xref: /linux/drivers/regulator/core.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25 
26 #define REGULATOR_VERSION "0.5"
27 
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32 
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39 	struct list_head list;
40 	const char *dev_name;   /* The dev_name() for the consumer */
41 	const char *supply;
42 	struct regulator_dev *regulator;
43 };
44 
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51 	struct device *dev;
52 	struct list_head list;
53 	int uA_load;
54 	int min_uV;
55 	int max_uV;
56 	char *supply_name;
57 	struct device_attribute dev_attr;
58 	struct regulator_dev *rdev;
59 };
60 
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 				  unsigned long event, void *data);
68 
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 	struct regulator *regulator = NULL;
73 	struct regulator_dev *rdev;
74 
75 	mutex_lock(&regulator_list_mutex);
76 	list_for_each_entry(rdev, &regulator_list, list) {
77 		mutex_lock(&rdev->mutex);
78 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 			if (regulator->dev == dev) {
80 				mutex_unlock(&rdev->mutex);
81 				mutex_unlock(&regulator_list_mutex);
82 				return regulator;
83 			}
84 		}
85 		mutex_unlock(&rdev->mutex);
86 	}
87 	mutex_unlock(&regulator_list_mutex);
88 	return NULL;
89 }
90 
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 				   int *min_uV, int *max_uV)
94 {
95 	BUG_ON(*min_uV > *max_uV);
96 
97 	if (!rdev->constraints) {
98 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 		       rdev->desc->name);
100 		return -ENODEV;
101 	}
102 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 		printk(KERN_ERR "%s: operation not allowed for %s\n",
104 		       __func__, rdev->desc->name);
105 		return -EPERM;
106 	}
107 
108 	if (*max_uV > rdev->constraints->max_uV)
109 		*max_uV = rdev->constraints->max_uV;
110 	if (*min_uV < rdev->constraints->min_uV)
111 		*min_uV = rdev->constraints->min_uV;
112 
113 	if (*min_uV > *max_uV)
114 		return -EINVAL;
115 
116 	return 0;
117 }
118 
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 					int *min_uA, int *max_uA)
122 {
123 	BUG_ON(*min_uA > *max_uA);
124 
125 	if (!rdev->constraints) {
126 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 		       rdev->desc->name);
128 		return -ENODEV;
129 	}
130 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 		printk(KERN_ERR "%s: operation not allowed for %s\n",
132 		       __func__, rdev->desc->name);
133 		return -EPERM;
134 	}
135 
136 	if (*max_uA > rdev->constraints->max_uA)
137 		*max_uA = rdev->constraints->max_uA;
138 	if (*min_uA < rdev->constraints->min_uA)
139 		*min_uA = rdev->constraints->min_uA;
140 
141 	if (*min_uA > *max_uA)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 	switch (mode) {
151 	case REGULATOR_MODE_FAST:
152 	case REGULATOR_MODE_NORMAL:
153 	case REGULATOR_MODE_IDLE:
154 	case REGULATOR_MODE_STANDBY:
155 		break;
156 	default:
157 		return -EINVAL;
158 	}
159 
160 	if (!rdev->constraints) {
161 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 		       rdev->desc->name);
163 		return -ENODEV;
164 	}
165 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 		printk(KERN_ERR "%s: operation not allowed for %s\n",
167 		       __func__, rdev->desc->name);
168 		return -EPERM;
169 	}
170 	if (!(rdev->constraints->valid_modes_mask & mode)) {
171 		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 		       __func__, mode, rdev->desc->name);
173 		return -EINVAL;
174 	}
175 	return 0;
176 }
177 
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 	if (!rdev->constraints) {
182 		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 		       rdev->desc->name);
184 		return -ENODEV;
185 	}
186 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 		printk(KERN_ERR "%s: operation not allowed for %s\n",
188 		       __func__, rdev->desc->name);
189 		return -EPERM;
190 	}
191 	return 0;
192 }
193 
194 static ssize_t device_requested_uA_show(struct device *dev,
195 			     struct device_attribute *attr, char *buf)
196 {
197 	struct regulator *regulator;
198 
199 	regulator = get_device_regulator(dev);
200 	if (regulator == NULL)
201 		return 0;
202 
203 	return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205 
206 static ssize_t regulator_uV_show(struct device *dev,
207 				struct device_attribute *attr, char *buf)
208 {
209 	struct regulator_dev *rdev = dev_get_drvdata(dev);
210 	ssize_t ret;
211 
212 	mutex_lock(&rdev->mutex);
213 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 	mutex_unlock(&rdev->mutex);
215 
216 	return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219 
220 static ssize_t regulator_uA_show(struct device *dev,
221 				struct device_attribute *attr, char *buf)
222 {
223 	struct regulator_dev *rdev = dev_get_drvdata(dev);
224 
225 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228 
229 static ssize_t regulator_name_show(struct device *dev,
230 			     struct device_attribute *attr, char *buf)
231 {
232 	struct regulator_dev *rdev = dev_get_drvdata(dev);
233 	const char *name;
234 
235 	if (rdev->constraints && rdev->constraints->name)
236 		name = rdev->constraints->name;
237 	else if (rdev->desc->name)
238 		name = rdev->desc->name;
239 	else
240 		name = "";
241 
242 	return sprintf(buf, "%s\n", name);
243 }
244 
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 	switch (mode) {
248 	case REGULATOR_MODE_FAST:
249 		return sprintf(buf, "fast\n");
250 	case REGULATOR_MODE_NORMAL:
251 		return sprintf(buf, "normal\n");
252 	case REGULATOR_MODE_IDLE:
253 		return sprintf(buf, "idle\n");
254 	case REGULATOR_MODE_STANDBY:
255 		return sprintf(buf, "standby\n");
256 	}
257 	return sprintf(buf, "unknown\n");
258 }
259 
260 static ssize_t regulator_opmode_show(struct device *dev,
261 				    struct device_attribute *attr, char *buf)
262 {
263 	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 
265 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268 
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 	if (state > 0)
272 		return sprintf(buf, "enabled\n");
273 	else if (state == 0)
274 		return sprintf(buf, "disabled\n");
275 	else
276 		return sprintf(buf, "unknown\n");
277 }
278 
279 static ssize_t regulator_state_show(struct device *dev,
280 				   struct device_attribute *attr, char *buf)
281 {
282 	struct regulator_dev *rdev = dev_get_drvdata(dev);
283 	ssize_t ret;
284 
285 	mutex_lock(&rdev->mutex);
286 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287 	mutex_unlock(&rdev->mutex);
288 
289 	return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292 
293 static ssize_t regulator_status_show(struct device *dev,
294 				   struct device_attribute *attr, char *buf)
295 {
296 	struct regulator_dev *rdev = dev_get_drvdata(dev);
297 	int status;
298 	char *label;
299 
300 	status = rdev->desc->ops->get_status(rdev);
301 	if (status < 0)
302 		return status;
303 
304 	switch (status) {
305 	case REGULATOR_STATUS_OFF:
306 		label = "off";
307 		break;
308 	case REGULATOR_STATUS_ON:
309 		label = "on";
310 		break;
311 	case REGULATOR_STATUS_ERROR:
312 		label = "error";
313 		break;
314 	case REGULATOR_STATUS_FAST:
315 		label = "fast";
316 		break;
317 	case REGULATOR_STATUS_NORMAL:
318 		label = "normal";
319 		break;
320 	case REGULATOR_STATUS_IDLE:
321 		label = "idle";
322 		break;
323 	case REGULATOR_STATUS_STANDBY:
324 		label = "standby";
325 		break;
326 	default:
327 		return -ERANGE;
328 	}
329 
330 	return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333 
334 static ssize_t regulator_min_uA_show(struct device *dev,
335 				    struct device_attribute *attr, char *buf)
336 {
337 	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 
339 	if (!rdev->constraints)
340 		return sprintf(buf, "constraint not defined\n");
341 
342 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345 
346 static ssize_t regulator_max_uA_show(struct device *dev,
347 				    struct device_attribute *attr, char *buf)
348 {
349 	struct regulator_dev *rdev = dev_get_drvdata(dev);
350 
351 	if (!rdev->constraints)
352 		return sprintf(buf, "constraint not defined\n");
353 
354 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357 
358 static ssize_t regulator_min_uV_show(struct device *dev,
359 				    struct device_attribute *attr, char *buf)
360 {
361 	struct regulator_dev *rdev = dev_get_drvdata(dev);
362 
363 	if (!rdev->constraints)
364 		return sprintf(buf, "constraint not defined\n");
365 
366 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369 
370 static ssize_t regulator_max_uV_show(struct device *dev,
371 				    struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 
375 	if (!rdev->constraints)
376 		return sprintf(buf, "constraint not defined\n");
377 
378 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381 
382 static ssize_t regulator_total_uA_show(struct device *dev,
383 				      struct device_attribute *attr, char *buf)
384 {
385 	struct regulator_dev *rdev = dev_get_drvdata(dev);
386 	struct regulator *regulator;
387 	int uA = 0;
388 
389 	mutex_lock(&rdev->mutex);
390 	list_for_each_entry(regulator, &rdev->consumer_list, list)
391 	    uA += regulator->uA_load;
392 	mutex_unlock(&rdev->mutex);
393 	return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396 
397 static ssize_t regulator_num_users_show(struct device *dev,
398 				      struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	return sprintf(buf, "%d\n", rdev->use_count);
402 }
403 
404 static ssize_t regulator_type_show(struct device *dev,
405 				  struct device_attribute *attr, char *buf)
406 {
407 	struct regulator_dev *rdev = dev_get_drvdata(dev);
408 
409 	switch (rdev->desc->type) {
410 	case REGULATOR_VOLTAGE:
411 		return sprintf(buf, "voltage\n");
412 	case REGULATOR_CURRENT:
413 		return sprintf(buf, "current\n");
414 	}
415 	return sprintf(buf, "unknown\n");
416 }
417 
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419 				struct device_attribute *attr, char *buf)
420 {
421 	struct regulator_dev *rdev = dev_get_drvdata(dev);
422 
423 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426 		regulator_suspend_mem_uV_show, NULL);
427 
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429 				struct device_attribute *attr, char *buf)
430 {
431 	struct regulator_dev *rdev = dev_get_drvdata(dev);
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436 		regulator_suspend_disk_uV_show, NULL);
437 
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439 				struct device_attribute *attr, char *buf)
440 {
441 	struct regulator_dev *rdev = dev_get_drvdata(dev);
442 
443 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446 		regulator_suspend_standby_uV_show, NULL);
447 
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449 				struct device_attribute *attr, char *buf)
450 {
451 	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 
453 	return regulator_print_opmode(buf,
454 		rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457 		regulator_suspend_mem_mode_show, NULL);
458 
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460 				struct device_attribute *attr, char *buf)
461 {
462 	struct regulator_dev *rdev = dev_get_drvdata(dev);
463 
464 	return regulator_print_opmode(buf,
465 		rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468 		regulator_suspend_disk_mode_show, NULL);
469 
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471 				struct device_attribute *attr, char *buf)
472 {
473 	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 
475 	return regulator_print_opmode(buf,
476 		rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479 		regulator_suspend_standby_mode_show, NULL);
480 
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482 				   struct device_attribute *attr, char *buf)
483 {
484 	struct regulator_dev *rdev = dev_get_drvdata(dev);
485 
486 	return regulator_print_state(buf,
487 			rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490 		regulator_suspend_mem_state_show, NULL);
491 
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493 				   struct device_attribute *attr, char *buf)
494 {
495 	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 
497 	return regulator_print_state(buf,
498 			rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501 		regulator_suspend_disk_state_show, NULL);
502 
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504 				   struct device_attribute *attr, char *buf)
505 {
506 	struct regulator_dev *rdev = dev_get_drvdata(dev);
507 
508 	return regulator_print_state(buf,
509 			rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512 		regulator_suspend_standby_state_show, NULL);
513 
514 
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520 	__ATTR(name, 0444, regulator_name_show, NULL),
521 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
522 	__ATTR(type, 0444, regulator_type_show, NULL),
523 	__ATTR_NULL,
524 };
525 
526 static void regulator_dev_release(struct device *dev)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 	kfree(rdev);
530 }
531 
532 static struct class regulator_class = {
533 	.name = "regulator",
534 	.dev_release = regulator_dev_release,
535 	.dev_attrs = regulator_dev_attrs,
536 };
537 
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542 	struct regulator *sibling;
543 	int current_uA = 0, output_uV, input_uV, err;
544 	unsigned int mode;
545 
546 	err = regulator_check_drms(rdev);
547 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548 	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549 		return;
550 
551 	/* get output voltage */
552 	output_uV = rdev->desc->ops->get_voltage(rdev);
553 	if (output_uV <= 0)
554 		return;
555 
556 	/* get input voltage */
557 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559 	else
560 		input_uV = rdev->constraints->input_uV;
561 	if (input_uV <= 0)
562 		return;
563 
564 	/* calc total requested load */
565 	list_for_each_entry(sibling, &rdev->consumer_list, list)
566 	    current_uA += sibling->uA_load;
567 
568 	/* now get the optimum mode for our new total regulator load */
569 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570 						  output_uV, current_uA);
571 
572 	/* check the new mode is allowed */
573 	err = regulator_check_mode(rdev, mode);
574 	if (err == 0)
575 		rdev->desc->ops->set_mode(rdev, mode);
576 }
577 
578 static int suspend_set_state(struct regulator_dev *rdev,
579 	struct regulator_state *rstate)
580 {
581 	int ret = 0;
582 
583 	/* enable & disable are mandatory for suspend control */
584 	if (!rdev->desc->ops->set_suspend_enable ||
585 		!rdev->desc->ops->set_suspend_disable) {
586 		printk(KERN_ERR "%s: no way to set suspend state\n",
587 			__func__);
588 		return -EINVAL;
589 	}
590 
591 	if (rstate->enabled)
592 		ret = rdev->desc->ops->set_suspend_enable(rdev);
593 	else
594 		ret = rdev->desc->ops->set_suspend_disable(rdev);
595 	if (ret < 0) {
596 		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597 		return ret;
598 	}
599 
600 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602 		if (ret < 0) {
603 			printk(KERN_ERR "%s: failed to set voltage\n",
604 				__func__);
605 			return ret;
606 		}
607 	}
608 
609 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611 		if (ret < 0) {
612 			printk(KERN_ERR "%s: failed to set mode\n", __func__);
613 			return ret;
614 		}
615 	}
616 	return ret;
617 }
618 
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622 	if (!rdev->constraints)
623 		return -EINVAL;
624 
625 	switch (state) {
626 	case PM_SUSPEND_STANDBY:
627 		return suspend_set_state(rdev,
628 			&rdev->constraints->state_standby);
629 	case PM_SUSPEND_MEM:
630 		return suspend_set_state(rdev,
631 			&rdev->constraints->state_mem);
632 	case PM_SUSPEND_MAX:
633 		return suspend_set_state(rdev,
634 			&rdev->constraints->state_disk);
635 	default:
636 		return -EINVAL;
637 	}
638 }
639 
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642 	struct regulation_constraints *constraints = rdev->constraints;
643 	char buf[80];
644 	int count;
645 
646 	if (rdev->desc->type == REGULATOR_VOLTAGE) {
647 		if (constraints->min_uV == constraints->max_uV)
648 			count = sprintf(buf, "%d mV ",
649 					constraints->min_uV / 1000);
650 		else
651 			count = sprintf(buf, "%d <--> %d mV ",
652 					constraints->min_uV / 1000,
653 					constraints->max_uV / 1000);
654 	} else {
655 		if (constraints->min_uA == constraints->max_uA)
656 			count = sprintf(buf, "%d mA ",
657 					constraints->min_uA / 1000);
658 		else
659 			count = sprintf(buf, "%d <--> %d mA ",
660 					constraints->min_uA / 1000,
661 					constraints->max_uA / 1000);
662 	}
663 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664 		count += sprintf(buf + count, "fast ");
665 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666 		count += sprintf(buf + count, "normal ");
667 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668 		count += sprintf(buf + count, "idle ");
669 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670 		count += sprintf(buf + count, "standby");
671 
672 	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674 
675 /**
676  * set_machine_constraints - sets regulator constraints
677  * @rdev: regulator source
678  * @constraints: constraints to apply
679  *
680  * Allows platform initialisation code to define and constrain
681  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682  * Constraints *must* be set by platform code in order for some
683  * regulator operations to proceed i.e. set_voltage, set_current_limit,
684  * set_mode.
685  */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 	struct regulation_constraints *constraints)
688 {
689 	int ret = 0;
690 	const char *name;
691 	struct regulator_ops *ops = rdev->desc->ops;
692 
693 	if (constraints->name)
694 		name = constraints->name;
695 	else if (rdev->desc->name)
696 		name = rdev->desc->name;
697 	else
698 		name = "regulator";
699 
700 	/* constrain machine-level voltage specs to fit
701 	 * the actual range supported by this regulator.
702 	 */
703 	if (ops->list_voltage && rdev->desc->n_voltages) {
704 		int	count = rdev->desc->n_voltages;
705 		int	i;
706 		int	min_uV = INT_MAX;
707 		int	max_uV = INT_MIN;
708 		int	cmin = constraints->min_uV;
709 		int	cmax = constraints->max_uV;
710 
711 		/* it's safe to autoconfigure fixed-voltage supplies
712 		   and the constraints are used by list_voltage. */
713 		if (count == 1 && !cmin) {
714 			cmin = 1;
715 			cmax = INT_MAX;
716 			constraints->min_uV = cmin;
717 			constraints->max_uV = cmax;
718 		}
719 
720 		/* voltage constraints are optional */
721 		if ((cmin == 0) && (cmax == 0))
722 			goto out;
723 
724 		/* else require explicit machine-level constraints */
725 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726 			pr_err("%s: %s '%s' voltage constraints\n",
727 				       __func__, "invalid", name);
728 			ret = -EINVAL;
729 			goto out;
730 		}
731 
732 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 		for (i = 0; i < count; i++) {
734 			int	value;
735 
736 			value = ops->list_voltage(rdev, i);
737 			if (value <= 0)
738 				continue;
739 
740 			/* maybe adjust [min_uV..max_uV] */
741 			if (value >= cmin && value < min_uV)
742 				min_uV = value;
743 			if (value <= cmax && value > max_uV)
744 				max_uV = value;
745 		}
746 
747 		/* final: [min_uV..max_uV] valid iff constraints valid */
748 		if (max_uV < min_uV) {
749 			pr_err("%s: %s '%s' voltage constraints\n",
750 				       __func__, "unsupportable", name);
751 			ret = -EINVAL;
752 			goto out;
753 		}
754 
755 		/* use regulator's subset of machine constraints */
756 		if (constraints->min_uV < min_uV) {
757 			pr_debug("%s: override '%s' %s, %d -> %d\n",
758 				       __func__, name, "min_uV",
759 					constraints->min_uV, min_uV);
760 			constraints->min_uV = min_uV;
761 		}
762 		if (constraints->max_uV > max_uV) {
763 			pr_debug("%s: override '%s' %s, %d -> %d\n",
764 				       __func__, name, "max_uV",
765 					constraints->max_uV, max_uV);
766 			constraints->max_uV = max_uV;
767 		}
768 	}
769 
770 	rdev->constraints = constraints;
771 
772 	/* do we need to apply the constraint voltage */
773 	if (rdev->constraints->apply_uV &&
774 		rdev->constraints->min_uV == rdev->constraints->max_uV &&
775 		ops->set_voltage) {
776 		ret = ops->set_voltage(rdev,
777 			rdev->constraints->min_uV, rdev->constraints->max_uV);
778 			if (ret < 0) {
779 				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780 				       __func__,
781 				       rdev->constraints->min_uV, name);
782 				rdev->constraints = NULL;
783 				goto out;
784 			}
785 	}
786 
787 	/* do we need to setup our suspend state */
788 	if (constraints->initial_state) {
789 		ret = suspend_prepare(rdev, constraints->initial_state);
790 		if (ret < 0) {
791 			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792 			       __func__, name);
793 			rdev->constraints = NULL;
794 			goto out;
795 		}
796 	}
797 
798 	if (constraints->initial_mode) {
799 		if (!ops->set_mode) {
800 			printk(KERN_ERR "%s: no set_mode operation for %s\n",
801 			       __func__, name);
802 			ret = -EINVAL;
803 			goto out;
804 		}
805 
806 		ret = ops->set_mode(rdev, constraints->initial_mode);
807 		if (ret < 0) {
808 			printk(KERN_ERR
809 			       "%s: failed to set initial mode for %s: %d\n",
810 			       __func__, name, ret);
811 			goto out;
812 		}
813 	}
814 
815 	/* If the constraints say the regulator should be on at this point
816 	 * and we have control then make sure it is enabled.
817 	 */
818 	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819 		ret = ops->enable(rdev);
820 		if (ret < 0) {
821 			printk(KERN_ERR "%s: failed to enable %s\n",
822 			       __func__, name);
823 			rdev->constraints = NULL;
824 			goto out;
825 		}
826 	}
827 
828 	print_constraints(rdev);
829 out:
830 	return ret;
831 }
832 
833 /**
834  * set_supply - set regulator supply regulator
835  * @rdev: regulator name
836  * @supply_rdev: supply regulator name
837  *
838  * Called by platform initialisation code to set the supply regulator for this
839  * regulator. This ensures that a regulators supply will also be enabled by the
840  * core if it's child is enabled.
841  */
842 static int set_supply(struct regulator_dev *rdev,
843 	struct regulator_dev *supply_rdev)
844 {
845 	int err;
846 
847 	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848 				"supply");
849 	if (err) {
850 		printk(KERN_ERR
851 		       "%s: could not add device link %s err %d\n",
852 		       __func__, supply_rdev->dev.kobj.name, err);
853 		       goto out;
854 	}
855 	rdev->supply = supply_rdev;
856 	list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858 	return err;
859 }
860 
861 /**
862  * set_consumer_device_supply: Bind a regulator to a symbolic supply
863  * @rdev:         regulator source
864  * @consumer_dev: device the supply applies to
865  * @consumer_dev_name: dev_name() string for device supply applies to
866  * @supply:       symbolic name for supply
867  *
868  * Allows platform initialisation code to map physical regulator
869  * sources to symbolic names for supplies for use by devices.  Devices
870  * should use these symbolic names to request regulators, avoiding the
871  * need to provide board-specific regulator names as platform data.
872  *
873  * Only one of consumer_dev and consumer_dev_name may be specified.
874  */
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876 	struct device *consumer_dev, const char *consumer_dev_name,
877 	const char *supply)
878 {
879 	struct regulator_map *node;
880 	int has_dev;
881 
882 	if (consumer_dev && consumer_dev_name)
883 		return -EINVAL;
884 
885 	if (!consumer_dev_name && consumer_dev)
886 		consumer_dev_name = dev_name(consumer_dev);
887 
888 	if (supply == NULL)
889 		return -EINVAL;
890 
891 	if (consumer_dev_name != NULL)
892 		has_dev = 1;
893 	else
894 		has_dev = 0;
895 
896 	list_for_each_entry(node, &regulator_map_list, list) {
897 		if (consumer_dev_name != node->dev_name)
898 			continue;
899 		if (strcmp(node->supply, supply) != 0)
900 			continue;
901 
902 		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903 				dev_name(&node->regulator->dev),
904 				node->regulator->desc->name,
905 				supply,
906 				dev_name(&rdev->dev), rdev->desc->name);
907 		return -EBUSY;
908 	}
909 
910 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911 	if (node == NULL)
912 		return -ENOMEM;
913 
914 	node->regulator = rdev;
915 	node->supply = supply;
916 
917 	if (has_dev) {
918 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919 		if (node->dev_name == NULL) {
920 			kfree(node);
921 			return -ENOMEM;
922 		}
923 	}
924 
925 	list_add(&node->list, &regulator_map_list);
926 	return 0;
927 }
928 
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930 	const char *consumer_dev_name, struct device *consumer_dev)
931 {
932 	struct regulator_map *node, *n;
933 
934 	if (consumer_dev && !consumer_dev_name)
935 		consumer_dev_name = dev_name(consumer_dev);
936 
937 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938 		if (rdev != node->regulator)
939 			continue;
940 
941 		if (consumer_dev_name && node->dev_name &&
942 		    strcmp(consumer_dev_name, node->dev_name))
943 			continue;
944 
945 		list_del(&node->list);
946 		kfree(node->dev_name);
947 		kfree(node);
948 		return;
949 	}
950 }
951 
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
953 {
954 	struct regulator_map *node, *n;
955 
956 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957 		if (rdev == node->regulator) {
958 			list_del(&node->list);
959 			kfree(node->dev_name);
960 			kfree(node);
961 			return;
962 		}
963 	}
964 }
965 
966 #define REG_STR_SIZE	32
967 
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969 					  struct device *dev,
970 					  const char *supply_name)
971 {
972 	struct regulator *regulator;
973 	char buf[REG_STR_SIZE];
974 	int err, size;
975 
976 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977 	if (regulator == NULL)
978 		return NULL;
979 
980 	mutex_lock(&rdev->mutex);
981 	regulator->rdev = rdev;
982 	list_add(&regulator->list, &rdev->consumer_list);
983 
984 	if (dev) {
985 		/* create a 'requested_microamps_name' sysfs entry */
986 		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987 			supply_name);
988 		if (size >= REG_STR_SIZE)
989 			goto overflow_err;
990 
991 		regulator->dev = dev;
992 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993 		if (regulator->dev_attr.attr.name == NULL)
994 			goto attr_name_err;
995 
996 		regulator->dev_attr.attr.owner = THIS_MODULE;
997 		regulator->dev_attr.attr.mode = 0444;
998 		regulator->dev_attr.show = device_requested_uA_show;
999 		err = device_create_file(dev, &regulator->dev_attr);
1000 		if (err < 0) {
1001 			printk(KERN_WARNING "%s: could not add regulator_dev"
1002 				" load sysfs\n", __func__);
1003 			goto attr_name_err;
1004 		}
1005 
1006 		/* also add a link to the device sysfs entry */
1007 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008 				 dev->kobj.name, supply_name);
1009 		if (size >= REG_STR_SIZE)
1010 			goto attr_err;
1011 
1012 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013 		if (regulator->supply_name == NULL)
1014 			goto attr_err;
1015 
1016 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017 					buf);
1018 		if (err) {
1019 			printk(KERN_WARNING
1020 			       "%s: could not add device link %s err %d\n",
1021 			       __func__, dev->kobj.name, err);
1022 			device_remove_file(dev, &regulator->dev_attr);
1023 			goto link_name_err;
1024 		}
1025 	}
1026 	mutex_unlock(&rdev->mutex);
1027 	return regulator;
1028 link_name_err:
1029 	kfree(regulator->supply_name);
1030 attr_err:
1031 	device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033 	kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035 	list_del(&regulator->list);
1036 	kfree(regulator);
1037 	mutex_unlock(&rdev->mutex);
1038 	return NULL;
1039 }
1040 
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043 					int exclusive)
1044 {
1045 	struct regulator_dev *rdev;
1046 	struct regulator_map *map;
1047 	struct regulator *regulator = ERR_PTR(-ENODEV);
1048 	const char *devname = NULL;
1049 	int ret;
1050 
1051 	if (id == NULL) {
1052 		printk(KERN_ERR "regulator: get() with no identifier\n");
1053 		return regulator;
1054 	}
1055 
1056 	if (dev)
1057 		devname = dev_name(dev);
1058 
1059 	mutex_lock(&regulator_list_mutex);
1060 
1061 	list_for_each_entry(map, &regulator_map_list, list) {
1062 		/* If the mapping has a device set up it must match */
1063 		if (map->dev_name &&
1064 		    (!devname || strcmp(map->dev_name, devname)))
1065 			continue;
1066 
1067 		if (strcmp(map->supply, id) == 0) {
1068 			rdev = map->regulator;
1069 			goto found;
1070 		}
1071 	}
1072 	mutex_unlock(&regulator_list_mutex);
1073 	return regulator;
1074 
1075 found:
1076 	if (rdev->exclusive) {
1077 		regulator = ERR_PTR(-EPERM);
1078 		goto out;
1079 	}
1080 
1081 	if (exclusive && rdev->open_count) {
1082 		regulator = ERR_PTR(-EBUSY);
1083 		goto out;
1084 	}
1085 
1086 	if (!try_module_get(rdev->owner))
1087 		goto out;
1088 
1089 	regulator = create_regulator(rdev, dev, id);
1090 	if (regulator == NULL) {
1091 		regulator = ERR_PTR(-ENOMEM);
1092 		module_put(rdev->owner);
1093 	}
1094 
1095 	rdev->open_count++;
1096 	if (exclusive) {
1097 		rdev->exclusive = 1;
1098 
1099 		ret = _regulator_is_enabled(rdev);
1100 		if (ret > 0)
1101 			rdev->use_count = 1;
1102 		else
1103 			rdev->use_count = 0;
1104 	}
1105 
1106 out:
1107 	mutex_unlock(&regulator_list_mutex);
1108 
1109 	return regulator;
1110 }
1111 
1112 /**
1113  * regulator_get - lookup and obtain a reference to a regulator.
1114  * @dev: device for regulator "consumer"
1115  * @id: Supply name or regulator ID.
1116  *
1117  * Returns a struct regulator corresponding to the regulator producer,
1118  * or IS_ERR() condition containing errno.
1119  *
1120  * Use of supply names configured via regulator_set_device_supply() is
1121  * strongly encouraged.  It is recommended that the supply name used
1122  * should match the name used for the supply and/or the relevant
1123  * device pins in the datasheet.
1124  */
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1126 {
1127 	return _regulator_get(dev, id, 0);
1128 }
1129 EXPORT_SYMBOL_GPL(regulator_get);
1130 
1131 /**
1132  * regulator_get_exclusive - obtain exclusive access to a regulator.
1133  * @dev: device for regulator "consumer"
1134  * @id: Supply name or regulator ID.
1135  *
1136  * Returns a struct regulator corresponding to the regulator producer,
1137  * or IS_ERR() condition containing errno.  Other consumers will be
1138  * unable to obtain this reference is held and the use count for the
1139  * regulator will be initialised to reflect the current state of the
1140  * regulator.
1141  *
1142  * This is intended for use by consumers which cannot tolerate shared
1143  * use of the regulator such as those which need to force the
1144  * regulator off for correct operation of the hardware they are
1145  * controlling.
1146  *
1147  * Use of supply names configured via regulator_set_device_supply() is
1148  * strongly encouraged.  It is recommended that the supply name used
1149  * should match the name used for the supply and/or the relevant
1150  * device pins in the datasheet.
1151  */
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153 {
1154 	return _regulator_get(dev, id, 1);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157 
1158 /**
1159  * regulator_put - "free" the regulator source
1160  * @regulator: regulator source
1161  *
1162  * Note: drivers must ensure that all regulator_enable calls made on this
1163  * regulator source are balanced by regulator_disable calls prior to calling
1164  * this function.
1165  */
1166 void regulator_put(struct regulator *regulator)
1167 {
1168 	struct regulator_dev *rdev;
1169 
1170 	if (regulator == NULL || IS_ERR(regulator))
1171 		return;
1172 
1173 	mutex_lock(&regulator_list_mutex);
1174 	rdev = regulator->rdev;
1175 
1176 	/* remove any sysfs entries */
1177 	if (regulator->dev) {
1178 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179 		kfree(regulator->supply_name);
1180 		device_remove_file(regulator->dev, &regulator->dev_attr);
1181 		kfree(regulator->dev_attr.attr.name);
1182 	}
1183 	list_del(&regulator->list);
1184 	kfree(regulator);
1185 
1186 	rdev->open_count--;
1187 	rdev->exclusive = 0;
1188 
1189 	module_put(rdev->owner);
1190 	mutex_unlock(&regulator_list_mutex);
1191 }
1192 EXPORT_SYMBOL_GPL(regulator_put);
1193 
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1195 {
1196 	if (!rdev->constraints)
1197 		return 0;
1198 
1199 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200 		return 1;
1201 	else
1202 		return 0;
1203 }
1204 
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1207 {
1208 	int ret;
1209 
1210 	/* do we need to enable the supply regulator first */
1211 	if (rdev->supply) {
1212 		ret = _regulator_enable(rdev->supply);
1213 		if (ret < 0) {
1214 			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215 			       __func__, rdev->desc->name, ret);
1216 			return ret;
1217 		}
1218 	}
1219 
1220 	/* check voltage and requested load before enabling */
1221 	if (rdev->constraints &&
1222 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223 		drms_uA_update(rdev);
1224 
1225 	if (rdev->use_count == 0) {
1226 		/* The regulator may on if it's not switchable or left on */
1227 		ret = _regulator_is_enabled(rdev);
1228 		if (ret == -EINVAL || ret == 0) {
1229 			if (!_regulator_can_change_status(rdev))
1230 				return -EPERM;
1231 
1232 			if (rdev->desc->ops->enable) {
1233 				ret = rdev->desc->ops->enable(rdev);
1234 				if (ret < 0)
1235 					return ret;
1236 			} else {
1237 				return -EINVAL;
1238 			}
1239 		} else {
1240 			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241 			       __func__, rdev->desc->name, ret);
1242 			return ret;
1243 		}
1244 	}
1245 
1246 	rdev->use_count++;
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * regulator_enable - enable regulator output
1253  * @regulator: regulator source
1254  *
1255  * Request that the regulator be enabled with the regulator output at
1256  * the predefined voltage or current value.  Calls to regulator_enable()
1257  * must be balanced with calls to regulator_disable().
1258  *
1259  * NOTE: the output value can be set by other drivers, boot loader or may be
1260  * hardwired in the regulator.
1261  */
1262 int regulator_enable(struct regulator *regulator)
1263 {
1264 	struct regulator_dev *rdev = regulator->rdev;
1265 	int ret = 0;
1266 
1267 	mutex_lock(&rdev->mutex);
1268 	ret = _regulator_enable(rdev);
1269 	mutex_unlock(&rdev->mutex);
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(regulator_enable);
1273 
1274 /* locks held by regulator_disable() */
1275 static int _regulator_disable(struct regulator_dev *rdev)
1276 {
1277 	int ret = 0;
1278 
1279 	if (WARN(rdev->use_count <= 0,
1280 			"unbalanced disables for %s\n",
1281 			rdev->desc->name))
1282 		return -EIO;
1283 
1284 	/* are we the last user and permitted to disable ? */
1285 	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1286 
1287 		/* we are last user */
1288 		if (_regulator_can_change_status(rdev) &&
1289 		    rdev->desc->ops->disable) {
1290 			ret = rdev->desc->ops->disable(rdev);
1291 			if (ret < 0) {
1292 				printk(KERN_ERR "%s: failed to disable %s\n",
1293 				       __func__, rdev->desc->name);
1294 				return ret;
1295 			}
1296 		}
1297 
1298 		/* decrease our supplies ref count and disable if required */
1299 		if (rdev->supply)
1300 			_regulator_disable(rdev->supply);
1301 
1302 		rdev->use_count = 0;
1303 	} else if (rdev->use_count > 1) {
1304 
1305 		if (rdev->constraints &&
1306 			(rdev->constraints->valid_ops_mask &
1307 			REGULATOR_CHANGE_DRMS))
1308 			drms_uA_update(rdev);
1309 
1310 		rdev->use_count--;
1311 	}
1312 	return ret;
1313 }
1314 
1315 /**
1316  * regulator_disable - disable regulator output
1317  * @regulator: regulator source
1318  *
1319  * Disable the regulator output voltage or current.  Calls to
1320  * regulator_enable() must be balanced with calls to
1321  * regulator_disable().
1322  *
1323  * NOTE: this will only disable the regulator output if no other consumer
1324  * devices have it enabled, the regulator device supports disabling and
1325  * machine constraints permit this operation.
1326  */
1327 int regulator_disable(struct regulator *regulator)
1328 {
1329 	struct regulator_dev *rdev = regulator->rdev;
1330 	int ret = 0;
1331 
1332 	mutex_lock(&rdev->mutex);
1333 	ret = _regulator_disable(rdev);
1334 	mutex_unlock(&rdev->mutex);
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(regulator_disable);
1338 
1339 /* locks held by regulator_force_disable() */
1340 static int _regulator_force_disable(struct regulator_dev *rdev)
1341 {
1342 	int ret = 0;
1343 
1344 	/* force disable */
1345 	if (rdev->desc->ops->disable) {
1346 		/* ah well, who wants to live forever... */
1347 		ret = rdev->desc->ops->disable(rdev);
1348 		if (ret < 0) {
1349 			printk(KERN_ERR "%s: failed to force disable %s\n",
1350 			       __func__, rdev->desc->name);
1351 			return ret;
1352 		}
1353 		/* notify other consumers that power has been forced off */
1354 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1355 			NULL);
1356 	}
1357 
1358 	/* decrease our supplies ref count and disable if required */
1359 	if (rdev->supply)
1360 		_regulator_disable(rdev->supply);
1361 
1362 	rdev->use_count = 0;
1363 	return ret;
1364 }
1365 
1366 /**
1367  * regulator_force_disable - force disable regulator output
1368  * @regulator: regulator source
1369  *
1370  * Forcibly disable the regulator output voltage or current.
1371  * NOTE: this *will* disable the regulator output even if other consumer
1372  * devices have it enabled. This should be used for situations when device
1373  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1374  */
1375 int regulator_force_disable(struct regulator *regulator)
1376 {
1377 	int ret;
1378 
1379 	mutex_lock(&regulator->rdev->mutex);
1380 	regulator->uA_load = 0;
1381 	ret = _regulator_force_disable(regulator->rdev);
1382 	mutex_unlock(&regulator->rdev->mutex);
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(regulator_force_disable);
1386 
1387 static int _regulator_is_enabled(struct regulator_dev *rdev)
1388 {
1389 	/* sanity check */
1390 	if (!rdev->desc->ops->is_enabled)
1391 		return -EINVAL;
1392 
1393 	return rdev->desc->ops->is_enabled(rdev);
1394 }
1395 
1396 /**
1397  * regulator_is_enabled - is the regulator output enabled
1398  * @regulator: regulator source
1399  *
1400  * Returns positive if the regulator driver backing the source/client
1401  * has requested that the device be enabled, zero if it hasn't, else a
1402  * negative errno code.
1403  *
1404  * Note that the device backing this regulator handle can have multiple
1405  * users, so it might be enabled even if regulator_enable() was never
1406  * called for this particular source.
1407  */
1408 int regulator_is_enabled(struct regulator *regulator)
1409 {
1410 	int ret;
1411 
1412 	mutex_lock(&regulator->rdev->mutex);
1413 	ret = _regulator_is_enabled(regulator->rdev);
1414 	mutex_unlock(&regulator->rdev->mutex);
1415 
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1419 
1420 /**
1421  * regulator_count_voltages - count regulator_list_voltage() selectors
1422  * @regulator: regulator source
1423  *
1424  * Returns number of selectors, or negative errno.  Selectors are
1425  * numbered starting at zero, and typically correspond to bitfields
1426  * in hardware registers.
1427  */
1428 int regulator_count_voltages(struct regulator *regulator)
1429 {
1430 	struct regulator_dev	*rdev = regulator->rdev;
1431 
1432 	return rdev->desc->n_voltages ? : -EINVAL;
1433 }
1434 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1435 
1436 /**
1437  * regulator_list_voltage - enumerate supported voltages
1438  * @regulator: regulator source
1439  * @selector: identify voltage to list
1440  * Context: can sleep
1441  *
1442  * Returns a voltage that can be passed to @regulator_set_voltage(),
1443  * zero if this selector code can't be used on this sytem, or a
1444  * negative errno.
1445  */
1446 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1447 {
1448 	struct regulator_dev	*rdev = regulator->rdev;
1449 	struct regulator_ops	*ops = rdev->desc->ops;
1450 	int			ret;
1451 
1452 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1453 		return -EINVAL;
1454 
1455 	mutex_lock(&rdev->mutex);
1456 	ret = ops->list_voltage(rdev, selector);
1457 	mutex_unlock(&rdev->mutex);
1458 
1459 	if (ret > 0) {
1460 		if (ret < rdev->constraints->min_uV)
1461 			ret = 0;
1462 		else if (ret > rdev->constraints->max_uV)
1463 			ret = 0;
1464 	}
1465 
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1469 
1470 /**
1471  * regulator_is_supported_voltage - check if a voltage range can be supported
1472  *
1473  * @regulator: Regulator to check.
1474  * @min_uV: Minimum required voltage in uV.
1475  * @max_uV: Maximum required voltage in uV.
1476  *
1477  * Returns a boolean or a negative error code.
1478  */
1479 int regulator_is_supported_voltage(struct regulator *regulator,
1480 				   int min_uV, int max_uV)
1481 {
1482 	int i, voltages, ret;
1483 
1484 	ret = regulator_count_voltages(regulator);
1485 	if (ret < 0)
1486 		return ret;
1487 	voltages = ret;
1488 
1489 	for (i = 0; i < voltages; i++) {
1490 		ret = regulator_list_voltage(regulator, i);
1491 
1492 		if (ret >= min_uV && ret <= max_uV)
1493 			return 1;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 /**
1500  * regulator_set_voltage - set regulator output voltage
1501  * @regulator: regulator source
1502  * @min_uV: Minimum required voltage in uV
1503  * @max_uV: Maximum acceptable voltage in uV
1504  *
1505  * Sets a voltage regulator to the desired output voltage. This can be set
1506  * during any regulator state. IOW, regulator can be disabled or enabled.
1507  *
1508  * If the regulator is enabled then the voltage will change to the new value
1509  * immediately otherwise if the regulator is disabled the regulator will
1510  * output at the new voltage when enabled.
1511  *
1512  * NOTE: If the regulator is shared between several devices then the lowest
1513  * request voltage that meets the system constraints will be used.
1514  * Regulator system constraints must be set for this regulator before
1515  * calling this function otherwise this call will fail.
1516  */
1517 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1518 {
1519 	struct regulator_dev *rdev = regulator->rdev;
1520 	int ret;
1521 
1522 	mutex_lock(&rdev->mutex);
1523 
1524 	/* sanity check */
1525 	if (!rdev->desc->ops->set_voltage) {
1526 		ret = -EINVAL;
1527 		goto out;
1528 	}
1529 
1530 	/* constraints check */
1531 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1532 	if (ret < 0)
1533 		goto out;
1534 	regulator->min_uV = min_uV;
1535 	regulator->max_uV = max_uV;
1536 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1537 
1538 out:
1539 	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1540 	mutex_unlock(&rdev->mutex);
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1544 
1545 static int _regulator_get_voltage(struct regulator_dev *rdev)
1546 {
1547 	/* sanity check */
1548 	if (rdev->desc->ops->get_voltage)
1549 		return rdev->desc->ops->get_voltage(rdev);
1550 	else
1551 		return -EINVAL;
1552 }
1553 
1554 /**
1555  * regulator_get_voltage - get regulator output voltage
1556  * @regulator: regulator source
1557  *
1558  * This returns the current regulator voltage in uV.
1559  *
1560  * NOTE: If the regulator is disabled it will return the voltage value. This
1561  * function should not be used to determine regulator state.
1562  */
1563 int regulator_get_voltage(struct regulator *regulator)
1564 {
1565 	int ret;
1566 
1567 	mutex_lock(&regulator->rdev->mutex);
1568 
1569 	ret = _regulator_get_voltage(regulator->rdev);
1570 
1571 	mutex_unlock(&regulator->rdev->mutex);
1572 
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1576 
1577 /**
1578  * regulator_set_current_limit - set regulator output current limit
1579  * @regulator: regulator source
1580  * @min_uA: Minimuum supported current in uA
1581  * @max_uA: Maximum supported current in uA
1582  *
1583  * Sets current sink to the desired output current. This can be set during
1584  * any regulator state. IOW, regulator can be disabled or enabled.
1585  *
1586  * If the regulator is enabled then the current will change to the new value
1587  * immediately otherwise if the regulator is disabled the regulator will
1588  * output at the new current when enabled.
1589  *
1590  * NOTE: Regulator system constraints must be set for this regulator before
1591  * calling this function otherwise this call will fail.
1592  */
1593 int regulator_set_current_limit(struct regulator *regulator,
1594 			       int min_uA, int max_uA)
1595 {
1596 	struct regulator_dev *rdev = regulator->rdev;
1597 	int ret;
1598 
1599 	mutex_lock(&rdev->mutex);
1600 
1601 	/* sanity check */
1602 	if (!rdev->desc->ops->set_current_limit) {
1603 		ret = -EINVAL;
1604 		goto out;
1605 	}
1606 
1607 	/* constraints check */
1608 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1609 	if (ret < 0)
1610 		goto out;
1611 
1612 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1613 out:
1614 	mutex_unlock(&rdev->mutex);
1615 	return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1618 
1619 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1620 {
1621 	int ret;
1622 
1623 	mutex_lock(&rdev->mutex);
1624 
1625 	/* sanity check */
1626 	if (!rdev->desc->ops->get_current_limit) {
1627 		ret = -EINVAL;
1628 		goto out;
1629 	}
1630 
1631 	ret = rdev->desc->ops->get_current_limit(rdev);
1632 out:
1633 	mutex_unlock(&rdev->mutex);
1634 	return ret;
1635 }
1636 
1637 /**
1638  * regulator_get_current_limit - get regulator output current
1639  * @regulator: regulator source
1640  *
1641  * This returns the current supplied by the specified current sink in uA.
1642  *
1643  * NOTE: If the regulator is disabled it will return the current value. This
1644  * function should not be used to determine regulator state.
1645  */
1646 int regulator_get_current_limit(struct regulator *regulator)
1647 {
1648 	return _regulator_get_current_limit(regulator->rdev);
1649 }
1650 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1651 
1652 /**
1653  * regulator_set_mode - set regulator operating mode
1654  * @regulator: regulator source
1655  * @mode: operating mode - one of the REGULATOR_MODE constants
1656  *
1657  * Set regulator operating mode to increase regulator efficiency or improve
1658  * regulation performance.
1659  *
1660  * NOTE: Regulator system constraints must be set for this regulator before
1661  * calling this function otherwise this call will fail.
1662  */
1663 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1664 {
1665 	struct regulator_dev *rdev = regulator->rdev;
1666 	int ret;
1667 
1668 	mutex_lock(&rdev->mutex);
1669 
1670 	/* sanity check */
1671 	if (!rdev->desc->ops->set_mode) {
1672 		ret = -EINVAL;
1673 		goto out;
1674 	}
1675 
1676 	/* constraints check */
1677 	ret = regulator_check_mode(rdev, mode);
1678 	if (ret < 0)
1679 		goto out;
1680 
1681 	ret = rdev->desc->ops->set_mode(rdev, mode);
1682 out:
1683 	mutex_unlock(&rdev->mutex);
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(regulator_set_mode);
1687 
1688 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1689 {
1690 	int ret;
1691 
1692 	mutex_lock(&rdev->mutex);
1693 
1694 	/* sanity check */
1695 	if (!rdev->desc->ops->get_mode) {
1696 		ret = -EINVAL;
1697 		goto out;
1698 	}
1699 
1700 	ret = rdev->desc->ops->get_mode(rdev);
1701 out:
1702 	mutex_unlock(&rdev->mutex);
1703 	return ret;
1704 }
1705 
1706 /**
1707  * regulator_get_mode - get regulator operating mode
1708  * @regulator: regulator source
1709  *
1710  * Get the current regulator operating mode.
1711  */
1712 unsigned int regulator_get_mode(struct regulator *regulator)
1713 {
1714 	return _regulator_get_mode(regulator->rdev);
1715 }
1716 EXPORT_SYMBOL_GPL(regulator_get_mode);
1717 
1718 /**
1719  * regulator_set_optimum_mode - set regulator optimum operating mode
1720  * @regulator: regulator source
1721  * @uA_load: load current
1722  *
1723  * Notifies the regulator core of a new device load. This is then used by
1724  * DRMS (if enabled by constraints) to set the most efficient regulator
1725  * operating mode for the new regulator loading.
1726  *
1727  * Consumer devices notify their supply regulator of the maximum power
1728  * they will require (can be taken from device datasheet in the power
1729  * consumption tables) when they change operational status and hence power
1730  * state. Examples of operational state changes that can affect power
1731  * consumption are :-
1732  *
1733  *    o Device is opened / closed.
1734  *    o Device I/O is about to begin or has just finished.
1735  *    o Device is idling in between work.
1736  *
1737  * This information is also exported via sysfs to userspace.
1738  *
1739  * DRMS will sum the total requested load on the regulator and change
1740  * to the most efficient operating mode if platform constraints allow.
1741  *
1742  * Returns the new regulator mode or error.
1743  */
1744 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1745 {
1746 	struct regulator_dev *rdev = regulator->rdev;
1747 	struct regulator *consumer;
1748 	int ret, output_uV, input_uV, total_uA_load = 0;
1749 	unsigned int mode;
1750 
1751 	mutex_lock(&rdev->mutex);
1752 
1753 	regulator->uA_load = uA_load;
1754 	ret = regulator_check_drms(rdev);
1755 	if (ret < 0)
1756 		goto out;
1757 	ret = -EINVAL;
1758 
1759 	/* sanity check */
1760 	if (!rdev->desc->ops->get_optimum_mode)
1761 		goto out;
1762 
1763 	/* get output voltage */
1764 	output_uV = rdev->desc->ops->get_voltage(rdev);
1765 	if (output_uV <= 0) {
1766 		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1767 			__func__, rdev->desc->name);
1768 		goto out;
1769 	}
1770 
1771 	/* get input voltage */
1772 	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1773 		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1774 	else
1775 		input_uV = rdev->constraints->input_uV;
1776 	if (input_uV <= 0) {
1777 		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1778 			__func__, rdev->desc->name);
1779 		goto out;
1780 	}
1781 
1782 	/* calc total requested load for this regulator */
1783 	list_for_each_entry(consumer, &rdev->consumer_list, list)
1784 	    total_uA_load += consumer->uA_load;
1785 
1786 	mode = rdev->desc->ops->get_optimum_mode(rdev,
1787 						 input_uV, output_uV,
1788 						 total_uA_load);
1789 	ret = regulator_check_mode(rdev, mode);
1790 	if (ret < 0) {
1791 		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1792 			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1793 			total_uA_load, input_uV, output_uV);
1794 		goto out;
1795 	}
1796 
1797 	ret = rdev->desc->ops->set_mode(rdev, mode);
1798 	if (ret < 0) {
1799 		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1800 			__func__, mode, rdev->desc->name);
1801 		goto out;
1802 	}
1803 	ret = mode;
1804 out:
1805 	mutex_unlock(&rdev->mutex);
1806 	return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1809 
1810 /**
1811  * regulator_register_notifier - register regulator event notifier
1812  * @regulator: regulator source
1813  * @nb: notifier block
1814  *
1815  * Register notifier block to receive regulator events.
1816  */
1817 int regulator_register_notifier(struct regulator *regulator,
1818 			      struct notifier_block *nb)
1819 {
1820 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1821 						nb);
1822 }
1823 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1824 
1825 /**
1826  * regulator_unregister_notifier - unregister regulator event notifier
1827  * @regulator: regulator source
1828  * @nb: notifier block
1829  *
1830  * Unregister regulator event notifier block.
1831  */
1832 int regulator_unregister_notifier(struct regulator *regulator,
1833 				struct notifier_block *nb)
1834 {
1835 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1836 						  nb);
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1839 
1840 /* notify regulator consumers and downstream regulator consumers.
1841  * Note mutex must be held by caller.
1842  */
1843 static void _notifier_call_chain(struct regulator_dev *rdev,
1844 				  unsigned long event, void *data)
1845 {
1846 	struct regulator_dev *_rdev;
1847 
1848 	/* call rdev chain first */
1849 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1850 
1851 	/* now notify regulator we supply */
1852 	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1853 	  mutex_lock(&_rdev->mutex);
1854 	  _notifier_call_chain(_rdev, event, data);
1855 	  mutex_unlock(&_rdev->mutex);
1856 	}
1857 }
1858 
1859 /**
1860  * regulator_bulk_get - get multiple regulator consumers
1861  *
1862  * @dev:           Device to supply
1863  * @num_consumers: Number of consumers to register
1864  * @consumers:     Configuration of consumers; clients are stored here.
1865  *
1866  * @return 0 on success, an errno on failure.
1867  *
1868  * This helper function allows drivers to get several regulator
1869  * consumers in one operation.  If any of the regulators cannot be
1870  * acquired then any regulators that were allocated will be freed
1871  * before returning to the caller.
1872  */
1873 int regulator_bulk_get(struct device *dev, int num_consumers,
1874 		       struct regulator_bulk_data *consumers)
1875 {
1876 	int i;
1877 	int ret;
1878 
1879 	for (i = 0; i < num_consumers; i++)
1880 		consumers[i].consumer = NULL;
1881 
1882 	for (i = 0; i < num_consumers; i++) {
1883 		consumers[i].consumer = regulator_get(dev,
1884 						      consumers[i].supply);
1885 		if (IS_ERR(consumers[i].consumer)) {
1886 			dev_err(dev, "Failed to get supply '%s'\n",
1887 				consumers[i].supply);
1888 			ret = PTR_ERR(consumers[i].consumer);
1889 			consumers[i].consumer = NULL;
1890 			goto err;
1891 		}
1892 	}
1893 
1894 	return 0;
1895 
1896 err:
1897 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1898 		regulator_put(consumers[i].consumer);
1899 
1900 	return ret;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1903 
1904 /**
1905  * regulator_bulk_enable - enable multiple regulator consumers
1906  *
1907  * @num_consumers: Number of consumers
1908  * @consumers:     Consumer data; clients are stored here.
1909  * @return         0 on success, an errno on failure
1910  *
1911  * This convenience API allows consumers to enable multiple regulator
1912  * clients in a single API call.  If any consumers cannot be enabled
1913  * then any others that were enabled will be disabled again prior to
1914  * return.
1915  */
1916 int regulator_bulk_enable(int num_consumers,
1917 			  struct regulator_bulk_data *consumers)
1918 {
1919 	int i;
1920 	int ret;
1921 
1922 	for (i = 0; i < num_consumers; i++) {
1923 		ret = regulator_enable(consumers[i].consumer);
1924 		if (ret != 0)
1925 			goto err;
1926 	}
1927 
1928 	return 0;
1929 
1930 err:
1931 	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1932 	for (i = 0; i < num_consumers; i++)
1933 		regulator_disable(consumers[i].consumer);
1934 
1935 	return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1938 
1939 /**
1940  * regulator_bulk_disable - disable multiple regulator consumers
1941  *
1942  * @num_consumers: Number of consumers
1943  * @consumers:     Consumer data; clients are stored here.
1944  * @return         0 on success, an errno on failure
1945  *
1946  * This convenience API allows consumers to disable multiple regulator
1947  * clients in a single API call.  If any consumers cannot be enabled
1948  * then any others that were disabled will be disabled again prior to
1949  * return.
1950  */
1951 int regulator_bulk_disable(int num_consumers,
1952 			   struct regulator_bulk_data *consumers)
1953 {
1954 	int i;
1955 	int ret;
1956 
1957 	for (i = 0; i < num_consumers; i++) {
1958 		ret = regulator_disable(consumers[i].consumer);
1959 		if (ret != 0)
1960 			goto err;
1961 	}
1962 
1963 	return 0;
1964 
1965 err:
1966 	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1967 	for (i = 0; i < num_consumers; i++)
1968 		regulator_enable(consumers[i].consumer);
1969 
1970 	return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1973 
1974 /**
1975  * regulator_bulk_free - free multiple regulator consumers
1976  *
1977  * @num_consumers: Number of consumers
1978  * @consumers:     Consumer data; clients are stored here.
1979  *
1980  * This convenience API allows consumers to free multiple regulator
1981  * clients in a single API call.
1982  */
1983 void regulator_bulk_free(int num_consumers,
1984 			 struct regulator_bulk_data *consumers)
1985 {
1986 	int i;
1987 
1988 	for (i = 0; i < num_consumers; i++) {
1989 		regulator_put(consumers[i].consumer);
1990 		consumers[i].consumer = NULL;
1991 	}
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1994 
1995 /**
1996  * regulator_notifier_call_chain - call regulator event notifier
1997  * @rdev: regulator source
1998  * @event: notifier block
1999  * @data: callback-specific data.
2000  *
2001  * Called by regulator drivers to notify clients a regulator event has
2002  * occurred. We also notify regulator clients downstream.
2003  * Note lock must be held by caller.
2004  */
2005 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2006 				  unsigned long event, void *data)
2007 {
2008 	_notifier_call_chain(rdev, event, data);
2009 	return NOTIFY_DONE;
2010 
2011 }
2012 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2013 
2014 /**
2015  * regulator_mode_to_status - convert a regulator mode into a status
2016  *
2017  * @mode: Mode to convert
2018  *
2019  * Convert a regulator mode into a status.
2020  */
2021 int regulator_mode_to_status(unsigned int mode)
2022 {
2023 	switch (mode) {
2024 	case REGULATOR_MODE_FAST:
2025 		return REGULATOR_STATUS_FAST;
2026 	case REGULATOR_MODE_NORMAL:
2027 		return REGULATOR_STATUS_NORMAL;
2028 	case REGULATOR_MODE_IDLE:
2029 		return REGULATOR_STATUS_IDLE;
2030 	case REGULATOR_STATUS_STANDBY:
2031 		return REGULATOR_STATUS_STANDBY;
2032 	default:
2033 		return 0;
2034 	}
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2037 
2038 /*
2039  * To avoid cluttering sysfs (and memory) with useless state, only
2040  * create attributes that can be meaningfully displayed.
2041  */
2042 static int add_regulator_attributes(struct regulator_dev *rdev)
2043 {
2044 	struct device		*dev = &rdev->dev;
2045 	struct regulator_ops	*ops = rdev->desc->ops;
2046 	int			status = 0;
2047 
2048 	/* some attributes need specific methods to be displayed */
2049 	if (ops->get_voltage) {
2050 		status = device_create_file(dev, &dev_attr_microvolts);
2051 		if (status < 0)
2052 			return status;
2053 	}
2054 	if (ops->get_current_limit) {
2055 		status = device_create_file(dev, &dev_attr_microamps);
2056 		if (status < 0)
2057 			return status;
2058 	}
2059 	if (ops->get_mode) {
2060 		status = device_create_file(dev, &dev_attr_opmode);
2061 		if (status < 0)
2062 			return status;
2063 	}
2064 	if (ops->is_enabled) {
2065 		status = device_create_file(dev, &dev_attr_state);
2066 		if (status < 0)
2067 			return status;
2068 	}
2069 	if (ops->get_status) {
2070 		status = device_create_file(dev, &dev_attr_status);
2071 		if (status < 0)
2072 			return status;
2073 	}
2074 
2075 	/* some attributes are type-specific */
2076 	if (rdev->desc->type == REGULATOR_CURRENT) {
2077 		status = device_create_file(dev, &dev_attr_requested_microamps);
2078 		if (status < 0)
2079 			return status;
2080 	}
2081 
2082 	/* all the other attributes exist to support constraints;
2083 	 * don't show them if there are no constraints, or if the
2084 	 * relevant supporting methods are missing.
2085 	 */
2086 	if (!rdev->constraints)
2087 		return status;
2088 
2089 	/* constraints need specific supporting methods */
2090 	if (ops->set_voltage) {
2091 		status = device_create_file(dev, &dev_attr_min_microvolts);
2092 		if (status < 0)
2093 			return status;
2094 		status = device_create_file(dev, &dev_attr_max_microvolts);
2095 		if (status < 0)
2096 			return status;
2097 	}
2098 	if (ops->set_current_limit) {
2099 		status = device_create_file(dev, &dev_attr_min_microamps);
2100 		if (status < 0)
2101 			return status;
2102 		status = device_create_file(dev, &dev_attr_max_microamps);
2103 		if (status < 0)
2104 			return status;
2105 	}
2106 
2107 	/* suspend mode constraints need multiple supporting methods */
2108 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2109 		return status;
2110 
2111 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2112 	if (status < 0)
2113 		return status;
2114 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2115 	if (status < 0)
2116 		return status;
2117 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2118 	if (status < 0)
2119 		return status;
2120 
2121 	if (ops->set_suspend_voltage) {
2122 		status = device_create_file(dev,
2123 				&dev_attr_suspend_standby_microvolts);
2124 		if (status < 0)
2125 			return status;
2126 		status = device_create_file(dev,
2127 				&dev_attr_suspend_mem_microvolts);
2128 		if (status < 0)
2129 			return status;
2130 		status = device_create_file(dev,
2131 				&dev_attr_suspend_disk_microvolts);
2132 		if (status < 0)
2133 			return status;
2134 	}
2135 
2136 	if (ops->set_suspend_mode) {
2137 		status = device_create_file(dev,
2138 				&dev_attr_suspend_standby_mode);
2139 		if (status < 0)
2140 			return status;
2141 		status = device_create_file(dev,
2142 				&dev_attr_suspend_mem_mode);
2143 		if (status < 0)
2144 			return status;
2145 		status = device_create_file(dev,
2146 				&dev_attr_suspend_disk_mode);
2147 		if (status < 0)
2148 			return status;
2149 	}
2150 
2151 	return status;
2152 }
2153 
2154 /**
2155  * regulator_register - register regulator
2156  * @regulator_desc: regulator to register
2157  * @dev: struct device for the regulator
2158  * @init_data: platform provided init data, passed through by driver
2159  * @driver_data: private regulator data
2160  *
2161  * Called by regulator drivers to register a regulator.
2162  * Returns 0 on success.
2163  */
2164 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2165 	struct device *dev, struct regulator_init_data *init_data,
2166 	void *driver_data)
2167 {
2168 	static atomic_t regulator_no = ATOMIC_INIT(0);
2169 	struct regulator_dev *rdev;
2170 	int ret, i;
2171 
2172 	if (regulator_desc == NULL)
2173 		return ERR_PTR(-EINVAL);
2174 
2175 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2176 		return ERR_PTR(-EINVAL);
2177 
2178 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2179 	    regulator_desc->type != REGULATOR_CURRENT)
2180 		return ERR_PTR(-EINVAL);
2181 
2182 	if (!init_data)
2183 		return ERR_PTR(-EINVAL);
2184 
2185 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2186 	if (rdev == NULL)
2187 		return ERR_PTR(-ENOMEM);
2188 
2189 	mutex_lock(&regulator_list_mutex);
2190 
2191 	mutex_init(&rdev->mutex);
2192 	rdev->reg_data = driver_data;
2193 	rdev->owner = regulator_desc->owner;
2194 	rdev->desc = regulator_desc;
2195 	INIT_LIST_HEAD(&rdev->consumer_list);
2196 	INIT_LIST_HEAD(&rdev->supply_list);
2197 	INIT_LIST_HEAD(&rdev->list);
2198 	INIT_LIST_HEAD(&rdev->slist);
2199 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2200 
2201 	/* preform any regulator specific init */
2202 	if (init_data->regulator_init) {
2203 		ret = init_data->regulator_init(rdev->reg_data);
2204 		if (ret < 0)
2205 			goto clean;
2206 	}
2207 
2208 	/* register with sysfs */
2209 	rdev->dev.class = &regulator_class;
2210 	rdev->dev.parent = dev;
2211 	dev_set_name(&rdev->dev, "regulator.%d",
2212 		     atomic_inc_return(&regulator_no) - 1);
2213 	ret = device_register(&rdev->dev);
2214 	if (ret != 0)
2215 		goto clean;
2216 
2217 	dev_set_drvdata(&rdev->dev, rdev);
2218 
2219 	/* set regulator constraints */
2220 	ret = set_machine_constraints(rdev, &init_data->constraints);
2221 	if (ret < 0)
2222 		goto scrub;
2223 
2224 	/* add attributes supported by this regulator */
2225 	ret = add_regulator_attributes(rdev);
2226 	if (ret < 0)
2227 		goto scrub;
2228 
2229 	/* set supply regulator if it exists */
2230 	if (init_data->supply_regulator_dev) {
2231 		ret = set_supply(rdev,
2232 			dev_get_drvdata(init_data->supply_regulator_dev));
2233 		if (ret < 0)
2234 			goto scrub;
2235 	}
2236 
2237 	/* add consumers devices */
2238 	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2239 		ret = set_consumer_device_supply(rdev,
2240 			init_data->consumer_supplies[i].dev,
2241 			init_data->consumer_supplies[i].dev_name,
2242 			init_data->consumer_supplies[i].supply);
2243 		if (ret < 0) {
2244 			for (--i; i >= 0; i--)
2245 				unset_consumer_device_supply(rdev,
2246 				    init_data->consumer_supplies[i].dev_name,
2247 				    init_data->consumer_supplies[i].dev);
2248 			goto scrub;
2249 		}
2250 	}
2251 
2252 	list_add(&rdev->list, &regulator_list);
2253 out:
2254 	mutex_unlock(&regulator_list_mutex);
2255 	return rdev;
2256 
2257 scrub:
2258 	device_unregister(&rdev->dev);
2259 	/* device core frees rdev */
2260 	rdev = ERR_PTR(ret);
2261 	goto out;
2262 
2263 clean:
2264 	kfree(rdev);
2265 	rdev = ERR_PTR(ret);
2266 	goto out;
2267 }
2268 EXPORT_SYMBOL_GPL(regulator_register);
2269 
2270 /**
2271  * regulator_unregister - unregister regulator
2272  * @rdev: regulator to unregister
2273  *
2274  * Called by regulator drivers to unregister a regulator.
2275  */
2276 void regulator_unregister(struct regulator_dev *rdev)
2277 {
2278 	if (rdev == NULL)
2279 		return;
2280 
2281 	mutex_lock(&regulator_list_mutex);
2282 	WARN_ON(rdev->open_count);
2283 	unset_regulator_supplies(rdev);
2284 	list_del(&rdev->list);
2285 	if (rdev->supply)
2286 		sysfs_remove_link(&rdev->dev.kobj, "supply");
2287 	device_unregister(&rdev->dev);
2288 	mutex_unlock(&regulator_list_mutex);
2289 }
2290 EXPORT_SYMBOL_GPL(regulator_unregister);
2291 
2292 /**
2293  * regulator_suspend_prepare - prepare regulators for system wide suspend
2294  * @state: system suspend state
2295  *
2296  * Configure each regulator with it's suspend operating parameters for state.
2297  * This will usually be called by machine suspend code prior to supending.
2298  */
2299 int regulator_suspend_prepare(suspend_state_t state)
2300 {
2301 	struct regulator_dev *rdev;
2302 	int ret = 0;
2303 
2304 	/* ON is handled by regulator active state */
2305 	if (state == PM_SUSPEND_ON)
2306 		return -EINVAL;
2307 
2308 	mutex_lock(&regulator_list_mutex);
2309 	list_for_each_entry(rdev, &regulator_list, list) {
2310 
2311 		mutex_lock(&rdev->mutex);
2312 		ret = suspend_prepare(rdev, state);
2313 		mutex_unlock(&rdev->mutex);
2314 
2315 		if (ret < 0) {
2316 			printk(KERN_ERR "%s: failed to prepare %s\n",
2317 				__func__, rdev->desc->name);
2318 			goto out;
2319 		}
2320 	}
2321 out:
2322 	mutex_unlock(&regulator_list_mutex);
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2326 
2327 /**
2328  * regulator_has_full_constraints - the system has fully specified constraints
2329  *
2330  * Calling this function will cause the regulator API to disable all
2331  * regulators which have a zero use count and don't have an always_on
2332  * constraint in a late_initcall.
2333  *
2334  * The intention is that this will become the default behaviour in a
2335  * future kernel release so users are encouraged to use this facility
2336  * now.
2337  */
2338 void regulator_has_full_constraints(void)
2339 {
2340 	has_full_constraints = 1;
2341 }
2342 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2343 
2344 /**
2345  * rdev_get_drvdata - get rdev regulator driver data
2346  * @rdev: regulator
2347  *
2348  * Get rdev regulator driver private data. This call can be used in the
2349  * regulator driver context.
2350  */
2351 void *rdev_get_drvdata(struct regulator_dev *rdev)
2352 {
2353 	return rdev->reg_data;
2354 }
2355 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2356 
2357 /**
2358  * regulator_get_drvdata - get regulator driver data
2359  * @regulator: regulator
2360  *
2361  * Get regulator driver private data. This call can be used in the consumer
2362  * driver context when non API regulator specific functions need to be called.
2363  */
2364 void *regulator_get_drvdata(struct regulator *regulator)
2365 {
2366 	return regulator->rdev->reg_data;
2367 }
2368 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2369 
2370 /**
2371  * regulator_set_drvdata - set regulator driver data
2372  * @regulator: regulator
2373  * @data: data
2374  */
2375 void regulator_set_drvdata(struct regulator *regulator, void *data)
2376 {
2377 	regulator->rdev->reg_data = data;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2380 
2381 /**
2382  * regulator_get_id - get regulator ID
2383  * @rdev: regulator
2384  */
2385 int rdev_get_id(struct regulator_dev *rdev)
2386 {
2387 	return rdev->desc->id;
2388 }
2389 EXPORT_SYMBOL_GPL(rdev_get_id);
2390 
2391 struct device *rdev_get_dev(struct regulator_dev *rdev)
2392 {
2393 	return &rdev->dev;
2394 }
2395 EXPORT_SYMBOL_GPL(rdev_get_dev);
2396 
2397 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2398 {
2399 	return reg_init_data->driver_data;
2400 }
2401 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2402 
2403 static int __init regulator_init(void)
2404 {
2405 	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2406 	return class_register(&regulator_class);
2407 }
2408 
2409 /* init early to allow our consumers to complete system booting */
2410 core_initcall(regulator_init);
2411 
2412 static int __init regulator_init_complete(void)
2413 {
2414 	struct regulator_dev *rdev;
2415 	struct regulator_ops *ops;
2416 	struct regulation_constraints *c;
2417 	int enabled, ret;
2418 	const char *name;
2419 
2420 	mutex_lock(&regulator_list_mutex);
2421 
2422 	/* If we have a full configuration then disable any regulators
2423 	 * which are not in use or always_on.  This will become the
2424 	 * default behaviour in the future.
2425 	 */
2426 	list_for_each_entry(rdev, &regulator_list, list) {
2427 		ops = rdev->desc->ops;
2428 		c = rdev->constraints;
2429 
2430 		if (c && c->name)
2431 			name = c->name;
2432 		else if (rdev->desc->name)
2433 			name = rdev->desc->name;
2434 		else
2435 			name = "regulator";
2436 
2437 		if (!ops->disable || (c && c->always_on))
2438 			continue;
2439 
2440 		mutex_lock(&rdev->mutex);
2441 
2442 		if (rdev->use_count)
2443 			goto unlock;
2444 
2445 		/* If we can't read the status assume it's on. */
2446 		if (ops->is_enabled)
2447 			enabled = ops->is_enabled(rdev);
2448 		else
2449 			enabled = 1;
2450 
2451 		if (!enabled)
2452 			goto unlock;
2453 
2454 		if (has_full_constraints) {
2455 			/* We log since this may kill the system if it
2456 			 * goes wrong. */
2457 			printk(KERN_INFO "%s: disabling %s\n",
2458 			       __func__, name);
2459 			ret = ops->disable(rdev);
2460 			if (ret != 0) {
2461 				printk(KERN_ERR
2462 				       "%s: couldn't disable %s: %d\n",
2463 				       __func__, name, ret);
2464 			}
2465 		} else {
2466 			/* The intention is that in future we will
2467 			 * assume that full constraints are provided
2468 			 * so warn even if we aren't going to do
2469 			 * anything here.
2470 			 */
2471 			printk(KERN_WARNING
2472 			       "%s: incomplete constraints, leaving %s on\n",
2473 			       __func__, name);
2474 		}
2475 
2476 unlock:
2477 		mutex_unlock(&rdev->mutex);
2478 	}
2479 
2480 	mutex_unlock(&regulator_list_mutex);
2481 
2482 	return 0;
2483 }
2484 late_initcall(regulator_init_complete);
2485