xref: /linux/drivers/regulator/core.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 	struct device_node *regnode = NULL;
140 	char prop_name[32]; /* 32 is max size of property name */
141 
142 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 
144 	snprintf(prop_name, 32, "%s-supply", supply);
145 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 
147 	if (!regnode) {
148 		dev_dbg(dev, "Looking up %s property in node %s failed",
149 				prop_name, dev->of_node->full_name);
150 		return NULL;
151 	}
152 	return regnode;
153 }
154 
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 	if (!rdev->constraints)
158 		return 0;
159 
160 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 		return 1;
162 	else
163 		return 0;
164 }
165 
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 				   int *min_uV, int *max_uV)
169 {
170 	BUG_ON(*min_uV > *max_uV);
171 
172 	if (!rdev->constraints) {
173 		rdev_err(rdev, "no constraints\n");
174 		return -ENODEV;
175 	}
176 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 		rdev_err(rdev, "operation not allowed\n");
178 		return -EPERM;
179 	}
180 
181 	if (*max_uV > rdev->constraints->max_uV)
182 		*max_uV = rdev->constraints->max_uV;
183 	if (*min_uV < rdev->constraints->min_uV)
184 		*min_uV = rdev->constraints->min_uV;
185 
186 	if (*min_uV > *max_uV) {
187 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 			 *min_uV, *max_uV);
189 		return -EINVAL;
190 	}
191 
192 	return 0;
193 }
194 
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 				     int *min_uV, int *max_uV)
200 {
201 	struct regulator *regulator;
202 
203 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 		/*
205 		 * Assume consumers that didn't say anything are OK
206 		 * with anything in the constraint range.
207 		 */
208 		if (!regulator->min_uV && !regulator->max_uV)
209 			continue;
210 
211 		if (*max_uV > regulator->max_uV)
212 			*max_uV = regulator->max_uV;
213 		if (*min_uV < regulator->min_uV)
214 			*min_uV = regulator->min_uV;
215 	}
216 
217 	if (*min_uV > *max_uV) {
218 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 			*min_uV, *max_uV);
220 		return -EINVAL;
221 	}
222 
223 	return 0;
224 }
225 
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 					int *min_uA, int *max_uA)
229 {
230 	BUG_ON(*min_uA > *max_uA);
231 
232 	if (!rdev->constraints) {
233 		rdev_err(rdev, "no constraints\n");
234 		return -ENODEV;
235 	}
236 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 		rdev_err(rdev, "operation not allowed\n");
238 		return -EPERM;
239 	}
240 
241 	if (*max_uA > rdev->constraints->max_uA)
242 		*max_uA = rdev->constraints->max_uA;
243 	if (*min_uA < rdev->constraints->min_uA)
244 		*min_uA = rdev->constraints->min_uA;
245 
246 	if (*min_uA > *max_uA) {
247 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 			 *min_uA, *max_uA);
249 		return -EINVAL;
250 	}
251 
252 	return 0;
253 }
254 
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 	switch (*mode) {
259 	case REGULATOR_MODE_FAST:
260 	case REGULATOR_MODE_NORMAL:
261 	case REGULATOR_MODE_IDLE:
262 	case REGULATOR_MODE_STANDBY:
263 		break;
264 	default:
265 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 		return -EINVAL;
267 	}
268 
269 	if (!rdev->constraints) {
270 		rdev_err(rdev, "no constraints\n");
271 		return -ENODEV;
272 	}
273 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 		rdev_err(rdev, "operation not allowed\n");
275 		return -EPERM;
276 	}
277 
278 	/* The modes are bitmasks, the most power hungry modes having
279 	 * the lowest values. If the requested mode isn't supported
280 	 * try higher modes. */
281 	while (*mode) {
282 		if (rdev->constraints->valid_modes_mask & *mode)
283 			return 0;
284 		*mode /= 2;
285 	}
286 
287 	return -EINVAL;
288 }
289 
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 	if (!rdev->constraints) {
294 		rdev_err(rdev, "no constraints\n");
295 		return -ENODEV;
296 	}
297 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 		rdev_err(rdev, "operation not allowed\n");
299 		return -EPERM;
300 	}
301 	return 0;
302 }
303 
304 static ssize_t regulator_uV_show(struct device *dev,
305 				struct device_attribute *attr, char *buf)
306 {
307 	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 	ssize_t ret;
309 
310 	mutex_lock(&rdev->mutex);
311 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 	mutex_unlock(&rdev->mutex);
313 
314 	return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 
318 static ssize_t regulator_uA_show(struct device *dev,
319 				struct device_attribute *attr, char *buf)
320 {
321 	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 
323 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 			 char *buf)
329 {
330 	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 
332 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335 
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	case REGULATOR_STATUS_BYPASS:
418 		label = "bypass";
419 		break;
420 	case REGULATOR_STATUS_UNDEFINED:
421 		label = "undefined";
422 		break;
423 	default:
424 		return -ERANGE;
425 	}
426 
427 	return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 				    struct device_attribute *attr, char *buf)
433 {
434 	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 
436 	if (!rdev->constraints)
437 		return sprintf(buf, "constraint not defined\n");
438 
439 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 				    struct device_attribute *attr, char *buf)
445 {
446 	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 
448 	if (!rdev->constraints)
449 		return sprintf(buf, "constraint not defined\n");
450 
451 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 				    struct device_attribute *attr, char *buf)
457 {
458 	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 
460 	if (!rdev->constraints)
461 		return sprintf(buf, "constraint not defined\n");
462 
463 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 				    struct device_attribute *attr, char *buf)
469 {
470 	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 
472 	if (!rdev->constraints)
473 		return sprintf(buf, "constraint not defined\n");
474 
475 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 				      struct device_attribute *attr, char *buf)
481 {
482 	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 	struct regulator *regulator;
484 	int uA = 0;
485 
486 	mutex_lock(&rdev->mutex);
487 	list_for_each_entry(regulator, &rdev->consumer_list, list)
488 		uA += regulator->uA_load;
489 	mutex_unlock(&rdev->mutex);
490 	return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 			      char *buf)
496 {
497 	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 	return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501 
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 			 char *buf)
504 {
505 	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 
507 	switch (rdev->desc->type) {
508 	case REGULATOR_VOLTAGE:
509 		return sprintf(buf, "voltage\n");
510 	case REGULATOR_CURRENT:
511 		return sprintf(buf, "current\n");
512 	}
513 	return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516 
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 				struct device_attribute *attr, char *buf)
519 {
520 	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 
522 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 		regulator_suspend_mem_uV_show, NULL);
526 
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 				struct device_attribute *attr, char *buf)
529 {
530 	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 		regulator_suspend_disk_uV_show, NULL);
536 
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 				struct device_attribute *attr, char *buf)
539 {
540 	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 
542 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 		regulator_suspend_standby_uV_show, NULL);
546 
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 				struct device_attribute *attr, char *buf)
549 {
550 	struct regulator_dev *rdev = dev_get_drvdata(dev);
551 
552 	return regulator_print_opmode(buf,
553 		rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 		regulator_suspend_mem_mode_show, NULL);
557 
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 				struct device_attribute *attr, char *buf)
560 {
561 	struct regulator_dev *rdev = dev_get_drvdata(dev);
562 
563 	return regulator_print_opmode(buf,
564 		rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 		regulator_suspend_disk_mode_show, NULL);
568 
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 				struct device_attribute *attr, char *buf)
571 {
572 	struct regulator_dev *rdev = dev_get_drvdata(dev);
573 
574 	return regulator_print_opmode(buf,
575 		rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 		regulator_suspend_standby_mode_show, NULL);
579 
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 				   struct device_attribute *attr, char *buf)
582 {
583 	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 
585 	return regulator_print_state(buf,
586 			rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 		regulator_suspend_mem_state_show, NULL);
590 
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 				   struct device_attribute *attr, char *buf)
593 {
594 	struct regulator_dev *rdev = dev_get_drvdata(dev);
595 
596 	return regulator_print_state(buf,
597 			rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 		regulator_suspend_disk_state_show, NULL);
601 
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 				   struct device_attribute *attr, char *buf)
604 {
605 	struct regulator_dev *rdev = dev_get_drvdata(dev);
606 
607 	return regulator_print_state(buf,
608 			rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 		regulator_suspend_standby_state_show, NULL);
612 
613 static ssize_t regulator_bypass_show(struct device *dev,
614 				     struct device_attribute *attr, char *buf)
615 {
616 	struct regulator_dev *rdev = dev_get_drvdata(dev);
617 	const char *report;
618 	bool bypass;
619 	int ret;
620 
621 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 
623 	if (ret != 0)
624 		report = "unknown";
625 	else if (bypass)
626 		report = "enabled";
627 	else
628 		report = "disabled";
629 
630 	return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 		   regulator_bypass_show, NULL);
634 
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 	struct regulator *sibling;
640 	int current_uA = 0, output_uV, input_uV, err;
641 	unsigned int mode;
642 
643 	/*
644 	 * first check to see if we can set modes at all, otherwise just
645 	 * tell the consumer everything is OK.
646 	 */
647 	err = regulator_check_drms(rdev);
648 	if (err < 0)
649 		return 0;
650 
651 	if (!rdev->desc->ops->get_optimum_mode &&
652 	    !rdev->desc->ops->set_load)
653 		return 0;
654 
655 	if (!rdev->desc->ops->set_mode &&
656 	    !rdev->desc->ops->set_load)
657 		return -EINVAL;
658 
659 	/* get output voltage */
660 	output_uV = _regulator_get_voltage(rdev);
661 	if (output_uV <= 0) {
662 		rdev_err(rdev, "invalid output voltage found\n");
663 		return -EINVAL;
664 	}
665 
666 	/* get input voltage */
667 	input_uV = 0;
668 	if (rdev->supply)
669 		input_uV = regulator_get_voltage(rdev->supply);
670 	if (input_uV <= 0)
671 		input_uV = rdev->constraints->input_uV;
672 	if (input_uV <= 0) {
673 		rdev_err(rdev, "invalid input voltage found\n");
674 		return -EINVAL;
675 	}
676 
677 	/* calc total requested load */
678 	list_for_each_entry(sibling, &rdev->consumer_list, list)
679 		current_uA += sibling->uA_load;
680 
681 	current_uA += rdev->constraints->system_load;
682 
683 	if (rdev->desc->ops->set_load) {
684 		/* set the optimum mode for our new total regulator load */
685 		err = rdev->desc->ops->set_load(rdev, current_uA);
686 		if (err < 0)
687 			rdev_err(rdev, "failed to set load %d\n", current_uA);
688 	} else {
689 		/* now get the optimum mode for our new total regulator load */
690 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
691 							 output_uV, current_uA);
692 
693 		/* check the new mode is allowed */
694 		err = regulator_mode_constrain(rdev, &mode);
695 		if (err < 0) {
696 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
697 				 current_uA, input_uV, output_uV);
698 			return err;
699 		}
700 
701 		err = rdev->desc->ops->set_mode(rdev, mode);
702 		if (err < 0)
703 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704 	}
705 
706 	return err;
707 }
708 
709 static int suspend_set_state(struct regulator_dev *rdev,
710 	struct regulator_state *rstate)
711 {
712 	int ret = 0;
713 
714 	/* If we have no suspend mode configration don't set anything;
715 	 * only warn if the driver implements set_suspend_voltage or
716 	 * set_suspend_mode callback.
717 	 */
718 	if (!rstate->enabled && !rstate->disabled) {
719 		if (rdev->desc->ops->set_suspend_voltage ||
720 		    rdev->desc->ops->set_suspend_mode)
721 			rdev_warn(rdev, "No configuration\n");
722 		return 0;
723 	}
724 
725 	if (rstate->enabled && rstate->disabled) {
726 		rdev_err(rdev, "invalid configuration\n");
727 		return -EINVAL;
728 	}
729 
730 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731 		ret = rdev->desc->ops->set_suspend_enable(rdev);
732 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733 		ret = rdev->desc->ops->set_suspend_disable(rdev);
734 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
735 		ret = 0;
736 
737 	if (ret < 0) {
738 		rdev_err(rdev, "failed to enabled/disable\n");
739 		return ret;
740 	}
741 
742 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
743 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
744 		if (ret < 0) {
745 			rdev_err(rdev, "failed to set voltage\n");
746 			return ret;
747 		}
748 	}
749 
750 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
751 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
752 		if (ret < 0) {
753 			rdev_err(rdev, "failed to set mode\n");
754 			return ret;
755 		}
756 	}
757 	return ret;
758 }
759 
760 /* locks held by caller */
761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
762 {
763 	if (!rdev->constraints)
764 		return -EINVAL;
765 
766 	switch (state) {
767 	case PM_SUSPEND_STANDBY:
768 		return suspend_set_state(rdev,
769 			&rdev->constraints->state_standby);
770 	case PM_SUSPEND_MEM:
771 		return suspend_set_state(rdev,
772 			&rdev->constraints->state_mem);
773 	case PM_SUSPEND_MAX:
774 		return suspend_set_state(rdev,
775 			&rdev->constraints->state_disk);
776 	default:
777 		return -EINVAL;
778 	}
779 }
780 
781 static void print_constraints(struct regulator_dev *rdev)
782 {
783 	struct regulation_constraints *constraints = rdev->constraints;
784 	char buf[160] = "";
785 	size_t len = sizeof(buf) - 1;
786 	int count = 0;
787 	int ret;
788 
789 	if (constraints->min_uV && constraints->max_uV) {
790 		if (constraints->min_uV == constraints->max_uV)
791 			count += scnprintf(buf + count, len - count, "%d mV ",
792 					   constraints->min_uV / 1000);
793 		else
794 			count += scnprintf(buf + count, len - count,
795 					   "%d <--> %d mV ",
796 					   constraints->min_uV / 1000,
797 					   constraints->max_uV / 1000);
798 	}
799 
800 	if (!constraints->min_uV ||
801 	    constraints->min_uV != constraints->max_uV) {
802 		ret = _regulator_get_voltage(rdev);
803 		if (ret > 0)
804 			count += scnprintf(buf + count, len - count,
805 					   "at %d mV ", ret / 1000);
806 	}
807 
808 	if (constraints->uV_offset)
809 		count += scnprintf(buf + count, len - count, "%dmV offset ",
810 				   constraints->uV_offset / 1000);
811 
812 	if (constraints->min_uA && constraints->max_uA) {
813 		if (constraints->min_uA == constraints->max_uA)
814 			count += scnprintf(buf + count, len - count, "%d mA ",
815 					   constraints->min_uA / 1000);
816 		else
817 			count += scnprintf(buf + count, len - count,
818 					   "%d <--> %d mA ",
819 					   constraints->min_uA / 1000,
820 					   constraints->max_uA / 1000);
821 	}
822 
823 	if (!constraints->min_uA ||
824 	    constraints->min_uA != constraints->max_uA) {
825 		ret = _regulator_get_current_limit(rdev);
826 		if (ret > 0)
827 			count += scnprintf(buf + count, len - count,
828 					   "at %d mA ", ret / 1000);
829 	}
830 
831 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832 		count += scnprintf(buf + count, len - count, "fast ");
833 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834 		count += scnprintf(buf + count, len - count, "normal ");
835 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836 		count += scnprintf(buf + count, len - count, "idle ");
837 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838 		count += scnprintf(buf + count, len - count, "standby");
839 
840 	if (!count)
841 		scnprintf(buf, len, "no parameters");
842 
843 	rdev_dbg(rdev, "%s\n", buf);
844 
845 	if ((constraints->min_uV != constraints->max_uV) &&
846 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
847 		rdev_warn(rdev,
848 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 }
850 
851 static int machine_constraints_voltage(struct regulator_dev *rdev,
852 	struct regulation_constraints *constraints)
853 {
854 	const struct regulator_ops *ops = rdev->desc->ops;
855 	int ret;
856 
857 	/* do we need to apply the constraint voltage */
858 	if (rdev->constraints->apply_uV &&
859 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
860 		int current_uV = _regulator_get_voltage(rdev);
861 		if (current_uV < 0) {
862 			rdev_err(rdev,
863 				 "failed to get the current voltage(%d)\n",
864 				 current_uV);
865 			return current_uV;
866 		}
867 		if (current_uV < rdev->constraints->min_uV ||
868 		    current_uV > rdev->constraints->max_uV) {
869 			ret = _regulator_do_set_voltage(
870 				rdev, rdev->constraints->min_uV,
871 				rdev->constraints->max_uV);
872 			if (ret < 0) {
873 				rdev_err(rdev,
874 					"failed to apply %duV constraint(%d)\n",
875 					rdev->constraints->min_uV, ret);
876 				return ret;
877 			}
878 		}
879 	}
880 
881 	/* constrain machine-level voltage specs to fit
882 	 * the actual range supported by this regulator.
883 	 */
884 	if (ops->list_voltage && rdev->desc->n_voltages) {
885 		int	count = rdev->desc->n_voltages;
886 		int	i;
887 		int	min_uV = INT_MAX;
888 		int	max_uV = INT_MIN;
889 		int	cmin = constraints->min_uV;
890 		int	cmax = constraints->max_uV;
891 
892 		/* it's safe to autoconfigure fixed-voltage supplies
893 		   and the constraints are used by list_voltage. */
894 		if (count == 1 && !cmin) {
895 			cmin = 1;
896 			cmax = INT_MAX;
897 			constraints->min_uV = cmin;
898 			constraints->max_uV = cmax;
899 		}
900 
901 		/* voltage constraints are optional */
902 		if ((cmin == 0) && (cmax == 0))
903 			return 0;
904 
905 		/* else require explicit machine-level constraints */
906 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907 			rdev_err(rdev, "invalid voltage constraints\n");
908 			return -EINVAL;
909 		}
910 
911 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
912 		for (i = 0; i < count; i++) {
913 			int	value;
914 
915 			value = ops->list_voltage(rdev, i);
916 			if (value <= 0)
917 				continue;
918 
919 			/* maybe adjust [min_uV..max_uV] */
920 			if (value >= cmin && value < min_uV)
921 				min_uV = value;
922 			if (value <= cmax && value > max_uV)
923 				max_uV = value;
924 		}
925 
926 		/* final: [min_uV..max_uV] valid iff constraints valid */
927 		if (max_uV < min_uV) {
928 			rdev_err(rdev,
929 				 "unsupportable voltage constraints %u-%uuV\n",
930 				 min_uV, max_uV);
931 			return -EINVAL;
932 		}
933 
934 		/* use regulator's subset of machine constraints */
935 		if (constraints->min_uV < min_uV) {
936 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
937 				 constraints->min_uV, min_uV);
938 			constraints->min_uV = min_uV;
939 		}
940 		if (constraints->max_uV > max_uV) {
941 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
942 				 constraints->max_uV, max_uV);
943 			constraints->max_uV = max_uV;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static int machine_constraints_current(struct regulator_dev *rdev,
951 	struct regulation_constraints *constraints)
952 {
953 	const struct regulator_ops *ops = rdev->desc->ops;
954 	int ret;
955 
956 	if (!constraints->min_uA && !constraints->max_uA)
957 		return 0;
958 
959 	if (constraints->min_uA > constraints->max_uA) {
960 		rdev_err(rdev, "Invalid current constraints\n");
961 		return -EINVAL;
962 	}
963 
964 	if (!ops->set_current_limit || !ops->get_current_limit) {
965 		rdev_warn(rdev, "Operation of current configuration missing\n");
966 		return 0;
967 	}
968 
969 	/* Set regulator current in constraints range */
970 	ret = ops->set_current_limit(rdev, constraints->min_uA,
971 			constraints->max_uA);
972 	if (ret < 0) {
973 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
974 		return ret;
975 	}
976 
977 	return 0;
978 }
979 
980 static int _regulator_do_enable(struct regulator_dev *rdev);
981 
982 /**
983  * set_machine_constraints - sets regulator constraints
984  * @rdev: regulator source
985  * @constraints: constraints to apply
986  *
987  * Allows platform initialisation code to define and constrain
988  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
989  * Constraints *must* be set by platform code in order for some
990  * regulator operations to proceed i.e. set_voltage, set_current_limit,
991  * set_mode.
992  */
993 static int set_machine_constraints(struct regulator_dev *rdev,
994 	const struct regulation_constraints *constraints)
995 {
996 	int ret = 0;
997 	const struct regulator_ops *ops = rdev->desc->ops;
998 
999 	if (constraints)
1000 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1001 					    GFP_KERNEL);
1002 	else
1003 		rdev->constraints = kzalloc(sizeof(*constraints),
1004 					    GFP_KERNEL);
1005 	if (!rdev->constraints)
1006 		return -ENOMEM;
1007 
1008 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1009 	if (ret != 0)
1010 		goto out;
1011 
1012 	ret = machine_constraints_current(rdev, rdev->constraints);
1013 	if (ret != 0)
1014 		goto out;
1015 
1016 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1017 		ret = ops->set_input_current_limit(rdev,
1018 						   rdev->constraints->ilim_uA);
1019 		if (ret < 0) {
1020 			rdev_err(rdev, "failed to set input limit\n");
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/* do we need to setup our suspend state */
1026 	if (rdev->constraints->initial_state) {
1027 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028 		if (ret < 0) {
1029 			rdev_err(rdev, "failed to set suspend state\n");
1030 			goto out;
1031 		}
1032 	}
1033 
1034 	if (rdev->constraints->initial_mode) {
1035 		if (!ops->set_mode) {
1036 			rdev_err(rdev, "no set_mode operation\n");
1037 			ret = -EINVAL;
1038 			goto out;
1039 		}
1040 
1041 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042 		if (ret < 0) {
1043 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044 			goto out;
1045 		}
1046 	}
1047 
1048 	/* If the constraints say the regulator should be on at this point
1049 	 * and we have control then make sure it is enabled.
1050 	 */
1051 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1052 		ret = _regulator_do_enable(rdev);
1053 		if (ret < 0 && ret != -EINVAL) {
1054 			rdev_err(rdev, "failed to enable\n");
1055 			goto out;
1056 		}
1057 	}
1058 
1059 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1060 		&& ops->set_ramp_delay) {
1061 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1062 		if (ret < 0) {
1063 			rdev_err(rdev, "failed to set ramp_delay\n");
1064 			goto out;
1065 		}
1066 	}
1067 
1068 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1069 		ret = ops->set_pull_down(rdev);
1070 		if (ret < 0) {
1071 			rdev_err(rdev, "failed to set pull down\n");
1072 			goto out;
1073 		}
1074 	}
1075 
1076 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1077 		ret = ops->set_soft_start(rdev);
1078 		if (ret < 0) {
1079 			rdev_err(rdev, "failed to set soft start\n");
1080 			goto out;
1081 		}
1082 	}
1083 
1084 	print_constraints(rdev);
1085 	return 0;
1086 out:
1087 	kfree(rdev->constraints);
1088 	rdev->constraints = NULL;
1089 	return ret;
1090 }
1091 
1092 /**
1093  * set_supply - set regulator supply regulator
1094  * @rdev: regulator name
1095  * @supply_rdev: supply regulator name
1096  *
1097  * Called by platform initialisation code to set the supply regulator for this
1098  * regulator. This ensures that a regulators supply will also be enabled by the
1099  * core if it's child is enabled.
1100  */
1101 static int set_supply(struct regulator_dev *rdev,
1102 		      struct regulator_dev *supply_rdev)
1103 {
1104 	int err;
1105 
1106 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1107 
1108 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1109 	if (rdev->supply == NULL) {
1110 		err = -ENOMEM;
1111 		return err;
1112 	}
1113 	supply_rdev->open_count++;
1114 
1115 	return 0;
1116 }
1117 
1118 /**
1119  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1120  * @rdev:         regulator source
1121  * @consumer_dev_name: dev_name() string for device supply applies to
1122  * @supply:       symbolic name for supply
1123  *
1124  * Allows platform initialisation code to map physical regulator
1125  * sources to symbolic names for supplies for use by devices.  Devices
1126  * should use these symbolic names to request regulators, avoiding the
1127  * need to provide board-specific regulator names as platform data.
1128  */
1129 static int set_consumer_device_supply(struct regulator_dev *rdev,
1130 				      const char *consumer_dev_name,
1131 				      const char *supply)
1132 {
1133 	struct regulator_map *node;
1134 	int has_dev;
1135 
1136 	if (supply == NULL)
1137 		return -EINVAL;
1138 
1139 	if (consumer_dev_name != NULL)
1140 		has_dev = 1;
1141 	else
1142 		has_dev = 0;
1143 
1144 	list_for_each_entry(node, &regulator_map_list, list) {
1145 		if (node->dev_name && consumer_dev_name) {
1146 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1147 				continue;
1148 		} else if (node->dev_name || consumer_dev_name) {
1149 			continue;
1150 		}
1151 
1152 		if (strcmp(node->supply, supply) != 0)
1153 			continue;
1154 
1155 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1156 			 consumer_dev_name,
1157 			 dev_name(&node->regulator->dev),
1158 			 node->regulator->desc->name,
1159 			 supply,
1160 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1161 		return -EBUSY;
1162 	}
1163 
1164 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1165 	if (node == NULL)
1166 		return -ENOMEM;
1167 
1168 	node->regulator = rdev;
1169 	node->supply = supply;
1170 
1171 	if (has_dev) {
1172 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1173 		if (node->dev_name == NULL) {
1174 			kfree(node);
1175 			return -ENOMEM;
1176 		}
1177 	}
1178 
1179 	list_add(&node->list, &regulator_map_list);
1180 	return 0;
1181 }
1182 
1183 static void unset_regulator_supplies(struct regulator_dev *rdev)
1184 {
1185 	struct regulator_map *node, *n;
1186 
1187 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1188 		if (rdev == node->regulator) {
1189 			list_del(&node->list);
1190 			kfree(node->dev_name);
1191 			kfree(node);
1192 		}
1193 	}
1194 }
1195 
1196 #define REG_STR_SIZE	64
1197 
1198 static struct regulator *create_regulator(struct regulator_dev *rdev,
1199 					  struct device *dev,
1200 					  const char *supply_name)
1201 {
1202 	struct regulator *regulator;
1203 	char buf[REG_STR_SIZE];
1204 	int err, size;
1205 
1206 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1207 	if (regulator == NULL)
1208 		return NULL;
1209 
1210 	mutex_lock(&rdev->mutex);
1211 	regulator->rdev = rdev;
1212 	list_add(&regulator->list, &rdev->consumer_list);
1213 
1214 	if (dev) {
1215 		regulator->dev = dev;
1216 
1217 		/* Add a link to the device sysfs entry */
1218 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1219 				 dev->kobj.name, supply_name);
1220 		if (size >= REG_STR_SIZE)
1221 			goto overflow_err;
1222 
1223 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1224 		if (regulator->supply_name == NULL)
1225 			goto overflow_err;
1226 
1227 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1228 					buf);
1229 		if (err) {
1230 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1231 				  dev->kobj.name, err);
1232 			/* non-fatal */
1233 		}
1234 	} else {
1235 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1236 		if (regulator->supply_name == NULL)
1237 			goto overflow_err;
1238 	}
1239 
1240 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1241 						rdev->debugfs);
1242 	if (!regulator->debugfs) {
1243 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1244 	} else {
1245 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1246 				   &regulator->uA_load);
1247 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1248 				   &regulator->min_uV);
1249 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1250 				   &regulator->max_uV);
1251 	}
1252 
1253 	/*
1254 	 * Check now if the regulator is an always on regulator - if
1255 	 * it is then we don't need to do nearly so much work for
1256 	 * enable/disable calls.
1257 	 */
1258 	if (!_regulator_can_change_status(rdev) &&
1259 	    _regulator_is_enabled(rdev))
1260 		regulator->always_on = true;
1261 
1262 	mutex_unlock(&rdev->mutex);
1263 	return regulator;
1264 overflow_err:
1265 	list_del(&regulator->list);
1266 	kfree(regulator);
1267 	mutex_unlock(&rdev->mutex);
1268 	return NULL;
1269 }
1270 
1271 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1272 {
1273 	if (rdev->constraints && rdev->constraints->enable_time)
1274 		return rdev->constraints->enable_time;
1275 	if (!rdev->desc->ops->enable_time)
1276 		return rdev->desc->enable_time;
1277 	return rdev->desc->ops->enable_time(rdev);
1278 }
1279 
1280 static struct regulator_supply_alias *regulator_find_supply_alias(
1281 		struct device *dev, const char *supply)
1282 {
1283 	struct regulator_supply_alias *map;
1284 
1285 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1286 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1287 			return map;
1288 
1289 	return NULL;
1290 }
1291 
1292 static void regulator_supply_alias(struct device **dev, const char **supply)
1293 {
1294 	struct regulator_supply_alias *map;
1295 
1296 	map = regulator_find_supply_alias(*dev, *supply);
1297 	if (map) {
1298 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1299 				*supply, map->alias_supply,
1300 				dev_name(map->alias_dev));
1301 		*dev = map->alias_dev;
1302 		*supply = map->alias_supply;
1303 	}
1304 }
1305 
1306 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1307 						  const char *supply,
1308 						  int *ret)
1309 {
1310 	struct regulator_dev *r;
1311 	struct device_node *node;
1312 	struct regulator_map *map;
1313 	const char *devname = NULL;
1314 
1315 	regulator_supply_alias(&dev, &supply);
1316 
1317 	/* first do a dt based lookup */
1318 	if (dev && dev->of_node) {
1319 		node = of_get_regulator(dev, supply);
1320 		if (node) {
1321 			list_for_each_entry(r, &regulator_list, list)
1322 				if (r->dev.parent &&
1323 					node == r->dev.of_node)
1324 					return r;
1325 			*ret = -EPROBE_DEFER;
1326 			return NULL;
1327 		} else {
1328 			/*
1329 			 * If we couldn't even get the node then it's
1330 			 * not just that the device didn't register
1331 			 * yet, there's no node and we'll never
1332 			 * succeed.
1333 			 */
1334 			*ret = -ENODEV;
1335 		}
1336 	}
1337 
1338 	/* if not found, try doing it non-dt way */
1339 	if (dev)
1340 		devname = dev_name(dev);
1341 
1342 	list_for_each_entry(r, &regulator_list, list)
1343 		if (strcmp(rdev_get_name(r), supply) == 0)
1344 			return r;
1345 
1346 	list_for_each_entry(map, &regulator_map_list, list) {
1347 		/* If the mapping has a device set up it must match */
1348 		if (map->dev_name &&
1349 		    (!devname || strcmp(map->dev_name, devname)))
1350 			continue;
1351 
1352 		if (strcmp(map->supply, supply) == 0)
1353 			return map->regulator;
1354 	}
1355 
1356 
1357 	return NULL;
1358 }
1359 
1360 static int regulator_resolve_supply(struct regulator_dev *rdev)
1361 {
1362 	struct regulator_dev *r;
1363 	struct device *dev = rdev->dev.parent;
1364 	int ret;
1365 
1366 	/* No supply to resovle? */
1367 	if (!rdev->supply_name)
1368 		return 0;
1369 
1370 	/* Supply already resolved? */
1371 	if (rdev->supply)
1372 		return 0;
1373 
1374 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1375 	if (ret == -ENODEV) {
1376 		/*
1377 		 * No supply was specified for this regulator and
1378 		 * there will never be one.
1379 		 */
1380 		return 0;
1381 	}
1382 
1383 	if (!r) {
1384 		dev_err(dev, "Failed to resolve %s-supply for %s\n",
1385 			rdev->supply_name, rdev->desc->name);
1386 		return -EPROBE_DEFER;
1387 	}
1388 
1389 	/* Recursively resolve the supply of the supply */
1390 	ret = regulator_resolve_supply(r);
1391 	if (ret < 0)
1392 		return ret;
1393 
1394 	ret = set_supply(rdev, r);
1395 	if (ret < 0)
1396 		return ret;
1397 
1398 	/* Cascade always-on state to supply */
1399 	if (_regulator_is_enabled(rdev)) {
1400 		ret = regulator_enable(rdev->supply);
1401 		if (ret < 0)
1402 			return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /* Internal regulator request function */
1409 static struct regulator *_regulator_get(struct device *dev, const char *id,
1410 					bool exclusive, bool allow_dummy)
1411 {
1412 	struct regulator_dev *rdev;
1413 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1414 	const char *devname = NULL;
1415 	int ret;
1416 
1417 	if (id == NULL) {
1418 		pr_err("get() with no identifier\n");
1419 		return ERR_PTR(-EINVAL);
1420 	}
1421 
1422 	if (dev)
1423 		devname = dev_name(dev);
1424 
1425 	if (have_full_constraints())
1426 		ret = -ENODEV;
1427 	else
1428 		ret = -EPROBE_DEFER;
1429 
1430 	mutex_lock(&regulator_list_mutex);
1431 
1432 	rdev = regulator_dev_lookup(dev, id, &ret);
1433 	if (rdev)
1434 		goto found;
1435 
1436 	regulator = ERR_PTR(ret);
1437 
1438 	/*
1439 	 * If we have return value from dev_lookup fail, we do not expect to
1440 	 * succeed, so, quit with appropriate error value
1441 	 */
1442 	if (ret && ret != -ENODEV)
1443 		goto out;
1444 
1445 	if (!devname)
1446 		devname = "deviceless";
1447 
1448 	/*
1449 	 * Assume that a regulator is physically present and enabled
1450 	 * even if it isn't hooked up and just provide a dummy.
1451 	 */
1452 	if (have_full_constraints() && allow_dummy) {
1453 		pr_warn("%s supply %s not found, using dummy regulator\n",
1454 			devname, id);
1455 
1456 		rdev = dummy_regulator_rdev;
1457 		goto found;
1458 	/* Don't log an error when called from regulator_get_optional() */
1459 	} else if (!have_full_constraints() || exclusive) {
1460 		dev_warn(dev, "dummy supplies not allowed\n");
1461 	}
1462 
1463 	mutex_unlock(&regulator_list_mutex);
1464 	return regulator;
1465 
1466 found:
1467 	if (rdev->exclusive) {
1468 		regulator = ERR_PTR(-EPERM);
1469 		goto out;
1470 	}
1471 
1472 	if (exclusive && rdev->open_count) {
1473 		regulator = ERR_PTR(-EBUSY);
1474 		goto out;
1475 	}
1476 
1477 	ret = regulator_resolve_supply(rdev);
1478 	if (ret < 0) {
1479 		regulator = ERR_PTR(ret);
1480 		goto out;
1481 	}
1482 
1483 	if (!try_module_get(rdev->owner))
1484 		goto out;
1485 
1486 	regulator = create_regulator(rdev, dev, id);
1487 	if (regulator == NULL) {
1488 		regulator = ERR_PTR(-ENOMEM);
1489 		module_put(rdev->owner);
1490 		goto out;
1491 	}
1492 
1493 	rdev->open_count++;
1494 	if (exclusive) {
1495 		rdev->exclusive = 1;
1496 
1497 		ret = _regulator_is_enabled(rdev);
1498 		if (ret > 0)
1499 			rdev->use_count = 1;
1500 		else
1501 			rdev->use_count = 0;
1502 	}
1503 
1504 out:
1505 	mutex_unlock(&regulator_list_mutex);
1506 
1507 	return regulator;
1508 }
1509 
1510 /**
1511  * regulator_get - lookup and obtain a reference to a regulator.
1512  * @dev: device for regulator "consumer"
1513  * @id: Supply name or regulator ID.
1514  *
1515  * Returns a struct regulator corresponding to the regulator producer,
1516  * or IS_ERR() condition containing errno.
1517  *
1518  * Use of supply names configured via regulator_set_device_supply() is
1519  * strongly encouraged.  It is recommended that the supply name used
1520  * should match the name used for the supply and/or the relevant
1521  * device pins in the datasheet.
1522  */
1523 struct regulator *regulator_get(struct device *dev, const char *id)
1524 {
1525 	return _regulator_get(dev, id, false, true);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get);
1528 
1529 /**
1530  * regulator_get_exclusive - obtain exclusive access to a regulator.
1531  * @dev: device for regulator "consumer"
1532  * @id: Supply name or regulator ID.
1533  *
1534  * Returns a struct regulator corresponding to the regulator producer,
1535  * or IS_ERR() condition containing errno.  Other consumers will be
1536  * unable to obtain this regulator while this reference is held and the
1537  * use count for the regulator will be initialised to reflect the current
1538  * state of the regulator.
1539  *
1540  * This is intended for use by consumers which cannot tolerate shared
1541  * use of the regulator such as those which need to force the
1542  * regulator off for correct operation of the hardware they are
1543  * controlling.
1544  *
1545  * Use of supply names configured via regulator_set_device_supply() is
1546  * strongly encouraged.  It is recommended that the supply name used
1547  * should match the name used for the supply and/or the relevant
1548  * device pins in the datasheet.
1549  */
1550 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1551 {
1552 	return _regulator_get(dev, id, true, false);
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1555 
1556 /**
1557  * regulator_get_optional - obtain optional access to a regulator.
1558  * @dev: device for regulator "consumer"
1559  * @id: Supply name or regulator ID.
1560  *
1561  * Returns a struct regulator corresponding to the regulator producer,
1562  * or IS_ERR() condition containing errno.
1563  *
1564  * This is intended for use by consumers for devices which can have
1565  * some supplies unconnected in normal use, such as some MMC devices.
1566  * It can allow the regulator core to provide stub supplies for other
1567  * supplies requested using normal regulator_get() calls without
1568  * disrupting the operation of drivers that can handle absent
1569  * supplies.
1570  *
1571  * Use of supply names configured via regulator_set_device_supply() is
1572  * strongly encouraged.  It is recommended that the supply name used
1573  * should match the name used for the supply and/or the relevant
1574  * device pins in the datasheet.
1575  */
1576 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1577 {
1578 	return _regulator_get(dev, id, false, false);
1579 }
1580 EXPORT_SYMBOL_GPL(regulator_get_optional);
1581 
1582 /* regulator_list_mutex lock held by regulator_put() */
1583 static void _regulator_put(struct regulator *regulator)
1584 {
1585 	struct regulator_dev *rdev;
1586 
1587 	if (regulator == NULL || IS_ERR(regulator))
1588 		return;
1589 
1590 	rdev = regulator->rdev;
1591 
1592 	debugfs_remove_recursive(regulator->debugfs);
1593 
1594 	/* remove any sysfs entries */
1595 	if (regulator->dev)
1596 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1597 	mutex_lock(&rdev->mutex);
1598 	kfree(regulator->supply_name);
1599 	list_del(&regulator->list);
1600 	kfree(regulator);
1601 
1602 	rdev->open_count--;
1603 	rdev->exclusive = 0;
1604 	mutex_unlock(&rdev->mutex);
1605 
1606 	module_put(rdev->owner);
1607 }
1608 
1609 /**
1610  * regulator_put - "free" the regulator source
1611  * @regulator: regulator source
1612  *
1613  * Note: drivers must ensure that all regulator_enable calls made on this
1614  * regulator source are balanced by regulator_disable calls prior to calling
1615  * this function.
1616  */
1617 void regulator_put(struct regulator *regulator)
1618 {
1619 	mutex_lock(&regulator_list_mutex);
1620 	_regulator_put(regulator);
1621 	mutex_unlock(&regulator_list_mutex);
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_put);
1624 
1625 /**
1626  * regulator_register_supply_alias - Provide device alias for supply lookup
1627  *
1628  * @dev: device that will be given as the regulator "consumer"
1629  * @id: Supply name or regulator ID
1630  * @alias_dev: device that should be used to lookup the supply
1631  * @alias_id: Supply name or regulator ID that should be used to lookup the
1632  * supply
1633  *
1634  * All lookups for id on dev will instead be conducted for alias_id on
1635  * alias_dev.
1636  */
1637 int regulator_register_supply_alias(struct device *dev, const char *id,
1638 				    struct device *alias_dev,
1639 				    const char *alias_id)
1640 {
1641 	struct regulator_supply_alias *map;
1642 
1643 	map = regulator_find_supply_alias(dev, id);
1644 	if (map)
1645 		return -EEXIST;
1646 
1647 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1648 	if (!map)
1649 		return -ENOMEM;
1650 
1651 	map->src_dev = dev;
1652 	map->src_supply = id;
1653 	map->alias_dev = alias_dev;
1654 	map->alias_supply = alias_id;
1655 
1656 	list_add(&map->list, &regulator_supply_alias_list);
1657 
1658 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1659 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1660 
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1664 
1665 /**
1666  * regulator_unregister_supply_alias - Remove device alias
1667  *
1668  * @dev: device that will be given as the regulator "consumer"
1669  * @id: Supply name or regulator ID
1670  *
1671  * Remove a lookup alias if one exists for id on dev.
1672  */
1673 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1674 {
1675 	struct regulator_supply_alias *map;
1676 
1677 	map = regulator_find_supply_alias(dev, id);
1678 	if (map) {
1679 		list_del(&map->list);
1680 		kfree(map);
1681 	}
1682 }
1683 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1684 
1685 /**
1686  * regulator_bulk_register_supply_alias - register multiple aliases
1687  *
1688  * @dev: device that will be given as the regulator "consumer"
1689  * @id: List of supply names or regulator IDs
1690  * @alias_dev: device that should be used to lookup the supply
1691  * @alias_id: List of supply names or regulator IDs that should be used to
1692  * lookup the supply
1693  * @num_id: Number of aliases to register
1694  *
1695  * @return 0 on success, an errno on failure.
1696  *
1697  * This helper function allows drivers to register several supply
1698  * aliases in one operation.  If any of the aliases cannot be
1699  * registered any aliases that were registered will be removed
1700  * before returning to the caller.
1701  */
1702 int regulator_bulk_register_supply_alias(struct device *dev,
1703 					 const char *const *id,
1704 					 struct device *alias_dev,
1705 					 const char *const *alias_id,
1706 					 int num_id)
1707 {
1708 	int i;
1709 	int ret;
1710 
1711 	for (i = 0; i < num_id; ++i) {
1712 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1713 						      alias_id[i]);
1714 		if (ret < 0)
1715 			goto err;
1716 	}
1717 
1718 	return 0;
1719 
1720 err:
1721 	dev_err(dev,
1722 		"Failed to create supply alias %s,%s -> %s,%s\n",
1723 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1724 
1725 	while (--i >= 0)
1726 		regulator_unregister_supply_alias(dev, id[i]);
1727 
1728 	return ret;
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1731 
1732 /**
1733  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1734  *
1735  * @dev: device that will be given as the regulator "consumer"
1736  * @id: List of supply names or regulator IDs
1737  * @num_id: Number of aliases to unregister
1738  *
1739  * This helper function allows drivers to unregister several supply
1740  * aliases in one operation.
1741  */
1742 void regulator_bulk_unregister_supply_alias(struct device *dev,
1743 					    const char *const *id,
1744 					    int num_id)
1745 {
1746 	int i;
1747 
1748 	for (i = 0; i < num_id; ++i)
1749 		regulator_unregister_supply_alias(dev, id[i]);
1750 }
1751 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1752 
1753 
1754 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1755 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1756 				const struct regulator_config *config)
1757 {
1758 	struct regulator_enable_gpio *pin;
1759 	struct gpio_desc *gpiod;
1760 	int ret;
1761 
1762 	gpiod = gpio_to_desc(config->ena_gpio);
1763 
1764 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1765 		if (pin->gpiod == gpiod) {
1766 			rdev_dbg(rdev, "GPIO %d is already used\n",
1767 				config->ena_gpio);
1768 			goto update_ena_gpio_to_rdev;
1769 		}
1770 	}
1771 
1772 	ret = gpio_request_one(config->ena_gpio,
1773 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1774 				rdev_get_name(rdev));
1775 	if (ret)
1776 		return ret;
1777 
1778 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1779 	if (pin == NULL) {
1780 		gpio_free(config->ena_gpio);
1781 		return -ENOMEM;
1782 	}
1783 
1784 	pin->gpiod = gpiod;
1785 	pin->ena_gpio_invert = config->ena_gpio_invert;
1786 	list_add(&pin->list, &regulator_ena_gpio_list);
1787 
1788 update_ena_gpio_to_rdev:
1789 	pin->request_count++;
1790 	rdev->ena_pin = pin;
1791 	return 0;
1792 }
1793 
1794 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1795 {
1796 	struct regulator_enable_gpio *pin, *n;
1797 
1798 	if (!rdev->ena_pin)
1799 		return;
1800 
1801 	/* Free the GPIO only in case of no use */
1802 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1803 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1804 			if (pin->request_count <= 1) {
1805 				pin->request_count = 0;
1806 				gpiod_put(pin->gpiod);
1807 				list_del(&pin->list);
1808 				kfree(pin);
1809 				rdev->ena_pin = NULL;
1810 				return;
1811 			} else {
1812 				pin->request_count--;
1813 			}
1814 		}
1815 	}
1816 }
1817 
1818 /**
1819  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1820  * @rdev: regulator_dev structure
1821  * @enable: enable GPIO at initial use?
1822  *
1823  * GPIO is enabled in case of initial use. (enable_count is 0)
1824  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1825  */
1826 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1827 {
1828 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1829 
1830 	if (!pin)
1831 		return -EINVAL;
1832 
1833 	if (enable) {
1834 		/* Enable GPIO at initial use */
1835 		if (pin->enable_count == 0)
1836 			gpiod_set_value_cansleep(pin->gpiod,
1837 						 !pin->ena_gpio_invert);
1838 
1839 		pin->enable_count++;
1840 	} else {
1841 		if (pin->enable_count > 1) {
1842 			pin->enable_count--;
1843 			return 0;
1844 		}
1845 
1846 		/* Disable GPIO if not used */
1847 		if (pin->enable_count <= 1) {
1848 			gpiod_set_value_cansleep(pin->gpiod,
1849 						 pin->ena_gpio_invert);
1850 			pin->enable_count = 0;
1851 		}
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /**
1858  * _regulator_enable_delay - a delay helper function
1859  * @delay: time to delay in microseconds
1860  *
1861  * Delay for the requested amount of time as per the guidelines in:
1862  *
1863  *     Documentation/timers/timers-howto.txt
1864  *
1865  * The assumption here is that regulators will never be enabled in
1866  * atomic context and therefore sleeping functions can be used.
1867  */
1868 static void _regulator_enable_delay(unsigned int delay)
1869 {
1870 	unsigned int ms = delay / 1000;
1871 	unsigned int us = delay % 1000;
1872 
1873 	if (ms > 0) {
1874 		/*
1875 		 * For small enough values, handle super-millisecond
1876 		 * delays in the usleep_range() call below.
1877 		 */
1878 		if (ms < 20)
1879 			us += ms * 1000;
1880 		else
1881 			msleep(ms);
1882 	}
1883 
1884 	/*
1885 	 * Give the scheduler some room to coalesce with any other
1886 	 * wakeup sources. For delays shorter than 10 us, don't even
1887 	 * bother setting up high-resolution timers and just busy-
1888 	 * loop.
1889 	 */
1890 	if (us >= 10)
1891 		usleep_range(us, us + 100);
1892 	else
1893 		udelay(us);
1894 }
1895 
1896 static int _regulator_do_enable(struct regulator_dev *rdev)
1897 {
1898 	int ret, delay;
1899 
1900 	/* Query before enabling in case configuration dependent.  */
1901 	ret = _regulator_get_enable_time(rdev);
1902 	if (ret >= 0) {
1903 		delay = ret;
1904 	} else {
1905 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1906 		delay = 0;
1907 	}
1908 
1909 	trace_regulator_enable(rdev_get_name(rdev));
1910 
1911 	if (rdev->desc->off_on_delay) {
1912 		/* if needed, keep a distance of off_on_delay from last time
1913 		 * this regulator was disabled.
1914 		 */
1915 		unsigned long start_jiffy = jiffies;
1916 		unsigned long intended, max_delay, remaining;
1917 
1918 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1919 		intended = rdev->last_off_jiffy + max_delay;
1920 
1921 		if (time_before(start_jiffy, intended)) {
1922 			/* calc remaining jiffies to deal with one-time
1923 			 * timer wrapping.
1924 			 * in case of multiple timer wrapping, either it can be
1925 			 * detected by out-of-range remaining, or it cannot be
1926 			 * detected and we gets a panelty of
1927 			 * _regulator_enable_delay().
1928 			 */
1929 			remaining = intended - start_jiffy;
1930 			if (remaining <= max_delay)
1931 				_regulator_enable_delay(
1932 						jiffies_to_usecs(remaining));
1933 		}
1934 	}
1935 
1936 	if (rdev->ena_pin) {
1937 		if (!rdev->ena_gpio_state) {
1938 			ret = regulator_ena_gpio_ctrl(rdev, true);
1939 			if (ret < 0)
1940 				return ret;
1941 			rdev->ena_gpio_state = 1;
1942 		}
1943 	} else if (rdev->desc->ops->enable) {
1944 		ret = rdev->desc->ops->enable(rdev);
1945 		if (ret < 0)
1946 			return ret;
1947 	} else {
1948 		return -EINVAL;
1949 	}
1950 
1951 	/* Allow the regulator to ramp; it would be useful to extend
1952 	 * this for bulk operations so that the regulators can ramp
1953 	 * together.  */
1954 	trace_regulator_enable_delay(rdev_get_name(rdev));
1955 
1956 	_regulator_enable_delay(delay);
1957 
1958 	trace_regulator_enable_complete(rdev_get_name(rdev));
1959 
1960 	return 0;
1961 }
1962 
1963 /* locks held by regulator_enable() */
1964 static int _regulator_enable(struct regulator_dev *rdev)
1965 {
1966 	int ret;
1967 
1968 	/* check voltage and requested load before enabling */
1969 	if (rdev->constraints &&
1970 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1971 		drms_uA_update(rdev);
1972 
1973 	if (rdev->use_count == 0) {
1974 		/* The regulator may on if it's not switchable or left on */
1975 		ret = _regulator_is_enabled(rdev);
1976 		if (ret == -EINVAL || ret == 0) {
1977 			if (!_regulator_can_change_status(rdev))
1978 				return -EPERM;
1979 
1980 			ret = _regulator_do_enable(rdev);
1981 			if (ret < 0)
1982 				return ret;
1983 
1984 		} else if (ret < 0) {
1985 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1986 			return ret;
1987 		}
1988 		/* Fallthrough on positive return values - already enabled */
1989 	}
1990 
1991 	rdev->use_count++;
1992 
1993 	return 0;
1994 }
1995 
1996 /**
1997  * regulator_enable - enable regulator output
1998  * @regulator: regulator source
1999  *
2000  * Request that the regulator be enabled with the regulator output at
2001  * the predefined voltage or current value.  Calls to regulator_enable()
2002  * must be balanced with calls to regulator_disable().
2003  *
2004  * NOTE: the output value can be set by other drivers, boot loader or may be
2005  * hardwired in the regulator.
2006  */
2007 int regulator_enable(struct regulator *regulator)
2008 {
2009 	struct regulator_dev *rdev = regulator->rdev;
2010 	int ret = 0;
2011 
2012 	if (regulator->always_on)
2013 		return 0;
2014 
2015 	if (rdev->supply) {
2016 		ret = regulator_enable(rdev->supply);
2017 		if (ret != 0)
2018 			return ret;
2019 	}
2020 
2021 	mutex_lock(&rdev->mutex);
2022 	ret = _regulator_enable(rdev);
2023 	mutex_unlock(&rdev->mutex);
2024 
2025 	if (ret != 0 && rdev->supply)
2026 		regulator_disable(rdev->supply);
2027 
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(regulator_enable);
2031 
2032 static int _regulator_do_disable(struct regulator_dev *rdev)
2033 {
2034 	int ret;
2035 
2036 	trace_regulator_disable(rdev_get_name(rdev));
2037 
2038 	if (rdev->ena_pin) {
2039 		if (rdev->ena_gpio_state) {
2040 			ret = regulator_ena_gpio_ctrl(rdev, false);
2041 			if (ret < 0)
2042 				return ret;
2043 			rdev->ena_gpio_state = 0;
2044 		}
2045 
2046 	} else if (rdev->desc->ops->disable) {
2047 		ret = rdev->desc->ops->disable(rdev);
2048 		if (ret != 0)
2049 			return ret;
2050 	}
2051 
2052 	/* cares about last_off_jiffy only if off_on_delay is required by
2053 	 * device.
2054 	 */
2055 	if (rdev->desc->off_on_delay)
2056 		rdev->last_off_jiffy = jiffies;
2057 
2058 	trace_regulator_disable_complete(rdev_get_name(rdev));
2059 
2060 	return 0;
2061 }
2062 
2063 /* locks held by regulator_disable() */
2064 static int _regulator_disable(struct regulator_dev *rdev)
2065 {
2066 	int ret = 0;
2067 
2068 	if (WARN(rdev->use_count <= 0,
2069 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2070 		return -EIO;
2071 
2072 	/* are we the last user and permitted to disable ? */
2073 	if (rdev->use_count == 1 &&
2074 	    (rdev->constraints && !rdev->constraints->always_on)) {
2075 
2076 		/* we are last user */
2077 		if (_regulator_can_change_status(rdev)) {
2078 			ret = _notifier_call_chain(rdev,
2079 						   REGULATOR_EVENT_PRE_DISABLE,
2080 						   NULL);
2081 			if (ret & NOTIFY_STOP_MASK)
2082 				return -EINVAL;
2083 
2084 			ret = _regulator_do_disable(rdev);
2085 			if (ret < 0) {
2086 				rdev_err(rdev, "failed to disable\n");
2087 				_notifier_call_chain(rdev,
2088 						REGULATOR_EVENT_ABORT_DISABLE,
2089 						NULL);
2090 				return ret;
2091 			}
2092 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2093 					NULL);
2094 		}
2095 
2096 		rdev->use_count = 0;
2097 	} else if (rdev->use_count > 1) {
2098 
2099 		if (rdev->constraints &&
2100 			(rdev->constraints->valid_ops_mask &
2101 			REGULATOR_CHANGE_DRMS))
2102 			drms_uA_update(rdev);
2103 
2104 		rdev->use_count--;
2105 	}
2106 
2107 	return ret;
2108 }
2109 
2110 /**
2111  * regulator_disable - disable regulator output
2112  * @regulator: regulator source
2113  *
2114  * Disable the regulator output voltage or current.  Calls to
2115  * regulator_enable() must be balanced with calls to
2116  * regulator_disable().
2117  *
2118  * NOTE: this will only disable the regulator output if no other consumer
2119  * devices have it enabled, the regulator device supports disabling and
2120  * machine constraints permit this operation.
2121  */
2122 int regulator_disable(struct regulator *regulator)
2123 {
2124 	struct regulator_dev *rdev = regulator->rdev;
2125 	int ret = 0;
2126 
2127 	if (regulator->always_on)
2128 		return 0;
2129 
2130 	mutex_lock(&rdev->mutex);
2131 	ret = _regulator_disable(rdev);
2132 	mutex_unlock(&rdev->mutex);
2133 
2134 	if (ret == 0 && rdev->supply)
2135 		regulator_disable(rdev->supply);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(regulator_disable);
2140 
2141 /* locks held by regulator_force_disable() */
2142 static int _regulator_force_disable(struct regulator_dev *rdev)
2143 {
2144 	int ret = 0;
2145 
2146 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2147 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2148 	if (ret & NOTIFY_STOP_MASK)
2149 		return -EINVAL;
2150 
2151 	ret = _regulator_do_disable(rdev);
2152 	if (ret < 0) {
2153 		rdev_err(rdev, "failed to force disable\n");
2154 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2155 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2156 		return ret;
2157 	}
2158 
2159 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2160 			REGULATOR_EVENT_DISABLE, NULL);
2161 
2162 	return 0;
2163 }
2164 
2165 /**
2166  * regulator_force_disable - force disable regulator output
2167  * @regulator: regulator source
2168  *
2169  * Forcibly disable the regulator output voltage or current.
2170  * NOTE: this *will* disable the regulator output even if other consumer
2171  * devices have it enabled. This should be used for situations when device
2172  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2173  */
2174 int regulator_force_disable(struct regulator *regulator)
2175 {
2176 	struct regulator_dev *rdev = regulator->rdev;
2177 	int ret;
2178 
2179 	mutex_lock(&rdev->mutex);
2180 	regulator->uA_load = 0;
2181 	ret = _regulator_force_disable(regulator->rdev);
2182 	mutex_unlock(&rdev->mutex);
2183 
2184 	if (rdev->supply)
2185 		while (rdev->open_count--)
2186 			regulator_disable(rdev->supply);
2187 
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_force_disable);
2191 
2192 static void regulator_disable_work(struct work_struct *work)
2193 {
2194 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2195 						  disable_work.work);
2196 	int count, i, ret;
2197 
2198 	mutex_lock(&rdev->mutex);
2199 
2200 	BUG_ON(!rdev->deferred_disables);
2201 
2202 	count = rdev->deferred_disables;
2203 	rdev->deferred_disables = 0;
2204 
2205 	for (i = 0; i < count; i++) {
2206 		ret = _regulator_disable(rdev);
2207 		if (ret != 0)
2208 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2209 	}
2210 
2211 	mutex_unlock(&rdev->mutex);
2212 
2213 	if (rdev->supply) {
2214 		for (i = 0; i < count; i++) {
2215 			ret = regulator_disable(rdev->supply);
2216 			if (ret != 0) {
2217 				rdev_err(rdev,
2218 					 "Supply disable failed: %d\n", ret);
2219 			}
2220 		}
2221 	}
2222 }
2223 
2224 /**
2225  * regulator_disable_deferred - disable regulator output with delay
2226  * @regulator: regulator source
2227  * @ms: miliseconds until the regulator is disabled
2228  *
2229  * Execute regulator_disable() on the regulator after a delay.  This
2230  * is intended for use with devices that require some time to quiesce.
2231  *
2232  * NOTE: this will only disable the regulator output if no other consumer
2233  * devices have it enabled, the regulator device supports disabling and
2234  * machine constraints permit this operation.
2235  */
2236 int regulator_disable_deferred(struct regulator *regulator, int ms)
2237 {
2238 	struct regulator_dev *rdev = regulator->rdev;
2239 	int ret;
2240 
2241 	if (regulator->always_on)
2242 		return 0;
2243 
2244 	if (!ms)
2245 		return regulator_disable(regulator);
2246 
2247 	mutex_lock(&rdev->mutex);
2248 	rdev->deferred_disables++;
2249 	mutex_unlock(&rdev->mutex);
2250 
2251 	ret = queue_delayed_work(system_power_efficient_wq,
2252 				 &rdev->disable_work,
2253 				 msecs_to_jiffies(ms));
2254 	if (ret < 0)
2255 		return ret;
2256 	else
2257 		return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2260 
2261 static int _regulator_is_enabled(struct regulator_dev *rdev)
2262 {
2263 	/* A GPIO control always takes precedence */
2264 	if (rdev->ena_pin)
2265 		return rdev->ena_gpio_state;
2266 
2267 	/* If we don't know then assume that the regulator is always on */
2268 	if (!rdev->desc->ops->is_enabled)
2269 		return 1;
2270 
2271 	return rdev->desc->ops->is_enabled(rdev);
2272 }
2273 
2274 /**
2275  * regulator_is_enabled - is the regulator output enabled
2276  * @regulator: regulator source
2277  *
2278  * Returns positive if the regulator driver backing the source/client
2279  * has requested that the device be enabled, zero if it hasn't, else a
2280  * negative errno code.
2281  *
2282  * Note that the device backing this regulator handle can have multiple
2283  * users, so it might be enabled even if regulator_enable() was never
2284  * called for this particular source.
2285  */
2286 int regulator_is_enabled(struct regulator *regulator)
2287 {
2288 	int ret;
2289 
2290 	if (regulator->always_on)
2291 		return 1;
2292 
2293 	mutex_lock(&regulator->rdev->mutex);
2294 	ret = _regulator_is_enabled(regulator->rdev);
2295 	mutex_unlock(&regulator->rdev->mutex);
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2300 
2301 /**
2302  * regulator_can_change_voltage - check if regulator can change voltage
2303  * @regulator: regulator source
2304  *
2305  * Returns positive if the regulator driver backing the source/client
2306  * can change its voltage, false otherwise. Useful for detecting fixed
2307  * or dummy regulators and disabling voltage change logic in the client
2308  * driver.
2309  */
2310 int regulator_can_change_voltage(struct regulator *regulator)
2311 {
2312 	struct regulator_dev	*rdev = regulator->rdev;
2313 
2314 	if (rdev->constraints &&
2315 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2316 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2317 			return 1;
2318 
2319 		if (rdev->desc->continuous_voltage_range &&
2320 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2321 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2322 			return 1;
2323 	}
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2328 
2329 /**
2330  * regulator_count_voltages - count regulator_list_voltage() selectors
2331  * @regulator: regulator source
2332  *
2333  * Returns number of selectors, or negative errno.  Selectors are
2334  * numbered starting at zero, and typically correspond to bitfields
2335  * in hardware registers.
2336  */
2337 int regulator_count_voltages(struct regulator *regulator)
2338 {
2339 	struct regulator_dev	*rdev = regulator->rdev;
2340 
2341 	if (rdev->desc->n_voltages)
2342 		return rdev->desc->n_voltages;
2343 
2344 	if (!rdev->supply)
2345 		return -EINVAL;
2346 
2347 	return regulator_count_voltages(rdev->supply);
2348 }
2349 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2350 
2351 /**
2352  * regulator_list_voltage - enumerate supported voltages
2353  * @regulator: regulator source
2354  * @selector: identify voltage to list
2355  * Context: can sleep
2356  *
2357  * Returns a voltage that can be passed to @regulator_set_voltage(),
2358  * zero if this selector code can't be used on this system, or a
2359  * negative errno.
2360  */
2361 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2362 {
2363 	struct regulator_dev *rdev = regulator->rdev;
2364 	const struct regulator_ops *ops = rdev->desc->ops;
2365 	int ret;
2366 
2367 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2368 		return rdev->desc->fixed_uV;
2369 
2370 	if (ops->list_voltage) {
2371 		if (selector >= rdev->desc->n_voltages)
2372 			return -EINVAL;
2373 		mutex_lock(&rdev->mutex);
2374 		ret = ops->list_voltage(rdev, selector);
2375 		mutex_unlock(&rdev->mutex);
2376 	} else if (rdev->supply) {
2377 		ret = regulator_list_voltage(rdev->supply, selector);
2378 	} else {
2379 		return -EINVAL;
2380 	}
2381 
2382 	if (ret > 0) {
2383 		if (ret < rdev->constraints->min_uV)
2384 			ret = 0;
2385 		else if (ret > rdev->constraints->max_uV)
2386 			ret = 0;
2387 	}
2388 
2389 	return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2392 
2393 /**
2394  * regulator_get_regmap - get the regulator's register map
2395  * @regulator: regulator source
2396  *
2397  * Returns the register map for the given regulator, or an ERR_PTR value
2398  * if the regulator doesn't use regmap.
2399  */
2400 struct regmap *regulator_get_regmap(struct regulator *regulator)
2401 {
2402 	struct regmap *map = regulator->rdev->regmap;
2403 
2404 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2405 }
2406 
2407 /**
2408  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2409  * @regulator: regulator source
2410  * @vsel_reg: voltage selector register, output parameter
2411  * @vsel_mask: mask for voltage selector bitfield, output parameter
2412  *
2413  * Returns the hardware register offset and bitmask used for setting the
2414  * regulator voltage. This might be useful when configuring voltage-scaling
2415  * hardware or firmware that can make I2C requests behind the kernel's back,
2416  * for example.
2417  *
2418  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2419  * and 0 is returned, otherwise a negative errno is returned.
2420  */
2421 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2422 					 unsigned *vsel_reg,
2423 					 unsigned *vsel_mask)
2424 {
2425 	struct regulator_dev *rdev = regulator->rdev;
2426 	const struct regulator_ops *ops = rdev->desc->ops;
2427 
2428 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2429 		return -EOPNOTSUPP;
2430 
2431 	 *vsel_reg = rdev->desc->vsel_reg;
2432 	 *vsel_mask = rdev->desc->vsel_mask;
2433 
2434 	 return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2437 
2438 /**
2439  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2440  * @regulator: regulator source
2441  * @selector: identify voltage to list
2442  *
2443  * Converts the selector to a hardware-specific voltage selector that can be
2444  * directly written to the regulator registers. The address of the voltage
2445  * register can be determined by calling @regulator_get_hardware_vsel_register.
2446  *
2447  * On error a negative errno is returned.
2448  */
2449 int regulator_list_hardware_vsel(struct regulator *regulator,
2450 				 unsigned selector)
2451 {
2452 	struct regulator_dev *rdev = regulator->rdev;
2453 	const struct regulator_ops *ops = rdev->desc->ops;
2454 
2455 	if (selector >= rdev->desc->n_voltages)
2456 		return -EINVAL;
2457 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2458 		return -EOPNOTSUPP;
2459 
2460 	return selector;
2461 }
2462 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2463 
2464 /**
2465  * regulator_get_linear_step - return the voltage step size between VSEL values
2466  * @regulator: regulator source
2467  *
2468  * Returns the voltage step size between VSEL values for linear
2469  * regulators, or return 0 if the regulator isn't a linear regulator.
2470  */
2471 unsigned int regulator_get_linear_step(struct regulator *regulator)
2472 {
2473 	struct regulator_dev *rdev = regulator->rdev;
2474 
2475 	return rdev->desc->uV_step;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2478 
2479 /**
2480  * regulator_is_supported_voltage - check if a voltage range can be supported
2481  *
2482  * @regulator: Regulator to check.
2483  * @min_uV: Minimum required voltage in uV.
2484  * @max_uV: Maximum required voltage in uV.
2485  *
2486  * Returns a boolean or a negative error code.
2487  */
2488 int regulator_is_supported_voltage(struct regulator *regulator,
2489 				   int min_uV, int max_uV)
2490 {
2491 	struct regulator_dev *rdev = regulator->rdev;
2492 	int i, voltages, ret;
2493 
2494 	/* If we can't change voltage check the current voltage */
2495 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2496 		ret = regulator_get_voltage(regulator);
2497 		if (ret >= 0)
2498 			return min_uV <= ret && ret <= max_uV;
2499 		else
2500 			return ret;
2501 	}
2502 
2503 	/* Any voltage within constrains range is fine? */
2504 	if (rdev->desc->continuous_voltage_range)
2505 		return min_uV >= rdev->constraints->min_uV &&
2506 				max_uV <= rdev->constraints->max_uV;
2507 
2508 	ret = regulator_count_voltages(regulator);
2509 	if (ret < 0)
2510 		return ret;
2511 	voltages = ret;
2512 
2513 	for (i = 0; i < voltages; i++) {
2514 		ret = regulator_list_voltage(regulator, i);
2515 
2516 		if (ret >= min_uV && ret <= max_uV)
2517 			return 1;
2518 	}
2519 
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2523 
2524 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2525 				       int min_uV, int max_uV,
2526 				       unsigned *selector)
2527 {
2528 	struct pre_voltage_change_data data;
2529 	int ret;
2530 
2531 	data.old_uV = _regulator_get_voltage(rdev);
2532 	data.min_uV = min_uV;
2533 	data.max_uV = max_uV;
2534 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2535 				   &data);
2536 	if (ret & NOTIFY_STOP_MASK)
2537 		return -EINVAL;
2538 
2539 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2540 	if (ret >= 0)
2541 		return ret;
2542 
2543 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2544 			     (void *)data.old_uV);
2545 
2546 	return ret;
2547 }
2548 
2549 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2550 					   int uV, unsigned selector)
2551 {
2552 	struct pre_voltage_change_data data;
2553 	int ret;
2554 
2555 	data.old_uV = _regulator_get_voltage(rdev);
2556 	data.min_uV = uV;
2557 	data.max_uV = uV;
2558 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2559 				   &data);
2560 	if (ret & NOTIFY_STOP_MASK)
2561 		return -EINVAL;
2562 
2563 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2564 	if (ret >= 0)
2565 		return ret;
2566 
2567 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2568 			     (void *)data.old_uV);
2569 
2570 	return ret;
2571 }
2572 
2573 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2574 				     int min_uV, int max_uV)
2575 {
2576 	int ret;
2577 	int delay = 0;
2578 	int best_val = 0;
2579 	unsigned int selector;
2580 	int old_selector = -1;
2581 
2582 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2583 
2584 	min_uV += rdev->constraints->uV_offset;
2585 	max_uV += rdev->constraints->uV_offset;
2586 
2587 	/*
2588 	 * If we can't obtain the old selector there is not enough
2589 	 * info to call set_voltage_time_sel().
2590 	 */
2591 	if (_regulator_is_enabled(rdev) &&
2592 	    rdev->desc->ops->set_voltage_time_sel &&
2593 	    rdev->desc->ops->get_voltage_sel) {
2594 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2595 		if (old_selector < 0)
2596 			return old_selector;
2597 	}
2598 
2599 	if (rdev->desc->ops->set_voltage) {
2600 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2601 						  &selector);
2602 
2603 		if (ret >= 0) {
2604 			if (rdev->desc->ops->list_voltage)
2605 				best_val = rdev->desc->ops->list_voltage(rdev,
2606 									 selector);
2607 			else
2608 				best_val = _regulator_get_voltage(rdev);
2609 		}
2610 
2611 	} else if (rdev->desc->ops->set_voltage_sel) {
2612 		if (rdev->desc->ops->map_voltage) {
2613 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2614 							   max_uV);
2615 		} else {
2616 			if (rdev->desc->ops->list_voltage ==
2617 			    regulator_list_voltage_linear)
2618 				ret = regulator_map_voltage_linear(rdev,
2619 								min_uV, max_uV);
2620 			else if (rdev->desc->ops->list_voltage ==
2621 				 regulator_list_voltage_linear_range)
2622 				ret = regulator_map_voltage_linear_range(rdev,
2623 								min_uV, max_uV);
2624 			else
2625 				ret = regulator_map_voltage_iterate(rdev,
2626 								min_uV, max_uV);
2627 		}
2628 
2629 		if (ret >= 0) {
2630 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2631 			if (min_uV <= best_val && max_uV >= best_val) {
2632 				selector = ret;
2633 				if (old_selector == selector)
2634 					ret = 0;
2635 				else
2636 					ret = _regulator_call_set_voltage_sel(
2637 						rdev, best_val, selector);
2638 			} else {
2639 				ret = -EINVAL;
2640 			}
2641 		}
2642 	} else {
2643 		ret = -EINVAL;
2644 	}
2645 
2646 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2647 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2648 		&& old_selector != selector) {
2649 
2650 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2651 						old_selector, selector);
2652 		if (delay < 0) {
2653 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2654 				  delay);
2655 			delay = 0;
2656 		}
2657 
2658 		/* Insert any necessary delays */
2659 		if (delay >= 1000) {
2660 			mdelay(delay / 1000);
2661 			udelay(delay % 1000);
2662 		} else if (delay) {
2663 			udelay(delay);
2664 		}
2665 	}
2666 
2667 	if (ret == 0 && best_val >= 0) {
2668 		unsigned long data = best_val;
2669 
2670 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2671 				     (void *)data);
2672 	}
2673 
2674 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2675 
2676 	return ret;
2677 }
2678 
2679 /**
2680  * regulator_set_voltage - set regulator output voltage
2681  * @regulator: regulator source
2682  * @min_uV: Minimum required voltage in uV
2683  * @max_uV: Maximum acceptable voltage in uV
2684  *
2685  * Sets a voltage regulator to the desired output voltage. This can be set
2686  * during any regulator state. IOW, regulator can be disabled or enabled.
2687  *
2688  * If the regulator is enabled then the voltage will change to the new value
2689  * immediately otherwise if the regulator is disabled the regulator will
2690  * output at the new voltage when enabled.
2691  *
2692  * NOTE: If the regulator is shared between several devices then the lowest
2693  * request voltage that meets the system constraints will be used.
2694  * Regulator system constraints must be set for this regulator before
2695  * calling this function otherwise this call will fail.
2696  */
2697 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2698 {
2699 	struct regulator_dev *rdev = regulator->rdev;
2700 	int ret = 0;
2701 	int old_min_uV, old_max_uV;
2702 	int current_uV;
2703 
2704 	mutex_lock(&rdev->mutex);
2705 
2706 	/* If we're setting the same range as last time the change
2707 	 * should be a noop (some cpufreq implementations use the same
2708 	 * voltage for multiple frequencies, for example).
2709 	 */
2710 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2711 		goto out;
2712 
2713 	/* If we're trying to set a range that overlaps the current voltage,
2714 	 * return succesfully even though the regulator does not support
2715 	 * changing the voltage.
2716 	 */
2717 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2718 		current_uV = _regulator_get_voltage(rdev);
2719 		if (min_uV <= current_uV && current_uV <= max_uV) {
2720 			regulator->min_uV = min_uV;
2721 			regulator->max_uV = max_uV;
2722 			goto out;
2723 		}
2724 	}
2725 
2726 	/* sanity check */
2727 	if (!rdev->desc->ops->set_voltage &&
2728 	    !rdev->desc->ops->set_voltage_sel) {
2729 		ret = -EINVAL;
2730 		goto out;
2731 	}
2732 
2733 	/* constraints check */
2734 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2735 	if (ret < 0)
2736 		goto out;
2737 
2738 	/* restore original values in case of error */
2739 	old_min_uV = regulator->min_uV;
2740 	old_max_uV = regulator->max_uV;
2741 	regulator->min_uV = min_uV;
2742 	regulator->max_uV = max_uV;
2743 
2744 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2745 	if (ret < 0)
2746 		goto out2;
2747 
2748 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2749 	if (ret < 0)
2750 		goto out2;
2751 
2752 out:
2753 	mutex_unlock(&rdev->mutex);
2754 	return ret;
2755 out2:
2756 	regulator->min_uV = old_min_uV;
2757 	regulator->max_uV = old_max_uV;
2758 	mutex_unlock(&rdev->mutex);
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2762 
2763 /**
2764  * regulator_set_voltage_time - get raise/fall time
2765  * @regulator: regulator source
2766  * @old_uV: starting voltage in microvolts
2767  * @new_uV: target voltage in microvolts
2768  *
2769  * Provided with the starting and ending voltage, this function attempts to
2770  * calculate the time in microseconds required to rise or fall to this new
2771  * voltage.
2772  */
2773 int regulator_set_voltage_time(struct regulator *regulator,
2774 			       int old_uV, int new_uV)
2775 {
2776 	struct regulator_dev *rdev = regulator->rdev;
2777 	const struct regulator_ops *ops = rdev->desc->ops;
2778 	int old_sel = -1;
2779 	int new_sel = -1;
2780 	int voltage;
2781 	int i;
2782 
2783 	/* Currently requires operations to do this */
2784 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2785 	    || !rdev->desc->n_voltages)
2786 		return -EINVAL;
2787 
2788 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2789 		/* We only look for exact voltage matches here */
2790 		voltage = regulator_list_voltage(regulator, i);
2791 		if (voltage < 0)
2792 			return -EINVAL;
2793 		if (voltage == 0)
2794 			continue;
2795 		if (voltage == old_uV)
2796 			old_sel = i;
2797 		if (voltage == new_uV)
2798 			new_sel = i;
2799 	}
2800 
2801 	if (old_sel < 0 || new_sel < 0)
2802 		return -EINVAL;
2803 
2804 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2807 
2808 /**
2809  * regulator_set_voltage_time_sel - get raise/fall time
2810  * @rdev: regulator source device
2811  * @old_selector: selector for starting voltage
2812  * @new_selector: selector for target voltage
2813  *
2814  * Provided with the starting and target voltage selectors, this function
2815  * returns time in microseconds required to rise or fall to this new voltage
2816  *
2817  * Drivers providing ramp_delay in regulation_constraints can use this as their
2818  * set_voltage_time_sel() operation.
2819  */
2820 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2821 				   unsigned int old_selector,
2822 				   unsigned int new_selector)
2823 {
2824 	unsigned int ramp_delay = 0;
2825 	int old_volt, new_volt;
2826 
2827 	if (rdev->constraints->ramp_delay)
2828 		ramp_delay = rdev->constraints->ramp_delay;
2829 	else if (rdev->desc->ramp_delay)
2830 		ramp_delay = rdev->desc->ramp_delay;
2831 
2832 	if (ramp_delay == 0) {
2833 		rdev_warn(rdev, "ramp_delay not set\n");
2834 		return 0;
2835 	}
2836 
2837 	/* sanity check */
2838 	if (!rdev->desc->ops->list_voltage)
2839 		return -EINVAL;
2840 
2841 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2842 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2843 
2844 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2845 }
2846 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2847 
2848 /**
2849  * regulator_sync_voltage - re-apply last regulator output voltage
2850  * @regulator: regulator source
2851  *
2852  * Re-apply the last configured voltage.  This is intended to be used
2853  * where some external control source the consumer is cooperating with
2854  * has caused the configured voltage to change.
2855  */
2856 int regulator_sync_voltage(struct regulator *regulator)
2857 {
2858 	struct regulator_dev *rdev = regulator->rdev;
2859 	int ret, min_uV, max_uV;
2860 
2861 	mutex_lock(&rdev->mutex);
2862 
2863 	if (!rdev->desc->ops->set_voltage &&
2864 	    !rdev->desc->ops->set_voltage_sel) {
2865 		ret = -EINVAL;
2866 		goto out;
2867 	}
2868 
2869 	/* This is only going to work if we've had a voltage configured. */
2870 	if (!regulator->min_uV && !regulator->max_uV) {
2871 		ret = -EINVAL;
2872 		goto out;
2873 	}
2874 
2875 	min_uV = regulator->min_uV;
2876 	max_uV = regulator->max_uV;
2877 
2878 	/* This should be a paranoia check... */
2879 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2880 	if (ret < 0)
2881 		goto out;
2882 
2883 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2884 	if (ret < 0)
2885 		goto out;
2886 
2887 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2888 
2889 out:
2890 	mutex_unlock(&rdev->mutex);
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2894 
2895 static int _regulator_get_voltage(struct regulator_dev *rdev)
2896 {
2897 	int sel, ret;
2898 
2899 	if (rdev->desc->ops->get_voltage_sel) {
2900 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2901 		if (sel < 0)
2902 			return sel;
2903 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2904 	} else if (rdev->desc->ops->get_voltage) {
2905 		ret = rdev->desc->ops->get_voltage(rdev);
2906 	} else if (rdev->desc->ops->list_voltage) {
2907 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2908 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2909 		ret = rdev->desc->fixed_uV;
2910 	} else if (rdev->supply) {
2911 		ret = regulator_get_voltage(rdev->supply);
2912 	} else {
2913 		return -EINVAL;
2914 	}
2915 
2916 	if (ret < 0)
2917 		return ret;
2918 	return ret - rdev->constraints->uV_offset;
2919 }
2920 
2921 /**
2922  * regulator_get_voltage - get regulator output voltage
2923  * @regulator: regulator source
2924  *
2925  * This returns the current regulator voltage in uV.
2926  *
2927  * NOTE: If the regulator is disabled it will return the voltage value. This
2928  * function should not be used to determine regulator state.
2929  */
2930 int regulator_get_voltage(struct regulator *regulator)
2931 {
2932 	int ret;
2933 
2934 	mutex_lock(&regulator->rdev->mutex);
2935 
2936 	ret = _regulator_get_voltage(regulator->rdev);
2937 
2938 	mutex_unlock(&regulator->rdev->mutex);
2939 
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2943 
2944 /**
2945  * regulator_set_current_limit - set regulator output current limit
2946  * @regulator: regulator source
2947  * @min_uA: Minimum supported current in uA
2948  * @max_uA: Maximum supported current in uA
2949  *
2950  * Sets current sink to the desired output current. This can be set during
2951  * any regulator state. IOW, regulator can be disabled or enabled.
2952  *
2953  * If the regulator is enabled then the current will change to the new value
2954  * immediately otherwise if the regulator is disabled the regulator will
2955  * output at the new current when enabled.
2956  *
2957  * NOTE: Regulator system constraints must be set for this regulator before
2958  * calling this function otherwise this call will fail.
2959  */
2960 int regulator_set_current_limit(struct regulator *regulator,
2961 			       int min_uA, int max_uA)
2962 {
2963 	struct regulator_dev *rdev = regulator->rdev;
2964 	int ret;
2965 
2966 	mutex_lock(&rdev->mutex);
2967 
2968 	/* sanity check */
2969 	if (!rdev->desc->ops->set_current_limit) {
2970 		ret = -EINVAL;
2971 		goto out;
2972 	}
2973 
2974 	/* constraints check */
2975 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2976 	if (ret < 0)
2977 		goto out;
2978 
2979 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2980 out:
2981 	mutex_unlock(&rdev->mutex);
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2985 
2986 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2987 {
2988 	int ret;
2989 
2990 	mutex_lock(&rdev->mutex);
2991 
2992 	/* sanity check */
2993 	if (!rdev->desc->ops->get_current_limit) {
2994 		ret = -EINVAL;
2995 		goto out;
2996 	}
2997 
2998 	ret = rdev->desc->ops->get_current_limit(rdev);
2999 out:
3000 	mutex_unlock(&rdev->mutex);
3001 	return ret;
3002 }
3003 
3004 /**
3005  * regulator_get_current_limit - get regulator output current
3006  * @regulator: regulator source
3007  *
3008  * This returns the current supplied by the specified current sink in uA.
3009  *
3010  * NOTE: If the regulator is disabled it will return the current value. This
3011  * function should not be used to determine regulator state.
3012  */
3013 int regulator_get_current_limit(struct regulator *regulator)
3014 {
3015 	return _regulator_get_current_limit(regulator->rdev);
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3018 
3019 /**
3020  * regulator_set_mode - set regulator operating mode
3021  * @regulator: regulator source
3022  * @mode: operating mode - one of the REGULATOR_MODE constants
3023  *
3024  * Set regulator operating mode to increase regulator efficiency or improve
3025  * regulation performance.
3026  *
3027  * NOTE: Regulator system constraints must be set for this regulator before
3028  * calling this function otherwise this call will fail.
3029  */
3030 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3031 {
3032 	struct regulator_dev *rdev = regulator->rdev;
3033 	int ret;
3034 	int regulator_curr_mode;
3035 
3036 	mutex_lock(&rdev->mutex);
3037 
3038 	/* sanity check */
3039 	if (!rdev->desc->ops->set_mode) {
3040 		ret = -EINVAL;
3041 		goto out;
3042 	}
3043 
3044 	/* return if the same mode is requested */
3045 	if (rdev->desc->ops->get_mode) {
3046 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3047 		if (regulator_curr_mode == mode) {
3048 			ret = 0;
3049 			goto out;
3050 		}
3051 	}
3052 
3053 	/* constraints check */
3054 	ret = regulator_mode_constrain(rdev, &mode);
3055 	if (ret < 0)
3056 		goto out;
3057 
3058 	ret = rdev->desc->ops->set_mode(rdev, mode);
3059 out:
3060 	mutex_unlock(&rdev->mutex);
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_mode);
3064 
3065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3066 {
3067 	int ret;
3068 
3069 	mutex_lock(&rdev->mutex);
3070 
3071 	/* sanity check */
3072 	if (!rdev->desc->ops->get_mode) {
3073 		ret = -EINVAL;
3074 		goto out;
3075 	}
3076 
3077 	ret = rdev->desc->ops->get_mode(rdev);
3078 out:
3079 	mutex_unlock(&rdev->mutex);
3080 	return ret;
3081 }
3082 
3083 /**
3084  * regulator_get_mode - get regulator operating mode
3085  * @regulator: regulator source
3086  *
3087  * Get the current regulator operating mode.
3088  */
3089 unsigned int regulator_get_mode(struct regulator *regulator)
3090 {
3091 	return _regulator_get_mode(regulator->rdev);
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_mode);
3094 
3095 /**
3096  * regulator_set_load - set regulator load
3097  * @regulator: regulator source
3098  * @uA_load: load current
3099  *
3100  * Notifies the regulator core of a new device load. This is then used by
3101  * DRMS (if enabled by constraints) to set the most efficient regulator
3102  * operating mode for the new regulator loading.
3103  *
3104  * Consumer devices notify their supply regulator of the maximum power
3105  * they will require (can be taken from device datasheet in the power
3106  * consumption tables) when they change operational status and hence power
3107  * state. Examples of operational state changes that can affect power
3108  * consumption are :-
3109  *
3110  *    o Device is opened / closed.
3111  *    o Device I/O is about to begin or has just finished.
3112  *    o Device is idling in between work.
3113  *
3114  * This information is also exported via sysfs to userspace.
3115  *
3116  * DRMS will sum the total requested load on the regulator and change
3117  * to the most efficient operating mode if platform constraints allow.
3118  *
3119  * On error a negative errno is returned.
3120  */
3121 int regulator_set_load(struct regulator *regulator, int uA_load)
3122 {
3123 	struct regulator_dev *rdev = regulator->rdev;
3124 	int ret;
3125 
3126 	mutex_lock(&rdev->mutex);
3127 	regulator->uA_load = uA_load;
3128 	ret = drms_uA_update(rdev);
3129 	mutex_unlock(&rdev->mutex);
3130 
3131 	return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_set_load);
3134 
3135 /**
3136  * regulator_allow_bypass - allow the regulator to go into bypass mode
3137  *
3138  * @regulator: Regulator to configure
3139  * @enable: enable or disable bypass mode
3140  *
3141  * Allow the regulator to go into bypass mode if all other consumers
3142  * for the regulator also enable bypass mode and the machine
3143  * constraints allow this.  Bypass mode means that the regulator is
3144  * simply passing the input directly to the output with no regulation.
3145  */
3146 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3147 {
3148 	struct regulator_dev *rdev = regulator->rdev;
3149 	int ret = 0;
3150 
3151 	if (!rdev->desc->ops->set_bypass)
3152 		return 0;
3153 
3154 	if (rdev->constraints &&
3155 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3156 		return 0;
3157 
3158 	mutex_lock(&rdev->mutex);
3159 
3160 	if (enable && !regulator->bypass) {
3161 		rdev->bypass_count++;
3162 
3163 		if (rdev->bypass_count == rdev->open_count) {
3164 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3165 			if (ret != 0)
3166 				rdev->bypass_count--;
3167 		}
3168 
3169 	} else if (!enable && regulator->bypass) {
3170 		rdev->bypass_count--;
3171 
3172 		if (rdev->bypass_count != rdev->open_count) {
3173 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3174 			if (ret != 0)
3175 				rdev->bypass_count++;
3176 		}
3177 	}
3178 
3179 	if (ret == 0)
3180 		regulator->bypass = enable;
3181 
3182 	mutex_unlock(&rdev->mutex);
3183 
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3187 
3188 /**
3189  * regulator_register_notifier - register regulator event notifier
3190  * @regulator: regulator source
3191  * @nb: notifier block
3192  *
3193  * Register notifier block to receive regulator events.
3194  */
3195 int regulator_register_notifier(struct regulator *regulator,
3196 			      struct notifier_block *nb)
3197 {
3198 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3199 						nb);
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3202 
3203 /**
3204  * regulator_unregister_notifier - unregister regulator event notifier
3205  * @regulator: regulator source
3206  * @nb: notifier block
3207  *
3208  * Unregister regulator event notifier block.
3209  */
3210 int regulator_unregister_notifier(struct regulator *regulator,
3211 				struct notifier_block *nb)
3212 {
3213 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3214 						  nb);
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3217 
3218 /* notify regulator consumers and downstream regulator consumers.
3219  * Note mutex must be held by caller.
3220  */
3221 static int _notifier_call_chain(struct regulator_dev *rdev,
3222 				  unsigned long event, void *data)
3223 {
3224 	/* call rdev chain first */
3225 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3226 }
3227 
3228 /**
3229  * regulator_bulk_get - get multiple regulator consumers
3230  *
3231  * @dev:           Device to supply
3232  * @num_consumers: Number of consumers to register
3233  * @consumers:     Configuration of consumers; clients are stored here.
3234  *
3235  * @return 0 on success, an errno on failure.
3236  *
3237  * This helper function allows drivers to get several regulator
3238  * consumers in one operation.  If any of the regulators cannot be
3239  * acquired then any regulators that were allocated will be freed
3240  * before returning to the caller.
3241  */
3242 int regulator_bulk_get(struct device *dev, int num_consumers,
3243 		       struct regulator_bulk_data *consumers)
3244 {
3245 	int i;
3246 	int ret;
3247 
3248 	for (i = 0; i < num_consumers; i++)
3249 		consumers[i].consumer = NULL;
3250 
3251 	for (i = 0; i < num_consumers; i++) {
3252 		consumers[i].consumer = regulator_get(dev,
3253 						      consumers[i].supply);
3254 		if (IS_ERR(consumers[i].consumer)) {
3255 			ret = PTR_ERR(consumers[i].consumer);
3256 			dev_err(dev, "Failed to get supply '%s': %d\n",
3257 				consumers[i].supply, ret);
3258 			consumers[i].consumer = NULL;
3259 			goto err;
3260 		}
3261 	}
3262 
3263 	return 0;
3264 
3265 err:
3266 	while (--i >= 0)
3267 		regulator_put(consumers[i].consumer);
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3272 
3273 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3274 {
3275 	struct regulator_bulk_data *bulk = data;
3276 
3277 	bulk->ret = regulator_enable(bulk->consumer);
3278 }
3279 
3280 /**
3281  * regulator_bulk_enable - enable multiple regulator consumers
3282  *
3283  * @num_consumers: Number of consumers
3284  * @consumers:     Consumer data; clients are stored here.
3285  * @return         0 on success, an errno on failure
3286  *
3287  * This convenience API allows consumers to enable multiple regulator
3288  * clients in a single API call.  If any consumers cannot be enabled
3289  * then any others that were enabled will be disabled again prior to
3290  * return.
3291  */
3292 int regulator_bulk_enable(int num_consumers,
3293 			  struct regulator_bulk_data *consumers)
3294 {
3295 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3296 	int i;
3297 	int ret = 0;
3298 
3299 	for (i = 0; i < num_consumers; i++) {
3300 		if (consumers[i].consumer->always_on)
3301 			consumers[i].ret = 0;
3302 		else
3303 			async_schedule_domain(regulator_bulk_enable_async,
3304 					      &consumers[i], &async_domain);
3305 	}
3306 
3307 	async_synchronize_full_domain(&async_domain);
3308 
3309 	/* If any consumer failed we need to unwind any that succeeded */
3310 	for (i = 0; i < num_consumers; i++) {
3311 		if (consumers[i].ret != 0) {
3312 			ret = consumers[i].ret;
3313 			goto err;
3314 		}
3315 	}
3316 
3317 	return 0;
3318 
3319 err:
3320 	for (i = 0; i < num_consumers; i++) {
3321 		if (consumers[i].ret < 0)
3322 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3323 			       consumers[i].ret);
3324 		else
3325 			regulator_disable(consumers[i].consumer);
3326 	}
3327 
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3331 
3332 /**
3333  * regulator_bulk_disable - disable multiple regulator consumers
3334  *
3335  * @num_consumers: Number of consumers
3336  * @consumers:     Consumer data; clients are stored here.
3337  * @return         0 on success, an errno on failure
3338  *
3339  * This convenience API allows consumers to disable multiple regulator
3340  * clients in a single API call.  If any consumers cannot be disabled
3341  * then any others that were disabled will be enabled again prior to
3342  * return.
3343  */
3344 int regulator_bulk_disable(int num_consumers,
3345 			   struct regulator_bulk_data *consumers)
3346 {
3347 	int i;
3348 	int ret, r;
3349 
3350 	for (i = num_consumers - 1; i >= 0; --i) {
3351 		ret = regulator_disable(consumers[i].consumer);
3352 		if (ret != 0)
3353 			goto err;
3354 	}
3355 
3356 	return 0;
3357 
3358 err:
3359 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3360 	for (++i; i < num_consumers; ++i) {
3361 		r = regulator_enable(consumers[i].consumer);
3362 		if (r != 0)
3363 			pr_err("Failed to reename %s: %d\n",
3364 			       consumers[i].supply, r);
3365 	}
3366 
3367 	return ret;
3368 }
3369 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3370 
3371 /**
3372  * regulator_bulk_force_disable - force disable multiple regulator consumers
3373  *
3374  * @num_consumers: Number of consumers
3375  * @consumers:     Consumer data; clients are stored here.
3376  * @return         0 on success, an errno on failure
3377  *
3378  * This convenience API allows consumers to forcibly disable multiple regulator
3379  * clients in a single API call.
3380  * NOTE: This should be used for situations when device damage will
3381  * likely occur if the regulators are not disabled (e.g. over temp).
3382  * Although regulator_force_disable function call for some consumers can
3383  * return error numbers, the function is called for all consumers.
3384  */
3385 int regulator_bulk_force_disable(int num_consumers,
3386 			   struct regulator_bulk_data *consumers)
3387 {
3388 	int i;
3389 	int ret;
3390 
3391 	for (i = 0; i < num_consumers; i++)
3392 		consumers[i].ret =
3393 			    regulator_force_disable(consumers[i].consumer);
3394 
3395 	for (i = 0; i < num_consumers; i++) {
3396 		if (consumers[i].ret != 0) {
3397 			ret = consumers[i].ret;
3398 			goto out;
3399 		}
3400 	}
3401 
3402 	return 0;
3403 out:
3404 	return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3407 
3408 /**
3409  * regulator_bulk_free - free multiple regulator consumers
3410  *
3411  * @num_consumers: Number of consumers
3412  * @consumers:     Consumer data; clients are stored here.
3413  *
3414  * This convenience API allows consumers to free multiple regulator
3415  * clients in a single API call.
3416  */
3417 void regulator_bulk_free(int num_consumers,
3418 			 struct regulator_bulk_data *consumers)
3419 {
3420 	int i;
3421 
3422 	for (i = 0; i < num_consumers; i++) {
3423 		regulator_put(consumers[i].consumer);
3424 		consumers[i].consumer = NULL;
3425 	}
3426 }
3427 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3428 
3429 /**
3430  * regulator_notifier_call_chain - call regulator event notifier
3431  * @rdev: regulator source
3432  * @event: notifier block
3433  * @data: callback-specific data.
3434  *
3435  * Called by regulator drivers to notify clients a regulator event has
3436  * occurred. We also notify regulator clients downstream.
3437  * Note lock must be held by caller.
3438  */
3439 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3440 				  unsigned long event, void *data)
3441 {
3442 	_notifier_call_chain(rdev, event, data);
3443 	return NOTIFY_DONE;
3444 
3445 }
3446 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3447 
3448 /**
3449  * regulator_mode_to_status - convert a regulator mode into a status
3450  *
3451  * @mode: Mode to convert
3452  *
3453  * Convert a regulator mode into a status.
3454  */
3455 int regulator_mode_to_status(unsigned int mode)
3456 {
3457 	switch (mode) {
3458 	case REGULATOR_MODE_FAST:
3459 		return REGULATOR_STATUS_FAST;
3460 	case REGULATOR_MODE_NORMAL:
3461 		return REGULATOR_STATUS_NORMAL;
3462 	case REGULATOR_MODE_IDLE:
3463 		return REGULATOR_STATUS_IDLE;
3464 	case REGULATOR_MODE_STANDBY:
3465 		return REGULATOR_STATUS_STANDBY;
3466 	default:
3467 		return REGULATOR_STATUS_UNDEFINED;
3468 	}
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3471 
3472 static struct attribute *regulator_dev_attrs[] = {
3473 	&dev_attr_name.attr,
3474 	&dev_attr_num_users.attr,
3475 	&dev_attr_type.attr,
3476 	&dev_attr_microvolts.attr,
3477 	&dev_attr_microamps.attr,
3478 	&dev_attr_opmode.attr,
3479 	&dev_attr_state.attr,
3480 	&dev_attr_status.attr,
3481 	&dev_attr_bypass.attr,
3482 	&dev_attr_requested_microamps.attr,
3483 	&dev_attr_min_microvolts.attr,
3484 	&dev_attr_max_microvolts.attr,
3485 	&dev_attr_min_microamps.attr,
3486 	&dev_attr_max_microamps.attr,
3487 	&dev_attr_suspend_standby_state.attr,
3488 	&dev_attr_suspend_mem_state.attr,
3489 	&dev_attr_suspend_disk_state.attr,
3490 	&dev_attr_suspend_standby_microvolts.attr,
3491 	&dev_attr_suspend_mem_microvolts.attr,
3492 	&dev_attr_suspend_disk_microvolts.attr,
3493 	&dev_attr_suspend_standby_mode.attr,
3494 	&dev_attr_suspend_mem_mode.attr,
3495 	&dev_attr_suspend_disk_mode.attr,
3496 	NULL
3497 };
3498 
3499 /*
3500  * To avoid cluttering sysfs (and memory) with useless state, only
3501  * create attributes that can be meaningfully displayed.
3502  */
3503 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3504 					 struct attribute *attr, int idx)
3505 {
3506 	struct device *dev = kobj_to_dev(kobj);
3507 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3508 	const struct regulator_ops *ops = rdev->desc->ops;
3509 	umode_t mode = attr->mode;
3510 
3511 	/* these three are always present */
3512 	if (attr == &dev_attr_name.attr ||
3513 	    attr == &dev_attr_num_users.attr ||
3514 	    attr == &dev_attr_type.attr)
3515 		return mode;
3516 
3517 	/* some attributes need specific methods to be displayed */
3518 	if (attr == &dev_attr_microvolts.attr) {
3519 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3520 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3521 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3522 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3523 			return mode;
3524 		return 0;
3525 	}
3526 
3527 	if (attr == &dev_attr_microamps.attr)
3528 		return ops->get_current_limit ? mode : 0;
3529 
3530 	if (attr == &dev_attr_opmode.attr)
3531 		return ops->get_mode ? mode : 0;
3532 
3533 	if (attr == &dev_attr_state.attr)
3534 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3535 
3536 	if (attr == &dev_attr_status.attr)
3537 		return ops->get_status ? mode : 0;
3538 
3539 	if (attr == &dev_attr_bypass.attr)
3540 		return ops->get_bypass ? mode : 0;
3541 
3542 	/* some attributes are type-specific */
3543 	if (attr == &dev_attr_requested_microamps.attr)
3544 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3545 
3546 	/* constraints need specific supporting methods */
3547 	if (attr == &dev_attr_min_microvolts.attr ||
3548 	    attr == &dev_attr_max_microvolts.attr)
3549 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3550 
3551 	if (attr == &dev_attr_min_microamps.attr ||
3552 	    attr == &dev_attr_max_microamps.attr)
3553 		return ops->set_current_limit ? mode : 0;
3554 
3555 	if (attr == &dev_attr_suspend_standby_state.attr ||
3556 	    attr == &dev_attr_suspend_mem_state.attr ||
3557 	    attr == &dev_attr_suspend_disk_state.attr)
3558 		return mode;
3559 
3560 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3561 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3562 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3563 		return ops->set_suspend_voltage ? mode : 0;
3564 
3565 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3566 	    attr == &dev_attr_suspend_mem_mode.attr ||
3567 	    attr == &dev_attr_suspend_disk_mode.attr)
3568 		return ops->set_suspend_mode ? mode : 0;
3569 
3570 	return mode;
3571 }
3572 
3573 static const struct attribute_group regulator_dev_group = {
3574 	.attrs = regulator_dev_attrs,
3575 	.is_visible = regulator_attr_is_visible,
3576 };
3577 
3578 static const struct attribute_group *regulator_dev_groups[] = {
3579 	&regulator_dev_group,
3580 	NULL
3581 };
3582 
3583 static void regulator_dev_release(struct device *dev)
3584 {
3585 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3586 	kfree(rdev);
3587 }
3588 
3589 static struct class regulator_class = {
3590 	.name = "regulator",
3591 	.dev_release = regulator_dev_release,
3592 	.dev_groups = regulator_dev_groups,
3593 };
3594 
3595 static void rdev_init_debugfs(struct regulator_dev *rdev)
3596 {
3597 	struct device *parent = rdev->dev.parent;
3598 	const char *rname = rdev_get_name(rdev);
3599 	char name[NAME_MAX];
3600 
3601 	/* Avoid duplicate debugfs directory names */
3602 	if (parent && rname == rdev->desc->name) {
3603 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3604 			 rname);
3605 		rname = name;
3606 	}
3607 
3608 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3609 	if (!rdev->debugfs) {
3610 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3611 		return;
3612 	}
3613 
3614 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3615 			   &rdev->use_count);
3616 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3617 			   &rdev->open_count);
3618 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3619 			   &rdev->bypass_count);
3620 }
3621 
3622 /**
3623  * regulator_register - register regulator
3624  * @regulator_desc: regulator to register
3625  * @cfg: runtime configuration for regulator
3626  *
3627  * Called by regulator drivers to register a regulator.
3628  * Returns a valid pointer to struct regulator_dev on success
3629  * or an ERR_PTR() on error.
3630  */
3631 struct regulator_dev *
3632 regulator_register(const struct regulator_desc *regulator_desc,
3633 		   const struct regulator_config *cfg)
3634 {
3635 	const struct regulation_constraints *constraints = NULL;
3636 	const struct regulator_init_data *init_data;
3637 	struct regulator_config *config = NULL;
3638 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3639 	struct regulator_dev *rdev;
3640 	struct device *dev;
3641 	int ret, i;
3642 
3643 	if (regulator_desc == NULL || cfg == NULL)
3644 		return ERR_PTR(-EINVAL);
3645 
3646 	dev = cfg->dev;
3647 	WARN_ON(!dev);
3648 
3649 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3650 		return ERR_PTR(-EINVAL);
3651 
3652 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3653 	    regulator_desc->type != REGULATOR_CURRENT)
3654 		return ERR_PTR(-EINVAL);
3655 
3656 	/* Only one of each should be implemented */
3657 	WARN_ON(regulator_desc->ops->get_voltage &&
3658 		regulator_desc->ops->get_voltage_sel);
3659 	WARN_ON(regulator_desc->ops->set_voltage &&
3660 		regulator_desc->ops->set_voltage_sel);
3661 
3662 	/* If we're using selectors we must implement list_voltage. */
3663 	if (regulator_desc->ops->get_voltage_sel &&
3664 	    !regulator_desc->ops->list_voltage) {
3665 		return ERR_PTR(-EINVAL);
3666 	}
3667 	if (regulator_desc->ops->set_voltage_sel &&
3668 	    !regulator_desc->ops->list_voltage) {
3669 		return ERR_PTR(-EINVAL);
3670 	}
3671 
3672 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3673 	if (rdev == NULL)
3674 		return ERR_PTR(-ENOMEM);
3675 
3676 	/*
3677 	 * Duplicate the config so the driver could override it after
3678 	 * parsing init data.
3679 	 */
3680 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3681 	if (config == NULL) {
3682 		kfree(rdev);
3683 		return ERR_PTR(-ENOMEM);
3684 	}
3685 
3686 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3687 					       &rdev->dev.of_node);
3688 	if (!init_data) {
3689 		init_data = config->init_data;
3690 		rdev->dev.of_node = of_node_get(config->of_node);
3691 	}
3692 
3693 	mutex_lock(&regulator_list_mutex);
3694 
3695 	mutex_init(&rdev->mutex);
3696 	rdev->reg_data = config->driver_data;
3697 	rdev->owner = regulator_desc->owner;
3698 	rdev->desc = regulator_desc;
3699 	if (config->regmap)
3700 		rdev->regmap = config->regmap;
3701 	else if (dev_get_regmap(dev, NULL))
3702 		rdev->regmap = dev_get_regmap(dev, NULL);
3703 	else if (dev->parent)
3704 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3705 	INIT_LIST_HEAD(&rdev->consumer_list);
3706 	INIT_LIST_HEAD(&rdev->list);
3707 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3708 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3709 
3710 	/* preform any regulator specific init */
3711 	if (init_data && init_data->regulator_init) {
3712 		ret = init_data->regulator_init(rdev->reg_data);
3713 		if (ret < 0)
3714 			goto clean;
3715 	}
3716 
3717 	/* register with sysfs */
3718 	rdev->dev.class = &regulator_class;
3719 	rdev->dev.parent = dev;
3720 	dev_set_name(&rdev->dev, "regulator.%lu",
3721 		    (unsigned long) atomic_inc_return(&regulator_no));
3722 	ret = device_register(&rdev->dev);
3723 	if (ret != 0) {
3724 		put_device(&rdev->dev);
3725 		goto clean;
3726 	}
3727 
3728 	dev_set_drvdata(&rdev->dev, rdev);
3729 
3730 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3731 	    gpio_is_valid(config->ena_gpio)) {
3732 		ret = regulator_ena_gpio_request(rdev, config);
3733 		if (ret != 0) {
3734 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3735 				 config->ena_gpio, ret);
3736 			goto wash;
3737 		}
3738 	}
3739 
3740 	/* set regulator constraints */
3741 	if (init_data)
3742 		constraints = &init_data->constraints;
3743 
3744 	ret = set_machine_constraints(rdev, constraints);
3745 	if (ret < 0)
3746 		goto scrub;
3747 
3748 	if (init_data && init_data->supply_regulator)
3749 		rdev->supply_name = init_data->supply_regulator;
3750 	else if (regulator_desc->supply_name)
3751 		rdev->supply_name = regulator_desc->supply_name;
3752 
3753 	/* add consumers devices */
3754 	if (init_data) {
3755 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3756 			ret = set_consumer_device_supply(rdev,
3757 				init_data->consumer_supplies[i].dev_name,
3758 				init_data->consumer_supplies[i].supply);
3759 			if (ret < 0) {
3760 				dev_err(dev, "Failed to set supply %s\n",
3761 					init_data->consumer_supplies[i].supply);
3762 				goto unset_supplies;
3763 			}
3764 		}
3765 	}
3766 
3767 	list_add(&rdev->list, &regulator_list);
3768 
3769 	rdev_init_debugfs(rdev);
3770 out:
3771 	mutex_unlock(&regulator_list_mutex);
3772 	kfree(config);
3773 	return rdev;
3774 
3775 unset_supplies:
3776 	unset_regulator_supplies(rdev);
3777 
3778 scrub:
3779 	regulator_ena_gpio_free(rdev);
3780 	kfree(rdev->constraints);
3781 wash:
3782 	device_unregister(&rdev->dev);
3783 	/* device core frees rdev */
3784 	rdev = ERR_PTR(ret);
3785 	goto out;
3786 
3787 clean:
3788 	kfree(rdev);
3789 	rdev = ERR_PTR(ret);
3790 	goto out;
3791 }
3792 EXPORT_SYMBOL_GPL(regulator_register);
3793 
3794 /**
3795  * regulator_unregister - unregister regulator
3796  * @rdev: regulator to unregister
3797  *
3798  * Called by regulator drivers to unregister a regulator.
3799  */
3800 void regulator_unregister(struct regulator_dev *rdev)
3801 {
3802 	if (rdev == NULL)
3803 		return;
3804 
3805 	if (rdev->supply) {
3806 		while (rdev->use_count--)
3807 			regulator_disable(rdev->supply);
3808 		regulator_put(rdev->supply);
3809 	}
3810 	mutex_lock(&regulator_list_mutex);
3811 	debugfs_remove_recursive(rdev->debugfs);
3812 	flush_work(&rdev->disable_work.work);
3813 	WARN_ON(rdev->open_count);
3814 	unset_regulator_supplies(rdev);
3815 	list_del(&rdev->list);
3816 	kfree(rdev->constraints);
3817 	regulator_ena_gpio_free(rdev);
3818 	of_node_put(rdev->dev.of_node);
3819 	device_unregister(&rdev->dev);
3820 	mutex_unlock(&regulator_list_mutex);
3821 }
3822 EXPORT_SYMBOL_GPL(regulator_unregister);
3823 
3824 /**
3825  * regulator_suspend_prepare - prepare regulators for system wide suspend
3826  * @state: system suspend state
3827  *
3828  * Configure each regulator with it's suspend operating parameters for state.
3829  * This will usually be called by machine suspend code prior to supending.
3830  */
3831 int regulator_suspend_prepare(suspend_state_t state)
3832 {
3833 	struct regulator_dev *rdev;
3834 	int ret = 0;
3835 
3836 	/* ON is handled by regulator active state */
3837 	if (state == PM_SUSPEND_ON)
3838 		return -EINVAL;
3839 
3840 	mutex_lock(&regulator_list_mutex);
3841 	list_for_each_entry(rdev, &regulator_list, list) {
3842 
3843 		mutex_lock(&rdev->mutex);
3844 		ret = suspend_prepare(rdev, state);
3845 		mutex_unlock(&rdev->mutex);
3846 
3847 		if (ret < 0) {
3848 			rdev_err(rdev, "failed to prepare\n");
3849 			goto out;
3850 		}
3851 	}
3852 out:
3853 	mutex_unlock(&regulator_list_mutex);
3854 	return ret;
3855 }
3856 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3857 
3858 /**
3859  * regulator_suspend_finish - resume regulators from system wide suspend
3860  *
3861  * Turn on regulators that might be turned off by regulator_suspend_prepare
3862  * and that should be turned on according to the regulators properties.
3863  */
3864 int regulator_suspend_finish(void)
3865 {
3866 	struct regulator_dev *rdev;
3867 	int ret = 0, error;
3868 
3869 	mutex_lock(&regulator_list_mutex);
3870 	list_for_each_entry(rdev, &regulator_list, list) {
3871 		mutex_lock(&rdev->mutex);
3872 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3873 			if (!_regulator_is_enabled(rdev)) {
3874 				error = _regulator_do_enable(rdev);
3875 				if (error)
3876 					ret = error;
3877 			}
3878 		} else {
3879 			if (!have_full_constraints())
3880 				goto unlock;
3881 			if (!_regulator_is_enabled(rdev))
3882 				goto unlock;
3883 
3884 			error = _regulator_do_disable(rdev);
3885 			if (error)
3886 				ret = error;
3887 		}
3888 unlock:
3889 		mutex_unlock(&rdev->mutex);
3890 	}
3891 	mutex_unlock(&regulator_list_mutex);
3892 	return ret;
3893 }
3894 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3895 
3896 /**
3897  * regulator_has_full_constraints - the system has fully specified constraints
3898  *
3899  * Calling this function will cause the regulator API to disable all
3900  * regulators which have a zero use count and don't have an always_on
3901  * constraint in a late_initcall.
3902  *
3903  * The intention is that this will become the default behaviour in a
3904  * future kernel release so users are encouraged to use this facility
3905  * now.
3906  */
3907 void regulator_has_full_constraints(void)
3908 {
3909 	has_full_constraints = 1;
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3912 
3913 /**
3914  * rdev_get_drvdata - get rdev regulator driver data
3915  * @rdev: regulator
3916  *
3917  * Get rdev regulator driver private data. This call can be used in the
3918  * regulator driver context.
3919  */
3920 void *rdev_get_drvdata(struct regulator_dev *rdev)
3921 {
3922 	return rdev->reg_data;
3923 }
3924 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3925 
3926 /**
3927  * regulator_get_drvdata - get regulator driver data
3928  * @regulator: regulator
3929  *
3930  * Get regulator driver private data. This call can be used in the consumer
3931  * driver context when non API regulator specific functions need to be called.
3932  */
3933 void *regulator_get_drvdata(struct regulator *regulator)
3934 {
3935 	return regulator->rdev->reg_data;
3936 }
3937 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3938 
3939 /**
3940  * regulator_set_drvdata - set regulator driver data
3941  * @regulator: regulator
3942  * @data: data
3943  */
3944 void regulator_set_drvdata(struct regulator *regulator, void *data)
3945 {
3946 	regulator->rdev->reg_data = data;
3947 }
3948 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3949 
3950 /**
3951  * regulator_get_id - get regulator ID
3952  * @rdev: regulator
3953  */
3954 int rdev_get_id(struct regulator_dev *rdev)
3955 {
3956 	return rdev->desc->id;
3957 }
3958 EXPORT_SYMBOL_GPL(rdev_get_id);
3959 
3960 struct device *rdev_get_dev(struct regulator_dev *rdev)
3961 {
3962 	return &rdev->dev;
3963 }
3964 EXPORT_SYMBOL_GPL(rdev_get_dev);
3965 
3966 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3967 {
3968 	return reg_init_data->driver_data;
3969 }
3970 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3971 
3972 #ifdef CONFIG_DEBUG_FS
3973 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3974 				    size_t count, loff_t *ppos)
3975 {
3976 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3977 	ssize_t len, ret = 0;
3978 	struct regulator_map *map;
3979 
3980 	if (!buf)
3981 		return -ENOMEM;
3982 
3983 	list_for_each_entry(map, &regulator_map_list, list) {
3984 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3985 			       "%s -> %s.%s\n",
3986 			       rdev_get_name(map->regulator), map->dev_name,
3987 			       map->supply);
3988 		if (len >= 0)
3989 			ret += len;
3990 		if (ret > PAGE_SIZE) {
3991 			ret = PAGE_SIZE;
3992 			break;
3993 		}
3994 	}
3995 
3996 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3997 
3998 	kfree(buf);
3999 
4000 	return ret;
4001 }
4002 #endif
4003 
4004 static const struct file_operations supply_map_fops = {
4005 #ifdef CONFIG_DEBUG_FS
4006 	.read = supply_map_read_file,
4007 	.llseek = default_llseek,
4008 #endif
4009 };
4010 
4011 #ifdef CONFIG_DEBUG_FS
4012 static void regulator_summary_show_subtree(struct seq_file *s,
4013 					   struct regulator_dev *rdev,
4014 					   int level)
4015 {
4016 	struct list_head *list = s->private;
4017 	struct regulator_dev *child;
4018 	struct regulation_constraints *c;
4019 	struct regulator *consumer;
4020 
4021 	if (!rdev)
4022 		return;
4023 
4024 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4025 		   level * 3 + 1, "",
4026 		   30 - level * 3, rdev_get_name(rdev),
4027 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4028 
4029 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4030 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4031 
4032 	c = rdev->constraints;
4033 	if (c) {
4034 		switch (rdev->desc->type) {
4035 		case REGULATOR_VOLTAGE:
4036 			seq_printf(s, "%5dmV %5dmV ",
4037 				   c->min_uV / 1000, c->max_uV / 1000);
4038 			break;
4039 		case REGULATOR_CURRENT:
4040 			seq_printf(s, "%5dmA %5dmA ",
4041 				   c->min_uA / 1000, c->max_uA / 1000);
4042 			break;
4043 		}
4044 	}
4045 
4046 	seq_puts(s, "\n");
4047 
4048 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4049 		if (consumer->dev->class == &regulator_class)
4050 			continue;
4051 
4052 		seq_printf(s, "%*s%-*s ",
4053 			   (level + 1) * 3 + 1, "",
4054 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4055 
4056 		switch (rdev->desc->type) {
4057 		case REGULATOR_VOLTAGE:
4058 			seq_printf(s, "%37dmV %5dmV",
4059 				   consumer->min_uV / 1000,
4060 				   consumer->max_uV / 1000);
4061 			break;
4062 		case REGULATOR_CURRENT:
4063 			break;
4064 		}
4065 
4066 		seq_puts(s, "\n");
4067 	}
4068 
4069 	list_for_each_entry(child, list, list) {
4070 		/* handle only non-root regulators supplied by current rdev */
4071 		if (!child->supply || child->supply->rdev != rdev)
4072 			continue;
4073 
4074 		regulator_summary_show_subtree(s, child, level + 1);
4075 	}
4076 }
4077 
4078 static int regulator_summary_show(struct seq_file *s, void *data)
4079 {
4080 	struct list_head *list = s->private;
4081 	struct regulator_dev *rdev;
4082 
4083 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4084 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4085 
4086 	mutex_lock(&regulator_list_mutex);
4087 
4088 	list_for_each_entry(rdev, list, list) {
4089 		if (rdev->supply)
4090 			continue;
4091 
4092 		regulator_summary_show_subtree(s, rdev, 0);
4093 	}
4094 
4095 	mutex_unlock(&regulator_list_mutex);
4096 
4097 	return 0;
4098 }
4099 
4100 static int regulator_summary_open(struct inode *inode, struct file *file)
4101 {
4102 	return single_open(file, regulator_summary_show, inode->i_private);
4103 }
4104 #endif
4105 
4106 static const struct file_operations regulator_summary_fops = {
4107 #ifdef CONFIG_DEBUG_FS
4108 	.open		= regulator_summary_open,
4109 	.read		= seq_read,
4110 	.llseek		= seq_lseek,
4111 	.release	= single_release,
4112 #endif
4113 };
4114 
4115 static int __init regulator_init(void)
4116 {
4117 	int ret;
4118 
4119 	ret = class_register(&regulator_class);
4120 
4121 	debugfs_root = debugfs_create_dir("regulator", NULL);
4122 	if (!debugfs_root)
4123 		pr_warn("regulator: Failed to create debugfs directory\n");
4124 
4125 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4126 			    &supply_map_fops);
4127 
4128 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4129 			    &regulator_list, &regulator_summary_fops);
4130 
4131 	regulator_dummy_init();
4132 
4133 	return ret;
4134 }
4135 
4136 /* init early to allow our consumers to complete system booting */
4137 core_initcall(regulator_init);
4138 
4139 static int __init regulator_init_complete(void)
4140 {
4141 	struct regulator_dev *rdev;
4142 	const struct regulator_ops *ops;
4143 	struct regulation_constraints *c;
4144 	int enabled, ret;
4145 
4146 	/*
4147 	 * Since DT doesn't provide an idiomatic mechanism for
4148 	 * enabling full constraints and since it's much more natural
4149 	 * with DT to provide them just assume that a DT enabled
4150 	 * system has full constraints.
4151 	 */
4152 	if (of_have_populated_dt())
4153 		has_full_constraints = true;
4154 
4155 	mutex_lock(&regulator_list_mutex);
4156 
4157 	/* If we have a full configuration then disable any regulators
4158 	 * we have permission to change the status for and which are
4159 	 * not in use or always_on.  This is effectively the default
4160 	 * for DT and ACPI as they have full constraints.
4161 	 */
4162 	list_for_each_entry(rdev, &regulator_list, list) {
4163 		ops = rdev->desc->ops;
4164 		c = rdev->constraints;
4165 
4166 		if (c && c->always_on)
4167 			continue;
4168 
4169 		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4170 			continue;
4171 
4172 		mutex_lock(&rdev->mutex);
4173 
4174 		if (rdev->use_count)
4175 			goto unlock;
4176 
4177 		/* If we can't read the status assume it's on. */
4178 		if (ops->is_enabled)
4179 			enabled = ops->is_enabled(rdev);
4180 		else
4181 			enabled = 1;
4182 
4183 		if (!enabled)
4184 			goto unlock;
4185 
4186 		if (have_full_constraints()) {
4187 			/* We log since this may kill the system if it
4188 			 * goes wrong. */
4189 			rdev_info(rdev, "disabling\n");
4190 			ret = _regulator_do_disable(rdev);
4191 			if (ret != 0)
4192 				rdev_err(rdev, "couldn't disable: %d\n", ret);
4193 		} else {
4194 			/* The intention is that in future we will
4195 			 * assume that full constraints are provided
4196 			 * so warn even if we aren't going to do
4197 			 * anything here.
4198 			 */
4199 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4200 		}
4201 
4202 unlock:
4203 		mutex_unlock(&rdev->mutex);
4204 	}
4205 
4206 	mutex_unlock(&regulator_list_mutex);
4207 
4208 	return 0;
4209 }
4210 late_initcall_sync(regulator_init_complete);
4211