xref: /linux/drivers/regulator/core.c (revision 04eca28cde52cdf9eb91e127cc358ad79a8ec53b)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37 
38 #include "dummy.h"
39 #include "internal.h"
40 
41 #define rdev_crit(rdev, fmt, ...)					\
42 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)					\
44 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)					\
46 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)					\
48 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)					\
50 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	int gpio;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 	if (rdev->constraints && rdev->constraints->name)
115 		return rdev->constraints->name;
116 	else if (rdev->desc->name)
117 		return rdev->desc->name;
118 	else
119 		return "";
120 }
121 
122 static bool have_full_constraints(void)
123 {
124 	return has_full_constraints || of_have_populated_dt();
125 }
126 
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 	struct device_node *regnode = NULL;
139 	char prop_name[32]; /* 32 is max size of property name */
140 
141 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142 
143 	snprintf(prop_name, 32, "%s-supply", supply);
144 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145 
146 	if (!regnode) {
147 		dev_dbg(dev, "Looking up %s property in node %s failed",
148 				prop_name, dev->of_node->full_name);
149 		return NULL;
150 	}
151 	return regnode;
152 }
153 
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 	if (!rdev->constraints)
157 		return 0;
158 
159 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 		return 1;
161 	else
162 		return 0;
163 }
164 
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 				   int *min_uV, int *max_uV)
168 {
169 	BUG_ON(*min_uV > *max_uV);
170 
171 	if (!rdev->constraints) {
172 		rdev_err(rdev, "no constraints\n");
173 		return -ENODEV;
174 	}
175 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 		rdev_err(rdev, "operation not allowed\n");
177 		return -EPERM;
178 	}
179 
180 	if (*max_uV > rdev->constraints->max_uV)
181 		*max_uV = rdev->constraints->max_uV;
182 	if (*min_uV < rdev->constraints->min_uV)
183 		*min_uV = rdev->constraints->min_uV;
184 
185 	if (*min_uV > *max_uV) {
186 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 			 *min_uV, *max_uV);
188 		return -EINVAL;
189 	}
190 
191 	return 0;
192 }
193 
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 				     int *min_uV, int *max_uV)
199 {
200 	struct regulator *regulator;
201 
202 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 		/*
204 		 * Assume consumers that didn't say anything are OK
205 		 * with anything in the constraint range.
206 		 */
207 		if (!regulator->min_uV && !regulator->max_uV)
208 			continue;
209 
210 		if (*max_uV > regulator->max_uV)
211 			*max_uV = regulator->max_uV;
212 		if (*min_uV < regulator->min_uV)
213 			*min_uV = regulator->min_uV;
214 	}
215 
216 	if (*min_uV > *max_uV) {
217 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 			*min_uV, *max_uV);
219 		return -EINVAL;
220 	}
221 
222 	return 0;
223 }
224 
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 					int *min_uA, int *max_uA)
228 {
229 	BUG_ON(*min_uA > *max_uA);
230 
231 	if (!rdev->constraints) {
232 		rdev_err(rdev, "no constraints\n");
233 		return -ENODEV;
234 	}
235 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 		rdev_err(rdev, "operation not allowed\n");
237 		return -EPERM;
238 	}
239 
240 	if (*max_uA > rdev->constraints->max_uA)
241 		*max_uA = rdev->constraints->max_uA;
242 	if (*min_uA < rdev->constraints->min_uA)
243 		*min_uA = rdev->constraints->min_uA;
244 
245 	if (*min_uA > *max_uA) {
246 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 			 *min_uA, *max_uA);
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 	switch (*mode) {
258 	case REGULATOR_MODE_FAST:
259 	case REGULATOR_MODE_NORMAL:
260 	case REGULATOR_MODE_IDLE:
261 	case REGULATOR_MODE_STANDBY:
262 		break;
263 	default:
264 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 		return -EINVAL;
266 	}
267 
268 	if (!rdev->constraints) {
269 		rdev_err(rdev, "no constraints\n");
270 		return -ENODEV;
271 	}
272 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 		rdev_err(rdev, "operation not allowed\n");
274 		return -EPERM;
275 	}
276 
277 	/* The modes are bitmasks, the most power hungry modes having
278 	 * the lowest values. If the requested mode isn't supported
279 	 * try higher modes. */
280 	while (*mode) {
281 		if (rdev->constraints->valid_modes_mask & *mode)
282 			return 0;
283 		*mode /= 2;
284 	}
285 
286 	return -EINVAL;
287 }
288 
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 	if (!rdev->constraints) {
293 		rdev_err(rdev, "no constraints\n");
294 		return -ENODEV;
295 	}
296 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 		rdev_err(rdev, "operation not allowed\n");
298 		return -EPERM;
299 	}
300 	return 0;
301 }
302 
303 static ssize_t regulator_uV_show(struct device *dev,
304 				struct device_attribute *attr, char *buf)
305 {
306 	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 	ssize_t ret;
308 
309 	mutex_lock(&rdev->mutex);
310 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 	mutex_unlock(&rdev->mutex);
312 
313 	return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 
317 static ssize_t regulator_uA_show(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 
322 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325 
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 			 char *buf)
328 {
329 	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 
331 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334 
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 	switch (mode) {
338 	case REGULATOR_MODE_FAST:
339 		return sprintf(buf, "fast\n");
340 	case REGULATOR_MODE_NORMAL:
341 		return sprintf(buf, "normal\n");
342 	case REGULATOR_MODE_IDLE:
343 		return sprintf(buf, "idle\n");
344 	case REGULATOR_MODE_STANDBY:
345 		return sprintf(buf, "standby\n");
346 	}
347 	return sprintf(buf, "unknown\n");
348 }
349 
350 static ssize_t regulator_opmode_show(struct device *dev,
351 				    struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 
355 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 	if (state > 0)
362 		return sprintf(buf, "enabled\n");
363 	else if (state == 0)
364 		return sprintf(buf, "disabled\n");
365 	else
366 		return sprintf(buf, "unknown\n");
367 }
368 
369 static ssize_t regulator_state_show(struct device *dev,
370 				   struct device_attribute *attr, char *buf)
371 {
372 	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 	ssize_t ret;
374 
375 	mutex_lock(&rdev->mutex);
376 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 	mutex_unlock(&rdev->mutex);
378 
379 	return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 
383 static ssize_t regulator_status_show(struct device *dev,
384 				   struct device_attribute *attr, char *buf)
385 {
386 	struct regulator_dev *rdev = dev_get_drvdata(dev);
387 	int status;
388 	char *label;
389 
390 	status = rdev->desc->ops->get_status(rdev);
391 	if (status < 0)
392 		return status;
393 
394 	switch (status) {
395 	case REGULATOR_STATUS_OFF:
396 		label = "off";
397 		break;
398 	case REGULATOR_STATUS_ON:
399 		label = "on";
400 		break;
401 	case REGULATOR_STATUS_ERROR:
402 		label = "error";
403 		break;
404 	case REGULATOR_STATUS_FAST:
405 		label = "fast";
406 		break;
407 	case REGULATOR_STATUS_NORMAL:
408 		label = "normal";
409 		break;
410 	case REGULATOR_STATUS_IDLE:
411 		label = "idle";
412 		break;
413 	case REGULATOR_STATUS_STANDBY:
414 		label = "standby";
415 		break;
416 	case REGULATOR_STATUS_BYPASS:
417 		label = "bypass";
418 		break;
419 	case REGULATOR_STATUS_UNDEFINED:
420 		label = "undefined";
421 		break;
422 	default:
423 		return -ERANGE;
424 	}
425 
426 	return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 				    struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 
435 	if (!rdev->constraints)
436 		return sprintf(buf, "constraint not defined\n");
437 
438 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 				    struct device_attribute *attr, char *buf)
444 {
445 	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 
447 	if (!rdev->constraints)
448 		return sprintf(buf, "constraint not defined\n");
449 
450 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 				    struct device_attribute *attr, char *buf)
456 {
457 	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 
459 	if (!rdev->constraints)
460 		return sprintf(buf, "constraint not defined\n");
461 
462 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 				    struct device_attribute *attr, char *buf)
468 {
469 	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 
471 	if (!rdev->constraints)
472 		return sprintf(buf, "constraint not defined\n");
473 
474 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 				      struct device_attribute *attr, char *buf)
480 {
481 	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 	struct regulator *regulator;
483 	int uA = 0;
484 
485 	mutex_lock(&rdev->mutex);
486 	list_for_each_entry(regulator, &rdev->consumer_list, list)
487 		uA += regulator->uA_load;
488 	mutex_unlock(&rdev->mutex);
489 	return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 			      char *buf)
495 {
496 	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 	return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500 
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 			 char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	switch (rdev->desc->type) {
507 	case REGULATOR_VOLTAGE:
508 		return sprintf(buf, "voltage\n");
509 	case REGULATOR_CURRENT:
510 		return sprintf(buf, "current\n");
511 	}
512 	return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515 
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 				struct device_attribute *attr, char *buf)
518 {
519 	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 		regulator_suspend_mem_uV_show, NULL);
525 
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 				struct device_attribute *attr, char *buf)
528 {
529 	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 
531 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 		regulator_suspend_disk_uV_show, NULL);
535 
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 				struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 		regulator_suspend_standby_uV_show, NULL);
545 
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 				struct device_attribute *attr, char *buf)
548 {
549 	struct regulator_dev *rdev = dev_get_drvdata(dev);
550 
551 	return regulator_print_opmode(buf,
552 		rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 		regulator_suspend_mem_mode_show, NULL);
556 
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 				struct device_attribute *attr, char *buf)
559 {
560 	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 
562 	return regulator_print_opmode(buf,
563 		rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 		regulator_suspend_disk_mode_show, NULL);
567 
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 				struct device_attribute *attr, char *buf)
570 {
571 	struct regulator_dev *rdev = dev_get_drvdata(dev);
572 
573 	return regulator_print_opmode(buf,
574 		rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 		regulator_suspend_standby_mode_show, NULL);
578 
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 				   struct device_attribute *attr, char *buf)
581 {
582 	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 
584 	return regulator_print_state(buf,
585 			rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 		regulator_suspend_mem_state_show, NULL);
589 
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 				   struct device_attribute *attr, char *buf)
592 {
593 	struct regulator_dev *rdev = dev_get_drvdata(dev);
594 
595 	return regulator_print_state(buf,
596 			rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 		regulator_suspend_disk_state_show, NULL);
600 
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 				   struct device_attribute *attr, char *buf)
603 {
604 	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 
606 	return regulator_print_state(buf,
607 			rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 		regulator_suspend_standby_state_show, NULL);
611 
612 static ssize_t regulator_bypass_show(struct device *dev,
613 				     struct device_attribute *attr, char *buf)
614 {
615 	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 	const char *report;
617 	bool bypass;
618 	int ret;
619 
620 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621 
622 	if (ret != 0)
623 		report = "unknown";
624 	else if (bypass)
625 		report = "enabled";
626 	else
627 		report = "disabled";
628 
629 	return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 		   regulator_bypass_show, NULL);
633 
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639 	&dev_attr_name.attr,
640 	&dev_attr_num_users.attr,
641 	&dev_attr_type.attr,
642 	NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645 
646 static void regulator_dev_release(struct device *dev)
647 {
648 	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 	kfree(rdev);
650 }
651 
652 static struct class regulator_class = {
653 	.name = "regulator",
654 	.dev_release = regulator_dev_release,
655 	.dev_groups = regulator_dev_groups,
656 };
657 
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 	struct regulator *sibling;
663 	int current_uA = 0, output_uV, input_uV, err;
664 	unsigned int mode;
665 
666 	err = regulator_check_drms(rdev);
667 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 	    (!rdev->desc->ops->get_voltage &&
669 	     !rdev->desc->ops->get_voltage_sel) ||
670 	    !rdev->desc->ops->set_mode)
671 		return;
672 
673 	/* get output voltage */
674 	output_uV = _regulator_get_voltage(rdev);
675 	if (output_uV <= 0)
676 		return;
677 
678 	/* get input voltage */
679 	input_uV = 0;
680 	if (rdev->supply)
681 		input_uV = regulator_get_voltage(rdev->supply);
682 	if (input_uV <= 0)
683 		input_uV = rdev->constraints->input_uV;
684 	if (input_uV <= 0)
685 		return;
686 
687 	/* calc total requested load */
688 	list_for_each_entry(sibling, &rdev->consumer_list, list)
689 		current_uA += sibling->uA_load;
690 
691 	/* now get the optimum mode for our new total regulator load */
692 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 						  output_uV, current_uA);
694 
695 	/* check the new mode is allowed */
696 	err = regulator_mode_constrain(rdev, &mode);
697 	if (err == 0)
698 		rdev->desc->ops->set_mode(rdev, mode);
699 }
700 
701 static int suspend_set_state(struct regulator_dev *rdev,
702 	struct regulator_state *rstate)
703 {
704 	int ret = 0;
705 
706 	/* If we have no suspend mode configration don't set anything;
707 	 * only warn if the driver implements set_suspend_voltage or
708 	 * set_suspend_mode callback.
709 	 */
710 	if (!rstate->enabled && !rstate->disabled) {
711 		if (rdev->desc->ops->set_suspend_voltage ||
712 		    rdev->desc->ops->set_suspend_mode)
713 			rdev_warn(rdev, "No configuration\n");
714 		return 0;
715 	}
716 
717 	if (rstate->enabled && rstate->disabled) {
718 		rdev_err(rdev, "invalid configuration\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 		ret = rdev->desc->ops->set_suspend_enable(rdev);
724 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 		ret = 0;
728 
729 	if (ret < 0) {
730 		rdev_err(rdev, "failed to enabled/disable\n");
731 		return ret;
732 	}
733 
734 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 		if (ret < 0) {
737 			rdev_err(rdev, "failed to set voltage\n");
738 			return ret;
739 		}
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set mode\n");
746 			return ret;
747 		}
748 	}
749 	return ret;
750 }
751 
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 	if (!rdev->constraints)
756 		return -EINVAL;
757 
758 	switch (state) {
759 	case PM_SUSPEND_STANDBY:
760 		return suspend_set_state(rdev,
761 			&rdev->constraints->state_standby);
762 	case PM_SUSPEND_MEM:
763 		return suspend_set_state(rdev,
764 			&rdev->constraints->state_mem);
765 	case PM_SUSPEND_MAX:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_disk);
768 	default:
769 		return -EINVAL;
770 	}
771 }
772 
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 	struct regulation_constraints *constraints = rdev->constraints;
776 	char buf[80] = "";
777 	int count = 0;
778 	int ret;
779 
780 	if (constraints->min_uV && constraints->max_uV) {
781 		if (constraints->min_uV == constraints->max_uV)
782 			count += sprintf(buf + count, "%d mV ",
783 					 constraints->min_uV / 1000);
784 		else
785 			count += sprintf(buf + count, "%d <--> %d mV ",
786 					 constraints->min_uV / 1000,
787 					 constraints->max_uV / 1000);
788 	}
789 
790 	if (!constraints->min_uV ||
791 	    constraints->min_uV != constraints->max_uV) {
792 		ret = _regulator_get_voltage(rdev);
793 		if (ret > 0)
794 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 	}
796 
797 	if (constraints->uV_offset)
798 		count += sprintf(buf, "%dmV offset ",
799 				 constraints->uV_offset / 1000);
800 
801 	if (constraints->min_uA && constraints->max_uA) {
802 		if (constraints->min_uA == constraints->max_uA)
803 			count += sprintf(buf + count, "%d mA ",
804 					 constraints->min_uA / 1000);
805 		else
806 			count += sprintf(buf + count, "%d <--> %d mA ",
807 					 constraints->min_uA / 1000,
808 					 constraints->max_uA / 1000);
809 	}
810 
811 	if (!constraints->min_uA ||
812 	    constraints->min_uA != constraints->max_uA) {
813 		ret = _regulator_get_current_limit(rdev);
814 		if (ret > 0)
815 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 	}
817 
818 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 		count += sprintf(buf + count, "fast ");
820 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 		count += sprintf(buf + count, "normal ");
822 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 		count += sprintf(buf + count, "idle ");
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 		count += sprintf(buf + count, "standby");
826 
827 	if (!count)
828 		sprintf(buf, "no parameters");
829 
830 	rdev_info(rdev, "%s\n", buf);
831 
832 	if ((constraints->min_uV != constraints->max_uV) &&
833 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 		rdev_warn(rdev,
835 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837 
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 	struct regulation_constraints *constraints)
840 {
841 	struct regulator_ops *ops = rdev->desc->ops;
842 	int ret;
843 
844 	/* do we need to apply the constraint voltage */
845 	if (rdev->constraints->apply_uV &&
846 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 		int current_uV = _regulator_get_voltage(rdev);
848 		if (current_uV < 0) {
849 			rdev_err(rdev, "failed to get the current voltage\n");
850 			return current_uV;
851 		}
852 		if (current_uV < rdev->constraints->min_uV ||
853 		    current_uV > rdev->constraints->max_uV) {
854 			ret = _regulator_do_set_voltage(
855 				rdev, rdev->constraints->min_uV,
856 				rdev->constraints->max_uV);
857 			if (ret < 0) {
858 				rdev_err(rdev,
859 					"failed to apply %duV constraint\n",
860 					rdev->constraints->min_uV);
861 				return ret;
862 			}
863 		}
864 	}
865 
866 	/* constrain machine-level voltage specs to fit
867 	 * the actual range supported by this regulator.
868 	 */
869 	if (ops->list_voltage && rdev->desc->n_voltages) {
870 		int	count = rdev->desc->n_voltages;
871 		int	i;
872 		int	min_uV = INT_MAX;
873 		int	max_uV = INT_MIN;
874 		int	cmin = constraints->min_uV;
875 		int	cmax = constraints->max_uV;
876 
877 		/* it's safe to autoconfigure fixed-voltage supplies
878 		   and the constraints are used by list_voltage. */
879 		if (count == 1 && !cmin) {
880 			cmin = 1;
881 			cmax = INT_MAX;
882 			constraints->min_uV = cmin;
883 			constraints->max_uV = cmax;
884 		}
885 
886 		/* voltage constraints are optional */
887 		if ((cmin == 0) && (cmax == 0))
888 			return 0;
889 
890 		/* else require explicit machine-level constraints */
891 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892 			rdev_err(rdev, "invalid voltage constraints\n");
893 			return -EINVAL;
894 		}
895 
896 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897 		for (i = 0; i < count; i++) {
898 			int	value;
899 
900 			value = ops->list_voltage(rdev, i);
901 			if (value <= 0)
902 				continue;
903 
904 			/* maybe adjust [min_uV..max_uV] */
905 			if (value >= cmin && value < min_uV)
906 				min_uV = value;
907 			if (value <= cmax && value > max_uV)
908 				max_uV = value;
909 		}
910 
911 		/* final: [min_uV..max_uV] valid iff constraints valid */
912 		if (max_uV < min_uV) {
913 			rdev_err(rdev,
914 				 "unsupportable voltage constraints %u-%uuV\n",
915 				 min_uV, max_uV);
916 			return -EINVAL;
917 		}
918 
919 		/* use regulator's subset of machine constraints */
920 		if (constraints->min_uV < min_uV) {
921 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
922 				 constraints->min_uV, min_uV);
923 			constraints->min_uV = min_uV;
924 		}
925 		if (constraints->max_uV > max_uV) {
926 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
927 				 constraints->max_uV, max_uV);
928 			constraints->max_uV = max_uV;
929 		}
930 	}
931 
932 	return 0;
933 }
934 
935 static int machine_constraints_current(struct regulator_dev *rdev,
936 	struct regulation_constraints *constraints)
937 {
938 	struct regulator_ops *ops = rdev->desc->ops;
939 	int ret;
940 
941 	if (!constraints->min_uA && !constraints->max_uA)
942 		return 0;
943 
944 	if (constraints->min_uA > constraints->max_uA) {
945 		rdev_err(rdev, "Invalid current constraints\n");
946 		return -EINVAL;
947 	}
948 
949 	if (!ops->set_current_limit || !ops->get_current_limit) {
950 		rdev_warn(rdev, "Operation of current configuration missing\n");
951 		return 0;
952 	}
953 
954 	/* Set regulator current in constraints range */
955 	ret = ops->set_current_limit(rdev, constraints->min_uA,
956 			constraints->max_uA);
957 	if (ret < 0) {
958 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
959 		return ret;
960 	}
961 
962 	return 0;
963 }
964 
965 static int _regulator_do_enable(struct regulator_dev *rdev);
966 
967 /**
968  * set_machine_constraints - sets regulator constraints
969  * @rdev: regulator source
970  * @constraints: constraints to apply
971  *
972  * Allows platform initialisation code to define and constrain
973  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
974  * Constraints *must* be set by platform code in order for some
975  * regulator operations to proceed i.e. set_voltage, set_current_limit,
976  * set_mode.
977  */
978 static int set_machine_constraints(struct regulator_dev *rdev,
979 	const struct regulation_constraints *constraints)
980 {
981 	int ret = 0;
982 	struct regulator_ops *ops = rdev->desc->ops;
983 
984 	if (constraints)
985 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
986 					    GFP_KERNEL);
987 	else
988 		rdev->constraints = kzalloc(sizeof(*constraints),
989 					    GFP_KERNEL);
990 	if (!rdev->constraints)
991 		return -ENOMEM;
992 
993 	ret = machine_constraints_voltage(rdev, rdev->constraints);
994 	if (ret != 0)
995 		goto out;
996 
997 	ret = machine_constraints_current(rdev, rdev->constraints);
998 	if (ret != 0)
999 		goto out;
1000 
1001 	/* do we need to setup our suspend state */
1002 	if (rdev->constraints->initial_state) {
1003 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004 		if (ret < 0) {
1005 			rdev_err(rdev, "failed to set suspend state\n");
1006 			goto out;
1007 		}
1008 	}
1009 
1010 	if (rdev->constraints->initial_mode) {
1011 		if (!ops->set_mode) {
1012 			rdev_err(rdev, "no set_mode operation\n");
1013 			ret = -EINVAL;
1014 			goto out;
1015 		}
1016 
1017 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018 		if (ret < 0) {
1019 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020 			goto out;
1021 		}
1022 	}
1023 
1024 	/* If the constraints say the regulator should be on at this point
1025 	 * and we have control then make sure it is enabled.
1026 	 */
1027 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1028 		ret = _regulator_do_enable(rdev);
1029 		if (ret < 0 && ret != -EINVAL) {
1030 			rdev_err(rdev, "failed to enable\n");
1031 			goto out;
1032 		}
1033 	}
1034 
1035 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1036 		&& ops->set_ramp_delay) {
1037 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1038 		if (ret < 0) {
1039 			rdev_err(rdev, "failed to set ramp_delay\n");
1040 			goto out;
1041 		}
1042 	}
1043 
1044 	print_constraints(rdev);
1045 	return 0;
1046 out:
1047 	kfree(rdev->constraints);
1048 	rdev->constraints = NULL;
1049 	return ret;
1050 }
1051 
1052 /**
1053  * set_supply - set regulator supply regulator
1054  * @rdev: regulator name
1055  * @supply_rdev: supply regulator name
1056  *
1057  * Called by platform initialisation code to set the supply regulator for this
1058  * regulator. This ensures that a regulators supply will also be enabled by the
1059  * core if it's child is enabled.
1060  */
1061 static int set_supply(struct regulator_dev *rdev,
1062 		      struct regulator_dev *supply_rdev)
1063 {
1064 	int err;
1065 
1066 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1067 
1068 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069 	if (rdev->supply == NULL) {
1070 		err = -ENOMEM;
1071 		return err;
1072 	}
1073 	supply_rdev->open_count++;
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080  * @rdev:         regulator source
1081  * @consumer_dev_name: dev_name() string for device supply applies to
1082  * @supply:       symbolic name for supply
1083  *
1084  * Allows platform initialisation code to map physical regulator
1085  * sources to symbolic names for supplies for use by devices.  Devices
1086  * should use these symbolic names to request regulators, avoiding the
1087  * need to provide board-specific regulator names as platform data.
1088  */
1089 static int set_consumer_device_supply(struct regulator_dev *rdev,
1090 				      const char *consumer_dev_name,
1091 				      const char *supply)
1092 {
1093 	struct regulator_map *node;
1094 	int has_dev;
1095 
1096 	if (supply == NULL)
1097 		return -EINVAL;
1098 
1099 	if (consumer_dev_name != NULL)
1100 		has_dev = 1;
1101 	else
1102 		has_dev = 0;
1103 
1104 	list_for_each_entry(node, &regulator_map_list, list) {
1105 		if (node->dev_name && consumer_dev_name) {
1106 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1107 				continue;
1108 		} else if (node->dev_name || consumer_dev_name) {
1109 			continue;
1110 		}
1111 
1112 		if (strcmp(node->supply, supply) != 0)
1113 			continue;
1114 
1115 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1116 			 consumer_dev_name,
1117 			 dev_name(&node->regulator->dev),
1118 			 node->regulator->desc->name,
1119 			 supply,
1120 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1121 		return -EBUSY;
1122 	}
1123 
1124 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125 	if (node == NULL)
1126 		return -ENOMEM;
1127 
1128 	node->regulator = rdev;
1129 	node->supply = supply;
1130 
1131 	if (has_dev) {
1132 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1133 		if (node->dev_name == NULL) {
1134 			kfree(node);
1135 			return -ENOMEM;
1136 		}
1137 	}
1138 
1139 	list_add(&node->list, &regulator_map_list);
1140 	return 0;
1141 }
1142 
1143 static void unset_regulator_supplies(struct regulator_dev *rdev)
1144 {
1145 	struct regulator_map *node, *n;
1146 
1147 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1148 		if (rdev == node->regulator) {
1149 			list_del(&node->list);
1150 			kfree(node->dev_name);
1151 			kfree(node);
1152 		}
1153 	}
1154 }
1155 
1156 #define REG_STR_SIZE	64
1157 
1158 static struct regulator *create_regulator(struct regulator_dev *rdev,
1159 					  struct device *dev,
1160 					  const char *supply_name)
1161 {
1162 	struct regulator *regulator;
1163 	char buf[REG_STR_SIZE];
1164 	int err, size;
1165 
1166 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1167 	if (regulator == NULL)
1168 		return NULL;
1169 
1170 	mutex_lock(&rdev->mutex);
1171 	regulator->rdev = rdev;
1172 	list_add(&regulator->list, &rdev->consumer_list);
1173 
1174 	if (dev) {
1175 		regulator->dev = dev;
1176 
1177 		/* Add a link to the device sysfs entry */
1178 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1179 				 dev->kobj.name, supply_name);
1180 		if (size >= REG_STR_SIZE)
1181 			goto overflow_err;
1182 
1183 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1184 		if (regulator->supply_name == NULL)
1185 			goto overflow_err;
1186 
1187 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1188 					buf);
1189 		if (err) {
1190 			rdev_warn(rdev, "could not add device link %s err %d\n",
1191 				  dev->kobj.name, err);
1192 			/* non-fatal */
1193 		}
1194 	} else {
1195 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1196 		if (regulator->supply_name == NULL)
1197 			goto overflow_err;
1198 	}
1199 
1200 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1201 						rdev->debugfs);
1202 	if (!regulator->debugfs) {
1203 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1204 	} else {
1205 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1206 				   &regulator->uA_load);
1207 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1208 				   &regulator->min_uV);
1209 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1210 				   &regulator->max_uV);
1211 	}
1212 
1213 	/*
1214 	 * Check now if the regulator is an always on regulator - if
1215 	 * it is then we don't need to do nearly so much work for
1216 	 * enable/disable calls.
1217 	 */
1218 	if (!_regulator_can_change_status(rdev) &&
1219 	    _regulator_is_enabled(rdev))
1220 		regulator->always_on = true;
1221 
1222 	mutex_unlock(&rdev->mutex);
1223 	return regulator;
1224 overflow_err:
1225 	list_del(&regulator->list);
1226 	kfree(regulator);
1227 	mutex_unlock(&rdev->mutex);
1228 	return NULL;
1229 }
1230 
1231 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1232 {
1233 	if (rdev->constraints && rdev->constraints->enable_time)
1234 		return rdev->constraints->enable_time;
1235 	if (!rdev->desc->ops->enable_time)
1236 		return rdev->desc->enable_time;
1237 	return rdev->desc->ops->enable_time(rdev);
1238 }
1239 
1240 static struct regulator_supply_alias *regulator_find_supply_alias(
1241 		struct device *dev, const char *supply)
1242 {
1243 	struct regulator_supply_alias *map;
1244 
1245 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1246 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1247 			return map;
1248 
1249 	return NULL;
1250 }
1251 
1252 static void regulator_supply_alias(struct device **dev, const char **supply)
1253 {
1254 	struct regulator_supply_alias *map;
1255 
1256 	map = regulator_find_supply_alias(*dev, *supply);
1257 	if (map) {
1258 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1259 				*supply, map->alias_supply,
1260 				dev_name(map->alias_dev));
1261 		*dev = map->alias_dev;
1262 		*supply = map->alias_supply;
1263 	}
1264 }
1265 
1266 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267 						  const char *supply,
1268 						  int *ret)
1269 {
1270 	struct regulator_dev *r;
1271 	struct device_node *node;
1272 	struct regulator_map *map;
1273 	const char *devname = NULL;
1274 
1275 	regulator_supply_alias(&dev, &supply);
1276 
1277 	/* first do a dt based lookup */
1278 	if (dev && dev->of_node) {
1279 		node = of_get_regulator(dev, supply);
1280 		if (node) {
1281 			list_for_each_entry(r, &regulator_list, list)
1282 				if (r->dev.parent &&
1283 					node == r->dev.of_node)
1284 					return r;
1285 			*ret = -EPROBE_DEFER;
1286 			return NULL;
1287 		} else {
1288 			/*
1289 			 * If we couldn't even get the node then it's
1290 			 * not just that the device didn't register
1291 			 * yet, there's no node and we'll never
1292 			 * succeed.
1293 			 */
1294 			*ret = -ENODEV;
1295 		}
1296 	}
1297 
1298 	/* if not found, try doing it non-dt way */
1299 	if (dev)
1300 		devname = dev_name(dev);
1301 
1302 	list_for_each_entry(r, &regulator_list, list)
1303 		if (strcmp(rdev_get_name(r), supply) == 0)
1304 			return r;
1305 
1306 	list_for_each_entry(map, &regulator_map_list, list) {
1307 		/* If the mapping has a device set up it must match */
1308 		if (map->dev_name &&
1309 		    (!devname || strcmp(map->dev_name, devname)))
1310 			continue;
1311 
1312 		if (strcmp(map->supply, supply) == 0)
1313 			return map->regulator;
1314 	}
1315 
1316 
1317 	return NULL;
1318 }
1319 
1320 /* Internal regulator request function */
1321 static struct regulator *_regulator_get(struct device *dev, const char *id,
1322 					bool exclusive, bool allow_dummy)
1323 {
1324 	struct regulator_dev *rdev;
1325 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326 	const char *devname = NULL;
1327 	int ret;
1328 
1329 	if (id == NULL) {
1330 		pr_err("get() with no identifier\n");
1331 		return ERR_PTR(-EINVAL);
1332 	}
1333 
1334 	if (dev)
1335 		devname = dev_name(dev);
1336 
1337 	if (have_full_constraints())
1338 		ret = -ENODEV;
1339 	else
1340 		ret = -EPROBE_DEFER;
1341 
1342 	mutex_lock(&regulator_list_mutex);
1343 
1344 	rdev = regulator_dev_lookup(dev, id, &ret);
1345 	if (rdev)
1346 		goto found;
1347 
1348 	regulator = ERR_PTR(ret);
1349 
1350 	/*
1351 	 * If we have return value from dev_lookup fail, we do not expect to
1352 	 * succeed, so, quit with appropriate error value
1353 	 */
1354 	if (ret && ret != -ENODEV)
1355 		goto out;
1356 
1357 	if (!devname)
1358 		devname = "deviceless";
1359 
1360 	/*
1361 	 * Assume that a regulator is physically present and enabled
1362 	 * even if it isn't hooked up and just provide a dummy.
1363 	 */
1364 	if (have_full_constraints() && allow_dummy) {
1365 		pr_warn("%s supply %s not found, using dummy regulator\n",
1366 			devname, id);
1367 
1368 		rdev = dummy_regulator_rdev;
1369 		goto found;
1370 	/* Don't log an error when called from regulator_get_optional() */
1371 	} else if (!have_full_constraints() || exclusive) {
1372 		dev_warn(dev, "dummy supplies not allowed\n");
1373 	}
1374 
1375 	mutex_unlock(&regulator_list_mutex);
1376 	return regulator;
1377 
1378 found:
1379 	if (rdev->exclusive) {
1380 		regulator = ERR_PTR(-EPERM);
1381 		goto out;
1382 	}
1383 
1384 	if (exclusive && rdev->open_count) {
1385 		regulator = ERR_PTR(-EBUSY);
1386 		goto out;
1387 	}
1388 
1389 	if (!try_module_get(rdev->owner))
1390 		goto out;
1391 
1392 	regulator = create_regulator(rdev, dev, id);
1393 	if (regulator == NULL) {
1394 		regulator = ERR_PTR(-ENOMEM);
1395 		module_put(rdev->owner);
1396 		goto out;
1397 	}
1398 
1399 	rdev->open_count++;
1400 	if (exclusive) {
1401 		rdev->exclusive = 1;
1402 
1403 		ret = _regulator_is_enabled(rdev);
1404 		if (ret > 0)
1405 			rdev->use_count = 1;
1406 		else
1407 			rdev->use_count = 0;
1408 	}
1409 
1410 out:
1411 	mutex_unlock(&regulator_list_mutex);
1412 
1413 	return regulator;
1414 }
1415 
1416 /**
1417  * regulator_get - lookup and obtain a reference to a regulator.
1418  * @dev: device for regulator "consumer"
1419  * @id: Supply name or regulator ID.
1420  *
1421  * Returns a struct regulator corresponding to the regulator producer,
1422  * or IS_ERR() condition containing errno.
1423  *
1424  * Use of supply names configured via regulator_set_device_supply() is
1425  * strongly encouraged.  It is recommended that the supply name used
1426  * should match the name used for the supply and/or the relevant
1427  * device pins in the datasheet.
1428  */
1429 struct regulator *regulator_get(struct device *dev, const char *id)
1430 {
1431 	return _regulator_get(dev, id, false, true);
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_get);
1434 
1435 /**
1436  * regulator_get_exclusive - obtain exclusive access to a regulator.
1437  * @dev: device for regulator "consumer"
1438  * @id: Supply name or regulator ID.
1439  *
1440  * Returns a struct regulator corresponding to the regulator producer,
1441  * or IS_ERR() condition containing errno.  Other consumers will be
1442  * unable to obtain this regulator while this reference is held and the
1443  * use count for the regulator will be initialised to reflect the current
1444  * state of the regulator.
1445  *
1446  * This is intended for use by consumers which cannot tolerate shared
1447  * use of the regulator such as those which need to force the
1448  * regulator off for correct operation of the hardware they are
1449  * controlling.
1450  *
1451  * Use of supply names configured via regulator_set_device_supply() is
1452  * strongly encouraged.  It is recommended that the supply name used
1453  * should match the name used for the supply and/or the relevant
1454  * device pins in the datasheet.
1455  */
1456 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1457 {
1458 	return _regulator_get(dev, id, true, false);
1459 }
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1461 
1462 /**
1463  * regulator_get_optional - obtain optional access to a regulator.
1464  * @dev: device for regulator "consumer"
1465  * @id: Supply name or regulator ID.
1466  *
1467  * Returns a struct regulator corresponding to the regulator producer,
1468  * or IS_ERR() condition containing errno.
1469  *
1470  * This is intended for use by consumers for devices which can have
1471  * some supplies unconnected in normal use, such as some MMC devices.
1472  * It can allow the regulator core to provide stub supplies for other
1473  * supplies requested using normal regulator_get() calls without
1474  * disrupting the operation of drivers that can handle absent
1475  * supplies.
1476  *
1477  * Use of supply names configured via regulator_set_device_supply() is
1478  * strongly encouraged.  It is recommended that the supply name used
1479  * should match the name used for the supply and/or the relevant
1480  * device pins in the datasheet.
1481  */
1482 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1483 {
1484 	return _regulator_get(dev, id, false, false);
1485 }
1486 EXPORT_SYMBOL_GPL(regulator_get_optional);
1487 
1488 /* Locks held by regulator_put() */
1489 static void _regulator_put(struct regulator *regulator)
1490 {
1491 	struct regulator_dev *rdev;
1492 
1493 	if (regulator == NULL || IS_ERR(regulator))
1494 		return;
1495 
1496 	rdev = regulator->rdev;
1497 
1498 	debugfs_remove_recursive(regulator->debugfs);
1499 
1500 	/* remove any sysfs entries */
1501 	if (regulator->dev)
1502 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1503 	kfree(regulator->supply_name);
1504 	list_del(&regulator->list);
1505 	kfree(regulator);
1506 
1507 	rdev->open_count--;
1508 	rdev->exclusive = 0;
1509 
1510 	module_put(rdev->owner);
1511 }
1512 
1513 /**
1514  * regulator_put - "free" the regulator source
1515  * @regulator: regulator source
1516  *
1517  * Note: drivers must ensure that all regulator_enable calls made on this
1518  * regulator source are balanced by regulator_disable calls prior to calling
1519  * this function.
1520  */
1521 void regulator_put(struct regulator *regulator)
1522 {
1523 	mutex_lock(&regulator_list_mutex);
1524 	_regulator_put(regulator);
1525 	mutex_unlock(&regulator_list_mutex);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_put);
1528 
1529 /**
1530  * regulator_register_supply_alias - Provide device alias for supply lookup
1531  *
1532  * @dev: device that will be given as the regulator "consumer"
1533  * @id: Supply name or regulator ID
1534  * @alias_dev: device that should be used to lookup the supply
1535  * @alias_id: Supply name or regulator ID that should be used to lookup the
1536  * supply
1537  *
1538  * All lookups for id on dev will instead be conducted for alias_id on
1539  * alias_dev.
1540  */
1541 int regulator_register_supply_alias(struct device *dev, const char *id,
1542 				    struct device *alias_dev,
1543 				    const char *alias_id)
1544 {
1545 	struct regulator_supply_alias *map;
1546 
1547 	map = regulator_find_supply_alias(dev, id);
1548 	if (map)
1549 		return -EEXIST;
1550 
1551 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1552 	if (!map)
1553 		return -ENOMEM;
1554 
1555 	map->src_dev = dev;
1556 	map->src_supply = id;
1557 	map->alias_dev = alias_dev;
1558 	map->alias_supply = alias_id;
1559 
1560 	list_add(&map->list, &regulator_supply_alias_list);
1561 
1562 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1563 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1564 
1565 	return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1568 
1569 /**
1570  * regulator_unregister_supply_alias - Remove device alias
1571  *
1572  * @dev: device that will be given as the regulator "consumer"
1573  * @id: Supply name or regulator ID
1574  *
1575  * Remove a lookup alias if one exists for id on dev.
1576  */
1577 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1578 {
1579 	struct regulator_supply_alias *map;
1580 
1581 	map = regulator_find_supply_alias(dev, id);
1582 	if (map) {
1583 		list_del(&map->list);
1584 		kfree(map);
1585 	}
1586 }
1587 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1588 
1589 /**
1590  * regulator_bulk_register_supply_alias - register multiple aliases
1591  *
1592  * @dev: device that will be given as the regulator "consumer"
1593  * @id: List of supply names or regulator IDs
1594  * @alias_dev: device that should be used to lookup the supply
1595  * @alias_id: List of supply names or regulator IDs that should be used to
1596  * lookup the supply
1597  * @num_id: Number of aliases to register
1598  *
1599  * @return 0 on success, an errno on failure.
1600  *
1601  * This helper function allows drivers to register several supply
1602  * aliases in one operation.  If any of the aliases cannot be
1603  * registered any aliases that were registered will be removed
1604  * before returning to the caller.
1605  */
1606 int regulator_bulk_register_supply_alias(struct device *dev,
1607 					 const char *const *id,
1608 					 struct device *alias_dev,
1609 					 const char *const *alias_id,
1610 					 int num_id)
1611 {
1612 	int i;
1613 	int ret;
1614 
1615 	for (i = 0; i < num_id; ++i) {
1616 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1617 						      alias_id[i]);
1618 		if (ret < 0)
1619 			goto err;
1620 	}
1621 
1622 	return 0;
1623 
1624 err:
1625 	dev_err(dev,
1626 		"Failed to create supply alias %s,%s -> %s,%s\n",
1627 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1628 
1629 	while (--i >= 0)
1630 		regulator_unregister_supply_alias(dev, id[i]);
1631 
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1635 
1636 /**
1637  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1638  *
1639  * @dev: device that will be given as the regulator "consumer"
1640  * @id: List of supply names or regulator IDs
1641  * @num_id: Number of aliases to unregister
1642  *
1643  * This helper function allows drivers to unregister several supply
1644  * aliases in one operation.
1645  */
1646 void regulator_bulk_unregister_supply_alias(struct device *dev,
1647 					    const char *const *id,
1648 					    int num_id)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < num_id; ++i)
1653 		regulator_unregister_supply_alias(dev, id[i]);
1654 }
1655 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1656 
1657 
1658 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1659 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1660 				const struct regulator_config *config)
1661 {
1662 	struct regulator_enable_gpio *pin;
1663 	int ret;
1664 
1665 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1666 		if (pin->gpio == config->ena_gpio) {
1667 			rdev_dbg(rdev, "GPIO %d is already used\n",
1668 				config->ena_gpio);
1669 			goto update_ena_gpio_to_rdev;
1670 		}
1671 	}
1672 
1673 	ret = gpio_request_one(config->ena_gpio,
1674 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1675 				rdev_get_name(rdev));
1676 	if (ret)
1677 		return ret;
1678 
1679 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1680 	if (pin == NULL) {
1681 		gpio_free(config->ena_gpio);
1682 		return -ENOMEM;
1683 	}
1684 
1685 	pin->gpio = config->ena_gpio;
1686 	pin->ena_gpio_invert = config->ena_gpio_invert;
1687 	list_add(&pin->list, &regulator_ena_gpio_list);
1688 
1689 update_ena_gpio_to_rdev:
1690 	pin->request_count++;
1691 	rdev->ena_pin = pin;
1692 	return 0;
1693 }
1694 
1695 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1696 {
1697 	struct regulator_enable_gpio *pin, *n;
1698 
1699 	if (!rdev->ena_pin)
1700 		return;
1701 
1702 	/* Free the GPIO only in case of no use */
1703 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1704 		if (pin->gpio == rdev->ena_pin->gpio) {
1705 			if (pin->request_count <= 1) {
1706 				pin->request_count = 0;
1707 				gpio_free(pin->gpio);
1708 				list_del(&pin->list);
1709 				kfree(pin);
1710 			} else {
1711 				pin->request_count--;
1712 			}
1713 		}
1714 	}
1715 }
1716 
1717 /**
1718  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1719  * @rdev: regulator_dev structure
1720  * @enable: enable GPIO at initial use?
1721  *
1722  * GPIO is enabled in case of initial use. (enable_count is 0)
1723  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1724  */
1725 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1726 {
1727 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1728 
1729 	if (!pin)
1730 		return -EINVAL;
1731 
1732 	if (enable) {
1733 		/* Enable GPIO at initial use */
1734 		if (pin->enable_count == 0)
1735 			gpio_set_value_cansleep(pin->gpio,
1736 						!pin->ena_gpio_invert);
1737 
1738 		pin->enable_count++;
1739 	} else {
1740 		if (pin->enable_count > 1) {
1741 			pin->enable_count--;
1742 			return 0;
1743 		}
1744 
1745 		/* Disable GPIO if not used */
1746 		if (pin->enable_count <= 1) {
1747 			gpio_set_value_cansleep(pin->gpio,
1748 						pin->ena_gpio_invert);
1749 			pin->enable_count = 0;
1750 		}
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static int _regulator_do_enable(struct regulator_dev *rdev)
1757 {
1758 	int ret, delay;
1759 
1760 	/* Query before enabling in case configuration dependent.  */
1761 	ret = _regulator_get_enable_time(rdev);
1762 	if (ret >= 0) {
1763 		delay = ret;
1764 	} else {
1765 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1766 		delay = 0;
1767 	}
1768 
1769 	trace_regulator_enable(rdev_get_name(rdev));
1770 
1771 	if (rdev->ena_pin) {
1772 		ret = regulator_ena_gpio_ctrl(rdev, true);
1773 		if (ret < 0)
1774 			return ret;
1775 		rdev->ena_gpio_state = 1;
1776 	} else if (rdev->desc->ops->enable) {
1777 		ret = rdev->desc->ops->enable(rdev);
1778 		if (ret < 0)
1779 			return ret;
1780 	} else {
1781 		return -EINVAL;
1782 	}
1783 
1784 	/* Allow the regulator to ramp; it would be useful to extend
1785 	 * this for bulk operations so that the regulators can ramp
1786 	 * together.  */
1787 	trace_regulator_enable_delay(rdev_get_name(rdev));
1788 
1789 	/*
1790 	 * Delay for the requested amount of time as per the guidelines in:
1791 	 *
1792 	 *     Documentation/timers/timers-howto.txt
1793 	 *
1794 	 * The assumption here is that regulators will never be enabled in
1795 	 * atomic context and therefore sleeping functions can be used.
1796 	 */
1797 	if (delay) {
1798 		unsigned int ms = delay / 1000;
1799 		unsigned int us = delay % 1000;
1800 
1801 		if (ms > 0) {
1802 			/*
1803 			 * For small enough values, handle super-millisecond
1804 			 * delays in the usleep_range() call below.
1805 			 */
1806 			if (ms < 20)
1807 				us += ms * 1000;
1808 			else
1809 				msleep(ms);
1810 		}
1811 
1812 		/*
1813 		 * Give the scheduler some room to coalesce with any other
1814 		 * wakeup sources. For delays shorter than 10 us, don't even
1815 		 * bother setting up high-resolution timers and just busy-
1816 		 * loop.
1817 		 */
1818 		if (us >= 10)
1819 			usleep_range(us, us + 100);
1820 		else
1821 			udelay(us);
1822 	}
1823 
1824 	trace_regulator_enable_complete(rdev_get_name(rdev));
1825 
1826 	return 0;
1827 }
1828 
1829 /* locks held by regulator_enable() */
1830 static int _regulator_enable(struct regulator_dev *rdev)
1831 {
1832 	int ret;
1833 
1834 	/* check voltage and requested load before enabling */
1835 	if (rdev->constraints &&
1836 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1837 		drms_uA_update(rdev);
1838 
1839 	if (rdev->use_count == 0) {
1840 		/* The regulator may on if it's not switchable or left on */
1841 		ret = _regulator_is_enabled(rdev);
1842 		if (ret == -EINVAL || ret == 0) {
1843 			if (!_regulator_can_change_status(rdev))
1844 				return -EPERM;
1845 
1846 			ret = _regulator_do_enable(rdev);
1847 			if (ret < 0)
1848 				return ret;
1849 
1850 		} else if (ret < 0) {
1851 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1852 			return ret;
1853 		}
1854 		/* Fallthrough on positive return values - already enabled */
1855 	}
1856 
1857 	rdev->use_count++;
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  * regulator_enable - enable regulator output
1864  * @regulator: regulator source
1865  *
1866  * Request that the regulator be enabled with the regulator output at
1867  * the predefined voltage or current value.  Calls to regulator_enable()
1868  * must be balanced with calls to regulator_disable().
1869  *
1870  * NOTE: the output value can be set by other drivers, boot loader or may be
1871  * hardwired in the regulator.
1872  */
1873 int regulator_enable(struct regulator *regulator)
1874 {
1875 	struct regulator_dev *rdev = regulator->rdev;
1876 	int ret = 0;
1877 
1878 	if (regulator->always_on)
1879 		return 0;
1880 
1881 	if (rdev->supply) {
1882 		ret = regulator_enable(rdev->supply);
1883 		if (ret != 0)
1884 			return ret;
1885 	}
1886 
1887 	mutex_lock(&rdev->mutex);
1888 	ret = _regulator_enable(rdev);
1889 	mutex_unlock(&rdev->mutex);
1890 
1891 	if (ret != 0 && rdev->supply)
1892 		regulator_disable(rdev->supply);
1893 
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL_GPL(regulator_enable);
1897 
1898 static int _regulator_do_disable(struct regulator_dev *rdev)
1899 {
1900 	int ret;
1901 
1902 	trace_regulator_disable(rdev_get_name(rdev));
1903 
1904 	if (rdev->ena_pin) {
1905 		ret = regulator_ena_gpio_ctrl(rdev, false);
1906 		if (ret < 0)
1907 			return ret;
1908 		rdev->ena_gpio_state = 0;
1909 
1910 	} else if (rdev->desc->ops->disable) {
1911 		ret = rdev->desc->ops->disable(rdev);
1912 		if (ret != 0)
1913 			return ret;
1914 	}
1915 
1916 	trace_regulator_disable_complete(rdev_get_name(rdev));
1917 
1918 	return 0;
1919 }
1920 
1921 /* locks held by regulator_disable() */
1922 static int _regulator_disable(struct regulator_dev *rdev)
1923 {
1924 	int ret = 0;
1925 
1926 	if (WARN(rdev->use_count <= 0,
1927 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1928 		return -EIO;
1929 
1930 	/* are we the last user and permitted to disable ? */
1931 	if (rdev->use_count == 1 &&
1932 	    (rdev->constraints && !rdev->constraints->always_on)) {
1933 
1934 		/* we are last user */
1935 		if (_regulator_can_change_status(rdev)) {
1936 			ret = _regulator_do_disable(rdev);
1937 			if (ret < 0) {
1938 				rdev_err(rdev, "failed to disable\n");
1939 				return ret;
1940 			}
1941 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1942 					NULL);
1943 		}
1944 
1945 		rdev->use_count = 0;
1946 	} else if (rdev->use_count > 1) {
1947 
1948 		if (rdev->constraints &&
1949 			(rdev->constraints->valid_ops_mask &
1950 			REGULATOR_CHANGE_DRMS))
1951 			drms_uA_update(rdev);
1952 
1953 		rdev->use_count--;
1954 	}
1955 
1956 	return ret;
1957 }
1958 
1959 /**
1960  * regulator_disable - disable regulator output
1961  * @regulator: regulator source
1962  *
1963  * Disable the regulator output voltage or current.  Calls to
1964  * regulator_enable() must be balanced with calls to
1965  * regulator_disable().
1966  *
1967  * NOTE: this will only disable the regulator output if no other consumer
1968  * devices have it enabled, the regulator device supports disabling and
1969  * machine constraints permit this operation.
1970  */
1971 int regulator_disable(struct regulator *regulator)
1972 {
1973 	struct regulator_dev *rdev = regulator->rdev;
1974 	int ret = 0;
1975 
1976 	if (regulator->always_on)
1977 		return 0;
1978 
1979 	mutex_lock(&rdev->mutex);
1980 	ret = _regulator_disable(rdev);
1981 	mutex_unlock(&rdev->mutex);
1982 
1983 	if (ret == 0 && rdev->supply)
1984 		regulator_disable(rdev->supply);
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(regulator_disable);
1989 
1990 /* locks held by regulator_force_disable() */
1991 static int _regulator_force_disable(struct regulator_dev *rdev)
1992 {
1993 	int ret = 0;
1994 
1995 	ret = _regulator_do_disable(rdev);
1996 	if (ret < 0) {
1997 		rdev_err(rdev, "failed to force disable\n");
1998 		return ret;
1999 	}
2000 
2001 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2002 			REGULATOR_EVENT_DISABLE, NULL);
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  * regulator_force_disable - force disable regulator output
2009  * @regulator: regulator source
2010  *
2011  * Forcibly disable the regulator output voltage or current.
2012  * NOTE: this *will* disable the regulator output even if other consumer
2013  * devices have it enabled. This should be used for situations when device
2014  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2015  */
2016 int regulator_force_disable(struct regulator *regulator)
2017 {
2018 	struct regulator_dev *rdev = regulator->rdev;
2019 	int ret;
2020 
2021 	mutex_lock(&rdev->mutex);
2022 	regulator->uA_load = 0;
2023 	ret = _regulator_force_disable(regulator->rdev);
2024 	mutex_unlock(&rdev->mutex);
2025 
2026 	if (rdev->supply)
2027 		while (rdev->open_count--)
2028 			regulator_disable(rdev->supply);
2029 
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_force_disable);
2033 
2034 static void regulator_disable_work(struct work_struct *work)
2035 {
2036 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2037 						  disable_work.work);
2038 	int count, i, ret;
2039 
2040 	mutex_lock(&rdev->mutex);
2041 
2042 	BUG_ON(!rdev->deferred_disables);
2043 
2044 	count = rdev->deferred_disables;
2045 	rdev->deferred_disables = 0;
2046 
2047 	for (i = 0; i < count; i++) {
2048 		ret = _regulator_disable(rdev);
2049 		if (ret != 0)
2050 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2051 	}
2052 
2053 	mutex_unlock(&rdev->mutex);
2054 
2055 	if (rdev->supply) {
2056 		for (i = 0; i < count; i++) {
2057 			ret = regulator_disable(rdev->supply);
2058 			if (ret != 0) {
2059 				rdev_err(rdev,
2060 					 "Supply disable failed: %d\n", ret);
2061 			}
2062 		}
2063 	}
2064 }
2065 
2066 /**
2067  * regulator_disable_deferred - disable regulator output with delay
2068  * @regulator: regulator source
2069  * @ms: miliseconds until the regulator is disabled
2070  *
2071  * Execute regulator_disable() on the regulator after a delay.  This
2072  * is intended for use with devices that require some time to quiesce.
2073  *
2074  * NOTE: this will only disable the regulator output if no other consumer
2075  * devices have it enabled, the regulator device supports disabling and
2076  * machine constraints permit this operation.
2077  */
2078 int regulator_disable_deferred(struct regulator *regulator, int ms)
2079 {
2080 	struct regulator_dev *rdev = regulator->rdev;
2081 	int ret;
2082 
2083 	if (regulator->always_on)
2084 		return 0;
2085 
2086 	if (!ms)
2087 		return regulator_disable(regulator);
2088 
2089 	mutex_lock(&rdev->mutex);
2090 	rdev->deferred_disables++;
2091 	mutex_unlock(&rdev->mutex);
2092 
2093 	ret = queue_delayed_work(system_power_efficient_wq,
2094 				 &rdev->disable_work,
2095 				 msecs_to_jiffies(ms));
2096 	if (ret < 0)
2097 		return ret;
2098 	else
2099 		return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2102 
2103 static int _regulator_is_enabled(struct regulator_dev *rdev)
2104 {
2105 	/* A GPIO control always takes precedence */
2106 	if (rdev->ena_pin)
2107 		return rdev->ena_gpio_state;
2108 
2109 	/* If we don't know then assume that the regulator is always on */
2110 	if (!rdev->desc->ops->is_enabled)
2111 		return 1;
2112 
2113 	return rdev->desc->ops->is_enabled(rdev);
2114 }
2115 
2116 /**
2117  * regulator_is_enabled - is the regulator output enabled
2118  * @regulator: regulator source
2119  *
2120  * Returns positive if the regulator driver backing the source/client
2121  * has requested that the device be enabled, zero if it hasn't, else a
2122  * negative errno code.
2123  *
2124  * Note that the device backing this regulator handle can have multiple
2125  * users, so it might be enabled even if regulator_enable() was never
2126  * called for this particular source.
2127  */
2128 int regulator_is_enabled(struct regulator *regulator)
2129 {
2130 	int ret;
2131 
2132 	if (regulator->always_on)
2133 		return 1;
2134 
2135 	mutex_lock(&regulator->rdev->mutex);
2136 	ret = _regulator_is_enabled(regulator->rdev);
2137 	mutex_unlock(&regulator->rdev->mutex);
2138 
2139 	return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2142 
2143 /**
2144  * regulator_can_change_voltage - check if regulator can change voltage
2145  * @regulator: regulator source
2146  *
2147  * Returns positive if the regulator driver backing the source/client
2148  * can change its voltage, false otherwise. Useful for detecting fixed
2149  * or dummy regulators and disabling voltage change logic in the client
2150  * driver.
2151  */
2152 int regulator_can_change_voltage(struct regulator *regulator)
2153 {
2154 	struct regulator_dev	*rdev = regulator->rdev;
2155 
2156 	if (rdev->constraints &&
2157 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2158 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2159 			return 1;
2160 
2161 		if (rdev->desc->continuous_voltage_range &&
2162 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2163 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2164 			return 1;
2165 	}
2166 
2167 	return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2170 
2171 /**
2172  * regulator_count_voltages - count regulator_list_voltage() selectors
2173  * @regulator: regulator source
2174  *
2175  * Returns number of selectors, or negative errno.  Selectors are
2176  * numbered starting at zero, and typically correspond to bitfields
2177  * in hardware registers.
2178  */
2179 int regulator_count_voltages(struct regulator *regulator)
2180 {
2181 	struct regulator_dev	*rdev = regulator->rdev;
2182 
2183 	return rdev->desc->n_voltages ? : -EINVAL;
2184 }
2185 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2186 
2187 /**
2188  * regulator_list_voltage - enumerate supported voltages
2189  * @regulator: regulator source
2190  * @selector: identify voltage to list
2191  * Context: can sleep
2192  *
2193  * Returns a voltage that can be passed to @regulator_set_voltage(),
2194  * zero if this selector code can't be used on this system, or a
2195  * negative errno.
2196  */
2197 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2198 {
2199 	struct regulator_dev	*rdev = regulator->rdev;
2200 	struct regulator_ops	*ops = rdev->desc->ops;
2201 	int			ret;
2202 
2203 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2204 		return rdev->desc->fixed_uV;
2205 
2206 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2207 		return -EINVAL;
2208 
2209 	mutex_lock(&rdev->mutex);
2210 	ret = ops->list_voltage(rdev, selector);
2211 	mutex_unlock(&rdev->mutex);
2212 
2213 	if (ret > 0) {
2214 		if (ret < rdev->constraints->min_uV)
2215 			ret = 0;
2216 		else if (ret > rdev->constraints->max_uV)
2217 			ret = 0;
2218 	}
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2223 
2224 /**
2225  * regulator_get_regmap - get the regulator's register map
2226  * @regulator: regulator source
2227  *
2228  * Returns the register map for the given regulator, or an ERR_PTR value
2229  * if the regulator doesn't use regmap.
2230  */
2231 struct regmap *regulator_get_regmap(struct regulator *regulator)
2232 {
2233 	struct regmap *map = regulator->rdev->regmap;
2234 
2235 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2236 }
2237 
2238 /**
2239  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2240  * @regulator: regulator source
2241  * @vsel_reg: voltage selector register, output parameter
2242  * @vsel_mask: mask for voltage selector bitfield, output parameter
2243  *
2244  * Returns the hardware register offset and bitmask used for setting the
2245  * regulator voltage. This might be useful when configuring voltage-scaling
2246  * hardware or firmware that can make I2C requests behind the kernel's back,
2247  * for example.
2248  *
2249  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2250  * and 0 is returned, otherwise a negative errno is returned.
2251  */
2252 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2253 					 unsigned *vsel_reg,
2254 					 unsigned *vsel_mask)
2255 {
2256 	struct regulator_dev	*rdev = regulator->rdev;
2257 	struct regulator_ops	*ops = rdev->desc->ops;
2258 
2259 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2260 		return -EOPNOTSUPP;
2261 
2262 	 *vsel_reg = rdev->desc->vsel_reg;
2263 	 *vsel_mask = rdev->desc->vsel_mask;
2264 
2265 	 return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2268 
2269 /**
2270  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2271  * @regulator: regulator source
2272  * @selector: identify voltage to list
2273  *
2274  * Converts the selector to a hardware-specific voltage selector that can be
2275  * directly written to the regulator registers. The address of the voltage
2276  * register can be determined by calling @regulator_get_hardware_vsel_register.
2277  *
2278  * On error a negative errno is returned.
2279  */
2280 int regulator_list_hardware_vsel(struct regulator *regulator,
2281 				 unsigned selector)
2282 {
2283 	struct regulator_dev	*rdev = regulator->rdev;
2284 	struct regulator_ops	*ops = rdev->desc->ops;
2285 
2286 	if (selector >= rdev->desc->n_voltages)
2287 		return -EINVAL;
2288 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2289 		return -EOPNOTSUPP;
2290 
2291 	return selector;
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2294 
2295 /**
2296  * regulator_get_linear_step - return the voltage step size between VSEL values
2297  * @regulator: regulator source
2298  *
2299  * Returns the voltage step size between VSEL values for linear
2300  * regulators, or return 0 if the regulator isn't a linear regulator.
2301  */
2302 unsigned int regulator_get_linear_step(struct regulator *regulator)
2303 {
2304 	struct regulator_dev *rdev = regulator->rdev;
2305 
2306 	return rdev->desc->uV_step;
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2309 
2310 /**
2311  * regulator_is_supported_voltage - check if a voltage range can be supported
2312  *
2313  * @regulator: Regulator to check.
2314  * @min_uV: Minimum required voltage in uV.
2315  * @max_uV: Maximum required voltage in uV.
2316  *
2317  * Returns a boolean or a negative error code.
2318  */
2319 int regulator_is_supported_voltage(struct regulator *regulator,
2320 				   int min_uV, int max_uV)
2321 {
2322 	struct regulator_dev *rdev = regulator->rdev;
2323 	int i, voltages, ret;
2324 
2325 	/* If we can't change voltage check the current voltage */
2326 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2327 		ret = regulator_get_voltage(regulator);
2328 		if (ret >= 0)
2329 			return min_uV <= ret && ret <= max_uV;
2330 		else
2331 			return ret;
2332 	}
2333 
2334 	/* Any voltage within constrains range is fine? */
2335 	if (rdev->desc->continuous_voltage_range)
2336 		return min_uV >= rdev->constraints->min_uV &&
2337 				max_uV <= rdev->constraints->max_uV;
2338 
2339 	ret = regulator_count_voltages(regulator);
2340 	if (ret < 0)
2341 		return ret;
2342 	voltages = ret;
2343 
2344 	for (i = 0; i < voltages; i++) {
2345 		ret = regulator_list_voltage(regulator, i);
2346 
2347 		if (ret >= min_uV && ret <= max_uV)
2348 			return 1;
2349 	}
2350 
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2354 
2355 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2356 				     int min_uV, int max_uV)
2357 {
2358 	int ret;
2359 	int delay = 0;
2360 	int best_val = 0;
2361 	unsigned int selector;
2362 	int old_selector = -1;
2363 
2364 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2365 
2366 	min_uV += rdev->constraints->uV_offset;
2367 	max_uV += rdev->constraints->uV_offset;
2368 
2369 	/*
2370 	 * If we can't obtain the old selector there is not enough
2371 	 * info to call set_voltage_time_sel().
2372 	 */
2373 	if (_regulator_is_enabled(rdev) &&
2374 	    rdev->desc->ops->set_voltage_time_sel &&
2375 	    rdev->desc->ops->get_voltage_sel) {
2376 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2377 		if (old_selector < 0)
2378 			return old_selector;
2379 	}
2380 
2381 	if (rdev->desc->ops->set_voltage) {
2382 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2383 						   &selector);
2384 
2385 		if (ret >= 0) {
2386 			if (rdev->desc->ops->list_voltage)
2387 				best_val = rdev->desc->ops->list_voltage(rdev,
2388 									 selector);
2389 			else
2390 				best_val = _regulator_get_voltage(rdev);
2391 		}
2392 
2393 	} else if (rdev->desc->ops->set_voltage_sel) {
2394 		if (rdev->desc->ops->map_voltage) {
2395 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2396 							   max_uV);
2397 		} else {
2398 			if (rdev->desc->ops->list_voltage ==
2399 			    regulator_list_voltage_linear)
2400 				ret = regulator_map_voltage_linear(rdev,
2401 								min_uV, max_uV);
2402 			else if (rdev->desc->ops->list_voltage ==
2403 				 regulator_list_voltage_linear_range)
2404 				ret = regulator_map_voltage_linear_range(rdev,
2405 								min_uV, max_uV);
2406 			else
2407 				ret = regulator_map_voltage_iterate(rdev,
2408 								min_uV, max_uV);
2409 		}
2410 
2411 		if (ret >= 0) {
2412 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2413 			if (min_uV <= best_val && max_uV >= best_val) {
2414 				selector = ret;
2415 				if (old_selector == selector)
2416 					ret = 0;
2417 				else
2418 					ret = rdev->desc->ops->set_voltage_sel(
2419 								rdev, ret);
2420 			} else {
2421 				ret = -EINVAL;
2422 			}
2423 		}
2424 	} else {
2425 		ret = -EINVAL;
2426 	}
2427 
2428 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2429 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2430 		&& old_selector != selector) {
2431 
2432 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2433 						old_selector, selector);
2434 		if (delay < 0) {
2435 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2436 				  delay);
2437 			delay = 0;
2438 		}
2439 
2440 		/* Insert any necessary delays */
2441 		if (delay >= 1000) {
2442 			mdelay(delay / 1000);
2443 			udelay(delay % 1000);
2444 		} else if (delay) {
2445 			udelay(delay);
2446 		}
2447 	}
2448 
2449 	if (ret == 0 && best_val >= 0) {
2450 		unsigned long data = best_val;
2451 
2452 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2453 				     (void *)data);
2454 	}
2455 
2456 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2457 
2458 	return ret;
2459 }
2460 
2461 /**
2462  * regulator_set_voltage - set regulator output voltage
2463  * @regulator: regulator source
2464  * @min_uV: Minimum required voltage in uV
2465  * @max_uV: Maximum acceptable voltage in uV
2466  *
2467  * Sets a voltage regulator to the desired output voltage. This can be set
2468  * during any regulator state. IOW, regulator can be disabled or enabled.
2469  *
2470  * If the regulator is enabled then the voltage will change to the new value
2471  * immediately otherwise if the regulator is disabled the regulator will
2472  * output at the new voltage when enabled.
2473  *
2474  * NOTE: If the regulator is shared between several devices then the lowest
2475  * request voltage that meets the system constraints will be used.
2476  * Regulator system constraints must be set for this regulator before
2477  * calling this function otherwise this call will fail.
2478  */
2479 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2480 {
2481 	struct regulator_dev *rdev = regulator->rdev;
2482 	int ret = 0;
2483 	int old_min_uV, old_max_uV;
2484 	int current_uV;
2485 
2486 	mutex_lock(&rdev->mutex);
2487 
2488 	/* If we're setting the same range as last time the change
2489 	 * should be a noop (some cpufreq implementations use the same
2490 	 * voltage for multiple frequencies, for example).
2491 	 */
2492 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2493 		goto out;
2494 
2495 	/* If we're trying to set a range that overlaps the current voltage,
2496 	 * return succesfully even though the regulator does not support
2497 	 * changing the voltage.
2498 	 */
2499 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2500 		current_uV = _regulator_get_voltage(rdev);
2501 		if (min_uV <= current_uV && current_uV <= max_uV) {
2502 			regulator->min_uV = min_uV;
2503 			regulator->max_uV = max_uV;
2504 			goto out;
2505 		}
2506 	}
2507 
2508 	/* sanity check */
2509 	if (!rdev->desc->ops->set_voltage &&
2510 	    !rdev->desc->ops->set_voltage_sel) {
2511 		ret = -EINVAL;
2512 		goto out;
2513 	}
2514 
2515 	/* constraints check */
2516 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2517 	if (ret < 0)
2518 		goto out;
2519 
2520 	/* restore original values in case of error */
2521 	old_min_uV = regulator->min_uV;
2522 	old_max_uV = regulator->max_uV;
2523 	regulator->min_uV = min_uV;
2524 	regulator->max_uV = max_uV;
2525 
2526 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2527 	if (ret < 0)
2528 		goto out2;
2529 
2530 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2531 	if (ret < 0)
2532 		goto out2;
2533 
2534 out:
2535 	mutex_unlock(&rdev->mutex);
2536 	return ret;
2537 out2:
2538 	regulator->min_uV = old_min_uV;
2539 	regulator->max_uV = old_max_uV;
2540 	mutex_unlock(&rdev->mutex);
2541 	return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2544 
2545 /**
2546  * regulator_set_voltage_time - get raise/fall time
2547  * @regulator: regulator source
2548  * @old_uV: starting voltage in microvolts
2549  * @new_uV: target voltage in microvolts
2550  *
2551  * Provided with the starting and ending voltage, this function attempts to
2552  * calculate the time in microseconds required to rise or fall to this new
2553  * voltage.
2554  */
2555 int regulator_set_voltage_time(struct regulator *regulator,
2556 			       int old_uV, int new_uV)
2557 {
2558 	struct regulator_dev	*rdev = regulator->rdev;
2559 	struct regulator_ops	*ops = rdev->desc->ops;
2560 	int old_sel = -1;
2561 	int new_sel = -1;
2562 	int voltage;
2563 	int i;
2564 
2565 	/* Currently requires operations to do this */
2566 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2567 	    || !rdev->desc->n_voltages)
2568 		return -EINVAL;
2569 
2570 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2571 		/* We only look for exact voltage matches here */
2572 		voltage = regulator_list_voltage(regulator, i);
2573 		if (voltage < 0)
2574 			return -EINVAL;
2575 		if (voltage == 0)
2576 			continue;
2577 		if (voltage == old_uV)
2578 			old_sel = i;
2579 		if (voltage == new_uV)
2580 			new_sel = i;
2581 	}
2582 
2583 	if (old_sel < 0 || new_sel < 0)
2584 		return -EINVAL;
2585 
2586 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2587 }
2588 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2589 
2590 /**
2591  * regulator_set_voltage_time_sel - get raise/fall time
2592  * @rdev: regulator source device
2593  * @old_selector: selector for starting voltage
2594  * @new_selector: selector for target voltage
2595  *
2596  * Provided with the starting and target voltage selectors, this function
2597  * returns time in microseconds required to rise or fall to this new voltage
2598  *
2599  * Drivers providing ramp_delay in regulation_constraints can use this as their
2600  * set_voltage_time_sel() operation.
2601  */
2602 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2603 				   unsigned int old_selector,
2604 				   unsigned int new_selector)
2605 {
2606 	unsigned int ramp_delay = 0;
2607 	int old_volt, new_volt;
2608 
2609 	if (rdev->constraints->ramp_delay)
2610 		ramp_delay = rdev->constraints->ramp_delay;
2611 	else if (rdev->desc->ramp_delay)
2612 		ramp_delay = rdev->desc->ramp_delay;
2613 
2614 	if (ramp_delay == 0) {
2615 		rdev_warn(rdev, "ramp_delay not set\n");
2616 		return 0;
2617 	}
2618 
2619 	/* sanity check */
2620 	if (!rdev->desc->ops->list_voltage)
2621 		return -EINVAL;
2622 
2623 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2624 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2625 
2626 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2629 
2630 /**
2631  * regulator_sync_voltage - re-apply last regulator output voltage
2632  * @regulator: regulator source
2633  *
2634  * Re-apply the last configured voltage.  This is intended to be used
2635  * where some external control source the consumer is cooperating with
2636  * has caused the configured voltage to change.
2637  */
2638 int regulator_sync_voltage(struct regulator *regulator)
2639 {
2640 	struct regulator_dev *rdev = regulator->rdev;
2641 	int ret, min_uV, max_uV;
2642 
2643 	mutex_lock(&rdev->mutex);
2644 
2645 	if (!rdev->desc->ops->set_voltage &&
2646 	    !rdev->desc->ops->set_voltage_sel) {
2647 		ret = -EINVAL;
2648 		goto out;
2649 	}
2650 
2651 	/* This is only going to work if we've had a voltage configured. */
2652 	if (!regulator->min_uV && !regulator->max_uV) {
2653 		ret = -EINVAL;
2654 		goto out;
2655 	}
2656 
2657 	min_uV = regulator->min_uV;
2658 	max_uV = regulator->max_uV;
2659 
2660 	/* This should be a paranoia check... */
2661 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2662 	if (ret < 0)
2663 		goto out;
2664 
2665 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2666 	if (ret < 0)
2667 		goto out;
2668 
2669 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2670 
2671 out:
2672 	mutex_unlock(&rdev->mutex);
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2676 
2677 static int _regulator_get_voltage(struct regulator_dev *rdev)
2678 {
2679 	int sel, ret;
2680 
2681 	if (rdev->desc->ops->get_voltage_sel) {
2682 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2683 		if (sel < 0)
2684 			return sel;
2685 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2686 	} else if (rdev->desc->ops->get_voltage) {
2687 		ret = rdev->desc->ops->get_voltage(rdev);
2688 	} else if (rdev->desc->ops->list_voltage) {
2689 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2690 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2691 		ret = rdev->desc->fixed_uV;
2692 	} else {
2693 		return -EINVAL;
2694 	}
2695 
2696 	if (ret < 0)
2697 		return ret;
2698 	return ret - rdev->constraints->uV_offset;
2699 }
2700 
2701 /**
2702  * regulator_get_voltage - get regulator output voltage
2703  * @regulator: regulator source
2704  *
2705  * This returns the current regulator voltage in uV.
2706  *
2707  * NOTE: If the regulator is disabled it will return the voltage value. This
2708  * function should not be used to determine regulator state.
2709  */
2710 int regulator_get_voltage(struct regulator *regulator)
2711 {
2712 	int ret;
2713 
2714 	mutex_lock(&regulator->rdev->mutex);
2715 
2716 	ret = _regulator_get_voltage(regulator->rdev);
2717 
2718 	mutex_unlock(&regulator->rdev->mutex);
2719 
2720 	return ret;
2721 }
2722 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2723 
2724 /**
2725  * regulator_set_current_limit - set regulator output current limit
2726  * @regulator: regulator source
2727  * @min_uA: Minimum supported current in uA
2728  * @max_uA: Maximum supported current in uA
2729  *
2730  * Sets current sink to the desired output current. This can be set during
2731  * any regulator state. IOW, regulator can be disabled or enabled.
2732  *
2733  * If the regulator is enabled then the current will change to the new value
2734  * immediately otherwise if the regulator is disabled the regulator will
2735  * output at the new current when enabled.
2736  *
2737  * NOTE: Regulator system constraints must be set for this regulator before
2738  * calling this function otherwise this call will fail.
2739  */
2740 int regulator_set_current_limit(struct regulator *regulator,
2741 			       int min_uA, int max_uA)
2742 {
2743 	struct regulator_dev *rdev = regulator->rdev;
2744 	int ret;
2745 
2746 	mutex_lock(&rdev->mutex);
2747 
2748 	/* sanity check */
2749 	if (!rdev->desc->ops->set_current_limit) {
2750 		ret = -EINVAL;
2751 		goto out;
2752 	}
2753 
2754 	/* constraints check */
2755 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2756 	if (ret < 0)
2757 		goto out;
2758 
2759 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2760 out:
2761 	mutex_unlock(&rdev->mutex);
2762 	return ret;
2763 }
2764 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2765 
2766 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2767 {
2768 	int ret;
2769 
2770 	mutex_lock(&rdev->mutex);
2771 
2772 	/* sanity check */
2773 	if (!rdev->desc->ops->get_current_limit) {
2774 		ret = -EINVAL;
2775 		goto out;
2776 	}
2777 
2778 	ret = rdev->desc->ops->get_current_limit(rdev);
2779 out:
2780 	mutex_unlock(&rdev->mutex);
2781 	return ret;
2782 }
2783 
2784 /**
2785  * regulator_get_current_limit - get regulator output current
2786  * @regulator: regulator source
2787  *
2788  * This returns the current supplied by the specified current sink in uA.
2789  *
2790  * NOTE: If the regulator is disabled it will return the current value. This
2791  * function should not be used to determine regulator state.
2792  */
2793 int regulator_get_current_limit(struct regulator *regulator)
2794 {
2795 	return _regulator_get_current_limit(regulator->rdev);
2796 }
2797 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2798 
2799 /**
2800  * regulator_set_mode - set regulator operating mode
2801  * @regulator: regulator source
2802  * @mode: operating mode - one of the REGULATOR_MODE constants
2803  *
2804  * Set regulator operating mode to increase regulator efficiency or improve
2805  * regulation performance.
2806  *
2807  * NOTE: Regulator system constraints must be set for this regulator before
2808  * calling this function otherwise this call will fail.
2809  */
2810 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2811 {
2812 	struct regulator_dev *rdev = regulator->rdev;
2813 	int ret;
2814 	int regulator_curr_mode;
2815 
2816 	mutex_lock(&rdev->mutex);
2817 
2818 	/* sanity check */
2819 	if (!rdev->desc->ops->set_mode) {
2820 		ret = -EINVAL;
2821 		goto out;
2822 	}
2823 
2824 	/* return if the same mode is requested */
2825 	if (rdev->desc->ops->get_mode) {
2826 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2827 		if (regulator_curr_mode == mode) {
2828 			ret = 0;
2829 			goto out;
2830 		}
2831 	}
2832 
2833 	/* constraints check */
2834 	ret = regulator_mode_constrain(rdev, &mode);
2835 	if (ret < 0)
2836 		goto out;
2837 
2838 	ret = rdev->desc->ops->set_mode(rdev, mode);
2839 out:
2840 	mutex_unlock(&rdev->mutex);
2841 	return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_set_mode);
2844 
2845 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2846 {
2847 	int ret;
2848 
2849 	mutex_lock(&rdev->mutex);
2850 
2851 	/* sanity check */
2852 	if (!rdev->desc->ops->get_mode) {
2853 		ret = -EINVAL;
2854 		goto out;
2855 	}
2856 
2857 	ret = rdev->desc->ops->get_mode(rdev);
2858 out:
2859 	mutex_unlock(&rdev->mutex);
2860 	return ret;
2861 }
2862 
2863 /**
2864  * regulator_get_mode - get regulator operating mode
2865  * @regulator: regulator source
2866  *
2867  * Get the current regulator operating mode.
2868  */
2869 unsigned int regulator_get_mode(struct regulator *regulator)
2870 {
2871 	return _regulator_get_mode(regulator->rdev);
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_get_mode);
2874 
2875 /**
2876  * regulator_set_optimum_mode - set regulator optimum operating mode
2877  * @regulator: regulator source
2878  * @uA_load: load current
2879  *
2880  * Notifies the regulator core of a new device load. This is then used by
2881  * DRMS (if enabled by constraints) to set the most efficient regulator
2882  * operating mode for the new regulator loading.
2883  *
2884  * Consumer devices notify their supply regulator of the maximum power
2885  * they will require (can be taken from device datasheet in the power
2886  * consumption tables) when they change operational status and hence power
2887  * state. Examples of operational state changes that can affect power
2888  * consumption are :-
2889  *
2890  *    o Device is opened / closed.
2891  *    o Device I/O is about to begin or has just finished.
2892  *    o Device is idling in between work.
2893  *
2894  * This information is also exported via sysfs to userspace.
2895  *
2896  * DRMS will sum the total requested load on the regulator and change
2897  * to the most efficient operating mode if platform constraints allow.
2898  *
2899  * Returns the new regulator mode or error.
2900  */
2901 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2902 {
2903 	struct regulator_dev *rdev = regulator->rdev;
2904 	struct regulator *consumer;
2905 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2906 	unsigned int mode;
2907 
2908 	if (rdev->supply)
2909 		input_uV = regulator_get_voltage(rdev->supply);
2910 
2911 	mutex_lock(&rdev->mutex);
2912 
2913 	/*
2914 	 * first check to see if we can set modes at all, otherwise just
2915 	 * tell the consumer everything is OK.
2916 	 */
2917 	regulator->uA_load = uA_load;
2918 	ret = regulator_check_drms(rdev);
2919 	if (ret < 0) {
2920 		ret = 0;
2921 		goto out;
2922 	}
2923 
2924 	if (!rdev->desc->ops->get_optimum_mode)
2925 		goto out;
2926 
2927 	/*
2928 	 * we can actually do this so any errors are indicators of
2929 	 * potential real failure.
2930 	 */
2931 	ret = -EINVAL;
2932 
2933 	if (!rdev->desc->ops->set_mode)
2934 		goto out;
2935 
2936 	/* get output voltage */
2937 	output_uV = _regulator_get_voltage(rdev);
2938 	if (output_uV <= 0) {
2939 		rdev_err(rdev, "invalid output voltage found\n");
2940 		goto out;
2941 	}
2942 
2943 	/* No supply? Use constraint voltage */
2944 	if (input_uV <= 0)
2945 		input_uV = rdev->constraints->input_uV;
2946 	if (input_uV <= 0) {
2947 		rdev_err(rdev, "invalid input voltage found\n");
2948 		goto out;
2949 	}
2950 
2951 	/* calc total requested load for this regulator */
2952 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2953 		total_uA_load += consumer->uA_load;
2954 
2955 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2956 						 input_uV, output_uV,
2957 						 total_uA_load);
2958 	ret = regulator_mode_constrain(rdev, &mode);
2959 	if (ret < 0) {
2960 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2961 			 total_uA_load, input_uV, output_uV);
2962 		goto out;
2963 	}
2964 
2965 	ret = rdev->desc->ops->set_mode(rdev, mode);
2966 	if (ret < 0) {
2967 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2968 		goto out;
2969 	}
2970 	ret = mode;
2971 out:
2972 	mutex_unlock(&rdev->mutex);
2973 	return ret;
2974 }
2975 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2976 
2977 /**
2978  * regulator_allow_bypass - allow the regulator to go into bypass mode
2979  *
2980  * @regulator: Regulator to configure
2981  * @enable: enable or disable bypass mode
2982  *
2983  * Allow the regulator to go into bypass mode if all other consumers
2984  * for the regulator also enable bypass mode and the machine
2985  * constraints allow this.  Bypass mode means that the regulator is
2986  * simply passing the input directly to the output with no regulation.
2987  */
2988 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2989 {
2990 	struct regulator_dev *rdev = regulator->rdev;
2991 	int ret = 0;
2992 
2993 	if (!rdev->desc->ops->set_bypass)
2994 		return 0;
2995 
2996 	if (rdev->constraints &&
2997 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2998 		return 0;
2999 
3000 	mutex_lock(&rdev->mutex);
3001 
3002 	if (enable && !regulator->bypass) {
3003 		rdev->bypass_count++;
3004 
3005 		if (rdev->bypass_count == rdev->open_count) {
3006 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3007 			if (ret != 0)
3008 				rdev->bypass_count--;
3009 		}
3010 
3011 	} else if (!enable && regulator->bypass) {
3012 		rdev->bypass_count--;
3013 
3014 		if (rdev->bypass_count != rdev->open_count) {
3015 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3016 			if (ret != 0)
3017 				rdev->bypass_count++;
3018 		}
3019 	}
3020 
3021 	if (ret == 0)
3022 		regulator->bypass = enable;
3023 
3024 	mutex_unlock(&rdev->mutex);
3025 
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3029 
3030 /**
3031  * regulator_register_notifier - register regulator event notifier
3032  * @regulator: regulator source
3033  * @nb: notifier block
3034  *
3035  * Register notifier block to receive regulator events.
3036  */
3037 int regulator_register_notifier(struct regulator *regulator,
3038 			      struct notifier_block *nb)
3039 {
3040 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3041 						nb);
3042 }
3043 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3044 
3045 /**
3046  * regulator_unregister_notifier - unregister regulator event notifier
3047  * @regulator: regulator source
3048  * @nb: notifier block
3049  *
3050  * Unregister regulator event notifier block.
3051  */
3052 int regulator_unregister_notifier(struct regulator *regulator,
3053 				struct notifier_block *nb)
3054 {
3055 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3056 						  nb);
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3059 
3060 /* notify regulator consumers and downstream regulator consumers.
3061  * Note mutex must be held by caller.
3062  */
3063 static void _notifier_call_chain(struct regulator_dev *rdev,
3064 				  unsigned long event, void *data)
3065 {
3066 	/* call rdev chain first */
3067 	blocking_notifier_call_chain(&rdev->notifier, event, data);
3068 }
3069 
3070 /**
3071  * regulator_bulk_get - get multiple regulator consumers
3072  *
3073  * @dev:           Device to supply
3074  * @num_consumers: Number of consumers to register
3075  * @consumers:     Configuration of consumers; clients are stored here.
3076  *
3077  * @return 0 on success, an errno on failure.
3078  *
3079  * This helper function allows drivers to get several regulator
3080  * consumers in one operation.  If any of the regulators cannot be
3081  * acquired then any regulators that were allocated will be freed
3082  * before returning to the caller.
3083  */
3084 int regulator_bulk_get(struct device *dev, int num_consumers,
3085 		       struct regulator_bulk_data *consumers)
3086 {
3087 	int i;
3088 	int ret;
3089 
3090 	for (i = 0; i < num_consumers; i++)
3091 		consumers[i].consumer = NULL;
3092 
3093 	for (i = 0; i < num_consumers; i++) {
3094 		consumers[i].consumer = regulator_get(dev,
3095 						      consumers[i].supply);
3096 		if (IS_ERR(consumers[i].consumer)) {
3097 			ret = PTR_ERR(consumers[i].consumer);
3098 			dev_err(dev, "Failed to get supply '%s': %d\n",
3099 				consumers[i].supply, ret);
3100 			consumers[i].consumer = NULL;
3101 			goto err;
3102 		}
3103 	}
3104 
3105 	return 0;
3106 
3107 err:
3108 	while (--i >= 0)
3109 		regulator_put(consumers[i].consumer);
3110 
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3114 
3115 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3116 {
3117 	struct regulator_bulk_data *bulk = data;
3118 
3119 	bulk->ret = regulator_enable(bulk->consumer);
3120 }
3121 
3122 /**
3123  * regulator_bulk_enable - enable multiple regulator consumers
3124  *
3125  * @num_consumers: Number of consumers
3126  * @consumers:     Consumer data; clients are stored here.
3127  * @return         0 on success, an errno on failure
3128  *
3129  * This convenience API allows consumers to enable multiple regulator
3130  * clients in a single API call.  If any consumers cannot be enabled
3131  * then any others that were enabled will be disabled again prior to
3132  * return.
3133  */
3134 int regulator_bulk_enable(int num_consumers,
3135 			  struct regulator_bulk_data *consumers)
3136 {
3137 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3138 	int i;
3139 	int ret = 0;
3140 
3141 	for (i = 0; i < num_consumers; i++) {
3142 		if (consumers[i].consumer->always_on)
3143 			consumers[i].ret = 0;
3144 		else
3145 			async_schedule_domain(regulator_bulk_enable_async,
3146 					      &consumers[i], &async_domain);
3147 	}
3148 
3149 	async_synchronize_full_domain(&async_domain);
3150 
3151 	/* If any consumer failed we need to unwind any that succeeded */
3152 	for (i = 0; i < num_consumers; i++) {
3153 		if (consumers[i].ret != 0) {
3154 			ret = consumers[i].ret;
3155 			goto err;
3156 		}
3157 	}
3158 
3159 	return 0;
3160 
3161 err:
3162 	for (i = 0; i < num_consumers; i++) {
3163 		if (consumers[i].ret < 0)
3164 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3165 			       consumers[i].ret);
3166 		else
3167 			regulator_disable(consumers[i].consumer);
3168 	}
3169 
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3173 
3174 /**
3175  * regulator_bulk_disable - disable multiple regulator consumers
3176  *
3177  * @num_consumers: Number of consumers
3178  * @consumers:     Consumer data; clients are stored here.
3179  * @return         0 on success, an errno on failure
3180  *
3181  * This convenience API allows consumers to disable multiple regulator
3182  * clients in a single API call.  If any consumers cannot be disabled
3183  * then any others that were disabled will be enabled again prior to
3184  * return.
3185  */
3186 int regulator_bulk_disable(int num_consumers,
3187 			   struct regulator_bulk_data *consumers)
3188 {
3189 	int i;
3190 	int ret, r;
3191 
3192 	for (i = num_consumers - 1; i >= 0; --i) {
3193 		ret = regulator_disable(consumers[i].consumer);
3194 		if (ret != 0)
3195 			goto err;
3196 	}
3197 
3198 	return 0;
3199 
3200 err:
3201 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3202 	for (++i; i < num_consumers; ++i) {
3203 		r = regulator_enable(consumers[i].consumer);
3204 		if (r != 0)
3205 			pr_err("Failed to reename %s: %d\n",
3206 			       consumers[i].supply, r);
3207 	}
3208 
3209 	return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3212 
3213 /**
3214  * regulator_bulk_force_disable - force disable multiple regulator consumers
3215  *
3216  * @num_consumers: Number of consumers
3217  * @consumers:     Consumer data; clients are stored here.
3218  * @return         0 on success, an errno on failure
3219  *
3220  * This convenience API allows consumers to forcibly disable multiple regulator
3221  * clients in a single API call.
3222  * NOTE: This should be used for situations when device damage will
3223  * likely occur if the regulators are not disabled (e.g. over temp).
3224  * Although regulator_force_disable function call for some consumers can
3225  * return error numbers, the function is called for all consumers.
3226  */
3227 int regulator_bulk_force_disable(int num_consumers,
3228 			   struct regulator_bulk_data *consumers)
3229 {
3230 	int i;
3231 	int ret;
3232 
3233 	for (i = 0; i < num_consumers; i++)
3234 		consumers[i].ret =
3235 			    regulator_force_disable(consumers[i].consumer);
3236 
3237 	for (i = 0; i < num_consumers; i++) {
3238 		if (consumers[i].ret != 0) {
3239 			ret = consumers[i].ret;
3240 			goto out;
3241 		}
3242 	}
3243 
3244 	return 0;
3245 out:
3246 	return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3249 
3250 /**
3251  * regulator_bulk_free - free multiple regulator consumers
3252  *
3253  * @num_consumers: Number of consumers
3254  * @consumers:     Consumer data; clients are stored here.
3255  *
3256  * This convenience API allows consumers to free multiple regulator
3257  * clients in a single API call.
3258  */
3259 void regulator_bulk_free(int num_consumers,
3260 			 struct regulator_bulk_data *consumers)
3261 {
3262 	int i;
3263 
3264 	for (i = 0; i < num_consumers; i++) {
3265 		regulator_put(consumers[i].consumer);
3266 		consumers[i].consumer = NULL;
3267 	}
3268 }
3269 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3270 
3271 /**
3272  * regulator_notifier_call_chain - call regulator event notifier
3273  * @rdev: regulator source
3274  * @event: notifier block
3275  * @data: callback-specific data.
3276  *
3277  * Called by regulator drivers to notify clients a regulator event has
3278  * occurred. We also notify regulator clients downstream.
3279  * Note lock must be held by caller.
3280  */
3281 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3282 				  unsigned long event, void *data)
3283 {
3284 	_notifier_call_chain(rdev, event, data);
3285 	return NOTIFY_DONE;
3286 
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3289 
3290 /**
3291  * regulator_mode_to_status - convert a regulator mode into a status
3292  *
3293  * @mode: Mode to convert
3294  *
3295  * Convert a regulator mode into a status.
3296  */
3297 int regulator_mode_to_status(unsigned int mode)
3298 {
3299 	switch (mode) {
3300 	case REGULATOR_MODE_FAST:
3301 		return REGULATOR_STATUS_FAST;
3302 	case REGULATOR_MODE_NORMAL:
3303 		return REGULATOR_STATUS_NORMAL;
3304 	case REGULATOR_MODE_IDLE:
3305 		return REGULATOR_STATUS_IDLE;
3306 	case REGULATOR_MODE_STANDBY:
3307 		return REGULATOR_STATUS_STANDBY;
3308 	default:
3309 		return REGULATOR_STATUS_UNDEFINED;
3310 	}
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3313 
3314 /*
3315  * To avoid cluttering sysfs (and memory) with useless state, only
3316  * create attributes that can be meaningfully displayed.
3317  */
3318 static int add_regulator_attributes(struct regulator_dev *rdev)
3319 {
3320 	struct device		*dev = &rdev->dev;
3321 	struct regulator_ops	*ops = rdev->desc->ops;
3322 	int			status = 0;
3323 
3324 	/* some attributes need specific methods to be displayed */
3325 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3326 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3327 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3328 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3329 		status = device_create_file(dev, &dev_attr_microvolts);
3330 		if (status < 0)
3331 			return status;
3332 	}
3333 	if (ops->get_current_limit) {
3334 		status = device_create_file(dev, &dev_attr_microamps);
3335 		if (status < 0)
3336 			return status;
3337 	}
3338 	if (ops->get_mode) {
3339 		status = device_create_file(dev, &dev_attr_opmode);
3340 		if (status < 0)
3341 			return status;
3342 	}
3343 	if (rdev->ena_pin || ops->is_enabled) {
3344 		status = device_create_file(dev, &dev_attr_state);
3345 		if (status < 0)
3346 			return status;
3347 	}
3348 	if (ops->get_status) {
3349 		status = device_create_file(dev, &dev_attr_status);
3350 		if (status < 0)
3351 			return status;
3352 	}
3353 	if (ops->get_bypass) {
3354 		status = device_create_file(dev, &dev_attr_bypass);
3355 		if (status < 0)
3356 			return status;
3357 	}
3358 
3359 	/* some attributes are type-specific */
3360 	if (rdev->desc->type == REGULATOR_CURRENT) {
3361 		status = device_create_file(dev, &dev_attr_requested_microamps);
3362 		if (status < 0)
3363 			return status;
3364 	}
3365 
3366 	/* all the other attributes exist to support constraints;
3367 	 * don't show them if there are no constraints, or if the
3368 	 * relevant supporting methods are missing.
3369 	 */
3370 	if (!rdev->constraints)
3371 		return status;
3372 
3373 	/* constraints need specific supporting methods */
3374 	if (ops->set_voltage || ops->set_voltage_sel) {
3375 		status = device_create_file(dev, &dev_attr_min_microvolts);
3376 		if (status < 0)
3377 			return status;
3378 		status = device_create_file(dev, &dev_attr_max_microvolts);
3379 		if (status < 0)
3380 			return status;
3381 	}
3382 	if (ops->set_current_limit) {
3383 		status = device_create_file(dev, &dev_attr_min_microamps);
3384 		if (status < 0)
3385 			return status;
3386 		status = device_create_file(dev, &dev_attr_max_microamps);
3387 		if (status < 0)
3388 			return status;
3389 	}
3390 
3391 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3392 	if (status < 0)
3393 		return status;
3394 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3395 	if (status < 0)
3396 		return status;
3397 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3398 	if (status < 0)
3399 		return status;
3400 
3401 	if (ops->set_suspend_voltage) {
3402 		status = device_create_file(dev,
3403 				&dev_attr_suspend_standby_microvolts);
3404 		if (status < 0)
3405 			return status;
3406 		status = device_create_file(dev,
3407 				&dev_attr_suspend_mem_microvolts);
3408 		if (status < 0)
3409 			return status;
3410 		status = device_create_file(dev,
3411 				&dev_attr_suspend_disk_microvolts);
3412 		if (status < 0)
3413 			return status;
3414 	}
3415 
3416 	if (ops->set_suspend_mode) {
3417 		status = device_create_file(dev,
3418 				&dev_attr_suspend_standby_mode);
3419 		if (status < 0)
3420 			return status;
3421 		status = device_create_file(dev,
3422 				&dev_attr_suspend_mem_mode);
3423 		if (status < 0)
3424 			return status;
3425 		status = device_create_file(dev,
3426 				&dev_attr_suspend_disk_mode);
3427 		if (status < 0)
3428 			return status;
3429 	}
3430 
3431 	return status;
3432 }
3433 
3434 static void rdev_init_debugfs(struct regulator_dev *rdev)
3435 {
3436 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3437 	if (!rdev->debugfs) {
3438 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3439 		return;
3440 	}
3441 
3442 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3443 			   &rdev->use_count);
3444 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3445 			   &rdev->open_count);
3446 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3447 			   &rdev->bypass_count);
3448 }
3449 
3450 /**
3451  * regulator_register - register regulator
3452  * @regulator_desc: regulator to register
3453  * @config: runtime configuration for regulator
3454  *
3455  * Called by regulator drivers to register a regulator.
3456  * Returns a valid pointer to struct regulator_dev on success
3457  * or an ERR_PTR() on error.
3458  */
3459 struct regulator_dev *
3460 regulator_register(const struct regulator_desc *regulator_desc,
3461 		   const struct regulator_config *config)
3462 {
3463 	const struct regulation_constraints *constraints = NULL;
3464 	const struct regulator_init_data *init_data;
3465 	static atomic_t regulator_no = ATOMIC_INIT(0);
3466 	struct regulator_dev *rdev;
3467 	struct device *dev;
3468 	int ret, i;
3469 	const char *supply = NULL;
3470 
3471 	if (regulator_desc == NULL || config == NULL)
3472 		return ERR_PTR(-EINVAL);
3473 
3474 	dev = config->dev;
3475 	WARN_ON(!dev);
3476 
3477 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3478 		return ERR_PTR(-EINVAL);
3479 
3480 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3481 	    regulator_desc->type != REGULATOR_CURRENT)
3482 		return ERR_PTR(-EINVAL);
3483 
3484 	/* Only one of each should be implemented */
3485 	WARN_ON(regulator_desc->ops->get_voltage &&
3486 		regulator_desc->ops->get_voltage_sel);
3487 	WARN_ON(regulator_desc->ops->set_voltage &&
3488 		regulator_desc->ops->set_voltage_sel);
3489 
3490 	/* If we're using selectors we must implement list_voltage. */
3491 	if (regulator_desc->ops->get_voltage_sel &&
3492 	    !regulator_desc->ops->list_voltage) {
3493 		return ERR_PTR(-EINVAL);
3494 	}
3495 	if (regulator_desc->ops->set_voltage_sel &&
3496 	    !regulator_desc->ops->list_voltage) {
3497 		return ERR_PTR(-EINVAL);
3498 	}
3499 
3500 	init_data = config->init_data;
3501 
3502 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3503 	if (rdev == NULL)
3504 		return ERR_PTR(-ENOMEM);
3505 
3506 	mutex_lock(&regulator_list_mutex);
3507 
3508 	mutex_init(&rdev->mutex);
3509 	rdev->reg_data = config->driver_data;
3510 	rdev->owner = regulator_desc->owner;
3511 	rdev->desc = regulator_desc;
3512 	if (config->regmap)
3513 		rdev->regmap = config->regmap;
3514 	else if (dev_get_regmap(dev, NULL))
3515 		rdev->regmap = dev_get_regmap(dev, NULL);
3516 	else if (dev->parent)
3517 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3518 	INIT_LIST_HEAD(&rdev->consumer_list);
3519 	INIT_LIST_HEAD(&rdev->list);
3520 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3521 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3522 
3523 	/* preform any regulator specific init */
3524 	if (init_data && init_data->regulator_init) {
3525 		ret = init_data->regulator_init(rdev->reg_data);
3526 		if (ret < 0)
3527 			goto clean;
3528 	}
3529 
3530 	/* register with sysfs */
3531 	rdev->dev.class = &regulator_class;
3532 	rdev->dev.of_node = of_node_get(config->of_node);
3533 	rdev->dev.parent = dev;
3534 	dev_set_name(&rdev->dev, "regulator.%d",
3535 		     atomic_inc_return(&regulator_no) - 1);
3536 	ret = device_register(&rdev->dev);
3537 	if (ret != 0) {
3538 		put_device(&rdev->dev);
3539 		goto clean;
3540 	}
3541 
3542 	dev_set_drvdata(&rdev->dev, rdev);
3543 
3544 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3545 		ret = regulator_ena_gpio_request(rdev, config);
3546 		if (ret != 0) {
3547 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3548 				 config->ena_gpio, ret);
3549 			goto wash;
3550 		}
3551 
3552 		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3553 			rdev->ena_gpio_state = 1;
3554 
3555 		if (config->ena_gpio_invert)
3556 			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3557 	}
3558 
3559 	/* set regulator constraints */
3560 	if (init_data)
3561 		constraints = &init_data->constraints;
3562 
3563 	ret = set_machine_constraints(rdev, constraints);
3564 	if (ret < 0)
3565 		goto scrub;
3566 
3567 	/* add attributes supported by this regulator */
3568 	ret = add_regulator_attributes(rdev);
3569 	if (ret < 0)
3570 		goto scrub;
3571 
3572 	if (init_data && init_data->supply_regulator)
3573 		supply = init_data->supply_regulator;
3574 	else if (regulator_desc->supply_name)
3575 		supply = regulator_desc->supply_name;
3576 
3577 	if (supply) {
3578 		struct regulator_dev *r;
3579 
3580 		r = regulator_dev_lookup(dev, supply, &ret);
3581 
3582 		if (ret == -ENODEV) {
3583 			/*
3584 			 * No supply was specified for this regulator and
3585 			 * there will never be one.
3586 			 */
3587 			ret = 0;
3588 			goto add_dev;
3589 		} else if (!r) {
3590 			dev_err(dev, "Failed to find supply %s\n", supply);
3591 			ret = -EPROBE_DEFER;
3592 			goto scrub;
3593 		}
3594 
3595 		ret = set_supply(rdev, r);
3596 		if (ret < 0)
3597 			goto scrub;
3598 
3599 		/* Enable supply if rail is enabled */
3600 		if (_regulator_is_enabled(rdev)) {
3601 			ret = regulator_enable(rdev->supply);
3602 			if (ret < 0)
3603 				goto scrub;
3604 		}
3605 	}
3606 
3607 add_dev:
3608 	/* add consumers devices */
3609 	if (init_data) {
3610 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3611 			ret = set_consumer_device_supply(rdev,
3612 				init_data->consumer_supplies[i].dev_name,
3613 				init_data->consumer_supplies[i].supply);
3614 			if (ret < 0) {
3615 				dev_err(dev, "Failed to set supply %s\n",
3616 					init_data->consumer_supplies[i].supply);
3617 				goto unset_supplies;
3618 			}
3619 		}
3620 	}
3621 
3622 	list_add(&rdev->list, &regulator_list);
3623 
3624 	rdev_init_debugfs(rdev);
3625 out:
3626 	mutex_unlock(&regulator_list_mutex);
3627 	return rdev;
3628 
3629 unset_supplies:
3630 	unset_regulator_supplies(rdev);
3631 
3632 scrub:
3633 	if (rdev->supply)
3634 		_regulator_put(rdev->supply);
3635 	regulator_ena_gpio_free(rdev);
3636 	kfree(rdev->constraints);
3637 wash:
3638 	device_unregister(&rdev->dev);
3639 	/* device core frees rdev */
3640 	rdev = ERR_PTR(ret);
3641 	goto out;
3642 
3643 clean:
3644 	kfree(rdev);
3645 	rdev = ERR_PTR(ret);
3646 	goto out;
3647 }
3648 EXPORT_SYMBOL_GPL(regulator_register);
3649 
3650 /**
3651  * regulator_unregister - unregister regulator
3652  * @rdev: regulator to unregister
3653  *
3654  * Called by regulator drivers to unregister a regulator.
3655  */
3656 void regulator_unregister(struct regulator_dev *rdev)
3657 {
3658 	if (rdev == NULL)
3659 		return;
3660 
3661 	if (rdev->supply) {
3662 		while (rdev->use_count--)
3663 			regulator_disable(rdev->supply);
3664 		regulator_put(rdev->supply);
3665 	}
3666 	mutex_lock(&regulator_list_mutex);
3667 	debugfs_remove_recursive(rdev->debugfs);
3668 	flush_work(&rdev->disable_work.work);
3669 	WARN_ON(rdev->open_count);
3670 	unset_regulator_supplies(rdev);
3671 	list_del(&rdev->list);
3672 	kfree(rdev->constraints);
3673 	regulator_ena_gpio_free(rdev);
3674 	of_node_put(rdev->dev.of_node);
3675 	device_unregister(&rdev->dev);
3676 	mutex_unlock(&regulator_list_mutex);
3677 }
3678 EXPORT_SYMBOL_GPL(regulator_unregister);
3679 
3680 /**
3681  * regulator_suspend_prepare - prepare regulators for system wide suspend
3682  * @state: system suspend state
3683  *
3684  * Configure each regulator with it's suspend operating parameters for state.
3685  * This will usually be called by machine suspend code prior to supending.
3686  */
3687 int regulator_suspend_prepare(suspend_state_t state)
3688 {
3689 	struct regulator_dev *rdev;
3690 	int ret = 0;
3691 
3692 	/* ON is handled by regulator active state */
3693 	if (state == PM_SUSPEND_ON)
3694 		return -EINVAL;
3695 
3696 	mutex_lock(&regulator_list_mutex);
3697 	list_for_each_entry(rdev, &regulator_list, list) {
3698 
3699 		mutex_lock(&rdev->mutex);
3700 		ret = suspend_prepare(rdev, state);
3701 		mutex_unlock(&rdev->mutex);
3702 
3703 		if (ret < 0) {
3704 			rdev_err(rdev, "failed to prepare\n");
3705 			goto out;
3706 		}
3707 	}
3708 out:
3709 	mutex_unlock(&regulator_list_mutex);
3710 	return ret;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3713 
3714 /**
3715  * regulator_suspend_finish - resume regulators from system wide suspend
3716  *
3717  * Turn on regulators that might be turned off by regulator_suspend_prepare
3718  * and that should be turned on according to the regulators properties.
3719  */
3720 int regulator_suspend_finish(void)
3721 {
3722 	struct regulator_dev *rdev;
3723 	int ret = 0, error;
3724 
3725 	mutex_lock(&regulator_list_mutex);
3726 	list_for_each_entry(rdev, &regulator_list, list) {
3727 		mutex_lock(&rdev->mutex);
3728 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3729 			error = _regulator_do_enable(rdev);
3730 			if (error)
3731 				ret = error;
3732 		} else {
3733 			if (!have_full_constraints())
3734 				goto unlock;
3735 			if (!_regulator_is_enabled(rdev))
3736 				goto unlock;
3737 
3738 			error = _regulator_do_disable(rdev);
3739 			if (error)
3740 				ret = error;
3741 		}
3742 unlock:
3743 		mutex_unlock(&rdev->mutex);
3744 	}
3745 	mutex_unlock(&regulator_list_mutex);
3746 	return ret;
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3749 
3750 /**
3751  * regulator_has_full_constraints - the system has fully specified constraints
3752  *
3753  * Calling this function will cause the regulator API to disable all
3754  * regulators which have a zero use count and don't have an always_on
3755  * constraint in a late_initcall.
3756  *
3757  * The intention is that this will become the default behaviour in a
3758  * future kernel release so users are encouraged to use this facility
3759  * now.
3760  */
3761 void regulator_has_full_constraints(void)
3762 {
3763 	has_full_constraints = 1;
3764 }
3765 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3766 
3767 /**
3768  * rdev_get_drvdata - get rdev regulator driver data
3769  * @rdev: regulator
3770  *
3771  * Get rdev regulator driver private data. This call can be used in the
3772  * regulator driver context.
3773  */
3774 void *rdev_get_drvdata(struct regulator_dev *rdev)
3775 {
3776 	return rdev->reg_data;
3777 }
3778 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3779 
3780 /**
3781  * regulator_get_drvdata - get regulator driver data
3782  * @regulator: regulator
3783  *
3784  * Get regulator driver private data. This call can be used in the consumer
3785  * driver context when non API regulator specific functions need to be called.
3786  */
3787 void *regulator_get_drvdata(struct regulator *regulator)
3788 {
3789 	return regulator->rdev->reg_data;
3790 }
3791 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3792 
3793 /**
3794  * regulator_set_drvdata - set regulator driver data
3795  * @regulator: regulator
3796  * @data: data
3797  */
3798 void regulator_set_drvdata(struct regulator *regulator, void *data)
3799 {
3800 	regulator->rdev->reg_data = data;
3801 }
3802 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3803 
3804 /**
3805  * regulator_get_id - get regulator ID
3806  * @rdev: regulator
3807  */
3808 int rdev_get_id(struct regulator_dev *rdev)
3809 {
3810 	return rdev->desc->id;
3811 }
3812 EXPORT_SYMBOL_GPL(rdev_get_id);
3813 
3814 struct device *rdev_get_dev(struct regulator_dev *rdev)
3815 {
3816 	return &rdev->dev;
3817 }
3818 EXPORT_SYMBOL_GPL(rdev_get_dev);
3819 
3820 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3821 {
3822 	return reg_init_data->driver_data;
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3825 
3826 #ifdef CONFIG_DEBUG_FS
3827 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3828 				    size_t count, loff_t *ppos)
3829 {
3830 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3831 	ssize_t len, ret = 0;
3832 	struct regulator_map *map;
3833 
3834 	if (!buf)
3835 		return -ENOMEM;
3836 
3837 	list_for_each_entry(map, &regulator_map_list, list) {
3838 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3839 			       "%s -> %s.%s\n",
3840 			       rdev_get_name(map->regulator), map->dev_name,
3841 			       map->supply);
3842 		if (len >= 0)
3843 			ret += len;
3844 		if (ret > PAGE_SIZE) {
3845 			ret = PAGE_SIZE;
3846 			break;
3847 		}
3848 	}
3849 
3850 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3851 
3852 	kfree(buf);
3853 
3854 	return ret;
3855 }
3856 #endif
3857 
3858 static const struct file_operations supply_map_fops = {
3859 #ifdef CONFIG_DEBUG_FS
3860 	.read = supply_map_read_file,
3861 	.llseek = default_llseek,
3862 #endif
3863 };
3864 
3865 static int __init regulator_init(void)
3866 {
3867 	int ret;
3868 
3869 	ret = class_register(&regulator_class);
3870 
3871 	debugfs_root = debugfs_create_dir("regulator", NULL);
3872 	if (!debugfs_root)
3873 		pr_warn("regulator: Failed to create debugfs directory\n");
3874 
3875 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3876 			    &supply_map_fops);
3877 
3878 	regulator_dummy_init();
3879 
3880 	return ret;
3881 }
3882 
3883 /* init early to allow our consumers to complete system booting */
3884 core_initcall(regulator_init);
3885 
3886 static int __init regulator_init_complete(void)
3887 {
3888 	struct regulator_dev *rdev;
3889 	struct regulator_ops *ops;
3890 	struct regulation_constraints *c;
3891 	int enabled, ret;
3892 
3893 	/*
3894 	 * Since DT doesn't provide an idiomatic mechanism for
3895 	 * enabling full constraints and since it's much more natural
3896 	 * with DT to provide them just assume that a DT enabled
3897 	 * system has full constraints.
3898 	 */
3899 	if (of_have_populated_dt())
3900 		has_full_constraints = true;
3901 
3902 	mutex_lock(&regulator_list_mutex);
3903 
3904 	/* If we have a full configuration then disable any regulators
3905 	 * we have permission to change the status for and which are
3906 	 * not in use or always_on.  This is effectively the default
3907 	 * for DT and ACPI as they have full constraints.
3908 	 */
3909 	list_for_each_entry(rdev, &regulator_list, list) {
3910 		ops = rdev->desc->ops;
3911 		c = rdev->constraints;
3912 
3913 		if (c && c->always_on)
3914 			continue;
3915 
3916 		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3917 			continue;
3918 
3919 		mutex_lock(&rdev->mutex);
3920 
3921 		if (rdev->use_count)
3922 			goto unlock;
3923 
3924 		/* If we can't read the status assume it's on. */
3925 		if (ops->is_enabled)
3926 			enabled = ops->is_enabled(rdev);
3927 		else
3928 			enabled = 1;
3929 
3930 		if (!enabled)
3931 			goto unlock;
3932 
3933 		if (have_full_constraints()) {
3934 			/* We log since this may kill the system if it
3935 			 * goes wrong. */
3936 			rdev_info(rdev, "disabling\n");
3937 			ret = _regulator_do_disable(rdev);
3938 			if (ret != 0)
3939 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3940 		} else {
3941 			/* The intention is that in future we will
3942 			 * assume that full constraints are provided
3943 			 * so warn even if we aren't going to do
3944 			 * anything here.
3945 			 */
3946 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3947 		}
3948 
3949 unlock:
3950 		mutex_unlock(&rdev->mutex);
3951 	}
3952 
3953 	mutex_unlock(&regulator_list_mutex);
3954 
3955 	return 0;
3956 }
3957 late_initcall_sync(regulator_init_complete);
3958