, 582 rdev->constraints->state_mem.enabled); 583 } 584 static DEVICE_ATTR(suspend_mem_state, 0444, 585 regulator_suspend_mem_state_show, NULL); 586 587 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 struct regulator_dev *rdev = dev_get_drvdata(dev); 591 592 return regulator_print_state(buf, 593 rdev->constraints->state_disk.enabled); 594 } 595 static DEVICE_ATTR(suspend_disk_state, 0444, 596 regulator_suspend_disk_state_show, NULL); 597 598 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 599 struct device_attribute *attr, char *buf) 600 { 601 struct regulator_dev *rdev = dev_get_drvdata(dev); 602 603 return regulator_print_state(buf, 604 rdev->constraints->state_standby.enabled); 605 } 606 static DEVICE_ATTR(suspend_standby_state, 0444, 607 regulator_suspend_standby_state_show, NULL); 608 609 static ssize_t regulator_bypass_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct regulator_dev *rdev = dev_get_drvdata(dev); 613 const char *report; 614 bool bypass; 615 int ret; 616 617 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 618 619 if (ret != 0) 620 report = "unknown"; 621 else if (bypass) 622 report = "enabled"; 623 else 624 report = "disabled"; 625 626 return sprintf(buf, "%s\n", report); 627 } 628 static DEVICE_ATTR(bypass, 0444, 629 regulator_bypass_show, NULL); 630 631 /* 632 * These are the only attributes are present for all regulators. 633 * Other attributes are a function of regulator functionality. 634 */ 635 static struct device_attribute regulator_dev_attrs[] = { 636 __ATTR(name, 0444, regulator_name_show, NULL), 637 __ATTR(num_users, 0444, regulator_num_users_show, NULL), 638 __ATTR(type, 0444, regulator_type_show, NULL), 639 __ATTR_NULL, 640 }; 641 642 static void regulator_dev_release(struct device *dev) 643 { 644 struct regulator_dev *rdev = dev_get_drvdata(dev); 645 kfree(rdev); 646 } 647 648 static struct class regulator_class = { 649 .name = "regulator", 650 .dev_release = regulator_dev_release, 651 .dev_attrs = regulator_dev_attrs, 652 }; 653 654 /* Calculate the new optimum regulator operating mode based on the new total 655 * consumer load. All locks held by caller */ 656 static void drms_uA_update(struct regulator_dev *rdev) 657 { 658 struct regulator *sibling; 659 int current_uA = 0, output_uV, input_uV, err; 660 unsigned int mode; 661 662 err = regulator_check_drms(rdev); 663 if (err < 0 || !rdev->desc->ops->get_optimum_mode || 664 (!rdev->desc->ops->get_voltage && 665 !rdev->desc->ops->get_voltage_sel) || 666 !rdev->desc->ops->set_mode) 667 return; 668 669 /* get output voltage */ 670 output_uV = _regulator_get_voltage(rdev); 671 if (output_uV <= 0) 672 return; 673 674 /* get input voltage */ 675 input_uV = 0; 676 if (rdev->supply) 677 input_uV = regulator_get_voltage(rdev->supply); 678 if (input_uV <= 0) 679 input_uV = rdev->constraints->input_uV; 680 if (input_uV <= 0) 681 return; 682 683 /* calc total requested load */ 684 list_for_each_entry(sibling, &rdev->consumer_list, list) 685 current_uA += sibling->uA_load; 686 687 /* now get the optimum mode for our new total regulator load */ 688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 689 output_uV, current_uA); 690 691 /* check the new mode is allowed */ 692 err = regulator_mode_constrain(rdev, &mode); 693 if (err == 0) 694 rdev->desc->ops->set_mode(rdev, mode); 695 } 696 697 static int suspend_set_state(struct regulator_dev *rdev, 698 struct regulator_state *rstate) 699 { 700 int ret = 0; 701 702 /* If we have no suspend mode configration don't set anything; 703 * only warn if the driver implements set_suspend_voltage or 704 * set_suspend_mode callback. 705 */ 706 if (!rstate->enabled && !rstate->disabled) { 707 if (rdev->desc->ops->set_suspend_voltage || 708 rdev->desc->ops->set_suspend_mode) 709 rdev_warn(rdev, "No configuration\n"); 710 return 0; 711 } 712 713 if (rstate->enabled && rstate->disabled) { 714 rdev_err(rdev, "invalid configuration\n"); 715 return -EINVAL; 716 } 717 718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 719 ret = rdev->desc->ops->set_suspend_enable(rdev); 720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 721 ret = rdev->desc->ops->set_suspend_disable(rdev); 722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 723 ret = 0; 724 725 if (ret < 0) { 726 rdev_err(rdev, "failed to enabled/disable\n"); 727 return ret; 728 } 729 730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 732 if (ret < 0) { 733 rdev_err(rdev, "failed to set voltage\n"); 734 return ret; 735 } 736 } 737 738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 740 if (ret < 0) { 741 rdev_err(rdev, "failed to set mode\n"); 742 return ret; 743 } 744 } 745 return ret; 746 } 747 748 /* locks held by caller */ 749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 750 { 751 if (!rdev->constraints) 752 return -EINVAL; 753 754 switch (state) { 755 case PM_SUSPEND_STANDBY: 756 return suspend_set_state(rdev, 757 &rdev->constraints->state_standby); 758 case PM_SUSPEND_MEM: 759 return suspend_set_state(rdev, 760 &rdev->constraints->state_mem); 761 case PM_SUSPEND_MAX: 762 return suspend_set_state(rdev, 763 &rdev->constraints->state_disk); 764 default: 765 return -EINVAL; 766 } 767 } 768 769 static void print_constraints(struct regulator_dev *rdev) 770 { 771 struct regulation_constraints *constraints = rdev->constraints; 772 char buf[80] = ""; 773 int count = 0; 774 int ret; 775 776 if (constraints->min_uV && constraints->max_uV) { 777 if (constraints->min_uV == constraints->max_uV) 778 count += sprintf(buf + count, "%d mV ", 779 constraints->min_uV / 1000); 780 else 781 count += sprintf(buf + count, "%d <--> %d mV ", 782 constraints->min_uV / 1000, 783 constraints->max_uV / 1000); 784 } 785 786 if (!constraints->min_uV || 787 constraints->min_uV != constraints->max_uV) { 788 ret = _regulator_get_voltage(rdev); 789 if (ret > 0) 790 count += sprintf(buf + count, "at %d mV ", ret / 1000); 791 } 792 793 if (constraints->uV_offset) 794 count += sprintf(buf, "%dmV offset ", 795 constraints->uV_offset / 1000); 796 797 if (constraints->min_uA && constraints->max_uA) { 798 if (constraints->min_uA == constraints->max_uA) 799 count += sprintf(buf + count, "%d mA ", 800 constraints->min_uA / 1000); 801 else 802 count += sprintf(buf + count, "%d <--> %d mA ", 803 constraints->min_uA / 1000, 804 constraints->max_uA / 1000); 805 } 806 807 if (!constraints->min_uA || 808 constraints->min_uA != constraints->max_uA) { 809 ret = _regulator_get_current_limit(rdev); 810 if (ret > 0) 811 count += sprintf(buf + count, "at %d mA ", ret / 1000); 812 } 813 814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 815 count += sprintf(buf + count, "fast "); 816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 817 count += sprintf(buf + count, "normal "); 818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 819 count += sprintf(buf + count, "idle "); 820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 821 count += sprintf(buf + count, "standby"); 822 823 if (!count) 824 sprintf(buf, "no parameters"); 825 826 rdev_info(rdev, "%s\n", buf); 827 828 if ((constraints->min_uV != constraints->max_uV) && 829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 830 rdev_warn(rdev, 831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 832 } 833 834 static int machine_constraints_voltage(struct regulator_dev *rdev, 835 struct regulation_constraints *constraints) 836 { 837 struct regulator_ops *ops = rdev->desc->ops; 838 int ret; 839 840 /* do we need to apply the constraint voltage */ 841 if (rdev->constraints->apply_uV && 842 rdev->constraints->min_uV == rdev->constraints->max_uV) { 843 ret = _regulator_do_set_voltage(rdev, 844 rdev->constraints->min_uV, 845 rdev->constraints->max_uV); 846 if (ret < 0) { 847 rdev_err(rdev, "failed to apply %duV constraint\n", 848 rdev->constraints->min_uV); 849 return ret; 850 } 851 } 852 853 /* constrain machine-level voltage specs to fit 854 * the actual range supported by this regulator. 855 */ 856 if (ops->list_voltage && rdev->desc->n_voltages) { 857 int count = rdev->desc->n_voltages; 858 int i; 859 int min_uV = INT_MAX; 860 int max_uV = INT_MIN; 861 int cmin = constraints->min_uV; 862 int cmax = constraints->max_uV; 863 864 /* it's safe to autoconfigure fixed-voltage supplies 865 and the constraints are used by list_voltage. */ 866 if (count == 1 && !cmin) { 867 cmin = 1; 868 cmax = INT_MAX; 869 constraints->min_uV = cmin; 870 constraints->max_uV = cmax; 871 } 872 873 /* voltage constraints are optional */ 874 if ((cmin == 0) && (cmax == 0)) 875 return 0; 876 877 /* else require explicit machine-level constraints */ 878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 879 rdev_err(rdev, "invalid voltage constraints\n"); 880 return -EINVAL; 881 } 882 883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 884 for (i = 0; i < count; i++) { 885 int value; 886 887 value = ops->list_voltage(rdev, i); 888 if (value <= 0) 889 continue; 890 891 /* maybe adjust [min_uV..max_uV] */ 892 if (value >= cmin && value < min_uV) 893 min_uV = value; 894 if (value <= cmax && value > max_uV) 895 max_uV = value; 896 } 897 898 /* final: [min_uV..max_uV] valid iff constraints valid */ 899 if (max_uV < min_uV) { 900 rdev_err(rdev, 901 "unsupportable voltage constraints %u-%uuV\n", 902 min_uV, max_uV); 903 return -EINVAL; 904 } 905 906 /* use regulator's subset of machine constraints */ 907 if (constraints->min_uV < min_uV) { 908 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 909 constraints->min_uV, min_uV); 910 constraints->min_uV = min_uV; 911 } 912 if (constraints->max_uV > max_uV) { 913 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 914 constraints->max_uV, max_uV); 915 constraints->max_uV = max_uV; 916 } 917 } 918 919 return 0; 920 } 921 922 /** 923 * set_machine_constraints - sets regulator constraints 924 * @rdev: regulator source 925 * @constraints: constraints to apply 926 * 927 * Allows platform initialisation code to define and constrain 928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 929 * Constraints *must* be set by platform code in order for some 930 * regulator operations to proceed i.e. set_voltage, set_current_limit, 931 * set_mode. 932 */ 933 static int set_machine_constraints(struct regulator_dev *rdev, 934 const struct regulation_constraints *constraints) 935 { 936 int ret = 0; 937 struct regulator_ops *ops = rdev->desc->ops; 938 939 if (constraints) 940 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 941 GFP_KERNEL); 942 else 943 rdev->constraints = kzalloc(sizeof(*constraints), 944 GFP_KERNEL); 945 if (!rdev->constraints) 946 return -ENOMEM; 947 948 ret = machine_constraints_voltage(rdev, rdev->constraints); 949 if (ret != 0) 950 goto out; 951 952 /* do we need to setup our suspend state */ 953 if (rdev->constraints->initial_state) { 954 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 955 if (ret < 0) { 956 rdev_err(rdev, "failed to set suspend state\n"); 957 goto out; 958 } 959 } 960 961 if (rdev->constraints->initial_mode) { 962 if (!ops->set_mode) { 963 rdev_err(rdev, "no set_mode operation\n"); 964 ret = -EINVAL; 965 goto out; 966 } 967 968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 969 if (ret < 0) { 970 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 971 goto out; 972 } 973 } 974 975 /* If the constraints say the regulator should be on at this point 976 * and we have control then make sure it is enabled. 977 */ 978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) && 979 ops->enable) { 980 ret = ops->enable(rdev); 981 if (ret < 0) { 982 rdev_err(rdev, "failed to enable\n"); 983 goto out; 984 } 985 } 986 987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) { 988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 989 if (ret < 0) { 990 rdev_err(rdev, "failed to set ramp_delay\n"); 991 goto out; 992 } 993 } 994 995 print_constraints(rdev); 996 return 0; 997 out: 998 kfree(rdev->constraints); 999 rdev->constraints = NULL; 1000 return ret; 1001 } 1002 1003 /** 1004 * set_supply - set regulator supply regulator 1005 * @rdev: regulator name 1006 * @supply_rdev: supply regulator name 1007 * 1008 * Called by platform initialisation code to set the supply regulator for this 1009 * regulator. This ensures that a regulators supply will also be enabled by the 1010 * core if it's child is enabled. 1011 */ 1012 static int set_supply(struct regulator_dev *rdev, 1013 struct regulator_dev *supply_rdev) 1014 { 1015 int err; 1016 1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1018 1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1020 if (rdev->supply == NULL) { 1021 err = -ENOMEM; 1022 return err; 1023 } 1024 supply_rdev->open_count++; 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1031 * @rdev: regulator source 1032 * @consumer_dev_name: dev_name() string for device supply applies to 1033 * @supply: symbolic name for supply 1034 * 1035 * Allows platform initialisation code to map physical regulator 1036 * sources to symbolic names for supplies for use by devices. Devices 1037 * should use these symbolic names to request regulators, avoiding the 1038 * need to provide board-specific regulator names as platform data. 1039 */ 1040 static int set_consumer_device_supply(struct regulator_dev *rdev, 1041 const char *consumer_dev_name, 1042 const char *supply) 1043 { 1044 struct regulator_map *node; 1045 int has_dev; 1046 1047 if (supply == NULL) 1048 return -EINVAL; 1049 1050 if (consumer_dev_name != NULL) 1051 has_dev = 1; 1052 else 1053 has_dev = 0; 1054 1055 list_for_each_entry(node, ®ulator_map_list, list) { 1056 if (node->dev_name && consumer_dev_name) { 1057 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1058 continue; 1059 } else if (node->dev_name || consumer_dev_name) { 1060 continue; 1061 } 1062 1063 if (strcmp(node->supply, supply) != 0) 1064 continue; 1065 1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1067 consumer_dev_name, 1068 dev_name(&node->regulator->dev), 1069 node->regulator->desc->name, 1070 supply, 1071 dev_name(&rdev->dev), rdev_get_name(rdev)); 1072 return -EBUSY; 1073 } 1074 1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1076 if (node == NULL) 1077 return -ENOMEM; 1078 1079 node->regulator = rdev; 1080 node->supply = supply; 1081 1082 if (has_dev) { 1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1084 if (node->dev_name == NULL) { 1085 kfree(node); 1086 return -ENOMEM; 1087 } 1088 } 1089 1090 list_add(&node->list, ®ulator_map_list); 1091 return 0; 1092 } 1093 1094 static void unset_regulator_supplies(struct regulator_dev *rdev) 1095 { 1096 struct regulator_map *node, *n; 1097 1098 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1099 if (rdev == node->regulator) { 1100 list_del(&node->list); 1101 kfree(node->dev_name); 1102 kfree(node); 1103 } 1104 } 1105 } 1106 1107 #define REG_STR_SIZE 64 1108 1109 static struct regulator *create_regulator(struct regulator_dev *rdev, 1110 struct device *dev, 1111 const char *supply_name) 1112 { 1113 struct regulator *regulator; 1114 char buf[REG_STR_SIZE]; 1115 int err, size; 1116 1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1118 if (regulator == NULL) 1119 return NULL; 1120 1121 mutex_lock(&rdev->mutex); 1122 regulator->rdev = rdev; 1123 list_add(®ulator->list, &rdev->consumer_list); 1124 1125 if (dev) { 1126 regulator->dev = dev; 1127 1128 /* Add a link to the device sysfs entry */ 1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1130 dev->kobj.name, supply_name); 1131 if (size >= REG_STR_SIZE) 1132 goto overflow_err; 1133 1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1135 if (regulator->supply_name == NULL) 1136 goto overflow_err; 1137 1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, 1139 buf); 1140 if (err) { 1141 rdev_warn(rdev, "could not add device link %s err %d\n", 1142 dev->kobj.name, err); 1143 /* non-fatal */ 1144 } 1145 } else { 1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1147 if (regulator->supply_name == NULL) 1148 goto overflow_err; 1149 } 1150 1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1152 rdev->debugfs); 1153 if (!regulator->debugfs) { 1154 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1155 } else { 1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1157 ®ulator->uA_load); 1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1159 ®ulator->min_uV); 1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1161 ®ulator->max_uV); 1162 } 1163 1164 /* 1165 * Check now if the regulator is an always on regulator - if 1166 * it is then we don't need to do nearly so much work for 1167 * enable/disable calls. 1168 */ 1169 if (!_regulator_can_change_status(rdev) && 1170 _regulator_is_enabled(rdev)) 1171 regulator->always_on = true; 1172 1173 mutex_unlock(&rdev->mutex); 1174 return regulator; 1175 overflow_err: 1176 list_del(®ulator->list); 1177 kfree(regulator); 1178 mutex_unlock(&rdev->mutex); 1179 return NULL; 1180 } 1181 1182 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1183 { 1184 if (!rdev->desc->ops->enable_time) 1185 return rdev->desc->enable_time; 1186 return rdev->desc->ops->enable_time(rdev); 1187 } 1188 1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1190 const char *supply, 1191 int *ret) 1192 { 1193 struct regulator_dev *r; 1194 struct device_node *node; 1195 struct regulator_map *map; 1196 const char *devname = NULL; 1197 1198 /* first do a dt based lookup */ 1199 if (dev && dev->of_node) { 1200 node = of_get_regulator(dev, supply); 1201 if (node) { 1202 list_for_each_entry(r, ®ulator_list, list) 1203 if (r->dev.parent && 1204 node == r->dev.of_node) 1205 return r; 1206 } else { 1207 /* 1208 * If we couldn't even get the node then it's 1209 * not just that the device didn't register 1210 * yet, there's no node and we'll never 1211 * succeed. 1212 */ 1213 *ret = -ENODEV; 1214 } 1215 } 1216 1217 /* if not found, try doing it non-dt way */ 1218 if (dev) 1219 devname = dev_name(dev); 1220 1221 list_for_each_entry(r, ®ulator_list, list) 1222 if (strcmp(rdev_get_name(r), supply) == 0) 1223 return r; 1224 1225 list_for_each_entry(map, ®ulator_map_list, list) { 1226 /* If the mapping has a device set up it must match */ 1227 if (map->dev_name && 1228 (!devname || strcmp(map->dev_name, devname))) 1229 continue; 1230 1231 if (strcmp(map->supply, supply) == 0) 1232 return map->regulator; 1233 } 1234 1235 1236 return NULL; 1237 } 1238 1239 /* Internal regulator request function */ 1240 static struct regulator *_regulator_get(struct device *dev, const char *id, 1241 int exclusive) 1242 { 1243 struct regulator_dev *rdev; 1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1245 const char *devname = NULL; 1246 int ret = 0; 1247 1248 if (id == NULL) { 1249 pr_err("get() with no identifier\n"); 1250 return regulator; 1251 } 1252 1253 if (dev) 1254 devname = dev_name(dev); 1255 1256 mutex_lock(®ulator_list_mutex); 1257 1258 rdev = regulator_dev_lookup(dev, id, &ret); 1259 if (rdev) 1260 goto found; 1261 1262 /* 1263 * If we have return value from dev_lookup fail, we do not expect to 1264 * succeed, so, quit with appropriate error value 1265 */ 1266 if (ret) { 1267 regulator = ERR_PTR(ret); 1268 goto out; 1269 } 1270 1271 if (board_wants_dummy_regulator) { 1272 rdev = dummy_regulator_rdev; 1273 goto found; 1274 } 1275 1276 #ifdef CONFIG_REGULATOR_DUMMY 1277 if (!devname) 1278 devname = "deviceless"; 1279 1280 /* If the board didn't flag that it was fully constrained then 1281 * substitute in a dummy regulator so consumers can continue. 1282 */ 1283 if (!has_full_constraints) { 1284 pr_warn("%s supply %s not found, using dummy regulator\n", 1285 devname, id); 1286 rdev = dummy_regulator_rdev; 1287 goto found; 1288 } 1289 #endif 1290 1291 mutex_unlock(®ulator_list_mutex); 1292 return regulator; 1293 1294 found: 1295 if (rdev->exclusive) { 1296 regulator = ERR_PTR(-EPERM); 1297 goto out; 1298 } 1299 1300 if (exclusive && rdev->open_count) { 1301 regulator = ERR_PTR(-EBUSY); 1302 goto out; 1303 } 1304 1305 if (!try_module_get(rdev->owner)) 1306 goto out; 1307 1308 regulator = create_regulator(rdev, dev, id); 1309 if (regulator == NULL) { 1310 regulator = ERR_PTR(-ENOMEM); 1311 module_put(rdev->owner); 1312 goto out; 1313 } 1314 1315 rdev->open_count++; 1316 if (exclusive) { 1317 rdev->exclusive = 1; 1318 1319 ret = _regulator_is_enabled(rdev); 1320 if (ret > 0) 1321 rdev->use_count = 1; 1322 else 1323 rdev->use_count = 0; 1324 } 1325 1326 out: 1327 mutex_unlock(®ulator_list_mutex); 1328 1329 return regulator; 1330 } 1331 1332 /** 1333 * regulator_get - lookup and obtain a reference to a regulator. 1334 * @dev: device for regulator "consumer" 1335 * @id: Supply name or regulator ID. 1336 * 1337 * Returns a struct regulator corresponding to the regulator producer, 1338 * or IS_ERR() condition containing errno. 1339 * 1340 * Use of supply names configured via regulator_set_device_supply() is 1341 * strongly encouraged. It is recommended that the supply name used 1342 * should match the name used for the supply and/or the relevant 1343 * device pins in the datasheet. 1344 */ 1345 struct regulator *regulator_get(struct device *dev, const char *id) 1346 { 1347 return _regulator_get(dev, id, 0); 1348 } 1349 EXPORT_SYMBOL_GPL(regulator_get); 1350 1351 static void devm_regulator_release(struct device *dev, void *res) 1352 { 1353 regulator_put(*(struct regulator **)res); 1354 } 1355 1356 /** 1357 * devm_regulator_get - Resource managed regulator_get() 1358 * @dev: device for regulator "consumer" 1359 * @id: Supply name or regulator ID. 1360 * 1361 * Managed regulator_get(). Regulators returned from this function are 1362 * automatically regulator_put() on driver detach. See regulator_get() for more 1363 * information. 1364 */ 1365 struct regulator *devm_regulator_get(struct device *dev, const char *id) 1366 { 1367 struct regulator **ptr, *regulator; 1368 1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL); 1370 if (!ptr) 1371 return ERR_PTR(-ENOMEM); 1372 1373 regulator = regulator_get(dev, id); 1374 if (!IS_ERR(regulator)) { 1375 *ptr = regulator; 1376 devres_add(dev, ptr); 1377 } else { 1378 devres_free(ptr); 1379 } 1380 1381 return regulator; 1382 } 1383 EXPORT_SYMBOL_GPL(devm_regulator_get); 1384 1385 /** 1386 * regulator_get_exclusive - obtain exclusive access to a regulator. 1387 * @dev: device for regulator "consumer" 1388 * @id: Supply name or regulator ID. 1389 * 1390 * Returns a struct regulator corresponding to the regulator producer, 1391 * or IS_ERR() condition containing errno. Other consumers will be 1392 * unable to obtain this reference is held and the use count for the 1393 * regulator will be initialised to reflect the current state of the 1394 * regulator. 1395 * 1396 * This is intended for use by consumers which cannot tolerate shared 1397 * use of the regulator such as those which need to force the 1398 * regulator off for correct operation of the hardware they are 1399 * controlling. 1400 * 1401 * Use of supply names configured via regulator_set_device_supply() is 1402 * strongly encouraged. It is recommended that the supply name used 1403 * should match the name used for the supply and/or the relevant 1404 * device pins in the datasheet. 1405 */ 1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1407 { 1408 return _regulator_get(dev, id, 1); 1409 } 1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1411 1412 /* Locks held by regulator_put() */ 1413 static void _regulator_put(struct regulator *regulator) 1414 { 1415 struct regulator_dev *rdev; 1416 1417 if (regulator == NULL || IS_ERR(regulator)) 1418 return; 1419 1420 rdev = regulator->rdev; 1421 1422 debugfs_remove_recursive(regulator->debugfs); 1423 1424 /* remove any sysfs entries */ 1425 if (regulator->dev) 1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1427 kfree(regulator->supply_name); 1428 list_del(®ulator->list); 1429 kfree(regulator); 1430 1431 rdev->open_count--; 1432 rdev->exclusive = 0; 1433 1434 module_put(rdev->owner); 1435 } 1436 1437 /** 1438 * regulator_put - "free" the regulator source 1439 * @regulator: regulator source 1440 * 1441 * Note: drivers must ensure that all regulator_enable calls made on this 1442 * regulator source are balanced by regulator_disable calls prior to calling 1443 * this function. 1444 */ 1445 void regulator_put(struct regulator *regulator) 1446 { 1447 mutex_lock(®ulator_list_mutex); 1448 _regulator_put(regulator); 1449 mutex_unlock(®ulator_list_mutex); 1450 } 1451 EXPORT_SYMBOL_GPL(regulator_put); 1452 1453 static int devm_regulator_match(struct device *dev, void *res, void *data) 1454 { 1455 struct regulator **r = res; 1456 if (!r || !*r) { 1457 WARN_ON(!r || !*r); 1458 return 0; 1459 } 1460 return *r == data; 1461 } 1462 1463 /** 1464 * devm_regulator_put - Resource managed regulator_put() 1465 * @regulator: regulator to free 1466 * 1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally 1468 * this function will not need to be called and the resource management 1469 * code will ensure that the resource is freed. 1470 */ 1471 void devm_regulator_put(struct regulator *regulator) 1472 { 1473 int rc; 1474 1475 rc = devres_release(regulator->dev, devm_regulator_release, 1476 devm_regulator_match, regulator); 1477 if (rc != 0) 1478 WARN_ON(rc); 1479 } 1480 EXPORT_SYMBOL_GPL(devm_regulator_put); 1481 1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1484 const struct regulator_config *config) 1485 { 1486 struct regulator_enable_gpio *pin; 1487 int ret; 1488 1489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1490 if (pin->gpio == config->ena_gpio) { 1491 rdev_dbg(rdev, "GPIO %d is already used\n", 1492 config->ena_gpio); 1493 goto update_ena_gpio_to_rdev; 1494 } 1495 } 1496 1497 ret = gpio_request_one(config->ena_gpio, 1498 GPIOF_DIR_OUT | config->ena_gpio_flags, 1499 rdev_get_name(rdev)); 1500 if (ret) 1501 return ret; 1502 1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1504 if (pin == NULL) { 1505 gpio_free(config->ena_gpio); 1506 return -ENOMEM; 1507 } 1508 1509 pin->gpio = config->ena_gpio; 1510 pin->ena_gpio_invert = config->ena_gpio_invert; 1511 list_add(&pin->list, ®ulator_ena_gpio_list); 1512 1513 update_ena_gpio_to_rdev: 1514 pin->request_count++; 1515 rdev->ena_pin = pin; 1516 return 0; 1517 } 1518 1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1520 { 1521 struct regulator_enable_gpio *pin, *n; 1522 1523 if (!rdev->ena_pin) 1524 return; 1525 1526 /* Free the GPIO only in case of no use */ 1527 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1528 if (pin->gpio == rdev->ena_pin->gpio) { 1529 if (pin->request_count <= 1) { 1530 pin->request_count = 0; 1531 gpio_free(pin->gpio); 1532 list_del(&pin->list); 1533 kfree(pin); 1534 } else { 1535 pin->request_count--; 1536 } 1537 } 1538 } 1539 } 1540 1541 /** 1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1543 * @rdev: regulator_dev structure 1544 * @enable: enable GPIO at initial use? 1545 * 1546 * GPIO is enabled in case of initial use. (enable_count is 0) 1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1548 */ 1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1550 { 1551 struct regulator_enable_gpio *pin = rdev->ena_pin; 1552 1553 if (!pin) 1554 return -EINVAL; 1555 1556 if (enable) { 1557 /* Enable GPIO at initial use */ 1558 if (pin->enable_count == 0) 1559 gpio_set_value_cansleep(pin->gpio, 1560 !pin->ena_gpio_invert); 1561 1562 pin->enable_count++; 1563 } else { 1564 if (pin->enable_count > 1) { 1565 pin->enable_count--; 1566 return 0; 1567 } 1568 1569 /* Disable GPIO if not used */ 1570 if (pin->enable_count <= 1) { 1571 gpio_set_value_cansleep(pin->gpio, 1572 pin->ena_gpio_invert); 1573 pin->enable_count = 0; 1574 } 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int _regulator_do_enable(struct regulator_dev *rdev) 1581 { 1582 int ret, delay; 1583 1584 /* Query before enabling in case configuration dependent. */ 1585 ret = _regulator_get_enable_time(rdev); 1586 if (ret >= 0) { 1587 delay = ret; 1588 } else { 1589 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1590 delay = 0; 1591 } 1592 1593 trace_regulator_enable(rdev_get_name(rdev)); 1594 1595 if (rdev->ena_pin) { 1596 ret = regulator_ena_gpio_ctrl(rdev, true); 1597 if (ret < 0) 1598 return ret; 1599 rdev->ena_gpio_state = 1; 1600 } else if (rdev->desc->ops->enable) { 1601 ret = rdev->desc->ops->enable(rdev); 1602 if (ret < 0) 1603 return ret; 1604 } else { 1605 return -EINVAL; 1606 } 1607 1608 /* Allow the regulator to ramp; it would be useful to extend 1609 * this for bulk operations so that the regulators can ramp 1610 * together. */ 1611 trace_regulator_enable_delay(rdev_get_name(rdev)); 1612 1613 if (delay >= 1000) { 1614 mdelay(delay / 1000); 1615 udelay(delay % 1000); 1616 } else if (delay) { 1617 udelay(delay); 1618 } 1619 1620 trace_regulator_enable_complete(rdev_get_name(rdev)); 1621 1622 return 0; 1623 } 1624 1625 /* locks held by regulator_enable() */ 1626 static int _regulator_enable(struct regulator_dev *rdev) 1627 { 1628 int ret; 1629 1630 /* check voltage and requested load before enabling */ 1631 if (rdev->constraints && 1632 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1633 drms_uA_update(rdev); 1634 1635 if (rdev->use_count == 0) { 1636 /* The regulator may on if it's not switchable or left on */ 1637 ret = _regulator_is_enabled(rdev); 1638 if (ret == -EINVAL || ret == 0) { 1639 if (!_regulator_can_change_status(rdev)) 1640 return -EPERM; 1641 1642 ret = _regulator_do_enable(rdev); 1643 if (ret < 0) 1644 return ret; 1645 1646 } else if (ret < 0) { 1647 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1648 return ret; 1649 } 1650 /* Fallthrough on positive return values - already enabled */ 1651 } 1652 1653 rdev->use_count++; 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * regulator_enable - enable regulator output 1660 * @regulator: regulator source 1661 * 1662 * Request that the regulator be enabled with the regulator output at 1663 * the predefined voltage or current value. Calls to regulator_enable() 1664 * must be balanced with calls to regulator_disable(). 1665 * 1666 * NOTE: the output value can be set by other drivers, boot loader or may be 1667 * hardwired in the regulator. 1668 */ 1669 int regulator_enable(struct regulator *regulator) 1670 { 1671 struct regulator_dev *rdev = regulator->rdev; 1672 int ret = 0; 1673 1674 if (regulator->always_on) 1675 return 0; 1676 1677 if (rdev->supply) { 1678 ret = regulator_enable(rdev->supply); 1679 if (ret != 0) 1680 return ret; 1681 } 1682 1683 mutex_lock(&rdev->mutex); 1684 ret = _regulator_enable(rdev); 1685 mutex_unlock(&rdev->mutex); 1686 1687 if (ret != 0 && rdev->supply) 1688 regulator_disable(rdev->supply); 1689 1690 return ret; 1691 } 1692 EXPORT_SYMBOL_GPL(regulator_enable); 1693 1694 static int _regulator_do_disable(struct regulator_dev *rdev) 1695 { 1696 int ret; 1697 1698 trace_regulator_disable(rdev_get_name(rdev)); 1699 1700 if (rdev->ena_pin) { 1701 ret = regulator_ena_gpio_ctrl(rdev, false); 1702 if (ret < 0) 1703 return ret; 1704 rdev->ena_gpio_state = 0; 1705 1706 } else if (rdev->desc->ops->disable) { 1707 ret = rdev->desc->ops->disable(rdev); 1708 if (ret != 0) 1709 return ret; 1710 } 1711 1712 trace_regulator_disable_complete(rdev_get_name(rdev)); 1713 1714 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 1715 NULL); 1716 return 0; 1717 } 1718 1719 /* locks held by regulator_disable() */ 1720 static int _regulator_disable(struct regulator_dev *rdev) 1721 { 1722 int ret = 0; 1723 1724 if (WARN(rdev->use_count <= 0, 1725 "unbalanced disables for %s\n", rdev_get_name(rdev))) 1726 return -EIO; 1727 1728 /* are we the last user and permitted to disable ? */ 1729 if (rdev->use_count == 1 && 1730 (rdev->constraints && !rdev->constraints->always_on)) { 1731 1732 /* we are last user */ 1733 if (_regulator_can_change_status(rdev)) { 1734 ret = _regulator_do_disable(rdev); 1735 if (ret < 0) { 1736 rdev_err(rdev, "failed to disable\n"); 1737 return ret; 1738 } 1739 } 1740 1741 rdev->use_count = 0; 1742 } else if (rdev->use_count > 1) { 1743 1744 if (rdev->constraints && 1745 (rdev->constraints->valid_ops_mask & 1746 REGULATOR_CHANGE_DRMS)) 1747 drms_uA_update(rdev); 1748 1749 rdev->use_count--; 1750 } 1751 1752 return ret; 1753 } 1754 1755 /** 1756 * regulator_disable - disable regulator output 1757 * @regulator: regulator source 1758 * 1759 * Disable the regulator output voltage or current. Calls to 1760 * regulator_enable() must be balanced with calls to 1761 * regulator_disable(). 1762 * 1763 * NOTE: this will only disable the regulator output if no other consumer 1764 * devices have it enabled, the regulator device supports disabling and 1765 * machine constraints permit this operation. 1766 */ 1767 int regulator_disable(struct regulator *regulator) 1768 { 1769 struct regulator_dev *rdev = regulator->rdev; 1770 int ret = 0; 1771 1772 if (regulator->always_on) 1773 return 0; 1774 1775 mutex_lock(&rdev->mutex); 1776 ret = _regulator_disable(rdev); 1777 mutex_unlock(&rdev->mutex); 1778 1779 if (ret == 0 && rdev->supply) 1780 regulator_disable(rdev->supply); 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(regulator_disable); 1785 1786 /* locks held by regulator_force_disable() */ 1787 static int _regulator_force_disable(struct regulator_dev *rdev) 1788 { 1789 int ret = 0; 1790 1791 /* force disable */ 1792 if (rdev->desc->ops->disable) { 1793 /* ah well, who wants to live forever... */ 1794 ret = rdev->desc->ops->disable(rdev); 1795 if (ret < 0) { 1796 rdev_err(rdev, "failed to force disable\n"); 1797 return ret; 1798 } 1799 /* notify other consumers that power has been forced off */ 1800 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 1801 REGULATOR_EVENT_DISABLE, NULL); 1802 } 1803 1804 return ret; 1805 } 1806 1807 /** 1808 * regulator_force_disable - force disable regulator output 1809 * @regulator: regulator source 1810 * 1811 * Forcibly disable the regulator output voltage or current. 1812 * NOTE: this *will* disable the regulator output even if other consumer 1813 * devices have it enabled. This should be used for situations when device 1814 * damage will likely occur if the regulator is not disabled (e.g. over temp). 1815 */ 1816 int regulator_force_disable(struct regulator *regulator) 1817 { 1818 struct regulator_dev *rdev = regulator->rdev; 1819 int ret; 1820 1821 mutex_lock(&rdev->mutex); 1822 regulator->uA_load = 0; 1823 ret = _regulator_force_disable(regulator->rdev); 1824 mutex_unlock(&rdev->mutex); 1825 1826 if (rdev->supply) 1827 while (rdev->open_count--) 1828 regulator_disable(rdev->supply); 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL_GPL(regulator_force_disable); 1833 1834 static void regulator_disable_work(struct work_struct *work) 1835 { 1836 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 1837 disable_work.work); 1838 int count, i, ret; 1839 1840 mutex_lock(&rdev->mutex); 1841 1842 BUG_ON(!rdev->deferred_disables); 1843 1844 count = rdev->deferred_disables; 1845 rdev->deferred_disables = 0; 1846 1847 for (i = 0; i < count; i++) { 1848 ret = _regulator_disable(rdev); 1849 if (ret != 0) 1850 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 1851 } 1852 1853 mutex_unlock(&rdev->mutex); 1854 1855 if (rdev->supply) { 1856 for (i = 0; i < count; i++) { 1857 ret = regulator_disable(rdev->supply); 1858 if (ret != 0) { 1859 rdev_err(rdev, 1860 "Supply disable failed: %d\n", ret); 1861 } 1862 } 1863 } 1864 } 1865 1866 /** 1867 * regulator_disable_deferred - disable regulator output with delay 1868 * @regulator: regulator source 1869 * @ms: miliseconds until the regulator is disabled 1870 * 1871 * Execute regulator_disable() on the regulator after a delay. This 1872 * is intended for use with devices that require some time to quiesce. 1873 * 1874 * NOTE: this will only disable the regulator output if no other consumer 1875 * devices have it enabled, the regulator device supports disabling and 1876 * machine constraints permit this operation. 1877 */ 1878 int regulator_disable_deferred(struct regulator *regulator, int ms) 1879 { 1880 struct regulator_dev *rdev = regulator->rdev; 1881 int ret; 1882 1883 if (regulator->always_on) 1884 return 0; 1885 1886 if (!ms) 1887 return regulator_disable(regulator); 1888 1889 mutex_lock(&rdev->mutex); 1890 rdev->deferred_disables++; 1891 mutex_unlock(&rdev->mutex); 1892 1893 ret = schedule_delayed_work(&rdev->disable_work, 1894 msecs_to_jiffies(ms)); 1895 if (ret < 0) 1896 return ret; 1897 else 1898 return 0; 1899 } 1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 1901 1902 /** 1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users 1904 * 1905 * @rdev: regulator to operate on 1906 * 1907 * Regulators that use regmap for their register I/O can set the 1908 * enable_reg and enable_mask fields in their descriptor and then use 1909 * this as their is_enabled operation, saving some code. 1910 */ 1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev) 1912 { 1913 unsigned int val; 1914 int ret; 1915 1916 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); 1917 if (ret != 0) 1918 return ret; 1919 1920 if (rdev->desc->enable_is_inverted) 1921 return (val & rdev->desc->enable_mask) == 0; 1922 else 1923 return (val & rdev->desc->enable_mask) != 0; 1924 } 1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); 1926 1927 /** 1928 * regulator_enable_regmap - standard enable() for regmap users 1929 * 1930 * @rdev: regulator to operate on 1931 * 1932 * Regulators that use regmap for their register I/O can set the 1933 * enable_reg and enable_mask fields in their descriptor and then use 1934 * this as their enable() operation, saving some code. 1935 */ 1936 int regulator_enable_regmap(struct regulator_dev *rdev) 1937 { 1938 unsigned int val; 1939 1940 if (rdev->desc->enable_is_inverted) 1941 val = 0; 1942 else 1943 val = rdev->desc->enable_mask; 1944 1945 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1946 rdev->desc->enable_mask, val); 1947 } 1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap); 1949 1950 /** 1951 * regulator_disable_regmap - standard disable() for regmap users 1952 * 1953 * @rdev: regulator to operate on 1954 * 1955 * Regulators that use regmap for their register I/O can set the 1956 * enable_reg and enable_mask fields in their descriptor and then use 1957 * this as their disable() operation, saving some code. 1958 */ 1959 int regulator_disable_regmap(struct regulator_dev *rdev) 1960 { 1961 unsigned int val; 1962 1963 if (rdev->desc->enable_is_inverted) 1964 val = rdev->desc->enable_mask; 1965 else 1966 val = 0; 1967 1968 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, 1969 rdev->desc->enable_mask, val); 1970 } 1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap); 1972 1973 static int _regulator_is_enabled(struct regulator_dev *rdev) 1974 { 1975 /* A GPIO control always takes precedence */ 1976 if (rdev->ena_pin) 1977 return rdev->ena_gpio_state; 1978 1979 /* If we don't know then assume that the regulator is always on */ 1980 if (!rdev->desc->ops->is_enabled) 1981 return 1; 1982 1983 return rdev->desc->ops->is_enabled(rdev); 1984 } 1985 1986 /** 1987 * regulator_is_enabled - is the regulator output enabled 1988 * @regulator: regulator source 1989 * 1990 * Returns positive if the regulator driver backing the source/client 1991 * has requested that the device be enabled, zero if it hasn't, else a 1992 * negative errno code. 1993 * 1994 * Note that the device backing this regulator handle can have multiple 1995 * users, so it might be enabled even if regulator_enable() was never 1996 * called for this particular source. 1997 */ 1998 int regulator_is_enabled(struct regulator *regulator) 1999 { 2000 int ret; 2001 2002 if (regulator->always_on) 2003 return 1; 2004 2005 mutex_lock(®ulator->rdev->mutex); 2006 ret = _regulator_is_enabled(regulator->rdev); 2007 mutex_unlock(®ulator->rdev->mutex); 2008 2009 return ret; 2010 } 2011 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2012 2013 /** 2014 * regulator_can_change_voltage - check if regulator can change voltage 2015 * @regulator: regulator source 2016 * 2017 * Returns positive if the regulator driver backing the source/client 2018 * can change its voltage, false otherwise. Usefull for detecting fixed 2019 * or dummy regulators and disabling voltage change logic in the client 2020 * driver. 2021 */ 2022 int regulator_can_change_voltage(struct regulator *regulator) 2023 { 2024 struct regulator_dev *rdev = regulator->rdev; 2025 2026 if (rdev->constraints && 2027 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2028 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2029 return 1; 2030 2031 if (rdev->desc->continuous_voltage_range && 2032 rdev->constraints->min_uV && rdev->constraints->max_uV && 2033 rdev->constraints->min_uV != rdev->constraints->max_uV) 2034 return 1; 2035 } 2036 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2040 2041 /** 2042 * regulator_count_voltages - count regulator_list_voltage() selectors 2043 * @regulator: regulator source 2044 * 2045 * Returns number of selectors, or negative errno. Selectors are 2046 * numbered starting at zero, and typically correspond to bitfields 2047 * in hardware registers. 2048 */ 2049 int regulator_count_voltages(struct regulator *regulator) 2050 { 2051 struct regulator_dev *rdev = regulator->rdev; 2052 2053 return rdev->desc->n_voltages ? : -EINVAL; 2054 } 2055 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2056 2057 /** 2058 * regulator_list_voltage_linear - List voltages with simple calculation 2059 * 2060 * @rdev: Regulator device 2061 * @selector: Selector to convert into a voltage 2062 * 2063 * Regulators with a simple linear mapping between voltages and 2064 * selectors can set min_uV and uV_step in the regulator descriptor 2065 * and then use this function as their list_voltage() operation, 2066 */ 2067 int regulator_list_voltage_linear(struct regulator_dev *rdev, 2068 unsigned int selector) 2069 { 2070 if (selector >= rdev->desc->n_voltages) 2071 return -EINVAL; 2072 if (selector < rdev->desc->linear_min_sel) 2073 return 0; 2074 2075 selector -= rdev->desc->linear_min_sel; 2076 2077 return rdev->desc->min_uV + (rdev->desc->uV_step * selector); 2078 } 2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); 2080 2081 /** 2082 * regulator_list_voltage_table - List voltages with table based mapping 2083 * 2084 * @rdev: Regulator device 2085 * @selector: Selector to convert into a voltage 2086 * 2087 * Regulators with table based mapping between voltages and 2088 * selectors can set volt_table in the regulator descriptor 2089 * and then use this function as their list_voltage() operation. 2090 */ 2091 int regulator_list_voltage_table(struct regulator_dev *rdev, 2092 unsigned int selector) 2093 { 2094 if (!rdev->desc->volt_table) { 2095 BUG_ON(!rdev->desc->volt_table); 2096 return -EINVAL; 2097 } 2098 2099 if (selector >= rdev->desc->n_voltages) 2100 return -EINVAL; 2101 2102 return rdev->desc->volt_table[selector]; 2103 } 2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table); 2105 2106 /** 2107 * regulator_list_voltage - enumerate supported voltages 2108 * @regulator: regulator source 2109 * @selector: identify voltage to list 2110 * Context: can sleep 2111 * 2112 * Returns a voltage that can be passed to @regulator_set_voltage(), 2113 * zero if this selector code can't be used on this system, or a 2114 * negative errno. 2115 */ 2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2117 { 2118 struct regulator_dev *rdev = regulator->rdev; 2119 struct regulator_ops *ops = rdev->desc->ops; 2120 int ret; 2121 2122 if (!ops->list_voltage || selector >= rdev->desc->n_voltages) 2123 return -EINVAL; 2124 2125 mutex_lock(&rdev->mutex); 2126 ret = ops->list_voltage(rdev, selector); 2127 mutex_unlock(&rdev->mutex); 2128 2129 if (ret > 0) { 2130 if (ret < rdev->constraints->min_uV) 2131 ret = 0; 2132 else if (ret > rdev->constraints->max_uV) 2133 ret = 0; 2134 } 2135 2136 return ret; 2137 } 2138 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2139 2140 /** 2141 * regulator_get_linear_step - return the voltage step size between VSEL values 2142 * @regulator: regulator source 2143 * 2144 * Returns the voltage step size between VSEL values for linear 2145 * regulators, or return 0 if the regulator isn't a linear regulator. 2146 */ 2147 unsigned int regulator_get_linear_step(struct regulator *regulator) 2148 { 2149 struct regulator_dev *rdev = regulator->rdev; 2150 2151 return rdev->desc->uV_step; 2152 } 2153 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2154 2155 /** 2156 * regulator_is_supported_voltage - check if a voltage range can be supported 2157 * 2158 * @regulator: Regulator to check. 2159 * @min_uV: Minimum required voltage in uV. 2160 * @max_uV: Maximum required voltage in uV. 2161 * 2162 * Returns a boolean or a negative error code. 2163 */ 2164 int regulator_is_supported_voltage(struct regulator *regulator, 2165 int min_uV, int max_uV) 2166 { 2167 struct regulator_dev *rdev = regulator->rdev; 2168 int i, voltages, ret; 2169 2170 /* If we can't change voltage check the current voltage */ 2171 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2172 ret = regulator_get_voltage(regulator); 2173 if (ret >= 0) 2174 return (min_uV <= ret && ret <= max_uV); 2175 else 2176 return ret; 2177 } 2178 2179 /* Any voltage within constrains range is fine? */ 2180 if (rdev->desc->continuous_voltage_range) 2181 return min_uV >= rdev->constraints->min_uV && 2182 max_uV <= rdev->constraints->max_uV; 2183 2184 ret = regulator_count_voltages(regulator); 2185 if (ret < 0) 2186 return ret; 2187 voltages = ret; 2188 2189 for (i = 0; i < voltages; i++) { 2190 ret = regulator_list_voltage(regulator, i); 2191 2192 if (ret >= min_uV && ret <= max_uV) 2193 return 1; 2194 } 2195 2196 return 0; 2197 } 2198 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2199 2200 /** 2201 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users 2202 * 2203 * @rdev: regulator to operate on 2204 * 2205 * Regulators that use regmap for their register I/O can set the 2206 * vsel_reg and vsel_mask fields in their descriptor and then use this 2207 * as their get_voltage_vsel operation, saving some code. 2208 */ 2209 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) 2210 { 2211 unsigned int val; 2212 int ret; 2213 2214 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); 2215 if (ret != 0) 2216 return ret; 2217 2218 val &= rdev->desc->vsel_mask; 2219 val >>= ffs(rdev->desc->vsel_mask) - 1; 2220 2221 return val; 2222 } 2223 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); 2224 2225 /** 2226 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users 2227 * 2228 * @rdev: regulator to operate on 2229 * @sel: Selector to set 2230 * 2231 * Regulators that use regmap for their register I/O can set the 2232 * vsel_reg and vsel_mask fields in their descriptor and then use this 2233 * as their set_voltage_vsel operation, saving some code. 2234 */ 2235 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) 2236 { 2237 int ret; 2238 2239 sel <<= ffs(rdev->desc->vsel_mask) - 1; 2240 2241 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, 2242 rdev->desc->vsel_mask, sel); 2243 if (ret) 2244 return ret; 2245 2246 if (rdev->desc->apply_bit) 2247 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, 2248 rdev->desc->apply_bit, 2249 rdev->desc->apply_bit); 2250 return ret; 2251 } 2252 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); 2253 2254 /** 2255 * regulator_map_voltage_iterate - map_voltage() based on list_voltage() 2256 * 2257 * @rdev: Regulator to operate on 2258 * @min_uV: Lower bound for voltage 2259 * @max_uV: Upper bound for voltage 2260 * 2261 * Drivers implementing set_voltage_sel() and list_voltage() can use 2262 * this as their map_voltage() operation. It will find a suitable 2263 * voltage by calling list_voltage() until it gets something in bounds 2264 * for the requested voltages. 2265 */ 2266 int regulator_map_voltage_iterate(struct regulator_dev *rdev, 2267 int min_uV, int max_uV) 2268 { 2269 int best_val = INT_MAX; 2270 int selector = 0; 2271 int i, ret; 2272 2273 /* Find the smallest voltage that falls within the specified 2274 * range. 2275 */ 2276 for (i = 0; i < rdev->desc->n_voltages; i++) { 2277 ret = rdev->desc->ops->list_voltage(rdev, i); 2278 if (ret < 0) 2279 continue; 2280 2281 if (ret < best_val && ret >= min_uV && ret <= max_uV) { 2282 best_val = ret; 2283 selector = i; 2284 } 2285 } 2286 2287 if (best_val != INT_MAX) 2288 return selector; 2289 else 2290 return -EINVAL; 2291 } 2292 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); 2293 2294 /** 2295 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list 2296 * 2297 * @rdev: Regulator to operate on 2298 * @min_uV: Lower bound for voltage 2299 * @max_uV: Upper bound for voltage 2300 * 2301 * Drivers that have ascendant voltage list can use this as their 2302 * map_voltage() operation. 2303 */ 2304 int regulator_map_voltage_ascend(struct regulator_dev *rdev, 2305 int min_uV, int max_uV) 2306 { 2307 int i, ret; 2308 2309 for (i = 0; i < rdev->desc->n_voltages; i++) { 2310 ret = rdev->desc->ops->list_voltage(rdev, i); 2311 if (ret < 0) 2312 continue; 2313 2314 if (ret > max_uV) 2315 break; 2316 2317 if (ret >= min_uV && ret <= max_uV) 2318 return i; 2319 } 2320 2321 return -EINVAL; 2322 } 2323 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); 2324 2325 /** 2326 * regulator_map_voltage_linear - map_voltage() for simple linear mappings 2327 * 2328 * @rdev: Regulator to operate on 2329 * @min_uV: Lower bound for voltage 2330 * @max_uV: Upper bound for voltage 2331 * 2332 * Drivers providing min_uV and uV_step in their regulator_desc can 2333 * use this as their map_voltage() operation. 2334 */ 2335 int regulator_map_voltage_linear(struct regulator_dev *rdev, 2336 int min_uV, int max_uV) 2337 { 2338 int ret, voltage; 2339 2340 /* Allow uV_step to be 0 for fixed voltage */ 2341 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { 2342 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) 2343 return 0; 2344 else 2345 return -EINVAL; 2346 } 2347 2348 if (!rdev->desc->uV_step) { 2349 BUG_ON(!rdev->desc->uV_step); 2350 return -EINVAL; 2351 } 2352 2353 if (min_uV < rdev->desc->min_uV) 2354 min_uV = rdev->desc->min_uV; 2355 2356 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); 2357 if (ret < 0) 2358 return ret; 2359 2360 ret += rdev->desc->linear_min_sel; 2361 2362 /* Map back into a voltage to verify we're still in bounds */ 2363 voltage = rdev->desc->ops->list_voltage(rdev, ret); 2364 if (voltage < min_uV || voltage > max_uV) 2365 return -EINVAL; 2366 2367 return ret; 2368 } 2369 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); 2370 2371 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2372 int min_uV, int max_uV) 2373 { 2374 int ret; 2375 int delay = 0; 2376 int best_val = 0; 2377 unsigned int selector; 2378 int old_selector = -1; 2379 2380 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2381 2382 min_uV += rdev->constraints->uV_offset; 2383 max_uV += rdev->constraints->uV_offset; 2384 2385 /* 2386 * If we can't obtain the old selector there is not enough 2387 * info to call set_voltage_time_sel(). 2388 */ 2389 if (_regulator_is_enabled(rdev) && 2390 rdev->desc->ops->set_voltage_time_sel && 2391 rdev->desc->ops->get_voltage_sel) { 2392 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2393 if (old_selector < 0) 2394 return old_selector; 2395 } 2396 2397 if (rdev->desc->ops->set_voltage) { 2398 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, 2399 &selector); 2400 2401 if (ret >= 0) { 2402 if (rdev->desc->ops->list_voltage) 2403 best_val = rdev->desc->ops->list_voltage(rdev, 2404 selector); 2405 else 2406 best_val = _regulator_get_voltage(rdev); 2407 } 2408 2409 } else if (rdev->desc->ops->set_voltage_sel) { 2410 if (rdev->desc->ops->map_voltage) { 2411 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2412 max_uV); 2413 } else { 2414 if (rdev->desc->ops->list_voltage == 2415 regulator_list_voltage_linear) 2416 ret = regulator_map_voltage_linear(rdev, 2417 min_uV, max_uV); 2418 else 2419 ret = regulator_map_voltage_iterate(rdev, 2420 min_uV, max_uV); 2421 } 2422 2423 if (ret >= 0) { 2424 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2425 if (min_uV <= best_val && max_uV >= best_val) { 2426 selector = ret; 2427 if (old_selector == selector) 2428 ret = 0; 2429 else 2430 ret = rdev->desc->ops->set_voltage_sel( 2431 rdev, ret); 2432 } else { 2433 ret = -EINVAL; 2434 } 2435 } 2436 } else { 2437 ret = -EINVAL; 2438 } 2439 2440 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2441 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 && 2442 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) { 2443 2444 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2445 old_selector, selector); 2446 if (delay < 0) { 2447 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2448 delay); 2449 delay = 0; 2450 } 2451 2452 /* Insert any necessary delays */ 2453 if (delay >= 1000) { 2454 mdelay(delay / 1000); 2455 udelay(delay % 1000); 2456 } else if (delay) { 2457 udelay(delay); 2458 } 2459 } 2460 2461 if (ret == 0 && best_val >= 0) { 2462 unsigned long data = best_val; 2463 2464 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2465 (void *)data); 2466 } 2467 2468 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2469 2470 return ret; 2471 } 2472 2473 /** 2474 * regulator_set_voltage - set regulator output voltage 2475 * @regulator: regulator source 2476 * @min_uV: Minimum required voltage in uV 2477 * @max_uV: Maximum acceptable voltage in uV 2478 * 2479 * Sets a voltage regulator to the desired output voltage. This can be set 2480 * during any regulator state. IOW, regulator can be disabled or enabled. 2481 * 2482 * If the regulator is enabled then the voltage will change to the new value 2483 * immediately otherwise if the regulator is disabled the regulator will 2484 * output at the new voltage when enabled. 2485 * 2486 * NOTE: If the regulator is shared between several devices then the lowest 2487 * request voltage that meets the system constraints will be used. 2488 * Regulator system constraints must be set for this regulator before 2489 * calling this function otherwise this call will fail. 2490 */ 2491 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2492 { 2493 struct regulator_dev *rdev = regulator->rdev; 2494 int ret = 0; 2495 int old_min_uV, old_max_uV; 2496 2497 mutex_lock(&rdev->mutex); 2498 2499 /* If we're setting the same range as last time the change 2500 * should be a noop (some cpufreq implementations use the same 2501 * voltage for multiple frequencies, for example). 2502 */ 2503 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2504 goto out; 2505 2506 /* sanity check */ 2507 if (!rdev->desc->ops->set_voltage && 2508 !rdev->desc->ops->set_voltage_sel) { 2509 ret = -EINVAL; 2510 goto out; 2511 } 2512 2513 /* constraints check */ 2514 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2515 if (ret < 0) 2516 goto out; 2517 2518 /* restore original values in case of error */ 2519 old_min_uV = regulator->min_uV; 2520 old_max_uV = regulator->max_uV; 2521 regulator->min_uV = min_uV; 2522 regulator->max_uV = max_uV; 2523 2524 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2525 if (ret < 0) 2526 goto out2; 2527 2528 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2529 if (ret < 0) 2530 goto out2; 2531 2532 out: 2533 mutex_unlock(&rdev->mutex); 2534 return ret; 2535 out2: 2536 regulator->min_uV = old_min_uV; 2537 regulator->max_uV = old_max_uV; 2538 mutex_unlock(&rdev->mutex); 2539 return ret; 2540 } 2541 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2542 2543 /** 2544 * regulator_set_voltage_time - get raise/fall time 2545 * @regulator: regulator source 2546 * @old_uV: starting voltage in microvolts 2547 * @new_uV: target voltage in microvolts 2548 * 2549 * Provided with the starting and ending voltage, this function attempts to 2550 * calculate the time in microseconds required to rise or fall to this new 2551 * voltage. 2552 */ 2553 int regulator_set_voltage_time(struct regulator *regulator, 2554 int old_uV, int new_uV) 2555 { 2556 struct regulator_dev *rdev = regulator->rdev; 2557 struct regulator_ops *ops = rdev->desc->ops; 2558 int old_sel = -1; 2559 int new_sel = -1; 2560 int voltage; 2561 int i; 2562 2563 /* Currently requires operations to do this */ 2564 if (!ops->list_voltage || !ops->set_voltage_time_sel 2565 || !rdev->desc->n_voltages) 2566 return -EINVAL; 2567 2568 for (i = 0; i < rdev->desc->n_voltages; i++) { 2569 /* We only look for exact voltage matches here */ 2570 voltage = regulator_list_voltage(regulator, i); 2571 if (voltage < 0) 2572 return -EINVAL; 2573 if (voltage == 0) 2574 continue; 2575 if (voltage == old_uV) 2576 old_sel = i; 2577 if (voltage == new_uV) 2578 new_sel = i; 2579 } 2580 2581 if (old_sel < 0 || new_sel < 0) 2582 return -EINVAL; 2583 2584 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2585 } 2586 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2587 2588 /** 2589 * regulator_set_voltage_time_sel - get raise/fall time 2590 * @rdev: regulator source device 2591 * @old_selector: selector for starting voltage 2592 * @new_selector: selector for target voltage 2593 * 2594 * Provided with the starting and target voltage selectors, this function 2595 * returns time in microseconds required to rise or fall to this new voltage 2596 * 2597 * Drivers providing ramp_delay in regulation_constraints can use this as their 2598 * set_voltage_time_sel() operation. 2599 */ 2600 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2601 unsigned int old_selector, 2602 unsigned int new_selector) 2603 { 2604 unsigned int ramp_delay = 0; 2605 int old_volt, new_volt; 2606 2607 if (rdev->constraints->ramp_delay) 2608 ramp_delay = rdev->constraints->ramp_delay; 2609 else if (rdev->desc->ramp_delay) 2610 ramp_delay = rdev->desc->ramp_delay; 2611 2612 if (ramp_delay == 0) { 2613 rdev_warn(rdev, "ramp_delay not set\n"); 2614 return 0; 2615 } 2616 2617 /* sanity check */ 2618 if (!rdev->desc->ops->list_voltage) 2619 return -EINVAL; 2620 2621 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2622 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2623 2624 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2625 } 2626 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2627 2628 /** 2629 * regulator_sync_voltage - re-apply last regulator output voltage 2630 * @regulator: regulator source 2631 * 2632 * Re-apply the last configured voltage. This is intended to be used 2633 * where some external control source the consumer is cooperating with 2634 * has caused the configured voltage to change. 2635 */ 2636 int regulator_sync_voltage(struct regulator *regulator) 2637 { 2638 struct regulator_dev *rdev = regulator->rdev; 2639 int ret, min_uV, max_uV; 2640 2641 mutex_lock(&rdev->mutex); 2642 2643 if (!rdev->desc->ops->set_voltage && 2644 !rdev->desc->ops->set_voltage_sel) { 2645 ret = -EINVAL; 2646 goto out; 2647 } 2648 2649 /* This is only going to work if we've had a voltage configured. */ 2650 if (!regulator->min_uV && !regulator->max_uV) { 2651 ret = -EINVAL; 2652 goto out; 2653 } 2654 2655 min_uV = regulator->min_uV; 2656 max_uV = regulator->max_uV; 2657 2658 /* This should be a paranoia check... */ 2659 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2660 if (ret < 0) 2661 goto out; 2662 2663 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2664 if (ret < 0) 2665 goto out; 2666 2667 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2668 2669 out: 2670 mutex_unlock(&rdev->mutex); 2671 return ret; 2672 } 2673 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2674 2675 static int _regulator_get_voltage(struct regulator_dev *rdev) 2676 { 2677 int sel, ret; 2678 2679 if (rdev->desc->ops->get_voltage_sel) { 2680 sel = rdev->desc->ops->get_voltage_sel(rdev); 2681 if (sel < 0) 2682 return sel; 2683 ret = rdev->desc->ops->list_voltage(rdev, sel); 2684 } else if (rdev->desc->ops->get_voltage) { 2685 ret = rdev->desc->ops->get_voltage(rdev); 2686 } else if (rdev->desc->ops->list_voltage) { 2687 ret = rdev->desc->ops->list_voltage(rdev, 0); 2688 } else { 2689 return -EINVAL; 2690 } 2691 2692 if (ret < 0) 2693 return ret; 2694 return ret - rdev->constraints->uV_offset; 2695 } 2696 2697 /** 2698 * regulator_get_voltage - get regulator output voltage 2699 * @regulator: regulator source 2700 * 2701 * This returns the current regulator voltage in uV. 2702 * 2703 * NOTE: If the regulator is disabled it will return the voltage value. This 2704 * function should not be used to determine regulator state. 2705 */ 2706 int regulator_get_voltage(struct regulator *regulator) 2707 { 2708 int ret; 2709 2710 mutex_lock(®ulator->rdev->mutex); 2711 2712 ret = _regulator_get_voltage(regulator->rdev); 2713 2714 mutex_unlock(®ulator->rdev->mutex); 2715 2716 return ret; 2717 } 2718 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2719 2720 /** 2721 * regulator_set_current_limit - set regulator output current limit 2722 * @regulator: regulator source 2723 * @min_uA: Minimum supported current in uA 2724 * @max_uA: Maximum supported current in uA 2725 * 2726 * Sets current sink to the desired output current. This can be set during 2727 * any regulator state. IOW, regulator can be disabled or enabled. 2728 * 2729 * If the regulator is enabled then the current will change to the new value 2730 * immediately otherwise if the regulator is disabled the regulator will 2731 * output at the new current when enabled. 2732 * 2733 * NOTE: Regulator system constraints must be set for this regulator before 2734 * calling this function otherwise this call will fail. 2735 */ 2736 int regulator_set_current_limit(struct regulator *regulator, 2737 int min_uA, int max_uA) 2738 { 2739 struct regulator_dev *rdev = regulator->rdev; 2740 int ret; 2741 2742 mutex_lock(&rdev->mutex); 2743 2744 /* sanity check */ 2745 if (!rdev->desc->ops->set_current_limit) { 2746 ret = -EINVAL; 2747 goto out; 2748 } 2749 2750 /* constraints check */ 2751 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2752 if (ret < 0) 2753 goto out; 2754 2755 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2756 out: 2757 mutex_unlock(&rdev->mutex); 2758 return ret; 2759 } 2760 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2761 2762 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2763 { 2764 int ret; 2765 2766 mutex_lock(&rdev->mutex); 2767 2768 /* sanity check */ 2769 if (!rdev->desc->ops->get_current_limit) { 2770 ret = -EINVAL; 2771 goto out; 2772 } 2773 2774 ret = rdev->desc->ops->get_current_limit(rdev); 2775 out: 2776 mutex_unlock(&rdev->mutex); 2777 return ret; 2778 } 2779 2780 /** 2781 * regulator_get_current_limit - get regulator output current 2782 * @regulator: regulator source 2783 * 2784 * This returns the current supplied by the specified current sink in uA. 2785 * 2786 * NOTE: If the regulator is disabled it will return the current value. This 2787 * function should not be used to determine regulator state. 2788 */ 2789 int regulator_get_current_limit(struct regulator *regulator) 2790 { 2791 return _regulator_get_current_limit(regulator->rdev); 2792 } 2793 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 2794 2795 /** 2796 * regulator_set_mode - set regulator operating mode 2797 * @regulator: regulator source 2798 * @mode: operating mode - one of the REGULATOR_MODE constants 2799 * 2800 * Set regulator operating mode to increase regulator efficiency or improve 2801 * regulation performance. 2802 * 2803 * NOTE: Regulator system constraints must be set for this regulator before 2804 * calling this function otherwise this call will fail. 2805 */ 2806 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 2807 { 2808 struct regulator_dev *rdev = regulator->rdev; 2809 int ret; 2810 int regulator_curr_mode; 2811 2812 mutex_lock(&rdev->mutex); 2813 2814 /* sanity check */ 2815 if (!rdev->desc->ops->set_mode) { 2816 ret = -EINVAL; 2817 goto out; 2818 } 2819 2820 /* return if the same mode is requested */ 2821 if (rdev->desc->ops->get_mode) { 2822 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 2823 if (regulator_curr_mode == mode) { 2824 ret = 0; 2825 goto out; 2826 } 2827 } 2828 2829 /* constraints check */ 2830 ret = regulator_mode_constrain(rdev, &mode); 2831 if (ret < 0) 2832 goto out; 2833 2834 ret = rdev->desc->ops->set_mode(rdev, mode); 2835 out: 2836 mutex_unlock(&rdev->mutex); 2837 return ret; 2838 } 2839 EXPORT_SYMBOL_GPL(regulator_set_mode); 2840 2841 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 2842 { 2843 int ret; 2844 2845 mutex_lock(&rdev->mutex); 2846 2847 /* sanity check */ 2848 if (!rdev->desc->ops->get_mode) { 2849 ret = -EINVAL; 2850 goto out; 2851 } 2852 2853 ret = rdev->desc->ops->get_mode(rdev); 2854 out: 2855 mutex_unlock(&rdev->mutex); 2856 return ret; 2857 } 2858 2859 /** 2860 * regulator_get_mode - get regulator operating mode 2861 * @regulator: regulator source 2862 * 2863 * Get the current regulator operating mode. 2864 */ 2865 unsigned int regulator_get_mode(struct regulator *regulator) 2866 { 2867 return _regulator_get_mode(regulator->rdev); 2868 } 2869 EXPORT_SYMBOL_GPL(regulator_get_mode); 2870 2871 /** 2872 * regulator_set_optimum_mode - set regulator optimum operating mode 2873 * @regulator: regulator source 2874 * @uA_load: load current 2875 * 2876 * Notifies the regulator core of a new device load. This is then used by 2877 * DRMS (if enabled by constraints) to set the most efficient regulator 2878 * operating mode for the new regulator loading. 2879 * 2880 * Consumer devices notify their supply regulator of the maximum power 2881 * they will require (can be taken from device datasheet in the power 2882 * consumption tables) when they change operational status and hence power 2883 * state. Examples of operational state changes that can affect power 2884 * consumption are :- 2885 * 2886 * o Device is opened / closed. 2887 * o Device I/O is about to begin or has just finished. 2888 * o Device is idling in between work. 2889 * 2890 * This information is also exported via sysfs to userspace. 2891 * 2892 * DRMS will sum the total requested load on the regulator and change 2893 * to the most efficient operating mode if platform constraints allow. 2894 * 2895 * Returns the new regulator mode or error. 2896 */ 2897 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load) 2898 { 2899 struct regulator_dev *rdev = regulator->rdev; 2900 struct regulator *consumer; 2901 int ret, output_uV, input_uV = 0, total_uA_load = 0; 2902 unsigned int mode; 2903 2904 if (rdev->supply) 2905 input_uV = regulator_get_voltage(rdev->supply); 2906 2907 mutex_lock(&rdev->mutex); 2908 2909 /* 2910 * first check to see if we can set modes at all, otherwise just 2911 * tell the consumer everything is OK. 2912 */ 2913 regulator->uA_load = uA_load; 2914 ret = regulator_check_drms(rdev); 2915 if (ret < 0) { 2916 ret = 0; 2917 goto out; 2918 } 2919 2920 if (!rdev->desc->ops->get_optimum_mode) 2921 goto out; 2922 2923 /* 2924 * we can actually do this so any errors are indicators of 2925 * potential real failure. 2926 */ 2927 ret = -EINVAL; 2928 2929 if (!rdev->desc->ops->set_mode) 2930 goto out; 2931 2932 /* get output voltage */ 2933 output_uV = _regulator_get_voltage(rdev); 2934 if (output_uV <= 0) { 2935 rdev_err(rdev, "invalid output voltage found\n"); 2936 goto out; 2937 } 2938 2939 /* No supply? Use constraint voltage */ 2940 if (input_uV <= 0) 2941 input_uV = rdev->constraints->input_uV; 2942 if (input_uV <= 0) { 2943 rdev_err(rdev, "invalid input voltage found\n"); 2944 goto out; 2945 } 2946 2947 /* calc total requested load for this regulator */ 2948 list_for_each_entry(consumer, &rdev->consumer_list, list) 2949 total_uA_load += consumer->uA_load; 2950 2951 mode = rdev->desc->ops->get_optimum_mode(rdev, 2952 input_uV, output_uV, 2953 total_uA_load); 2954 ret = regulator_mode_constrain(rdev, &mode); 2955 if (ret < 0) { 2956 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 2957 total_uA_load, input_uV, output_uV); 2958 goto out; 2959 } 2960 2961 ret = rdev->desc->ops->set_mode(rdev, mode); 2962 if (ret < 0) { 2963 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 2964 goto out; 2965 } 2966 ret = mode; 2967 out: 2968 mutex_unlock(&rdev->mutex); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode); 2972 2973 /** 2974 * regulator_set_bypass_regmap - Default set_bypass() using regmap 2975 * 2976 * @rdev: device to operate on. 2977 * @enable: state to set. 2978 */ 2979 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) 2980 { 2981 unsigned int val; 2982 2983 if (enable) 2984 val = rdev->desc->bypass_mask; 2985 else 2986 val = 0; 2987 2988 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, 2989 rdev->desc->bypass_mask, val); 2990 } 2991 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); 2992 2993 /** 2994 * regulator_get_bypass_regmap - Default get_bypass() using regmap 2995 * 2996 * @rdev: device to operate on. 2997 * @enable: current state. 2998 */ 2999 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) 3000 { 3001 unsigned int val; 3002 int ret; 3003 3004 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); 3005 if (ret != 0) 3006 return ret; 3007 3008 *enable = val & rdev->desc->bypass_mask; 3009 3010 return 0; 3011 } 3012 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); 3013 3014 /** 3015 * regulator_allow_bypass - allow the regulator to go into bypass mode 3016 * 3017 * @regulator: Regulator to configure 3018 * @enable: enable or disable bypass mode 3019 * 3020 * Allow the regulator to go into bypass mode if all other consumers 3021 * for the regulator also enable bypass mode and the machine 3022 * constraints allow this. Bypass mode means that the regulator is 3023 * simply passing the input directly to the output with no regulation. 3024 */ 3025 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3026 { 3027 struct regulator_dev *rdev = regulator->rdev; 3028 int ret = 0; 3029 3030 if (!rdev->desc->ops->set_bypass) 3031 return 0; 3032 3033 if (rdev->constraints && 3034 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3035 return 0; 3036 3037 mutex_lock(&rdev->mutex); 3038 3039 if (enable && !regulator->bypass) { 3040 rdev->bypass_count++; 3041 3042 if (rdev->bypass_count == rdev->open_count) { 3043 ret = rdev->desc->ops->set_bypass(rdev, enable); 3044 if (ret != 0) 3045 rdev->bypass_count--; 3046 } 3047 3048 } else if (!enable && regulator->bypass) { 3049 rdev->bypass_count--; 3050 3051 if (rdev->bypass_count != rdev->open_count) { 3052 ret = rdev->desc->ops->set_bypass(rdev, enable); 3053 if (ret != 0) 3054 rdev->bypass_count++; 3055 } 3056 } 3057 3058 if (ret == 0) 3059 regulator->bypass = enable; 3060 3061 mutex_unlock(&rdev->mutex); 3062 3063 return ret; 3064 } 3065 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3066 3067 /** 3068 * regulator_register_notifier - register regulator event notifier 3069 * @regulator: regulator source 3070 * @nb: notifier block 3071 * 3072 * Register notifier block to receive regulator events. 3073 */ 3074 int regulator_register_notifier(struct regulator *regulator, 3075 struct notifier_block *nb) 3076 { 3077 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3078 nb); 3079 } 3080 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3081 3082 /** 3083 * regulator_unregister_notifier - unregister regulator event notifier 3084 * @regulator: regulator source 3085 * @nb: notifier block 3086 * 3087 * Unregister regulator event notifier block. 3088 */ 3089 int regulator_unregister_notifier(struct regulator *regulator, 3090 struct notifier_block *nb) 3091 { 3092 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3093 nb); 3094 } 3095 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3096 3097 /* notify regulator consumers and downstream regulator consumers. 3098 * Note mutex must be held by caller. 3099 */ 3100 static void _notifier_call_chain(struct regulator_dev *rdev, 3101 unsigned long event, void *data) 3102 { 3103 /* call rdev chain first */ 3104 blocking_notifier_call_chain(&rdev->notifier, event, data); 3105 } 3106 3107 /** 3108 * regulator_bulk_get - get multiple regulator consumers 3109 * 3110 * @dev: Device to supply 3111 * @num_consumers: Number of consumers to register 3112 * @consumers: Configuration of consumers; clients are stored here. 3113 * 3114 * @return 0 on success, an errno on failure. 3115 * 3116 * This helper function allows drivers to get several regulator 3117 * consumers in one operation. If any of the regulators cannot be 3118 * acquired then any regulators that were allocated will be freed 3119 * before returning to the caller. 3120 */ 3121 int regulator_bulk_get(struct device *dev, int num_consumers, 3122 struct regulator_bulk_data *consumers) 3123 { 3124 int i; 3125 int ret; 3126 3127 for (i = 0; i < num_consumers; i++) 3128 consumers[i].consumer = NULL; 3129 3130 for (i = 0; i < num_consumers; i++) { 3131 consumers[i].consumer = regulator_get(dev, 3132 consumers[i].supply); 3133 if (IS_ERR(consumers[i].consumer)) { 3134 ret = PTR_ERR(consumers[i].consumer); 3135 dev_err(dev, "Failed to get supply '%s': %d\n", 3136 consumers[i].supply, ret); 3137 consumers[i].consumer = NULL; 3138 goto err; 3139 } 3140 } 3141 3142 return 0; 3143 3144 err: 3145 while (--i >= 0) 3146 regulator_put(consumers[i].consumer); 3147 3148 return ret; 3149 } 3150 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3151 3152 /** 3153 * devm_regulator_bulk_get - managed get multiple regulator consumers 3154 * 3155 * @dev: Device to supply 3156 * @num_consumers: Number of consumers to register 3157 * @consumers: Configuration of consumers; clients are stored here. 3158 * 3159 * @return 0 on success, an errno on failure. 3160 * 3161 * This helper function allows drivers to get several regulator 3162 * consumers in one operation with management, the regulators will 3163 * automatically be freed when the device is unbound. If any of the 3164 * regulators cannot be acquired then any regulators that were 3165 * allocated will be freed before returning to the caller. 3166 */ 3167 int devm_regulator_bulk_get(struct device *dev, int num_consumers, 3168 struct regulator_bulk_data *consumers) 3169 { 3170 int i; 3171 int ret; 3172 3173 for (i = 0; i < num_consumers; i++) 3174 consumers[i].consumer = NULL; 3175 3176 for (i = 0; i < num_consumers; i++) { 3177 consumers[i].consumer = devm_regulator_get(dev, 3178 consumers[i].supply); 3179 if (IS_ERR(consumers[i].consumer)) { 3180 ret = PTR_ERR(consumers[i].consumer); 3181 dev_err(dev, "Failed to get supply '%s': %d\n", 3182 consumers[i].supply, ret); 3183 consumers[i].consumer = NULL; 3184 goto err; 3185 } 3186 } 3187 3188 return 0; 3189 3190 err: 3191 for (i = 0; i < num_consumers && consumers[i].consumer; i++) 3192 devm_regulator_put(consumers[i].consumer); 3193 3194 return ret; 3195 } 3196 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get); 3197 3198 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3199 { 3200 struct regulator_bulk_data *bulk = data; 3201 3202 bulk->ret = regulator_enable(bulk->consumer); 3203 } 3204 3205 /** 3206 * regulator_bulk_enable - enable multiple regulator consumers 3207 * 3208 * @num_consumers: Number of consumers 3209 * @consumers: Consumer data; clients are stored here. 3210 * @return 0 on success, an errno on failure 3211 * 3212 * This convenience API allows consumers to enable multiple regulator 3213 * clients in a single API call. If any consumers cannot be enabled 3214 * then any others that were enabled will be disabled again prior to 3215 * return. 3216 */ 3217 int regulator_bulk_enable(int num_consumers, 3218 struct regulator_bulk_data *consumers) 3219 { 3220 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3221 int i; 3222 int ret = 0; 3223 3224 for (i = 0; i < num_consumers; i++) { 3225 if (consumers[i].consumer->always_on) 3226 consumers[i].ret = 0; 3227 else 3228 async_schedule_domain(regulator_bulk_enable_async, 3229 &consumers[i], &async_domain); 3230 } 3231 3232 async_synchronize_full_domain(&async_domain); 3233 3234 /* If any consumer failed we need to unwind any that succeeded */ 3235 for (i = 0; i < num_consumers; i++) { 3236 if (consumers[i].ret != 0) { 3237 ret = consumers[i].ret; 3238 goto err; 3239 } 3240 } 3241 3242 return 0; 3243 3244 err: 3245 for (i = 0; i < num_consumers; i++) { 3246 if (consumers[i].ret < 0) 3247 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3248 consumers[i].ret); 3249 else 3250 regulator_disable(consumers[i].consumer); 3251 } 3252 3253 return ret; 3254 } 3255 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3256 3257 /** 3258 * regulator_bulk_disable - disable multiple regulator consumers 3259 * 3260 * @num_consumers: Number of consumers 3261 * @consumers: Consumer data; clients are stored here. 3262 * @return 0 on success, an errno on failure 3263 * 3264 * This convenience API allows consumers to disable multiple regulator 3265 * clients in a single API call. If any consumers cannot be disabled 3266 * then any others that were disabled will be enabled again prior to 3267 * return. 3268 */ 3269 int regulator_bulk_disable(int num_consumers, 3270 struct regulator_bulk_data *consumers) 3271 { 3272 int i; 3273 int ret, r; 3274 3275 for (i = num_consumers - 1; i >= 0; --i) { 3276 ret = regulator_disable(consumers[i].consumer); 3277 if (ret != 0) 3278 goto err; 3279 } 3280 3281 return 0; 3282 3283 err: 3284 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3285 for (++i; i < num_consumers; ++i) { 3286 r = regulator_enable(consumers[i].consumer); 3287 if (r != 0) 3288 pr_err("Failed to reename %s: %d\n", 3289 consumers[i].supply, r); 3290 } 3291 3292 return ret; 3293 } 3294 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3295 3296 /** 3297 * regulator_bulk_force_disable - force disable multiple regulator consumers 3298 * 3299 * @num_consumers: Number of consumers 3300 * @consumers: Consumer data; clients are stored here. 3301 * @return 0 on success, an errno on failure 3302 * 3303 * This convenience API allows consumers to forcibly disable multiple regulator 3304 * clients in a single API call. 3305 * NOTE: This should be used for situations when device damage will 3306 * likely occur if the regulators are not disabled (e.g. over temp). 3307 * Although regulator_force_disable function call for some consumers can 3308 * return error numbers, the function is called for all consumers. 3309 */ 3310 int regulator_bulk_force_disable(int num_consumers, 3311 struct regulator_bulk_data *consumers) 3312 { 3313 int i; 3314 int ret; 3315 3316 for (i = 0; i < num_consumers; i++) 3317 consumers[i].ret = 3318 regulator_force_disable(consumers[i].consumer); 3319 3320 for (i = 0; i < num_consumers; i++) { 3321 if (consumers[i].ret != 0) { 3322 ret = consumers[i].ret; 3323 goto out; 3324 } 3325 } 3326 3327 return 0; 3328 out: 3329 return ret; 3330 } 3331 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3332 3333 /** 3334 * regulator_bulk_free - free multiple regulator consumers 3335 * 3336 * @num_consumers: Number of consumers 3337 * @consumers: Consumer data; clients are stored here. 3338 * 3339 * This convenience API allows consumers to free multiple regulator 3340 * clients in a single API call. 3341 */ 3342 void regulator_bulk_free(int num_consumers, 3343 struct regulator_bulk_data *consumers) 3344 { 3345 int i; 3346 3347 for (i = 0; i < num_consumers; i++) { 3348 regulator_put(consumers[i].consumer); 3349 consumers[i].consumer = NULL; 3350 } 3351 } 3352 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3353 3354 /** 3355 * regulator_notifier_call_chain - call regulator event notifier 3356 * @rdev: regulator source 3357 * @event: notifier block 3358 * @data: callback-specific data. 3359 * 3360 * Called by regulator drivers to notify clients a regulator event has 3361 * occurred. We also notify regulator clients downstream. 3362 * Note lock must be held by caller. 3363 */ 3364 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3365 unsigned long event, void *data) 3366 { 3367 _notifier_call_chain(rdev, event, data); 3368 return NOTIFY_DONE; 3369 3370 } 3371 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3372 3373 /** 3374 * regulator_mode_to_status - convert a regulator mode into a status 3375 * 3376 * @mode: Mode to convert 3377 * 3378 * Convert a regulator mode into a status. 3379 */ 3380 int regulator_mode_to_status(unsigned int mode) 3381 { 3382 switch (mode) { 3383 case REGULATOR_MODE_FAST: 3384 return REGULATOR_STATUS_FAST; 3385 case REGULATOR_MODE_NORMAL: 3386 return REGULATOR_STATUS_NORMAL; 3387 case REGULATOR_MODE_IDLE: 3388 return REGULATOR_STATUS_IDLE; 3389 case REGULATOR_MODE_STANDBY: 3390 return REGULATOR_STATUS_STANDBY; 3391 default: 3392 return REGULATOR_STATUS_UNDEFINED; 3393 } 3394 } 3395 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3396 3397 /* 3398 * To avoid cluttering sysfs (and memory) with useless state, only 3399 * create attributes that can be meaningfully displayed. 3400 */ 3401 static int add_regulator_attributes(struct regulator_dev *rdev) 3402 { 3403 struct device *dev = &rdev->dev; 3404 struct regulator_ops *ops = rdev->desc->ops; 3405 int status = 0; 3406 3407 /* some attributes need specific methods to be displayed */ 3408 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3409 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3410 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) { 3411 status = device_create_file(dev, &dev_attr_microvolts); 3412 if (status < 0) 3413 return status; 3414 } 3415 if (ops->get_current_limit) { 3416 status = device_create_file(dev, &dev_attr_microamps); 3417 if (status < 0) 3418 return status; 3419 } 3420 if (ops->get_mode) { 3421 status = device_create_file(dev, &dev_attr_opmode); 3422 if (status < 0) 3423 return status; 3424 } 3425 if (rdev->ena_pin || ops->is_enabled) { 3426 status = device_create_file(dev, &dev_attr_state); 3427 if (status < 0) 3428 return status; 3429 } 3430 if (ops->get_status) { 3431 status = device_create_file(dev, &dev_attr_status); 3432 if (status < 0) 3433 return status; 3434 } 3435 if (ops->get_bypass) { 3436 status = device_create_file(dev, &dev_attr_bypass); 3437 if (status < 0) 3438 return status; 3439 } 3440 3441 /* some attributes are type-specific */ 3442 if (rdev->desc->type == REGULATOR_CURRENT) { 3443 status = device_create_file(dev, &dev_attr_requested_microamps); 3444 if (status < 0) 3445 return status; 3446 } 3447 3448 /* all the other attributes exist to support constraints; 3449 * don't show them if there are no constraints, or if the 3450 * relevant supporting methods are missing. 3451 */ 3452 if (!rdev->constraints) 3453 return status; 3454 3455 /* constraints need specific supporting methods */ 3456 if (ops->set_voltage || ops->set_voltage_sel) { 3457 status = device_create_file(dev, &dev_attr_min_microvolts); 3458 if (status < 0) 3459 return status; 3460 status = device_create_file(dev, &dev_attr_max_microvolts); 3461 if (status < 0) 3462 return status; 3463 } 3464 if (ops->set_current_limit) { 3465 status = device_create_file(dev, &dev_attr_min_microamps); 3466 if (status < 0) 3467 return status; 3468 status = device_create_file(dev, &dev_attr_max_microamps); 3469 if (status < 0) 3470 return status; 3471 } 3472 3473 status = device_create_file(dev, &dev_attr_suspend_standby_state); 3474 if (status < 0) 3475 return status; 3476 status = device_create_file(dev, &dev_attr_suspend_mem_state); 3477 if (status < 0) 3478 return status; 3479 status = device_create_file(dev, &dev_attr_suspend_disk_state); 3480 if (status < 0) 3481 return status; 3482 3483 if (ops->set_suspend_voltage) { 3484 status = device_create_file(dev, 3485 &dev_attr_suspend_standby_microvolts); 3486 if (status < 0) 3487 return status; 3488 status = device_create_file(dev, 3489 &dev_attr_suspend_mem_microvolts); 3490 if (status < 0) 3491 return status; 3492 status = device_create_file(dev, 3493 &dev_attr_suspend_disk_microvolts); 3494 if (status < 0) 3495 return status; 3496 } 3497 3498 if (ops->set_suspend_mode) { 3499 status = device_create_file(dev, 3500 &dev_attr_suspend_standby_mode); 3501 if (status < 0) 3502 return status; 3503 status = device_create_file(dev, 3504 &dev_attr_suspend_mem_mode); 3505 if (status < 0) 3506 return status; 3507 status = device_create_file(dev, 3508 &dev_attr_suspend_disk_mode); 3509 if (status < 0) 3510 return status; 3511 } 3512 3513 return status; 3514 } 3515 3516 static void rdev_init_debugfs(struct regulator_dev *rdev) 3517 { 3518 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root); 3519 if (!rdev->debugfs) { 3520 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3521 return; 3522 } 3523 3524 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3525 &rdev->use_count); 3526 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3527 &rdev->open_count); 3528 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3529 &rdev->bypass_count); 3530 } 3531 3532 /** 3533 * regulator_register - register regulator 3534 * @regulator_desc: regulator to register 3535 * @config: runtime configuration for regulator 3536 * 3537 * Called by regulator drivers to register a regulator. 3538 * Returns a valid pointer to struct regulator_dev on success 3539 * or an ERR_PTR() on error. 3540 */ 3541 struct regulator_dev * 3542 regulator_register(const struct regulator_desc *regulator_desc, 3543 const struct regulator_config *config) 3544 { 3545 const struct regulation_constraints *constraints = NULL; 3546 const struct regulator_init_data *init_data; 3547 static atomic_t regulator_no = ATOMIC_INIT(0); 3548 struct regulator_dev *rdev; 3549 struct device *dev; 3550 int ret, i; 3551 const char *supply = NULL; 3552 3553 if (regulator_desc == NULL || config == NULL) 3554 return ERR_PTR(-EINVAL); 3555 3556 dev = config->dev; 3557 WARN_ON(!dev); 3558 3559 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3560 return ERR_PTR(-EINVAL); 3561 3562 if (regulator_desc->type != REGULATOR_VOLTAGE && 3563 regulator_desc->type != REGULATOR_CURRENT) 3564 return ERR_PTR(-EINVAL); 3565 3566 /* Only one of each should be implemented */ 3567 WARN_ON(regulator_desc->ops->get_voltage && 3568 regulator_desc->ops->get_voltage_sel); 3569 WARN_ON(regulator_desc->ops->set_voltage && 3570 regulator_desc->ops->set_voltage_sel); 3571 3572 /* If we're using selectors we must implement list_voltage. */ 3573 if (regulator_desc->ops->get_voltage_sel && 3574 !regulator_desc->ops->list_voltage) { 3575 return ERR_PTR(-EINVAL); 3576 } 3577 if (regulator_desc->ops->set_voltage_sel && 3578 !regulator_desc->ops->list_voltage) { 3579 return ERR_PTR(-EINVAL); 3580 } 3581 3582 init_data = config->init_data; 3583 3584 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3585 if (rdev == NULL) 3586 return ERR_PTR(-ENOMEM); 3587 3588 mutex_lock(®ulator_list_mutex); 3589 3590 mutex_init(&rdev->mutex); 3591 rdev->reg_data = config->driver_data; 3592 rdev->owner = regulator_desc->owner; 3593 rdev->desc = regulator_desc; 3594 if (config->regmap) 3595 rdev->regmap = config->regmap; 3596 else if (dev_get_regmap(dev, NULL)) 3597 rdev->regmap = dev_get_regmap(dev, NULL); 3598 else if (dev->parent) 3599 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3600 INIT_LIST_HEAD(&rdev->consumer_list); 3601 INIT_LIST_HEAD(&rdev->list); 3602 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3603 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3604 3605 /* preform any regulator specific init */ 3606 if (init_data && init_data->regulator_init) { 3607 ret = init_data->regulator_init(rdev->reg_data); 3608 if (ret < 0) 3609 goto clean; 3610 } 3611 3612 /* register with sysfs */ 3613 rdev->dev.class = ®ulator_class; 3614 rdev->dev.of_node = config->of_node; 3615 rdev->dev.parent = dev; 3616 dev_set_name(&rdev->dev, "regulator.%d", 3617 atomic_inc_return(®ulator_no) - 1); 3618 ret = device_register(&rdev->dev); 3619 if (ret != 0) { 3620 put_device(&rdev->dev); 3621 goto clean; 3622 } 3623 3624 dev_set_drvdata(&rdev->dev, rdev); 3625 3626 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) { 3627 ret = regulator_ena_gpio_request(rdev, config); 3628 if (ret != 0) { 3629 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3630 config->ena_gpio, ret); 3631 goto wash; 3632 } 3633 3634 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH) 3635 rdev->ena_gpio_state = 1; 3636 3637 if (config->ena_gpio_invert) 3638 rdev->ena_gpio_state = !rdev->ena_gpio_state; 3639 } 3640 3641 /* set regulator constraints */ 3642 if (init_data) 3643 constraints = &init_data->constraints; 3644 3645 ret = set_machine_constraints(rdev, constraints); 3646 if (ret < 0) 3647 goto scrub; 3648 3649 /* add attributes supported by this regulator */ 3650 ret = add_regulator_attributes(rdev); 3651 if (ret < 0) 3652 goto scrub; 3653 3654 if (init_data && init_data->supply_regulator) 3655 supply = init_data->supply_regulator; 3656 else if (regulator_desc->supply_name) 3657 supply = regulator_desc->supply_name; 3658 3659 if (supply) { 3660 struct regulator_dev *r; 3661 3662 r = regulator_dev_lookup(dev, supply, &ret); 3663 3664 if (ret == -ENODEV) { 3665 /* 3666 * No supply was specified for this regulator and 3667 * there will never be one. 3668 */ 3669 ret = 0; 3670 goto add_dev; 3671 } else if (!r) { 3672 dev_err(dev, "Failed to find supply %s\n", supply); 3673 ret = -EPROBE_DEFER; 3674 goto scrub; 3675 } 3676 3677 ret = set_supply(rdev, r); 3678 if (ret < 0) 3679 goto scrub; 3680 3681 /* Enable supply if rail is enabled */ 3682 if (_regulator_is_enabled(rdev)) { 3683 ret = regulator_enable(rdev->supply); 3684 if (ret < 0) 3685 goto scrub; 3686 } 3687 } 3688 3689 add_dev: 3690 /* add consumers devices */ 3691 if (init_data) { 3692 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3693 ret = set_consumer_device_supply(rdev, 3694 init_data->consumer_supplies[i].dev_name, 3695 init_data->consumer_supplies[i].supply); 3696 if (ret < 0) { 3697 dev_err(dev, "Failed to set supply %s\n", 3698 init_data->consumer_supplies[i].supply); 3699 goto unset_supplies; 3700 } 3701 } 3702 } 3703 3704 list_add(&rdev->list, ®ulator_list); 3705 3706 rdev_init_debugfs(rdev); 3707 out: 3708 mutex_unlock(®ulator_list_mutex); 3709 return rdev; 3710 3711 unset_supplies: 3712 unset_regulator_supplies(rdev); 3713 3714 scrub: 3715 if (rdev->supply) 3716 _regulator_put(rdev->supply); 3717 regulator_ena_gpio_free(rdev); 3718 kfree(rdev->constraints); 3719 wash: 3720 device_unregister(&rdev->dev); 3721 /* device core frees rdev */ 3722 rdev = ERR_PTR(ret); 3723 goto out; 3724 3725 clean: 3726 kfree(rdev); 3727 rdev = ERR_PTR(ret); 3728 goto out; 3729 } 3730 EXPORT_SYMBOL_GPL(regulator_register); 3731 3732 /** 3733 * regulator_unregister - unregister regulator 3734 * @rdev: regulator to unregister 3735 * 3736 * Called by regulator drivers to unregister a regulator. 3737 */ 3738 void regulator_unregister(struct regulator_dev *rdev) 3739 { 3740 if (rdev == NULL) 3741 return; 3742 3743 if (rdev->supply) 3744 regulator_put(rdev->supply); 3745 mutex_lock(®ulator_list_mutex); 3746 debugfs_remove_recursive(rdev->debugfs); 3747 flush_work(&rdev->disable_work.work); 3748 WARN_ON(rdev->open_count); 3749 unset_regulator_supplies(rdev); 3750 list_del(&rdev->list); 3751 kfree(rdev->constraints); 3752 regulator_ena_gpio_free(rdev); 3753 device_unregister(&rdev->dev); 3754 mutex_unlock(®ulator_list_mutex); 3755 } 3756 EXPORT_SYMBOL_GPL(regulator_unregister); 3757 3758 /** 3759 * regulator_suspend_prepare - prepare regulators for system wide suspend 3760 * @state: system suspend state 3761 * 3762 * Configure each regulator with it's suspend operating parameters for state. 3763 * This will usually be called by machine suspend code prior to supending. 3764 */ 3765 int regulator_suspend_prepare(suspend_state_t state) 3766 { 3767 struct regulator_dev *rdev; 3768 int ret = 0; 3769 3770 /* ON is handled by regulator active state */ 3771 if (state == PM_SUSPEND_ON) 3772 return -EINVAL; 3773 3774 mutex_lock(®ulator_list_mutex); 3775 list_for_each_entry(rdev, ®ulator_list, list) { 3776 3777 mutex_lock(&rdev->mutex); 3778 ret = suspend_prepare(rdev, state); 3779 mutex_unlock(&rdev->mutex); 3780 3781 if (ret < 0) { 3782 rdev_err(rdev, "failed to prepare\n"); 3783 goto out; 3784 } 3785 } 3786 out: 3787 mutex_unlock(®ulator_list_mutex); 3788 return ret; 3789 } 3790 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3791 3792 /** 3793 * regulator_suspend_finish - resume regulators from system wide suspend 3794 * 3795 * Turn on regulators that might be turned off by regulator_suspend_prepare 3796 * and that should be turned on according to the regulators properties. 3797 */ 3798 int regulator_suspend_finish(void) 3799 { 3800 struct regulator_dev *rdev; 3801 int ret = 0, error; 3802 3803 mutex_lock(®ulator_list_mutex); 3804 list_for_each_entry(rdev, ®ulator_list, list) { 3805 struct regulator_ops *ops = rdev->desc->ops; 3806 3807 mutex_lock(&rdev->mutex); 3808 if ((rdev->use_count > 0 || rdev->constraints->always_on) && 3809 ops->enable) { 3810 error = ops->enable(rdev); 3811 if (error) 3812 ret = error; 3813 } else { 3814 if (!has_full_constraints) 3815 goto unlock; 3816 if (!ops->disable) 3817 goto unlock; 3818 if (!_regulator_is_enabled(rdev)) 3819 goto unlock; 3820 3821 error = ops->disable(rdev); 3822 if (error) 3823 ret = error; 3824 } 3825 unlock: 3826 mutex_unlock(&rdev->mutex); 3827 } 3828 mutex_unlock(®ulator_list_mutex); 3829 return ret; 3830 } 3831 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3832 3833 /** 3834 * regulator_has_full_constraints - the system has fully specified constraints 3835 * 3836 * Calling this function will cause the regulator API to disable all 3837 * regulators which have a zero use count and don't have an always_on 3838 * constraint in a late_initcall. 3839 * 3840 * The intention is that this will become the default behaviour in a 3841 * future kernel release so users are encouraged to use this facility 3842 * now. 3843 */ 3844 void regulator_has_full_constraints(void) 3845 { 3846 has_full_constraints = 1; 3847 } 3848 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3849 3850 /** 3851 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found 3852 * 3853 * Calling this function will cause the regulator API to provide a 3854 * dummy regulator to consumers if no physical regulator is found, 3855 * allowing most consumers to proceed as though a regulator were 3856 * configured. This allows systems such as those with software 3857 * controllable regulators for the CPU core only to be brought up more 3858 * readily. 3859 */ 3860 void regulator_use_dummy_regulator(void) 3861 { 3862 board_wants_dummy_regulator = true; 3863 } 3864 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator); 3865 3866 /** 3867 * rdev_get_drvdata - get rdev regulator driver data 3868 * @rdev: regulator 3869 * 3870 * Get rdev regulator driver private data. This call can be used in the 3871 * regulator driver context. 3872 */ 3873 void *rdev_get_drvdata(struct regulator_dev *rdev) 3874 { 3875 return rdev->reg_data; 3876 } 3877 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3878 3879 /** 3880 * regulator_get_drvdata - get regulator driver data 3881 * @regulator: regulator 3882 * 3883 * Get regulator driver private data. This call can be used in the consumer 3884 * driver context when non API regulator specific functions need to be called. 3885 */ 3886 void *regulator_get_drvdata(struct regulator *regulator) 3887 { 3888 return regulator->rdev->reg_data; 3889 } 3890 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3891 3892 /** 3893 * regulator_set_drvdata - set regulator driver data 3894 * @regulator: regulator 3895 * @data: data 3896 */ 3897 void regulator_set_drvdata(struct regulator *regulator, void *data) 3898 { 3899 regulator->rdev->reg_data = data; 3900 } 3901 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3902 3903 /** 3904 * regulator_get_id - get regulator ID 3905 * @rdev: regulator 3906 */ 3907 int rdev_get_id(struct regulator_dev *rdev) 3908 { 3909 return rdev->desc->id; 3910 } 3911 EXPORT_SYMBOL_GPL(rdev_get_id); 3912 3913 struct device *rdev_get_dev(struct regulator_dev *rdev) 3914 { 3915 return &rdev->dev; 3916 } 3917 EXPORT_SYMBOL_GPL(rdev_get_dev); 3918 3919 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3920 { 3921 return reg_init_data->driver_data; 3922 } 3923 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3924 3925 #ifdef CONFIG_DEBUG_FS 3926 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3927 size_t count, loff_t *ppos) 3928 { 3929 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3930 ssize_t len, ret = 0; 3931 struct regulator_map *map; 3932 3933 if (!buf) 3934 return -ENOMEM; 3935 3936 list_for_each_entry(map, ®ulator_map_list, list) { 3937 len = snprintf(buf + ret, PAGE_SIZE - ret, 3938 "%s -> %s.%s\n", 3939 rdev_get_name(map->regulator), map->dev_name, 3940 map->supply); 3941 if (len >= 0) 3942 ret += len; 3943 if (ret > PAGE_SIZE) { 3944 ret = PAGE_SIZE; 3945 break; 3946 } 3947 } 3948 3949 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3950 3951 kfree(buf); 3952 3953 return ret; 3954 } 3955 #endif 3956 3957 static const struct file_operations supply_map_fops = { 3958 #ifdef CONFIG_DEBUG_FS 3959 .read = supply_map_read_file, 3960 .llseek = default_llseek, 3961 #endif 3962 }; 3963 3964 static int __init regulator_init(void) 3965 { 3966 int ret; 3967 3968 ret = class_register(®ulator_class); 3969 3970 debugfs_root = debugfs_create_dir("regulator", NULL); 3971 if (!debugfs_root) 3972 pr_warn("regulator: Failed to create debugfs directory\n"); 3973 3974 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 3975 &supply_map_fops); 3976 3977 regulator_dummy_init(); 3978 3979 return ret; 3980 } 3981 3982 /* init early to allow our consumers to complete system booting */ 3983 core_initcall(regulator_init); 3984 3985 static int __init regulator_init_complete(void) 3986 { 3987 struct regulator_dev *rdev; 3988 struct regulator_ops *ops; 3989 struct regulation_constraints *c; 3990 int enabled, ret; 3991 3992 /* 3993 * Since DT doesn't provide an idiomatic mechanism for 3994 * enabling full constraints and since it's much more natural 3995 * with DT to provide them just assume that a DT enabled 3996 * system has full constraints. 3997 */ 3998 if (of_have_populated_dt()) 3999 has_full_constraints = true; 4000 4001 mutex_lock(®ulator_list_mutex); 4002 4003 /* If we have a full configuration then disable any regulators 4004 * which are not in use or always_on. This will become the 4005 * default behaviour in the future. 4006 */ 4007 list_for_each_entry(rdev, ®ulator_list, list) { 4008 ops = rdev->desc->ops; 4009 c = rdev->constraints; 4010 4011 if (!ops->disable || (c && c->always_on)) 4012 continue; 4013 4014 mutex_lock(&rdev->mutex); 4015 4016 if (rdev->use_count) 4017 goto unlock; 4018 4019 /* If we can't read the status assume it's on. */ 4020 if (ops->is_enabled) 4021 enabled = ops->is_enabled(rdev); 4022 else 4023 enabled = 1; 4024 4025 if (!enabled) 4026 goto unlock; 4027 4028 if (has_full_constraints) { 4029 /* We log since this may kill the system if it 4030 * goes wrong. */ 4031 rdev_info(rdev, "disabling\n"); 4032 ret = ops->disable(rdev); 4033 if (ret != 0) { 4034 rdev_err(rdev, "couldn't disable: %d\n", ret); 4035 } 4036 } else { 4037 /* The intention is that in future we will 4038 * assume that full constraints are provided 4039 * so warn even if we aren't going to do 4040 * anything here. 4041 */ 4042 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4043 } 4044 4045 unlock: 4046 mutex_unlock(&rdev->mutex); 4047 } 4048 4049 mutex_unlock(®ulator_list_mutex); 4050 4051 return 0; 4052 } 4053 late_initcall(regulator_init_complete); 4054