xref: /linux/drivers/regulator/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137 	if (!rdev->constraints) {
138 		rdev_err(rdev, "no constraints\n");
139 		return false;
140 	}
141 
142 	if (rdev->constraints->valid_ops_mask & ops)
143 		return true;
144 
145 	return false;
146 }
147 
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150 	if (rdev && rdev->supply)
151 		return rdev->supply->rdev;
152 
153 	return NULL;
154 }
155 
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162 	int i;
163 
164 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 		mutex_lock_nested(&rdev->mutex, i);
166 }
167 
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174 	struct regulator *supply;
175 
176 	while (1) {
177 		mutex_unlock(&rdev->mutex);
178 		supply = rdev->supply;
179 
180 		if (!rdev->supply)
181 			return;
182 
183 		rdev = supply->rdev;
184 	}
185 }
186 
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198 	struct device_node *regnode = NULL;
199 	char prop_name[32]; /* 32 is max size of property name */
200 
201 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202 
203 	snprintf(prop_name, 32, "%s-supply", supply);
204 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205 
206 	if (!regnode) {
207 		dev_dbg(dev, "Looking up %s property in node %s failed",
208 				prop_name, dev->of_node->full_name);
209 		return NULL;
210 	}
211 	return regnode;
212 }
213 
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 				   int *min_uV, int *max_uV)
217 {
218 	BUG_ON(*min_uV > *max_uV);
219 
220 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 		rdev_err(rdev, "voltage operation not allowed\n");
222 		return -EPERM;
223 	}
224 
225 	if (*max_uV > rdev->constraints->max_uV)
226 		*max_uV = rdev->constraints->max_uV;
227 	if (*min_uV < rdev->constraints->min_uV)
228 		*min_uV = rdev->constraints->min_uV;
229 
230 	if (*min_uV > *max_uV) {
231 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232 			 *min_uV, *max_uV);
233 		return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 				     int *min_uV, int *max_uV)
244 {
245 	struct regulator *regulator;
246 
247 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 		/*
249 		 * Assume consumers that didn't say anything are OK
250 		 * with anything in the constraint range.
251 		 */
252 		if (!regulator->min_uV && !regulator->max_uV)
253 			continue;
254 
255 		if (*max_uV > regulator->max_uV)
256 			*max_uV = regulator->max_uV;
257 		if (*min_uV < regulator->min_uV)
258 			*min_uV = regulator->min_uV;
259 	}
260 
261 	if (*min_uV > *max_uV) {
262 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263 			*min_uV, *max_uV);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 					int *min_uA, int *max_uA)
273 {
274 	BUG_ON(*min_uA > *max_uA);
275 
276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 		rdev_err(rdev, "current operation not allowed\n");
278 		return -EPERM;
279 	}
280 
281 	if (*max_uA > rdev->constraints->max_uA)
282 		*max_uA = rdev->constraints->max_uA;
283 	if (*min_uA < rdev->constraints->min_uA)
284 		*min_uA = rdev->constraints->min_uA;
285 
286 	if (*min_uA > *max_uA) {
287 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288 			 *min_uA, *max_uA);
289 		return -EINVAL;
290 	}
291 
292 	return 0;
293 }
294 
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298 	switch (*mode) {
299 	case REGULATOR_MODE_FAST:
300 	case REGULATOR_MODE_NORMAL:
301 	case REGULATOR_MODE_IDLE:
302 	case REGULATOR_MODE_STANDBY:
303 		break;
304 	default:
305 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 		return -EINVAL;
307 	}
308 
309 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310 		rdev_err(rdev, "mode operation not allowed\n");
311 		return -EPERM;
312 	}
313 
314 	/* The modes are bitmasks, the most power hungry modes having
315 	 * the lowest values. If the requested mode isn't supported
316 	 * try higher modes. */
317 	while (*mode) {
318 		if (rdev->constraints->valid_modes_mask & *mode)
319 			return 0;
320 		*mode /= 2;
321 	}
322 
323 	return -EINVAL;
324 }
325 
326 static ssize_t regulator_uV_show(struct device *dev,
327 				struct device_attribute *attr, char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 	ssize_t ret;
331 
332 	mutex_lock(&rdev->mutex);
333 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334 	mutex_unlock(&rdev->mutex);
335 
336 	return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339 
340 static ssize_t regulator_uA_show(struct device *dev,
341 				struct device_attribute *attr, char *buf)
342 {
343 	struct regulator_dev *rdev = dev_get_drvdata(dev);
344 
345 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348 
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350 			 char *buf)
351 {
352 	struct regulator_dev *rdev = dev_get_drvdata(dev);
353 
354 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357 
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360 	switch (mode) {
361 	case REGULATOR_MODE_FAST:
362 		return sprintf(buf, "fast\n");
363 	case REGULATOR_MODE_NORMAL:
364 		return sprintf(buf, "normal\n");
365 	case REGULATOR_MODE_IDLE:
366 		return sprintf(buf, "idle\n");
367 	case REGULATOR_MODE_STANDBY:
368 		return sprintf(buf, "standby\n");
369 	}
370 	return sprintf(buf, "unknown\n");
371 }
372 
373 static ssize_t regulator_opmode_show(struct device *dev,
374 				    struct device_attribute *attr, char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381 
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384 	if (state > 0)
385 		return sprintf(buf, "enabled\n");
386 	else if (state == 0)
387 		return sprintf(buf, "disabled\n");
388 	else
389 		return sprintf(buf, "unknown\n");
390 }
391 
392 static ssize_t regulator_state_show(struct device *dev,
393 				   struct device_attribute *attr, char *buf)
394 {
395 	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 	ssize_t ret;
397 
398 	mutex_lock(&rdev->mutex);
399 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400 	mutex_unlock(&rdev->mutex);
401 
402 	return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405 
406 static ssize_t regulator_status_show(struct device *dev,
407 				   struct device_attribute *attr, char *buf)
408 {
409 	struct regulator_dev *rdev = dev_get_drvdata(dev);
410 	int status;
411 	char *label;
412 
413 	status = rdev->desc->ops->get_status(rdev);
414 	if (status < 0)
415 		return status;
416 
417 	switch (status) {
418 	case REGULATOR_STATUS_OFF:
419 		label = "off";
420 		break;
421 	case REGULATOR_STATUS_ON:
422 		label = "on";
423 		break;
424 	case REGULATOR_STATUS_ERROR:
425 		label = "error";
426 		break;
427 	case REGULATOR_STATUS_FAST:
428 		label = "fast";
429 		break;
430 	case REGULATOR_STATUS_NORMAL:
431 		label = "normal";
432 		break;
433 	case REGULATOR_STATUS_IDLE:
434 		label = "idle";
435 		break;
436 	case REGULATOR_STATUS_STANDBY:
437 		label = "standby";
438 		break;
439 	case REGULATOR_STATUS_BYPASS:
440 		label = "bypass";
441 		break;
442 	case REGULATOR_STATUS_UNDEFINED:
443 		label = "undefined";
444 		break;
445 	default:
446 		return -ERANGE;
447 	}
448 
449 	return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452 
453 static ssize_t regulator_min_uA_show(struct device *dev,
454 				    struct device_attribute *attr, char *buf)
455 {
456 	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 
458 	if (!rdev->constraints)
459 		return sprintf(buf, "constraint not defined\n");
460 
461 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464 
465 static ssize_t regulator_max_uA_show(struct device *dev,
466 				    struct device_attribute *attr, char *buf)
467 {
468 	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 
470 	if (!rdev->constraints)
471 		return sprintf(buf, "constraint not defined\n");
472 
473 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476 
477 static ssize_t regulator_min_uV_show(struct device *dev,
478 				    struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	if (!rdev->constraints)
483 		return sprintf(buf, "constraint not defined\n");
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488 
489 static ssize_t regulator_max_uV_show(struct device *dev,
490 				    struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	if (!rdev->constraints)
495 		return sprintf(buf, "constraint not defined\n");
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500 
501 static ssize_t regulator_total_uA_show(struct device *dev,
502 				      struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 	struct regulator *regulator;
506 	int uA = 0;
507 
508 	mutex_lock(&rdev->mutex);
509 	list_for_each_entry(regulator, &rdev->consumer_list, list)
510 		uA += regulator->uA_load;
511 	mutex_unlock(&rdev->mutex);
512 	return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515 
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517 			      char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 	return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523 
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525 			 char *buf)
526 {
527 	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 
529 	switch (rdev->desc->type) {
530 	case REGULATOR_VOLTAGE:
531 		return sprintf(buf, "voltage\n");
532 	case REGULATOR_CURRENT:
533 		return sprintf(buf, "current\n");
534 	}
535 	return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538 
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540 				struct device_attribute *attr, char *buf)
541 {
542 	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 
544 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547 		regulator_suspend_mem_uV_show, NULL);
548 
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550 				struct device_attribute *attr, char *buf)
551 {
552 	struct regulator_dev *rdev = dev_get_drvdata(dev);
553 
554 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557 		regulator_suspend_disk_uV_show, NULL);
558 
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560 				struct device_attribute *attr, char *buf)
561 {
562 	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 
564 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567 		regulator_suspend_standby_uV_show, NULL);
568 
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578 		regulator_suspend_mem_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581 				struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_opmode(buf,
586 		rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589 		regulator_suspend_disk_mode_show, NULL);
590 
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592 				struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_opmode(buf,
597 		rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600 		regulator_suspend_standby_mode_show, NULL);
601 
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611 		regulator_suspend_mem_state_show, NULL);
612 
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614 				   struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 
618 	return regulator_print_state(buf,
619 			rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622 		regulator_suspend_disk_state_show, NULL);
623 
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625 				   struct device_attribute *attr, char *buf)
626 {
627 	struct regulator_dev *rdev = dev_get_drvdata(dev);
628 
629 	return regulator_print_state(buf,
630 			rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633 		regulator_suspend_standby_state_show, NULL);
634 
635 static ssize_t regulator_bypass_show(struct device *dev,
636 				     struct device_attribute *attr, char *buf)
637 {
638 	struct regulator_dev *rdev = dev_get_drvdata(dev);
639 	const char *report;
640 	bool bypass;
641 	int ret;
642 
643 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644 
645 	if (ret != 0)
646 		report = "unknown";
647 	else if (bypass)
648 		report = "enabled";
649 	else
650 		report = "disabled";
651 
652 	return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655 		   regulator_bypass_show, NULL);
656 
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661 	struct regulator *sibling;
662 	int current_uA = 0, output_uV, input_uV, err;
663 	unsigned int mode;
664 
665 	lockdep_assert_held_once(&rdev->mutex);
666 
667 	/*
668 	 * first check to see if we can set modes at all, otherwise just
669 	 * tell the consumer everything is OK.
670 	 */
671 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 		return 0;
673 
674 	if (!rdev->desc->ops->get_optimum_mode &&
675 	    !rdev->desc->ops->set_load)
676 		return 0;
677 
678 	if (!rdev->desc->ops->set_mode &&
679 	    !rdev->desc->ops->set_load)
680 		return -EINVAL;
681 
682 	/* get output voltage */
683 	output_uV = _regulator_get_voltage(rdev);
684 	if (output_uV <= 0) {
685 		rdev_err(rdev, "invalid output voltage found\n");
686 		return -EINVAL;
687 	}
688 
689 	/* get input voltage */
690 	input_uV = 0;
691 	if (rdev->supply)
692 		input_uV = regulator_get_voltage(rdev->supply);
693 	if (input_uV <= 0)
694 		input_uV = rdev->constraints->input_uV;
695 	if (input_uV <= 0) {
696 		rdev_err(rdev, "invalid input voltage found\n");
697 		return -EINVAL;
698 	}
699 
700 	/* calc total requested load */
701 	list_for_each_entry(sibling, &rdev->consumer_list, list)
702 		current_uA += sibling->uA_load;
703 
704 	current_uA += rdev->constraints->system_load;
705 
706 	if (rdev->desc->ops->set_load) {
707 		/* set the optimum mode for our new total regulator load */
708 		err = rdev->desc->ops->set_load(rdev, current_uA);
709 		if (err < 0)
710 			rdev_err(rdev, "failed to set load %d\n", current_uA);
711 	} else {
712 		/* now get the optimum mode for our new total regulator load */
713 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714 							 output_uV, current_uA);
715 
716 		/* check the new mode is allowed */
717 		err = regulator_mode_constrain(rdev, &mode);
718 		if (err < 0) {
719 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720 				 current_uA, input_uV, output_uV);
721 			return err;
722 		}
723 
724 		err = rdev->desc->ops->set_mode(rdev, mode);
725 		if (err < 0)
726 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 	}
728 
729 	return err;
730 }
731 
732 static int suspend_set_state(struct regulator_dev *rdev,
733 	struct regulator_state *rstate)
734 {
735 	int ret = 0;
736 
737 	/* If we have no suspend mode configration don't set anything;
738 	 * only warn if the driver implements set_suspend_voltage or
739 	 * set_suspend_mode callback.
740 	 */
741 	if (!rstate->enabled && !rstate->disabled) {
742 		if (rdev->desc->ops->set_suspend_voltage ||
743 		    rdev->desc->ops->set_suspend_mode)
744 			rdev_warn(rdev, "No configuration\n");
745 		return 0;
746 	}
747 
748 	if (rstate->enabled && rstate->disabled) {
749 		rdev_err(rdev, "invalid configuration\n");
750 		return -EINVAL;
751 	}
752 
753 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754 		ret = rdev->desc->ops->set_suspend_enable(rdev);
755 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756 		ret = rdev->desc->ops->set_suspend_disable(rdev);
757 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758 		ret = 0;
759 
760 	if (ret < 0) {
761 		rdev_err(rdev, "failed to enabled/disable\n");
762 		return ret;
763 	}
764 
765 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767 		if (ret < 0) {
768 			rdev_err(rdev, "failed to set voltage\n");
769 			return ret;
770 		}
771 	}
772 
773 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775 		if (ret < 0) {
776 			rdev_err(rdev, "failed to set mode\n");
777 			return ret;
778 		}
779 	}
780 	return ret;
781 }
782 
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786 	if (!rdev->constraints)
787 		return -EINVAL;
788 
789 	switch (state) {
790 	case PM_SUSPEND_STANDBY:
791 		return suspend_set_state(rdev,
792 			&rdev->constraints->state_standby);
793 	case PM_SUSPEND_MEM:
794 		return suspend_set_state(rdev,
795 			&rdev->constraints->state_mem);
796 	case PM_SUSPEND_MAX:
797 		return suspend_set_state(rdev,
798 			&rdev->constraints->state_disk);
799 	default:
800 		return -EINVAL;
801 	}
802 }
803 
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806 	struct regulation_constraints *constraints = rdev->constraints;
807 	char buf[160] = "";
808 	size_t len = sizeof(buf) - 1;
809 	int count = 0;
810 	int ret;
811 
812 	if (constraints->min_uV && constraints->max_uV) {
813 		if (constraints->min_uV == constraints->max_uV)
814 			count += scnprintf(buf + count, len - count, "%d mV ",
815 					   constraints->min_uV / 1000);
816 		else
817 			count += scnprintf(buf + count, len - count,
818 					   "%d <--> %d mV ",
819 					   constraints->min_uV / 1000,
820 					   constraints->max_uV / 1000);
821 	}
822 
823 	if (!constraints->min_uV ||
824 	    constraints->min_uV != constraints->max_uV) {
825 		ret = _regulator_get_voltage(rdev);
826 		if (ret > 0)
827 			count += scnprintf(buf + count, len - count,
828 					   "at %d mV ", ret / 1000);
829 	}
830 
831 	if (constraints->uV_offset)
832 		count += scnprintf(buf + count, len - count, "%dmV offset ",
833 				   constraints->uV_offset / 1000);
834 
835 	if (constraints->min_uA && constraints->max_uA) {
836 		if (constraints->min_uA == constraints->max_uA)
837 			count += scnprintf(buf + count, len - count, "%d mA ",
838 					   constraints->min_uA / 1000);
839 		else
840 			count += scnprintf(buf + count, len - count,
841 					   "%d <--> %d mA ",
842 					   constraints->min_uA / 1000,
843 					   constraints->max_uA / 1000);
844 	}
845 
846 	if (!constraints->min_uA ||
847 	    constraints->min_uA != constraints->max_uA) {
848 		ret = _regulator_get_current_limit(rdev);
849 		if (ret > 0)
850 			count += scnprintf(buf + count, len - count,
851 					   "at %d mA ", ret / 1000);
852 	}
853 
854 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855 		count += scnprintf(buf + count, len - count, "fast ");
856 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857 		count += scnprintf(buf + count, len - count, "normal ");
858 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859 		count += scnprintf(buf + count, len - count, "idle ");
860 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861 		count += scnprintf(buf + count, len - count, "standby");
862 
863 	if (!count)
864 		scnprintf(buf, len, "no parameters");
865 
866 	rdev_dbg(rdev, "%s\n", buf);
867 
868 	if ((constraints->min_uV != constraints->max_uV) &&
869 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870 		rdev_warn(rdev,
871 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873 
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875 	struct regulation_constraints *constraints)
876 {
877 	const struct regulator_ops *ops = rdev->desc->ops;
878 	int ret;
879 
880 	/* do we need to apply the constraint voltage */
881 	if (rdev->constraints->apply_uV &&
882 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
883 		int target_min, target_max;
884 		int current_uV = _regulator_get_voltage(rdev);
885 		if (current_uV < 0) {
886 			rdev_err(rdev,
887 				 "failed to get the current voltage(%d)\n",
888 				 current_uV);
889 			return current_uV;
890 		}
891 
892 		/*
893 		 * If we're below the minimum voltage move up to the
894 		 * minimum voltage, if we're above the maximum voltage
895 		 * then move down to the maximum.
896 		 */
897 		target_min = current_uV;
898 		target_max = current_uV;
899 
900 		if (current_uV < rdev->constraints->min_uV) {
901 			target_min = rdev->constraints->min_uV;
902 			target_max = rdev->constraints->min_uV;
903 		}
904 
905 		if (current_uV > rdev->constraints->max_uV) {
906 			target_min = rdev->constraints->max_uV;
907 			target_max = rdev->constraints->max_uV;
908 		}
909 
910 		if (target_min != current_uV || target_max != current_uV) {
911 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912 				  current_uV, target_min, target_max);
913 			ret = _regulator_do_set_voltage(
914 				rdev, target_min, target_max);
915 			if (ret < 0) {
916 				rdev_err(rdev,
917 					"failed to apply %d-%duV constraint(%d)\n",
918 					target_min, target_max, ret);
919 				return ret;
920 			}
921 		}
922 	}
923 
924 	/* constrain machine-level voltage specs to fit
925 	 * the actual range supported by this regulator.
926 	 */
927 	if (ops->list_voltage && rdev->desc->n_voltages) {
928 		int	count = rdev->desc->n_voltages;
929 		int	i;
930 		int	min_uV = INT_MAX;
931 		int	max_uV = INT_MIN;
932 		int	cmin = constraints->min_uV;
933 		int	cmax = constraints->max_uV;
934 
935 		/* it's safe to autoconfigure fixed-voltage supplies
936 		   and the constraints are used by list_voltage. */
937 		if (count == 1 && !cmin) {
938 			cmin = 1;
939 			cmax = INT_MAX;
940 			constraints->min_uV = cmin;
941 			constraints->max_uV = cmax;
942 		}
943 
944 		/* voltage constraints are optional */
945 		if ((cmin == 0) && (cmax == 0))
946 			return 0;
947 
948 		/* else require explicit machine-level constraints */
949 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950 			rdev_err(rdev, "invalid voltage constraints\n");
951 			return -EINVAL;
952 		}
953 
954 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955 		for (i = 0; i < count; i++) {
956 			int	value;
957 
958 			value = ops->list_voltage(rdev, i);
959 			if (value <= 0)
960 				continue;
961 
962 			/* maybe adjust [min_uV..max_uV] */
963 			if (value >= cmin && value < min_uV)
964 				min_uV = value;
965 			if (value <= cmax && value > max_uV)
966 				max_uV = value;
967 		}
968 
969 		/* final: [min_uV..max_uV] valid iff constraints valid */
970 		if (max_uV < min_uV) {
971 			rdev_err(rdev,
972 				 "unsupportable voltage constraints %u-%uuV\n",
973 				 min_uV, max_uV);
974 			return -EINVAL;
975 		}
976 
977 		/* use regulator's subset of machine constraints */
978 		if (constraints->min_uV < min_uV) {
979 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980 				 constraints->min_uV, min_uV);
981 			constraints->min_uV = min_uV;
982 		}
983 		if (constraints->max_uV > max_uV) {
984 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985 				 constraints->max_uV, max_uV);
986 			constraints->max_uV = max_uV;
987 		}
988 	}
989 
990 	return 0;
991 }
992 
993 static int machine_constraints_current(struct regulator_dev *rdev,
994 	struct regulation_constraints *constraints)
995 {
996 	const struct regulator_ops *ops = rdev->desc->ops;
997 	int ret;
998 
999 	if (!constraints->min_uA && !constraints->max_uA)
1000 		return 0;
1001 
1002 	if (constraints->min_uA > constraints->max_uA) {
1003 		rdev_err(rdev, "Invalid current constraints\n");
1004 		return -EINVAL;
1005 	}
1006 
1007 	if (!ops->set_current_limit || !ops->get_current_limit) {
1008 		rdev_warn(rdev, "Operation of current configuration missing\n");
1009 		return 0;
1010 	}
1011 
1012 	/* Set regulator current in constraints range */
1013 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1014 			constraints->max_uA);
1015 	if (ret < 0) {
1016 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017 		return ret;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024 
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  * @constraints: constraints to apply
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev,
1037 	const struct regulation_constraints *constraints)
1038 {
1039 	int ret = 0;
1040 	const struct regulator_ops *ops = rdev->desc->ops;
1041 
1042 	if (constraints)
1043 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1044 					    GFP_KERNEL);
1045 	else
1046 		rdev->constraints = kzalloc(sizeof(*constraints),
1047 					    GFP_KERNEL);
1048 	if (!rdev->constraints)
1049 		return -ENOMEM;
1050 
1051 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1052 	if (ret != 0)
1053 		return ret;
1054 
1055 	ret = machine_constraints_current(rdev, rdev->constraints);
1056 	if (ret != 0)
1057 		return ret;
1058 
1059 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1060 		ret = ops->set_input_current_limit(rdev,
1061 						   rdev->constraints->ilim_uA);
1062 		if (ret < 0) {
1063 			rdev_err(rdev, "failed to set input limit\n");
1064 			return ret;
1065 		}
1066 	}
1067 
1068 	/* do we need to setup our suspend state */
1069 	if (rdev->constraints->initial_state) {
1070 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071 		if (ret < 0) {
1072 			rdev_err(rdev, "failed to set suspend state\n");
1073 			return ret;
1074 		}
1075 	}
1076 
1077 	if (rdev->constraints->initial_mode) {
1078 		if (!ops->set_mode) {
1079 			rdev_err(rdev, "no set_mode operation\n");
1080 			return -EINVAL;
1081 		}
1082 
1083 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084 		if (ret < 0) {
1085 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086 			return ret;
1087 		}
1088 	}
1089 
1090 	/* If the constraints say the regulator should be on at this point
1091 	 * and we have control then make sure it is enabled.
1092 	 */
1093 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1094 		ret = _regulator_do_enable(rdev);
1095 		if (ret < 0 && ret != -EINVAL) {
1096 			rdev_err(rdev, "failed to enable\n");
1097 			return ret;
1098 		}
1099 	}
1100 
1101 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1102 		&& ops->set_ramp_delay) {
1103 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1104 		if (ret < 0) {
1105 			rdev_err(rdev, "failed to set ramp_delay\n");
1106 			return ret;
1107 		}
1108 	}
1109 
1110 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1111 		ret = ops->set_pull_down(rdev);
1112 		if (ret < 0) {
1113 			rdev_err(rdev, "failed to set pull down\n");
1114 			return ret;
1115 		}
1116 	}
1117 
1118 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1119 		ret = ops->set_soft_start(rdev);
1120 		if (ret < 0) {
1121 			rdev_err(rdev, "failed to set soft start\n");
1122 			return ret;
1123 		}
1124 	}
1125 
1126 	if (rdev->constraints->over_current_protection
1127 		&& ops->set_over_current_protection) {
1128 		ret = ops->set_over_current_protection(rdev);
1129 		if (ret < 0) {
1130 			rdev_err(rdev, "failed to set over current protection\n");
1131 			return ret;
1132 		}
1133 	}
1134 
1135 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1136 		bool ad_state = (rdev->constraints->active_discharge ==
1137 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1138 
1139 		ret = ops->set_active_discharge(rdev, ad_state);
1140 		if (ret < 0) {
1141 			rdev_err(rdev, "failed to set active discharge\n");
1142 			return ret;
1143 		}
1144 	}
1145 
1146 	print_constraints(rdev);
1147 	return 0;
1148 }
1149 
1150 /**
1151  * set_supply - set regulator supply regulator
1152  * @rdev: regulator name
1153  * @supply_rdev: supply regulator name
1154  *
1155  * Called by platform initialisation code to set the supply regulator for this
1156  * regulator. This ensures that a regulators supply will also be enabled by the
1157  * core if it's child is enabled.
1158  */
1159 static int set_supply(struct regulator_dev *rdev,
1160 		      struct regulator_dev *supply_rdev)
1161 {
1162 	int err;
1163 
1164 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1165 
1166 	if (!try_module_get(supply_rdev->owner))
1167 		return -ENODEV;
1168 
1169 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 	if (rdev->supply == NULL) {
1171 		err = -ENOMEM;
1172 		return err;
1173 	}
1174 	supply_rdev->open_count++;
1175 
1176 	return 0;
1177 }
1178 
1179 /**
1180  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181  * @rdev:         regulator source
1182  * @consumer_dev_name: dev_name() string for device supply applies to
1183  * @supply:       symbolic name for supply
1184  *
1185  * Allows platform initialisation code to map physical regulator
1186  * sources to symbolic names for supplies for use by devices.  Devices
1187  * should use these symbolic names to request regulators, avoiding the
1188  * need to provide board-specific regulator names as platform data.
1189  */
1190 static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 				      const char *consumer_dev_name,
1192 				      const char *supply)
1193 {
1194 	struct regulator_map *node;
1195 	int has_dev;
1196 
1197 	if (supply == NULL)
1198 		return -EINVAL;
1199 
1200 	if (consumer_dev_name != NULL)
1201 		has_dev = 1;
1202 	else
1203 		has_dev = 0;
1204 
1205 	list_for_each_entry(node, &regulator_map_list, list) {
1206 		if (node->dev_name && consumer_dev_name) {
1207 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1208 				continue;
1209 		} else if (node->dev_name || consumer_dev_name) {
1210 			continue;
1211 		}
1212 
1213 		if (strcmp(node->supply, supply) != 0)
1214 			continue;
1215 
1216 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1217 			 consumer_dev_name,
1218 			 dev_name(&node->regulator->dev),
1219 			 node->regulator->desc->name,
1220 			 supply,
1221 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 		return -EBUSY;
1223 	}
1224 
1225 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 	if (node == NULL)
1227 		return -ENOMEM;
1228 
1229 	node->regulator = rdev;
1230 	node->supply = supply;
1231 
1232 	if (has_dev) {
1233 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1234 		if (node->dev_name == NULL) {
1235 			kfree(node);
1236 			return -ENOMEM;
1237 		}
1238 	}
1239 
1240 	list_add(&node->list, &regulator_map_list);
1241 	return 0;
1242 }
1243 
1244 static void unset_regulator_supplies(struct regulator_dev *rdev)
1245 {
1246 	struct regulator_map *node, *n;
1247 
1248 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1249 		if (rdev == node->regulator) {
1250 			list_del(&node->list);
1251 			kfree(node->dev_name);
1252 			kfree(node);
1253 		}
1254 	}
1255 }
1256 
1257 #ifdef CONFIG_DEBUG_FS
1258 static ssize_t constraint_flags_read_file(struct file *file,
1259 					  char __user *user_buf,
1260 					  size_t count, loff_t *ppos)
1261 {
1262 	const struct regulator *regulator = file->private_data;
1263 	const struct regulation_constraints *c = regulator->rdev->constraints;
1264 	char *buf;
1265 	ssize_t ret;
1266 
1267 	if (!c)
1268 		return 0;
1269 
1270 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1271 	if (!buf)
1272 		return -ENOMEM;
1273 
1274 	ret = snprintf(buf, PAGE_SIZE,
1275 			"always_on: %u\n"
1276 			"boot_on: %u\n"
1277 			"apply_uV: %u\n"
1278 			"ramp_disable: %u\n"
1279 			"soft_start: %u\n"
1280 			"pull_down: %u\n"
1281 			"over_current_protection: %u\n",
1282 			c->always_on,
1283 			c->boot_on,
1284 			c->apply_uV,
1285 			c->ramp_disable,
1286 			c->soft_start,
1287 			c->pull_down,
1288 			c->over_current_protection);
1289 
1290 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1291 	kfree(buf);
1292 
1293 	return ret;
1294 }
1295 
1296 #endif
1297 
1298 static const struct file_operations constraint_flags_fops = {
1299 #ifdef CONFIG_DEBUG_FS
1300 	.open = simple_open,
1301 	.read = constraint_flags_read_file,
1302 	.llseek = default_llseek,
1303 #endif
1304 };
1305 
1306 #define REG_STR_SIZE	64
1307 
1308 static struct regulator *create_regulator(struct regulator_dev *rdev,
1309 					  struct device *dev,
1310 					  const char *supply_name)
1311 {
1312 	struct regulator *regulator;
1313 	char buf[REG_STR_SIZE];
1314 	int err, size;
1315 
1316 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1317 	if (regulator == NULL)
1318 		return NULL;
1319 
1320 	mutex_lock(&rdev->mutex);
1321 	regulator->rdev = rdev;
1322 	list_add(&regulator->list, &rdev->consumer_list);
1323 
1324 	if (dev) {
1325 		regulator->dev = dev;
1326 
1327 		/* Add a link to the device sysfs entry */
1328 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1329 				 dev->kobj.name, supply_name);
1330 		if (size >= REG_STR_SIZE)
1331 			goto overflow_err;
1332 
1333 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1334 		if (regulator->supply_name == NULL)
1335 			goto overflow_err;
1336 
1337 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338 					buf);
1339 		if (err) {
1340 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1341 				  dev->kobj.name, err);
1342 			/* non-fatal */
1343 		}
1344 	} else {
1345 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1346 		if (regulator->supply_name == NULL)
1347 			goto overflow_err;
1348 	}
1349 
1350 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1351 						rdev->debugfs);
1352 	if (!regulator->debugfs) {
1353 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354 	} else {
1355 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1356 				   &regulator->uA_load);
1357 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1358 				   &regulator->min_uV);
1359 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1360 				   &regulator->max_uV);
1361 		debugfs_create_file("constraint_flags", 0444,
1362 				    regulator->debugfs, regulator,
1363 				    &constraint_flags_fops);
1364 	}
1365 
1366 	/*
1367 	 * Check now if the regulator is an always on regulator - if
1368 	 * it is then we don't need to do nearly so much work for
1369 	 * enable/disable calls.
1370 	 */
1371 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372 	    _regulator_is_enabled(rdev))
1373 		regulator->always_on = true;
1374 
1375 	mutex_unlock(&rdev->mutex);
1376 	return regulator;
1377 overflow_err:
1378 	list_del(&regulator->list);
1379 	kfree(regulator);
1380 	mutex_unlock(&rdev->mutex);
1381 	return NULL;
1382 }
1383 
1384 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1385 {
1386 	if (rdev->constraints && rdev->constraints->enable_time)
1387 		return rdev->constraints->enable_time;
1388 	if (!rdev->desc->ops->enable_time)
1389 		return rdev->desc->enable_time;
1390 	return rdev->desc->ops->enable_time(rdev);
1391 }
1392 
1393 static struct regulator_supply_alias *regulator_find_supply_alias(
1394 		struct device *dev, const char *supply)
1395 {
1396 	struct regulator_supply_alias *map;
1397 
1398 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1399 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1400 			return map;
1401 
1402 	return NULL;
1403 }
1404 
1405 static void regulator_supply_alias(struct device **dev, const char **supply)
1406 {
1407 	struct regulator_supply_alias *map;
1408 
1409 	map = regulator_find_supply_alias(*dev, *supply);
1410 	if (map) {
1411 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1412 				*supply, map->alias_supply,
1413 				dev_name(map->alias_dev));
1414 		*dev = map->alias_dev;
1415 		*supply = map->alias_supply;
1416 	}
1417 }
1418 
1419 static int of_node_match(struct device *dev, const void *data)
1420 {
1421 	return dev->of_node == data;
1422 }
1423 
1424 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1425 {
1426 	struct device *dev;
1427 
1428 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1429 
1430 	return dev ? dev_to_rdev(dev) : NULL;
1431 }
1432 
1433 static int regulator_match(struct device *dev, const void *data)
1434 {
1435 	struct regulator_dev *r = dev_to_rdev(dev);
1436 
1437 	return strcmp(rdev_get_name(r), data) == 0;
1438 }
1439 
1440 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1441 {
1442 	struct device *dev;
1443 
1444 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1445 
1446 	return dev ? dev_to_rdev(dev) : NULL;
1447 }
1448 
1449 /**
1450  * regulator_dev_lookup - lookup a regulator device.
1451  * @dev: device for regulator "consumer".
1452  * @supply: Supply name or regulator ID.
1453  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1454  * lookup could succeed in the future.
1455  *
1456  * If successful, returns a struct regulator_dev that corresponds to the name
1457  * @supply and with the embedded struct device refcount incremented by one,
1458  * or NULL on failure. The refcount must be dropped by calling put_device().
1459  */
1460 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461 						  const char *supply,
1462 						  int *ret)
1463 {
1464 	struct regulator_dev *r;
1465 	struct device_node *node;
1466 	struct regulator_map *map;
1467 	const char *devname = NULL;
1468 
1469 	regulator_supply_alias(&dev, &supply);
1470 
1471 	/* first do a dt based lookup */
1472 	if (dev && dev->of_node) {
1473 		node = of_get_regulator(dev, supply);
1474 		if (node) {
1475 			r = of_find_regulator_by_node(node);
1476 			if (r)
1477 				return r;
1478 			*ret = -EPROBE_DEFER;
1479 			return NULL;
1480 		} else {
1481 			/*
1482 			 * If we couldn't even get the node then it's
1483 			 * not just that the device didn't register
1484 			 * yet, there's no node and we'll never
1485 			 * succeed.
1486 			 */
1487 			*ret = -ENODEV;
1488 		}
1489 	}
1490 
1491 	/* if not found, try doing it non-dt way */
1492 	if (dev)
1493 		devname = dev_name(dev);
1494 
1495 	r = regulator_lookup_by_name(supply);
1496 	if (r)
1497 		return r;
1498 
1499 	mutex_lock(&regulator_list_mutex);
1500 	list_for_each_entry(map, &regulator_map_list, list) {
1501 		/* If the mapping has a device set up it must match */
1502 		if (map->dev_name &&
1503 		    (!devname || strcmp(map->dev_name, devname)))
1504 			continue;
1505 
1506 		if (strcmp(map->supply, supply) == 0 &&
1507 		    get_device(&map->regulator->dev)) {
1508 			mutex_unlock(&regulator_list_mutex);
1509 			return map->regulator;
1510 		}
1511 	}
1512 	mutex_unlock(&regulator_list_mutex);
1513 
1514 	return NULL;
1515 }
1516 
1517 static int regulator_resolve_supply(struct regulator_dev *rdev)
1518 {
1519 	struct regulator_dev *r;
1520 	struct device *dev = rdev->dev.parent;
1521 	int ret;
1522 
1523 	/* No supply to resovle? */
1524 	if (!rdev->supply_name)
1525 		return 0;
1526 
1527 	/* Supply already resolved? */
1528 	if (rdev->supply)
1529 		return 0;
1530 
1531 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1532 	if (!r) {
1533 		if (ret == -ENODEV) {
1534 			/*
1535 			 * No supply was specified for this regulator and
1536 			 * there will never be one.
1537 			 */
1538 			return 0;
1539 		}
1540 
1541 		/* Did the lookup explicitly defer for us? */
1542 		if (ret == -EPROBE_DEFER)
1543 			return ret;
1544 
1545 		if (have_full_constraints()) {
1546 			r = dummy_regulator_rdev;
1547 			get_device(&r->dev);
1548 		} else {
1549 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550 				rdev->supply_name, rdev->desc->name);
1551 			return -EPROBE_DEFER;
1552 		}
1553 	}
1554 
1555 	/* Recursively resolve the supply of the supply */
1556 	ret = regulator_resolve_supply(r);
1557 	if (ret < 0) {
1558 		put_device(&r->dev);
1559 		return ret;
1560 	}
1561 
1562 	ret = set_supply(rdev, r);
1563 	if (ret < 0) {
1564 		put_device(&r->dev);
1565 		return ret;
1566 	}
1567 
1568 	/* Cascade always-on state to supply */
1569 	if (_regulator_is_enabled(rdev)) {
1570 		ret = regulator_enable(rdev->supply);
1571 		if (ret < 0) {
1572 			_regulator_put(rdev->supply);
1573 			rdev->supply = NULL;
1574 			return ret;
1575 		}
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /* Internal regulator request function */
1582 static struct regulator *_regulator_get(struct device *dev, const char *id,
1583 					bool exclusive, bool allow_dummy)
1584 {
1585 	struct regulator_dev *rdev;
1586 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587 	const char *devname = NULL;
1588 	int ret;
1589 
1590 	if (id == NULL) {
1591 		pr_err("get() with no identifier\n");
1592 		return ERR_PTR(-EINVAL);
1593 	}
1594 
1595 	if (dev)
1596 		devname = dev_name(dev);
1597 
1598 	if (have_full_constraints())
1599 		ret = -ENODEV;
1600 	else
1601 		ret = -EPROBE_DEFER;
1602 
1603 	rdev = regulator_dev_lookup(dev, id, &ret);
1604 	if (rdev)
1605 		goto found;
1606 
1607 	regulator = ERR_PTR(ret);
1608 
1609 	/*
1610 	 * If we have return value from dev_lookup fail, we do not expect to
1611 	 * succeed, so, quit with appropriate error value
1612 	 */
1613 	if (ret && ret != -ENODEV)
1614 		return regulator;
1615 
1616 	if (!devname)
1617 		devname = "deviceless";
1618 
1619 	/*
1620 	 * Assume that a regulator is physically present and enabled
1621 	 * even if it isn't hooked up and just provide a dummy.
1622 	 */
1623 	if (have_full_constraints() && allow_dummy) {
1624 		pr_warn("%s supply %s not found, using dummy regulator\n",
1625 			devname, id);
1626 
1627 		rdev = dummy_regulator_rdev;
1628 		get_device(&rdev->dev);
1629 		goto found;
1630 	/* Don't log an error when called from regulator_get_optional() */
1631 	} else if (!have_full_constraints() || exclusive) {
1632 		dev_warn(dev, "dummy supplies not allowed\n");
1633 	}
1634 
1635 	return regulator;
1636 
1637 found:
1638 	if (rdev->exclusive) {
1639 		regulator = ERR_PTR(-EPERM);
1640 		put_device(&rdev->dev);
1641 		return regulator;
1642 	}
1643 
1644 	if (exclusive && rdev->open_count) {
1645 		regulator = ERR_PTR(-EBUSY);
1646 		put_device(&rdev->dev);
1647 		return regulator;
1648 	}
1649 
1650 	ret = regulator_resolve_supply(rdev);
1651 	if (ret < 0) {
1652 		regulator = ERR_PTR(ret);
1653 		put_device(&rdev->dev);
1654 		return regulator;
1655 	}
1656 
1657 	if (!try_module_get(rdev->owner)) {
1658 		put_device(&rdev->dev);
1659 		return regulator;
1660 	}
1661 
1662 	regulator = create_regulator(rdev, dev, id);
1663 	if (regulator == NULL) {
1664 		regulator = ERR_PTR(-ENOMEM);
1665 		put_device(&rdev->dev);
1666 		module_put(rdev->owner);
1667 		return regulator;
1668 	}
1669 
1670 	rdev->open_count++;
1671 	if (exclusive) {
1672 		rdev->exclusive = 1;
1673 
1674 		ret = _regulator_is_enabled(rdev);
1675 		if (ret > 0)
1676 			rdev->use_count = 1;
1677 		else
1678 			rdev->use_count = 0;
1679 	}
1680 
1681 	return regulator;
1682 }
1683 
1684 /**
1685  * regulator_get - lookup and obtain a reference to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * Use of supply names configured via regulator_set_device_supply() is
1693  * strongly encouraged.  It is recommended that the supply name used
1694  * should match the name used for the supply and/or the relevant
1695  * device pins in the datasheet.
1696  */
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1698 {
1699 	return _regulator_get(dev, id, false, true);
1700 }
1701 EXPORT_SYMBOL_GPL(regulator_get);
1702 
1703 /**
1704  * regulator_get_exclusive - obtain exclusive access to a regulator.
1705  * @dev: device for regulator "consumer"
1706  * @id: Supply name or regulator ID.
1707  *
1708  * Returns a struct regulator corresponding to the regulator producer,
1709  * or IS_ERR() condition containing errno.  Other consumers will be
1710  * unable to obtain this regulator while this reference is held and the
1711  * use count for the regulator will be initialised to reflect the current
1712  * state of the regulator.
1713  *
1714  * This is intended for use by consumers which cannot tolerate shared
1715  * use of the regulator such as those which need to force the
1716  * regulator off for correct operation of the hardware they are
1717  * controlling.
1718  *
1719  * Use of supply names configured via regulator_set_device_supply() is
1720  * strongly encouraged.  It is recommended that the supply name used
1721  * should match the name used for the supply and/or the relevant
1722  * device pins in the datasheet.
1723  */
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725 {
1726 	return _regulator_get(dev, id, true, false);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729 
1730 /**
1731  * regulator_get_optional - obtain optional access to a regulator.
1732  * @dev: device for regulator "consumer"
1733  * @id: Supply name or regulator ID.
1734  *
1735  * Returns a struct regulator corresponding to the regulator producer,
1736  * or IS_ERR() condition containing errno.
1737  *
1738  * This is intended for use by consumers for devices which can have
1739  * some supplies unconnected in normal use, such as some MMC devices.
1740  * It can allow the regulator core to provide stub supplies for other
1741  * supplies requested using normal regulator_get() calls without
1742  * disrupting the operation of drivers that can handle absent
1743  * supplies.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751 {
1752 	return _regulator_get(dev, id, false, false);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1755 
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1758 {
1759 	struct regulator_dev *rdev;
1760 
1761 	if (IS_ERR_OR_NULL(regulator))
1762 		return;
1763 
1764 	lockdep_assert_held_once(&regulator_list_mutex);
1765 
1766 	rdev = regulator->rdev;
1767 
1768 	debugfs_remove_recursive(regulator->debugfs);
1769 
1770 	/* remove any sysfs entries */
1771 	if (regulator->dev)
1772 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 	mutex_lock(&rdev->mutex);
1774 	list_del(&regulator->list);
1775 
1776 	rdev->open_count--;
1777 	rdev->exclusive = 0;
1778 	put_device(&rdev->dev);
1779 	mutex_unlock(&rdev->mutex);
1780 
1781 	kfree(regulator->supply_name);
1782 	kfree(regulator);
1783 
1784 	module_put(rdev->owner);
1785 }
1786 
1787 /**
1788  * regulator_put - "free" the regulator source
1789  * @regulator: regulator source
1790  *
1791  * Note: drivers must ensure that all regulator_enable calls made on this
1792  * regulator source are balanced by regulator_disable calls prior to calling
1793  * this function.
1794  */
1795 void regulator_put(struct regulator *regulator)
1796 {
1797 	mutex_lock(&regulator_list_mutex);
1798 	_regulator_put(regulator);
1799 	mutex_unlock(&regulator_list_mutex);
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_put);
1802 
1803 /**
1804  * regulator_register_supply_alias - Provide device alias for supply lookup
1805  *
1806  * @dev: device that will be given as the regulator "consumer"
1807  * @id: Supply name or regulator ID
1808  * @alias_dev: device that should be used to lookup the supply
1809  * @alias_id: Supply name or regulator ID that should be used to lookup the
1810  * supply
1811  *
1812  * All lookups for id on dev will instead be conducted for alias_id on
1813  * alias_dev.
1814  */
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 				    struct device *alias_dev,
1817 				    const char *alias_id)
1818 {
1819 	struct regulator_supply_alias *map;
1820 
1821 	map = regulator_find_supply_alias(dev, id);
1822 	if (map)
1823 		return -EEXIST;
1824 
1825 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 	if (!map)
1827 		return -ENOMEM;
1828 
1829 	map->src_dev = dev;
1830 	map->src_supply = id;
1831 	map->alias_dev = alias_dev;
1832 	map->alias_supply = alias_id;
1833 
1834 	list_add(&map->list, &regulator_supply_alias_list);
1835 
1836 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842 
1843 /**
1844  * regulator_unregister_supply_alias - Remove device alias
1845  *
1846  * @dev: device that will be given as the regulator "consumer"
1847  * @id: Supply name or regulator ID
1848  *
1849  * Remove a lookup alias if one exists for id on dev.
1850  */
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852 {
1853 	struct regulator_supply_alias *map;
1854 
1855 	map = regulator_find_supply_alias(dev, id);
1856 	if (map) {
1857 		list_del(&map->list);
1858 		kfree(map);
1859 	}
1860 }
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862 
1863 /**
1864  * regulator_bulk_register_supply_alias - register multiple aliases
1865  *
1866  * @dev: device that will be given as the regulator "consumer"
1867  * @id: List of supply names or regulator IDs
1868  * @alias_dev: device that should be used to lookup the supply
1869  * @alias_id: List of supply names or regulator IDs that should be used to
1870  * lookup the supply
1871  * @num_id: Number of aliases to register
1872  *
1873  * @return 0 on success, an errno on failure.
1874  *
1875  * This helper function allows drivers to register several supply
1876  * aliases in one operation.  If any of the aliases cannot be
1877  * registered any aliases that were registered will be removed
1878  * before returning to the caller.
1879  */
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 					 const char *const *id,
1882 					 struct device *alias_dev,
1883 					 const char *const *alias_id,
1884 					 int num_id)
1885 {
1886 	int i;
1887 	int ret;
1888 
1889 	for (i = 0; i < num_id; ++i) {
1890 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 						      alias_id[i]);
1892 		if (ret < 0)
1893 			goto err;
1894 	}
1895 
1896 	return 0;
1897 
1898 err:
1899 	dev_err(dev,
1900 		"Failed to create supply alias %s,%s -> %s,%s\n",
1901 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902 
1903 	while (--i >= 0)
1904 		regulator_unregister_supply_alias(dev, id[i]);
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909 
1910 /**
1911  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912  *
1913  * @dev: device that will be given as the regulator "consumer"
1914  * @id: List of supply names or regulator IDs
1915  * @num_id: Number of aliases to unregister
1916  *
1917  * This helper function allows drivers to unregister several supply
1918  * aliases in one operation.
1919  */
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 					    const char *const *id,
1922 					    int num_id)
1923 {
1924 	int i;
1925 
1926 	for (i = 0; i < num_id; ++i)
1927 		regulator_unregister_supply_alias(dev, id[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930 
1931 
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 				const struct regulator_config *config)
1935 {
1936 	struct regulator_enable_gpio *pin;
1937 	struct gpio_desc *gpiod;
1938 	int ret;
1939 
1940 	gpiod = gpio_to_desc(config->ena_gpio);
1941 
1942 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 		if (pin->gpiod == gpiod) {
1944 			rdev_dbg(rdev, "GPIO %d is already used\n",
1945 				config->ena_gpio);
1946 			goto update_ena_gpio_to_rdev;
1947 		}
1948 	}
1949 
1950 	ret = gpio_request_one(config->ena_gpio,
1951 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 				rdev_get_name(rdev));
1953 	if (ret)
1954 		return ret;
1955 
1956 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 	if (pin == NULL) {
1958 		gpio_free(config->ena_gpio);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	pin->gpiod = gpiod;
1963 	pin->ena_gpio_invert = config->ena_gpio_invert;
1964 	list_add(&pin->list, &regulator_ena_gpio_list);
1965 
1966 update_ena_gpio_to_rdev:
1967 	pin->request_count++;
1968 	rdev->ena_pin = pin;
1969 	return 0;
1970 }
1971 
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1973 {
1974 	struct regulator_enable_gpio *pin, *n;
1975 
1976 	if (!rdev->ena_pin)
1977 		return;
1978 
1979 	/* Free the GPIO only in case of no use */
1980 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 			if (pin->request_count <= 1) {
1983 				pin->request_count = 0;
1984 				gpiod_put(pin->gpiod);
1985 				list_del(&pin->list);
1986 				kfree(pin);
1987 				rdev->ena_pin = NULL;
1988 				return;
1989 			} else {
1990 				pin->request_count--;
1991 			}
1992 		}
1993 	}
1994 }
1995 
1996 /**
1997  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998  * @rdev: regulator_dev structure
1999  * @enable: enable GPIO at initial use?
2000  *
2001  * GPIO is enabled in case of initial use. (enable_count is 0)
2002  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2003  */
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2005 {
2006 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2007 
2008 	if (!pin)
2009 		return -EINVAL;
2010 
2011 	if (enable) {
2012 		/* Enable GPIO at initial use */
2013 		if (pin->enable_count == 0)
2014 			gpiod_set_value_cansleep(pin->gpiod,
2015 						 !pin->ena_gpio_invert);
2016 
2017 		pin->enable_count++;
2018 	} else {
2019 		if (pin->enable_count > 1) {
2020 			pin->enable_count--;
2021 			return 0;
2022 		}
2023 
2024 		/* Disable GPIO if not used */
2025 		if (pin->enable_count <= 1) {
2026 			gpiod_set_value_cansleep(pin->gpiod,
2027 						 pin->ena_gpio_invert);
2028 			pin->enable_count = 0;
2029 		}
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 /**
2036  * _regulator_enable_delay - a delay helper function
2037  * @delay: time to delay in microseconds
2038  *
2039  * Delay for the requested amount of time as per the guidelines in:
2040  *
2041  *     Documentation/timers/timers-howto.txt
2042  *
2043  * The assumption here is that regulators will never be enabled in
2044  * atomic context and therefore sleeping functions can be used.
2045  */
2046 static void _regulator_enable_delay(unsigned int delay)
2047 {
2048 	unsigned int ms = delay / 1000;
2049 	unsigned int us = delay % 1000;
2050 
2051 	if (ms > 0) {
2052 		/*
2053 		 * For small enough values, handle super-millisecond
2054 		 * delays in the usleep_range() call below.
2055 		 */
2056 		if (ms < 20)
2057 			us += ms * 1000;
2058 		else
2059 			msleep(ms);
2060 	}
2061 
2062 	/*
2063 	 * Give the scheduler some room to coalesce with any other
2064 	 * wakeup sources. For delays shorter than 10 us, don't even
2065 	 * bother setting up high-resolution timers and just busy-
2066 	 * loop.
2067 	 */
2068 	if (us >= 10)
2069 		usleep_range(us, us + 100);
2070 	else
2071 		udelay(us);
2072 }
2073 
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2075 {
2076 	int ret, delay;
2077 
2078 	/* Query before enabling in case configuration dependent.  */
2079 	ret = _regulator_get_enable_time(rdev);
2080 	if (ret >= 0) {
2081 		delay = ret;
2082 	} else {
2083 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 		delay = 0;
2085 	}
2086 
2087 	trace_regulator_enable(rdev_get_name(rdev));
2088 
2089 	if (rdev->desc->off_on_delay) {
2090 		/* if needed, keep a distance of off_on_delay from last time
2091 		 * this regulator was disabled.
2092 		 */
2093 		unsigned long start_jiffy = jiffies;
2094 		unsigned long intended, max_delay, remaining;
2095 
2096 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 		intended = rdev->last_off_jiffy + max_delay;
2098 
2099 		if (time_before(start_jiffy, intended)) {
2100 			/* calc remaining jiffies to deal with one-time
2101 			 * timer wrapping.
2102 			 * in case of multiple timer wrapping, either it can be
2103 			 * detected by out-of-range remaining, or it cannot be
2104 			 * detected and we gets a panelty of
2105 			 * _regulator_enable_delay().
2106 			 */
2107 			remaining = intended - start_jiffy;
2108 			if (remaining <= max_delay)
2109 				_regulator_enable_delay(
2110 						jiffies_to_usecs(remaining));
2111 		}
2112 	}
2113 
2114 	if (rdev->ena_pin) {
2115 		if (!rdev->ena_gpio_state) {
2116 			ret = regulator_ena_gpio_ctrl(rdev, true);
2117 			if (ret < 0)
2118 				return ret;
2119 			rdev->ena_gpio_state = 1;
2120 		}
2121 	} else if (rdev->desc->ops->enable) {
2122 		ret = rdev->desc->ops->enable(rdev);
2123 		if (ret < 0)
2124 			return ret;
2125 	} else {
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* Allow the regulator to ramp; it would be useful to extend
2130 	 * this for bulk operations so that the regulators can ramp
2131 	 * together.  */
2132 	trace_regulator_enable_delay(rdev_get_name(rdev));
2133 
2134 	_regulator_enable_delay(delay);
2135 
2136 	trace_regulator_enable_complete(rdev_get_name(rdev));
2137 
2138 	return 0;
2139 }
2140 
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2143 {
2144 	int ret;
2145 
2146 	lockdep_assert_held_once(&rdev->mutex);
2147 
2148 	/* check voltage and requested load before enabling */
2149 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 		drms_uA_update(rdev);
2151 
2152 	if (rdev->use_count == 0) {
2153 		/* The regulator may on if it's not switchable or left on */
2154 		ret = _regulator_is_enabled(rdev);
2155 		if (ret == -EINVAL || ret == 0) {
2156 			if (!regulator_ops_is_valid(rdev,
2157 					REGULATOR_CHANGE_STATUS))
2158 				return -EPERM;
2159 
2160 			ret = _regulator_do_enable(rdev);
2161 			if (ret < 0)
2162 				return ret;
2163 
2164 		} else if (ret < 0) {
2165 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166 			return ret;
2167 		}
2168 		/* Fallthrough on positive return values - already enabled */
2169 	}
2170 
2171 	rdev->use_count++;
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * regulator_enable - enable regulator output
2178  * @regulator: regulator source
2179  *
2180  * Request that the regulator be enabled with the regulator output at
2181  * the predefined voltage or current value.  Calls to regulator_enable()
2182  * must be balanced with calls to regulator_disable().
2183  *
2184  * NOTE: the output value can be set by other drivers, boot loader or may be
2185  * hardwired in the regulator.
2186  */
2187 int regulator_enable(struct regulator *regulator)
2188 {
2189 	struct regulator_dev *rdev = regulator->rdev;
2190 	int ret = 0;
2191 
2192 	if (regulator->always_on)
2193 		return 0;
2194 
2195 	if (rdev->supply) {
2196 		ret = regulator_enable(rdev->supply);
2197 		if (ret != 0)
2198 			return ret;
2199 	}
2200 
2201 	mutex_lock(&rdev->mutex);
2202 	ret = _regulator_enable(rdev);
2203 	mutex_unlock(&rdev->mutex);
2204 
2205 	if (ret != 0 && rdev->supply)
2206 		regulator_disable(rdev->supply);
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_enable);
2211 
2212 static int _regulator_do_disable(struct regulator_dev *rdev)
2213 {
2214 	int ret;
2215 
2216 	trace_regulator_disable(rdev_get_name(rdev));
2217 
2218 	if (rdev->ena_pin) {
2219 		if (rdev->ena_gpio_state) {
2220 			ret = regulator_ena_gpio_ctrl(rdev, false);
2221 			if (ret < 0)
2222 				return ret;
2223 			rdev->ena_gpio_state = 0;
2224 		}
2225 
2226 	} else if (rdev->desc->ops->disable) {
2227 		ret = rdev->desc->ops->disable(rdev);
2228 		if (ret != 0)
2229 			return ret;
2230 	}
2231 
2232 	/* cares about last_off_jiffy only if off_on_delay is required by
2233 	 * device.
2234 	 */
2235 	if (rdev->desc->off_on_delay)
2236 		rdev->last_off_jiffy = jiffies;
2237 
2238 	trace_regulator_disable_complete(rdev_get_name(rdev));
2239 
2240 	return 0;
2241 }
2242 
2243 /* locks held by regulator_disable() */
2244 static int _regulator_disable(struct regulator_dev *rdev)
2245 {
2246 	int ret = 0;
2247 
2248 	lockdep_assert_held_once(&rdev->mutex);
2249 
2250 	if (WARN(rdev->use_count <= 0,
2251 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2252 		return -EIO;
2253 
2254 	/* are we the last user and permitted to disable ? */
2255 	if (rdev->use_count == 1 &&
2256 	    (rdev->constraints && !rdev->constraints->always_on)) {
2257 
2258 		/* we are last user */
2259 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260 			ret = _notifier_call_chain(rdev,
2261 						   REGULATOR_EVENT_PRE_DISABLE,
2262 						   NULL);
2263 			if (ret & NOTIFY_STOP_MASK)
2264 				return -EINVAL;
2265 
2266 			ret = _regulator_do_disable(rdev);
2267 			if (ret < 0) {
2268 				rdev_err(rdev, "failed to disable\n");
2269 				_notifier_call_chain(rdev,
2270 						REGULATOR_EVENT_ABORT_DISABLE,
2271 						NULL);
2272 				return ret;
2273 			}
2274 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2275 					NULL);
2276 		}
2277 
2278 		rdev->use_count = 0;
2279 	} else if (rdev->use_count > 1) {
2280 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281 			drms_uA_update(rdev);
2282 
2283 		rdev->use_count--;
2284 	}
2285 
2286 	return ret;
2287 }
2288 
2289 /**
2290  * regulator_disable - disable regulator output
2291  * @regulator: regulator source
2292  *
2293  * Disable the regulator output voltage or current.  Calls to
2294  * regulator_enable() must be balanced with calls to
2295  * regulator_disable().
2296  *
2297  * NOTE: this will only disable the regulator output if no other consumer
2298  * devices have it enabled, the regulator device supports disabling and
2299  * machine constraints permit this operation.
2300  */
2301 int regulator_disable(struct regulator *regulator)
2302 {
2303 	struct regulator_dev *rdev = regulator->rdev;
2304 	int ret = 0;
2305 
2306 	if (regulator->always_on)
2307 		return 0;
2308 
2309 	mutex_lock(&rdev->mutex);
2310 	ret = _regulator_disable(rdev);
2311 	mutex_unlock(&rdev->mutex);
2312 
2313 	if (ret == 0 && rdev->supply)
2314 		regulator_disable(rdev->supply);
2315 
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_disable);
2319 
2320 /* locks held by regulator_force_disable() */
2321 static int _regulator_force_disable(struct regulator_dev *rdev)
2322 {
2323 	int ret = 0;
2324 
2325 	lockdep_assert_held_once(&rdev->mutex);
2326 
2327 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2328 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2329 	if (ret & NOTIFY_STOP_MASK)
2330 		return -EINVAL;
2331 
2332 	ret = _regulator_do_disable(rdev);
2333 	if (ret < 0) {
2334 		rdev_err(rdev, "failed to force disable\n");
2335 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337 		return ret;
2338 	}
2339 
2340 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2341 			REGULATOR_EVENT_DISABLE, NULL);
2342 
2343 	return 0;
2344 }
2345 
2346 /**
2347  * regulator_force_disable - force disable regulator output
2348  * @regulator: regulator source
2349  *
2350  * Forcibly disable the regulator output voltage or current.
2351  * NOTE: this *will* disable the regulator output even if other consumer
2352  * devices have it enabled. This should be used for situations when device
2353  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2354  */
2355 int regulator_force_disable(struct regulator *regulator)
2356 {
2357 	struct regulator_dev *rdev = regulator->rdev;
2358 	int ret;
2359 
2360 	mutex_lock(&rdev->mutex);
2361 	regulator->uA_load = 0;
2362 	ret = _regulator_force_disable(regulator->rdev);
2363 	mutex_unlock(&rdev->mutex);
2364 
2365 	if (rdev->supply)
2366 		while (rdev->open_count--)
2367 			regulator_disable(rdev->supply);
2368 
2369 	return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(regulator_force_disable);
2372 
2373 static void regulator_disable_work(struct work_struct *work)
2374 {
2375 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2376 						  disable_work.work);
2377 	int count, i, ret;
2378 
2379 	mutex_lock(&rdev->mutex);
2380 
2381 	BUG_ON(!rdev->deferred_disables);
2382 
2383 	count = rdev->deferred_disables;
2384 	rdev->deferred_disables = 0;
2385 
2386 	for (i = 0; i < count; i++) {
2387 		ret = _regulator_disable(rdev);
2388 		if (ret != 0)
2389 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2390 	}
2391 
2392 	mutex_unlock(&rdev->mutex);
2393 
2394 	if (rdev->supply) {
2395 		for (i = 0; i < count; i++) {
2396 			ret = regulator_disable(rdev->supply);
2397 			if (ret != 0) {
2398 				rdev_err(rdev,
2399 					 "Supply disable failed: %d\n", ret);
2400 			}
2401 		}
2402 	}
2403 }
2404 
2405 /**
2406  * regulator_disable_deferred - disable regulator output with delay
2407  * @regulator: regulator source
2408  * @ms: miliseconds until the regulator is disabled
2409  *
2410  * Execute regulator_disable() on the regulator after a delay.  This
2411  * is intended for use with devices that require some time to quiesce.
2412  *
2413  * NOTE: this will only disable the regulator output if no other consumer
2414  * devices have it enabled, the regulator device supports disabling and
2415  * machine constraints permit this operation.
2416  */
2417 int regulator_disable_deferred(struct regulator *regulator, int ms)
2418 {
2419 	struct regulator_dev *rdev = regulator->rdev;
2420 
2421 	if (regulator->always_on)
2422 		return 0;
2423 
2424 	if (!ms)
2425 		return regulator_disable(regulator);
2426 
2427 	mutex_lock(&rdev->mutex);
2428 	rdev->deferred_disables++;
2429 	mutex_unlock(&rdev->mutex);
2430 
2431 	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2432 			   msecs_to_jiffies(ms));
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2436 
2437 static int _regulator_is_enabled(struct regulator_dev *rdev)
2438 {
2439 	/* A GPIO control always takes precedence */
2440 	if (rdev->ena_pin)
2441 		return rdev->ena_gpio_state;
2442 
2443 	/* If we don't know then assume that the regulator is always on */
2444 	if (!rdev->desc->ops->is_enabled)
2445 		return 1;
2446 
2447 	return rdev->desc->ops->is_enabled(rdev);
2448 }
2449 
2450 static int _regulator_list_voltage(struct regulator *regulator,
2451 				    unsigned selector, int lock)
2452 {
2453 	struct regulator_dev *rdev = regulator->rdev;
2454 	const struct regulator_ops *ops = rdev->desc->ops;
2455 	int ret;
2456 
2457 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2458 		return rdev->desc->fixed_uV;
2459 
2460 	if (ops->list_voltage) {
2461 		if (selector >= rdev->desc->n_voltages)
2462 			return -EINVAL;
2463 		if (lock)
2464 			mutex_lock(&rdev->mutex);
2465 		ret = ops->list_voltage(rdev, selector);
2466 		if (lock)
2467 			mutex_unlock(&rdev->mutex);
2468 	} else if (rdev->supply) {
2469 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2470 	} else {
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (ret > 0) {
2475 		if (ret < rdev->constraints->min_uV)
2476 			ret = 0;
2477 		else if (ret > rdev->constraints->max_uV)
2478 			ret = 0;
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 /**
2485  * regulator_is_enabled - is the regulator output enabled
2486  * @regulator: regulator source
2487  *
2488  * Returns positive if the regulator driver backing the source/client
2489  * has requested that the device be enabled, zero if it hasn't, else a
2490  * negative errno code.
2491  *
2492  * Note that the device backing this regulator handle can have multiple
2493  * users, so it might be enabled even if regulator_enable() was never
2494  * called for this particular source.
2495  */
2496 int regulator_is_enabled(struct regulator *regulator)
2497 {
2498 	int ret;
2499 
2500 	if (regulator->always_on)
2501 		return 1;
2502 
2503 	mutex_lock(&regulator->rdev->mutex);
2504 	ret = _regulator_is_enabled(regulator->rdev);
2505 	mutex_unlock(&regulator->rdev->mutex);
2506 
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2510 
2511 /**
2512  * regulator_can_change_voltage - check if regulator can change voltage
2513  * @regulator: regulator source
2514  *
2515  * Returns positive if the regulator driver backing the source/client
2516  * can change its voltage, false otherwise. Useful for detecting fixed
2517  * or dummy regulators and disabling voltage change logic in the client
2518  * driver.
2519  */
2520 int regulator_can_change_voltage(struct regulator *regulator)
2521 {
2522 	struct regulator_dev	*rdev = regulator->rdev;
2523 
2524 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2525 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2526 			return 1;
2527 
2528 		if (rdev->desc->continuous_voltage_range &&
2529 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2530 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2531 			return 1;
2532 	}
2533 
2534 	return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2537 
2538 /**
2539  * regulator_count_voltages - count regulator_list_voltage() selectors
2540  * @regulator: regulator source
2541  *
2542  * Returns number of selectors, or negative errno.  Selectors are
2543  * numbered starting at zero, and typically correspond to bitfields
2544  * in hardware registers.
2545  */
2546 int regulator_count_voltages(struct regulator *regulator)
2547 {
2548 	struct regulator_dev	*rdev = regulator->rdev;
2549 
2550 	if (rdev->desc->n_voltages)
2551 		return rdev->desc->n_voltages;
2552 
2553 	if (!rdev->supply)
2554 		return -EINVAL;
2555 
2556 	return regulator_count_voltages(rdev->supply);
2557 }
2558 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2559 
2560 /**
2561  * regulator_list_voltage - enumerate supported voltages
2562  * @regulator: regulator source
2563  * @selector: identify voltage to list
2564  * Context: can sleep
2565  *
2566  * Returns a voltage that can be passed to @regulator_set_voltage(),
2567  * zero if this selector code can't be used on this system, or a
2568  * negative errno.
2569  */
2570 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2571 {
2572 	return _regulator_list_voltage(regulator, selector, 1);
2573 }
2574 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2575 
2576 /**
2577  * regulator_get_regmap - get the regulator's register map
2578  * @regulator: regulator source
2579  *
2580  * Returns the register map for the given regulator, or an ERR_PTR value
2581  * if the regulator doesn't use regmap.
2582  */
2583 struct regmap *regulator_get_regmap(struct regulator *regulator)
2584 {
2585 	struct regmap *map = regulator->rdev->regmap;
2586 
2587 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2588 }
2589 
2590 /**
2591  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2592  * @regulator: regulator source
2593  * @vsel_reg: voltage selector register, output parameter
2594  * @vsel_mask: mask for voltage selector bitfield, output parameter
2595  *
2596  * Returns the hardware register offset and bitmask used for setting the
2597  * regulator voltage. This might be useful when configuring voltage-scaling
2598  * hardware or firmware that can make I2C requests behind the kernel's back,
2599  * for example.
2600  *
2601  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2602  * and 0 is returned, otherwise a negative errno is returned.
2603  */
2604 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2605 					 unsigned *vsel_reg,
2606 					 unsigned *vsel_mask)
2607 {
2608 	struct regulator_dev *rdev = regulator->rdev;
2609 	const struct regulator_ops *ops = rdev->desc->ops;
2610 
2611 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2612 		return -EOPNOTSUPP;
2613 
2614 	 *vsel_reg = rdev->desc->vsel_reg;
2615 	 *vsel_mask = rdev->desc->vsel_mask;
2616 
2617 	 return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2620 
2621 /**
2622  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2623  * @regulator: regulator source
2624  * @selector: identify voltage to list
2625  *
2626  * Converts the selector to a hardware-specific voltage selector that can be
2627  * directly written to the regulator registers. The address of the voltage
2628  * register can be determined by calling @regulator_get_hardware_vsel_register.
2629  *
2630  * On error a negative errno is returned.
2631  */
2632 int regulator_list_hardware_vsel(struct regulator *regulator,
2633 				 unsigned selector)
2634 {
2635 	struct regulator_dev *rdev = regulator->rdev;
2636 	const struct regulator_ops *ops = rdev->desc->ops;
2637 
2638 	if (selector >= rdev->desc->n_voltages)
2639 		return -EINVAL;
2640 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2641 		return -EOPNOTSUPP;
2642 
2643 	return selector;
2644 }
2645 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2646 
2647 /**
2648  * regulator_get_linear_step - return the voltage step size between VSEL values
2649  * @regulator: regulator source
2650  *
2651  * Returns the voltage step size between VSEL values for linear
2652  * regulators, or return 0 if the regulator isn't a linear regulator.
2653  */
2654 unsigned int regulator_get_linear_step(struct regulator *regulator)
2655 {
2656 	struct regulator_dev *rdev = regulator->rdev;
2657 
2658 	return rdev->desc->uV_step;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2661 
2662 /**
2663  * regulator_is_supported_voltage - check if a voltage range can be supported
2664  *
2665  * @regulator: Regulator to check.
2666  * @min_uV: Minimum required voltage in uV.
2667  * @max_uV: Maximum required voltage in uV.
2668  *
2669  * Returns a boolean or a negative error code.
2670  */
2671 int regulator_is_supported_voltage(struct regulator *regulator,
2672 				   int min_uV, int max_uV)
2673 {
2674 	struct regulator_dev *rdev = regulator->rdev;
2675 	int i, voltages, ret;
2676 
2677 	/* If we can't change voltage check the current voltage */
2678 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2679 		ret = regulator_get_voltage(regulator);
2680 		if (ret >= 0)
2681 			return min_uV <= ret && ret <= max_uV;
2682 		else
2683 			return ret;
2684 	}
2685 
2686 	/* Any voltage within constrains range is fine? */
2687 	if (rdev->desc->continuous_voltage_range)
2688 		return min_uV >= rdev->constraints->min_uV &&
2689 				max_uV <= rdev->constraints->max_uV;
2690 
2691 	ret = regulator_count_voltages(regulator);
2692 	if (ret < 0)
2693 		return ret;
2694 	voltages = ret;
2695 
2696 	for (i = 0; i < voltages; i++) {
2697 		ret = regulator_list_voltage(regulator, i);
2698 
2699 		if (ret >= min_uV && ret <= max_uV)
2700 			return 1;
2701 	}
2702 
2703 	return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2706 
2707 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2708 				 int max_uV)
2709 {
2710 	const struct regulator_desc *desc = rdev->desc;
2711 
2712 	if (desc->ops->map_voltage)
2713 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2714 
2715 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2716 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2717 
2718 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2719 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2720 
2721 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2722 }
2723 
2724 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2725 				       int min_uV, int max_uV,
2726 				       unsigned *selector)
2727 {
2728 	struct pre_voltage_change_data data;
2729 	int ret;
2730 
2731 	data.old_uV = _regulator_get_voltage(rdev);
2732 	data.min_uV = min_uV;
2733 	data.max_uV = max_uV;
2734 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2735 				   &data);
2736 	if (ret & NOTIFY_STOP_MASK)
2737 		return -EINVAL;
2738 
2739 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2740 	if (ret >= 0)
2741 		return ret;
2742 
2743 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2744 			     (void *)data.old_uV);
2745 
2746 	return ret;
2747 }
2748 
2749 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2750 					   int uV, unsigned selector)
2751 {
2752 	struct pre_voltage_change_data data;
2753 	int ret;
2754 
2755 	data.old_uV = _regulator_get_voltage(rdev);
2756 	data.min_uV = uV;
2757 	data.max_uV = uV;
2758 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2759 				   &data);
2760 	if (ret & NOTIFY_STOP_MASK)
2761 		return -EINVAL;
2762 
2763 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2764 	if (ret >= 0)
2765 		return ret;
2766 
2767 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2768 			     (void *)data.old_uV);
2769 
2770 	return ret;
2771 }
2772 
2773 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2774 				     int min_uV, int max_uV)
2775 {
2776 	int ret;
2777 	int delay = 0;
2778 	int best_val = 0;
2779 	unsigned int selector;
2780 	int old_selector = -1;
2781 
2782 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2783 
2784 	min_uV += rdev->constraints->uV_offset;
2785 	max_uV += rdev->constraints->uV_offset;
2786 
2787 	/*
2788 	 * If we can't obtain the old selector there is not enough
2789 	 * info to call set_voltage_time_sel().
2790 	 */
2791 	if (_regulator_is_enabled(rdev) &&
2792 	    rdev->desc->ops->set_voltage_time_sel &&
2793 	    rdev->desc->ops->get_voltage_sel) {
2794 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2795 		if (old_selector < 0)
2796 			return old_selector;
2797 	}
2798 
2799 	if (rdev->desc->ops->set_voltage) {
2800 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2801 						  &selector);
2802 
2803 		if (ret >= 0) {
2804 			if (rdev->desc->ops->list_voltage)
2805 				best_val = rdev->desc->ops->list_voltage(rdev,
2806 									 selector);
2807 			else
2808 				best_val = _regulator_get_voltage(rdev);
2809 		}
2810 
2811 	} else if (rdev->desc->ops->set_voltage_sel) {
2812 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2813 		if (ret >= 0) {
2814 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2815 			if (min_uV <= best_val && max_uV >= best_val) {
2816 				selector = ret;
2817 				if (old_selector == selector)
2818 					ret = 0;
2819 				else
2820 					ret = _regulator_call_set_voltage_sel(
2821 						rdev, best_val, selector);
2822 			} else {
2823 				ret = -EINVAL;
2824 			}
2825 		}
2826 	} else {
2827 		ret = -EINVAL;
2828 	}
2829 
2830 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2831 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2832 		&& old_selector != selector) {
2833 
2834 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2835 						old_selector, selector);
2836 		if (delay < 0) {
2837 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2838 				  delay);
2839 			delay = 0;
2840 		}
2841 
2842 		/* Insert any necessary delays */
2843 		if (delay >= 1000) {
2844 			mdelay(delay / 1000);
2845 			udelay(delay % 1000);
2846 		} else if (delay) {
2847 			udelay(delay);
2848 		}
2849 	}
2850 
2851 	if (ret == 0 && best_val >= 0) {
2852 		unsigned long data = best_val;
2853 
2854 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2855 				     (void *)data);
2856 	}
2857 
2858 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2859 
2860 	return ret;
2861 }
2862 
2863 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2864 					  int min_uV, int max_uV)
2865 {
2866 	struct regulator_dev *rdev = regulator->rdev;
2867 	int ret = 0;
2868 	int old_min_uV, old_max_uV;
2869 	int current_uV;
2870 	int best_supply_uV = 0;
2871 	int supply_change_uV = 0;
2872 
2873 	/* If we're setting the same range as last time the change
2874 	 * should be a noop (some cpufreq implementations use the same
2875 	 * voltage for multiple frequencies, for example).
2876 	 */
2877 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2878 		goto out;
2879 
2880 	/* If we're trying to set a range that overlaps the current voltage,
2881 	 * return successfully even though the regulator does not support
2882 	 * changing the voltage.
2883 	 */
2884 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2885 		current_uV = _regulator_get_voltage(rdev);
2886 		if (min_uV <= current_uV && current_uV <= max_uV) {
2887 			regulator->min_uV = min_uV;
2888 			regulator->max_uV = max_uV;
2889 			goto out;
2890 		}
2891 	}
2892 
2893 	/* sanity check */
2894 	if (!rdev->desc->ops->set_voltage &&
2895 	    !rdev->desc->ops->set_voltage_sel) {
2896 		ret = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	/* constraints check */
2901 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2902 	if (ret < 0)
2903 		goto out;
2904 
2905 	/* restore original values in case of error */
2906 	old_min_uV = regulator->min_uV;
2907 	old_max_uV = regulator->max_uV;
2908 	regulator->min_uV = min_uV;
2909 	regulator->max_uV = max_uV;
2910 
2911 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2912 	if (ret < 0)
2913 		goto out2;
2914 
2915 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2916 				!rdev->desc->ops->get_voltage)) {
2917 		int current_supply_uV;
2918 		int selector;
2919 
2920 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2921 		if (selector < 0) {
2922 			ret = selector;
2923 			goto out2;
2924 		}
2925 
2926 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2927 		if (best_supply_uV < 0) {
2928 			ret = best_supply_uV;
2929 			goto out2;
2930 		}
2931 
2932 		best_supply_uV += rdev->desc->min_dropout_uV;
2933 
2934 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2935 		if (current_supply_uV < 0) {
2936 			ret = current_supply_uV;
2937 			goto out2;
2938 		}
2939 
2940 		supply_change_uV = best_supply_uV - current_supply_uV;
2941 	}
2942 
2943 	if (supply_change_uV > 0) {
2944 		ret = regulator_set_voltage_unlocked(rdev->supply,
2945 				best_supply_uV, INT_MAX);
2946 		if (ret) {
2947 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2948 					ret);
2949 			goto out2;
2950 		}
2951 	}
2952 
2953 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2954 	if (ret < 0)
2955 		goto out2;
2956 
2957 	if (supply_change_uV < 0) {
2958 		ret = regulator_set_voltage_unlocked(rdev->supply,
2959 				best_supply_uV, INT_MAX);
2960 		if (ret)
2961 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2962 					ret);
2963 		/* No need to fail here */
2964 		ret = 0;
2965 	}
2966 
2967 out:
2968 	return ret;
2969 out2:
2970 	regulator->min_uV = old_min_uV;
2971 	regulator->max_uV = old_max_uV;
2972 
2973 	return ret;
2974 }
2975 
2976 /**
2977  * regulator_set_voltage - set regulator output voltage
2978  * @regulator: regulator source
2979  * @min_uV: Minimum required voltage in uV
2980  * @max_uV: Maximum acceptable voltage in uV
2981  *
2982  * Sets a voltage regulator to the desired output voltage. This can be set
2983  * during any regulator state. IOW, regulator can be disabled or enabled.
2984  *
2985  * If the regulator is enabled then the voltage will change to the new value
2986  * immediately otherwise if the regulator is disabled the regulator will
2987  * output at the new voltage when enabled.
2988  *
2989  * NOTE: If the regulator is shared between several devices then the lowest
2990  * request voltage that meets the system constraints will be used.
2991  * Regulator system constraints must be set for this regulator before
2992  * calling this function otherwise this call will fail.
2993  */
2994 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2995 {
2996 	int ret = 0;
2997 
2998 	regulator_lock_supply(regulator->rdev);
2999 
3000 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3001 
3002 	regulator_unlock_supply(regulator->rdev);
3003 
3004 	return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3007 
3008 /**
3009  * regulator_set_voltage_time - get raise/fall time
3010  * @regulator: regulator source
3011  * @old_uV: starting voltage in microvolts
3012  * @new_uV: target voltage in microvolts
3013  *
3014  * Provided with the starting and ending voltage, this function attempts to
3015  * calculate the time in microseconds required to rise or fall to this new
3016  * voltage.
3017  */
3018 int regulator_set_voltage_time(struct regulator *regulator,
3019 			       int old_uV, int new_uV)
3020 {
3021 	struct regulator_dev *rdev = regulator->rdev;
3022 	const struct regulator_ops *ops = rdev->desc->ops;
3023 	int old_sel = -1;
3024 	int new_sel = -1;
3025 	int voltage;
3026 	int i;
3027 
3028 	/* Currently requires operations to do this */
3029 	if (!ops->list_voltage || !ops->set_voltage_time_sel
3030 	    || !rdev->desc->n_voltages)
3031 		return -EINVAL;
3032 
3033 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3034 		/* We only look for exact voltage matches here */
3035 		voltage = regulator_list_voltage(regulator, i);
3036 		if (voltage < 0)
3037 			return -EINVAL;
3038 		if (voltage == 0)
3039 			continue;
3040 		if (voltage == old_uV)
3041 			old_sel = i;
3042 		if (voltage == new_uV)
3043 			new_sel = i;
3044 	}
3045 
3046 	if (old_sel < 0 || new_sel < 0)
3047 		return -EINVAL;
3048 
3049 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3050 }
3051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3052 
3053 /**
3054  * regulator_set_voltage_time_sel - get raise/fall time
3055  * @rdev: regulator source device
3056  * @old_selector: selector for starting voltage
3057  * @new_selector: selector for target voltage
3058  *
3059  * Provided with the starting and target voltage selectors, this function
3060  * returns time in microseconds required to rise or fall to this new voltage
3061  *
3062  * Drivers providing ramp_delay in regulation_constraints can use this as their
3063  * set_voltage_time_sel() operation.
3064  */
3065 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3066 				   unsigned int old_selector,
3067 				   unsigned int new_selector)
3068 {
3069 	unsigned int ramp_delay = 0;
3070 	int old_volt, new_volt;
3071 
3072 	if (rdev->constraints->ramp_delay)
3073 		ramp_delay = rdev->constraints->ramp_delay;
3074 	else if (rdev->desc->ramp_delay)
3075 		ramp_delay = rdev->desc->ramp_delay;
3076 
3077 	if (ramp_delay == 0) {
3078 		rdev_warn(rdev, "ramp_delay not set\n");
3079 		return 0;
3080 	}
3081 
3082 	/* sanity check */
3083 	if (!rdev->desc->ops->list_voltage)
3084 		return -EINVAL;
3085 
3086 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3087 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3088 
3089 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3092 
3093 /**
3094  * regulator_sync_voltage - re-apply last regulator output voltage
3095  * @regulator: regulator source
3096  *
3097  * Re-apply the last configured voltage.  This is intended to be used
3098  * where some external control source the consumer is cooperating with
3099  * has caused the configured voltage to change.
3100  */
3101 int regulator_sync_voltage(struct regulator *regulator)
3102 {
3103 	struct regulator_dev *rdev = regulator->rdev;
3104 	int ret, min_uV, max_uV;
3105 
3106 	mutex_lock(&rdev->mutex);
3107 
3108 	if (!rdev->desc->ops->set_voltage &&
3109 	    !rdev->desc->ops->set_voltage_sel) {
3110 		ret = -EINVAL;
3111 		goto out;
3112 	}
3113 
3114 	/* This is only going to work if we've had a voltage configured. */
3115 	if (!regulator->min_uV && !regulator->max_uV) {
3116 		ret = -EINVAL;
3117 		goto out;
3118 	}
3119 
3120 	min_uV = regulator->min_uV;
3121 	max_uV = regulator->max_uV;
3122 
3123 	/* This should be a paranoia check... */
3124 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3125 	if (ret < 0)
3126 		goto out;
3127 
3128 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3129 	if (ret < 0)
3130 		goto out;
3131 
3132 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3133 
3134 out:
3135 	mutex_unlock(&rdev->mutex);
3136 	return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3139 
3140 static int _regulator_get_voltage(struct regulator_dev *rdev)
3141 {
3142 	int sel, ret;
3143 	bool bypassed;
3144 
3145 	if (rdev->desc->ops->get_bypass) {
3146 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3147 		if (ret < 0)
3148 			return ret;
3149 		if (bypassed) {
3150 			/* if bypassed the regulator must have a supply */
3151 			if (!rdev->supply) {
3152 				rdev_err(rdev,
3153 					 "bypassed regulator has no supply!\n");
3154 				return -EPROBE_DEFER;
3155 			}
3156 
3157 			return _regulator_get_voltage(rdev->supply->rdev);
3158 		}
3159 	}
3160 
3161 	if (rdev->desc->ops->get_voltage_sel) {
3162 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3163 		if (sel < 0)
3164 			return sel;
3165 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3166 	} else if (rdev->desc->ops->get_voltage) {
3167 		ret = rdev->desc->ops->get_voltage(rdev);
3168 	} else if (rdev->desc->ops->list_voltage) {
3169 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3170 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3171 		ret = rdev->desc->fixed_uV;
3172 	} else if (rdev->supply) {
3173 		ret = _regulator_get_voltage(rdev->supply->rdev);
3174 	} else {
3175 		return -EINVAL;
3176 	}
3177 
3178 	if (ret < 0)
3179 		return ret;
3180 	return ret - rdev->constraints->uV_offset;
3181 }
3182 
3183 /**
3184  * regulator_get_voltage - get regulator output voltage
3185  * @regulator: regulator source
3186  *
3187  * This returns the current regulator voltage in uV.
3188  *
3189  * NOTE: If the regulator is disabled it will return the voltage value. This
3190  * function should not be used to determine regulator state.
3191  */
3192 int regulator_get_voltage(struct regulator *regulator)
3193 {
3194 	int ret;
3195 
3196 	regulator_lock_supply(regulator->rdev);
3197 
3198 	ret = _regulator_get_voltage(regulator->rdev);
3199 
3200 	regulator_unlock_supply(regulator->rdev);
3201 
3202 	return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3205 
3206 /**
3207  * regulator_set_current_limit - set regulator output current limit
3208  * @regulator: regulator source
3209  * @min_uA: Minimum supported current in uA
3210  * @max_uA: Maximum supported current in uA
3211  *
3212  * Sets current sink to the desired output current. This can be set during
3213  * any regulator state. IOW, regulator can be disabled or enabled.
3214  *
3215  * If the regulator is enabled then the current will change to the new value
3216  * immediately otherwise if the regulator is disabled the regulator will
3217  * output at the new current when enabled.
3218  *
3219  * NOTE: Regulator system constraints must be set for this regulator before
3220  * calling this function otherwise this call will fail.
3221  */
3222 int regulator_set_current_limit(struct regulator *regulator,
3223 			       int min_uA, int max_uA)
3224 {
3225 	struct regulator_dev *rdev = regulator->rdev;
3226 	int ret;
3227 
3228 	mutex_lock(&rdev->mutex);
3229 
3230 	/* sanity check */
3231 	if (!rdev->desc->ops->set_current_limit) {
3232 		ret = -EINVAL;
3233 		goto out;
3234 	}
3235 
3236 	/* constraints check */
3237 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3238 	if (ret < 0)
3239 		goto out;
3240 
3241 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3242 out:
3243 	mutex_unlock(&rdev->mutex);
3244 	return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3247 
3248 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3249 {
3250 	int ret;
3251 
3252 	mutex_lock(&rdev->mutex);
3253 
3254 	/* sanity check */
3255 	if (!rdev->desc->ops->get_current_limit) {
3256 		ret = -EINVAL;
3257 		goto out;
3258 	}
3259 
3260 	ret = rdev->desc->ops->get_current_limit(rdev);
3261 out:
3262 	mutex_unlock(&rdev->mutex);
3263 	return ret;
3264 }
3265 
3266 /**
3267  * regulator_get_current_limit - get regulator output current
3268  * @regulator: regulator source
3269  *
3270  * This returns the current supplied by the specified current sink in uA.
3271  *
3272  * NOTE: If the regulator is disabled it will return the current value. This
3273  * function should not be used to determine regulator state.
3274  */
3275 int regulator_get_current_limit(struct regulator *regulator)
3276 {
3277 	return _regulator_get_current_limit(regulator->rdev);
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3280 
3281 /**
3282  * regulator_set_mode - set regulator operating mode
3283  * @regulator: regulator source
3284  * @mode: operating mode - one of the REGULATOR_MODE constants
3285  *
3286  * Set regulator operating mode to increase regulator efficiency or improve
3287  * regulation performance.
3288  *
3289  * NOTE: Regulator system constraints must be set for this regulator before
3290  * calling this function otherwise this call will fail.
3291  */
3292 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3293 {
3294 	struct regulator_dev *rdev = regulator->rdev;
3295 	int ret;
3296 	int regulator_curr_mode;
3297 
3298 	mutex_lock(&rdev->mutex);
3299 
3300 	/* sanity check */
3301 	if (!rdev->desc->ops->set_mode) {
3302 		ret = -EINVAL;
3303 		goto out;
3304 	}
3305 
3306 	/* return if the same mode is requested */
3307 	if (rdev->desc->ops->get_mode) {
3308 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3309 		if (regulator_curr_mode == mode) {
3310 			ret = 0;
3311 			goto out;
3312 		}
3313 	}
3314 
3315 	/* constraints check */
3316 	ret = regulator_mode_constrain(rdev, &mode);
3317 	if (ret < 0)
3318 		goto out;
3319 
3320 	ret = rdev->desc->ops->set_mode(rdev, mode);
3321 out:
3322 	mutex_unlock(&rdev->mutex);
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL_GPL(regulator_set_mode);
3326 
3327 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3328 {
3329 	int ret;
3330 
3331 	mutex_lock(&rdev->mutex);
3332 
3333 	/* sanity check */
3334 	if (!rdev->desc->ops->get_mode) {
3335 		ret = -EINVAL;
3336 		goto out;
3337 	}
3338 
3339 	ret = rdev->desc->ops->get_mode(rdev);
3340 out:
3341 	mutex_unlock(&rdev->mutex);
3342 	return ret;
3343 }
3344 
3345 /**
3346  * regulator_get_mode - get regulator operating mode
3347  * @regulator: regulator source
3348  *
3349  * Get the current regulator operating mode.
3350  */
3351 unsigned int regulator_get_mode(struct regulator *regulator)
3352 {
3353 	return _regulator_get_mode(regulator->rdev);
3354 }
3355 EXPORT_SYMBOL_GPL(regulator_get_mode);
3356 
3357 /**
3358  * regulator_set_load - set regulator load
3359  * @regulator: regulator source
3360  * @uA_load: load current
3361  *
3362  * Notifies the regulator core of a new device load. This is then used by
3363  * DRMS (if enabled by constraints) to set the most efficient regulator
3364  * operating mode for the new regulator loading.
3365  *
3366  * Consumer devices notify their supply regulator of the maximum power
3367  * they will require (can be taken from device datasheet in the power
3368  * consumption tables) when they change operational status and hence power
3369  * state. Examples of operational state changes that can affect power
3370  * consumption are :-
3371  *
3372  *    o Device is opened / closed.
3373  *    o Device I/O is about to begin or has just finished.
3374  *    o Device is idling in between work.
3375  *
3376  * This information is also exported via sysfs to userspace.
3377  *
3378  * DRMS will sum the total requested load on the regulator and change
3379  * to the most efficient operating mode if platform constraints allow.
3380  *
3381  * On error a negative errno is returned.
3382  */
3383 int regulator_set_load(struct regulator *regulator, int uA_load)
3384 {
3385 	struct regulator_dev *rdev = regulator->rdev;
3386 	int ret;
3387 
3388 	mutex_lock(&rdev->mutex);
3389 	regulator->uA_load = uA_load;
3390 	ret = drms_uA_update(rdev);
3391 	mutex_unlock(&rdev->mutex);
3392 
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_set_load);
3396 
3397 /**
3398  * regulator_allow_bypass - allow the regulator to go into bypass mode
3399  *
3400  * @regulator: Regulator to configure
3401  * @enable: enable or disable bypass mode
3402  *
3403  * Allow the regulator to go into bypass mode if all other consumers
3404  * for the regulator also enable bypass mode and the machine
3405  * constraints allow this.  Bypass mode means that the regulator is
3406  * simply passing the input directly to the output with no regulation.
3407  */
3408 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3409 {
3410 	struct regulator_dev *rdev = regulator->rdev;
3411 	int ret = 0;
3412 
3413 	if (!rdev->desc->ops->set_bypass)
3414 		return 0;
3415 
3416 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3417 		return 0;
3418 
3419 	mutex_lock(&rdev->mutex);
3420 
3421 	if (enable && !regulator->bypass) {
3422 		rdev->bypass_count++;
3423 
3424 		if (rdev->bypass_count == rdev->open_count) {
3425 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3426 			if (ret != 0)
3427 				rdev->bypass_count--;
3428 		}
3429 
3430 	} else if (!enable && regulator->bypass) {
3431 		rdev->bypass_count--;
3432 
3433 		if (rdev->bypass_count != rdev->open_count) {
3434 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3435 			if (ret != 0)
3436 				rdev->bypass_count++;
3437 		}
3438 	}
3439 
3440 	if (ret == 0)
3441 		regulator->bypass = enable;
3442 
3443 	mutex_unlock(&rdev->mutex);
3444 
3445 	return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3448 
3449 /**
3450  * regulator_register_notifier - register regulator event notifier
3451  * @regulator: regulator source
3452  * @nb: notifier block
3453  *
3454  * Register notifier block to receive regulator events.
3455  */
3456 int regulator_register_notifier(struct regulator *regulator,
3457 			      struct notifier_block *nb)
3458 {
3459 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3460 						nb);
3461 }
3462 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3463 
3464 /**
3465  * regulator_unregister_notifier - unregister regulator event notifier
3466  * @regulator: regulator source
3467  * @nb: notifier block
3468  *
3469  * Unregister regulator event notifier block.
3470  */
3471 int regulator_unregister_notifier(struct regulator *regulator,
3472 				struct notifier_block *nb)
3473 {
3474 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3475 						  nb);
3476 }
3477 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3478 
3479 /* notify regulator consumers and downstream regulator consumers.
3480  * Note mutex must be held by caller.
3481  */
3482 static int _notifier_call_chain(struct regulator_dev *rdev,
3483 				  unsigned long event, void *data)
3484 {
3485 	/* call rdev chain first */
3486 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3487 }
3488 
3489 /**
3490  * regulator_bulk_get - get multiple regulator consumers
3491  *
3492  * @dev:           Device to supply
3493  * @num_consumers: Number of consumers to register
3494  * @consumers:     Configuration of consumers; clients are stored here.
3495  *
3496  * @return 0 on success, an errno on failure.
3497  *
3498  * This helper function allows drivers to get several regulator
3499  * consumers in one operation.  If any of the regulators cannot be
3500  * acquired then any regulators that were allocated will be freed
3501  * before returning to the caller.
3502  */
3503 int regulator_bulk_get(struct device *dev, int num_consumers,
3504 		       struct regulator_bulk_data *consumers)
3505 {
3506 	int i;
3507 	int ret;
3508 
3509 	for (i = 0; i < num_consumers; i++)
3510 		consumers[i].consumer = NULL;
3511 
3512 	for (i = 0; i < num_consumers; i++) {
3513 		consumers[i].consumer = _regulator_get(dev,
3514 						       consumers[i].supply,
3515 						       false,
3516 						       !consumers[i].optional);
3517 		if (IS_ERR(consumers[i].consumer)) {
3518 			ret = PTR_ERR(consumers[i].consumer);
3519 			dev_err(dev, "Failed to get supply '%s': %d\n",
3520 				consumers[i].supply, ret);
3521 			consumers[i].consumer = NULL;
3522 			goto err;
3523 		}
3524 	}
3525 
3526 	return 0;
3527 
3528 err:
3529 	while (--i >= 0)
3530 		regulator_put(consumers[i].consumer);
3531 
3532 	return ret;
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3535 
3536 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3537 {
3538 	struct regulator_bulk_data *bulk = data;
3539 
3540 	bulk->ret = regulator_enable(bulk->consumer);
3541 }
3542 
3543 /**
3544  * regulator_bulk_enable - enable multiple regulator consumers
3545  *
3546  * @num_consumers: Number of consumers
3547  * @consumers:     Consumer data; clients are stored here.
3548  * @return         0 on success, an errno on failure
3549  *
3550  * This convenience API allows consumers to enable multiple regulator
3551  * clients in a single API call.  If any consumers cannot be enabled
3552  * then any others that were enabled will be disabled again prior to
3553  * return.
3554  */
3555 int regulator_bulk_enable(int num_consumers,
3556 			  struct regulator_bulk_data *consumers)
3557 {
3558 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3559 	int i;
3560 	int ret = 0;
3561 
3562 	for (i = 0; i < num_consumers; i++) {
3563 		if (consumers[i].consumer->always_on)
3564 			consumers[i].ret = 0;
3565 		else
3566 			async_schedule_domain(regulator_bulk_enable_async,
3567 					      &consumers[i], &async_domain);
3568 	}
3569 
3570 	async_synchronize_full_domain(&async_domain);
3571 
3572 	/* If any consumer failed we need to unwind any that succeeded */
3573 	for (i = 0; i < num_consumers; i++) {
3574 		if (consumers[i].ret != 0) {
3575 			ret = consumers[i].ret;
3576 			goto err;
3577 		}
3578 	}
3579 
3580 	return 0;
3581 
3582 err:
3583 	for (i = 0; i < num_consumers; i++) {
3584 		if (consumers[i].ret < 0)
3585 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3586 			       consumers[i].ret);
3587 		else
3588 			regulator_disable(consumers[i].consumer);
3589 	}
3590 
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3594 
3595 /**
3596  * regulator_bulk_disable - disable multiple regulator consumers
3597  *
3598  * @num_consumers: Number of consumers
3599  * @consumers:     Consumer data; clients are stored here.
3600  * @return         0 on success, an errno on failure
3601  *
3602  * This convenience API allows consumers to disable multiple regulator
3603  * clients in a single API call.  If any consumers cannot be disabled
3604  * then any others that were disabled will be enabled again prior to
3605  * return.
3606  */
3607 int regulator_bulk_disable(int num_consumers,
3608 			   struct regulator_bulk_data *consumers)
3609 {
3610 	int i;
3611 	int ret, r;
3612 
3613 	for (i = num_consumers - 1; i >= 0; --i) {
3614 		ret = regulator_disable(consumers[i].consumer);
3615 		if (ret != 0)
3616 			goto err;
3617 	}
3618 
3619 	return 0;
3620 
3621 err:
3622 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3623 	for (++i; i < num_consumers; ++i) {
3624 		r = regulator_enable(consumers[i].consumer);
3625 		if (r != 0)
3626 			pr_err("Failed to reename %s: %d\n",
3627 			       consumers[i].supply, r);
3628 	}
3629 
3630 	return ret;
3631 }
3632 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3633 
3634 /**
3635  * regulator_bulk_force_disable - force disable multiple regulator consumers
3636  *
3637  * @num_consumers: Number of consumers
3638  * @consumers:     Consumer data; clients are stored here.
3639  * @return         0 on success, an errno on failure
3640  *
3641  * This convenience API allows consumers to forcibly disable multiple regulator
3642  * clients in a single API call.
3643  * NOTE: This should be used for situations when device damage will
3644  * likely occur if the regulators are not disabled (e.g. over temp).
3645  * Although regulator_force_disable function call for some consumers can
3646  * return error numbers, the function is called for all consumers.
3647  */
3648 int regulator_bulk_force_disable(int num_consumers,
3649 			   struct regulator_bulk_data *consumers)
3650 {
3651 	int i;
3652 	int ret;
3653 
3654 	for (i = 0; i < num_consumers; i++)
3655 		consumers[i].ret =
3656 			    regulator_force_disable(consumers[i].consumer);
3657 
3658 	for (i = 0; i < num_consumers; i++) {
3659 		if (consumers[i].ret != 0) {
3660 			ret = consumers[i].ret;
3661 			goto out;
3662 		}
3663 	}
3664 
3665 	return 0;
3666 out:
3667 	return ret;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3670 
3671 /**
3672  * regulator_bulk_free - free multiple regulator consumers
3673  *
3674  * @num_consumers: Number of consumers
3675  * @consumers:     Consumer data; clients are stored here.
3676  *
3677  * This convenience API allows consumers to free multiple regulator
3678  * clients in a single API call.
3679  */
3680 void regulator_bulk_free(int num_consumers,
3681 			 struct regulator_bulk_data *consumers)
3682 {
3683 	int i;
3684 
3685 	for (i = 0; i < num_consumers; i++) {
3686 		regulator_put(consumers[i].consumer);
3687 		consumers[i].consumer = NULL;
3688 	}
3689 }
3690 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3691 
3692 /**
3693  * regulator_notifier_call_chain - call regulator event notifier
3694  * @rdev: regulator source
3695  * @event: notifier block
3696  * @data: callback-specific data.
3697  *
3698  * Called by regulator drivers to notify clients a regulator event has
3699  * occurred. We also notify regulator clients downstream.
3700  * Note lock must be held by caller.
3701  */
3702 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3703 				  unsigned long event, void *data)
3704 {
3705 	lockdep_assert_held_once(&rdev->mutex);
3706 
3707 	_notifier_call_chain(rdev, event, data);
3708 	return NOTIFY_DONE;
3709 
3710 }
3711 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3712 
3713 /**
3714  * regulator_mode_to_status - convert a regulator mode into a status
3715  *
3716  * @mode: Mode to convert
3717  *
3718  * Convert a regulator mode into a status.
3719  */
3720 int regulator_mode_to_status(unsigned int mode)
3721 {
3722 	switch (mode) {
3723 	case REGULATOR_MODE_FAST:
3724 		return REGULATOR_STATUS_FAST;
3725 	case REGULATOR_MODE_NORMAL:
3726 		return REGULATOR_STATUS_NORMAL;
3727 	case REGULATOR_MODE_IDLE:
3728 		return REGULATOR_STATUS_IDLE;
3729 	case REGULATOR_MODE_STANDBY:
3730 		return REGULATOR_STATUS_STANDBY;
3731 	default:
3732 		return REGULATOR_STATUS_UNDEFINED;
3733 	}
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3736 
3737 static struct attribute *regulator_dev_attrs[] = {
3738 	&dev_attr_name.attr,
3739 	&dev_attr_num_users.attr,
3740 	&dev_attr_type.attr,
3741 	&dev_attr_microvolts.attr,
3742 	&dev_attr_microamps.attr,
3743 	&dev_attr_opmode.attr,
3744 	&dev_attr_state.attr,
3745 	&dev_attr_status.attr,
3746 	&dev_attr_bypass.attr,
3747 	&dev_attr_requested_microamps.attr,
3748 	&dev_attr_min_microvolts.attr,
3749 	&dev_attr_max_microvolts.attr,
3750 	&dev_attr_min_microamps.attr,
3751 	&dev_attr_max_microamps.attr,
3752 	&dev_attr_suspend_standby_state.attr,
3753 	&dev_attr_suspend_mem_state.attr,
3754 	&dev_attr_suspend_disk_state.attr,
3755 	&dev_attr_suspend_standby_microvolts.attr,
3756 	&dev_attr_suspend_mem_microvolts.attr,
3757 	&dev_attr_suspend_disk_microvolts.attr,
3758 	&dev_attr_suspend_standby_mode.attr,
3759 	&dev_attr_suspend_mem_mode.attr,
3760 	&dev_attr_suspend_disk_mode.attr,
3761 	NULL
3762 };
3763 
3764 /*
3765  * To avoid cluttering sysfs (and memory) with useless state, only
3766  * create attributes that can be meaningfully displayed.
3767  */
3768 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3769 					 struct attribute *attr, int idx)
3770 {
3771 	struct device *dev = kobj_to_dev(kobj);
3772 	struct regulator_dev *rdev = dev_to_rdev(dev);
3773 	const struct regulator_ops *ops = rdev->desc->ops;
3774 	umode_t mode = attr->mode;
3775 
3776 	/* these three are always present */
3777 	if (attr == &dev_attr_name.attr ||
3778 	    attr == &dev_attr_num_users.attr ||
3779 	    attr == &dev_attr_type.attr)
3780 		return mode;
3781 
3782 	/* some attributes need specific methods to be displayed */
3783 	if (attr == &dev_attr_microvolts.attr) {
3784 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3785 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3786 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3787 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3788 			return mode;
3789 		return 0;
3790 	}
3791 
3792 	if (attr == &dev_attr_microamps.attr)
3793 		return ops->get_current_limit ? mode : 0;
3794 
3795 	if (attr == &dev_attr_opmode.attr)
3796 		return ops->get_mode ? mode : 0;
3797 
3798 	if (attr == &dev_attr_state.attr)
3799 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3800 
3801 	if (attr == &dev_attr_status.attr)
3802 		return ops->get_status ? mode : 0;
3803 
3804 	if (attr == &dev_attr_bypass.attr)
3805 		return ops->get_bypass ? mode : 0;
3806 
3807 	/* some attributes are type-specific */
3808 	if (attr == &dev_attr_requested_microamps.attr)
3809 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3810 
3811 	/* constraints need specific supporting methods */
3812 	if (attr == &dev_attr_min_microvolts.attr ||
3813 	    attr == &dev_attr_max_microvolts.attr)
3814 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3815 
3816 	if (attr == &dev_attr_min_microamps.attr ||
3817 	    attr == &dev_attr_max_microamps.attr)
3818 		return ops->set_current_limit ? mode : 0;
3819 
3820 	if (attr == &dev_attr_suspend_standby_state.attr ||
3821 	    attr == &dev_attr_suspend_mem_state.attr ||
3822 	    attr == &dev_attr_suspend_disk_state.attr)
3823 		return mode;
3824 
3825 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3826 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3827 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3828 		return ops->set_suspend_voltage ? mode : 0;
3829 
3830 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3831 	    attr == &dev_attr_suspend_mem_mode.attr ||
3832 	    attr == &dev_attr_suspend_disk_mode.attr)
3833 		return ops->set_suspend_mode ? mode : 0;
3834 
3835 	return mode;
3836 }
3837 
3838 static const struct attribute_group regulator_dev_group = {
3839 	.attrs = regulator_dev_attrs,
3840 	.is_visible = regulator_attr_is_visible,
3841 };
3842 
3843 static const struct attribute_group *regulator_dev_groups[] = {
3844 	&regulator_dev_group,
3845 	NULL
3846 };
3847 
3848 static void regulator_dev_release(struct device *dev)
3849 {
3850 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3851 
3852 	kfree(rdev->constraints);
3853 	of_node_put(rdev->dev.of_node);
3854 	kfree(rdev);
3855 }
3856 
3857 static struct class regulator_class = {
3858 	.name = "regulator",
3859 	.dev_release = regulator_dev_release,
3860 	.dev_groups = regulator_dev_groups,
3861 };
3862 
3863 static void rdev_init_debugfs(struct regulator_dev *rdev)
3864 {
3865 	struct device *parent = rdev->dev.parent;
3866 	const char *rname = rdev_get_name(rdev);
3867 	char name[NAME_MAX];
3868 
3869 	/* Avoid duplicate debugfs directory names */
3870 	if (parent && rname == rdev->desc->name) {
3871 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3872 			 rname);
3873 		rname = name;
3874 	}
3875 
3876 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3877 	if (!rdev->debugfs) {
3878 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3879 		return;
3880 	}
3881 
3882 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3883 			   &rdev->use_count);
3884 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3885 			   &rdev->open_count);
3886 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3887 			   &rdev->bypass_count);
3888 }
3889 
3890 static int regulator_register_resolve_supply(struct device *dev, void *data)
3891 {
3892 	struct regulator_dev *rdev = dev_to_rdev(dev);
3893 
3894 	if (regulator_resolve_supply(rdev))
3895 		rdev_dbg(rdev, "unable to resolve supply\n");
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  * regulator_register - register regulator
3902  * @regulator_desc: regulator to register
3903  * @cfg: runtime configuration for regulator
3904  *
3905  * Called by regulator drivers to register a regulator.
3906  * Returns a valid pointer to struct regulator_dev on success
3907  * or an ERR_PTR() on error.
3908  */
3909 struct regulator_dev *
3910 regulator_register(const struct regulator_desc *regulator_desc,
3911 		   const struct regulator_config *cfg)
3912 {
3913 	const struct regulation_constraints *constraints = NULL;
3914 	const struct regulator_init_data *init_data;
3915 	struct regulator_config *config = NULL;
3916 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3917 	struct regulator_dev *rdev;
3918 	struct device *dev;
3919 	int ret, i;
3920 
3921 	if (regulator_desc == NULL || cfg == NULL)
3922 		return ERR_PTR(-EINVAL);
3923 
3924 	dev = cfg->dev;
3925 	WARN_ON(!dev);
3926 
3927 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3928 		return ERR_PTR(-EINVAL);
3929 
3930 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3931 	    regulator_desc->type != REGULATOR_CURRENT)
3932 		return ERR_PTR(-EINVAL);
3933 
3934 	/* Only one of each should be implemented */
3935 	WARN_ON(regulator_desc->ops->get_voltage &&
3936 		regulator_desc->ops->get_voltage_sel);
3937 	WARN_ON(regulator_desc->ops->set_voltage &&
3938 		regulator_desc->ops->set_voltage_sel);
3939 
3940 	/* If we're using selectors we must implement list_voltage. */
3941 	if (regulator_desc->ops->get_voltage_sel &&
3942 	    !regulator_desc->ops->list_voltage) {
3943 		return ERR_PTR(-EINVAL);
3944 	}
3945 	if (regulator_desc->ops->set_voltage_sel &&
3946 	    !regulator_desc->ops->list_voltage) {
3947 		return ERR_PTR(-EINVAL);
3948 	}
3949 
3950 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3951 	if (rdev == NULL)
3952 		return ERR_PTR(-ENOMEM);
3953 
3954 	/*
3955 	 * Duplicate the config so the driver could override it after
3956 	 * parsing init data.
3957 	 */
3958 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3959 	if (config == NULL) {
3960 		kfree(rdev);
3961 		return ERR_PTR(-ENOMEM);
3962 	}
3963 
3964 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3965 					       &rdev->dev.of_node);
3966 	if (!init_data) {
3967 		init_data = config->init_data;
3968 		rdev->dev.of_node = of_node_get(config->of_node);
3969 	}
3970 
3971 	mutex_init(&rdev->mutex);
3972 	rdev->reg_data = config->driver_data;
3973 	rdev->owner = regulator_desc->owner;
3974 	rdev->desc = regulator_desc;
3975 	if (config->regmap)
3976 		rdev->regmap = config->regmap;
3977 	else if (dev_get_regmap(dev, NULL))
3978 		rdev->regmap = dev_get_regmap(dev, NULL);
3979 	else if (dev->parent)
3980 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3981 	INIT_LIST_HEAD(&rdev->consumer_list);
3982 	INIT_LIST_HEAD(&rdev->list);
3983 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3984 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3985 
3986 	/* preform any regulator specific init */
3987 	if (init_data && init_data->regulator_init) {
3988 		ret = init_data->regulator_init(rdev->reg_data);
3989 		if (ret < 0)
3990 			goto clean;
3991 	}
3992 
3993 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3994 	    gpio_is_valid(config->ena_gpio)) {
3995 		mutex_lock(&regulator_list_mutex);
3996 		ret = regulator_ena_gpio_request(rdev, config);
3997 		mutex_unlock(&regulator_list_mutex);
3998 		if (ret != 0) {
3999 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4000 				 config->ena_gpio, ret);
4001 			goto clean;
4002 		}
4003 	}
4004 
4005 	/* register with sysfs */
4006 	rdev->dev.class = &regulator_class;
4007 	rdev->dev.parent = dev;
4008 	dev_set_name(&rdev->dev, "regulator.%lu",
4009 		    (unsigned long) atomic_inc_return(&regulator_no));
4010 
4011 	/* set regulator constraints */
4012 	if (init_data)
4013 		constraints = &init_data->constraints;
4014 
4015 	if (init_data && init_data->supply_regulator)
4016 		rdev->supply_name = init_data->supply_regulator;
4017 	else if (regulator_desc->supply_name)
4018 		rdev->supply_name = regulator_desc->supply_name;
4019 
4020 	/*
4021 	 * Attempt to resolve the regulator supply, if specified,
4022 	 * but don't return an error if we fail because we will try
4023 	 * to resolve it again later as more regulators are added.
4024 	 */
4025 	if (regulator_resolve_supply(rdev))
4026 		rdev_dbg(rdev, "unable to resolve supply\n");
4027 
4028 	ret = set_machine_constraints(rdev, constraints);
4029 	if (ret < 0)
4030 		goto wash;
4031 
4032 	/* add consumers devices */
4033 	if (init_data) {
4034 		mutex_lock(&regulator_list_mutex);
4035 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4036 			ret = set_consumer_device_supply(rdev,
4037 				init_data->consumer_supplies[i].dev_name,
4038 				init_data->consumer_supplies[i].supply);
4039 			if (ret < 0) {
4040 				mutex_unlock(&regulator_list_mutex);
4041 				dev_err(dev, "Failed to set supply %s\n",
4042 					init_data->consumer_supplies[i].supply);
4043 				goto unset_supplies;
4044 			}
4045 		}
4046 		mutex_unlock(&regulator_list_mutex);
4047 	}
4048 
4049 	ret = device_register(&rdev->dev);
4050 	if (ret != 0) {
4051 		put_device(&rdev->dev);
4052 		goto unset_supplies;
4053 	}
4054 
4055 	dev_set_drvdata(&rdev->dev, rdev);
4056 	rdev_init_debugfs(rdev);
4057 
4058 	/* try to resolve regulators supply since a new one was registered */
4059 	class_for_each_device(&regulator_class, NULL, NULL,
4060 			      regulator_register_resolve_supply);
4061 	kfree(config);
4062 	return rdev;
4063 
4064 unset_supplies:
4065 	mutex_lock(&regulator_list_mutex);
4066 	unset_regulator_supplies(rdev);
4067 	mutex_unlock(&regulator_list_mutex);
4068 wash:
4069 	kfree(rdev->constraints);
4070 	mutex_lock(&regulator_list_mutex);
4071 	regulator_ena_gpio_free(rdev);
4072 	mutex_unlock(&regulator_list_mutex);
4073 clean:
4074 	kfree(rdev);
4075 	kfree(config);
4076 	return ERR_PTR(ret);
4077 }
4078 EXPORT_SYMBOL_GPL(regulator_register);
4079 
4080 /**
4081  * regulator_unregister - unregister regulator
4082  * @rdev: regulator to unregister
4083  *
4084  * Called by regulator drivers to unregister a regulator.
4085  */
4086 void regulator_unregister(struct regulator_dev *rdev)
4087 {
4088 	if (rdev == NULL)
4089 		return;
4090 
4091 	if (rdev->supply) {
4092 		while (rdev->use_count--)
4093 			regulator_disable(rdev->supply);
4094 		regulator_put(rdev->supply);
4095 	}
4096 	mutex_lock(&regulator_list_mutex);
4097 	debugfs_remove_recursive(rdev->debugfs);
4098 	flush_work(&rdev->disable_work.work);
4099 	WARN_ON(rdev->open_count);
4100 	unset_regulator_supplies(rdev);
4101 	list_del(&rdev->list);
4102 	regulator_ena_gpio_free(rdev);
4103 	mutex_unlock(&regulator_list_mutex);
4104 	device_unregister(&rdev->dev);
4105 }
4106 EXPORT_SYMBOL_GPL(regulator_unregister);
4107 
4108 static int _regulator_suspend_prepare(struct device *dev, void *data)
4109 {
4110 	struct regulator_dev *rdev = dev_to_rdev(dev);
4111 	const suspend_state_t *state = data;
4112 	int ret;
4113 
4114 	mutex_lock(&rdev->mutex);
4115 	ret = suspend_prepare(rdev, *state);
4116 	mutex_unlock(&rdev->mutex);
4117 
4118 	return ret;
4119 }
4120 
4121 /**
4122  * regulator_suspend_prepare - prepare regulators for system wide suspend
4123  * @state: system suspend state
4124  *
4125  * Configure each regulator with it's suspend operating parameters for state.
4126  * This will usually be called by machine suspend code prior to supending.
4127  */
4128 int regulator_suspend_prepare(suspend_state_t state)
4129 {
4130 	/* ON is handled by regulator active state */
4131 	if (state == PM_SUSPEND_ON)
4132 		return -EINVAL;
4133 
4134 	return class_for_each_device(&regulator_class, NULL, &state,
4135 				     _regulator_suspend_prepare);
4136 }
4137 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4138 
4139 static int _regulator_suspend_finish(struct device *dev, void *data)
4140 {
4141 	struct regulator_dev *rdev = dev_to_rdev(dev);
4142 	int ret;
4143 
4144 	mutex_lock(&rdev->mutex);
4145 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4146 		if (!_regulator_is_enabled(rdev)) {
4147 			ret = _regulator_do_enable(rdev);
4148 			if (ret)
4149 				dev_err(dev,
4150 					"Failed to resume regulator %d\n",
4151 					ret);
4152 		}
4153 	} else {
4154 		if (!have_full_constraints())
4155 			goto unlock;
4156 		if (!_regulator_is_enabled(rdev))
4157 			goto unlock;
4158 
4159 		ret = _regulator_do_disable(rdev);
4160 		if (ret)
4161 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4162 	}
4163 unlock:
4164 	mutex_unlock(&rdev->mutex);
4165 
4166 	/* Keep processing regulators in spite of any errors */
4167 	return 0;
4168 }
4169 
4170 /**
4171  * regulator_suspend_finish - resume regulators from system wide suspend
4172  *
4173  * Turn on regulators that might be turned off by regulator_suspend_prepare
4174  * and that should be turned on according to the regulators properties.
4175  */
4176 int regulator_suspend_finish(void)
4177 {
4178 	return class_for_each_device(&regulator_class, NULL, NULL,
4179 				     _regulator_suspend_finish);
4180 }
4181 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4182 
4183 /**
4184  * regulator_has_full_constraints - the system has fully specified constraints
4185  *
4186  * Calling this function will cause the regulator API to disable all
4187  * regulators which have a zero use count and don't have an always_on
4188  * constraint in a late_initcall.
4189  *
4190  * The intention is that this will become the default behaviour in a
4191  * future kernel release so users are encouraged to use this facility
4192  * now.
4193  */
4194 void regulator_has_full_constraints(void)
4195 {
4196 	has_full_constraints = 1;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4199 
4200 /**
4201  * rdev_get_drvdata - get rdev regulator driver data
4202  * @rdev: regulator
4203  *
4204  * Get rdev regulator driver private data. This call can be used in the
4205  * regulator driver context.
4206  */
4207 void *rdev_get_drvdata(struct regulator_dev *rdev)
4208 {
4209 	return rdev->reg_data;
4210 }
4211 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4212 
4213 /**
4214  * regulator_get_drvdata - get regulator driver data
4215  * @regulator: regulator
4216  *
4217  * Get regulator driver private data. This call can be used in the consumer
4218  * driver context when non API regulator specific functions need to be called.
4219  */
4220 void *regulator_get_drvdata(struct regulator *regulator)
4221 {
4222 	return regulator->rdev->reg_data;
4223 }
4224 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4225 
4226 /**
4227  * regulator_set_drvdata - set regulator driver data
4228  * @regulator: regulator
4229  * @data: data
4230  */
4231 void regulator_set_drvdata(struct regulator *regulator, void *data)
4232 {
4233 	regulator->rdev->reg_data = data;
4234 }
4235 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4236 
4237 /**
4238  * regulator_get_id - get regulator ID
4239  * @rdev: regulator
4240  */
4241 int rdev_get_id(struct regulator_dev *rdev)
4242 {
4243 	return rdev->desc->id;
4244 }
4245 EXPORT_SYMBOL_GPL(rdev_get_id);
4246 
4247 struct device *rdev_get_dev(struct regulator_dev *rdev)
4248 {
4249 	return &rdev->dev;
4250 }
4251 EXPORT_SYMBOL_GPL(rdev_get_dev);
4252 
4253 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4254 {
4255 	return reg_init_data->driver_data;
4256 }
4257 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4258 
4259 #ifdef CONFIG_DEBUG_FS
4260 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4261 				    size_t count, loff_t *ppos)
4262 {
4263 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4264 	ssize_t len, ret = 0;
4265 	struct regulator_map *map;
4266 
4267 	if (!buf)
4268 		return -ENOMEM;
4269 
4270 	list_for_each_entry(map, &regulator_map_list, list) {
4271 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4272 			       "%s -> %s.%s\n",
4273 			       rdev_get_name(map->regulator), map->dev_name,
4274 			       map->supply);
4275 		if (len >= 0)
4276 			ret += len;
4277 		if (ret > PAGE_SIZE) {
4278 			ret = PAGE_SIZE;
4279 			break;
4280 		}
4281 	}
4282 
4283 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4284 
4285 	kfree(buf);
4286 
4287 	return ret;
4288 }
4289 #endif
4290 
4291 static const struct file_operations supply_map_fops = {
4292 #ifdef CONFIG_DEBUG_FS
4293 	.read = supply_map_read_file,
4294 	.llseek = default_llseek,
4295 #endif
4296 };
4297 
4298 #ifdef CONFIG_DEBUG_FS
4299 struct summary_data {
4300 	struct seq_file *s;
4301 	struct regulator_dev *parent;
4302 	int level;
4303 };
4304 
4305 static void regulator_summary_show_subtree(struct seq_file *s,
4306 					   struct regulator_dev *rdev,
4307 					   int level);
4308 
4309 static int regulator_summary_show_children(struct device *dev, void *data)
4310 {
4311 	struct regulator_dev *rdev = dev_to_rdev(dev);
4312 	struct summary_data *summary_data = data;
4313 
4314 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4315 		regulator_summary_show_subtree(summary_data->s, rdev,
4316 					       summary_data->level + 1);
4317 
4318 	return 0;
4319 }
4320 
4321 static void regulator_summary_show_subtree(struct seq_file *s,
4322 					   struct regulator_dev *rdev,
4323 					   int level)
4324 {
4325 	struct regulation_constraints *c;
4326 	struct regulator *consumer;
4327 	struct summary_data summary_data;
4328 
4329 	if (!rdev)
4330 		return;
4331 
4332 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4333 		   level * 3 + 1, "",
4334 		   30 - level * 3, rdev_get_name(rdev),
4335 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4336 
4337 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4338 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4339 
4340 	c = rdev->constraints;
4341 	if (c) {
4342 		switch (rdev->desc->type) {
4343 		case REGULATOR_VOLTAGE:
4344 			seq_printf(s, "%5dmV %5dmV ",
4345 				   c->min_uV / 1000, c->max_uV / 1000);
4346 			break;
4347 		case REGULATOR_CURRENT:
4348 			seq_printf(s, "%5dmA %5dmA ",
4349 				   c->min_uA / 1000, c->max_uA / 1000);
4350 			break;
4351 		}
4352 	}
4353 
4354 	seq_puts(s, "\n");
4355 
4356 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4357 		if (consumer->dev->class == &regulator_class)
4358 			continue;
4359 
4360 		seq_printf(s, "%*s%-*s ",
4361 			   (level + 1) * 3 + 1, "",
4362 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4363 
4364 		switch (rdev->desc->type) {
4365 		case REGULATOR_VOLTAGE:
4366 			seq_printf(s, "%37dmV %5dmV",
4367 				   consumer->min_uV / 1000,
4368 				   consumer->max_uV / 1000);
4369 			break;
4370 		case REGULATOR_CURRENT:
4371 			break;
4372 		}
4373 
4374 		seq_puts(s, "\n");
4375 	}
4376 
4377 	summary_data.s = s;
4378 	summary_data.level = level;
4379 	summary_data.parent = rdev;
4380 
4381 	class_for_each_device(&regulator_class, NULL, &summary_data,
4382 			      regulator_summary_show_children);
4383 }
4384 
4385 static int regulator_summary_show_roots(struct device *dev, void *data)
4386 {
4387 	struct regulator_dev *rdev = dev_to_rdev(dev);
4388 	struct seq_file *s = data;
4389 
4390 	if (!rdev->supply)
4391 		regulator_summary_show_subtree(s, rdev, 0);
4392 
4393 	return 0;
4394 }
4395 
4396 static int regulator_summary_show(struct seq_file *s, void *data)
4397 {
4398 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4399 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4400 
4401 	class_for_each_device(&regulator_class, NULL, s,
4402 			      regulator_summary_show_roots);
4403 
4404 	return 0;
4405 }
4406 
4407 static int regulator_summary_open(struct inode *inode, struct file *file)
4408 {
4409 	return single_open(file, regulator_summary_show, inode->i_private);
4410 }
4411 #endif
4412 
4413 static const struct file_operations regulator_summary_fops = {
4414 #ifdef CONFIG_DEBUG_FS
4415 	.open		= regulator_summary_open,
4416 	.read		= seq_read,
4417 	.llseek		= seq_lseek,
4418 	.release	= single_release,
4419 #endif
4420 };
4421 
4422 static int __init regulator_init(void)
4423 {
4424 	int ret;
4425 
4426 	ret = class_register(&regulator_class);
4427 
4428 	debugfs_root = debugfs_create_dir("regulator", NULL);
4429 	if (!debugfs_root)
4430 		pr_warn("regulator: Failed to create debugfs directory\n");
4431 
4432 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4433 			    &supply_map_fops);
4434 
4435 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4436 			    NULL, &regulator_summary_fops);
4437 
4438 	regulator_dummy_init();
4439 
4440 	return ret;
4441 }
4442 
4443 /* init early to allow our consumers to complete system booting */
4444 core_initcall(regulator_init);
4445 
4446 static int __init regulator_late_cleanup(struct device *dev, void *data)
4447 {
4448 	struct regulator_dev *rdev = dev_to_rdev(dev);
4449 	const struct regulator_ops *ops = rdev->desc->ops;
4450 	struct regulation_constraints *c = rdev->constraints;
4451 	int enabled, ret;
4452 
4453 	if (c && c->always_on)
4454 		return 0;
4455 
4456 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4457 		return 0;
4458 
4459 	mutex_lock(&rdev->mutex);
4460 
4461 	if (rdev->use_count)
4462 		goto unlock;
4463 
4464 	/* If we can't read the status assume it's on. */
4465 	if (ops->is_enabled)
4466 		enabled = ops->is_enabled(rdev);
4467 	else
4468 		enabled = 1;
4469 
4470 	if (!enabled)
4471 		goto unlock;
4472 
4473 	if (have_full_constraints()) {
4474 		/* We log since this may kill the system if it goes
4475 		 * wrong. */
4476 		rdev_info(rdev, "disabling\n");
4477 		ret = _regulator_do_disable(rdev);
4478 		if (ret != 0)
4479 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4480 	} else {
4481 		/* The intention is that in future we will
4482 		 * assume that full constraints are provided
4483 		 * so warn even if we aren't going to do
4484 		 * anything here.
4485 		 */
4486 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4487 	}
4488 
4489 unlock:
4490 	mutex_unlock(&rdev->mutex);
4491 
4492 	return 0;
4493 }
4494 
4495 static int __init regulator_init_complete(void)
4496 {
4497 	/*
4498 	 * Since DT doesn't provide an idiomatic mechanism for
4499 	 * enabling full constraints and since it's much more natural
4500 	 * with DT to provide them just assume that a DT enabled
4501 	 * system has full constraints.
4502 	 */
4503 	if (of_have_populated_dt())
4504 		has_full_constraints = true;
4505 
4506 	/* If we have a full configuration then disable any regulators
4507 	 * we have permission to change the status for and which are
4508 	 * not in use or always_on.  This is effectively the default
4509 	 * for DT and ACPI as they have full constraints.
4510 	 */
4511 	class_for_each_device(&regulator_class, NULL, NULL,
4512 			      regulator_late_cleanup);
4513 
4514 	return 0;
4515 }
4516 late_initcall_sync(regulator_init_complete);
4517