1 /* 2 * core.c -- Voltage/Current Regulator framework. 3 * 4 * Copyright 2007, 2008 Wolfson Microelectronics PLC. 5 * Copyright 2008 SlimLogic Ltd. 6 * 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/debugfs.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/async.h> 22 #include <linux/err.h> 23 #include <linux/mutex.h> 24 #include <linux/suspend.h> 25 #include <linux/delay.h> 26 #include <linux/gpio.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/of.h> 29 #include <linux/regmap.h> 30 #include <linux/regulator/of_regulator.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/regulator/driver.h> 33 #include <linux/regulator/machine.h> 34 #include <linux/module.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/regulator.h> 38 39 #include "dummy.h" 40 #include "internal.h" 41 42 #define rdev_crit(rdev, fmt, ...) \ 43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 44 #define rdev_err(rdev, fmt, ...) \ 45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 46 #define rdev_warn(rdev, fmt, ...) \ 47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 48 #define rdev_info(rdev, fmt, ...) \ 49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 50 #define rdev_dbg(rdev, fmt, ...) \ 51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) 52 53 static DEFINE_MUTEX(regulator_list_mutex); 54 static LIST_HEAD(regulator_list); 55 static LIST_HEAD(regulator_map_list); 56 static LIST_HEAD(regulator_ena_gpio_list); 57 static LIST_HEAD(regulator_supply_alias_list); 58 static bool has_full_constraints; 59 60 static struct dentry *debugfs_root; 61 62 /* 63 * struct regulator_map 64 * 65 * Used to provide symbolic supply names to devices. 66 */ 67 struct regulator_map { 68 struct list_head list; 69 const char *dev_name; /* The dev_name() for the consumer */ 70 const char *supply; 71 struct regulator_dev *regulator; 72 }; 73 74 /* 75 * struct regulator_enable_gpio 76 * 77 * Management for shared enable GPIO pin 78 */ 79 struct regulator_enable_gpio { 80 struct list_head list; 81 struct gpio_desc *gpiod; 82 u32 enable_count; /* a number of enabled shared GPIO */ 83 u32 request_count; /* a number of requested shared GPIO */ 84 unsigned int ena_gpio_invert:1; 85 }; 86 87 /* 88 * struct regulator_supply_alias 89 * 90 * Used to map lookups for a supply onto an alternative device. 91 */ 92 struct regulator_supply_alias { 93 struct list_head list; 94 struct device *src_dev; 95 const char *src_supply; 96 struct device *alias_dev; 97 const char *alias_supply; 98 }; 99 100 static int _regulator_is_enabled(struct regulator_dev *rdev); 101 static int _regulator_disable(struct regulator_dev *rdev); 102 static int _regulator_get_voltage(struct regulator_dev *rdev); 103 static int _regulator_get_current_limit(struct regulator_dev *rdev); 104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev); 105 static int _notifier_call_chain(struct regulator_dev *rdev, 106 unsigned long event, void *data); 107 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 108 int min_uV, int max_uV); 109 static struct regulator *create_regulator(struct regulator_dev *rdev, 110 struct device *dev, 111 const char *supply_name); 112 113 static const char *rdev_get_name(struct regulator_dev *rdev) 114 { 115 if (rdev->constraints && rdev->constraints->name) 116 return rdev->constraints->name; 117 else if (rdev->desc->name) 118 return rdev->desc->name; 119 else 120 return ""; 121 } 122 123 static bool have_full_constraints(void) 124 { 125 return has_full_constraints || of_have_populated_dt(); 126 } 127 128 /** 129 * of_get_regulator - get a regulator device node based on supply name 130 * @dev: Device pointer for the consumer (of regulator) device 131 * @supply: regulator supply name 132 * 133 * Extract the regulator device node corresponding to the supply name. 134 * returns the device node corresponding to the regulator if found, else 135 * returns NULL. 136 */ 137 static struct device_node *of_get_regulator(struct device *dev, const char *supply) 138 { 139 struct device_node *regnode = NULL; 140 char prop_name[32]; /* 32 is max size of property name */ 141 142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); 143 144 snprintf(prop_name, 32, "%s-supply", supply); 145 regnode = of_parse_phandle(dev->of_node, prop_name, 0); 146 147 if (!regnode) { 148 dev_dbg(dev, "Looking up %s property in node %s failed", 149 prop_name, dev->of_node->full_name); 150 return NULL; 151 } 152 return regnode; 153 } 154 155 static int _regulator_can_change_status(struct regulator_dev *rdev) 156 { 157 if (!rdev->constraints) 158 return 0; 159 160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) 161 return 1; 162 else 163 return 0; 164 } 165 166 /* Platform voltage constraint check */ 167 static int regulator_check_voltage(struct regulator_dev *rdev, 168 int *min_uV, int *max_uV) 169 { 170 BUG_ON(*min_uV > *max_uV); 171 172 if (!rdev->constraints) { 173 rdev_err(rdev, "no constraints\n"); 174 return -ENODEV; 175 } 176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 177 rdev_err(rdev, "operation not allowed\n"); 178 return -EPERM; 179 } 180 181 if (*max_uV > rdev->constraints->max_uV) 182 *max_uV = rdev->constraints->max_uV; 183 if (*min_uV < rdev->constraints->min_uV) 184 *min_uV = rdev->constraints->min_uV; 185 186 if (*min_uV > *max_uV) { 187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", 188 *min_uV, *max_uV); 189 return -EINVAL; 190 } 191 192 return 0; 193 } 194 195 /* Make sure we select a voltage that suits the needs of all 196 * regulator consumers 197 */ 198 static int regulator_check_consumers(struct regulator_dev *rdev, 199 int *min_uV, int *max_uV) 200 { 201 struct regulator *regulator; 202 203 list_for_each_entry(regulator, &rdev->consumer_list, list) { 204 /* 205 * Assume consumers that didn't say anything are OK 206 * with anything in the constraint range. 207 */ 208 if (!regulator->min_uV && !regulator->max_uV) 209 continue; 210 211 if (*max_uV > regulator->max_uV) 212 *max_uV = regulator->max_uV; 213 if (*min_uV < regulator->min_uV) 214 *min_uV = regulator->min_uV; 215 } 216 217 if (*min_uV > *max_uV) { 218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n", 219 *min_uV, *max_uV); 220 return -EINVAL; 221 } 222 223 return 0; 224 } 225 226 /* current constraint check */ 227 static int regulator_check_current_limit(struct regulator_dev *rdev, 228 int *min_uA, int *max_uA) 229 { 230 BUG_ON(*min_uA > *max_uA); 231 232 if (!rdev->constraints) { 233 rdev_err(rdev, "no constraints\n"); 234 return -ENODEV; 235 } 236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { 237 rdev_err(rdev, "operation not allowed\n"); 238 return -EPERM; 239 } 240 241 if (*max_uA > rdev->constraints->max_uA) 242 *max_uA = rdev->constraints->max_uA; 243 if (*min_uA < rdev->constraints->min_uA) 244 *min_uA = rdev->constraints->min_uA; 245 246 if (*min_uA > *max_uA) { 247 rdev_err(rdev, "unsupportable current range: %d-%duA\n", 248 *min_uA, *max_uA); 249 return -EINVAL; 250 } 251 252 return 0; 253 } 254 255 /* operating mode constraint check */ 256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) 257 { 258 switch (*mode) { 259 case REGULATOR_MODE_FAST: 260 case REGULATOR_MODE_NORMAL: 261 case REGULATOR_MODE_IDLE: 262 case REGULATOR_MODE_STANDBY: 263 break; 264 default: 265 rdev_err(rdev, "invalid mode %x specified\n", *mode); 266 return -EINVAL; 267 } 268 269 if (!rdev->constraints) { 270 rdev_err(rdev, "no constraints\n"); 271 return -ENODEV; 272 } 273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { 274 rdev_err(rdev, "operation not allowed\n"); 275 return -EPERM; 276 } 277 278 /* The modes are bitmasks, the most power hungry modes having 279 * the lowest values. If the requested mode isn't supported 280 * try higher modes. */ 281 while (*mode) { 282 if (rdev->constraints->valid_modes_mask & *mode) 283 return 0; 284 *mode /= 2; 285 } 286 287 return -EINVAL; 288 } 289 290 /* dynamic regulator mode switching constraint check */ 291 static int regulator_check_drms(struct regulator_dev *rdev) 292 { 293 if (!rdev->constraints) { 294 rdev_err(rdev, "no constraints\n"); 295 return -ENODEV; 296 } 297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { 298 rdev_err(rdev, "operation not allowed\n"); 299 return -EPERM; 300 } 301 return 0; 302 } 303 304 static ssize_t regulator_uV_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct regulator_dev *rdev = dev_get_drvdata(dev); 308 ssize_t ret; 309 310 mutex_lock(&rdev->mutex); 311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); 312 mutex_unlock(&rdev->mutex); 313 314 return ret; 315 } 316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); 317 318 static ssize_t regulator_uA_show(struct device *dev, 319 struct device_attribute *attr, char *buf) 320 { 321 struct regulator_dev *rdev = dev_get_drvdata(dev); 322 323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); 324 } 325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); 326 327 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct regulator_dev *rdev = dev_get_drvdata(dev); 331 332 return sprintf(buf, "%s\n", rdev_get_name(rdev)); 333 } 334 static DEVICE_ATTR_RO(name); 335 336 static ssize_t regulator_print_opmode(char *buf, int mode) 337 { 338 switch (mode) { 339 case REGULATOR_MODE_FAST: 340 return sprintf(buf, "fast\n"); 341 case REGULATOR_MODE_NORMAL: 342 return sprintf(buf, "normal\n"); 343 case REGULATOR_MODE_IDLE: 344 return sprintf(buf, "idle\n"); 345 case REGULATOR_MODE_STANDBY: 346 return sprintf(buf, "standby\n"); 347 } 348 return sprintf(buf, "unknown\n"); 349 } 350 351 static ssize_t regulator_opmode_show(struct device *dev, 352 struct device_attribute *attr, char *buf) 353 { 354 struct regulator_dev *rdev = dev_get_drvdata(dev); 355 356 return regulator_print_opmode(buf, _regulator_get_mode(rdev)); 357 } 358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); 359 360 static ssize_t regulator_print_state(char *buf, int state) 361 { 362 if (state > 0) 363 return sprintf(buf, "enabled\n"); 364 else if (state == 0) 365 return sprintf(buf, "disabled\n"); 366 else 367 return sprintf(buf, "unknown\n"); 368 } 369 370 static ssize_t regulator_state_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct regulator_dev *rdev = dev_get_drvdata(dev); 374 ssize_t ret; 375 376 mutex_lock(&rdev->mutex); 377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); 378 mutex_unlock(&rdev->mutex); 379 380 return ret; 381 } 382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); 383 384 static ssize_t regulator_status_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct regulator_dev *rdev = dev_get_drvdata(dev); 388 int status; 389 char *label; 390 391 status = rdev->desc->ops->get_status(rdev); 392 if (status < 0) 393 return status; 394 395 switch (status) { 396 case REGULATOR_STATUS_OFF: 397 label = "off"; 398 break; 399 case REGULATOR_STATUS_ON: 400 label = "on"; 401 break; 402 case REGULATOR_STATUS_ERROR: 403 label = "error"; 404 break; 405 case REGULATOR_STATUS_FAST: 406 label = "fast"; 407 break; 408 case REGULATOR_STATUS_NORMAL: 409 label = "normal"; 410 break; 411 case REGULATOR_STATUS_IDLE: 412 label = "idle"; 413 break; 414 case REGULATOR_STATUS_STANDBY: 415 label = "standby"; 416 break; 417 case REGULATOR_STATUS_BYPASS: 418 label = "bypass"; 419 break; 420 case REGULATOR_STATUS_UNDEFINED: 421 label = "undefined"; 422 break; 423 default: 424 return -ERANGE; 425 } 426 427 return sprintf(buf, "%s\n", label); 428 } 429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); 430 431 static ssize_t regulator_min_uA_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct regulator_dev *rdev = dev_get_drvdata(dev); 435 436 if (!rdev->constraints) 437 return sprintf(buf, "constraint not defined\n"); 438 439 return sprintf(buf, "%d\n", rdev->constraints->min_uA); 440 } 441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); 442 443 static ssize_t regulator_max_uA_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct regulator_dev *rdev = dev_get_drvdata(dev); 447 448 if (!rdev->constraints) 449 return sprintf(buf, "constraint not defined\n"); 450 451 return sprintf(buf, "%d\n", rdev->constraints->max_uA); 452 } 453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); 454 455 static ssize_t regulator_min_uV_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct regulator_dev *rdev = dev_get_drvdata(dev); 459 460 if (!rdev->constraints) 461 return sprintf(buf, "constraint not defined\n"); 462 463 return sprintf(buf, "%d\n", rdev->constraints->min_uV); 464 } 465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); 466 467 static ssize_t regulator_max_uV_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct regulator_dev *rdev = dev_get_drvdata(dev); 471 472 if (!rdev->constraints) 473 return sprintf(buf, "constraint not defined\n"); 474 475 return sprintf(buf, "%d\n", rdev->constraints->max_uV); 476 } 477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); 478 479 static ssize_t regulator_total_uA_show(struct device *dev, 480 struct device_attribute *attr, char *buf) 481 { 482 struct regulator_dev *rdev = dev_get_drvdata(dev); 483 struct regulator *regulator; 484 int uA = 0; 485 486 mutex_lock(&rdev->mutex); 487 list_for_each_entry(regulator, &rdev->consumer_list, list) 488 uA += regulator->uA_load; 489 mutex_unlock(&rdev->mutex); 490 return sprintf(buf, "%d\n", uA); 491 } 492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); 493 494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, 495 char *buf) 496 { 497 struct regulator_dev *rdev = dev_get_drvdata(dev); 498 return sprintf(buf, "%d\n", rdev->use_count); 499 } 500 static DEVICE_ATTR_RO(num_users); 501 502 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 503 char *buf) 504 { 505 struct regulator_dev *rdev = dev_get_drvdata(dev); 506 507 switch (rdev->desc->type) { 508 case REGULATOR_VOLTAGE: 509 return sprintf(buf, "voltage\n"); 510 case REGULATOR_CURRENT: 511 return sprintf(buf, "current\n"); 512 } 513 return sprintf(buf, "unknown\n"); 514 } 515 static DEVICE_ATTR_RO(type); 516 517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev, 518 struct device_attribute *attr, char *buf) 519 { 520 struct regulator_dev *rdev = dev_get_drvdata(dev); 521 522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); 523 } 524 static DEVICE_ATTR(suspend_mem_microvolts, 0444, 525 regulator_suspend_mem_uV_show, NULL); 526 527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev, 528 struct device_attribute *attr, char *buf) 529 { 530 struct regulator_dev *rdev = dev_get_drvdata(dev); 531 532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); 533 } 534 static DEVICE_ATTR(suspend_disk_microvolts, 0444, 535 regulator_suspend_disk_uV_show, NULL); 536 537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev, 538 struct device_attribute *attr, char *buf) 539 { 540 struct regulator_dev *rdev = dev_get_drvdata(dev); 541 542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); 543 } 544 static DEVICE_ATTR(suspend_standby_microvolts, 0444, 545 regulator_suspend_standby_uV_show, NULL); 546 547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct regulator_dev *rdev = dev_get_drvdata(dev); 551 552 return regulator_print_opmode(buf, 553 rdev->constraints->state_mem.mode); 554 } 555 static DEVICE_ATTR(suspend_mem_mode, 0444, 556 regulator_suspend_mem_mode_show, NULL); 557 558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev, 559 struct device_attribute *attr, char *buf) 560 { 561 struct regulator_dev *rdev = dev_get_drvdata(dev); 562 563 return regulator_print_opmode(buf, 564 rdev->constraints->state_disk.mode); 565 } 566 static DEVICE_ATTR(suspend_disk_mode, 0444, 567 regulator_suspend_disk_mode_show, NULL); 568 569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev, 570 struct device_attribute *attr, char *buf) 571 { 572 struct regulator_dev *rdev = dev_get_drvdata(dev); 573 574 return regulator_print_opmode(buf, 575 rdev->constraints->state_standby.mode); 576 } 577 static DEVICE_ATTR(suspend_standby_mode, 0444, 578 regulator_suspend_standby_mode_show, NULL); 579 580 static ssize_t regulator_suspend_mem_state_show(struct device *dev, 581 struct device_attribute *attr, char *buf) 582 { 583 struct regulator_dev *rdev = dev_get_drvdata(dev); 584 585 return regulator_print_state(buf, 586 rdev->constraints->state_mem.enabled); 587 } 588 static DEVICE_ATTR(suspend_mem_state, 0444, 589 regulator_suspend_mem_state_show, NULL); 590 591 static ssize_t regulator_suspend_disk_state_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct regulator_dev *rdev = dev_get_drvdata(dev); 595 596 return regulator_print_state(buf, 597 rdev->constraints->state_disk.enabled); 598 } 599 static DEVICE_ATTR(suspend_disk_state, 0444, 600 regulator_suspend_disk_state_show, NULL); 601 602 static ssize_t regulator_suspend_standby_state_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct regulator_dev *rdev = dev_get_drvdata(dev); 606 607 return regulator_print_state(buf, 608 rdev->constraints->state_standby.enabled); 609 } 610 static DEVICE_ATTR(suspend_standby_state, 0444, 611 regulator_suspend_standby_state_show, NULL); 612 613 static ssize_t regulator_bypass_show(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct regulator_dev *rdev = dev_get_drvdata(dev); 617 const char *report; 618 bool bypass; 619 int ret; 620 621 ret = rdev->desc->ops->get_bypass(rdev, &bypass); 622 623 if (ret != 0) 624 report = "unknown"; 625 else if (bypass) 626 report = "enabled"; 627 else 628 report = "disabled"; 629 630 return sprintf(buf, "%s\n", report); 631 } 632 static DEVICE_ATTR(bypass, 0444, 633 regulator_bypass_show, NULL); 634 635 /* Calculate the new optimum regulator operating mode based on the new total 636 * consumer load. All locks held by caller */ 637 static int drms_uA_update(struct regulator_dev *rdev) 638 { 639 struct regulator *sibling; 640 int current_uA = 0, output_uV, input_uV, err; 641 unsigned int mode; 642 643 /* 644 * first check to see if we can set modes at all, otherwise just 645 * tell the consumer everything is OK. 646 */ 647 err = regulator_check_drms(rdev); 648 if (err < 0) 649 return 0; 650 651 if (!rdev->desc->ops->get_optimum_mode && 652 !rdev->desc->ops->set_load) 653 return 0; 654 655 if (!rdev->desc->ops->set_mode && 656 !rdev->desc->ops->set_load) 657 return -EINVAL; 658 659 /* get output voltage */ 660 output_uV = _regulator_get_voltage(rdev); 661 if (output_uV <= 0) { 662 rdev_err(rdev, "invalid output voltage found\n"); 663 return -EINVAL; 664 } 665 666 /* get input voltage */ 667 input_uV = 0; 668 if (rdev->supply) 669 input_uV = regulator_get_voltage(rdev->supply); 670 if (input_uV <= 0) 671 input_uV = rdev->constraints->input_uV; 672 if (input_uV <= 0) { 673 rdev_err(rdev, "invalid input voltage found\n"); 674 return -EINVAL; 675 } 676 677 /* calc total requested load */ 678 list_for_each_entry(sibling, &rdev->consumer_list, list) 679 current_uA += sibling->uA_load; 680 681 current_uA += rdev->constraints->system_load; 682 683 if (rdev->desc->ops->set_load) { 684 /* set the optimum mode for our new total regulator load */ 685 err = rdev->desc->ops->set_load(rdev, current_uA); 686 if (err < 0) 687 rdev_err(rdev, "failed to set load %d\n", current_uA); 688 } else { 689 /* now get the optimum mode for our new total regulator load */ 690 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, 691 output_uV, current_uA); 692 693 /* check the new mode is allowed */ 694 err = regulator_mode_constrain(rdev, &mode); 695 if (err < 0) { 696 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", 697 current_uA, input_uV, output_uV); 698 return err; 699 } 700 701 err = rdev->desc->ops->set_mode(rdev, mode); 702 if (err < 0) 703 rdev_err(rdev, "failed to set optimum mode %x\n", mode); 704 } 705 706 return err; 707 } 708 709 static int suspend_set_state(struct regulator_dev *rdev, 710 struct regulator_state *rstate) 711 { 712 int ret = 0; 713 714 /* If we have no suspend mode configration don't set anything; 715 * only warn if the driver implements set_suspend_voltage or 716 * set_suspend_mode callback. 717 */ 718 if (!rstate->enabled && !rstate->disabled) { 719 if (rdev->desc->ops->set_suspend_voltage || 720 rdev->desc->ops->set_suspend_mode) 721 rdev_warn(rdev, "No configuration\n"); 722 return 0; 723 } 724 725 if (rstate->enabled && rstate->disabled) { 726 rdev_err(rdev, "invalid configuration\n"); 727 return -EINVAL; 728 } 729 730 if (rstate->enabled && rdev->desc->ops->set_suspend_enable) 731 ret = rdev->desc->ops->set_suspend_enable(rdev); 732 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) 733 ret = rdev->desc->ops->set_suspend_disable(rdev); 734 else /* OK if set_suspend_enable or set_suspend_disable is NULL */ 735 ret = 0; 736 737 if (ret < 0) { 738 rdev_err(rdev, "failed to enabled/disable\n"); 739 return ret; 740 } 741 742 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { 743 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); 744 if (ret < 0) { 745 rdev_err(rdev, "failed to set voltage\n"); 746 return ret; 747 } 748 } 749 750 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { 751 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); 752 if (ret < 0) { 753 rdev_err(rdev, "failed to set mode\n"); 754 return ret; 755 } 756 } 757 return ret; 758 } 759 760 /* locks held by caller */ 761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) 762 { 763 if (!rdev->constraints) 764 return -EINVAL; 765 766 switch (state) { 767 case PM_SUSPEND_STANDBY: 768 return suspend_set_state(rdev, 769 &rdev->constraints->state_standby); 770 case PM_SUSPEND_MEM: 771 return suspend_set_state(rdev, 772 &rdev->constraints->state_mem); 773 case PM_SUSPEND_MAX: 774 return suspend_set_state(rdev, 775 &rdev->constraints->state_disk); 776 default: 777 return -EINVAL; 778 } 779 } 780 781 static void print_constraints(struct regulator_dev *rdev) 782 { 783 struct regulation_constraints *constraints = rdev->constraints; 784 char buf[160] = ""; 785 size_t len = sizeof(buf) - 1; 786 int count = 0; 787 int ret; 788 789 if (constraints->min_uV && constraints->max_uV) { 790 if (constraints->min_uV == constraints->max_uV) 791 count += scnprintf(buf + count, len - count, "%d mV ", 792 constraints->min_uV / 1000); 793 else 794 count += scnprintf(buf + count, len - count, 795 "%d <--> %d mV ", 796 constraints->min_uV / 1000, 797 constraints->max_uV / 1000); 798 } 799 800 if (!constraints->min_uV || 801 constraints->min_uV != constraints->max_uV) { 802 ret = _regulator_get_voltage(rdev); 803 if (ret > 0) 804 count += scnprintf(buf + count, len - count, 805 "at %d mV ", ret / 1000); 806 } 807 808 if (constraints->uV_offset) 809 count += scnprintf(buf + count, len - count, "%dmV offset ", 810 constraints->uV_offset / 1000); 811 812 if (constraints->min_uA && constraints->max_uA) { 813 if (constraints->min_uA == constraints->max_uA) 814 count += scnprintf(buf + count, len - count, "%d mA ", 815 constraints->min_uA / 1000); 816 else 817 count += scnprintf(buf + count, len - count, 818 "%d <--> %d mA ", 819 constraints->min_uA / 1000, 820 constraints->max_uA / 1000); 821 } 822 823 if (!constraints->min_uA || 824 constraints->min_uA != constraints->max_uA) { 825 ret = _regulator_get_current_limit(rdev); 826 if (ret > 0) 827 count += scnprintf(buf + count, len - count, 828 "at %d mA ", ret / 1000); 829 } 830 831 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) 832 count += scnprintf(buf + count, len - count, "fast "); 833 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) 834 count += scnprintf(buf + count, len - count, "normal "); 835 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) 836 count += scnprintf(buf + count, len - count, "idle "); 837 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) 838 count += scnprintf(buf + count, len - count, "standby"); 839 840 if (!count) 841 scnprintf(buf, len, "no parameters"); 842 843 rdev_dbg(rdev, "%s\n", buf); 844 845 if ((constraints->min_uV != constraints->max_uV) && 846 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) 847 rdev_warn(rdev, 848 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); 849 } 850 851 static int machine_constraints_voltage(struct regulator_dev *rdev, 852 struct regulation_constraints *constraints) 853 { 854 const struct regulator_ops *ops = rdev->desc->ops; 855 int ret; 856 857 /* do we need to apply the constraint voltage */ 858 if (rdev->constraints->apply_uV && 859 rdev->constraints->min_uV == rdev->constraints->max_uV) { 860 int current_uV = _regulator_get_voltage(rdev); 861 if (current_uV < 0) { 862 rdev_err(rdev, 863 "failed to get the current voltage(%d)\n", 864 current_uV); 865 return current_uV; 866 } 867 if (current_uV < rdev->constraints->min_uV || 868 current_uV > rdev->constraints->max_uV) { 869 ret = _regulator_do_set_voltage( 870 rdev, rdev->constraints->min_uV, 871 rdev->constraints->max_uV); 872 if (ret < 0) { 873 rdev_err(rdev, 874 "failed to apply %duV constraint(%d)\n", 875 rdev->constraints->min_uV, ret); 876 return ret; 877 } 878 } 879 } 880 881 /* constrain machine-level voltage specs to fit 882 * the actual range supported by this regulator. 883 */ 884 if (ops->list_voltage && rdev->desc->n_voltages) { 885 int count = rdev->desc->n_voltages; 886 int i; 887 int min_uV = INT_MAX; 888 int max_uV = INT_MIN; 889 int cmin = constraints->min_uV; 890 int cmax = constraints->max_uV; 891 892 /* it's safe to autoconfigure fixed-voltage supplies 893 and the constraints are used by list_voltage. */ 894 if (count == 1 && !cmin) { 895 cmin = 1; 896 cmax = INT_MAX; 897 constraints->min_uV = cmin; 898 constraints->max_uV = cmax; 899 } 900 901 /* voltage constraints are optional */ 902 if ((cmin == 0) && (cmax == 0)) 903 return 0; 904 905 /* else require explicit machine-level constraints */ 906 if (cmin <= 0 || cmax <= 0 || cmax < cmin) { 907 rdev_err(rdev, "invalid voltage constraints\n"); 908 return -EINVAL; 909 } 910 911 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ 912 for (i = 0; i < count; i++) { 913 int value; 914 915 value = ops->list_voltage(rdev, i); 916 if (value <= 0) 917 continue; 918 919 /* maybe adjust [min_uV..max_uV] */ 920 if (value >= cmin && value < min_uV) 921 min_uV = value; 922 if (value <= cmax && value > max_uV) 923 max_uV = value; 924 } 925 926 /* final: [min_uV..max_uV] valid iff constraints valid */ 927 if (max_uV < min_uV) { 928 rdev_err(rdev, 929 "unsupportable voltage constraints %u-%uuV\n", 930 min_uV, max_uV); 931 return -EINVAL; 932 } 933 934 /* use regulator's subset of machine constraints */ 935 if (constraints->min_uV < min_uV) { 936 rdev_dbg(rdev, "override min_uV, %d -> %d\n", 937 constraints->min_uV, min_uV); 938 constraints->min_uV = min_uV; 939 } 940 if (constraints->max_uV > max_uV) { 941 rdev_dbg(rdev, "override max_uV, %d -> %d\n", 942 constraints->max_uV, max_uV); 943 constraints->max_uV = max_uV; 944 } 945 } 946 947 return 0; 948 } 949 950 static int machine_constraints_current(struct regulator_dev *rdev, 951 struct regulation_constraints *constraints) 952 { 953 const struct regulator_ops *ops = rdev->desc->ops; 954 int ret; 955 956 if (!constraints->min_uA && !constraints->max_uA) 957 return 0; 958 959 if (constraints->min_uA > constraints->max_uA) { 960 rdev_err(rdev, "Invalid current constraints\n"); 961 return -EINVAL; 962 } 963 964 if (!ops->set_current_limit || !ops->get_current_limit) { 965 rdev_warn(rdev, "Operation of current configuration missing\n"); 966 return 0; 967 } 968 969 /* Set regulator current in constraints range */ 970 ret = ops->set_current_limit(rdev, constraints->min_uA, 971 constraints->max_uA); 972 if (ret < 0) { 973 rdev_err(rdev, "Failed to set current constraint, %d\n", ret); 974 return ret; 975 } 976 977 return 0; 978 } 979 980 static int _regulator_do_enable(struct regulator_dev *rdev); 981 982 /** 983 * set_machine_constraints - sets regulator constraints 984 * @rdev: regulator source 985 * @constraints: constraints to apply 986 * 987 * Allows platform initialisation code to define and constrain 988 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: 989 * Constraints *must* be set by platform code in order for some 990 * regulator operations to proceed i.e. set_voltage, set_current_limit, 991 * set_mode. 992 */ 993 static int set_machine_constraints(struct regulator_dev *rdev, 994 const struct regulation_constraints *constraints) 995 { 996 int ret = 0; 997 const struct regulator_ops *ops = rdev->desc->ops; 998 999 if (constraints) 1000 rdev->constraints = kmemdup(constraints, sizeof(*constraints), 1001 GFP_KERNEL); 1002 else 1003 rdev->constraints = kzalloc(sizeof(*constraints), 1004 GFP_KERNEL); 1005 if (!rdev->constraints) 1006 return -ENOMEM; 1007 1008 ret = machine_constraints_voltage(rdev, rdev->constraints); 1009 if (ret != 0) 1010 goto out; 1011 1012 ret = machine_constraints_current(rdev, rdev->constraints); 1013 if (ret != 0) 1014 goto out; 1015 1016 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { 1017 ret = ops->set_input_current_limit(rdev, 1018 rdev->constraints->ilim_uA); 1019 if (ret < 0) { 1020 rdev_err(rdev, "failed to set input limit\n"); 1021 goto out; 1022 } 1023 } 1024 1025 /* do we need to setup our suspend state */ 1026 if (rdev->constraints->initial_state) { 1027 ret = suspend_prepare(rdev, rdev->constraints->initial_state); 1028 if (ret < 0) { 1029 rdev_err(rdev, "failed to set suspend state\n"); 1030 goto out; 1031 } 1032 } 1033 1034 if (rdev->constraints->initial_mode) { 1035 if (!ops->set_mode) { 1036 rdev_err(rdev, "no set_mode operation\n"); 1037 ret = -EINVAL; 1038 goto out; 1039 } 1040 1041 ret = ops->set_mode(rdev, rdev->constraints->initial_mode); 1042 if (ret < 0) { 1043 rdev_err(rdev, "failed to set initial mode: %d\n", ret); 1044 goto out; 1045 } 1046 } 1047 1048 /* If the constraints say the regulator should be on at this point 1049 * and we have control then make sure it is enabled. 1050 */ 1051 if (rdev->constraints->always_on || rdev->constraints->boot_on) { 1052 ret = _regulator_do_enable(rdev); 1053 if (ret < 0 && ret != -EINVAL) { 1054 rdev_err(rdev, "failed to enable\n"); 1055 goto out; 1056 } 1057 } 1058 1059 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) 1060 && ops->set_ramp_delay) { 1061 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); 1062 if (ret < 0) { 1063 rdev_err(rdev, "failed to set ramp_delay\n"); 1064 goto out; 1065 } 1066 } 1067 1068 if (rdev->constraints->pull_down && ops->set_pull_down) { 1069 ret = ops->set_pull_down(rdev); 1070 if (ret < 0) { 1071 rdev_err(rdev, "failed to set pull down\n"); 1072 goto out; 1073 } 1074 } 1075 1076 if (rdev->constraints->soft_start && ops->set_soft_start) { 1077 ret = ops->set_soft_start(rdev); 1078 if (ret < 0) { 1079 rdev_err(rdev, "failed to set soft start\n"); 1080 goto out; 1081 } 1082 } 1083 1084 print_constraints(rdev); 1085 return 0; 1086 out: 1087 kfree(rdev->constraints); 1088 rdev->constraints = NULL; 1089 return ret; 1090 } 1091 1092 /** 1093 * set_supply - set regulator supply regulator 1094 * @rdev: regulator name 1095 * @supply_rdev: supply regulator name 1096 * 1097 * Called by platform initialisation code to set the supply regulator for this 1098 * regulator. This ensures that a regulators supply will also be enabled by the 1099 * core if it's child is enabled. 1100 */ 1101 static int set_supply(struct regulator_dev *rdev, 1102 struct regulator_dev *supply_rdev) 1103 { 1104 int err; 1105 1106 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); 1107 1108 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); 1109 if (rdev->supply == NULL) { 1110 err = -ENOMEM; 1111 return err; 1112 } 1113 supply_rdev->open_count++; 1114 1115 return 0; 1116 } 1117 1118 /** 1119 * set_consumer_device_supply - Bind a regulator to a symbolic supply 1120 * @rdev: regulator source 1121 * @consumer_dev_name: dev_name() string for device supply applies to 1122 * @supply: symbolic name for supply 1123 * 1124 * Allows platform initialisation code to map physical regulator 1125 * sources to symbolic names for supplies for use by devices. Devices 1126 * should use these symbolic names to request regulators, avoiding the 1127 * need to provide board-specific regulator names as platform data. 1128 */ 1129 static int set_consumer_device_supply(struct regulator_dev *rdev, 1130 const char *consumer_dev_name, 1131 const char *supply) 1132 { 1133 struct regulator_map *node; 1134 int has_dev; 1135 1136 if (supply == NULL) 1137 return -EINVAL; 1138 1139 if (consumer_dev_name != NULL) 1140 has_dev = 1; 1141 else 1142 has_dev = 0; 1143 1144 list_for_each_entry(node, ®ulator_map_list, list) { 1145 if (node->dev_name && consumer_dev_name) { 1146 if (strcmp(node->dev_name, consumer_dev_name) != 0) 1147 continue; 1148 } else if (node->dev_name || consumer_dev_name) { 1149 continue; 1150 } 1151 1152 if (strcmp(node->supply, supply) != 0) 1153 continue; 1154 1155 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", 1156 consumer_dev_name, 1157 dev_name(&node->regulator->dev), 1158 node->regulator->desc->name, 1159 supply, 1160 dev_name(&rdev->dev), rdev_get_name(rdev)); 1161 return -EBUSY; 1162 } 1163 1164 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); 1165 if (node == NULL) 1166 return -ENOMEM; 1167 1168 node->regulator = rdev; 1169 node->supply = supply; 1170 1171 if (has_dev) { 1172 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); 1173 if (node->dev_name == NULL) { 1174 kfree(node); 1175 return -ENOMEM; 1176 } 1177 } 1178 1179 list_add(&node->list, ®ulator_map_list); 1180 return 0; 1181 } 1182 1183 static void unset_regulator_supplies(struct regulator_dev *rdev) 1184 { 1185 struct regulator_map *node, *n; 1186 1187 list_for_each_entry_safe(node, n, ®ulator_map_list, list) { 1188 if (rdev == node->regulator) { 1189 list_del(&node->list); 1190 kfree(node->dev_name); 1191 kfree(node); 1192 } 1193 } 1194 } 1195 1196 #define REG_STR_SIZE 64 1197 1198 static struct regulator *create_regulator(struct regulator_dev *rdev, 1199 struct device *dev, 1200 const char *supply_name) 1201 { 1202 struct regulator *regulator; 1203 char buf[REG_STR_SIZE]; 1204 int err, size; 1205 1206 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); 1207 if (regulator == NULL) 1208 return NULL; 1209 1210 mutex_lock(&rdev->mutex); 1211 regulator->rdev = rdev; 1212 list_add(®ulator->list, &rdev->consumer_list); 1213 1214 if (dev) { 1215 regulator->dev = dev; 1216 1217 /* Add a link to the device sysfs entry */ 1218 size = scnprintf(buf, REG_STR_SIZE, "%s-%s", 1219 dev->kobj.name, supply_name); 1220 if (size >= REG_STR_SIZE) 1221 goto overflow_err; 1222 1223 regulator->supply_name = kstrdup(buf, GFP_KERNEL); 1224 if (regulator->supply_name == NULL) 1225 goto overflow_err; 1226 1227 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, 1228 buf); 1229 if (err) { 1230 rdev_dbg(rdev, "could not add device link %s err %d\n", 1231 dev->kobj.name, err); 1232 /* non-fatal */ 1233 } 1234 } else { 1235 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); 1236 if (regulator->supply_name == NULL) 1237 goto overflow_err; 1238 } 1239 1240 regulator->debugfs = debugfs_create_dir(regulator->supply_name, 1241 rdev->debugfs); 1242 if (!regulator->debugfs) { 1243 rdev_warn(rdev, "Failed to create debugfs directory\n"); 1244 } else { 1245 debugfs_create_u32("uA_load", 0444, regulator->debugfs, 1246 ®ulator->uA_load); 1247 debugfs_create_u32("min_uV", 0444, regulator->debugfs, 1248 ®ulator->min_uV); 1249 debugfs_create_u32("max_uV", 0444, regulator->debugfs, 1250 ®ulator->max_uV); 1251 } 1252 1253 /* 1254 * Check now if the regulator is an always on regulator - if 1255 * it is then we don't need to do nearly so much work for 1256 * enable/disable calls. 1257 */ 1258 if (!_regulator_can_change_status(rdev) && 1259 _regulator_is_enabled(rdev)) 1260 regulator->always_on = true; 1261 1262 mutex_unlock(&rdev->mutex); 1263 return regulator; 1264 overflow_err: 1265 list_del(®ulator->list); 1266 kfree(regulator); 1267 mutex_unlock(&rdev->mutex); 1268 return NULL; 1269 } 1270 1271 static int _regulator_get_enable_time(struct regulator_dev *rdev) 1272 { 1273 if (rdev->constraints && rdev->constraints->enable_time) 1274 return rdev->constraints->enable_time; 1275 if (!rdev->desc->ops->enable_time) 1276 return rdev->desc->enable_time; 1277 return rdev->desc->ops->enable_time(rdev); 1278 } 1279 1280 static struct regulator_supply_alias *regulator_find_supply_alias( 1281 struct device *dev, const char *supply) 1282 { 1283 struct regulator_supply_alias *map; 1284 1285 list_for_each_entry(map, ®ulator_supply_alias_list, list) 1286 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) 1287 return map; 1288 1289 return NULL; 1290 } 1291 1292 static void regulator_supply_alias(struct device **dev, const char **supply) 1293 { 1294 struct regulator_supply_alias *map; 1295 1296 map = regulator_find_supply_alias(*dev, *supply); 1297 if (map) { 1298 dev_dbg(*dev, "Mapping supply %s to %s,%s\n", 1299 *supply, map->alias_supply, 1300 dev_name(map->alias_dev)); 1301 *dev = map->alias_dev; 1302 *supply = map->alias_supply; 1303 } 1304 } 1305 1306 static struct regulator_dev *regulator_dev_lookup(struct device *dev, 1307 const char *supply, 1308 int *ret) 1309 { 1310 struct regulator_dev *r; 1311 struct device_node *node; 1312 struct regulator_map *map; 1313 const char *devname = NULL; 1314 1315 regulator_supply_alias(&dev, &supply); 1316 1317 /* first do a dt based lookup */ 1318 if (dev && dev->of_node) { 1319 node = of_get_regulator(dev, supply); 1320 if (node) { 1321 list_for_each_entry(r, ®ulator_list, list) 1322 if (r->dev.parent && 1323 node == r->dev.of_node) 1324 return r; 1325 *ret = -EPROBE_DEFER; 1326 return NULL; 1327 } else { 1328 /* 1329 * If we couldn't even get the node then it's 1330 * not just that the device didn't register 1331 * yet, there's no node and we'll never 1332 * succeed. 1333 */ 1334 *ret = -ENODEV; 1335 } 1336 } 1337 1338 /* if not found, try doing it non-dt way */ 1339 if (dev) 1340 devname = dev_name(dev); 1341 1342 list_for_each_entry(r, ®ulator_list, list) 1343 if (strcmp(rdev_get_name(r), supply) == 0) 1344 return r; 1345 1346 list_for_each_entry(map, ®ulator_map_list, list) { 1347 /* If the mapping has a device set up it must match */ 1348 if (map->dev_name && 1349 (!devname || strcmp(map->dev_name, devname))) 1350 continue; 1351 1352 if (strcmp(map->supply, supply) == 0) 1353 return map->regulator; 1354 } 1355 1356 1357 return NULL; 1358 } 1359 1360 static int regulator_resolve_supply(struct regulator_dev *rdev) 1361 { 1362 struct regulator_dev *r; 1363 struct device *dev = rdev->dev.parent; 1364 int ret; 1365 1366 /* No supply to resovle? */ 1367 if (!rdev->supply_name) 1368 return 0; 1369 1370 /* Supply already resolved? */ 1371 if (rdev->supply) 1372 return 0; 1373 1374 r = regulator_dev_lookup(dev, rdev->supply_name, &ret); 1375 if (ret == -ENODEV) { 1376 /* 1377 * No supply was specified for this regulator and 1378 * there will never be one. 1379 */ 1380 return 0; 1381 } 1382 1383 if (!r) { 1384 dev_err(dev, "Failed to resolve %s-supply for %s\n", 1385 rdev->supply_name, rdev->desc->name); 1386 return -EPROBE_DEFER; 1387 } 1388 1389 /* Recursively resolve the supply of the supply */ 1390 ret = regulator_resolve_supply(r); 1391 if (ret < 0) 1392 return ret; 1393 1394 ret = set_supply(rdev, r); 1395 if (ret < 0) 1396 return ret; 1397 1398 /* Cascade always-on state to supply */ 1399 if (_regulator_is_enabled(rdev)) { 1400 ret = regulator_enable(rdev->supply); 1401 if (ret < 0) 1402 return ret; 1403 } 1404 1405 return 0; 1406 } 1407 1408 /* Internal regulator request function */ 1409 static struct regulator *_regulator_get(struct device *dev, const char *id, 1410 bool exclusive, bool allow_dummy) 1411 { 1412 struct regulator_dev *rdev; 1413 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); 1414 const char *devname = NULL; 1415 int ret; 1416 1417 if (id == NULL) { 1418 pr_err("get() with no identifier\n"); 1419 return ERR_PTR(-EINVAL); 1420 } 1421 1422 if (dev) 1423 devname = dev_name(dev); 1424 1425 if (have_full_constraints()) 1426 ret = -ENODEV; 1427 else 1428 ret = -EPROBE_DEFER; 1429 1430 mutex_lock(®ulator_list_mutex); 1431 1432 rdev = regulator_dev_lookup(dev, id, &ret); 1433 if (rdev) 1434 goto found; 1435 1436 regulator = ERR_PTR(ret); 1437 1438 /* 1439 * If we have return value from dev_lookup fail, we do not expect to 1440 * succeed, so, quit with appropriate error value 1441 */ 1442 if (ret && ret != -ENODEV) 1443 goto out; 1444 1445 if (!devname) 1446 devname = "deviceless"; 1447 1448 /* 1449 * Assume that a regulator is physically present and enabled 1450 * even if it isn't hooked up and just provide a dummy. 1451 */ 1452 if (have_full_constraints() && allow_dummy) { 1453 pr_warn("%s supply %s not found, using dummy regulator\n", 1454 devname, id); 1455 1456 rdev = dummy_regulator_rdev; 1457 goto found; 1458 /* Don't log an error when called from regulator_get_optional() */ 1459 } else if (!have_full_constraints() || exclusive) { 1460 dev_warn(dev, "dummy supplies not allowed\n"); 1461 } 1462 1463 mutex_unlock(®ulator_list_mutex); 1464 return regulator; 1465 1466 found: 1467 if (rdev->exclusive) { 1468 regulator = ERR_PTR(-EPERM); 1469 goto out; 1470 } 1471 1472 if (exclusive && rdev->open_count) { 1473 regulator = ERR_PTR(-EBUSY); 1474 goto out; 1475 } 1476 1477 ret = regulator_resolve_supply(rdev); 1478 if (ret < 0) { 1479 regulator = ERR_PTR(ret); 1480 goto out; 1481 } 1482 1483 if (!try_module_get(rdev->owner)) 1484 goto out; 1485 1486 regulator = create_regulator(rdev, dev, id); 1487 if (regulator == NULL) { 1488 regulator = ERR_PTR(-ENOMEM); 1489 module_put(rdev->owner); 1490 goto out; 1491 } 1492 1493 rdev->open_count++; 1494 if (exclusive) { 1495 rdev->exclusive = 1; 1496 1497 ret = _regulator_is_enabled(rdev); 1498 if (ret > 0) 1499 rdev->use_count = 1; 1500 else 1501 rdev->use_count = 0; 1502 } 1503 1504 out: 1505 mutex_unlock(®ulator_list_mutex); 1506 1507 return regulator; 1508 } 1509 1510 /** 1511 * regulator_get - lookup and obtain a reference to a regulator. 1512 * @dev: device for regulator "consumer" 1513 * @id: Supply name or regulator ID. 1514 * 1515 * Returns a struct regulator corresponding to the regulator producer, 1516 * or IS_ERR() condition containing errno. 1517 * 1518 * Use of supply names configured via regulator_set_device_supply() is 1519 * strongly encouraged. It is recommended that the supply name used 1520 * should match the name used for the supply and/or the relevant 1521 * device pins in the datasheet. 1522 */ 1523 struct regulator *regulator_get(struct device *dev, const char *id) 1524 { 1525 return _regulator_get(dev, id, false, true); 1526 } 1527 EXPORT_SYMBOL_GPL(regulator_get); 1528 1529 /** 1530 * regulator_get_exclusive - obtain exclusive access to a regulator. 1531 * @dev: device for regulator "consumer" 1532 * @id: Supply name or regulator ID. 1533 * 1534 * Returns a struct regulator corresponding to the regulator producer, 1535 * or IS_ERR() condition containing errno. Other consumers will be 1536 * unable to obtain this regulator while this reference is held and the 1537 * use count for the regulator will be initialised to reflect the current 1538 * state of the regulator. 1539 * 1540 * This is intended for use by consumers which cannot tolerate shared 1541 * use of the regulator such as those which need to force the 1542 * regulator off for correct operation of the hardware they are 1543 * controlling. 1544 * 1545 * Use of supply names configured via regulator_set_device_supply() is 1546 * strongly encouraged. It is recommended that the supply name used 1547 * should match the name used for the supply and/or the relevant 1548 * device pins in the datasheet. 1549 */ 1550 struct regulator *regulator_get_exclusive(struct device *dev, const char *id) 1551 { 1552 return _regulator_get(dev, id, true, false); 1553 } 1554 EXPORT_SYMBOL_GPL(regulator_get_exclusive); 1555 1556 /** 1557 * regulator_get_optional - obtain optional access to a regulator. 1558 * @dev: device for regulator "consumer" 1559 * @id: Supply name or regulator ID. 1560 * 1561 * Returns a struct regulator corresponding to the regulator producer, 1562 * or IS_ERR() condition containing errno. 1563 * 1564 * This is intended for use by consumers for devices which can have 1565 * some supplies unconnected in normal use, such as some MMC devices. 1566 * It can allow the regulator core to provide stub supplies for other 1567 * supplies requested using normal regulator_get() calls without 1568 * disrupting the operation of drivers that can handle absent 1569 * supplies. 1570 * 1571 * Use of supply names configured via regulator_set_device_supply() is 1572 * strongly encouraged. It is recommended that the supply name used 1573 * should match the name used for the supply and/or the relevant 1574 * device pins in the datasheet. 1575 */ 1576 struct regulator *regulator_get_optional(struct device *dev, const char *id) 1577 { 1578 return _regulator_get(dev, id, false, false); 1579 } 1580 EXPORT_SYMBOL_GPL(regulator_get_optional); 1581 1582 /* regulator_list_mutex lock held by regulator_put() */ 1583 static void _regulator_put(struct regulator *regulator) 1584 { 1585 struct regulator_dev *rdev; 1586 1587 if (regulator == NULL || IS_ERR(regulator)) 1588 return; 1589 1590 rdev = regulator->rdev; 1591 1592 debugfs_remove_recursive(regulator->debugfs); 1593 1594 /* remove any sysfs entries */ 1595 if (regulator->dev) 1596 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); 1597 mutex_lock(&rdev->mutex); 1598 kfree(regulator->supply_name); 1599 list_del(®ulator->list); 1600 kfree(regulator); 1601 1602 rdev->open_count--; 1603 rdev->exclusive = 0; 1604 mutex_unlock(&rdev->mutex); 1605 1606 module_put(rdev->owner); 1607 } 1608 1609 /** 1610 * regulator_put - "free" the regulator source 1611 * @regulator: regulator source 1612 * 1613 * Note: drivers must ensure that all regulator_enable calls made on this 1614 * regulator source are balanced by regulator_disable calls prior to calling 1615 * this function. 1616 */ 1617 void regulator_put(struct regulator *regulator) 1618 { 1619 mutex_lock(®ulator_list_mutex); 1620 _regulator_put(regulator); 1621 mutex_unlock(®ulator_list_mutex); 1622 } 1623 EXPORT_SYMBOL_GPL(regulator_put); 1624 1625 /** 1626 * regulator_register_supply_alias - Provide device alias for supply lookup 1627 * 1628 * @dev: device that will be given as the regulator "consumer" 1629 * @id: Supply name or regulator ID 1630 * @alias_dev: device that should be used to lookup the supply 1631 * @alias_id: Supply name or regulator ID that should be used to lookup the 1632 * supply 1633 * 1634 * All lookups for id on dev will instead be conducted for alias_id on 1635 * alias_dev. 1636 */ 1637 int regulator_register_supply_alias(struct device *dev, const char *id, 1638 struct device *alias_dev, 1639 const char *alias_id) 1640 { 1641 struct regulator_supply_alias *map; 1642 1643 map = regulator_find_supply_alias(dev, id); 1644 if (map) 1645 return -EEXIST; 1646 1647 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); 1648 if (!map) 1649 return -ENOMEM; 1650 1651 map->src_dev = dev; 1652 map->src_supply = id; 1653 map->alias_dev = alias_dev; 1654 map->alias_supply = alias_id; 1655 1656 list_add(&map->list, ®ulator_supply_alias_list); 1657 1658 pr_info("Adding alias for supply %s,%s -> %s,%s\n", 1659 id, dev_name(dev), alias_id, dev_name(alias_dev)); 1660 1661 return 0; 1662 } 1663 EXPORT_SYMBOL_GPL(regulator_register_supply_alias); 1664 1665 /** 1666 * regulator_unregister_supply_alias - Remove device alias 1667 * 1668 * @dev: device that will be given as the regulator "consumer" 1669 * @id: Supply name or regulator ID 1670 * 1671 * Remove a lookup alias if one exists for id on dev. 1672 */ 1673 void regulator_unregister_supply_alias(struct device *dev, const char *id) 1674 { 1675 struct regulator_supply_alias *map; 1676 1677 map = regulator_find_supply_alias(dev, id); 1678 if (map) { 1679 list_del(&map->list); 1680 kfree(map); 1681 } 1682 } 1683 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); 1684 1685 /** 1686 * regulator_bulk_register_supply_alias - register multiple aliases 1687 * 1688 * @dev: device that will be given as the regulator "consumer" 1689 * @id: List of supply names or regulator IDs 1690 * @alias_dev: device that should be used to lookup the supply 1691 * @alias_id: List of supply names or regulator IDs that should be used to 1692 * lookup the supply 1693 * @num_id: Number of aliases to register 1694 * 1695 * @return 0 on success, an errno on failure. 1696 * 1697 * This helper function allows drivers to register several supply 1698 * aliases in one operation. If any of the aliases cannot be 1699 * registered any aliases that were registered will be removed 1700 * before returning to the caller. 1701 */ 1702 int regulator_bulk_register_supply_alias(struct device *dev, 1703 const char *const *id, 1704 struct device *alias_dev, 1705 const char *const *alias_id, 1706 int num_id) 1707 { 1708 int i; 1709 int ret; 1710 1711 for (i = 0; i < num_id; ++i) { 1712 ret = regulator_register_supply_alias(dev, id[i], alias_dev, 1713 alias_id[i]); 1714 if (ret < 0) 1715 goto err; 1716 } 1717 1718 return 0; 1719 1720 err: 1721 dev_err(dev, 1722 "Failed to create supply alias %s,%s -> %s,%s\n", 1723 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); 1724 1725 while (--i >= 0) 1726 regulator_unregister_supply_alias(dev, id[i]); 1727 1728 return ret; 1729 } 1730 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); 1731 1732 /** 1733 * regulator_bulk_unregister_supply_alias - unregister multiple aliases 1734 * 1735 * @dev: device that will be given as the regulator "consumer" 1736 * @id: List of supply names or regulator IDs 1737 * @num_id: Number of aliases to unregister 1738 * 1739 * This helper function allows drivers to unregister several supply 1740 * aliases in one operation. 1741 */ 1742 void regulator_bulk_unregister_supply_alias(struct device *dev, 1743 const char *const *id, 1744 int num_id) 1745 { 1746 int i; 1747 1748 for (i = 0; i < num_id; ++i) 1749 regulator_unregister_supply_alias(dev, id[i]); 1750 } 1751 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); 1752 1753 1754 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ 1755 static int regulator_ena_gpio_request(struct regulator_dev *rdev, 1756 const struct regulator_config *config) 1757 { 1758 struct regulator_enable_gpio *pin; 1759 struct gpio_desc *gpiod; 1760 int ret; 1761 1762 gpiod = gpio_to_desc(config->ena_gpio); 1763 1764 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { 1765 if (pin->gpiod == gpiod) { 1766 rdev_dbg(rdev, "GPIO %d is already used\n", 1767 config->ena_gpio); 1768 goto update_ena_gpio_to_rdev; 1769 } 1770 } 1771 1772 ret = gpio_request_one(config->ena_gpio, 1773 GPIOF_DIR_OUT | config->ena_gpio_flags, 1774 rdev_get_name(rdev)); 1775 if (ret) 1776 return ret; 1777 1778 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); 1779 if (pin == NULL) { 1780 gpio_free(config->ena_gpio); 1781 return -ENOMEM; 1782 } 1783 1784 pin->gpiod = gpiod; 1785 pin->ena_gpio_invert = config->ena_gpio_invert; 1786 list_add(&pin->list, ®ulator_ena_gpio_list); 1787 1788 update_ena_gpio_to_rdev: 1789 pin->request_count++; 1790 rdev->ena_pin = pin; 1791 return 0; 1792 } 1793 1794 static void regulator_ena_gpio_free(struct regulator_dev *rdev) 1795 { 1796 struct regulator_enable_gpio *pin, *n; 1797 1798 if (!rdev->ena_pin) 1799 return; 1800 1801 /* Free the GPIO only in case of no use */ 1802 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { 1803 if (pin->gpiod == rdev->ena_pin->gpiod) { 1804 if (pin->request_count <= 1) { 1805 pin->request_count = 0; 1806 gpiod_put(pin->gpiod); 1807 list_del(&pin->list); 1808 kfree(pin); 1809 rdev->ena_pin = NULL; 1810 return; 1811 } else { 1812 pin->request_count--; 1813 } 1814 } 1815 } 1816 } 1817 1818 /** 1819 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control 1820 * @rdev: regulator_dev structure 1821 * @enable: enable GPIO at initial use? 1822 * 1823 * GPIO is enabled in case of initial use. (enable_count is 0) 1824 * GPIO is disabled when it is not shared any more. (enable_count <= 1) 1825 */ 1826 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) 1827 { 1828 struct regulator_enable_gpio *pin = rdev->ena_pin; 1829 1830 if (!pin) 1831 return -EINVAL; 1832 1833 if (enable) { 1834 /* Enable GPIO at initial use */ 1835 if (pin->enable_count == 0) 1836 gpiod_set_value_cansleep(pin->gpiod, 1837 !pin->ena_gpio_invert); 1838 1839 pin->enable_count++; 1840 } else { 1841 if (pin->enable_count > 1) { 1842 pin->enable_count--; 1843 return 0; 1844 } 1845 1846 /* Disable GPIO if not used */ 1847 if (pin->enable_count <= 1) { 1848 gpiod_set_value_cansleep(pin->gpiod, 1849 pin->ena_gpio_invert); 1850 pin->enable_count = 0; 1851 } 1852 } 1853 1854 return 0; 1855 } 1856 1857 /** 1858 * _regulator_enable_delay - a delay helper function 1859 * @delay: time to delay in microseconds 1860 * 1861 * Delay for the requested amount of time as per the guidelines in: 1862 * 1863 * Documentation/timers/timers-howto.txt 1864 * 1865 * The assumption here is that regulators will never be enabled in 1866 * atomic context and therefore sleeping functions can be used. 1867 */ 1868 static void _regulator_enable_delay(unsigned int delay) 1869 { 1870 unsigned int ms = delay / 1000; 1871 unsigned int us = delay % 1000; 1872 1873 if (ms > 0) { 1874 /* 1875 * For small enough values, handle super-millisecond 1876 * delays in the usleep_range() call below. 1877 */ 1878 if (ms < 20) 1879 us += ms * 1000; 1880 else 1881 msleep(ms); 1882 } 1883 1884 /* 1885 * Give the scheduler some room to coalesce with any other 1886 * wakeup sources. For delays shorter than 10 us, don't even 1887 * bother setting up high-resolution timers and just busy- 1888 * loop. 1889 */ 1890 if (us >= 10) 1891 usleep_range(us, us + 100); 1892 else 1893 udelay(us); 1894 } 1895 1896 static int _regulator_do_enable(struct regulator_dev *rdev) 1897 { 1898 int ret, delay; 1899 1900 /* Query before enabling in case configuration dependent. */ 1901 ret = _regulator_get_enable_time(rdev); 1902 if (ret >= 0) { 1903 delay = ret; 1904 } else { 1905 rdev_warn(rdev, "enable_time() failed: %d\n", ret); 1906 delay = 0; 1907 } 1908 1909 trace_regulator_enable(rdev_get_name(rdev)); 1910 1911 if (rdev->desc->off_on_delay) { 1912 /* if needed, keep a distance of off_on_delay from last time 1913 * this regulator was disabled. 1914 */ 1915 unsigned long start_jiffy = jiffies; 1916 unsigned long intended, max_delay, remaining; 1917 1918 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); 1919 intended = rdev->last_off_jiffy + max_delay; 1920 1921 if (time_before(start_jiffy, intended)) { 1922 /* calc remaining jiffies to deal with one-time 1923 * timer wrapping. 1924 * in case of multiple timer wrapping, either it can be 1925 * detected by out-of-range remaining, or it cannot be 1926 * detected and we gets a panelty of 1927 * _regulator_enable_delay(). 1928 */ 1929 remaining = intended - start_jiffy; 1930 if (remaining <= max_delay) 1931 _regulator_enable_delay( 1932 jiffies_to_usecs(remaining)); 1933 } 1934 } 1935 1936 if (rdev->ena_pin) { 1937 if (!rdev->ena_gpio_state) { 1938 ret = regulator_ena_gpio_ctrl(rdev, true); 1939 if (ret < 0) 1940 return ret; 1941 rdev->ena_gpio_state = 1; 1942 } 1943 } else if (rdev->desc->ops->enable) { 1944 ret = rdev->desc->ops->enable(rdev); 1945 if (ret < 0) 1946 return ret; 1947 } else { 1948 return -EINVAL; 1949 } 1950 1951 /* Allow the regulator to ramp; it would be useful to extend 1952 * this for bulk operations so that the regulators can ramp 1953 * together. */ 1954 trace_regulator_enable_delay(rdev_get_name(rdev)); 1955 1956 _regulator_enable_delay(delay); 1957 1958 trace_regulator_enable_complete(rdev_get_name(rdev)); 1959 1960 return 0; 1961 } 1962 1963 /* locks held by regulator_enable() */ 1964 static int _regulator_enable(struct regulator_dev *rdev) 1965 { 1966 int ret; 1967 1968 /* check voltage and requested load before enabling */ 1969 if (rdev->constraints && 1970 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) 1971 drms_uA_update(rdev); 1972 1973 if (rdev->use_count == 0) { 1974 /* The regulator may on if it's not switchable or left on */ 1975 ret = _regulator_is_enabled(rdev); 1976 if (ret == -EINVAL || ret == 0) { 1977 if (!_regulator_can_change_status(rdev)) 1978 return -EPERM; 1979 1980 ret = _regulator_do_enable(rdev); 1981 if (ret < 0) 1982 return ret; 1983 1984 } else if (ret < 0) { 1985 rdev_err(rdev, "is_enabled() failed: %d\n", ret); 1986 return ret; 1987 } 1988 /* Fallthrough on positive return values - already enabled */ 1989 } 1990 1991 rdev->use_count++; 1992 1993 return 0; 1994 } 1995 1996 /** 1997 * regulator_enable - enable regulator output 1998 * @regulator: regulator source 1999 * 2000 * Request that the regulator be enabled with the regulator output at 2001 * the predefined voltage or current value. Calls to regulator_enable() 2002 * must be balanced with calls to regulator_disable(). 2003 * 2004 * NOTE: the output value can be set by other drivers, boot loader or may be 2005 * hardwired in the regulator. 2006 */ 2007 int regulator_enable(struct regulator *regulator) 2008 { 2009 struct regulator_dev *rdev = regulator->rdev; 2010 int ret = 0; 2011 2012 if (regulator->always_on) 2013 return 0; 2014 2015 if (rdev->supply) { 2016 ret = regulator_enable(rdev->supply); 2017 if (ret != 0) 2018 return ret; 2019 } 2020 2021 mutex_lock(&rdev->mutex); 2022 ret = _regulator_enable(rdev); 2023 mutex_unlock(&rdev->mutex); 2024 2025 if (ret != 0 && rdev->supply) 2026 regulator_disable(rdev->supply); 2027 2028 return ret; 2029 } 2030 EXPORT_SYMBOL_GPL(regulator_enable); 2031 2032 static int _regulator_do_disable(struct regulator_dev *rdev) 2033 { 2034 int ret; 2035 2036 trace_regulator_disable(rdev_get_name(rdev)); 2037 2038 if (rdev->ena_pin) { 2039 if (rdev->ena_gpio_state) { 2040 ret = regulator_ena_gpio_ctrl(rdev, false); 2041 if (ret < 0) 2042 return ret; 2043 rdev->ena_gpio_state = 0; 2044 } 2045 2046 } else if (rdev->desc->ops->disable) { 2047 ret = rdev->desc->ops->disable(rdev); 2048 if (ret != 0) 2049 return ret; 2050 } 2051 2052 /* cares about last_off_jiffy only if off_on_delay is required by 2053 * device. 2054 */ 2055 if (rdev->desc->off_on_delay) 2056 rdev->last_off_jiffy = jiffies; 2057 2058 trace_regulator_disable_complete(rdev_get_name(rdev)); 2059 2060 return 0; 2061 } 2062 2063 /* locks held by regulator_disable() */ 2064 static int _regulator_disable(struct regulator_dev *rdev) 2065 { 2066 int ret = 0; 2067 2068 if (WARN(rdev->use_count <= 0, 2069 "unbalanced disables for %s\n", rdev_get_name(rdev))) 2070 return -EIO; 2071 2072 /* are we the last user and permitted to disable ? */ 2073 if (rdev->use_count == 1 && 2074 (rdev->constraints && !rdev->constraints->always_on)) { 2075 2076 /* we are last user */ 2077 if (_regulator_can_change_status(rdev)) { 2078 ret = _notifier_call_chain(rdev, 2079 REGULATOR_EVENT_PRE_DISABLE, 2080 NULL); 2081 if (ret & NOTIFY_STOP_MASK) 2082 return -EINVAL; 2083 2084 ret = _regulator_do_disable(rdev); 2085 if (ret < 0) { 2086 rdev_err(rdev, "failed to disable\n"); 2087 _notifier_call_chain(rdev, 2088 REGULATOR_EVENT_ABORT_DISABLE, 2089 NULL); 2090 return ret; 2091 } 2092 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, 2093 NULL); 2094 } 2095 2096 rdev->use_count = 0; 2097 } else if (rdev->use_count > 1) { 2098 2099 if (rdev->constraints && 2100 (rdev->constraints->valid_ops_mask & 2101 REGULATOR_CHANGE_DRMS)) 2102 drms_uA_update(rdev); 2103 2104 rdev->use_count--; 2105 } 2106 2107 return ret; 2108 } 2109 2110 /** 2111 * regulator_disable - disable regulator output 2112 * @regulator: regulator source 2113 * 2114 * Disable the regulator output voltage or current. Calls to 2115 * regulator_enable() must be balanced with calls to 2116 * regulator_disable(). 2117 * 2118 * NOTE: this will only disable the regulator output if no other consumer 2119 * devices have it enabled, the regulator device supports disabling and 2120 * machine constraints permit this operation. 2121 */ 2122 int regulator_disable(struct regulator *regulator) 2123 { 2124 struct regulator_dev *rdev = regulator->rdev; 2125 int ret = 0; 2126 2127 if (regulator->always_on) 2128 return 0; 2129 2130 mutex_lock(&rdev->mutex); 2131 ret = _regulator_disable(rdev); 2132 mutex_unlock(&rdev->mutex); 2133 2134 if (ret == 0 && rdev->supply) 2135 regulator_disable(rdev->supply); 2136 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(regulator_disable); 2140 2141 /* locks held by regulator_force_disable() */ 2142 static int _regulator_force_disable(struct regulator_dev *rdev) 2143 { 2144 int ret = 0; 2145 2146 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2147 REGULATOR_EVENT_PRE_DISABLE, NULL); 2148 if (ret & NOTIFY_STOP_MASK) 2149 return -EINVAL; 2150 2151 ret = _regulator_do_disable(rdev); 2152 if (ret < 0) { 2153 rdev_err(rdev, "failed to force disable\n"); 2154 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2155 REGULATOR_EVENT_ABORT_DISABLE, NULL); 2156 return ret; 2157 } 2158 2159 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | 2160 REGULATOR_EVENT_DISABLE, NULL); 2161 2162 return 0; 2163 } 2164 2165 /** 2166 * regulator_force_disable - force disable regulator output 2167 * @regulator: regulator source 2168 * 2169 * Forcibly disable the regulator output voltage or current. 2170 * NOTE: this *will* disable the regulator output even if other consumer 2171 * devices have it enabled. This should be used for situations when device 2172 * damage will likely occur if the regulator is not disabled (e.g. over temp). 2173 */ 2174 int regulator_force_disable(struct regulator *regulator) 2175 { 2176 struct regulator_dev *rdev = regulator->rdev; 2177 int ret; 2178 2179 mutex_lock(&rdev->mutex); 2180 regulator->uA_load = 0; 2181 ret = _regulator_force_disable(regulator->rdev); 2182 mutex_unlock(&rdev->mutex); 2183 2184 if (rdev->supply) 2185 while (rdev->open_count--) 2186 regulator_disable(rdev->supply); 2187 2188 return ret; 2189 } 2190 EXPORT_SYMBOL_GPL(regulator_force_disable); 2191 2192 static void regulator_disable_work(struct work_struct *work) 2193 { 2194 struct regulator_dev *rdev = container_of(work, struct regulator_dev, 2195 disable_work.work); 2196 int count, i, ret; 2197 2198 mutex_lock(&rdev->mutex); 2199 2200 BUG_ON(!rdev->deferred_disables); 2201 2202 count = rdev->deferred_disables; 2203 rdev->deferred_disables = 0; 2204 2205 for (i = 0; i < count; i++) { 2206 ret = _regulator_disable(rdev); 2207 if (ret != 0) 2208 rdev_err(rdev, "Deferred disable failed: %d\n", ret); 2209 } 2210 2211 mutex_unlock(&rdev->mutex); 2212 2213 if (rdev->supply) { 2214 for (i = 0; i < count; i++) { 2215 ret = regulator_disable(rdev->supply); 2216 if (ret != 0) { 2217 rdev_err(rdev, 2218 "Supply disable failed: %d\n", ret); 2219 } 2220 } 2221 } 2222 } 2223 2224 /** 2225 * regulator_disable_deferred - disable regulator output with delay 2226 * @regulator: regulator source 2227 * @ms: miliseconds until the regulator is disabled 2228 * 2229 * Execute regulator_disable() on the regulator after a delay. This 2230 * is intended for use with devices that require some time to quiesce. 2231 * 2232 * NOTE: this will only disable the regulator output if no other consumer 2233 * devices have it enabled, the regulator device supports disabling and 2234 * machine constraints permit this operation. 2235 */ 2236 int regulator_disable_deferred(struct regulator *regulator, int ms) 2237 { 2238 struct regulator_dev *rdev = regulator->rdev; 2239 int ret; 2240 2241 if (regulator->always_on) 2242 return 0; 2243 2244 if (!ms) 2245 return regulator_disable(regulator); 2246 2247 mutex_lock(&rdev->mutex); 2248 rdev->deferred_disables++; 2249 mutex_unlock(&rdev->mutex); 2250 2251 ret = queue_delayed_work(system_power_efficient_wq, 2252 &rdev->disable_work, 2253 msecs_to_jiffies(ms)); 2254 if (ret < 0) 2255 return ret; 2256 else 2257 return 0; 2258 } 2259 EXPORT_SYMBOL_GPL(regulator_disable_deferred); 2260 2261 static int _regulator_is_enabled(struct regulator_dev *rdev) 2262 { 2263 /* A GPIO control always takes precedence */ 2264 if (rdev->ena_pin) 2265 return rdev->ena_gpio_state; 2266 2267 /* If we don't know then assume that the regulator is always on */ 2268 if (!rdev->desc->ops->is_enabled) 2269 return 1; 2270 2271 return rdev->desc->ops->is_enabled(rdev); 2272 } 2273 2274 /** 2275 * regulator_is_enabled - is the regulator output enabled 2276 * @regulator: regulator source 2277 * 2278 * Returns positive if the regulator driver backing the source/client 2279 * has requested that the device be enabled, zero if it hasn't, else a 2280 * negative errno code. 2281 * 2282 * Note that the device backing this regulator handle can have multiple 2283 * users, so it might be enabled even if regulator_enable() was never 2284 * called for this particular source. 2285 */ 2286 int regulator_is_enabled(struct regulator *regulator) 2287 { 2288 int ret; 2289 2290 if (regulator->always_on) 2291 return 1; 2292 2293 mutex_lock(®ulator->rdev->mutex); 2294 ret = _regulator_is_enabled(regulator->rdev); 2295 mutex_unlock(®ulator->rdev->mutex); 2296 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(regulator_is_enabled); 2300 2301 /** 2302 * regulator_can_change_voltage - check if regulator can change voltage 2303 * @regulator: regulator source 2304 * 2305 * Returns positive if the regulator driver backing the source/client 2306 * can change its voltage, false otherwise. Useful for detecting fixed 2307 * or dummy regulators and disabling voltage change logic in the client 2308 * driver. 2309 */ 2310 int regulator_can_change_voltage(struct regulator *regulator) 2311 { 2312 struct regulator_dev *rdev = regulator->rdev; 2313 2314 if (rdev->constraints && 2315 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2316 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) 2317 return 1; 2318 2319 if (rdev->desc->continuous_voltage_range && 2320 rdev->constraints->min_uV && rdev->constraints->max_uV && 2321 rdev->constraints->min_uV != rdev->constraints->max_uV) 2322 return 1; 2323 } 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL_GPL(regulator_can_change_voltage); 2328 2329 /** 2330 * regulator_count_voltages - count regulator_list_voltage() selectors 2331 * @regulator: regulator source 2332 * 2333 * Returns number of selectors, or negative errno. Selectors are 2334 * numbered starting at zero, and typically correspond to bitfields 2335 * in hardware registers. 2336 */ 2337 int regulator_count_voltages(struct regulator *regulator) 2338 { 2339 struct regulator_dev *rdev = regulator->rdev; 2340 2341 if (rdev->desc->n_voltages) 2342 return rdev->desc->n_voltages; 2343 2344 if (!rdev->supply) 2345 return -EINVAL; 2346 2347 return regulator_count_voltages(rdev->supply); 2348 } 2349 EXPORT_SYMBOL_GPL(regulator_count_voltages); 2350 2351 /** 2352 * regulator_list_voltage - enumerate supported voltages 2353 * @regulator: regulator source 2354 * @selector: identify voltage to list 2355 * Context: can sleep 2356 * 2357 * Returns a voltage that can be passed to @regulator_set_voltage(), 2358 * zero if this selector code can't be used on this system, or a 2359 * negative errno. 2360 */ 2361 int regulator_list_voltage(struct regulator *regulator, unsigned selector) 2362 { 2363 struct regulator_dev *rdev = regulator->rdev; 2364 const struct regulator_ops *ops = rdev->desc->ops; 2365 int ret; 2366 2367 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) 2368 return rdev->desc->fixed_uV; 2369 2370 if (ops->list_voltage) { 2371 if (selector >= rdev->desc->n_voltages) 2372 return -EINVAL; 2373 mutex_lock(&rdev->mutex); 2374 ret = ops->list_voltage(rdev, selector); 2375 mutex_unlock(&rdev->mutex); 2376 } else if (rdev->supply) { 2377 ret = regulator_list_voltage(rdev->supply, selector); 2378 } else { 2379 return -EINVAL; 2380 } 2381 2382 if (ret > 0) { 2383 if (ret < rdev->constraints->min_uV) 2384 ret = 0; 2385 else if (ret > rdev->constraints->max_uV) 2386 ret = 0; 2387 } 2388 2389 return ret; 2390 } 2391 EXPORT_SYMBOL_GPL(regulator_list_voltage); 2392 2393 /** 2394 * regulator_get_regmap - get the regulator's register map 2395 * @regulator: regulator source 2396 * 2397 * Returns the register map for the given regulator, or an ERR_PTR value 2398 * if the regulator doesn't use regmap. 2399 */ 2400 struct regmap *regulator_get_regmap(struct regulator *regulator) 2401 { 2402 struct regmap *map = regulator->rdev->regmap; 2403 2404 return map ? map : ERR_PTR(-EOPNOTSUPP); 2405 } 2406 2407 /** 2408 * regulator_get_hardware_vsel_register - get the HW voltage selector register 2409 * @regulator: regulator source 2410 * @vsel_reg: voltage selector register, output parameter 2411 * @vsel_mask: mask for voltage selector bitfield, output parameter 2412 * 2413 * Returns the hardware register offset and bitmask used for setting the 2414 * regulator voltage. This might be useful when configuring voltage-scaling 2415 * hardware or firmware that can make I2C requests behind the kernel's back, 2416 * for example. 2417 * 2418 * On success, the output parameters @vsel_reg and @vsel_mask are filled in 2419 * and 0 is returned, otherwise a negative errno is returned. 2420 */ 2421 int regulator_get_hardware_vsel_register(struct regulator *regulator, 2422 unsigned *vsel_reg, 2423 unsigned *vsel_mask) 2424 { 2425 struct regulator_dev *rdev = regulator->rdev; 2426 const struct regulator_ops *ops = rdev->desc->ops; 2427 2428 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2429 return -EOPNOTSUPP; 2430 2431 *vsel_reg = rdev->desc->vsel_reg; 2432 *vsel_mask = rdev->desc->vsel_mask; 2433 2434 return 0; 2435 } 2436 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); 2437 2438 /** 2439 * regulator_list_hardware_vsel - get the HW-specific register value for a selector 2440 * @regulator: regulator source 2441 * @selector: identify voltage to list 2442 * 2443 * Converts the selector to a hardware-specific voltage selector that can be 2444 * directly written to the regulator registers. The address of the voltage 2445 * register can be determined by calling @regulator_get_hardware_vsel_register. 2446 * 2447 * On error a negative errno is returned. 2448 */ 2449 int regulator_list_hardware_vsel(struct regulator *regulator, 2450 unsigned selector) 2451 { 2452 struct regulator_dev *rdev = regulator->rdev; 2453 const struct regulator_ops *ops = rdev->desc->ops; 2454 2455 if (selector >= rdev->desc->n_voltages) 2456 return -EINVAL; 2457 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) 2458 return -EOPNOTSUPP; 2459 2460 return selector; 2461 } 2462 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); 2463 2464 /** 2465 * regulator_get_linear_step - return the voltage step size between VSEL values 2466 * @regulator: regulator source 2467 * 2468 * Returns the voltage step size between VSEL values for linear 2469 * regulators, or return 0 if the regulator isn't a linear regulator. 2470 */ 2471 unsigned int regulator_get_linear_step(struct regulator *regulator) 2472 { 2473 struct regulator_dev *rdev = regulator->rdev; 2474 2475 return rdev->desc->uV_step; 2476 } 2477 EXPORT_SYMBOL_GPL(regulator_get_linear_step); 2478 2479 /** 2480 * regulator_is_supported_voltage - check if a voltage range can be supported 2481 * 2482 * @regulator: Regulator to check. 2483 * @min_uV: Minimum required voltage in uV. 2484 * @max_uV: Maximum required voltage in uV. 2485 * 2486 * Returns a boolean or a negative error code. 2487 */ 2488 int regulator_is_supported_voltage(struct regulator *regulator, 2489 int min_uV, int max_uV) 2490 { 2491 struct regulator_dev *rdev = regulator->rdev; 2492 int i, voltages, ret; 2493 2494 /* If we can't change voltage check the current voltage */ 2495 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2496 ret = regulator_get_voltage(regulator); 2497 if (ret >= 0) 2498 return min_uV <= ret && ret <= max_uV; 2499 else 2500 return ret; 2501 } 2502 2503 /* Any voltage within constrains range is fine? */ 2504 if (rdev->desc->continuous_voltage_range) 2505 return min_uV >= rdev->constraints->min_uV && 2506 max_uV <= rdev->constraints->max_uV; 2507 2508 ret = regulator_count_voltages(regulator); 2509 if (ret < 0) 2510 return ret; 2511 voltages = ret; 2512 2513 for (i = 0; i < voltages; i++) { 2514 ret = regulator_list_voltage(regulator, i); 2515 2516 if (ret >= min_uV && ret <= max_uV) 2517 return 1; 2518 } 2519 2520 return 0; 2521 } 2522 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); 2523 2524 static int _regulator_call_set_voltage(struct regulator_dev *rdev, 2525 int min_uV, int max_uV, 2526 unsigned *selector) 2527 { 2528 struct pre_voltage_change_data data; 2529 int ret; 2530 2531 data.old_uV = _regulator_get_voltage(rdev); 2532 data.min_uV = min_uV; 2533 data.max_uV = max_uV; 2534 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2535 &data); 2536 if (ret & NOTIFY_STOP_MASK) 2537 return -EINVAL; 2538 2539 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); 2540 if (ret >= 0) 2541 return ret; 2542 2543 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2544 (void *)data.old_uV); 2545 2546 return ret; 2547 } 2548 2549 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, 2550 int uV, unsigned selector) 2551 { 2552 struct pre_voltage_change_data data; 2553 int ret; 2554 2555 data.old_uV = _regulator_get_voltage(rdev); 2556 data.min_uV = uV; 2557 data.max_uV = uV; 2558 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, 2559 &data); 2560 if (ret & NOTIFY_STOP_MASK) 2561 return -EINVAL; 2562 2563 ret = rdev->desc->ops->set_voltage_sel(rdev, selector); 2564 if (ret >= 0) 2565 return ret; 2566 2567 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, 2568 (void *)data.old_uV); 2569 2570 return ret; 2571 } 2572 2573 static int _regulator_do_set_voltage(struct regulator_dev *rdev, 2574 int min_uV, int max_uV) 2575 { 2576 int ret; 2577 int delay = 0; 2578 int best_val = 0; 2579 unsigned int selector; 2580 int old_selector = -1; 2581 2582 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); 2583 2584 min_uV += rdev->constraints->uV_offset; 2585 max_uV += rdev->constraints->uV_offset; 2586 2587 /* 2588 * If we can't obtain the old selector there is not enough 2589 * info to call set_voltage_time_sel(). 2590 */ 2591 if (_regulator_is_enabled(rdev) && 2592 rdev->desc->ops->set_voltage_time_sel && 2593 rdev->desc->ops->get_voltage_sel) { 2594 old_selector = rdev->desc->ops->get_voltage_sel(rdev); 2595 if (old_selector < 0) 2596 return old_selector; 2597 } 2598 2599 if (rdev->desc->ops->set_voltage) { 2600 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, 2601 &selector); 2602 2603 if (ret >= 0) { 2604 if (rdev->desc->ops->list_voltage) 2605 best_val = rdev->desc->ops->list_voltage(rdev, 2606 selector); 2607 else 2608 best_val = _regulator_get_voltage(rdev); 2609 } 2610 2611 } else if (rdev->desc->ops->set_voltage_sel) { 2612 if (rdev->desc->ops->map_voltage) { 2613 ret = rdev->desc->ops->map_voltage(rdev, min_uV, 2614 max_uV); 2615 } else { 2616 if (rdev->desc->ops->list_voltage == 2617 regulator_list_voltage_linear) 2618 ret = regulator_map_voltage_linear(rdev, 2619 min_uV, max_uV); 2620 else if (rdev->desc->ops->list_voltage == 2621 regulator_list_voltage_linear_range) 2622 ret = regulator_map_voltage_linear_range(rdev, 2623 min_uV, max_uV); 2624 else 2625 ret = regulator_map_voltage_iterate(rdev, 2626 min_uV, max_uV); 2627 } 2628 2629 if (ret >= 0) { 2630 best_val = rdev->desc->ops->list_voltage(rdev, ret); 2631 if (min_uV <= best_val && max_uV >= best_val) { 2632 selector = ret; 2633 if (old_selector == selector) 2634 ret = 0; 2635 else 2636 ret = _regulator_call_set_voltage_sel( 2637 rdev, best_val, selector); 2638 } else { 2639 ret = -EINVAL; 2640 } 2641 } 2642 } else { 2643 ret = -EINVAL; 2644 } 2645 2646 /* Call set_voltage_time_sel if successfully obtained old_selector */ 2647 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 2648 && old_selector != selector) { 2649 2650 delay = rdev->desc->ops->set_voltage_time_sel(rdev, 2651 old_selector, selector); 2652 if (delay < 0) { 2653 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", 2654 delay); 2655 delay = 0; 2656 } 2657 2658 /* Insert any necessary delays */ 2659 if (delay >= 1000) { 2660 mdelay(delay / 1000); 2661 udelay(delay % 1000); 2662 } else if (delay) { 2663 udelay(delay); 2664 } 2665 } 2666 2667 if (ret == 0 && best_val >= 0) { 2668 unsigned long data = best_val; 2669 2670 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, 2671 (void *)data); 2672 } 2673 2674 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); 2675 2676 return ret; 2677 } 2678 2679 /** 2680 * regulator_set_voltage - set regulator output voltage 2681 * @regulator: regulator source 2682 * @min_uV: Minimum required voltage in uV 2683 * @max_uV: Maximum acceptable voltage in uV 2684 * 2685 * Sets a voltage regulator to the desired output voltage. This can be set 2686 * during any regulator state. IOW, regulator can be disabled or enabled. 2687 * 2688 * If the regulator is enabled then the voltage will change to the new value 2689 * immediately otherwise if the regulator is disabled the regulator will 2690 * output at the new voltage when enabled. 2691 * 2692 * NOTE: If the regulator is shared between several devices then the lowest 2693 * request voltage that meets the system constraints will be used. 2694 * Regulator system constraints must be set for this regulator before 2695 * calling this function otherwise this call will fail. 2696 */ 2697 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 2698 { 2699 struct regulator_dev *rdev = regulator->rdev; 2700 int ret = 0; 2701 int old_min_uV, old_max_uV; 2702 int current_uV; 2703 2704 mutex_lock(&rdev->mutex); 2705 2706 /* If we're setting the same range as last time the change 2707 * should be a noop (some cpufreq implementations use the same 2708 * voltage for multiple frequencies, for example). 2709 */ 2710 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) 2711 goto out; 2712 2713 /* If we're trying to set a range that overlaps the current voltage, 2714 * return succesfully even though the regulator does not support 2715 * changing the voltage. 2716 */ 2717 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { 2718 current_uV = _regulator_get_voltage(rdev); 2719 if (min_uV <= current_uV && current_uV <= max_uV) { 2720 regulator->min_uV = min_uV; 2721 regulator->max_uV = max_uV; 2722 goto out; 2723 } 2724 } 2725 2726 /* sanity check */ 2727 if (!rdev->desc->ops->set_voltage && 2728 !rdev->desc->ops->set_voltage_sel) { 2729 ret = -EINVAL; 2730 goto out; 2731 } 2732 2733 /* constraints check */ 2734 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2735 if (ret < 0) 2736 goto out; 2737 2738 /* restore original values in case of error */ 2739 old_min_uV = regulator->min_uV; 2740 old_max_uV = regulator->max_uV; 2741 regulator->min_uV = min_uV; 2742 regulator->max_uV = max_uV; 2743 2744 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2745 if (ret < 0) 2746 goto out2; 2747 2748 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2749 if (ret < 0) 2750 goto out2; 2751 2752 out: 2753 mutex_unlock(&rdev->mutex); 2754 return ret; 2755 out2: 2756 regulator->min_uV = old_min_uV; 2757 regulator->max_uV = old_max_uV; 2758 mutex_unlock(&rdev->mutex); 2759 return ret; 2760 } 2761 EXPORT_SYMBOL_GPL(regulator_set_voltage); 2762 2763 /** 2764 * regulator_set_voltage_time - get raise/fall time 2765 * @regulator: regulator source 2766 * @old_uV: starting voltage in microvolts 2767 * @new_uV: target voltage in microvolts 2768 * 2769 * Provided with the starting and ending voltage, this function attempts to 2770 * calculate the time in microseconds required to rise or fall to this new 2771 * voltage. 2772 */ 2773 int regulator_set_voltage_time(struct regulator *regulator, 2774 int old_uV, int new_uV) 2775 { 2776 struct regulator_dev *rdev = regulator->rdev; 2777 const struct regulator_ops *ops = rdev->desc->ops; 2778 int old_sel = -1; 2779 int new_sel = -1; 2780 int voltage; 2781 int i; 2782 2783 /* Currently requires operations to do this */ 2784 if (!ops->list_voltage || !ops->set_voltage_time_sel 2785 || !rdev->desc->n_voltages) 2786 return -EINVAL; 2787 2788 for (i = 0; i < rdev->desc->n_voltages; i++) { 2789 /* We only look for exact voltage matches here */ 2790 voltage = regulator_list_voltage(regulator, i); 2791 if (voltage < 0) 2792 return -EINVAL; 2793 if (voltage == 0) 2794 continue; 2795 if (voltage == old_uV) 2796 old_sel = i; 2797 if (voltage == new_uV) 2798 new_sel = i; 2799 } 2800 2801 if (old_sel < 0 || new_sel < 0) 2802 return -EINVAL; 2803 2804 return ops->set_voltage_time_sel(rdev, old_sel, new_sel); 2805 } 2806 EXPORT_SYMBOL_GPL(regulator_set_voltage_time); 2807 2808 /** 2809 * regulator_set_voltage_time_sel - get raise/fall time 2810 * @rdev: regulator source device 2811 * @old_selector: selector for starting voltage 2812 * @new_selector: selector for target voltage 2813 * 2814 * Provided with the starting and target voltage selectors, this function 2815 * returns time in microseconds required to rise or fall to this new voltage 2816 * 2817 * Drivers providing ramp_delay in regulation_constraints can use this as their 2818 * set_voltage_time_sel() operation. 2819 */ 2820 int regulator_set_voltage_time_sel(struct regulator_dev *rdev, 2821 unsigned int old_selector, 2822 unsigned int new_selector) 2823 { 2824 unsigned int ramp_delay = 0; 2825 int old_volt, new_volt; 2826 2827 if (rdev->constraints->ramp_delay) 2828 ramp_delay = rdev->constraints->ramp_delay; 2829 else if (rdev->desc->ramp_delay) 2830 ramp_delay = rdev->desc->ramp_delay; 2831 2832 if (ramp_delay == 0) { 2833 rdev_warn(rdev, "ramp_delay not set\n"); 2834 return 0; 2835 } 2836 2837 /* sanity check */ 2838 if (!rdev->desc->ops->list_voltage) 2839 return -EINVAL; 2840 2841 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); 2842 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); 2843 2844 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); 2845 } 2846 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); 2847 2848 /** 2849 * regulator_sync_voltage - re-apply last regulator output voltage 2850 * @regulator: regulator source 2851 * 2852 * Re-apply the last configured voltage. This is intended to be used 2853 * where some external control source the consumer is cooperating with 2854 * has caused the configured voltage to change. 2855 */ 2856 int regulator_sync_voltage(struct regulator *regulator) 2857 { 2858 struct regulator_dev *rdev = regulator->rdev; 2859 int ret, min_uV, max_uV; 2860 2861 mutex_lock(&rdev->mutex); 2862 2863 if (!rdev->desc->ops->set_voltage && 2864 !rdev->desc->ops->set_voltage_sel) { 2865 ret = -EINVAL; 2866 goto out; 2867 } 2868 2869 /* This is only going to work if we've had a voltage configured. */ 2870 if (!regulator->min_uV && !regulator->max_uV) { 2871 ret = -EINVAL; 2872 goto out; 2873 } 2874 2875 min_uV = regulator->min_uV; 2876 max_uV = regulator->max_uV; 2877 2878 /* This should be a paranoia check... */ 2879 ret = regulator_check_voltage(rdev, &min_uV, &max_uV); 2880 if (ret < 0) 2881 goto out; 2882 2883 ret = regulator_check_consumers(rdev, &min_uV, &max_uV); 2884 if (ret < 0) 2885 goto out; 2886 2887 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); 2888 2889 out: 2890 mutex_unlock(&rdev->mutex); 2891 return ret; 2892 } 2893 EXPORT_SYMBOL_GPL(regulator_sync_voltage); 2894 2895 static int _regulator_get_voltage(struct regulator_dev *rdev) 2896 { 2897 int sel, ret; 2898 2899 if (rdev->desc->ops->get_voltage_sel) { 2900 sel = rdev->desc->ops->get_voltage_sel(rdev); 2901 if (sel < 0) 2902 return sel; 2903 ret = rdev->desc->ops->list_voltage(rdev, sel); 2904 } else if (rdev->desc->ops->get_voltage) { 2905 ret = rdev->desc->ops->get_voltage(rdev); 2906 } else if (rdev->desc->ops->list_voltage) { 2907 ret = rdev->desc->ops->list_voltage(rdev, 0); 2908 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { 2909 ret = rdev->desc->fixed_uV; 2910 } else if (rdev->supply) { 2911 ret = regulator_get_voltage(rdev->supply); 2912 } else { 2913 return -EINVAL; 2914 } 2915 2916 if (ret < 0) 2917 return ret; 2918 return ret - rdev->constraints->uV_offset; 2919 } 2920 2921 /** 2922 * regulator_get_voltage - get regulator output voltage 2923 * @regulator: regulator source 2924 * 2925 * This returns the current regulator voltage in uV. 2926 * 2927 * NOTE: If the regulator is disabled it will return the voltage value. This 2928 * function should not be used to determine regulator state. 2929 */ 2930 int regulator_get_voltage(struct regulator *regulator) 2931 { 2932 int ret; 2933 2934 mutex_lock(®ulator->rdev->mutex); 2935 2936 ret = _regulator_get_voltage(regulator->rdev); 2937 2938 mutex_unlock(®ulator->rdev->mutex); 2939 2940 return ret; 2941 } 2942 EXPORT_SYMBOL_GPL(regulator_get_voltage); 2943 2944 /** 2945 * regulator_set_current_limit - set regulator output current limit 2946 * @regulator: regulator source 2947 * @min_uA: Minimum supported current in uA 2948 * @max_uA: Maximum supported current in uA 2949 * 2950 * Sets current sink to the desired output current. This can be set during 2951 * any regulator state. IOW, regulator can be disabled or enabled. 2952 * 2953 * If the regulator is enabled then the current will change to the new value 2954 * immediately otherwise if the regulator is disabled the regulator will 2955 * output at the new current when enabled. 2956 * 2957 * NOTE: Regulator system constraints must be set for this regulator before 2958 * calling this function otherwise this call will fail. 2959 */ 2960 int regulator_set_current_limit(struct regulator *regulator, 2961 int min_uA, int max_uA) 2962 { 2963 struct regulator_dev *rdev = regulator->rdev; 2964 int ret; 2965 2966 mutex_lock(&rdev->mutex); 2967 2968 /* sanity check */ 2969 if (!rdev->desc->ops->set_current_limit) { 2970 ret = -EINVAL; 2971 goto out; 2972 } 2973 2974 /* constraints check */ 2975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); 2976 if (ret < 0) 2977 goto out; 2978 2979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); 2980 out: 2981 mutex_unlock(&rdev->mutex); 2982 return ret; 2983 } 2984 EXPORT_SYMBOL_GPL(regulator_set_current_limit); 2985 2986 static int _regulator_get_current_limit(struct regulator_dev *rdev) 2987 { 2988 int ret; 2989 2990 mutex_lock(&rdev->mutex); 2991 2992 /* sanity check */ 2993 if (!rdev->desc->ops->get_current_limit) { 2994 ret = -EINVAL; 2995 goto out; 2996 } 2997 2998 ret = rdev->desc->ops->get_current_limit(rdev); 2999 out: 3000 mutex_unlock(&rdev->mutex); 3001 return ret; 3002 } 3003 3004 /** 3005 * regulator_get_current_limit - get regulator output current 3006 * @regulator: regulator source 3007 * 3008 * This returns the current supplied by the specified current sink in uA. 3009 * 3010 * NOTE: If the regulator is disabled it will return the current value. This 3011 * function should not be used to determine regulator state. 3012 */ 3013 int regulator_get_current_limit(struct regulator *regulator) 3014 { 3015 return _regulator_get_current_limit(regulator->rdev); 3016 } 3017 EXPORT_SYMBOL_GPL(regulator_get_current_limit); 3018 3019 /** 3020 * regulator_set_mode - set regulator operating mode 3021 * @regulator: regulator source 3022 * @mode: operating mode - one of the REGULATOR_MODE constants 3023 * 3024 * Set regulator operating mode to increase regulator efficiency or improve 3025 * regulation performance. 3026 * 3027 * NOTE: Regulator system constraints must be set for this regulator before 3028 * calling this function otherwise this call will fail. 3029 */ 3030 int regulator_set_mode(struct regulator *regulator, unsigned int mode) 3031 { 3032 struct regulator_dev *rdev = regulator->rdev; 3033 int ret; 3034 int regulator_curr_mode; 3035 3036 mutex_lock(&rdev->mutex); 3037 3038 /* sanity check */ 3039 if (!rdev->desc->ops->set_mode) { 3040 ret = -EINVAL; 3041 goto out; 3042 } 3043 3044 /* return if the same mode is requested */ 3045 if (rdev->desc->ops->get_mode) { 3046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev); 3047 if (regulator_curr_mode == mode) { 3048 ret = 0; 3049 goto out; 3050 } 3051 } 3052 3053 /* constraints check */ 3054 ret = regulator_mode_constrain(rdev, &mode); 3055 if (ret < 0) 3056 goto out; 3057 3058 ret = rdev->desc->ops->set_mode(rdev, mode); 3059 out: 3060 mutex_unlock(&rdev->mutex); 3061 return ret; 3062 } 3063 EXPORT_SYMBOL_GPL(regulator_set_mode); 3064 3065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev) 3066 { 3067 int ret; 3068 3069 mutex_lock(&rdev->mutex); 3070 3071 /* sanity check */ 3072 if (!rdev->desc->ops->get_mode) { 3073 ret = -EINVAL; 3074 goto out; 3075 } 3076 3077 ret = rdev->desc->ops->get_mode(rdev); 3078 out: 3079 mutex_unlock(&rdev->mutex); 3080 return ret; 3081 } 3082 3083 /** 3084 * regulator_get_mode - get regulator operating mode 3085 * @regulator: regulator source 3086 * 3087 * Get the current regulator operating mode. 3088 */ 3089 unsigned int regulator_get_mode(struct regulator *regulator) 3090 { 3091 return _regulator_get_mode(regulator->rdev); 3092 } 3093 EXPORT_SYMBOL_GPL(regulator_get_mode); 3094 3095 /** 3096 * regulator_set_load - set regulator load 3097 * @regulator: regulator source 3098 * @uA_load: load current 3099 * 3100 * Notifies the regulator core of a new device load. This is then used by 3101 * DRMS (if enabled by constraints) to set the most efficient regulator 3102 * operating mode for the new regulator loading. 3103 * 3104 * Consumer devices notify their supply regulator of the maximum power 3105 * they will require (can be taken from device datasheet in the power 3106 * consumption tables) when they change operational status and hence power 3107 * state. Examples of operational state changes that can affect power 3108 * consumption are :- 3109 * 3110 * o Device is opened / closed. 3111 * o Device I/O is about to begin or has just finished. 3112 * o Device is idling in between work. 3113 * 3114 * This information is also exported via sysfs to userspace. 3115 * 3116 * DRMS will sum the total requested load on the regulator and change 3117 * to the most efficient operating mode if platform constraints allow. 3118 * 3119 * On error a negative errno is returned. 3120 */ 3121 int regulator_set_load(struct regulator *regulator, int uA_load) 3122 { 3123 struct regulator_dev *rdev = regulator->rdev; 3124 int ret; 3125 3126 mutex_lock(&rdev->mutex); 3127 regulator->uA_load = uA_load; 3128 ret = drms_uA_update(rdev); 3129 mutex_unlock(&rdev->mutex); 3130 3131 return ret; 3132 } 3133 EXPORT_SYMBOL_GPL(regulator_set_load); 3134 3135 /** 3136 * regulator_allow_bypass - allow the regulator to go into bypass mode 3137 * 3138 * @regulator: Regulator to configure 3139 * @enable: enable or disable bypass mode 3140 * 3141 * Allow the regulator to go into bypass mode if all other consumers 3142 * for the regulator also enable bypass mode and the machine 3143 * constraints allow this. Bypass mode means that the regulator is 3144 * simply passing the input directly to the output with no regulation. 3145 */ 3146 int regulator_allow_bypass(struct regulator *regulator, bool enable) 3147 { 3148 struct regulator_dev *rdev = regulator->rdev; 3149 int ret = 0; 3150 3151 if (!rdev->desc->ops->set_bypass) 3152 return 0; 3153 3154 if (rdev->constraints && 3155 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) 3156 return 0; 3157 3158 mutex_lock(&rdev->mutex); 3159 3160 if (enable && !regulator->bypass) { 3161 rdev->bypass_count++; 3162 3163 if (rdev->bypass_count == rdev->open_count) { 3164 ret = rdev->desc->ops->set_bypass(rdev, enable); 3165 if (ret != 0) 3166 rdev->bypass_count--; 3167 } 3168 3169 } else if (!enable && regulator->bypass) { 3170 rdev->bypass_count--; 3171 3172 if (rdev->bypass_count != rdev->open_count) { 3173 ret = rdev->desc->ops->set_bypass(rdev, enable); 3174 if (ret != 0) 3175 rdev->bypass_count++; 3176 } 3177 } 3178 3179 if (ret == 0) 3180 regulator->bypass = enable; 3181 3182 mutex_unlock(&rdev->mutex); 3183 3184 return ret; 3185 } 3186 EXPORT_SYMBOL_GPL(regulator_allow_bypass); 3187 3188 /** 3189 * regulator_register_notifier - register regulator event notifier 3190 * @regulator: regulator source 3191 * @nb: notifier block 3192 * 3193 * Register notifier block to receive regulator events. 3194 */ 3195 int regulator_register_notifier(struct regulator *regulator, 3196 struct notifier_block *nb) 3197 { 3198 return blocking_notifier_chain_register(®ulator->rdev->notifier, 3199 nb); 3200 } 3201 EXPORT_SYMBOL_GPL(regulator_register_notifier); 3202 3203 /** 3204 * regulator_unregister_notifier - unregister regulator event notifier 3205 * @regulator: regulator source 3206 * @nb: notifier block 3207 * 3208 * Unregister regulator event notifier block. 3209 */ 3210 int regulator_unregister_notifier(struct regulator *regulator, 3211 struct notifier_block *nb) 3212 { 3213 return blocking_notifier_chain_unregister(®ulator->rdev->notifier, 3214 nb); 3215 } 3216 EXPORT_SYMBOL_GPL(regulator_unregister_notifier); 3217 3218 /* notify regulator consumers and downstream regulator consumers. 3219 * Note mutex must be held by caller. 3220 */ 3221 static int _notifier_call_chain(struct regulator_dev *rdev, 3222 unsigned long event, void *data) 3223 { 3224 /* call rdev chain first */ 3225 return blocking_notifier_call_chain(&rdev->notifier, event, data); 3226 } 3227 3228 /** 3229 * regulator_bulk_get - get multiple regulator consumers 3230 * 3231 * @dev: Device to supply 3232 * @num_consumers: Number of consumers to register 3233 * @consumers: Configuration of consumers; clients are stored here. 3234 * 3235 * @return 0 on success, an errno on failure. 3236 * 3237 * This helper function allows drivers to get several regulator 3238 * consumers in one operation. If any of the regulators cannot be 3239 * acquired then any regulators that were allocated will be freed 3240 * before returning to the caller. 3241 */ 3242 int regulator_bulk_get(struct device *dev, int num_consumers, 3243 struct regulator_bulk_data *consumers) 3244 { 3245 int i; 3246 int ret; 3247 3248 for (i = 0; i < num_consumers; i++) 3249 consumers[i].consumer = NULL; 3250 3251 for (i = 0; i < num_consumers; i++) { 3252 consumers[i].consumer = regulator_get(dev, 3253 consumers[i].supply); 3254 if (IS_ERR(consumers[i].consumer)) { 3255 ret = PTR_ERR(consumers[i].consumer); 3256 dev_err(dev, "Failed to get supply '%s': %d\n", 3257 consumers[i].supply, ret); 3258 consumers[i].consumer = NULL; 3259 goto err; 3260 } 3261 } 3262 3263 return 0; 3264 3265 err: 3266 while (--i >= 0) 3267 regulator_put(consumers[i].consumer); 3268 3269 return ret; 3270 } 3271 EXPORT_SYMBOL_GPL(regulator_bulk_get); 3272 3273 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) 3274 { 3275 struct regulator_bulk_data *bulk = data; 3276 3277 bulk->ret = regulator_enable(bulk->consumer); 3278 } 3279 3280 /** 3281 * regulator_bulk_enable - enable multiple regulator consumers 3282 * 3283 * @num_consumers: Number of consumers 3284 * @consumers: Consumer data; clients are stored here. 3285 * @return 0 on success, an errno on failure 3286 * 3287 * This convenience API allows consumers to enable multiple regulator 3288 * clients in a single API call. If any consumers cannot be enabled 3289 * then any others that were enabled will be disabled again prior to 3290 * return. 3291 */ 3292 int regulator_bulk_enable(int num_consumers, 3293 struct regulator_bulk_data *consumers) 3294 { 3295 ASYNC_DOMAIN_EXCLUSIVE(async_domain); 3296 int i; 3297 int ret = 0; 3298 3299 for (i = 0; i < num_consumers; i++) { 3300 if (consumers[i].consumer->always_on) 3301 consumers[i].ret = 0; 3302 else 3303 async_schedule_domain(regulator_bulk_enable_async, 3304 &consumers[i], &async_domain); 3305 } 3306 3307 async_synchronize_full_domain(&async_domain); 3308 3309 /* If any consumer failed we need to unwind any that succeeded */ 3310 for (i = 0; i < num_consumers; i++) { 3311 if (consumers[i].ret != 0) { 3312 ret = consumers[i].ret; 3313 goto err; 3314 } 3315 } 3316 3317 return 0; 3318 3319 err: 3320 for (i = 0; i < num_consumers; i++) { 3321 if (consumers[i].ret < 0) 3322 pr_err("Failed to enable %s: %d\n", consumers[i].supply, 3323 consumers[i].ret); 3324 else 3325 regulator_disable(consumers[i].consumer); 3326 } 3327 3328 return ret; 3329 } 3330 EXPORT_SYMBOL_GPL(regulator_bulk_enable); 3331 3332 /** 3333 * regulator_bulk_disable - disable multiple regulator consumers 3334 * 3335 * @num_consumers: Number of consumers 3336 * @consumers: Consumer data; clients are stored here. 3337 * @return 0 on success, an errno on failure 3338 * 3339 * This convenience API allows consumers to disable multiple regulator 3340 * clients in a single API call. If any consumers cannot be disabled 3341 * then any others that were disabled will be enabled again prior to 3342 * return. 3343 */ 3344 int regulator_bulk_disable(int num_consumers, 3345 struct regulator_bulk_data *consumers) 3346 { 3347 int i; 3348 int ret, r; 3349 3350 for (i = num_consumers - 1; i >= 0; --i) { 3351 ret = regulator_disable(consumers[i].consumer); 3352 if (ret != 0) 3353 goto err; 3354 } 3355 3356 return 0; 3357 3358 err: 3359 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); 3360 for (++i; i < num_consumers; ++i) { 3361 r = regulator_enable(consumers[i].consumer); 3362 if (r != 0) 3363 pr_err("Failed to reename %s: %d\n", 3364 consumers[i].supply, r); 3365 } 3366 3367 return ret; 3368 } 3369 EXPORT_SYMBOL_GPL(regulator_bulk_disable); 3370 3371 /** 3372 * regulator_bulk_force_disable - force disable multiple regulator consumers 3373 * 3374 * @num_consumers: Number of consumers 3375 * @consumers: Consumer data; clients are stored here. 3376 * @return 0 on success, an errno on failure 3377 * 3378 * This convenience API allows consumers to forcibly disable multiple regulator 3379 * clients in a single API call. 3380 * NOTE: This should be used for situations when device damage will 3381 * likely occur if the regulators are not disabled (e.g. over temp). 3382 * Although regulator_force_disable function call for some consumers can 3383 * return error numbers, the function is called for all consumers. 3384 */ 3385 int regulator_bulk_force_disable(int num_consumers, 3386 struct regulator_bulk_data *consumers) 3387 { 3388 int i; 3389 int ret; 3390 3391 for (i = 0; i < num_consumers; i++) 3392 consumers[i].ret = 3393 regulator_force_disable(consumers[i].consumer); 3394 3395 for (i = 0; i < num_consumers; i++) { 3396 if (consumers[i].ret != 0) { 3397 ret = consumers[i].ret; 3398 goto out; 3399 } 3400 } 3401 3402 return 0; 3403 out: 3404 return ret; 3405 } 3406 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); 3407 3408 /** 3409 * regulator_bulk_free - free multiple regulator consumers 3410 * 3411 * @num_consumers: Number of consumers 3412 * @consumers: Consumer data; clients are stored here. 3413 * 3414 * This convenience API allows consumers to free multiple regulator 3415 * clients in a single API call. 3416 */ 3417 void regulator_bulk_free(int num_consumers, 3418 struct regulator_bulk_data *consumers) 3419 { 3420 int i; 3421 3422 for (i = 0; i < num_consumers; i++) { 3423 regulator_put(consumers[i].consumer); 3424 consumers[i].consumer = NULL; 3425 } 3426 } 3427 EXPORT_SYMBOL_GPL(regulator_bulk_free); 3428 3429 /** 3430 * regulator_notifier_call_chain - call regulator event notifier 3431 * @rdev: regulator source 3432 * @event: notifier block 3433 * @data: callback-specific data. 3434 * 3435 * Called by regulator drivers to notify clients a regulator event has 3436 * occurred. We also notify regulator clients downstream. 3437 * Note lock must be held by caller. 3438 */ 3439 int regulator_notifier_call_chain(struct regulator_dev *rdev, 3440 unsigned long event, void *data) 3441 { 3442 _notifier_call_chain(rdev, event, data); 3443 return NOTIFY_DONE; 3444 3445 } 3446 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); 3447 3448 /** 3449 * regulator_mode_to_status - convert a regulator mode into a status 3450 * 3451 * @mode: Mode to convert 3452 * 3453 * Convert a regulator mode into a status. 3454 */ 3455 int regulator_mode_to_status(unsigned int mode) 3456 { 3457 switch (mode) { 3458 case REGULATOR_MODE_FAST: 3459 return REGULATOR_STATUS_FAST; 3460 case REGULATOR_MODE_NORMAL: 3461 return REGULATOR_STATUS_NORMAL; 3462 case REGULATOR_MODE_IDLE: 3463 return REGULATOR_STATUS_IDLE; 3464 case REGULATOR_MODE_STANDBY: 3465 return REGULATOR_STATUS_STANDBY; 3466 default: 3467 return REGULATOR_STATUS_UNDEFINED; 3468 } 3469 } 3470 EXPORT_SYMBOL_GPL(regulator_mode_to_status); 3471 3472 static struct attribute *regulator_dev_attrs[] = { 3473 &dev_attr_name.attr, 3474 &dev_attr_num_users.attr, 3475 &dev_attr_type.attr, 3476 &dev_attr_microvolts.attr, 3477 &dev_attr_microamps.attr, 3478 &dev_attr_opmode.attr, 3479 &dev_attr_state.attr, 3480 &dev_attr_status.attr, 3481 &dev_attr_bypass.attr, 3482 &dev_attr_requested_microamps.attr, 3483 &dev_attr_min_microvolts.attr, 3484 &dev_attr_max_microvolts.attr, 3485 &dev_attr_min_microamps.attr, 3486 &dev_attr_max_microamps.attr, 3487 &dev_attr_suspend_standby_state.attr, 3488 &dev_attr_suspend_mem_state.attr, 3489 &dev_attr_suspend_disk_state.attr, 3490 &dev_attr_suspend_standby_microvolts.attr, 3491 &dev_attr_suspend_mem_microvolts.attr, 3492 &dev_attr_suspend_disk_microvolts.attr, 3493 &dev_attr_suspend_standby_mode.attr, 3494 &dev_attr_suspend_mem_mode.attr, 3495 &dev_attr_suspend_disk_mode.attr, 3496 NULL 3497 }; 3498 3499 /* 3500 * To avoid cluttering sysfs (and memory) with useless state, only 3501 * create attributes that can be meaningfully displayed. 3502 */ 3503 static umode_t regulator_attr_is_visible(struct kobject *kobj, 3504 struct attribute *attr, int idx) 3505 { 3506 struct device *dev = kobj_to_dev(kobj); 3507 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); 3508 const struct regulator_ops *ops = rdev->desc->ops; 3509 umode_t mode = attr->mode; 3510 3511 /* these three are always present */ 3512 if (attr == &dev_attr_name.attr || 3513 attr == &dev_attr_num_users.attr || 3514 attr == &dev_attr_type.attr) 3515 return mode; 3516 3517 /* some attributes need specific methods to be displayed */ 3518 if (attr == &dev_attr_microvolts.attr) { 3519 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || 3520 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || 3521 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || 3522 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) 3523 return mode; 3524 return 0; 3525 } 3526 3527 if (attr == &dev_attr_microamps.attr) 3528 return ops->get_current_limit ? mode : 0; 3529 3530 if (attr == &dev_attr_opmode.attr) 3531 return ops->get_mode ? mode : 0; 3532 3533 if (attr == &dev_attr_state.attr) 3534 return (rdev->ena_pin || ops->is_enabled) ? mode : 0; 3535 3536 if (attr == &dev_attr_status.attr) 3537 return ops->get_status ? mode : 0; 3538 3539 if (attr == &dev_attr_bypass.attr) 3540 return ops->get_bypass ? mode : 0; 3541 3542 /* some attributes are type-specific */ 3543 if (attr == &dev_attr_requested_microamps.attr) 3544 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; 3545 3546 /* constraints need specific supporting methods */ 3547 if (attr == &dev_attr_min_microvolts.attr || 3548 attr == &dev_attr_max_microvolts.attr) 3549 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; 3550 3551 if (attr == &dev_attr_min_microamps.attr || 3552 attr == &dev_attr_max_microamps.attr) 3553 return ops->set_current_limit ? mode : 0; 3554 3555 if (attr == &dev_attr_suspend_standby_state.attr || 3556 attr == &dev_attr_suspend_mem_state.attr || 3557 attr == &dev_attr_suspend_disk_state.attr) 3558 return mode; 3559 3560 if (attr == &dev_attr_suspend_standby_microvolts.attr || 3561 attr == &dev_attr_suspend_mem_microvolts.attr || 3562 attr == &dev_attr_suspend_disk_microvolts.attr) 3563 return ops->set_suspend_voltage ? mode : 0; 3564 3565 if (attr == &dev_attr_suspend_standby_mode.attr || 3566 attr == &dev_attr_suspend_mem_mode.attr || 3567 attr == &dev_attr_suspend_disk_mode.attr) 3568 return ops->set_suspend_mode ? mode : 0; 3569 3570 return mode; 3571 } 3572 3573 static const struct attribute_group regulator_dev_group = { 3574 .attrs = regulator_dev_attrs, 3575 .is_visible = regulator_attr_is_visible, 3576 }; 3577 3578 static const struct attribute_group *regulator_dev_groups[] = { 3579 ®ulator_dev_group, 3580 NULL 3581 }; 3582 3583 static void regulator_dev_release(struct device *dev) 3584 { 3585 struct regulator_dev *rdev = dev_get_drvdata(dev); 3586 kfree(rdev); 3587 } 3588 3589 static struct class regulator_class = { 3590 .name = "regulator", 3591 .dev_release = regulator_dev_release, 3592 .dev_groups = regulator_dev_groups, 3593 }; 3594 3595 static void rdev_init_debugfs(struct regulator_dev *rdev) 3596 { 3597 struct device *parent = rdev->dev.parent; 3598 const char *rname = rdev_get_name(rdev); 3599 char name[NAME_MAX]; 3600 3601 /* Avoid duplicate debugfs directory names */ 3602 if (parent && rname == rdev->desc->name) { 3603 snprintf(name, sizeof(name), "%s-%s", dev_name(parent), 3604 rname); 3605 rname = name; 3606 } 3607 3608 rdev->debugfs = debugfs_create_dir(rname, debugfs_root); 3609 if (!rdev->debugfs) { 3610 rdev_warn(rdev, "Failed to create debugfs directory\n"); 3611 return; 3612 } 3613 3614 debugfs_create_u32("use_count", 0444, rdev->debugfs, 3615 &rdev->use_count); 3616 debugfs_create_u32("open_count", 0444, rdev->debugfs, 3617 &rdev->open_count); 3618 debugfs_create_u32("bypass_count", 0444, rdev->debugfs, 3619 &rdev->bypass_count); 3620 } 3621 3622 /** 3623 * regulator_register - register regulator 3624 * @regulator_desc: regulator to register 3625 * @cfg: runtime configuration for regulator 3626 * 3627 * Called by regulator drivers to register a regulator. 3628 * Returns a valid pointer to struct regulator_dev on success 3629 * or an ERR_PTR() on error. 3630 */ 3631 struct regulator_dev * 3632 regulator_register(const struct regulator_desc *regulator_desc, 3633 const struct regulator_config *cfg) 3634 { 3635 const struct regulation_constraints *constraints = NULL; 3636 const struct regulator_init_data *init_data; 3637 struct regulator_config *config = NULL; 3638 static atomic_t regulator_no = ATOMIC_INIT(-1); 3639 struct regulator_dev *rdev; 3640 struct device *dev; 3641 int ret, i; 3642 3643 if (regulator_desc == NULL || cfg == NULL) 3644 return ERR_PTR(-EINVAL); 3645 3646 dev = cfg->dev; 3647 WARN_ON(!dev); 3648 3649 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) 3650 return ERR_PTR(-EINVAL); 3651 3652 if (regulator_desc->type != REGULATOR_VOLTAGE && 3653 regulator_desc->type != REGULATOR_CURRENT) 3654 return ERR_PTR(-EINVAL); 3655 3656 /* Only one of each should be implemented */ 3657 WARN_ON(regulator_desc->ops->get_voltage && 3658 regulator_desc->ops->get_voltage_sel); 3659 WARN_ON(regulator_desc->ops->set_voltage && 3660 regulator_desc->ops->set_voltage_sel); 3661 3662 /* If we're using selectors we must implement list_voltage. */ 3663 if (regulator_desc->ops->get_voltage_sel && 3664 !regulator_desc->ops->list_voltage) { 3665 return ERR_PTR(-EINVAL); 3666 } 3667 if (regulator_desc->ops->set_voltage_sel && 3668 !regulator_desc->ops->list_voltage) { 3669 return ERR_PTR(-EINVAL); 3670 } 3671 3672 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); 3673 if (rdev == NULL) 3674 return ERR_PTR(-ENOMEM); 3675 3676 /* 3677 * Duplicate the config so the driver could override it after 3678 * parsing init data. 3679 */ 3680 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); 3681 if (config == NULL) { 3682 kfree(rdev); 3683 return ERR_PTR(-ENOMEM); 3684 } 3685 3686 init_data = regulator_of_get_init_data(dev, regulator_desc, config, 3687 &rdev->dev.of_node); 3688 if (!init_data) { 3689 init_data = config->init_data; 3690 rdev->dev.of_node = of_node_get(config->of_node); 3691 } 3692 3693 mutex_lock(®ulator_list_mutex); 3694 3695 mutex_init(&rdev->mutex); 3696 rdev->reg_data = config->driver_data; 3697 rdev->owner = regulator_desc->owner; 3698 rdev->desc = regulator_desc; 3699 if (config->regmap) 3700 rdev->regmap = config->regmap; 3701 else if (dev_get_regmap(dev, NULL)) 3702 rdev->regmap = dev_get_regmap(dev, NULL); 3703 else if (dev->parent) 3704 rdev->regmap = dev_get_regmap(dev->parent, NULL); 3705 INIT_LIST_HEAD(&rdev->consumer_list); 3706 INIT_LIST_HEAD(&rdev->list); 3707 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); 3708 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); 3709 3710 /* preform any regulator specific init */ 3711 if (init_data && init_data->regulator_init) { 3712 ret = init_data->regulator_init(rdev->reg_data); 3713 if (ret < 0) 3714 goto clean; 3715 } 3716 3717 /* register with sysfs */ 3718 rdev->dev.class = ®ulator_class; 3719 rdev->dev.parent = dev; 3720 dev_set_name(&rdev->dev, "regulator.%lu", 3721 (unsigned long) atomic_inc_return(®ulator_no)); 3722 ret = device_register(&rdev->dev); 3723 if (ret != 0) { 3724 put_device(&rdev->dev); 3725 goto clean; 3726 } 3727 3728 dev_set_drvdata(&rdev->dev, rdev); 3729 3730 if ((config->ena_gpio || config->ena_gpio_initialized) && 3731 gpio_is_valid(config->ena_gpio)) { 3732 ret = regulator_ena_gpio_request(rdev, config); 3733 if (ret != 0) { 3734 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", 3735 config->ena_gpio, ret); 3736 goto wash; 3737 } 3738 } 3739 3740 /* set regulator constraints */ 3741 if (init_data) 3742 constraints = &init_data->constraints; 3743 3744 ret = set_machine_constraints(rdev, constraints); 3745 if (ret < 0) 3746 goto scrub; 3747 3748 if (init_data && init_data->supply_regulator) 3749 rdev->supply_name = init_data->supply_regulator; 3750 else if (regulator_desc->supply_name) 3751 rdev->supply_name = regulator_desc->supply_name; 3752 3753 /* add consumers devices */ 3754 if (init_data) { 3755 for (i = 0; i < init_data->num_consumer_supplies; i++) { 3756 ret = set_consumer_device_supply(rdev, 3757 init_data->consumer_supplies[i].dev_name, 3758 init_data->consumer_supplies[i].supply); 3759 if (ret < 0) { 3760 dev_err(dev, "Failed to set supply %s\n", 3761 init_data->consumer_supplies[i].supply); 3762 goto unset_supplies; 3763 } 3764 } 3765 } 3766 3767 list_add(&rdev->list, ®ulator_list); 3768 3769 rdev_init_debugfs(rdev); 3770 out: 3771 mutex_unlock(®ulator_list_mutex); 3772 kfree(config); 3773 return rdev; 3774 3775 unset_supplies: 3776 unset_regulator_supplies(rdev); 3777 3778 scrub: 3779 regulator_ena_gpio_free(rdev); 3780 kfree(rdev->constraints); 3781 wash: 3782 device_unregister(&rdev->dev); 3783 /* device core frees rdev */ 3784 rdev = ERR_PTR(ret); 3785 goto out; 3786 3787 clean: 3788 kfree(rdev); 3789 rdev = ERR_PTR(ret); 3790 goto out; 3791 } 3792 EXPORT_SYMBOL_GPL(regulator_register); 3793 3794 /** 3795 * regulator_unregister - unregister regulator 3796 * @rdev: regulator to unregister 3797 * 3798 * Called by regulator drivers to unregister a regulator. 3799 */ 3800 void regulator_unregister(struct regulator_dev *rdev) 3801 { 3802 if (rdev == NULL) 3803 return; 3804 3805 if (rdev->supply) { 3806 while (rdev->use_count--) 3807 regulator_disable(rdev->supply); 3808 regulator_put(rdev->supply); 3809 } 3810 mutex_lock(®ulator_list_mutex); 3811 debugfs_remove_recursive(rdev->debugfs); 3812 flush_work(&rdev->disable_work.work); 3813 WARN_ON(rdev->open_count); 3814 unset_regulator_supplies(rdev); 3815 list_del(&rdev->list); 3816 kfree(rdev->constraints); 3817 regulator_ena_gpio_free(rdev); 3818 of_node_put(rdev->dev.of_node); 3819 device_unregister(&rdev->dev); 3820 mutex_unlock(®ulator_list_mutex); 3821 } 3822 EXPORT_SYMBOL_GPL(regulator_unregister); 3823 3824 /** 3825 * regulator_suspend_prepare - prepare regulators for system wide suspend 3826 * @state: system suspend state 3827 * 3828 * Configure each regulator with it's suspend operating parameters for state. 3829 * This will usually be called by machine suspend code prior to supending. 3830 */ 3831 int regulator_suspend_prepare(suspend_state_t state) 3832 { 3833 struct regulator_dev *rdev; 3834 int ret = 0; 3835 3836 /* ON is handled by regulator active state */ 3837 if (state == PM_SUSPEND_ON) 3838 return -EINVAL; 3839 3840 mutex_lock(®ulator_list_mutex); 3841 list_for_each_entry(rdev, ®ulator_list, list) { 3842 3843 mutex_lock(&rdev->mutex); 3844 ret = suspend_prepare(rdev, state); 3845 mutex_unlock(&rdev->mutex); 3846 3847 if (ret < 0) { 3848 rdev_err(rdev, "failed to prepare\n"); 3849 goto out; 3850 } 3851 } 3852 out: 3853 mutex_unlock(®ulator_list_mutex); 3854 return ret; 3855 } 3856 EXPORT_SYMBOL_GPL(regulator_suspend_prepare); 3857 3858 /** 3859 * regulator_suspend_finish - resume regulators from system wide suspend 3860 * 3861 * Turn on regulators that might be turned off by regulator_suspend_prepare 3862 * and that should be turned on according to the regulators properties. 3863 */ 3864 int regulator_suspend_finish(void) 3865 { 3866 struct regulator_dev *rdev; 3867 int ret = 0, error; 3868 3869 mutex_lock(®ulator_list_mutex); 3870 list_for_each_entry(rdev, ®ulator_list, list) { 3871 mutex_lock(&rdev->mutex); 3872 if (rdev->use_count > 0 || rdev->constraints->always_on) { 3873 if (!_regulator_is_enabled(rdev)) { 3874 error = _regulator_do_enable(rdev); 3875 if (error) 3876 ret = error; 3877 } 3878 } else { 3879 if (!have_full_constraints()) 3880 goto unlock; 3881 if (!_regulator_is_enabled(rdev)) 3882 goto unlock; 3883 3884 error = _regulator_do_disable(rdev); 3885 if (error) 3886 ret = error; 3887 } 3888 unlock: 3889 mutex_unlock(&rdev->mutex); 3890 } 3891 mutex_unlock(®ulator_list_mutex); 3892 return ret; 3893 } 3894 EXPORT_SYMBOL_GPL(regulator_suspend_finish); 3895 3896 /** 3897 * regulator_has_full_constraints - the system has fully specified constraints 3898 * 3899 * Calling this function will cause the regulator API to disable all 3900 * regulators which have a zero use count and don't have an always_on 3901 * constraint in a late_initcall. 3902 * 3903 * The intention is that this will become the default behaviour in a 3904 * future kernel release so users are encouraged to use this facility 3905 * now. 3906 */ 3907 void regulator_has_full_constraints(void) 3908 { 3909 has_full_constraints = 1; 3910 } 3911 EXPORT_SYMBOL_GPL(regulator_has_full_constraints); 3912 3913 /** 3914 * rdev_get_drvdata - get rdev regulator driver data 3915 * @rdev: regulator 3916 * 3917 * Get rdev regulator driver private data. This call can be used in the 3918 * regulator driver context. 3919 */ 3920 void *rdev_get_drvdata(struct regulator_dev *rdev) 3921 { 3922 return rdev->reg_data; 3923 } 3924 EXPORT_SYMBOL_GPL(rdev_get_drvdata); 3925 3926 /** 3927 * regulator_get_drvdata - get regulator driver data 3928 * @regulator: regulator 3929 * 3930 * Get regulator driver private data. This call can be used in the consumer 3931 * driver context when non API regulator specific functions need to be called. 3932 */ 3933 void *regulator_get_drvdata(struct regulator *regulator) 3934 { 3935 return regulator->rdev->reg_data; 3936 } 3937 EXPORT_SYMBOL_GPL(regulator_get_drvdata); 3938 3939 /** 3940 * regulator_set_drvdata - set regulator driver data 3941 * @regulator: regulator 3942 * @data: data 3943 */ 3944 void regulator_set_drvdata(struct regulator *regulator, void *data) 3945 { 3946 regulator->rdev->reg_data = data; 3947 } 3948 EXPORT_SYMBOL_GPL(regulator_set_drvdata); 3949 3950 /** 3951 * regulator_get_id - get regulator ID 3952 * @rdev: regulator 3953 */ 3954 int rdev_get_id(struct regulator_dev *rdev) 3955 { 3956 return rdev->desc->id; 3957 } 3958 EXPORT_SYMBOL_GPL(rdev_get_id); 3959 3960 struct device *rdev_get_dev(struct regulator_dev *rdev) 3961 { 3962 return &rdev->dev; 3963 } 3964 EXPORT_SYMBOL_GPL(rdev_get_dev); 3965 3966 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) 3967 { 3968 return reg_init_data->driver_data; 3969 } 3970 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); 3971 3972 #ifdef CONFIG_DEBUG_FS 3973 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, 3974 size_t count, loff_t *ppos) 3975 { 3976 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 3977 ssize_t len, ret = 0; 3978 struct regulator_map *map; 3979 3980 if (!buf) 3981 return -ENOMEM; 3982 3983 list_for_each_entry(map, ®ulator_map_list, list) { 3984 len = snprintf(buf + ret, PAGE_SIZE - ret, 3985 "%s -> %s.%s\n", 3986 rdev_get_name(map->regulator), map->dev_name, 3987 map->supply); 3988 if (len >= 0) 3989 ret += len; 3990 if (ret > PAGE_SIZE) { 3991 ret = PAGE_SIZE; 3992 break; 3993 } 3994 } 3995 3996 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); 3997 3998 kfree(buf); 3999 4000 return ret; 4001 } 4002 #endif 4003 4004 static const struct file_operations supply_map_fops = { 4005 #ifdef CONFIG_DEBUG_FS 4006 .read = supply_map_read_file, 4007 .llseek = default_llseek, 4008 #endif 4009 }; 4010 4011 #ifdef CONFIG_DEBUG_FS 4012 static void regulator_summary_show_subtree(struct seq_file *s, 4013 struct regulator_dev *rdev, 4014 int level) 4015 { 4016 struct list_head *list = s->private; 4017 struct regulator_dev *child; 4018 struct regulation_constraints *c; 4019 struct regulator *consumer; 4020 4021 if (!rdev) 4022 return; 4023 4024 seq_printf(s, "%*s%-*s %3d %4d %6d ", 4025 level * 3 + 1, "", 4026 30 - level * 3, rdev_get_name(rdev), 4027 rdev->use_count, rdev->open_count, rdev->bypass_count); 4028 4029 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); 4030 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); 4031 4032 c = rdev->constraints; 4033 if (c) { 4034 switch (rdev->desc->type) { 4035 case REGULATOR_VOLTAGE: 4036 seq_printf(s, "%5dmV %5dmV ", 4037 c->min_uV / 1000, c->max_uV / 1000); 4038 break; 4039 case REGULATOR_CURRENT: 4040 seq_printf(s, "%5dmA %5dmA ", 4041 c->min_uA / 1000, c->max_uA / 1000); 4042 break; 4043 } 4044 } 4045 4046 seq_puts(s, "\n"); 4047 4048 list_for_each_entry(consumer, &rdev->consumer_list, list) { 4049 if (consumer->dev->class == ®ulator_class) 4050 continue; 4051 4052 seq_printf(s, "%*s%-*s ", 4053 (level + 1) * 3 + 1, "", 4054 30 - (level + 1) * 3, dev_name(consumer->dev)); 4055 4056 switch (rdev->desc->type) { 4057 case REGULATOR_VOLTAGE: 4058 seq_printf(s, "%37dmV %5dmV", 4059 consumer->min_uV / 1000, 4060 consumer->max_uV / 1000); 4061 break; 4062 case REGULATOR_CURRENT: 4063 break; 4064 } 4065 4066 seq_puts(s, "\n"); 4067 } 4068 4069 list_for_each_entry(child, list, list) { 4070 /* handle only non-root regulators supplied by current rdev */ 4071 if (!child->supply || child->supply->rdev != rdev) 4072 continue; 4073 4074 regulator_summary_show_subtree(s, child, level + 1); 4075 } 4076 } 4077 4078 static int regulator_summary_show(struct seq_file *s, void *data) 4079 { 4080 struct list_head *list = s->private; 4081 struct regulator_dev *rdev; 4082 4083 seq_puts(s, " regulator use open bypass voltage current min max\n"); 4084 seq_puts(s, "-------------------------------------------------------------------------------\n"); 4085 4086 mutex_lock(®ulator_list_mutex); 4087 4088 list_for_each_entry(rdev, list, list) { 4089 if (rdev->supply) 4090 continue; 4091 4092 regulator_summary_show_subtree(s, rdev, 0); 4093 } 4094 4095 mutex_unlock(®ulator_list_mutex); 4096 4097 return 0; 4098 } 4099 4100 static int regulator_summary_open(struct inode *inode, struct file *file) 4101 { 4102 return single_open(file, regulator_summary_show, inode->i_private); 4103 } 4104 #endif 4105 4106 static const struct file_operations regulator_summary_fops = { 4107 #ifdef CONFIG_DEBUG_FS 4108 .open = regulator_summary_open, 4109 .read = seq_read, 4110 .llseek = seq_lseek, 4111 .release = single_release, 4112 #endif 4113 }; 4114 4115 static int __init regulator_init(void) 4116 { 4117 int ret; 4118 4119 ret = class_register(®ulator_class); 4120 4121 debugfs_root = debugfs_create_dir("regulator", NULL); 4122 if (!debugfs_root) 4123 pr_warn("regulator: Failed to create debugfs directory\n"); 4124 4125 debugfs_create_file("supply_map", 0444, debugfs_root, NULL, 4126 &supply_map_fops); 4127 4128 debugfs_create_file("regulator_summary", 0444, debugfs_root, 4129 ®ulator_list, ®ulator_summary_fops); 4130 4131 regulator_dummy_init(); 4132 4133 return ret; 4134 } 4135 4136 /* init early to allow our consumers to complete system booting */ 4137 core_initcall(regulator_init); 4138 4139 static int __init regulator_init_complete(void) 4140 { 4141 struct regulator_dev *rdev; 4142 const struct regulator_ops *ops; 4143 struct regulation_constraints *c; 4144 int enabled, ret; 4145 4146 /* 4147 * Since DT doesn't provide an idiomatic mechanism for 4148 * enabling full constraints and since it's much more natural 4149 * with DT to provide them just assume that a DT enabled 4150 * system has full constraints. 4151 */ 4152 if (of_have_populated_dt()) 4153 has_full_constraints = true; 4154 4155 mutex_lock(®ulator_list_mutex); 4156 4157 /* If we have a full configuration then disable any regulators 4158 * we have permission to change the status for and which are 4159 * not in use or always_on. This is effectively the default 4160 * for DT and ACPI as they have full constraints. 4161 */ 4162 list_for_each_entry(rdev, ®ulator_list, list) { 4163 ops = rdev->desc->ops; 4164 c = rdev->constraints; 4165 4166 if (c && c->always_on) 4167 continue; 4168 4169 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) 4170 continue; 4171 4172 mutex_lock(&rdev->mutex); 4173 4174 if (rdev->use_count) 4175 goto unlock; 4176 4177 /* If we can't read the status assume it's on. */ 4178 if (ops->is_enabled) 4179 enabled = ops->is_enabled(rdev); 4180 else 4181 enabled = 1; 4182 4183 if (!enabled) 4184 goto unlock; 4185 4186 if (have_full_constraints()) { 4187 /* We log since this may kill the system if it 4188 * goes wrong. */ 4189 rdev_info(rdev, "disabling\n"); 4190 ret = _regulator_do_disable(rdev); 4191 if (ret != 0) 4192 rdev_err(rdev, "couldn't disable: %d\n", ret); 4193 } else { 4194 /* The intention is that in future we will 4195 * assume that full constraints are provided 4196 * so warn even if we aren't going to do 4197 * anything here. 4198 */ 4199 rdev_warn(rdev, "incomplete constraints, leaving on\n"); 4200 } 4201 4202 unlock: 4203 mutex_unlock(&rdev->mutex); 4204 } 4205 4206 mutex_unlock(®ulator_list_mutex); 4207 4208 return 0; 4209 } 4210 late_initcall_sync(regulator_init_complete); 4211