xref: /linux/drivers/regulator/core.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 
40 #define rdev_crit(rdev, fmt, ...)					\
41 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)					\
43 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)					\
45 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)					\
47 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)					\
49 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56 
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79 	struct device *dev;
80 	struct list_head list;
81 	int uA_load;
82 	int min_uV;
83 	int max_uV;
84 	char *supply_name;
85 	struct device_attribute dev_attr;
86 	struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry *debugfs;
89 #endif
90 };
91 
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98 				  unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100 				     int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102 					  struct device *dev,
103 					  const char *supply_name);
104 
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107 	if (rdev->constraints && rdev->constraints->name)
108 		return rdev->constraints->name;
109 	else if (rdev->desc->name)
110 		return rdev->desc->name;
111 	else
112 		return "";
113 }
114 
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118 	struct regulator *regulator = NULL;
119 	struct regulator_dev *rdev;
120 
121 	mutex_lock(&regulator_list_mutex);
122 	list_for_each_entry(rdev, &regulator_list, list) {
123 		mutex_lock(&rdev->mutex);
124 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125 			if (regulator->dev == dev) {
126 				mutex_unlock(&rdev->mutex);
127 				mutex_unlock(&regulator_list_mutex);
128 				return regulator;
129 			}
130 		}
131 		mutex_unlock(&rdev->mutex);
132 	}
133 	mutex_unlock(&regulator_list_mutex);
134 	return NULL;
135 }
136 
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148 	struct device_node *regnode = NULL;
149 	char prop_name[32]; /* 32 is max size of property name */
150 
151 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152 
153 	snprintf(prop_name, 32, "%s-supply", supply);
154 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155 
156 	if (!regnode) {
157 		dev_warn(dev, "%s property in node %s references invalid phandle",
158 				prop_name, dev->of_node->full_name);
159 		return NULL;
160 	}
161 	return regnode;
162 }
163 
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166 				   int *min_uV, int *max_uV)
167 {
168 	BUG_ON(*min_uV > *max_uV);
169 
170 	if (!rdev->constraints) {
171 		rdev_err(rdev, "no constraints\n");
172 		return -ENODEV;
173 	}
174 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175 		rdev_err(rdev, "operation not allowed\n");
176 		return -EPERM;
177 	}
178 
179 	if (*max_uV > rdev->constraints->max_uV)
180 		*max_uV = rdev->constraints->max_uV;
181 	if (*min_uV < rdev->constraints->min_uV)
182 		*min_uV = rdev->constraints->min_uV;
183 
184 	if (*min_uV > *max_uV) {
185 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186 			 *min_uV, *max_uV);
187 		return -EINVAL;
188 	}
189 
190 	return 0;
191 }
192 
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197 				     int *min_uV, int *max_uV)
198 {
199 	struct regulator *regulator;
200 
201 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202 		/*
203 		 * Assume consumers that didn't say anything are OK
204 		 * with anything in the constraint range.
205 		 */
206 		if (!regulator->min_uV && !regulator->max_uV)
207 			continue;
208 
209 		if (*max_uV > regulator->max_uV)
210 			*max_uV = regulator->max_uV;
211 		if (*min_uV < regulator->min_uV)
212 			*min_uV = regulator->min_uV;
213 	}
214 
215 	if (*min_uV > *max_uV)
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223 					int *min_uA, int *max_uA)
224 {
225 	BUG_ON(*min_uA > *max_uA);
226 
227 	if (!rdev->constraints) {
228 		rdev_err(rdev, "no constraints\n");
229 		return -ENODEV;
230 	}
231 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232 		rdev_err(rdev, "operation not allowed\n");
233 		return -EPERM;
234 	}
235 
236 	if (*max_uA > rdev->constraints->max_uA)
237 		*max_uA = rdev->constraints->max_uA;
238 	if (*min_uA < rdev->constraints->min_uA)
239 		*min_uA = rdev->constraints->min_uA;
240 
241 	if (*min_uA > *max_uA) {
242 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243 			 *min_uA, *max_uA);
244 		return -EINVAL;
245 	}
246 
247 	return 0;
248 }
249 
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253 	switch (*mode) {
254 	case REGULATOR_MODE_FAST:
255 	case REGULATOR_MODE_NORMAL:
256 	case REGULATOR_MODE_IDLE:
257 	case REGULATOR_MODE_STANDBY:
258 		break;
259 	default:
260 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261 		return -EINVAL;
262 	}
263 
264 	if (!rdev->constraints) {
265 		rdev_err(rdev, "no constraints\n");
266 		return -ENODEV;
267 	}
268 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269 		rdev_err(rdev, "operation not allowed\n");
270 		return -EPERM;
271 	}
272 
273 	/* The modes are bitmasks, the most power hungry modes having
274 	 * the lowest values. If the requested mode isn't supported
275 	 * try higher modes. */
276 	while (*mode) {
277 		if (rdev->constraints->valid_modes_mask & *mode)
278 			return 0;
279 		*mode /= 2;
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288 	if (!rdev->constraints) {
289 		rdev_err(rdev, "no constraints\n");
290 		return -ENODEV;
291 	}
292 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293 		rdev_err(rdev, "operation not allowed\n");
294 		return -EPERM;
295 	}
296 	return 0;
297 }
298 
299 static ssize_t device_requested_uA_show(struct device *dev,
300 			     struct device_attribute *attr, char *buf)
301 {
302 	struct regulator *regulator;
303 
304 	regulator = get_device_regulator(dev);
305 	if (regulator == NULL)
306 		return 0;
307 
308 	return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310 
311 static ssize_t regulator_uV_show(struct device *dev,
312 				struct device_attribute *attr, char *buf)
313 {
314 	struct regulator_dev *rdev = dev_get_drvdata(dev);
315 	ssize_t ret;
316 
317 	mutex_lock(&rdev->mutex);
318 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319 	mutex_unlock(&rdev->mutex);
320 
321 	return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324 
325 static ssize_t regulator_uA_show(struct device *dev,
326 				struct device_attribute *attr, char *buf)
327 {
328 	struct regulator_dev *rdev = dev_get_drvdata(dev);
329 
330 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333 
334 static ssize_t regulator_name_show(struct device *dev,
335 			     struct device_attribute *attr, char *buf)
336 {
337 	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 
339 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341 
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344 	switch (mode) {
345 	case REGULATOR_MODE_FAST:
346 		return sprintf(buf, "fast\n");
347 	case REGULATOR_MODE_NORMAL:
348 		return sprintf(buf, "normal\n");
349 	case REGULATOR_MODE_IDLE:
350 		return sprintf(buf, "idle\n");
351 	case REGULATOR_MODE_STANDBY:
352 		return sprintf(buf, "standby\n");
353 	}
354 	return sprintf(buf, "unknown\n");
355 }
356 
357 static ssize_t regulator_opmode_show(struct device *dev,
358 				    struct device_attribute *attr, char *buf)
359 {
360 	struct regulator_dev *rdev = dev_get_drvdata(dev);
361 
362 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365 
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368 	if (state > 0)
369 		return sprintf(buf, "enabled\n");
370 	else if (state == 0)
371 		return sprintf(buf, "disabled\n");
372 	else
373 		return sprintf(buf, "unknown\n");
374 }
375 
376 static ssize_t regulator_state_show(struct device *dev,
377 				   struct device_attribute *attr, char *buf)
378 {
379 	struct regulator_dev *rdev = dev_get_drvdata(dev);
380 	ssize_t ret;
381 
382 	mutex_lock(&rdev->mutex);
383 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384 	mutex_unlock(&rdev->mutex);
385 
386 	return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389 
390 static ssize_t regulator_status_show(struct device *dev,
391 				   struct device_attribute *attr, char *buf)
392 {
393 	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 	int status;
395 	char *label;
396 
397 	status = rdev->desc->ops->get_status(rdev);
398 	if (status < 0)
399 		return status;
400 
401 	switch (status) {
402 	case REGULATOR_STATUS_OFF:
403 		label = "off";
404 		break;
405 	case REGULATOR_STATUS_ON:
406 		label = "on";
407 		break;
408 	case REGULATOR_STATUS_ERROR:
409 		label = "error";
410 		break;
411 	case REGULATOR_STATUS_FAST:
412 		label = "fast";
413 		break;
414 	case REGULATOR_STATUS_NORMAL:
415 		label = "normal";
416 		break;
417 	case REGULATOR_STATUS_IDLE:
418 		label = "idle";
419 		break;
420 	case REGULATOR_STATUS_STANDBY:
421 		label = "standby";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t regulator_num_users_show(struct device *dev,
495 				      struct device_attribute *attr, char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 
501 static ssize_t regulator_type_show(struct device *dev,
502 				  struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516 				struct device_attribute *attr, char *buf)
517 {
518 	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 
520 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523 		regulator_suspend_mem_uV_show, NULL);
524 
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526 				struct device_attribute *attr, char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 
530 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533 		regulator_suspend_disk_uV_show, NULL);
534 
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536 				struct device_attribute *attr, char *buf)
537 {
538 	struct regulator_dev *rdev = dev_get_drvdata(dev);
539 
540 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543 		regulator_suspend_standby_uV_show, NULL);
544 
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546 				struct device_attribute *attr, char *buf)
547 {
548 	struct regulator_dev *rdev = dev_get_drvdata(dev);
549 
550 	return regulator_print_opmode(buf,
551 		rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554 		regulator_suspend_mem_mode_show, NULL);
555 
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557 				struct device_attribute *attr, char *buf)
558 {
559 	struct regulator_dev *rdev = dev_get_drvdata(dev);
560 
561 	return regulator_print_opmode(buf,
562 		rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565 		regulator_suspend_disk_mode_show, NULL);
566 
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568 				struct device_attribute *attr, char *buf)
569 {
570 	struct regulator_dev *rdev = dev_get_drvdata(dev);
571 
572 	return regulator_print_opmode(buf,
573 		rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576 		regulator_suspend_standby_mode_show, NULL);
577 
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579 				   struct device_attribute *attr, char *buf)
580 {
581 	struct regulator_dev *rdev = dev_get_drvdata(dev);
582 
583 	return regulator_print_state(buf,
584 			rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587 		regulator_suspend_mem_state_show, NULL);
588 
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590 				   struct device_attribute *attr, char *buf)
591 {
592 	struct regulator_dev *rdev = dev_get_drvdata(dev);
593 
594 	return regulator_print_state(buf,
595 			rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598 		regulator_suspend_disk_state_show, NULL);
599 
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601 				   struct device_attribute *attr, char *buf)
602 {
603 	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 
605 	return regulator_print_state(buf,
606 			rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609 		regulator_suspend_standby_state_show, NULL);
610 
611 
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617 	__ATTR(name, 0444, regulator_name_show, NULL),
618 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619 	__ATTR(type, 0444, regulator_type_show, NULL),
620 	__ATTR_NULL,
621 };
622 
623 static void regulator_dev_release(struct device *dev)
624 {
625 	struct regulator_dev *rdev = dev_get_drvdata(dev);
626 	kfree(rdev);
627 }
628 
629 static struct class regulator_class = {
630 	.name = "regulator",
631 	.dev_release = regulator_dev_release,
632 	.dev_attrs = regulator_dev_attrs,
633 };
634 
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639 	struct regulator *sibling;
640 	int current_uA = 0, output_uV, input_uV, err;
641 	unsigned int mode;
642 
643 	err = regulator_check_drms(rdev);
644 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 	    (!rdev->desc->ops->get_voltage &&
646 	     !rdev->desc->ops->get_voltage_sel) ||
647 	    !rdev->desc->ops->set_mode)
648 		return;
649 
650 	/* get output voltage */
651 	output_uV = _regulator_get_voltage(rdev);
652 	if (output_uV <= 0)
653 		return;
654 
655 	/* get input voltage */
656 	input_uV = 0;
657 	if (rdev->supply)
658 		input_uV = _regulator_get_voltage(rdev);
659 	if (input_uV <= 0)
660 		input_uV = rdev->constraints->input_uV;
661 	if (input_uV <= 0)
662 		return;
663 
664 	/* calc total requested load */
665 	list_for_each_entry(sibling, &rdev->consumer_list, list)
666 		current_uA += sibling->uA_load;
667 
668 	/* now get the optimum mode for our new total regulator load */
669 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670 						  output_uV, current_uA);
671 
672 	/* check the new mode is allowed */
673 	err = regulator_mode_constrain(rdev, &mode);
674 	if (err == 0)
675 		rdev->desc->ops->set_mode(rdev, mode);
676 }
677 
678 static int suspend_set_state(struct regulator_dev *rdev,
679 	struct regulator_state *rstate)
680 {
681 	int ret = 0;
682 	bool can_set_state;
683 
684 	can_set_state = rdev->desc->ops->set_suspend_enable &&
685 		rdev->desc->ops->set_suspend_disable;
686 
687 	/* If we have no suspend mode configration don't set anything;
688 	 * only warn if the driver actually makes the suspend mode
689 	 * configurable.
690 	 */
691 	if (!rstate->enabled && !rstate->disabled) {
692 		if (can_set_state)
693 			rdev_warn(rdev, "No configuration\n");
694 		return 0;
695 	}
696 
697 	if (rstate->enabled && rstate->disabled) {
698 		rdev_err(rdev, "invalid configuration\n");
699 		return -EINVAL;
700 	}
701 
702 	if (!can_set_state) {
703 		rdev_err(rdev, "no way to set suspend state\n");
704 		return -EINVAL;
705 	}
706 
707 	if (rstate->enabled)
708 		ret = rdev->desc->ops->set_suspend_enable(rdev);
709 	else
710 		ret = rdev->desc->ops->set_suspend_disable(rdev);
711 	if (ret < 0) {
712 		rdev_err(rdev, "failed to enabled/disable\n");
713 		return ret;
714 	}
715 
716 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718 		if (ret < 0) {
719 			rdev_err(rdev, "failed to set voltage\n");
720 			return ret;
721 		}
722 	}
723 
724 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726 		if (ret < 0) {
727 			rdev_err(rdev, "failed to set mode\n");
728 			return ret;
729 		}
730 	}
731 	return ret;
732 }
733 
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737 	if (!rdev->constraints)
738 		return -EINVAL;
739 
740 	switch (state) {
741 	case PM_SUSPEND_STANDBY:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_standby);
744 	case PM_SUSPEND_MEM:
745 		return suspend_set_state(rdev,
746 			&rdev->constraints->state_mem);
747 	case PM_SUSPEND_MAX:
748 		return suspend_set_state(rdev,
749 			&rdev->constraints->state_disk);
750 	default:
751 		return -EINVAL;
752 	}
753 }
754 
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757 	struct regulation_constraints *constraints = rdev->constraints;
758 	char buf[80] = "";
759 	int count = 0;
760 	int ret;
761 
762 	if (constraints->min_uV && constraints->max_uV) {
763 		if (constraints->min_uV == constraints->max_uV)
764 			count += sprintf(buf + count, "%d mV ",
765 					 constraints->min_uV / 1000);
766 		else
767 			count += sprintf(buf + count, "%d <--> %d mV ",
768 					 constraints->min_uV / 1000,
769 					 constraints->max_uV / 1000);
770 	}
771 
772 	if (!constraints->min_uV ||
773 	    constraints->min_uV != constraints->max_uV) {
774 		ret = _regulator_get_voltage(rdev);
775 		if (ret > 0)
776 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777 	}
778 
779 	if (constraints->uV_offset)
780 		count += sprintf(buf, "%dmV offset ",
781 				 constraints->uV_offset / 1000);
782 
783 	if (constraints->min_uA && constraints->max_uA) {
784 		if (constraints->min_uA == constraints->max_uA)
785 			count += sprintf(buf + count, "%d mA ",
786 					 constraints->min_uA / 1000);
787 		else
788 			count += sprintf(buf + count, "%d <--> %d mA ",
789 					 constraints->min_uA / 1000,
790 					 constraints->max_uA / 1000);
791 	}
792 
793 	if (!constraints->min_uA ||
794 	    constraints->min_uA != constraints->max_uA) {
795 		ret = _regulator_get_current_limit(rdev);
796 		if (ret > 0)
797 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798 	}
799 
800 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801 		count += sprintf(buf + count, "fast ");
802 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803 		count += sprintf(buf + count, "normal ");
804 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805 		count += sprintf(buf + count, "idle ");
806 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807 		count += sprintf(buf + count, "standby");
808 
809 	rdev_info(rdev, "%s\n", buf);
810 }
811 
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813 	struct regulation_constraints *constraints)
814 {
815 	struct regulator_ops *ops = rdev->desc->ops;
816 	int ret;
817 
818 	/* do we need to apply the constraint voltage */
819 	if (rdev->constraints->apply_uV &&
820 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821 		ret = _regulator_do_set_voltage(rdev,
822 						rdev->constraints->min_uV,
823 						rdev->constraints->max_uV);
824 		if (ret < 0) {
825 			rdev_err(rdev, "failed to apply %duV constraint\n",
826 				 rdev->constraints->min_uV);
827 			return ret;
828 		}
829 	}
830 
831 	/* constrain machine-level voltage specs to fit
832 	 * the actual range supported by this regulator.
833 	 */
834 	if (ops->list_voltage && rdev->desc->n_voltages) {
835 		int	count = rdev->desc->n_voltages;
836 		int	i;
837 		int	min_uV = INT_MAX;
838 		int	max_uV = INT_MIN;
839 		int	cmin = constraints->min_uV;
840 		int	cmax = constraints->max_uV;
841 
842 		/* it's safe to autoconfigure fixed-voltage supplies
843 		   and the constraints are used by list_voltage. */
844 		if (count == 1 && !cmin) {
845 			cmin = 1;
846 			cmax = INT_MAX;
847 			constraints->min_uV = cmin;
848 			constraints->max_uV = cmax;
849 		}
850 
851 		/* voltage constraints are optional */
852 		if ((cmin == 0) && (cmax == 0))
853 			return 0;
854 
855 		/* else require explicit machine-level constraints */
856 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857 			rdev_err(rdev, "invalid voltage constraints\n");
858 			return -EINVAL;
859 		}
860 
861 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862 		for (i = 0; i < count; i++) {
863 			int	value;
864 
865 			value = ops->list_voltage(rdev, i);
866 			if (value <= 0)
867 				continue;
868 
869 			/* maybe adjust [min_uV..max_uV] */
870 			if (value >= cmin && value < min_uV)
871 				min_uV = value;
872 			if (value <= cmax && value > max_uV)
873 				max_uV = value;
874 		}
875 
876 		/* final: [min_uV..max_uV] valid iff constraints valid */
877 		if (max_uV < min_uV) {
878 			rdev_err(rdev, "unsupportable voltage constraints\n");
879 			return -EINVAL;
880 		}
881 
882 		/* use regulator's subset of machine constraints */
883 		if (constraints->min_uV < min_uV) {
884 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885 				 constraints->min_uV, min_uV);
886 			constraints->min_uV = min_uV;
887 		}
888 		if (constraints->max_uV > max_uV) {
889 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890 				 constraints->max_uV, max_uV);
891 			constraints->max_uV = max_uV;
892 		}
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910 	const struct regulation_constraints *constraints)
911 {
912 	int ret = 0;
913 	struct regulator_ops *ops = rdev->desc->ops;
914 
915 	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916 				    GFP_KERNEL);
917 	if (!rdev->constraints)
918 		return -ENOMEM;
919 
920 	ret = machine_constraints_voltage(rdev, rdev->constraints);
921 	if (ret != 0)
922 		goto out;
923 
924 	/* do we need to setup our suspend state */
925 	if (constraints->initial_state) {
926 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
927 		if (ret < 0) {
928 			rdev_err(rdev, "failed to set suspend state\n");
929 			goto out;
930 		}
931 	}
932 
933 	if (constraints->initial_mode) {
934 		if (!ops->set_mode) {
935 			rdev_err(rdev, "no set_mode operation\n");
936 			ret = -EINVAL;
937 			goto out;
938 		}
939 
940 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
941 		if (ret < 0) {
942 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
943 			goto out;
944 		}
945 	}
946 
947 	/* If the constraints say the regulator should be on at this point
948 	 * and we have control then make sure it is enabled.
949 	 */
950 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
951 	    ops->enable) {
952 		ret = ops->enable(rdev);
953 		if (ret < 0) {
954 			rdev_err(rdev, "failed to enable\n");
955 			goto out;
956 		}
957 	}
958 
959 	print_constraints(rdev);
960 	return 0;
961 out:
962 	kfree(rdev->constraints);
963 	rdev->constraints = NULL;
964 	return ret;
965 }
966 
967 /**
968  * set_supply - set regulator supply regulator
969  * @rdev: regulator name
970  * @supply_rdev: supply regulator name
971  *
972  * Called by platform initialisation code to set the supply regulator for this
973  * regulator. This ensures that a regulators supply will also be enabled by the
974  * core if it's child is enabled.
975  */
976 static int set_supply(struct regulator_dev *rdev,
977 		      struct regulator_dev *supply_rdev)
978 {
979 	int err;
980 
981 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
982 
983 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
984 	if (IS_ERR(rdev->supply)) {
985 		err = PTR_ERR(rdev->supply);
986 		rdev->supply = NULL;
987 		return err;
988 	}
989 
990 	return 0;
991 }
992 
993 /**
994  * set_consumer_device_supply - Bind a regulator to a symbolic supply
995  * @rdev:         regulator source
996  * @consumer_dev: device the supply applies to
997  * @consumer_dev_name: dev_name() string for device supply applies to
998  * @supply:       symbolic name for supply
999  *
1000  * Allows platform initialisation code to map physical regulator
1001  * sources to symbolic names for supplies for use by devices.  Devices
1002  * should use these symbolic names to request regulators, avoiding the
1003  * need to provide board-specific regulator names as platform data.
1004  *
1005  * Only one of consumer_dev and consumer_dev_name may be specified.
1006  */
1007 static int set_consumer_device_supply(struct regulator_dev *rdev,
1008 	struct device *consumer_dev, const char *consumer_dev_name,
1009 	const char *supply)
1010 {
1011 	struct regulator_map *node;
1012 	int has_dev;
1013 
1014 	if (consumer_dev && consumer_dev_name)
1015 		return -EINVAL;
1016 
1017 	if (!consumer_dev_name && consumer_dev)
1018 		consumer_dev_name = dev_name(consumer_dev);
1019 
1020 	if (supply == NULL)
1021 		return -EINVAL;
1022 
1023 	if (consumer_dev_name != NULL)
1024 		has_dev = 1;
1025 	else
1026 		has_dev = 0;
1027 
1028 	list_for_each_entry(node, &regulator_map_list, list) {
1029 		if (node->dev_name && consumer_dev_name) {
1030 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1031 				continue;
1032 		} else if (node->dev_name || consumer_dev_name) {
1033 			continue;
1034 		}
1035 
1036 		if (strcmp(node->supply, supply) != 0)
1037 			continue;
1038 
1039 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1040 			dev_name(&node->regulator->dev),
1041 			node->regulator->desc->name,
1042 			supply,
1043 			dev_name(&rdev->dev), rdev_get_name(rdev));
1044 		return -EBUSY;
1045 	}
1046 
1047 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1048 	if (node == NULL)
1049 		return -ENOMEM;
1050 
1051 	node->regulator = rdev;
1052 	node->supply = supply;
1053 
1054 	if (has_dev) {
1055 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1056 		if (node->dev_name == NULL) {
1057 			kfree(node);
1058 			return -ENOMEM;
1059 		}
1060 	}
1061 
1062 	list_add(&node->list, &regulator_map_list);
1063 	return 0;
1064 }
1065 
1066 static void unset_regulator_supplies(struct regulator_dev *rdev)
1067 {
1068 	struct regulator_map *node, *n;
1069 
1070 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1071 		if (rdev == node->regulator) {
1072 			list_del(&node->list);
1073 			kfree(node->dev_name);
1074 			kfree(node);
1075 		}
1076 	}
1077 }
1078 
1079 #define REG_STR_SIZE	64
1080 
1081 static struct regulator *create_regulator(struct regulator_dev *rdev,
1082 					  struct device *dev,
1083 					  const char *supply_name)
1084 {
1085 	struct regulator *regulator;
1086 	char buf[REG_STR_SIZE];
1087 	int err, size;
1088 
1089 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1090 	if (regulator == NULL)
1091 		return NULL;
1092 
1093 	mutex_lock(&rdev->mutex);
1094 	regulator->rdev = rdev;
1095 	list_add(&regulator->list, &rdev->consumer_list);
1096 
1097 	if (dev) {
1098 		/* create a 'requested_microamps_name' sysfs entry */
1099 		size = scnprintf(buf, REG_STR_SIZE,
1100 				 "microamps_requested_%s-%s",
1101 				 dev_name(dev), supply_name);
1102 		if (size >= REG_STR_SIZE)
1103 			goto overflow_err;
1104 
1105 		regulator->dev = dev;
1106 		sysfs_attr_init(&regulator->dev_attr.attr);
1107 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1108 		if (regulator->dev_attr.attr.name == NULL)
1109 			goto attr_name_err;
1110 
1111 		regulator->dev_attr.attr.mode = 0444;
1112 		regulator->dev_attr.show = device_requested_uA_show;
1113 		err = device_create_file(dev, &regulator->dev_attr);
1114 		if (err < 0) {
1115 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1116 			goto attr_name_err;
1117 		}
1118 
1119 		/* also add a link to the device sysfs entry */
1120 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1121 				 dev->kobj.name, supply_name);
1122 		if (size >= REG_STR_SIZE)
1123 			goto attr_err;
1124 
1125 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1126 		if (regulator->supply_name == NULL)
1127 			goto attr_err;
1128 
1129 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1130 					buf);
1131 		if (err) {
1132 			rdev_warn(rdev, "could not add device link %s err %d\n",
1133 				  dev->kobj.name, err);
1134 			goto link_name_err;
1135 		}
1136 	} else {
1137 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1138 		if (regulator->supply_name == NULL)
1139 			goto attr_err;
1140 	}
1141 
1142 #ifdef CONFIG_DEBUG_FS
1143 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1144 						rdev->debugfs);
1145 	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1146 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1147 		regulator->debugfs = NULL;
1148 	} else {
1149 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150 				   &regulator->uA_load);
1151 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152 				   &regulator->min_uV);
1153 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154 				   &regulator->max_uV);
1155 	}
1156 #endif
1157 
1158 	mutex_unlock(&rdev->mutex);
1159 	return regulator;
1160 link_name_err:
1161 	kfree(regulator->supply_name);
1162 attr_err:
1163 	device_remove_file(regulator->dev, &regulator->dev_attr);
1164 attr_name_err:
1165 	kfree(regulator->dev_attr.attr.name);
1166 overflow_err:
1167 	list_del(&regulator->list);
1168 	kfree(regulator);
1169 	mutex_unlock(&rdev->mutex);
1170 	return NULL;
1171 }
1172 
1173 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1174 {
1175 	if (!rdev->desc->ops->enable_time)
1176 		return 0;
1177 	return rdev->desc->ops->enable_time(rdev);
1178 }
1179 
1180 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1181 							 const char *supply)
1182 {
1183 	struct regulator_dev *r;
1184 	struct device_node *node;
1185 
1186 	/* first do a dt based lookup */
1187 	if (dev && dev->of_node) {
1188 		node = of_get_regulator(dev, supply);
1189 		if (node)
1190 			list_for_each_entry(r, &regulator_list, list)
1191 				if (r->dev.parent &&
1192 					node == r->dev.of_node)
1193 					return r;
1194 	}
1195 
1196 	/* if not found, try doing it non-dt way */
1197 	list_for_each_entry(r, &regulator_list, list)
1198 		if (strcmp(rdev_get_name(r), supply) == 0)
1199 			return r;
1200 
1201 	return NULL;
1202 }
1203 
1204 /* Internal regulator request function */
1205 static struct regulator *_regulator_get(struct device *dev, const char *id,
1206 					int exclusive)
1207 {
1208 	struct regulator_dev *rdev;
1209 	struct regulator_map *map;
1210 	struct regulator *regulator = ERR_PTR(-ENODEV);
1211 	const char *devname = NULL;
1212 	int ret;
1213 
1214 	if (id == NULL) {
1215 		pr_err("get() with no identifier\n");
1216 		return regulator;
1217 	}
1218 
1219 	if (dev)
1220 		devname = dev_name(dev);
1221 
1222 	mutex_lock(&regulator_list_mutex);
1223 
1224 	rdev = regulator_dev_lookup(dev, id);
1225 	if (rdev)
1226 		goto found;
1227 
1228 	list_for_each_entry(map, &regulator_map_list, list) {
1229 		/* If the mapping has a device set up it must match */
1230 		if (map->dev_name &&
1231 		    (!devname || strcmp(map->dev_name, devname)))
1232 			continue;
1233 
1234 		if (strcmp(map->supply, id) == 0) {
1235 			rdev = map->regulator;
1236 			goto found;
1237 		}
1238 	}
1239 
1240 	if (board_wants_dummy_regulator) {
1241 		rdev = dummy_regulator_rdev;
1242 		goto found;
1243 	}
1244 
1245 #ifdef CONFIG_REGULATOR_DUMMY
1246 	if (!devname)
1247 		devname = "deviceless";
1248 
1249 	/* If the board didn't flag that it was fully constrained then
1250 	 * substitute in a dummy regulator so consumers can continue.
1251 	 */
1252 	if (!has_full_constraints) {
1253 		pr_warn("%s supply %s not found, using dummy regulator\n",
1254 			devname, id);
1255 		rdev = dummy_regulator_rdev;
1256 		goto found;
1257 	}
1258 #endif
1259 
1260 	mutex_unlock(&regulator_list_mutex);
1261 	return regulator;
1262 
1263 found:
1264 	if (rdev->exclusive) {
1265 		regulator = ERR_PTR(-EPERM);
1266 		goto out;
1267 	}
1268 
1269 	if (exclusive && rdev->open_count) {
1270 		regulator = ERR_PTR(-EBUSY);
1271 		goto out;
1272 	}
1273 
1274 	if (!try_module_get(rdev->owner))
1275 		goto out;
1276 
1277 	regulator = create_regulator(rdev, dev, id);
1278 	if (regulator == NULL) {
1279 		regulator = ERR_PTR(-ENOMEM);
1280 		module_put(rdev->owner);
1281 	}
1282 
1283 	rdev->open_count++;
1284 	if (exclusive) {
1285 		rdev->exclusive = 1;
1286 
1287 		ret = _regulator_is_enabled(rdev);
1288 		if (ret > 0)
1289 			rdev->use_count = 1;
1290 		else
1291 			rdev->use_count = 0;
1292 	}
1293 
1294 out:
1295 	mutex_unlock(&regulator_list_mutex);
1296 
1297 	return regulator;
1298 }
1299 
1300 /**
1301  * regulator_get - lookup and obtain a reference to a regulator.
1302  * @dev: device for regulator "consumer"
1303  * @id: Supply name or regulator ID.
1304  *
1305  * Returns a struct regulator corresponding to the regulator producer,
1306  * or IS_ERR() condition containing errno.
1307  *
1308  * Use of supply names configured via regulator_set_device_supply() is
1309  * strongly encouraged.  It is recommended that the supply name used
1310  * should match the name used for the supply and/or the relevant
1311  * device pins in the datasheet.
1312  */
1313 struct regulator *regulator_get(struct device *dev, const char *id)
1314 {
1315 	return _regulator_get(dev, id, 0);
1316 }
1317 EXPORT_SYMBOL_GPL(regulator_get);
1318 
1319 /**
1320  * regulator_get_exclusive - obtain exclusive access to a regulator.
1321  * @dev: device for regulator "consumer"
1322  * @id: Supply name or regulator ID.
1323  *
1324  * Returns a struct regulator corresponding to the regulator producer,
1325  * or IS_ERR() condition containing errno.  Other consumers will be
1326  * unable to obtain this reference is held and the use count for the
1327  * regulator will be initialised to reflect the current state of the
1328  * regulator.
1329  *
1330  * This is intended for use by consumers which cannot tolerate shared
1331  * use of the regulator such as those which need to force the
1332  * regulator off for correct operation of the hardware they are
1333  * controlling.
1334  *
1335  * Use of supply names configured via regulator_set_device_supply() is
1336  * strongly encouraged.  It is recommended that the supply name used
1337  * should match the name used for the supply and/or the relevant
1338  * device pins in the datasheet.
1339  */
1340 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1341 {
1342 	return _regulator_get(dev, id, 1);
1343 }
1344 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1345 
1346 /**
1347  * regulator_put - "free" the regulator source
1348  * @regulator: regulator source
1349  *
1350  * Note: drivers must ensure that all regulator_enable calls made on this
1351  * regulator source are balanced by regulator_disable calls prior to calling
1352  * this function.
1353  */
1354 void regulator_put(struct regulator *regulator)
1355 {
1356 	struct regulator_dev *rdev;
1357 
1358 	if (regulator == NULL || IS_ERR(regulator))
1359 		return;
1360 
1361 	mutex_lock(&regulator_list_mutex);
1362 	rdev = regulator->rdev;
1363 
1364 #ifdef CONFIG_DEBUG_FS
1365 	debugfs_remove_recursive(regulator->debugfs);
1366 #endif
1367 
1368 	/* remove any sysfs entries */
1369 	if (regulator->dev) {
1370 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1371 		device_remove_file(regulator->dev, &regulator->dev_attr);
1372 		kfree(regulator->dev_attr.attr.name);
1373 	}
1374 	kfree(regulator->supply_name);
1375 	list_del(&regulator->list);
1376 	kfree(regulator);
1377 
1378 	rdev->open_count--;
1379 	rdev->exclusive = 0;
1380 
1381 	module_put(rdev->owner);
1382 	mutex_unlock(&regulator_list_mutex);
1383 }
1384 EXPORT_SYMBOL_GPL(regulator_put);
1385 
1386 static int _regulator_can_change_status(struct regulator_dev *rdev)
1387 {
1388 	if (!rdev->constraints)
1389 		return 0;
1390 
1391 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1392 		return 1;
1393 	else
1394 		return 0;
1395 }
1396 
1397 /* locks held by regulator_enable() */
1398 static int _regulator_enable(struct regulator_dev *rdev)
1399 {
1400 	int ret, delay;
1401 
1402 	/* check voltage and requested load before enabling */
1403 	if (rdev->constraints &&
1404 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1405 		drms_uA_update(rdev);
1406 
1407 	if (rdev->use_count == 0) {
1408 		/* The regulator may on if it's not switchable or left on */
1409 		ret = _regulator_is_enabled(rdev);
1410 		if (ret == -EINVAL || ret == 0) {
1411 			if (!_regulator_can_change_status(rdev))
1412 				return -EPERM;
1413 
1414 			if (!rdev->desc->ops->enable)
1415 				return -EINVAL;
1416 
1417 			/* Query before enabling in case configuration
1418 			 * dependent.  */
1419 			ret = _regulator_get_enable_time(rdev);
1420 			if (ret >= 0) {
1421 				delay = ret;
1422 			} else {
1423 				rdev_warn(rdev, "enable_time() failed: %d\n",
1424 					   ret);
1425 				delay = 0;
1426 			}
1427 
1428 			trace_regulator_enable(rdev_get_name(rdev));
1429 
1430 			/* Allow the regulator to ramp; it would be useful
1431 			 * to extend this for bulk operations so that the
1432 			 * regulators can ramp together.  */
1433 			ret = rdev->desc->ops->enable(rdev);
1434 			if (ret < 0)
1435 				return ret;
1436 
1437 			trace_regulator_enable_delay(rdev_get_name(rdev));
1438 
1439 			if (delay >= 1000) {
1440 				mdelay(delay / 1000);
1441 				udelay(delay % 1000);
1442 			} else if (delay) {
1443 				udelay(delay);
1444 			}
1445 
1446 			trace_regulator_enable_complete(rdev_get_name(rdev));
1447 
1448 		} else if (ret < 0) {
1449 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1450 			return ret;
1451 		}
1452 		/* Fallthrough on positive return values - already enabled */
1453 	}
1454 
1455 	rdev->use_count++;
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  * regulator_enable - enable regulator output
1462  * @regulator: regulator source
1463  *
1464  * Request that the regulator be enabled with the regulator output at
1465  * the predefined voltage or current value.  Calls to regulator_enable()
1466  * must be balanced with calls to regulator_disable().
1467  *
1468  * NOTE: the output value can be set by other drivers, boot loader or may be
1469  * hardwired in the regulator.
1470  */
1471 int regulator_enable(struct regulator *regulator)
1472 {
1473 	struct regulator_dev *rdev = regulator->rdev;
1474 	int ret = 0;
1475 
1476 	if (rdev->supply) {
1477 		ret = regulator_enable(rdev->supply);
1478 		if (ret != 0)
1479 			return ret;
1480 	}
1481 
1482 	mutex_lock(&rdev->mutex);
1483 	ret = _regulator_enable(rdev);
1484 	mutex_unlock(&rdev->mutex);
1485 
1486 	if (ret != 0 && rdev->supply)
1487 		regulator_disable(rdev->supply);
1488 
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL_GPL(regulator_enable);
1492 
1493 /* locks held by regulator_disable() */
1494 static int _regulator_disable(struct regulator_dev *rdev)
1495 {
1496 	int ret = 0;
1497 
1498 	if (WARN(rdev->use_count <= 0,
1499 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1500 		return -EIO;
1501 
1502 	/* are we the last user and permitted to disable ? */
1503 	if (rdev->use_count == 1 &&
1504 	    (rdev->constraints && !rdev->constraints->always_on)) {
1505 
1506 		/* we are last user */
1507 		if (_regulator_can_change_status(rdev) &&
1508 		    rdev->desc->ops->disable) {
1509 			trace_regulator_disable(rdev_get_name(rdev));
1510 
1511 			ret = rdev->desc->ops->disable(rdev);
1512 			if (ret < 0) {
1513 				rdev_err(rdev, "failed to disable\n");
1514 				return ret;
1515 			}
1516 
1517 			trace_regulator_disable_complete(rdev_get_name(rdev));
1518 
1519 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1520 					     NULL);
1521 		}
1522 
1523 		rdev->use_count = 0;
1524 	} else if (rdev->use_count > 1) {
1525 
1526 		if (rdev->constraints &&
1527 			(rdev->constraints->valid_ops_mask &
1528 			REGULATOR_CHANGE_DRMS))
1529 			drms_uA_update(rdev);
1530 
1531 		rdev->use_count--;
1532 	}
1533 
1534 	return ret;
1535 }
1536 
1537 /**
1538  * regulator_disable - disable regulator output
1539  * @regulator: regulator source
1540  *
1541  * Disable the regulator output voltage or current.  Calls to
1542  * regulator_enable() must be balanced with calls to
1543  * regulator_disable().
1544  *
1545  * NOTE: this will only disable the regulator output if no other consumer
1546  * devices have it enabled, the regulator device supports disabling and
1547  * machine constraints permit this operation.
1548  */
1549 int regulator_disable(struct regulator *regulator)
1550 {
1551 	struct regulator_dev *rdev = regulator->rdev;
1552 	int ret = 0;
1553 
1554 	mutex_lock(&rdev->mutex);
1555 	ret = _regulator_disable(rdev);
1556 	mutex_unlock(&rdev->mutex);
1557 
1558 	if (ret == 0 && rdev->supply)
1559 		regulator_disable(rdev->supply);
1560 
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL_GPL(regulator_disable);
1564 
1565 /* locks held by regulator_force_disable() */
1566 static int _regulator_force_disable(struct regulator_dev *rdev)
1567 {
1568 	int ret = 0;
1569 
1570 	/* force disable */
1571 	if (rdev->desc->ops->disable) {
1572 		/* ah well, who wants to live forever... */
1573 		ret = rdev->desc->ops->disable(rdev);
1574 		if (ret < 0) {
1575 			rdev_err(rdev, "failed to force disable\n");
1576 			return ret;
1577 		}
1578 		/* notify other consumers that power has been forced off */
1579 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1580 			REGULATOR_EVENT_DISABLE, NULL);
1581 	}
1582 
1583 	return ret;
1584 }
1585 
1586 /**
1587  * regulator_force_disable - force disable regulator output
1588  * @regulator: regulator source
1589  *
1590  * Forcibly disable the regulator output voltage or current.
1591  * NOTE: this *will* disable the regulator output even if other consumer
1592  * devices have it enabled. This should be used for situations when device
1593  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1594  */
1595 int regulator_force_disable(struct regulator *regulator)
1596 {
1597 	struct regulator_dev *rdev = regulator->rdev;
1598 	int ret;
1599 
1600 	mutex_lock(&rdev->mutex);
1601 	regulator->uA_load = 0;
1602 	ret = _regulator_force_disable(regulator->rdev);
1603 	mutex_unlock(&rdev->mutex);
1604 
1605 	if (rdev->supply)
1606 		while (rdev->open_count--)
1607 			regulator_disable(rdev->supply);
1608 
1609 	return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(regulator_force_disable);
1612 
1613 static void regulator_disable_work(struct work_struct *work)
1614 {
1615 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1616 						  disable_work.work);
1617 	int count, i, ret;
1618 
1619 	mutex_lock(&rdev->mutex);
1620 
1621 	BUG_ON(!rdev->deferred_disables);
1622 
1623 	count = rdev->deferred_disables;
1624 	rdev->deferred_disables = 0;
1625 
1626 	for (i = 0; i < count; i++) {
1627 		ret = _regulator_disable(rdev);
1628 		if (ret != 0)
1629 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1630 	}
1631 
1632 	mutex_unlock(&rdev->mutex);
1633 
1634 	if (rdev->supply) {
1635 		for (i = 0; i < count; i++) {
1636 			ret = regulator_disable(rdev->supply);
1637 			if (ret != 0) {
1638 				rdev_err(rdev,
1639 					 "Supply disable failed: %d\n", ret);
1640 			}
1641 		}
1642 	}
1643 }
1644 
1645 /**
1646  * regulator_disable_deferred - disable regulator output with delay
1647  * @regulator: regulator source
1648  * @ms: miliseconds until the regulator is disabled
1649  *
1650  * Execute regulator_disable() on the regulator after a delay.  This
1651  * is intended for use with devices that require some time to quiesce.
1652  *
1653  * NOTE: this will only disable the regulator output if no other consumer
1654  * devices have it enabled, the regulator device supports disabling and
1655  * machine constraints permit this operation.
1656  */
1657 int regulator_disable_deferred(struct regulator *regulator, int ms)
1658 {
1659 	struct regulator_dev *rdev = regulator->rdev;
1660 	int ret;
1661 
1662 	mutex_lock(&rdev->mutex);
1663 	rdev->deferred_disables++;
1664 	mutex_unlock(&rdev->mutex);
1665 
1666 	ret = schedule_delayed_work(&rdev->disable_work,
1667 				    msecs_to_jiffies(ms));
1668 	if (ret < 0)
1669 		return ret;
1670 	else
1671 		return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1674 
1675 static int _regulator_is_enabled(struct regulator_dev *rdev)
1676 {
1677 	/* If we don't know then assume that the regulator is always on */
1678 	if (!rdev->desc->ops->is_enabled)
1679 		return 1;
1680 
1681 	return rdev->desc->ops->is_enabled(rdev);
1682 }
1683 
1684 /**
1685  * regulator_is_enabled - is the regulator output enabled
1686  * @regulator: regulator source
1687  *
1688  * Returns positive if the regulator driver backing the source/client
1689  * has requested that the device be enabled, zero if it hasn't, else a
1690  * negative errno code.
1691  *
1692  * Note that the device backing this regulator handle can have multiple
1693  * users, so it might be enabled even if regulator_enable() was never
1694  * called for this particular source.
1695  */
1696 int regulator_is_enabled(struct regulator *regulator)
1697 {
1698 	int ret;
1699 
1700 	mutex_lock(&regulator->rdev->mutex);
1701 	ret = _regulator_is_enabled(regulator->rdev);
1702 	mutex_unlock(&regulator->rdev->mutex);
1703 
1704 	return ret;
1705 }
1706 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1707 
1708 /**
1709  * regulator_count_voltages - count regulator_list_voltage() selectors
1710  * @regulator: regulator source
1711  *
1712  * Returns number of selectors, or negative errno.  Selectors are
1713  * numbered starting at zero, and typically correspond to bitfields
1714  * in hardware registers.
1715  */
1716 int regulator_count_voltages(struct regulator *regulator)
1717 {
1718 	struct regulator_dev	*rdev = regulator->rdev;
1719 
1720 	return rdev->desc->n_voltages ? : -EINVAL;
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1723 
1724 /**
1725  * regulator_list_voltage - enumerate supported voltages
1726  * @regulator: regulator source
1727  * @selector: identify voltage to list
1728  * Context: can sleep
1729  *
1730  * Returns a voltage that can be passed to @regulator_set_voltage(),
1731  * zero if this selector code can't be used on this system, or a
1732  * negative errno.
1733  */
1734 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1735 {
1736 	struct regulator_dev	*rdev = regulator->rdev;
1737 	struct regulator_ops	*ops = rdev->desc->ops;
1738 	int			ret;
1739 
1740 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1741 		return -EINVAL;
1742 
1743 	mutex_lock(&rdev->mutex);
1744 	ret = ops->list_voltage(rdev, selector);
1745 	mutex_unlock(&rdev->mutex);
1746 
1747 	if (ret > 0) {
1748 		if (ret < rdev->constraints->min_uV)
1749 			ret = 0;
1750 		else if (ret > rdev->constraints->max_uV)
1751 			ret = 0;
1752 	}
1753 
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1757 
1758 /**
1759  * regulator_is_supported_voltage - check if a voltage range can be supported
1760  *
1761  * @regulator: Regulator to check.
1762  * @min_uV: Minimum required voltage in uV.
1763  * @max_uV: Maximum required voltage in uV.
1764  *
1765  * Returns a boolean or a negative error code.
1766  */
1767 int regulator_is_supported_voltage(struct regulator *regulator,
1768 				   int min_uV, int max_uV)
1769 {
1770 	int i, voltages, ret;
1771 
1772 	ret = regulator_count_voltages(regulator);
1773 	if (ret < 0)
1774 		return ret;
1775 	voltages = ret;
1776 
1777 	for (i = 0; i < voltages; i++) {
1778 		ret = regulator_list_voltage(regulator, i);
1779 
1780 		if (ret >= min_uV && ret <= max_uV)
1781 			return 1;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1788 				     int min_uV, int max_uV)
1789 {
1790 	int ret;
1791 	int delay = 0;
1792 	unsigned int selector;
1793 
1794 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1795 
1796 	min_uV += rdev->constraints->uV_offset;
1797 	max_uV += rdev->constraints->uV_offset;
1798 
1799 	if (rdev->desc->ops->set_voltage) {
1800 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1801 						   &selector);
1802 
1803 		if (rdev->desc->ops->list_voltage)
1804 			selector = rdev->desc->ops->list_voltage(rdev,
1805 								 selector);
1806 		else
1807 			selector = -1;
1808 	} else if (rdev->desc->ops->set_voltage_sel) {
1809 		int best_val = INT_MAX;
1810 		int i;
1811 
1812 		selector = 0;
1813 
1814 		/* Find the smallest voltage that falls within the specified
1815 		 * range.
1816 		 */
1817 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1818 			ret = rdev->desc->ops->list_voltage(rdev, i);
1819 			if (ret < 0)
1820 				continue;
1821 
1822 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1823 				best_val = ret;
1824 				selector = i;
1825 			}
1826 		}
1827 
1828 		/*
1829 		 * If we can't obtain the old selector there is not enough
1830 		 * info to call set_voltage_time_sel().
1831 		 */
1832 		if (rdev->desc->ops->set_voltage_time_sel &&
1833 		    rdev->desc->ops->get_voltage_sel) {
1834 			unsigned int old_selector = 0;
1835 
1836 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1837 			if (ret < 0)
1838 				return ret;
1839 			old_selector = ret;
1840 			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1841 						old_selector, selector);
1842 		}
1843 
1844 		if (best_val != INT_MAX) {
1845 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1846 			selector = best_val;
1847 		} else {
1848 			ret = -EINVAL;
1849 		}
1850 	} else {
1851 		ret = -EINVAL;
1852 	}
1853 
1854 	/* Insert any necessary delays */
1855 	if (delay >= 1000) {
1856 		mdelay(delay / 1000);
1857 		udelay(delay % 1000);
1858 	} else if (delay) {
1859 		udelay(delay);
1860 	}
1861 
1862 	if (ret == 0)
1863 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1864 				     NULL);
1865 
1866 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1867 
1868 	return ret;
1869 }
1870 
1871 /**
1872  * regulator_set_voltage - set regulator output voltage
1873  * @regulator: regulator source
1874  * @min_uV: Minimum required voltage in uV
1875  * @max_uV: Maximum acceptable voltage in uV
1876  *
1877  * Sets a voltage regulator to the desired output voltage. This can be set
1878  * during any regulator state. IOW, regulator can be disabled or enabled.
1879  *
1880  * If the regulator is enabled then the voltage will change to the new value
1881  * immediately otherwise if the regulator is disabled the regulator will
1882  * output at the new voltage when enabled.
1883  *
1884  * NOTE: If the regulator is shared between several devices then the lowest
1885  * request voltage that meets the system constraints will be used.
1886  * Regulator system constraints must be set for this regulator before
1887  * calling this function otherwise this call will fail.
1888  */
1889 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1890 {
1891 	struct regulator_dev *rdev = regulator->rdev;
1892 	int ret = 0;
1893 
1894 	mutex_lock(&rdev->mutex);
1895 
1896 	/* If we're setting the same range as last time the change
1897 	 * should be a noop (some cpufreq implementations use the same
1898 	 * voltage for multiple frequencies, for example).
1899 	 */
1900 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1901 		goto out;
1902 
1903 	/* sanity check */
1904 	if (!rdev->desc->ops->set_voltage &&
1905 	    !rdev->desc->ops->set_voltage_sel) {
1906 		ret = -EINVAL;
1907 		goto out;
1908 	}
1909 
1910 	/* constraints check */
1911 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1912 	if (ret < 0)
1913 		goto out;
1914 	regulator->min_uV = min_uV;
1915 	regulator->max_uV = max_uV;
1916 
1917 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1918 	if (ret < 0)
1919 		goto out;
1920 
1921 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1922 
1923 out:
1924 	mutex_unlock(&rdev->mutex);
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1928 
1929 /**
1930  * regulator_set_voltage_time - get raise/fall time
1931  * @regulator: regulator source
1932  * @old_uV: starting voltage in microvolts
1933  * @new_uV: target voltage in microvolts
1934  *
1935  * Provided with the starting and ending voltage, this function attempts to
1936  * calculate the time in microseconds required to rise or fall to this new
1937  * voltage.
1938  */
1939 int regulator_set_voltage_time(struct regulator *regulator,
1940 			       int old_uV, int new_uV)
1941 {
1942 	struct regulator_dev	*rdev = regulator->rdev;
1943 	struct regulator_ops	*ops = rdev->desc->ops;
1944 	int old_sel = -1;
1945 	int new_sel = -1;
1946 	int voltage;
1947 	int i;
1948 
1949 	/* Currently requires operations to do this */
1950 	if (!ops->list_voltage || !ops->set_voltage_time_sel
1951 	    || !rdev->desc->n_voltages)
1952 		return -EINVAL;
1953 
1954 	for (i = 0; i < rdev->desc->n_voltages; i++) {
1955 		/* We only look for exact voltage matches here */
1956 		voltage = regulator_list_voltage(regulator, i);
1957 		if (voltage < 0)
1958 			return -EINVAL;
1959 		if (voltage == 0)
1960 			continue;
1961 		if (voltage == old_uV)
1962 			old_sel = i;
1963 		if (voltage == new_uV)
1964 			new_sel = i;
1965 	}
1966 
1967 	if (old_sel < 0 || new_sel < 0)
1968 		return -EINVAL;
1969 
1970 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1973 
1974 /**
1975  * regulator_sync_voltage - re-apply last regulator output voltage
1976  * @regulator: regulator source
1977  *
1978  * Re-apply the last configured voltage.  This is intended to be used
1979  * where some external control source the consumer is cooperating with
1980  * has caused the configured voltage to change.
1981  */
1982 int regulator_sync_voltage(struct regulator *regulator)
1983 {
1984 	struct regulator_dev *rdev = regulator->rdev;
1985 	int ret, min_uV, max_uV;
1986 
1987 	mutex_lock(&rdev->mutex);
1988 
1989 	if (!rdev->desc->ops->set_voltage &&
1990 	    !rdev->desc->ops->set_voltage_sel) {
1991 		ret = -EINVAL;
1992 		goto out;
1993 	}
1994 
1995 	/* This is only going to work if we've had a voltage configured. */
1996 	if (!regulator->min_uV && !regulator->max_uV) {
1997 		ret = -EINVAL;
1998 		goto out;
1999 	}
2000 
2001 	min_uV = regulator->min_uV;
2002 	max_uV = regulator->max_uV;
2003 
2004 	/* This should be a paranoia check... */
2005 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2006 	if (ret < 0)
2007 		goto out;
2008 
2009 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2010 	if (ret < 0)
2011 		goto out;
2012 
2013 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2014 
2015 out:
2016 	mutex_unlock(&rdev->mutex);
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2020 
2021 static int _regulator_get_voltage(struct regulator_dev *rdev)
2022 {
2023 	int sel, ret;
2024 
2025 	if (rdev->desc->ops->get_voltage_sel) {
2026 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2027 		if (sel < 0)
2028 			return sel;
2029 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2030 	} else if (rdev->desc->ops->get_voltage) {
2031 		ret = rdev->desc->ops->get_voltage(rdev);
2032 	} else {
2033 		return -EINVAL;
2034 	}
2035 
2036 	if (ret < 0)
2037 		return ret;
2038 	return ret - rdev->constraints->uV_offset;
2039 }
2040 
2041 /**
2042  * regulator_get_voltage - get regulator output voltage
2043  * @regulator: regulator source
2044  *
2045  * This returns the current regulator voltage in uV.
2046  *
2047  * NOTE: If the regulator is disabled it will return the voltage value. This
2048  * function should not be used to determine regulator state.
2049  */
2050 int regulator_get_voltage(struct regulator *regulator)
2051 {
2052 	int ret;
2053 
2054 	mutex_lock(&regulator->rdev->mutex);
2055 
2056 	ret = _regulator_get_voltage(regulator->rdev);
2057 
2058 	mutex_unlock(&regulator->rdev->mutex);
2059 
2060 	return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2063 
2064 /**
2065  * regulator_set_current_limit - set regulator output current limit
2066  * @regulator: regulator source
2067  * @min_uA: Minimuum supported current in uA
2068  * @max_uA: Maximum supported current in uA
2069  *
2070  * Sets current sink to the desired output current. This can be set during
2071  * any regulator state. IOW, regulator can be disabled or enabled.
2072  *
2073  * If the regulator is enabled then the current will change to the new value
2074  * immediately otherwise if the regulator is disabled the regulator will
2075  * output at the new current when enabled.
2076  *
2077  * NOTE: Regulator system constraints must be set for this regulator before
2078  * calling this function otherwise this call will fail.
2079  */
2080 int regulator_set_current_limit(struct regulator *regulator,
2081 			       int min_uA, int max_uA)
2082 {
2083 	struct regulator_dev *rdev = regulator->rdev;
2084 	int ret;
2085 
2086 	mutex_lock(&rdev->mutex);
2087 
2088 	/* sanity check */
2089 	if (!rdev->desc->ops->set_current_limit) {
2090 		ret = -EINVAL;
2091 		goto out;
2092 	}
2093 
2094 	/* constraints check */
2095 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2096 	if (ret < 0)
2097 		goto out;
2098 
2099 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2100 out:
2101 	mutex_unlock(&rdev->mutex);
2102 	return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2105 
2106 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2107 {
2108 	int ret;
2109 
2110 	mutex_lock(&rdev->mutex);
2111 
2112 	/* sanity check */
2113 	if (!rdev->desc->ops->get_current_limit) {
2114 		ret = -EINVAL;
2115 		goto out;
2116 	}
2117 
2118 	ret = rdev->desc->ops->get_current_limit(rdev);
2119 out:
2120 	mutex_unlock(&rdev->mutex);
2121 	return ret;
2122 }
2123 
2124 /**
2125  * regulator_get_current_limit - get regulator output current
2126  * @regulator: regulator source
2127  *
2128  * This returns the current supplied by the specified current sink in uA.
2129  *
2130  * NOTE: If the regulator is disabled it will return the current value. This
2131  * function should not be used to determine regulator state.
2132  */
2133 int regulator_get_current_limit(struct regulator *regulator)
2134 {
2135 	return _regulator_get_current_limit(regulator->rdev);
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2138 
2139 /**
2140  * regulator_set_mode - set regulator operating mode
2141  * @regulator: regulator source
2142  * @mode: operating mode - one of the REGULATOR_MODE constants
2143  *
2144  * Set regulator operating mode to increase regulator efficiency or improve
2145  * regulation performance.
2146  *
2147  * NOTE: Regulator system constraints must be set for this regulator before
2148  * calling this function otherwise this call will fail.
2149  */
2150 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2151 {
2152 	struct regulator_dev *rdev = regulator->rdev;
2153 	int ret;
2154 	int regulator_curr_mode;
2155 
2156 	mutex_lock(&rdev->mutex);
2157 
2158 	/* sanity check */
2159 	if (!rdev->desc->ops->set_mode) {
2160 		ret = -EINVAL;
2161 		goto out;
2162 	}
2163 
2164 	/* return if the same mode is requested */
2165 	if (rdev->desc->ops->get_mode) {
2166 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2167 		if (regulator_curr_mode == mode) {
2168 			ret = 0;
2169 			goto out;
2170 		}
2171 	}
2172 
2173 	/* constraints check */
2174 	ret = regulator_mode_constrain(rdev, &mode);
2175 	if (ret < 0)
2176 		goto out;
2177 
2178 	ret = rdev->desc->ops->set_mode(rdev, mode);
2179 out:
2180 	mutex_unlock(&rdev->mutex);
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(regulator_set_mode);
2184 
2185 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2186 {
2187 	int ret;
2188 
2189 	mutex_lock(&rdev->mutex);
2190 
2191 	/* sanity check */
2192 	if (!rdev->desc->ops->get_mode) {
2193 		ret = -EINVAL;
2194 		goto out;
2195 	}
2196 
2197 	ret = rdev->desc->ops->get_mode(rdev);
2198 out:
2199 	mutex_unlock(&rdev->mutex);
2200 	return ret;
2201 }
2202 
2203 /**
2204  * regulator_get_mode - get regulator operating mode
2205  * @regulator: regulator source
2206  *
2207  * Get the current regulator operating mode.
2208  */
2209 unsigned int regulator_get_mode(struct regulator *regulator)
2210 {
2211 	return _regulator_get_mode(regulator->rdev);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_get_mode);
2214 
2215 /**
2216  * regulator_set_optimum_mode - set regulator optimum operating mode
2217  * @regulator: regulator source
2218  * @uA_load: load current
2219  *
2220  * Notifies the regulator core of a new device load. This is then used by
2221  * DRMS (if enabled by constraints) to set the most efficient regulator
2222  * operating mode for the new regulator loading.
2223  *
2224  * Consumer devices notify their supply regulator of the maximum power
2225  * they will require (can be taken from device datasheet in the power
2226  * consumption tables) when they change operational status and hence power
2227  * state. Examples of operational state changes that can affect power
2228  * consumption are :-
2229  *
2230  *    o Device is opened / closed.
2231  *    o Device I/O is about to begin or has just finished.
2232  *    o Device is idling in between work.
2233  *
2234  * This information is also exported via sysfs to userspace.
2235  *
2236  * DRMS will sum the total requested load on the regulator and change
2237  * to the most efficient operating mode if platform constraints allow.
2238  *
2239  * Returns the new regulator mode or error.
2240  */
2241 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2242 {
2243 	struct regulator_dev *rdev = regulator->rdev;
2244 	struct regulator *consumer;
2245 	int ret, output_uV, input_uV, total_uA_load = 0;
2246 	unsigned int mode;
2247 
2248 	mutex_lock(&rdev->mutex);
2249 
2250 	/*
2251 	 * first check to see if we can set modes at all, otherwise just
2252 	 * tell the consumer everything is OK.
2253 	 */
2254 	regulator->uA_load = uA_load;
2255 	ret = regulator_check_drms(rdev);
2256 	if (ret < 0) {
2257 		ret = 0;
2258 		goto out;
2259 	}
2260 
2261 	if (!rdev->desc->ops->get_optimum_mode)
2262 		goto out;
2263 
2264 	/*
2265 	 * we can actually do this so any errors are indicators of
2266 	 * potential real failure.
2267 	 */
2268 	ret = -EINVAL;
2269 
2270 	/* get output voltage */
2271 	output_uV = _regulator_get_voltage(rdev);
2272 	if (output_uV <= 0) {
2273 		rdev_err(rdev, "invalid output voltage found\n");
2274 		goto out;
2275 	}
2276 
2277 	/* get input voltage */
2278 	input_uV = 0;
2279 	if (rdev->supply)
2280 		input_uV = regulator_get_voltage(rdev->supply);
2281 	if (input_uV <= 0)
2282 		input_uV = rdev->constraints->input_uV;
2283 	if (input_uV <= 0) {
2284 		rdev_err(rdev, "invalid input voltage found\n");
2285 		goto out;
2286 	}
2287 
2288 	/* calc total requested load for this regulator */
2289 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2290 		total_uA_load += consumer->uA_load;
2291 
2292 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2293 						 input_uV, output_uV,
2294 						 total_uA_load);
2295 	ret = regulator_mode_constrain(rdev, &mode);
2296 	if (ret < 0) {
2297 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2298 			 total_uA_load, input_uV, output_uV);
2299 		goto out;
2300 	}
2301 
2302 	ret = rdev->desc->ops->set_mode(rdev, mode);
2303 	if (ret < 0) {
2304 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2305 		goto out;
2306 	}
2307 	ret = mode;
2308 out:
2309 	mutex_unlock(&rdev->mutex);
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2313 
2314 /**
2315  * regulator_register_notifier - register regulator event notifier
2316  * @regulator: regulator source
2317  * @nb: notifier block
2318  *
2319  * Register notifier block to receive regulator events.
2320  */
2321 int regulator_register_notifier(struct regulator *regulator,
2322 			      struct notifier_block *nb)
2323 {
2324 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2325 						nb);
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2328 
2329 /**
2330  * regulator_unregister_notifier - unregister regulator event notifier
2331  * @regulator: regulator source
2332  * @nb: notifier block
2333  *
2334  * Unregister regulator event notifier block.
2335  */
2336 int regulator_unregister_notifier(struct regulator *regulator,
2337 				struct notifier_block *nb)
2338 {
2339 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2340 						  nb);
2341 }
2342 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2343 
2344 /* notify regulator consumers and downstream regulator consumers.
2345  * Note mutex must be held by caller.
2346  */
2347 static void _notifier_call_chain(struct regulator_dev *rdev,
2348 				  unsigned long event, void *data)
2349 {
2350 	/* call rdev chain first */
2351 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2352 }
2353 
2354 /**
2355  * regulator_bulk_get - get multiple regulator consumers
2356  *
2357  * @dev:           Device to supply
2358  * @num_consumers: Number of consumers to register
2359  * @consumers:     Configuration of consumers; clients are stored here.
2360  *
2361  * @return 0 on success, an errno on failure.
2362  *
2363  * This helper function allows drivers to get several regulator
2364  * consumers in one operation.  If any of the regulators cannot be
2365  * acquired then any regulators that were allocated will be freed
2366  * before returning to the caller.
2367  */
2368 int regulator_bulk_get(struct device *dev, int num_consumers,
2369 		       struct regulator_bulk_data *consumers)
2370 {
2371 	int i;
2372 	int ret;
2373 
2374 	for (i = 0; i < num_consumers; i++)
2375 		consumers[i].consumer = NULL;
2376 
2377 	for (i = 0; i < num_consumers; i++) {
2378 		consumers[i].consumer = regulator_get(dev,
2379 						      consumers[i].supply);
2380 		if (IS_ERR(consumers[i].consumer)) {
2381 			ret = PTR_ERR(consumers[i].consumer);
2382 			dev_err(dev, "Failed to get supply '%s': %d\n",
2383 				consumers[i].supply, ret);
2384 			consumers[i].consumer = NULL;
2385 			goto err;
2386 		}
2387 	}
2388 
2389 	return 0;
2390 
2391 err:
2392 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2393 		regulator_put(consumers[i].consumer);
2394 
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2398 
2399 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2400 {
2401 	struct regulator_bulk_data *bulk = data;
2402 
2403 	bulk->ret = regulator_enable(bulk->consumer);
2404 }
2405 
2406 /**
2407  * regulator_bulk_enable - enable multiple regulator consumers
2408  *
2409  * @num_consumers: Number of consumers
2410  * @consumers:     Consumer data; clients are stored here.
2411  * @return         0 on success, an errno on failure
2412  *
2413  * This convenience API allows consumers to enable multiple regulator
2414  * clients in a single API call.  If any consumers cannot be enabled
2415  * then any others that were enabled will be disabled again prior to
2416  * return.
2417  */
2418 int regulator_bulk_enable(int num_consumers,
2419 			  struct regulator_bulk_data *consumers)
2420 {
2421 	LIST_HEAD(async_domain);
2422 	int i;
2423 	int ret = 0;
2424 
2425 	for (i = 0; i < num_consumers; i++)
2426 		async_schedule_domain(regulator_bulk_enable_async,
2427 				      &consumers[i], &async_domain);
2428 
2429 	async_synchronize_full_domain(&async_domain);
2430 
2431 	/* If any consumer failed we need to unwind any that succeeded */
2432 	for (i = 0; i < num_consumers; i++) {
2433 		if (consumers[i].ret != 0) {
2434 			ret = consumers[i].ret;
2435 			goto err;
2436 		}
2437 	}
2438 
2439 	return 0;
2440 
2441 err:
2442 	for (i = 0; i < num_consumers; i++)
2443 		if (consumers[i].ret == 0)
2444 			regulator_disable(consumers[i].consumer);
2445 		else
2446 			pr_err("Failed to enable %s: %d\n",
2447 			       consumers[i].supply, consumers[i].ret);
2448 
2449 	return ret;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2452 
2453 /**
2454  * regulator_bulk_disable - disable multiple regulator consumers
2455  *
2456  * @num_consumers: Number of consumers
2457  * @consumers:     Consumer data; clients are stored here.
2458  * @return         0 on success, an errno on failure
2459  *
2460  * This convenience API allows consumers to disable multiple regulator
2461  * clients in a single API call.  If any consumers cannot be enabled
2462  * then any others that were disabled will be disabled again prior to
2463  * return.
2464  */
2465 int regulator_bulk_disable(int num_consumers,
2466 			   struct regulator_bulk_data *consumers)
2467 {
2468 	int i;
2469 	int ret;
2470 
2471 	for (i = 0; i < num_consumers; i++) {
2472 		ret = regulator_disable(consumers[i].consumer);
2473 		if (ret != 0)
2474 			goto err;
2475 	}
2476 
2477 	return 0;
2478 
2479 err:
2480 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2481 	for (--i; i >= 0; --i)
2482 		regulator_enable(consumers[i].consumer);
2483 
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2487 
2488 /**
2489  * regulator_bulk_free - free multiple regulator consumers
2490  *
2491  * @num_consumers: Number of consumers
2492  * @consumers:     Consumer data; clients are stored here.
2493  *
2494  * This convenience API allows consumers to free multiple regulator
2495  * clients in a single API call.
2496  */
2497 void regulator_bulk_free(int num_consumers,
2498 			 struct regulator_bulk_data *consumers)
2499 {
2500 	int i;
2501 
2502 	for (i = 0; i < num_consumers; i++) {
2503 		regulator_put(consumers[i].consumer);
2504 		consumers[i].consumer = NULL;
2505 	}
2506 }
2507 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2508 
2509 /**
2510  * regulator_notifier_call_chain - call regulator event notifier
2511  * @rdev: regulator source
2512  * @event: notifier block
2513  * @data: callback-specific data.
2514  *
2515  * Called by regulator drivers to notify clients a regulator event has
2516  * occurred. We also notify regulator clients downstream.
2517  * Note lock must be held by caller.
2518  */
2519 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2520 				  unsigned long event, void *data)
2521 {
2522 	_notifier_call_chain(rdev, event, data);
2523 	return NOTIFY_DONE;
2524 
2525 }
2526 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2527 
2528 /**
2529  * regulator_mode_to_status - convert a regulator mode into a status
2530  *
2531  * @mode: Mode to convert
2532  *
2533  * Convert a regulator mode into a status.
2534  */
2535 int regulator_mode_to_status(unsigned int mode)
2536 {
2537 	switch (mode) {
2538 	case REGULATOR_MODE_FAST:
2539 		return REGULATOR_STATUS_FAST;
2540 	case REGULATOR_MODE_NORMAL:
2541 		return REGULATOR_STATUS_NORMAL;
2542 	case REGULATOR_MODE_IDLE:
2543 		return REGULATOR_STATUS_IDLE;
2544 	case REGULATOR_STATUS_STANDBY:
2545 		return REGULATOR_STATUS_STANDBY;
2546 	default:
2547 		return 0;
2548 	}
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2551 
2552 /*
2553  * To avoid cluttering sysfs (and memory) with useless state, only
2554  * create attributes that can be meaningfully displayed.
2555  */
2556 static int add_regulator_attributes(struct regulator_dev *rdev)
2557 {
2558 	struct device		*dev = &rdev->dev;
2559 	struct regulator_ops	*ops = rdev->desc->ops;
2560 	int			status = 0;
2561 
2562 	/* some attributes need specific methods to be displayed */
2563 	if (ops->get_voltage || ops->get_voltage_sel) {
2564 		status = device_create_file(dev, &dev_attr_microvolts);
2565 		if (status < 0)
2566 			return status;
2567 	}
2568 	if (ops->get_current_limit) {
2569 		status = device_create_file(dev, &dev_attr_microamps);
2570 		if (status < 0)
2571 			return status;
2572 	}
2573 	if (ops->get_mode) {
2574 		status = device_create_file(dev, &dev_attr_opmode);
2575 		if (status < 0)
2576 			return status;
2577 	}
2578 	if (ops->is_enabled) {
2579 		status = device_create_file(dev, &dev_attr_state);
2580 		if (status < 0)
2581 			return status;
2582 	}
2583 	if (ops->get_status) {
2584 		status = device_create_file(dev, &dev_attr_status);
2585 		if (status < 0)
2586 			return status;
2587 	}
2588 
2589 	/* some attributes are type-specific */
2590 	if (rdev->desc->type == REGULATOR_CURRENT) {
2591 		status = device_create_file(dev, &dev_attr_requested_microamps);
2592 		if (status < 0)
2593 			return status;
2594 	}
2595 
2596 	/* all the other attributes exist to support constraints;
2597 	 * don't show them if there are no constraints, or if the
2598 	 * relevant supporting methods are missing.
2599 	 */
2600 	if (!rdev->constraints)
2601 		return status;
2602 
2603 	/* constraints need specific supporting methods */
2604 	if (ops->set_voltage || ops->set_voltage_sel) {
2605 		status = device_create_file(dev, &dev_attr_min_microvolts);
2606 		if (status < 0)
2607 			return status;
2608 		status = device_create_file(dev, &dev_attr_max_microvolts);
2609 		if (status < 0)
2610 			return status;
2611 	}
2612 	if (ops->set_current_limit) {
2613 		status = device_create_file(dev, &dev_attr_min_microamps);
2614 		if (status < 0)
2615 			return status;
2616 		status = device_create_file(dev, &dev_attr_max_microamps);
2617 		if (status < 0)
2618 			return status;
2619 	}
2620 
2621 	/* suspend mode constraints need multiple supporting methods */
2622 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2623 		return status;
2624 
2625 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2626 	if (status < 0)
2627 		return status;
2628 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2629 	if (status < 0)
2630 		return status;
2631 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2632 	if (status < 0)
2633 		return status;
2634 
2635 	if (ops->set_suspend_voltage) {
2636 		status = device_create_file(dev,
2637 				&dev_attr_suspend_standby_microvolts);
2638 		if (status < 0)
2639 			return status;
2640 		status = device_create_file(dev,
2641 				&dev_attr_suspend_mem_microvolts);
2642 		if (status < 0)
2643 			return status;
2644 		status = device_create_file(dev,
2645 				&dev_attr_suspend_disk_microvolts);
2646 		if (status < 0)
2647 			return status;
2648 	}
2649 
2650 	if (ops->set_suspend_mode) {
2651 		status = device_create_file(dev,
2652 				&dev_attr_suspend_standby_mode);
2653 		if (status < 0)
2654 			return status;
2655 		status = device_create_file(dev,
2656 				&dev_attr_suspend_mem_mode);
2657 		if (status < 0)
2658 			return status;
2659 		status = device_create_file(dev,
2660 				&dev_attr_suspend_disk_mode);
2661 		if (status < 0)
2662 			return status;
2663 	}
2664 
2665 	return status;
2666 }
2667 
2668 static void rdev_init_debugfs(struct regulator_dev *rdev)
2669 {
2670 #ifdef CONFIG_DEBUG_FS
2671 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2672 	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2673 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2674 		rdev->debugfs = NULL;
2675 		return;
2676 	}
2677 
2678 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2679 			   &rdev->use_count);
2680 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2681 			   &rdev->open_count);
2682 #endif
2683 }
2684 
2685 /**
2686  * regulator_register - register regulator
2687  * @regulator_desc: regulator to register
2688  * @dev: struct device for the regulator
2689  * @init_data: platform provided init data, passed through by driver
2690  * @driver_data: private regulator data
2691  *
2692  * Called by regulator drivers to register a regulator.
2693  * Returns 0 on success.
2694  */
2695 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2696 	struct device *dev, const struct regulator_init_data *init_data,
2697 	void *driver_data, struct device_node *of_node)
2698 {
2699 	static atomic_t regulator_no = ATOMIC_INIT(0);
2700 	struct regulator_dev *rdev;
2701 	int ret, i;
2702 	const char *supply = NULL;
2703 
2704 	if (regulator_desc == NULL)
2705 		return ERR_PTR(-EINVAL);
2706 
2707 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2708 		return ERR_PTR(-EINVAL);
2709 
2710 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2711 	    regulator_desc->type != REGULATOR_CURRENT)
2712 		return ERR_PTR(-EINVAL);
2713 
2714 	if (!init_data)
2715 		return ERR_PTR(-EINVAL);
2716 
2717 	/* Only one of each should be implemented */
2718 	WARN_ON(regulator_desc->ops->get_voltage &&
2719 		regulator_desc->ops->get_voltage_sel);
2720 	WARN_ON(regulator_desc->ops->set_voltage &&
2721 		regulator_desc->ops->set_voltage_sel);
2722 
2723 	/* If we're using selectors we must implement list_voltage. */
2724 	if (regulator_desc->ops->get_voltage_sel &&
2725 	    !regulator_desc->ops->list_voltage) {
2726 		return ERR_PTR(-EINVAL);
2727 	}
2728 	if (regulator_desc->ops->set_voltage_sel &&
2729 	    !regulator_desc->ops->list_voltage) {
2730 		return ERR_PTR(-EINVAL);
2731 	}
2732 
2733 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2734 	if (rdev == NULL)
2735 		return ERR_PTR(-ENOMEM);
2736 
2737 	mutex_lock(&regulator_list_mutex);
2738 
2739 	mutex_init(&rdev->mutex);
2740 	rdev->reg_data = driver_data;
2741 	rdev->owner = regulator_desc->owner;
2742 	rdev->desc = regulator_desc;
2743 	INIT_LIST_HEAD(&rdev->consumer_list);
2744 	INIT_LIST_HEAD(&rdev->list);
2745 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2746 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2747 
2748 	/* preform any regulator specific init */
2749 	if (init_data->regulator_init) {
2750 		ret = init_data->regulator_init(rdev->reg_data);
2751 		if (ret < 0)
2752 			goto clean;
2753 	}
2754 
2755 	/* register with sysfs */
2756 	rdev->dev.class = &regulator_class;
2757 	rdev->dev.of_node = of_node;
2758 	rdev->dev.parent = dev;
2759 	dev_set_name(&rdev->dev, "regulator.%d",
2760 		     atomic_inc_return(&regulator_no) - 1);
2761 	ret = device_register(&rdev->dev);
2762 	if (ret != 0) {
2763 		put_device(&rdev->dev);
2764 		goto clean;
2765 	}
2766 
2767 	dev_set_drvdata(&rdev->dev, rdev);
2768 
2769 	/* set regulator constraints */
2770 	ret = set_machine_constraints(rdev, &init_data->constraints);
2771 	if (ret < 0)
2772 		goto scrub;
2773 
2774 	/* add attributes supported by this regulator */
2775 	ret = add_regulator_attributes(rdev);
2776 	if (ret < 0)
2777 		goto scrub;
2778 
2779 	if (init_data->supply_regulator)
2780 		supply = init_data->supply_regulator;
2781 	else if (regulator_desc->supply_name)
2782 		supply = regulator_desc->supply_name;
2783 
2784 	if (supply) {
2785 		struct regulator_dev *r;
2786 
2787 		r = regulator_dev_lookup(dev, supply);
2788 
2789 		if (!r) {
2790 			dev_err(dev, "Failed to find supply %s\n", supply);
2791 			ret = -ENODEV;
2792 			goto scrub;
2793 		}
2794 
2795 		ret = set_supply(rdev, r);
2796 		if (ret < 0)
2797 			goto scrub;
2798 	}
2799 
2800 	/* add consumers devices */
2801 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2802 		ret = set_consumer_device_supply(rdev,
2803 			init_data->consumer_supplies[i].dev,
2804 			init_data->consumer_supplies[i].dev_name,
2805 			init_data->consumer_supplies[i].supply);
2806 		if (ret < 0) {
2807 			dev_err(dev, "Failed to set supply %s\n",
2808 				init_data->consumer_supplies[i].supply);
2809 			goto unset_supplies;
2810 		}
2811 	}
2812 
2813 	list_add(&rdev->list, &regulator_list);
2814 
2815 	rdev_init_debugfs(rdev);
2816 out:
2817 	mutex_unlock(&regulator_list_mutex);
2818 	return rdev;
2819 
2820 unset_supplies:
2821 	unset_regulator_supplies(rdev);
2822 
2823 scrub:
2824 	kfree(rdev->constraints);
2825 	device_unregister(&rdev->dev);
2826 	/* device core frees rdev */
2827 	rdev = ERR_PTR(ret);
2828 	goto out;
2829 
2830 clean:
2831 	kfree(rdev);
2832 	rdev = ERR_PTR(ret);
2833 	goto out;
2834 }
2835 EXPORT_SYMBOL_GPL(regulator_register);
2836 
2837 /**
2838  * regulator_unregister - unregister regulator
2839  * @rdev: regulator to unregister
2840  *
2841  * Called by regulator drivers to unregister a regulator.
2842  */
2843 void regulator_unregister(struct regulator_dev *rdev)
2844 {
2845 	if (rdev == NULL)
2846 		return;
2847 
2848 	mutex_lock(&regulator_list_mutex);
2849 #ifdef CONFIG_DEBUG_FS
2850 	debugfs_remove_recursive(rdev->debugfs);
2851 #endif
2852 	flush_work_sync(&rdev->disable_work.work);
2853 	WARN_ON(rdev->open_count);
2854 	unset_regulator_supplies(rdev);
2855 	list_del(&rdev->list);
2856 	if (rdev->supply)
2857 		regulator_put(rdev->supply);
2858 	device_unregister(&rdev->dev);
2859 	kfree(rdev->constraints);
2860 	mutex_unlock(&regulator_list_mutex);
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_unregister);
2863 
2864 /**
2865  * regulator_suspend_prepare - prepare regulators for system wide suspend
2866  * @state: system suspend state
2867  *
2868  * Configure each regulator with it's suspend operating parameters for state.
2869  * This will usually be called by machine suspend code prior to supending.
2870  */
2871 int regulator_suspend_prepare(suspend_state_t state)
2872 {
2873 	struct regulator_dev *rdev;
2874 	int ret = 0;
2875 
2876 	/* ON is handled by regulator active state */
2877 	if (state == PM_SUSPEND_ON)
2878 		return -EINVAL;
2879 
2880 	mutex_lock(&regulator_list_mutex);
2881 	list_for_each_entry(rdev, &regulator_list, list) {
2882 
2883 		mutex_lock(&rdev->mutex);
2884 		ret = suspend_prepare(rdev, state);
2885 		mutex_unlock(&rdev->mutex);
2886 
2887 		if (ret < 0) {
2888 			rdev_err(rdev, "failed to prepare\n");
2889 			goto out;
2890 		}
2891 	}
2892 out:
2893 	mutex_unlock(&regulator_list_mutex);
2894 	return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2897 
2898 /**
2899  * regulator_suspend_finish - resume regulators from system wide suspend
2900  *
2901  * Turn on regulators that might be turned off by regulator_suspend_prepare
2902  * and that should be turned on according to the regulators properties.
2903  */
2904 int regulator_suspend_finish(void)
2905 {
2906 	struct regulator_dev *rdev;
2907 	int ret = 0, error;
2908 
2909 	mutex_lock(&regulator_list_mutex);
2910 	list_for_each_entry(rdev, &regulator_list, list) {
2911 		struct regulator_ops *ops = rdev->desc->ops;
2912 
2913 		mutex_lock(&rdev->mutex);
2914 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2915 				ops->enable) {
2916 			error = ops->enable(rdev);
2917 			if (error)
2918 				ret = error;
2919 		} else {
2920 			if (!has_full_constraints)
2921 				goto unlock;
2922 			if (!ops->disable)
2923 				goto unlock;
2924 			if (ops->is_enabled && !ops->is_enabled(rdev))
2925 				goto unlock;
2926 
2927 			error = ops->disable(rdev);
2928 			if (error)
2929 				ret = error;
2930 		}
2931 unlock:
2932 		mutex_unlock(&rdev->mutex);
2933 	}
2934 	mutex_unlock(&regulator_list_mutex);
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2938 
2939 /**
2940  * regulator_has_full_constraints - the system has fully specified constraints
2941  *
2942  * Calling this function will cause the regulator API to disable all
2943  * regulators which have a zero use count and don't have an always_on
2944  * constraint in a late_initcall.
2945  *
2946  * The intention is that this will become the default behaviour in a
2947  * future kernel release so users are encouraged to use this facility
2948  * now.
2949  */
2950 void regulator_has_full_constraints(void)
2951 {
2952 	has_full_constraints = 1;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2955 
2956 /**
2957  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2958  *
2959  * Calling this function will cause the regulator API to provide a
2960  * dummy regulator to consumers if no physical regulator is found,
2961  * allowing most consumers to proceed as though a regulator were
2962  * configured.  This allows systems such as those with software
2963  * controllable regulators for the CPU core only to be brought up more
2964  * readily.
2965  */
2966 void regulator_use_dummy_regulator(void)
2967 {
2968 	board_wants_dummy_regulator = true;
2969 }
2970 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2971 
2972 /**
2973  * rdev_get_drvdata - get rdev regulator driver data
2974  * @rdev: regulator
2975  *
2976  * Get rdev regulator driver private data. This call can be used in the
2977  * regulator driver context.
2978  */
2979 void *rdev_get_drvdata(struct regulator_dev *rdev)
2980 {
2981 	return rdev->reg_data;
2982 }
2983 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2984 
2985 /**
2986  * regulator_get_drvdata - get regulator driver data
2987  * @regulator: regulator
2988  *
2989  * Get regulator driver private data. This call can be used in the consumer
2990  * driver context when non API regulator specific functions need to be called.
2991  */
2992 void *regulator_get_drvdata(struct regulator *regulator)
2993 {
2994 	return regulator->rdev->reg_data;
2995 }
2996 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2997 
2998 /**
2999  * regulator_set_drvdata - set regulator driver data
3000  * @regulator: regulator
3001  * @data: data
3002  */
3003 void regulator_set_drvdata(struct regulator *regulator, void *data)
3004 {
3005 	regulator->rdev->reg_data = data;
3006 }
3007 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3008 
3009 /**
3010  * regulator_get_id - get regulator ID
3011  * @rdev: regulator
3012  */
3013 int rdev_get_id(struct regulator_dev *rdev)
3014 {
3015 	return rdev->desc->id;
3016 }
3017 EXPORT_SYMBOL_GPL(rdev_get_id);
3018 
3019 struct device *rdev_get_dev(struct regulator_dev *rdev)
3020 {
3021 	return &rdev->dev;
3022 }
3023 EXPORT_SYMBOL_GPL(rdev_get_dev);
3024 
3025 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3026 {
3027 	return reg_init_data->driver_data;
3028 }
3029 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3030 
3031 #ifdef CONFIG_DEBUG_FS
3032 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3033 				    size_t count, loff_t *ppos)
3034 {
3035 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3036 	ssize_t len, ret = 0;
3037 	struct regulator_map *map;
3038 
3039 	if (!buf)
3040 		return -ENOMEM;
3041 
3042 	list_for_each_entry(map, &regulator_map_list, list) {
3043 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3044 			       "%s -> %s.%s\n",
3045 			       rdev_get_name(map->regulator), map->dev_name,
3046 			       map->supply);
3047 		if (len >= 0)
3048 			ret += len;
3049 		if (ret > PAGE_SIZE) {
3050 			ret = PAGE_SIZE;
3051 			break;
3052 		}
3053 	}
3054 
3055 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3056 
3057 	kfree(buf);
3058 
3059 	return ret;
3060 }
3061 
3062 static const struct file_operations supply_map_fops = {
3063 	.read = supply_map_read_file,
3064 	.llseek = default_llseek,
3065 };
3066 #endif
3067 
3068 static int __init regulator_init(void)
3069 {
3070 	int ret;
3071 
3072 	ret = class_register(&regulator_class);
3073 
3074 #ifdef CONFIG_DEBUG_FS
3075 	debugfs_root = debugfs_create_dir("regulator", NULL);
3076 	if (IS_ERR(debugfs_root) || !debugfs_root) {
3077 		pr_warn("regulator: Failed to create debugfs directory\n");
3078 		debugfs_root = NULL;
3079 	}
3080 
3081 	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3082 				       NULL, &supply_map_fops)))
3083 		pr_warn("regulator: Failed to create supplies debugfs\n");
3084 #endif
3085 
3086 	regulator_dummy_init();
3087 
3088 	return ret;
3089 }
3090 
3091 /* init early to allow our consumers to complete system booting */
3092 core_initcall(regulator_init);
3093 
3094 static int __init regulator_init_complete(void)
3095 {
3096 	struct regulator_dev *rdev;
3097 	struct regulator_ops *ops;
3098 	struct regulation_constraints *c;
3099 	int enabled, ret;
3100 
3101 	mutex_lock(&regulator_list_mutex);
3102 
3103 	/* If we have a full configuration then disable any regulators
3104 	 * which are not in use or always_on.  This will become the
3105 	 * default behaviour in the future.
3106 	 */
3107 	list_for_each_entry(rdev, &regulator_list, list) {
3108 		ops = rdev->desc->ops;
3109 		c = rdev->constraints;
3110 
3111 		if (!ops->disable || (c && c->always_on))
3112 			continue;
3113 
3114 		mutex_lock(&rdev->mutex);
3115 
3116 		if (rdev->use_count)
3117 			goto unlock;
3118 
3119 		/* If we can't read the status assume it's on. */
3120 		if (ops->is_enabled)
3121 			enabled = ops->is_enabled(rdev);
3122 		else
3123 			enabled = 1;
3124 
3125 		if (!enabled)
3126 			goto unlock;
3127 
3128 		if (has_full_constraints) {
3129 			/* We log since this may kill the system if it
3130 			 * goes wrong. */
3131 			rdev_info(rdev, "disabling\n");
3132 			ret = ops->disable(rdev);
3133 			if (ret != 0) {
3134 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3135 			}
3136 		} else {
3137 			/* The intention is that in future we will
3138 			 * assume that full constraints are provided
3139 			 * so warn even if we aren't going to do
3140 			 * anything here.
3141 			 */
3142 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3143 		}
3144 
3145 unlock:
3146 		mutex_unlock(&rdev->mutex);
3147 	}
3148 
3149 	mutex_unlock(&regulator_list_mutex);
3150 
3151 	return 0;
3152 }
3153 late_initcall(regulator_init_complete);
3154