xref: /linux/drivers/regulator/core.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33 
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37 
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46 
47 static struct dentry *debugfs_root;
48 
49 /*
50  * struct regulator_map
51  *
52  * Used to provide symbolic supply names to devices.
53  */
54 struct regulator_map {
55 	struct list_head list;
56 	const char *dev_name;   /* The dev_name() for the consumer */
57 	const char *supply;
58 	struct regulator_dev *regulator;
59 };
60 
61 /*
62  * struct regulator_enable_gpio
63  *
64  * Management for shared enable GPIO pin
65  */
66 struct regulator_enable_gpio {
67 	struct list_head list;
68 	struct gpio_desc *gpiod;
69 	u32 enable_count;	/* a number of enabled shared GPIO */
70 	u32 request_count;	/* a number of requested shared GPIO */
71 };
72 
73 /*
74  * struct regulator_supply_alias
75  *
76  * Used to map lookups for a supply onto an alternative device.
77  */
78 struct regulator_supply_alias {
79 	struct list_head list;
80 	struct device *src_dev;
81 	const char *src_supply;
82 	struct device *alias_dev;
83 	const char *alias_supply;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 				     suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 					  struct device *dev,
99 					  const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102 
103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 	if (rdev->constraints && rdev->constraints->name)
106 		return rdev->constraints->name;
107 	else if (rdev->desc->name)
108 		return rdev->desc->name;
109 	else
110 		return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113 
114 static bool have_full_constraints(void)
115 {
116 	return has_full_constraints || of_have_populated_dt();
117 }
118 
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 	if (!rdev->constraints) {
122 		rdev_err(rdev, "no constraints\n");
123 		return false;
124 	}
125 
126 	if (rdev->constraints->valid_ops_mask & ops)
127 		return true;
128 
129 	return false;
130 }
131 
132 /**
133  * regulator_lock_nested - lock a single regulator
134  * @rdev:		regulator source
135  * @ww_ctx:		w/w mutex acquire context
136  *
137  * This function can be called many times by one task on
138  * a single regulator and its mutex will be locked only
139  * once. If a task, which is calling this function is other
140  * than the one, which initially locked the mutex, it will
141  * wait on mutex.
142  */
143 static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 					struct ww_acquire_ctx *ww_ctx)
145 {
146 	bool lock = false;
147 	int ret = 0;
148 
149 	mutex_lock(&regulator_nesting_mutex);
150 
151 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 		if (rdev->mutex_owner == current)
153 			rdev->ref_cnt++;
154 		else
155 			lock = true;
156 
157 		if (lock) {
158 			mutex_unlock(&regulator_nesting_mutex);
159 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 			mutex_lock(&regulator_nesting_mutex);
161 		}
162 	} else {
163 		lock = true;
164 	}
165 
166 	if (lock && ret != -EDEADLK) {
167 		rdev->ref_cnt++;
168 		rdev->mutex_owner = current;
169 	}
170 
171 	mutex_unlock(&regulator_nesting_mutex);
172 
173 	return ret;
174 }
175 
176 /**
177  * regulator_lock - lock a single regulator
178  * @rdev:		regulator source
179  *
180  * This function can be called many times by one task on
181  * a single regulator and its mutex will be locked only
182  * once. If a task, which is calling this function is other
183  * than the one, which initially locked the mutex, it will
184  * wait on mutex.
185  */
186 static void regulator_lock(struct regulator_dev *rdev)
187 {
188 	regulator_lock_nested(rdev, NULL);
189 }
190 
191 /**
192  * regulator_unlock - unlock a single regulator
193  * @rdev:		regulator_source
194  *
195  * This function unlocks the mutex when the
196  * reference counter reaches 0.
197  */
198 static void regulator_unlock(struct regulator_dev *rdev)
199 {
200 	mutex_lock(&regulator_nesting_mutex);
201 
202 	if (--rdev->ref_cnt == 0) {
203 		rdev->mutex_owner = NULL;
204 		ww_mutex_unlock(&rdev->mutex);
205 	}
206 
207 	WARN_ON_ONCE(rdev->ref_cnt < 0);
208 
209 	mutex_unlock(&regulator_nesting_mutex);
210 }
211 
212 /**
213  * regulator_lock_two - lock two regulators
214  * @rdev1:		first regulator
215  * @rdev2:		second regulator
216  * @ww_ctx:		w/w mutex acquire context
217  *
218  * Locks both rdevs using the regulator_ww_class.
219  */
220 static void regulator_lock_two(struct regulator_dev *rdev1,
221 			       struct regulator_dev *rdev2,
222 			       struct ww_acquire_ctx *ww_ctx)
223 {
224 	struct regulator_dev *held, *contended;
225 	int ret;
226 
227 	ww_acquire_init(ww_ctx, &regulator_ww_class);
228 
229 	/* Try to just grab both of them */
230 	ret = regulator_lock_nested(rdev1, ww_ctx);
231 	WARN_ON(ret);
232 	ret = regulator_lock_nested(rdev2, ww_ctx);
233 	if (ret != -EDEADLOCK) {
234 		WARN_ON(ret);
235 		goto exit;
236 	}
237 
238 	held = rdev1;
239 	contended = rdev2;
240 	while (true) {
241 		regulator_unlock(held);
242 
243 		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 		contended->ref_cnt++;
245 		contended->mutex_owner = current;
246 		swap(held, contended);
247 		ret = regulator_lock_nested(contended, ww_ctx);
248 
249 		if (ret != -EDEADLOCK) {
250 			WARN_ON(ret);
251 			break;
252 		}
253 	}
254 
255 exit:
256 	ww_acquire_done(ww_ctx);
257 }
258 
259 /**
260  * regulator_unlock_two - unlock two regulators
261  * @rdev1:		first regulator
262  * @rdev2:		second regulator
263  * @ww_ctx:		w/w mutex acquire context
264  *
265  * The inverse of regulator_lock_two().
266  */
267 
268 static void regulator_unlock_two(struct regulator_dev *rdev1,
269 				 struct regulator_dev *rdev2,
270 				 struct ww_acquire_ctx *ww_ctx)
271 {
272 	regulator_unlock(rdev2);
273 	regulator_unlock(rdev1);
274 	ww_acquire_fini(ww_ctx);
275 }
276 
277 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278 {
279 	struct regulator_dev *c_rdev;
280 	int i;
281 
282 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284 
285 		if (rdev->supply->rdev == c_rdev)
286 			return true;
287 	}
288 
289 	return false;
290 }
291 
292 static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 				       unsigned int n_coupled)
294 {
295 	struct regulator_dev *c_rdev, *supply_rdev;
296 	int i, supply_n_coupled;
297 
298 	for (i = n_coupled; i > 0; i--) {
299 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300 
301 		if (!c_rdev)
302 			continue;
303 
304 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 			supply_rdev = c_rdev->supply->rdev;
306 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307 
308 			regulator_unlock_recursive(supply_rdev,
309 						   supply_n_coupled);
310 		}
311 
312 		regulator_unlock(c_rdev);
313 	}
314 }
315 
316 static int regulator_lock_recursive(struct regulator_dev *rdev,
317 				    struct regulator_dev **new_contended_rdev,
318 				    struct regulator_dev **old_contended_rdev,
319 				    struct ww_acquire_ctx *ww_ctx)
320 {
321 	struct regulator_dev *c_rdev;
322 	int i, err;
323 
324 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326 
327 		if (!c_rdev)
328 			continue;
329 
330 		if (c_rdev != *old_contended_rdev) {
331 			err = regulator_lock_nested(c_rdev, ww_ctx);
332 			if (err) {
333 				if (err == -EDEADLK) {
334 					*new_contended_rdev = c_rdev;
335 					goto err_unlock;
336 				}
337 
338 				/* shouldn't happen */
339 				WARN_ON_ONCE(err != -EALREADY);
340 			}
341 		} else {
342 			*old_contended_rdev = NULL;
343 		}
344 
345 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 			err = regulator_lock_recursive(c_rdev->supply->rdev,
347 						       new_contended_rdev,
348 						       old_contended_rdev,
349 						       ww_ctx);
350 			if (err) {
351 				regulator_unlock(c_rdev);
352 				goto err_unlock;
353 			}
354 		}
355 	}
356 
357 	return 0;
358 
359 err_unlock:
360 	regulator_unlock_recursive(rdev, i);
361 
362 	return err;
363 }
364 
365 /**
366  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367  *				regulators
368  * @rdev:			regulator source
369  * @ww_ctx:			w/w mutex acquire context
370  *
371  * Unlock all regulators related with rdev by coupling or supplying.
372  */
373 static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 				       struct ww_acquire_ctx *ww_ctx)
375 {
376 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 	ww_acquire_fini(ww_ctx);
378 }
379 
380 /**
381  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382  * @rdev:			regulator source
383  * @ww_ctx:			w/w mutex acquire context
384  *
385  * This function as a wrapper on regulator_lock_recursive(), which locks
386  * all regulators related with rdev by coupling or supplying.
387  */
388 static void regulator_lock_dependent(struct regulator_dev *rdev,
389 				     struct ww_acquire_ctx *ww_ctx)
390 {
391 	struct regulator_dev *new_contended_rdev = NULL;
392 	struct regulator_dev *old_contended_rdev = NULL;
393 	int err;
394 
395 	mutex_lock(&regulator_list_mutex);
396 
397 	ww_acquire_init(ww_ctx, &regulator_ww_class);
398 
399 	do {
400 		if (new_contended_rdev) {
401 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 			old_contended_rdev = new_contended_rdev;
403 			old_contended_rdev->ref_cnt++;
404 			old_contended_rdev->mutex_owner = current;
405 		}
406 
407 		err = regulator_lock_recursive(rdev,
408 					       &new_contended_rdev,
409 					       &old_contended_rdev,
410 					       ww_ctx);
411 
412 		if (old_contended_rdev)
413 			regulator_unlock(old_contended_rdev);
414 
415 	} while (err == -EDEADLK);
416 
417 	ww_acquire_done(ww_ctx);
418 
419 	mutex_unlock(&regulator_list_mutex);
420 }
421 
422 /**
423  * of_get_child_regulator - get a child regulator device node
424  * based on supply name
425  * @parent: Parent device node
426  * @prop_name: Combination regulator supply name and "-supply"
427  *
428  * Traverse all child nodes.
429  * Extract the child regulator device node corresponding to the supply name.
430  * returns the device node corresponding to the regulator if found, else
431  * returns NULL.
432  */
433 static struct device_node *of_get_child_regulator(struct device_node *parent,
434 						  const char *prop_name)
435 {
436 	struct device_node *regnode = NULL;
437 	struct device_node *child = NULL;
438 
439 	for_each_child_of_node(parent, child) {
440 		regnode = of_parse_phandle(child, prop_name, 0);
441 
442 		if (!regnode) {
443 			regnode = of_get_child_regulator(child, prop_name);
444 			if (regnode)
445 				goto err_node_put;
446 		} else {
447 			goto err_node_put;
448 		}
449 	}
450 	return NULL;
451 
452 err_node_put:
453 	of_node_put(child);
454 	return regnode;
455 }
456 
457 /**
458  * of_get_regulator - get a regulator device node based on supply name
459  * @dev: Device pointer for the consumer (of regulator) device
460  * @supply: regulator supply name
461  *
462  * Extract the regulator device node corresponding to the supply name.
463  * returns the device node corresponding to the regulator if found, else
464  * returns NULL.
465  */
466 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467 {
468 	struct device_node *regnode = NULL;
469 	char prop_name[64]; /* 64 is max size of property name */
470 
471 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472 
473 	snprintf(prop_name, 64, "%s-supply", supply);
474 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475 
476 	if (!regnode) {
477 		regnode = of_get_child_regulator(dev->of_node, prop_name);
478 		if (regnode)
479 			return regnode;
480 
481 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 				prop_name, dev->of_node);
483 		return NULL;
484 	}
485 	return regnode;
486 }
487 
488 /* Platform voltage constraint check */
489 int regulator_check_voltage(struct regulator_dev *rdev,
490 			    int *min_uV, int *max_uV)
491 {
492 	BUG_ON(*min_uV > *max_uV);
493 
494 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 		rdev_err(rdev, "voltage operation not allowed\n");
496 		return -EPERM;
497 	}
498 
499 	if (*max_uV > rdev->constraints->max_uV)
500 		*max_uV = rdev->constraints->max_uV;
501 	if (*min_uV < rdev->constraints->min_uV)
502 		*min_uV = rdev->constraints->min_uV;
503 
504 	if (*min_uV > *max_uV) {
505 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 			 *min_uV, *max_uV);
507 		return -EINVAL;
508 	}
509 
510 	return 0;
511 }
512 
513 /* return 0 if the state is valid */
514 static int regulator_check_states(suspend_state_t state)
515 {
516 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517 }
518 
519 /* Make sure we select a voltage that suits the needs of all
520  * regulator consumers
521  */
522 int regulator_check_consumers(struct regulator_dev *rdev,
523 			      int *min_uV, int *max_uV,
524 			      suspend_state_t state)
525 {
526 	struct regulator *regulator;
527 	struct regulator_voltage *voltage;
528 
529 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 		voltage = &regulator->voltage[state];
531 		/*
532 		 * Assume consumers that didn't say anything are OK
533 		 * with anything in the constraint range.
534 		 */
535 		if (!voltage->min_uV && !voltage->max_uV)
536 			continue;
537 
538 		if (*max_uV > voltage->max_uV)
539 			*max_uV = voltage->max_uV;
540 		if (*min_uV < voltage->min_uV)
541 			*min_uV = voltage->min_uV;
542 	}
543 
544 	if (*min_uV > *max_uV) {
545 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 			*min_uV, *max_uV);
547 		return -EINVAL;
548 	}
549 
550 	return 0;
551 }
552 
553 /* current constraint check */
554 static int regulator_check_current_limit(struct regulator_dev *rdev,
555 					int *min_uA, int *max_uA)
556 {
557 	BUG_ON(*min_uA > *max_uA);
558 
559 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 		rdev_err(rdev, "current operation not allowed\n");
561 		return -EPERM;
562 	}
563 
564 	if (*max_uA > rdev->constraints->max_uA)
565 		*max_uA = rdev->constraints->max_uA;
566 	if (*min_uA < rdev->constraints->min_uA)
567 		*min_uA = rdev->constraints->min_uA;
568 
569 	if (*min_uA > *max_uA) {
570 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 			 *min_uA, *max_uA);
572 		return -EINVAL;
573 	}
574 
575 	return 0;
576 }
577 
578 /* operating mode constraint check */
579 static int regulator_mode_constrain(struct regulator_dev *rdev,
580 				    unsigned int *mode)
581 {
582 	switch (*mode) {
583 	case REGULATOR_MODE_FAST:
584 	case REGULATOR_MODE_NORMAL:
585 	case REGULATOR_MODE_IDLE:
586 	case REGULATOR_MODE_STANDBY:
587 		break;
588 	default:
589 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 		return -EINVAL;
591 	}
592 
593 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 		rdev_err(rdev, "mode operation not allowed\n");
595 		return -EPERM;
596 	}
597 
598 	/* The modes are bitmasks, the most power hungry modes having
599 	 * the lowest values. If the requested mode isn't supported
600 	 * try higher modes.
601 	 */
602 	while (*mode) {
603 		if (rdev->constraints->valid_modes_mask & *mode)
604 			return 0;
605 		*mode /= 2;
606 	}
607 
608 	return -EINVAL;
609 }
610 
611 static inline struct regulator_state *
612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613 {
614 	if (rdev->constraints == NULL)
615 		return NULL;
616 
617 	switch (state) {
618 	case PM_SUSPEND_STANDBY:
619 		return &rdev->constraints->state_standby;
620 	case PM_SUSPEND_MEM:
621 		return &rdev->constraints->state_mem;
622 	case PM_SUSPEND_MAX:
623 		return &rdev->constraints->state_disk;
624 	default:
625 		return NULL;
626 	}
627 }
628 
629 static const struct regulator_state *
630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631 {
632 	const struct regulator_state *rstate;
633 
634 	rstate = regulator_get_suspend_state(rdev, state);
635 	if (rstate == NULL)
636 		return NULL;
637 
638 	/* If we have no suspend mode configuration don't set anything;
639 	 * only warn if the driver implements set_suspend_voltage or
640 	 * set_suspend_mode callback.
641 	 */
642 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 	    rstate->enabled != DISABLE_IN_SUSPEND) {
644 		if (rdev->desc->ops->set_suspend_voltage ||
645 		    rdev->desc->ops->set_suspend_mode)
646 			rdev_warn(rdev, "No configuration\n");
647 		return NULL;
648 	}
649 
650 	return rstate;
651 }
652 
653 static ssize_t microvolts_show(struct device *dev,
654 			       struct device_attribute *attr, char *buf)
655 {
656 	struct regulator_dev *rdev = dev_get_drvdata(dev);
657 	int uV;
658 
659 	regulator_lock(rdev);
660 	uV = regulator_get_voltage_rdev(rdev);
661 	regulator_unlock(rdev);
662 
663 	if (uV < 0)
664 		return uV;
665 	return sprintf(buf, "%d\n", uV);
666 }
667 static DEVICE_ATTR_RO(microvolts);
668 
669 static ssize_t microamps_show(struct device *dev,
670 			      struct device_attribute *attr, char *buf)
671 {
672 	struct regulator_dev *rdev = dev_get_drvdata(dev);
673 
674 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675 }
676 static DEVICE_ATTR_RO(microamps);
677 
678 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 			 char *buf)
680 {
681 	struct regulator_dev *rdev = dev_get_drvdata(dev);
682 
683 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
684 }
685 static DEVICE_ATTR_RO(name);
686 
687 static const char *regulator_opmode_to_str(int mode)
688 {
689 	switch (mode) {
690 	case REGULATOR_MODE_FAST:
691 		return "fast";
692 	case REGULATOR_MODE_NORMAL:
693 		return "normal";
694 	case REGULATOR_MODE_IDLE:
695 		return "idle";
696 	case REGULATOR_MODE_STANDBY:
697 		return "standby";
698 	}
699 	return "unknown";
700 }
701 
702 static ssize_t regulator_print_opmode(char *buf, int mode)
703 {
704 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705 }
706 
707 static ssize_t opmode_show(struct device *dev,
708 			   struct device_attribute *attr, char *buf)
709 {
710 	struct regulator_dev *rdev = dev_get_drvdata(dev);
711 
712 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713 }
714 static DEVICE_ATTR_RO(opmode);
715 
716 static ssize_t regulator_print_state(char *buf, int state)
717 {
718 	if (state > 0)
719 		return sprintf(buf, "enabled\n");
720 	else if (state == 0)
721 		return sprintf(buf, "disabled\n");
722 	else
723 		return sprintf(buf, "unknown\n");
724 }
725 
726 static ssize_t state_show(struct device *dev,
727 			  struct device_attribute *attr, char *buf)
728 {
729 	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 	ssize_t ret;
731 
732 	regulator_lock(rdev);
733 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 	regulator_unlock(rdev);
735 
736 	return ret;
737 }
738 static DEVICE_ATTR_RO(state);
739 
740 static ssize_t status_show(struct device *dev,
741 			   struct device_attribute *attr, char *buf)
742 {
743 	struct regulator_dev *rdev = dev_get_drvdata(dev);
744 	int status;
745 	char *label;
746 
747 	status = rdev->desc->ops->get_status(rdev);
748 	if (status < 0)
749 		return status;
750 
751 	switch (status) {
752 	case REGULATOR_STATUS_OFF:
753 		label = "off";
754 		break;
755 	case REGULATOR_STATUS_ON:
756 		label = "on";
757 		break;
758 	case REGULATOR_STATUS_ERROR:
759 		label = "error";
760 		break;
761 	case REGULATOR_STATUS_FAST:
762 		label = "fast";
763 		break;
764 	case REGULATOR_STATUS_NORMAL:
765 		label = "normal";
766 		break;
767 	case REGULATOR_STATUS_IDLE:
768 		label = "idle";
769 		break;
770 	case REGULATOR_STATUS_STANDBY:
771 		label = "standby";
772 		break;
773 	case REGULATOR_STATUS_BYPASS:
774 		label = "bypass";
775 		break;
776 	case REGULATOR_STATUS_UNDEFINED:
777 		label = "undefined";
778 		break;
779 	default:
780 		return -ERANGE;
781 	}
782 
783 	return sprintf(buf, "%s\n", label);
784 }
785 static DEVICE_ATTR_RO(status);
786 
787 static ssize_t min_microamps_show(struct device *dev,
788 				  struct device_attribute *attr, char *buf)
789 {
790 	struct regulator_dev *rdev = dev_get_drvdata(dev);
791 
792 	if (!rdev->constraints)
793 		return sprintf(buf, "constraint not defined\n");
794 
795 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796 }
797 static DEVICE_ATTR_RO(min_microamps);
798 
799 static ssize_t max_microamps_show(struct device *dev,
800 				  struct device_attribute *attr, char *buf)
801 {
802 	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 
804 	if (!rdev->constraints)
805 		return sprintf(buf, "constraint not defined\n");
806 
807 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808 }
809 static DEVICE_ATTR_RO(max_microamps);
810 
811 static ssize_t min_microvolts_show(struct device *dev,
812 				   struct device_attribute *attr, char *buf)
813 {
814 	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 
816 	if (!rdev->constraints)
817 		return sprintf(buf, "constraint not defined\n");
818 
819 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820 }
821 static DEVICE_ATTR_RO(min_microvolts);
822 
823 static ssize_t max_microvolts_show(struct device *dev,
824 				   struct device_attribute *attr, char *buf)
825 {
826 	struct regulator_dev *rdev = dev_get_drvdata(dev);
827 
828 	if (!rdev->constraints)
829 		return sprintf(buf, "constraint not defined\n");
830 
831 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832 }
833 static DEVICE_ATTR_RO(max_microvolts);
834 
835 static ssize_t requested_microamps_show(struct device *dev,
836 					struct device_attribute *attr, char *buf)
837 {
838 	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 	struct regulator *regulator;
840 	int uA = 0;
841 
842 	regulator_lock(rdev);
843 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 		if (regulator->enable_count)
845 			uA += regulator->uA_load;
846 	}
847 	regulator_unlock(rdev);
848 	return sprintf(buf, "%d\n", uA);
849 }
850 static DEVICE_ATTR_RO(requested_microamps);
851 
852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 			      char *buf)
854 {
855 	struct regulator_dev *rdev = dev_get_drvdata(dev);
856 	return sprintf(buf, "%d\n", rdev->use_count);
857 }
858 static DEVICE_ATTR_RO(num_users);
859 
860 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 			 char *buf)
862 {
863 	struct regulator_dev *rdev = dev_get_drvdata(dev);
864 
865 	switch (rdev->desc->type) {
866 	case REGULATOR_VOLTAGE:
867 		return sprintf(buf, "voltage\n");
868 	case REGULATOR_CURRENT:
869 		return sprintf(buf, "current\n");
870 	}
871 	return sprintf(buf, "unknown\n");
872 }
873 static DEVICE_ATTR_RO(type);
874 
875 static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 					   struct device_attribute *attr, char *buf)
877 {
878 	struct regulator_dev *rdev = dev_get_drvdata(dev);
879 
880 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881 }
882 static DEVICE_ATTR_RO(suspend_mem_microvolts);
883 
884 static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 					    struct device_attribute *attr, char *buf)
886 {
887 	struct regulator_dev *rdev = dev_get_drvdata(dev);
888 
889 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890 }
891 static DEVICE_ATTR_RO(suspend_disk_microvolts);
892 
893 static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 					       struct device_attribute *attr, char *buf)
895 {
896 	struct regulator_dev *rdev = dev_get_drvdata(dev);
897 
898 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899 }
900 static DEVICE_ATTR_RO(suspend_standby_microvolts);
901 
902 static ssize_t suspend_mem_mode_show(struct device *dev,
903 				     struct device_attribute *attr, char *buf)
904 {
905 	struct regulator_dev *rdev = dev_get_drvdata(dev);
906 
907 	return regulator_print_opmode(buf,
908 		rdev->constraints->state_mem.mode);
909 }
910 static DEVICE_ATTR_RO(suspend_mem_mode);
911 
912 static ssize_t suspend_disk_mode_show(struct device *dev,
913 				      struct device_attribute *attr, char *buf)
914 {
915 	struct regulator_dev *rdev = dev_get_drvdata(dev);
916 
917 	return regulator_print_opmode(buf,
918 		rdev->constraints->state_disk.mode);
919 }
920 static DEVICE_ATTR_RO(suspend_disk_mode);
921 
922 static ssize_t suspend_standby_mode_show(struct device *dev,
923 					 struct device_attribute *attr, char *buf)
924 {
925 	struct regulator_dev *rdev = dev_get_drvdata(dev);
926 
927 	return regulator_print_opmode(buf,
928 		rdev->constraints->state_standby.mode);
929 }
930 static DEVICE_ATTR_RO(suspend_standby_mode);
931 
932 static ssize_t suspend_mem_state_show(struct device *dev,
933 				      struct device_attribute *attr, char *buf)
934 {
935 	struct regulator_dev *rdev = dev_get_drvdata(dev);
936 
937 	return regulator_print_state(buf,
938 			rdev->constraints->state_mem.enabled);
939 }
940 static DEVICE_ATTR_RO(suspend_mem_state);
941 
942 static ssize_t suspend_disk_state_show(struct device *dev,
943 				       struct device_attribute *attr, char *buf)
944 {
945 	struct regulator_dev *rdev = dev_get_drvdata(dev);
946 
947 	return regulator_print_state(buf,
948 			rdev->constraints->state_disk.enabled);
949 }
950 static DEVICE_ATTR_RO(suspend_disk_state);
951 
952 static ssize_t suspend_standby_state_show(struct device *dev,
953 					  struct device_attribute *attr, char *buf)
954 {
955 	struct regulator_dev *rdev = dev_get_drvdata(dev);
956 
957 	return regulator_print_state(buf,
958 			rdev->constraints->state_standby.enabled);
959 }
960 static DEVICE_ATTR_RO(suspend_standby_state);
961 
962 static ssize_t bypass_show(struct device *dev,
963 			   struct device_attribute *attr, char *buf)
964 {
965 	struct regulator_dev *rdev = dev_get_drvdata(dev);
966 	const char *report;
967 	bool bypass;
968 	int ret;
969 
970 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971 
972 	if (ret != 0)
973 		report = "unknown";
974 	else if (bypass)
975 		report = "enabled";
976 	else
977 		report = "disabled";
978 
979 	return sprintf(buf, "%s\n", report);
980 }
981 static DEVICE_ATTR_RO(bypass);
982 
983 #define REGULATOR_ERROR_ATTR(name, bit)							\
984 	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
985 				   char *buf)						\
986 	{										\
987 		int ret;								\
988 		unsigned int flags;							\
989 		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
990 		ret = _regulator_get_error_flags(rdev, &flags);				\
991 		if (ret)								\
992 			return ret;							\
993 		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
994 	}										\
995 	static DEVICE_ATTR_RO(name)
996 
997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006 
1007 /* Calculate the new optimum regulator operating mode based on the new total
1008  * consumer load. All locks held by caller
1009  */
1010 static int drms_uA_update(struct regulator_dev *rdev)
1011 {
1012 	struct regulator *sibling;
1013 	int current_uA = 0, output_uV, input_uV, err;
1014 	unsigned int mode;
1015 
1016 	/*
1017 	 * first check to see if we can set modes at all, otherwise just
1018 	 * tell the consumer everything is OK.
1019 	 */
1020 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 		return 0;
1023 	}
1024 
1025 	if (!rdev->desc->ops->get_optimum_mode &&
1026 	    !rdev->desc->ops->set_load)
1027 		return 0;
1028 
1029 	if (!rdev->desc->ops->set_mode &&
1030 	    !rdev->desc->ops->set_load)
1031 		return -EINVAL;
1032 
1033 	/* calc total requested load */
1034 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 		if (sibling->enable_count)
1036 			current_uA += sibling->uA_load;
1037 	}
1038 
1039 	current_uA += rdev->constraints->system_load;
1040 
1041 	if (rdev->desc->ops->set_load) {
1042 		/* set the optimum mode for our new total regulator load */
1043 		err = rdev->desc->ops->set_load(rdev, current_uA);
1044 		if (err < 0)
1045 			rdev_err(rdev, "failed to set load %d: %pe\n",
1046 				 current_uA, ERR_PTR(err));
1047 	} else {
1048 		/*
1049 		 * Unfortunately in some cases the constraints->valid_ops has
1050 		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 		 * That's not really legit but we won't consider it a fatal
1052 		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 		 * wasn't set.
1054 		 */
1055 		if (!rdev->constraints->valid_modes_mask) {
1056 			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 			return 0;
1058 		}
1059 
1060 		/* get output voltage */
1061 		output_uV = regulator_get_voltage_rdev(rdev);
1062 
1063 		/*
1064 		 * Don't return an error; if regulator driver cares about
1065 		 * output_uV then it's up to the driver to validate.
1066 		 */
1067 		if (output_uV <= 0)
1068 			rdev_dbg(rdev, "invalid output voltage found\n");
1069 
1070 		/* get input voltage */
1071 		input_uV = 0;
1072 		if (rdev->supply)
1073 			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 		if (input_uV <= 0)
1075 			input_uV = rdev->constraints->input_uV;
1076 
1077 		/*
1078 		 * Don't return an error; if regulator driver cares about
1079 		 * input_uV then it's up to the driver to validate.
1080 		 */
1081 		if (input_uV <= 0)
1082 			rdev_dbg(rdev, "invalid input voltage found\n");
1083 
1084 		/* now get the optimum mode for our new total regulator load */
1085 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 							 output_uV, current_uA);
1087 
1088 		/* check the new mode is allowed */
1089 		err = regulator_mode_constrain(rdev, &mode);
1090 		if (err < 0) {
1091 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 			return err;
1094 		}
1095 
1096 		err = rdev->desc->ops->set_mode(rdev, mode);
1097 		if (err < 0)
1098 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 				 mode, ERR_PTR(err));
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 static int __suspend_set_state(struct regulator_dev *rdev,
1106 			       const struct regulator_state *rstate)
1107 {
1108 	int ret = 0;
1109 
1110 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 		rdev->desc->ops->set_suspend_enable)
1112 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 		rdev->desc->ops->set_suspend_disable)
1115 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 		ret = 0;
1118 
1119 	if (ret < 0) {
1120 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 		return ret;
1122 	}
1123 
1124 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 		if (ret < 0) {
1127 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 		if (ret < 0) {
1135 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 			return ret;
1137 		}
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static int suspend_set_initial_state(struct regulator_dev *rdev)
1144 {
1145 	const struct regulator_state *rstate;
1146 
1147 	rstate = regulator_get_suspend_state_check(rdev,
1148 			rdev->constraints->initial_state);
1149 	if (!rstate)
1150 		return 0;
1151 
1152 	return __suspend_set_state(rdev, rstate);
1153 }
1154 
1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156 static void print_constraints_debug(struct regulator_dev *rdev)
1157 {
1158 	struct regulation_constraints *constraints = rdev->constraints;
1159 	char buf[160] = "";
1160 	size_t len = sizeof(buf) - 1;
1161 	int count = 0;
1162 	int ret;
1163 
1164 	if (constraints->min_uV && constraints->max_uV) {
1165 		if (constraints->min_uV == constraints->max_uV)
1166 			count += scnprintf(buf + count, len - count, "%d mV ",
1167 					   constraints->min_uV / 1000);
1168 		else
1169 			count += scnprintf(buf + count, len - count,
1170 					   "%d <--> %d mV ",
1171 					   constraints->min_uV / 1000,
1172 					   constraints->max_uV / 1000);
1173 	}
1174 
1175 	if (!constraints->min_uV ||
1176 	    constraints->min_uV != constraints->max_uV) {
1177 		ret = regulator_get_voltage_rdev(rdev);
1178 		if (ret > 0)
1179 			count += scnprintf(buf + count, len - count,
1180 					   "at %d mV ", ret / 1000);
1181 	}
1182 
1183 	if (constraints->uV_offset)
1184 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 				   constraints->uV_offset / 1000);
1186 
1187 	if (constraints->min_uA && constraints->max_uA) {
1188 		if (constraints->min_uA == constraints->max_uA)
1189 			count += scnprintf(buf + count, len - count, "%d mA ",
1190 					   constraints->min_uA / 1000);
1191 		else
1192 			count += scnprintf(buf + count, len - count,
1193 					   "%d <--> %d mA ",
1194 					   constraints->min_uA / 1000,
1195 					   constraints->max_uA / 1000);
1196 	}
1197 
1198 	if (!constraints->min_uA ||
1199 	    constraints->min_uA != constraints->max_uA) {
1200 		ret = _regulator_get_current_limit(rdev);
1201 		if (ret > 0)
1202 			count += scnprintf(buf + count, len - count,
1203 					   "at %d mA ", ret / 1000);
1204 	}
1205 
1206 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 		count += scnprintf(buf + count, len - count, "fast ");
1208 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 		count += scnprintf(buf + count, len - count, "normal ");
1210 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 		count += scnprintf(buf + count, len - count, "idle ");
1212 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 		count += scnprintf(buf + count, len - count, "standby ");
1214 
1215 	if (!count)
1216 		count = scnprintf(buf, len, "no parameters");
1217 	else
1218 		--count;
1219 
1220 	count += scnprintf(buf + count, len - count, ", %s",
1221 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222 
1223 	rdev_dbg(rdev, "%s\n", buf);
1224 }
1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228 
1229 static void print_constraints(struct regulator_dev *rdev)
1230 {
1231 	struct regulation_constraints *constraints = rdev->constraints;
1232 
1233 	print_constraints_debug(rdev);
1234 
1235 	if ((constraints->min_uV != constraints->max_uV) &&
1236 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 		rdev_warn(rdev,
1238 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239 }
1240 
1241 static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 	struct regulation_constraints *constraints)
1243 {
1244 	const struct regulator_ops *ops = rdev->desc->ops;
1245 	int ret;
1246 
1247 	/* do we need to apply the constraint voltage */
1248 	if (rdev->constraints->apply_uV &&
1249 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 		int target_min, target_max;
1251 		int current_uV = regulator_get_voltage_rdev(rdev);
1252 
1253 		if (current_uV == -ENOTRECOVERABLE) {
1254 			/* This regulator can't be read and must be initialized */
1255 			rdev_info(rdev, "Setting %d-%duV\n",
1256 				  rdev->constraints->min_uV,
1257 				  rdev->constraints->max_uV);
1258 			_regulator_do_set_voltage(rdev,
1259 						  rdev->constraints->min_uV,
1260 						  rdev->constraints->max_uV);
1261 			current_uV = regulator_get_voltage_rdev(rdev);
1262 		}
1263 
1264 		if (current_uV < 0) {
1265 			if (current_uV != -EPROBE_DEFER)
1266 				rdev_err(rdev,
1267 					 "failed to get the current voltage: %pe\n",
1268 					 ERR_PTR(current_uV));
1269 			return current_uV;
1270 		}
1271 
1272 		/*
1273 		 * If we're below the minimum voltage move up to the
1274 		 * minimum voltage, if we're above the maximum voltage
1275 		 * then move down to the maximum.
1276 		 */
1277 		target_min = current_uV;
1278 		target_max = current_uV;
1279 
1280 		if (current_uV < rdev->constraints->min_uV) {
1281 			target_min = rdev->constraints->min_uV;
1282 			target_max = rdev->constraints->min_uV;
1283 		}
1284 
1285 		if (current_uV > rdev->constraints->max_uV) {
1286 			target_min = rdev->constraints->max_uV;
1287 			target_max = rdev->constraints->max_uV;
1288 		}
1289 
1290 		if (target_min != current_uV || target_max != current_uV) {
1291 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 				  current_uV, target_min, target_max);
1293 			ret = _regulator_do_set_voltage(
1294 				rdev, target_min, target_max);
1295 			if (ret < 0) {
1296 				rdev_err(rdev,
1297 					"failed to apply %d-%duV constraint: %pe\n",
1298 					target_min, target_max, ERR_PTR(ret));
1299 				return ret;
1300 			}
1301 		}
1302 	}
1303 
1304 	/* constrain machine-level voltage specs to fit
1305 	 * the actual range supported by this regulator.
1306 	 */
1307 	if (ops->list_voltage && rdev->desc->n_voltages) {
1308 		int	count = rdev->desc->n_voltages;
1309 		int	i;
1310 		int	min_uV = INT_MAX;
1311 		int	max_uV = INT_MIN;
1312 		int	cmin = constraints->min_uV;
1313 		int	cmax = constraints->max_uV;
1314 
1315 		/* it's safe to autoconfigure fixed-voltage supplies
1316 		 * and the constraints are used by list_voltage.
1317 		 */
1318 		if (count == 1 && !cmin) {
1319 			cmin = 1;
1320 			cmax = INT_MAX;
1321 			constraints->min_uV = cmin;
1322 			constraints->max_uV = cmax;
1323 		}
1324 
1325 		/* voltage constraints are optional */
1326 		if ((cmin == 0) && (cmax == 0))
1327 			return 0;
1328 
1329 		/* else require explicit machine-level constraints */
1330 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 			rdev_err(rdev, "invalid voltage constraints\n");
1332 			return -EINVAL;
1333 		}
1334 
1335 		/* no need to loop voltages if range is continuous */
1336 		if (rdev->desc->continuous_voltage_range)
1337 			return 0;
1338 
1339 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 		for (i = 0; i < count; i++) {
1341 			int	value;
1342 
1343 			value = ops->list_voltage(rdev, i);
1344 			if (value <= 0)
1345 				continue;
1346 
1347 			/* maybe adjust [min_uV..max_uV] */
1348 			if (value >= cmin && value < min_uV)
1349 				min_uV = value;
1350 			if (value <= cmax && value > max_uV)
1351 				max_uV = value;
1352 		}
1353 
1354 		/* final: [min_uV..max_uV] valid iff constraints valid */
1355 		if (max_uV < min_uV) {
1356 			rdev_err(rdev,
1357 				 "unsupportable voltage constraints %u-%uuV\n",
1358 				 min_uV, max_uV);
1359 			return -EINVAL;
1360 		}
1361 
1362 		/* use regulator's subset of machine constraints */
1363 		if (constraints->min_uV < min_uV) {
1364 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 				 constraints->min_uV, min_uV);
1366 			constraints->min_uV = min_uV;
1367 		}
1368 		if (constraints->max_uV > max_uV) {
1369 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 				 constraints->max_uV, max_uV);
1371 			constraints->max_uV = max_uV;
1372 		}
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int machine_constraints_current(struct regulator_dev *rdev,
1379 	struct regulation_constraints *constraints)
1380 {
1381 	const struct regulator_ops *ops = rdev->desc->ops;
1382 	int ret;
1383 
1384 	if (!constraints->min_uA && !constraints->max_uA)
1385 		return 0;
1386 
1387 	if (constraints->min_uA > constraints->max_uA) {
1388 		rdev_err(rdev, "Invalid current constraints\n");
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (!ops->set_current_limit || !ops->get_current_limit) {
1393 		rdev_warn(rdev, "Operation of current configuration missing\n");
1394 		return 0;
1395 	}
1396 
1397 	/* Set regulator current in constraints range */
1398 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 			constraints->max_uA);
1400 	if (ret < 0) {
1401 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 		return ret;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int _regulator_do_enable(struct regulator_dev *rdev);
1409 
1410 static int notif_set_limit(struct regulator_dev *rdev,
1411 			   int (*set)(struct regulator_dev *, int, int, bool),
1412 			   int limit, int severity)
1413 {
1414 	bool enable;
1415 
1416 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 		enable = false;
1418 		limit = 0;
1419 	} else {
1420 		enable = true;
1421 	}
1422 
1423 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 		limit = 0;
1425 
1426 	return set(rdev, limit, severity, enable);
1427 }
1428 
1429 static int handle_notify_limits(struct regulator_dev *rdev,
1430 			int (*set)(struct regulator_dev *, int, int, bool),
1431 			struct notification_limit *limits)
1432 {
1433 	int ret = 0;
1434 
1435 	if (!set)
1436 		return -EOPNOTSUPP;
1437 
1438 	if (limits->prot)
1439 		ret = notif_set_limit(rdev, set, limits->prot,
1440 				      REGULATOR_SEVERITY_PROT);
1441 	if (ret)
1442 		return ret;
1443 
1444 	if (limits->err)
1445 		ret = notif_set_limit(rdev, set, limits->err,
1446 				      REGULATOR_SEVERITY_ERR);
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (limits->warn)
1451 		ret = notif_set_limit(rdev, set, limits->warn,
1452 				      REGULATOR_SEVERITY_WARN);
1453 
1454 	return ret;
1455 }
1456 /**
1457  * set_machine_constraints - sets regulator constraints
1458  * @rdev: regulator source
1459  *
1460  * Allows platform initialisation code to define and constrain
1461  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462  * Constraints *must* be set by platform code in order for some
1463  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464  * set_mode.
1465  */
1466 static int set_machine_constraints(struct regulator_dev *rdev)
1467 {
1468 	int ret = 0;
1469 	const struct regulator_ops *ops = rdev->desc->ops;
1470 
1471 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 	if (ret != 0)
1473 		return ret;
1474 
1475 	ret = machine_constraints_current(rdev, rdev->constraints);
1476 	if (ret != 0)
1477 		return ret;
1478 
1479 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 		ret = ops->set_input_current_limit(rdev,
1481 						   rdev->constraints->ilim_uA);
1482 		if (ret < 0) {
1483 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 			return ret;
1485 		}
1486 	}
1487 
1488 	/* do we need to setup our suspend state */
1489 	if (rdev->constraints->initial_state) {
1490 		ret = suspend_set_initial_state(rdev);
1491 		if (ret < 0) {
1492 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 			return ret;
1494 		}
1495 	}
1496 
1497 	if (rdev->constraints->initial_mode) {
1498 		if (!ops->set_mode) {
1499 			rdev_err(rdev, "no set_mode operation\n");
1500 			return -EINVAL;
1501 		}
1502 
1503 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 		if (ret < 0) {
1505 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 			return ret;
1507 		}
1508 	} else if (rdev->constraints->system_load) {
1509 		/*
1510 		 * We'll only apply the initial system load if an
1511 		 * initial mode wasn't specified.
1512 		 */
1513 		drms_uA_update(rdev);
1514 	}
1515 
1516 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 		&& ops->set_ramp_delay) {
1518 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 		if (ret < 0) {
1520 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 			return ret;
1522 		}
1523 	}
1524 
1525 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 		ret = ops->set_pull_down(rdev);
1527 		if (ret < 0) {
1528 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 			return ret;
1530 		}
1531 	}
1532 
1533 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 		ret = ops->set_soft_start(rdev);
1535 		if (ret < 0) {
1536 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 			return ret;
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Existing logic does not warn if over_current_protection is given as
1543 	 * a constraint but driver does not support that. I think we should
1544 	 * warn about this type of issues as it is possible someone changes
1545 	 * PMIC on board to another type - and the another PMIC's driver does
1546 	 * not support setting protection. Board composer may happily believe
1547 	 * the DT limits are respected - especially if the new PMIC HW also
1548 	 * supports protection but the driver does not. I won't change the logic
1549 	 * without hearing more experienced opinion on this though.
1550 	 *
1551 	 * If warning is seen as a good idea then we can merge handling the
1552 	 * over-curret protection and detection and get rid of this special
1553 	 * handling.
1554 	 */
1555 	if (rdev->constraints->over_current_protection
1556 		&& ops->set_over_current_protection) {
1557 		int lim = rdev->constraints->over_curr_limits.prot;
1558 
1559 		ret = ops->set_over_current_protection(rdev, lim,
1560 						       REGULATOR_SEVERITY_PROT,
1561 						       true);
1562 		if (ret < 0) {
1563 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 				 ERR_PTR(ret));
1565 			return ret;
1566 		}
1567 	}
1568 
1569 	if (rdev->constraints->over_current_detection)
1570 		ret = handle_notify_limits(rdev,
1571 					   ops->set_over_current_protection,
1572 					   &rdev->constraints->over_curr_limits);
1573 	if (ret) {
1574 		if (ret != -EOPNOTSUPP) {
1575 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 				 ERR_PTR(ret));
1577 			return ret;
1578 		}
1579 		rdev_warn(rdev,
1580 			  "IC does not support requested over-current limits\n");
1581 	}
1582 
1583 	if (rdev->constraints->over_voltage_detection)
1584 		ret = handle_notify_limits(rdev,
1585 					   ops->set_over_voltage_protection,
1586 					   &rdev->constraints->over_voltage_limits);
1587 	if (ret) {
1588 		if (ret != -EOPNOTSUPP) {
1589 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 				 ERR_PTR(ret));
1591 			return ret;
1592 		}
1593 		rdev_warn(rdev,
1594 			  "IC does not support requested over voltage limits\n");
1595 	}
1596 
1597 	if (rdev->constraints->under_voltage_detection)
1598 		ret = handle_notify_limits(rdev,
1599 					   ops->set_under_voltage_protection,
1600 					   &rdev->constraints->under_voltage_limits);
1601 	if (ret) {
1602 		if (ret != -EOPNOTSUPP) {
1603 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 				 ERR_PTR(ret));
1605 			return ret;
1606 		}
1607 		rdev_warn(rdev,
1608 			  "IC does not support requested under voltage limits\n");
1609 	}
1610 
1611 	if (rdev->constraints->over_temp_detection)
1612 		ret = handle_notify_limits(rdev,
1613 					   ops->set_thermal_protection,
1614 					   &rdev->constraints->temp_limits);
1615 	if (ret) {
1616 		if (ret != -EOPNOTSUPP) {
1617 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 				 ERR_PTR(ret));
1619 			return ret;
1620 		}
1621 		rdev_warn(rdev,
1622 			  "IC does not support requested temperature limits\n");
1623 	}
1624 
1625 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 		bool ad_state = (rdev->constraints->active_discharge ==
1627 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628 
1629 		ret = ops->set_active_discharge(rdev, ad_state);
1630 		if (ret < 0) {
1631 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 			return ret;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * If there is no mechanism for controlling the regulator then
1638 	 * flag it as always_on so we don't end up duplicating checks
1639 	 * for this so much.  Note that we could control the state of
1640 	 * a supply to control the output on a regulator that has no
1641 	 * direct control.
1642 	 */
1643 	if (!rdev->ena_pin && !ops->enable) {
1644 		if (rdev->supply_name && !rdev->supply)
1645 			return -EPROBE_DEFER;
1646 
1647 		if (rdev->supply)
1648 			rdev->constraints->always_on =
1649 				rdev->supply->rdev->constraints->always_on;
1650 		else
1651 			rdev->constraints->always_on = true;
1652 	}
1653 
1654 	/* If the constraints say the regulator should be on at this point
1655 	 * and we have control then make sure it is enabled.
1656 	 */
1657 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 		/* If we want to enable this regulator, make sure that we know
1659 		 * the supplying regulator.
1660 		 */
1661 		if (rdev->supply_name && !rdev->supply)
1662 			return -EPROBE_DEFER;
1663 
1664 		/* If supplying regulator has already been enabled,
1665 		 * it's not intended to have use_count increment
1666 		 * when rdev is only boot-on.
1667 		 */
1668 		if (rdev->supply &&
1669 		    (rdev->constraints->always_on ||
1670 		     !regulator_is_enabled(rdev->supply))) {
1671 			ret = regulator_enable(rdev->supply);
1672 			if (ret < 0) {
1673 				_regulator_put(rdev->supply);
1674 				rdev->supply = NULL;
1675 				return ret;
1676 			}
1677 		}
1678 
1679 		ret = _regulator_do_enable(rdev);
1680 		if (ret < 0 && ret != -EINVAL) {
1681 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 			return ret;
1683 		}
1684 
1685 		if (rdev->constraints->always_on)
1686 			rdev->use_count++;
1687 	} else if (rdev->desc->off_on_delay) {
1688 		rdev->last_off = ktime_get();
1689 	}
1690 
1691 	print_constraints(rdev);
1692 	return 0;
1693 }
1694 
1695 /**
1696  * set_supply - set regulator supply regulator
1697  * @rdev: regulator (locked)
1698  * @supply_rdev: supply regulator (locked))
1699  *
1700  * Called by platform initialisation code to set the supply regulator for this
1701  * regulator. This ensures that a regulators supply will also be enabled by the
1702  * core if it's child is enabled.
1703  */
1704 static int set_supply(struct regulator_dev *rdev,
1705 		      struct regulator_dev *supply_rdev)
1706 {
1707 	int err;
1708 
1709 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710 
1711 	if (!try_module_get(supply_rdev->owner))
1712 		return -ENODEV;
1713 
1714 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 	if (rdev->supply == NULL) {
1716 		module_put(supply_rdev->owner);
1717 		err = -ENOMEM;
1718 		return err;
1719 	}
1720 	supply_rdev->open_count++;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727  * @rdev:         regulator source
1728  * @consumer_dev_name: dev_name() string for device supply applies to
1729  * @supply:       symbolic name for supply
1730  *
1731  * Allows platform initialisation code to map physical regulator
1732  * sources to symbolic names for supplies for use by devices.  Devices
1733  * should use these symbolic names to request regulators, avoiding the
1734  * need to provide board-specific regulator names as platform data.
1735  */
1736 static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 				      const char *consumer_dev_name,
1738 				      const char *supply)
1739 {
1740 	struct regulator_map *node, *new_node;
1741 	int has_dev;
1742 
1743 	if (supply == NULL)
1744 		return -EINVAL;
1745 
1746 	if (consumer_dev_name != NULL)
1747 		has_dev = 1;
1748 	else
1749 		has_dev = 0;
1750 
1751 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 	if (new_node == NULL)
1753 		return -ENOMEM;
1754 
1755 	new_node->regulator = rdev;
1756 	new_node->supply = supply;
1757 
1758 	if (has_dev) {
1759 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 		if (new_node->dev_name == NULL) {
1761 			kfree(new_node);
1762 			return -ENOMEM;
1763 		}
1764 	}
1765 
1766 	mutex_lock(&regulator_list_mutex);
1767 	list_for_each_entry(node, &regulator_map_list, list) {
1768 		if (node->dev_name && consumer_dev_name) {
1769 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 				continue;
1771 		} else if (node->dev_name || consumer_dev_name) {
1772 			continue;
1773 		}
1774 
1775 		if (strcmp(node->supply, supply) != 0)
1776 			continue;
1777 
1778 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 			 consumer_dev_name,
1780 			 dev_name(&node->regulator->dev),
1781 			 node->regulator->desc->name,
1782 			 supply,
1783 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 		goto fail;
1785 	}
1786 
1787 	list_add(&new_node->list, &regulator_map_list);
1788 	mutex_unlock(&regulator_list_mutex);
1789 
1790 	return 0;
1791 
1792 fail:
1793 	mutex_unlock(&regulator_list_mutex);
1794 	kfree(new_node->dev_name);
1795 	kfree(new_node);
1796 	return -EBUSY;
1797 }
1798 
1799 static void unset_regulator_supplies(struct regulator_dev *rdev)
1800 {
1801 	struct regulator_map *node, *n;
1802 
1803 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804 		if (rdev == node->regulator) {
1805 			list_del(&node->list);
1806 			kfree(node->dev_name);
1807 			kfree(node);
1808 		}
1809 	}
1810 }
1811 
1812 #ifdef CONFIG_DEBUG_FS
1813 static ssize_t constraint_flags_read_file(struct file *file,
1814 					  char __user *user_buf,
1815 					  size_t count, loff_t *ppos)
1816 {
1817 	const struct regulator *regulator = file->private_data;
1818 	const struct regulation_constraints *c = regulator->rdev->constraints;
1819 	char *buf;
1820 	ssize_t ret;
1821 
1822 	if (!c)
1823 		return 0;
1824 
1825 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 	if (!buf)
1827 		return -ENOMEM;
1828 
1829 	ret = snprintf(buf, PAGE_SIZE,
1830 			"always_on: %u\n"
1831 			"boot_on: %u\n"
1832 			"apply_uV: %u\n"
1833 			"ramp_disable: %u\n"
1834 			"soft_start: %u\n"
1835 			"pull_down: %u\n"
1836 			"over_current_protection: %u\n",
1837 			c->always_on,
1838 			c->boot_on,
1839 			c->apply_uV,
1840 			c->ramp_disable,
1841 			c->soft_start,
1842 			c->pull_down,
1843 			c->over_current_protection);
1844 
1845 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 	kfree(buf);
1847 
1848 	return ret;
1849 }
1850 
1851 #endif
1852 
1853 static const struct file_operations constraint_flags_fops = {
1854 #ifdef CONFIG_DEBUG_FS
1855 	.open = simple_open,
1856 	.read = constraint_flags_read_file,
1857 	.llseek = default_llseek,
1858 #endif
1859 };
1860 
1861 #define REG_STR_SIZE	64
1862 
1863 static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 					  struct device *dev,
1865 					  const char *supply_name)
1866 {
1867 	struct regulator *regulator;
1868 	int err = 0;
1869 
1870 	lockdep_assert_held_once(&rdev->mutex.base);
1871 
1872 	if (dev) {
1873 		char buf[REG_STR_SIZE];
1874 		int size;
1875 
1876 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 				dev->kobj.name, supply_name);
1878 		if (size >= REG_STR_SIZE)
1879 			return NULL;
1880 
1881 		supply_name = kstrdup(buf, GFP_KERNEL);
1882 		if (supply_name == NULL)
1883 			return NULL;
1884 	} else {
1885 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 		if (supply_name == NULL)
1887 			return NULL;
1888 	}
1889 
1890 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 	if (regulator == NULL) {
1892 		kfree_const(supply_name);
1893 		return NULL;
1894 	}
1895 
1896 	regulator->rdev = rdev;
1897 	regulator->supply_name = supply_name;
1898 
1899 	list_add(&regulator->list, &rdev->consumer_list);
1900 
1901 	if (dev) {
1902 		regulator->dev = dev;
1903 
1904 		/* Add a link to the device sysfs entry */
1905 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 					       supply_name);
1907 		if (err) {
1908 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 				  dev->kobj.name, ERR_PTR(err));
1910 			/* non-fatal */
1911 		}
1912 	}
1913 
1914 	if (err != -EEXIST) {
1915 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 		if (IS_ERR(regulator->debugfs)) {
1917 			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 			regulator->debugfs = NULL;
1919 		}
1920 	}
1921 
1922 	if (regulator->debugfs) {
1923 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 				   &regulator->uA_load);
1925 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1927 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1929 		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 				    regulator, &constraint_flags_fops);
1931 	}
1932 
1933 	/*
1934 	 * Check now if the regulator is an always on regulator - if
1935 	 * it is then we don't need to do nearly so much work for
1936 	 * enable/disable calls.
1937 	 */
1938 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 	    _regulator_is_enabled(rdev))
1940 		regulator->always_on = true;
1941 
1942 	return regulator;
1943 }
1944 
1945 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946 {
1947 	if (rdev->constraints && rdev->constraints->enable_time)
1948 		return rdev->constraints->enable_time;
1949 	if (rdev->desc->ops->enable_time)
1950 		return rdev->desc->ops->enable_time(rdev);
1951 	return rdev->desc->enable_time;
1952 }
1953 
1954 static struct regulator_supply_alias *regulator_find_supply_alias(
1955 		struct device *dev, const char *supply)
1956 {
1957 	struct regulator_supply_alias *map;
1958 
1959 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1960 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 			return map;
1962 
1963 	return NULL;
1964 }
1965 
1966 static void regulator_supply_alias(struct device **dev, const char **supply)
1967 {
1968 	struct regulator_supply_alias *map;
1969 
1970 	map = regulator_find_supply_alias(*dev, *supply);
1971 	if (map) {
1972 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 				*supply, map->alias_supply,
1974 				dev_name(map->alias_dev));
1975 		*dev = map->alias_dev;
1976 		*supply = map->alias_supply;
1977 	}
1978 }
1979 
1980 static int regulator_match(struct device *dev, const void *data)
1981 {
1982 	struct regulator_dev *r = dev_to_rdev(dev);
1983 
1984 	return strcmp(rdev_get_name(r), data) == 0;
1985 }
1986 
1987 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988 {
1989 	struct device *dev;
1990 
1991 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1992 
1993 	return dev ? dev_to_rdev(dev) : NULL;
1994 }
1995 
1996 /**
1997  * regulator_dev_lookup - lookup a regulator device.
1998  * @dev: device for regulator "consumer".
1999  * @supply: Supply name or regulator ID.
2000  *
2001  * If successful, returns a struct regulator_dev that corresponds to the name
2002  * @supply and with the embedded struct device refcount incremented by one.
2003  * The refcount must be dropped by calling put_device().
2004  * On failure one of the following ERR-PTR-encoded values is returned:
2005  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006  * in the future.
2007  */
2008 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 						  const char *supply)
2010 {
2011 	struct regulator_dev *r = NULL;
2012 	struct device_node *node;
2013 	struct regulator_map *map;
2014 	const char *devname = NULL;
2015 
2016 	regulator_supply_alias(&dev, &supply);
2017 
2018 	/* first do a dt based lookup */
2019 	if (dev && dev->of_node) {
2020 		node = of_get_regulator(dev, supply);
2021 		if (node) {
2022 			r = of_find_regulator_by_node(node);
2023 			of_node_put(node);
2024 			if (r)
2025 				return r;
2026 
2027 			/*
2028 			 * We have a node, but there is no device.
2029 			 * assume it has not registered yet.
2030 			 */
2031 			return ERR_PTR(-EPROBE_DEFER);
2032 		}
2033 	}
2034 
2035 	/* if not found, try doing it non-dt way */
2036 	if (dev)
2037 		devname = dev_name(dev);
2038 
2039 	mutex_lock(&regulator_list_mutex);
2040 	list_for_each_entry(map, &regulator_map_list, list) {
2041 		/* If the mapping has a device set up it must match */
2042 		if (map->dev_name &&
2043 		    (!devname || strcmp(map->dev_name, devname)))
2044 			continue;
2045 
2046 		if (strcmp(map->supply, supply) == 0 &&
2047 		    get_device(&map->regulator->dev)) {
2048 			r = map->regulator;
2049 			break;
2050 		}
2051 	}
2052 	mutex_unlock(&regulator_list_mutex);
2053 
2054 	if (r)
2055 		return r;
2056 
2057 	r = regulator_lookup_by_name(supply);
2058 	if (r)
2059 		return r;
2060 
2061 	return ERR_PTR(-ENODEV);
2062 }
2063 
2064 static int regulator_resolve_supply(struct regulator_dev *rdev)
2065 {
2066 	struct regulator_dev *r;
2067 	struct device *dev = rdev->dev.parent;
2068 	struct ww_acquire_ctx ww_ctx;
2069 	int ret = 0;
2070 
2071 	/* No supply to resolve? */
2072 	if (!rdev->supply_name)
2073 		return 0;
2074 
2075 	/* Supply already resolved? (fast-path without locking contention) */
2076 	if (rdev->supply)
2077 		return 0;
2078 
2079 	r = regulator_dev_lookup(dev, rdev->supply_name);
2080 	if (IS_ERR(r)) {
2081 		ret = PTR_ERR(r);
2082 
2083 		/* Did the lookup explicitly defer for us? */
2084 		if (ret == -EPROBE_DEFER)
2085 			goto out;
2086 
2087 		if (have_full_constraints()) {
2088 			r = dummy_regulator_rdev;
2089 			get_device(&r->dev);
2090 		} else {
2091 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 				rdev->supply_name, rdev->desc->name);
2093 			ret = -EPROBE_DEFER;
2094 			goto out;
2095 		}
2096 	}
2097 
2098 	if (r == rdev) {
2099 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 			rdev->desc->name, rdev->supply_name);
2101 		if (!have_full_constraints()) {
2102 			ret = -EINVAL;
2103 			goto out;
2104 		}
2105 		r = dummy_regulator_rdev;
2106 		get_device(&r->dev);
2107 	}
2108 
2109 	/*
2110 	 * If the supply's parent device is not the same as the
2111 	 * regulator's parent device, then ensure the parent device
2112 	 * is bound before we resolve the supply, in case the parent
2113 	 * device get probe deferred and unregisters the supply.
2114 	 */
2115 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 		if (!device_is_bound(r->dev.parent)) {
2117 			put_device(&r->dev);
2118 			ret = -EPROBE_DEFER;
2119 			goto out;
2120 		}
2121 	}
2122 
2123 	/* Recursively resolve the supply of the supply */
2124 	ret = regulator_resolve_supply(r);
2125 	if (ret < 0) {
2126 		put_device(&r->dev);
2127 		goto out;
2128 	}
2129 
2130 	/*
2131 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 	 * between rdev->supply null check and setting rdev->supply in
2133 	 * set_supply() from concurrent tasks.
2134 	 */
2135 	regulator_lock_two(rdev, r, &ww_ctx);
2136 
2137 	/* Supply just resolved by a concurrent task? */
2138 	if (rdev->supply) {
2139 		regulator_unlock_two(rdev, r, &ww_ctx);
2140 		put_device(&r->dev);
2141 		goto out;
2142 	}
2143 
2144 	ret = set_supply(rdev, r);
2145 	if (ret < 0) {
2146 		regulator_unlock_two(rdev, r, &ww_ctx);
2147 		put_device(&r->dev);
2148 		goto out;
2149 	}
2150 
2151 	regulator_unlock_two(rdev, r, &ww_ctx);
2152 
2153 	/*
2154 	 * In set_machine_constraints() we may have turned this regulator on
2155 	 * but we couldn't propagate to the supply if it hadn't been resolved
2156 	 * yet.  Do it now.
2157 	 */
2158 	if (rdev->use_count) {
2159 		ret = regulator_enable(rdev->supply);
2160 		if (ret < 0) {
2161 			_regulator_put(rdev->supply);
2162 			rdev->supply = NULL;
2163 			goto out;
2164 		}
2165 	}
2166 
2167 out:
2168 	return ret;
2169 }
2170 
2171 /* Internal regulator request function */
2172 struct regulator *_regulator_get(struct device *dev, const char *id,
2173 				 enum regulator_get_type get_type)
2174 {
2175 	struct regulator_dev *rdev;
2176 	struct regulator *regulator;
2177 	struct device_link *link;
2178 	int ret;
2179 
2180 	if (get_type >= MAX_GET_TYPE) {
2181 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 		return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	if (id == NULL) {
2186 		pr_err("get() with no identifier\n");
2187 		return ERR_PTR(-EINVAL);
2188 	}
2189 
2190 	rdev = regulator_dev_lookup(dev, id);
2191 	if (IS_ERR(rdev)) {
2192 		ret = PTR_ERR(rdev);
2193 
2194 		/*
2195 		 * If regulator_dev_lookup() fails with error other
2196 		 * than -ENODEV our job here is done, we simply return it.
2197 		 */
2198 		if (ret != -ENODEV)
2199 			return ERR_PTR(ret);
2200 
2201 		if (!have_full_constraints()) {
2202 			dev_warn(dev,
2203 				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2204 			return ERR_PTR(-ENODEV);
2205 		}
2206 
2207 		switch (get_type) {
2208 		case NORMAL_GET:
2209 			/*
2210 			 * Assume that a regulator is physically present and
2211 			 * enabled, even if it isn't hooked up, and just
2212 			 * provide a dummy.
2213 			 */
2214 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 			rdev = dummy_regulator_rdev;
2216 			get_device(&rdev->dev);
2217 			break;
2218 
2219 		case EXCLUSIVE_GET:
2220 			dev_warn(dev,
2221 				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2222 			fallthrough;
2223 
2224 		default:
2225 			return ERR_PTR(-ENODEV);
2226 		}
2227 	}
2228 
2229 	if (rdev->exclusive) {
2230 		regulator = ERR_PTR(-EPERM);
2231 		put_device(&rdev->dev);
2232 		return regulator;
2233 	}
2234 
2235 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 		regulator = ERR_PTR(-EBUSY);
2237 		put_device(&rdev->dev);
2238 		return regulator;
2239 	}
2240 
2241 	mutex_lock(&regulator_list_mutex);
2242 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 	mutex_unlock(&regulator_list_mutex);
2244 
2245 	if (ret != 0) {
2246 		regulator = ERR_PTR(-EPROBE_DEFER);
2247 		put_device(&rdev->dev);
2248 		return regulator;
2249 	}
2250 
2251 	ret = regulator_resolve_supply(rdev);
2252 	if (ret < 0) {
2253 		regulator = ERR_PTR(ret);
2254 		put_device(&rdev->dev);
2255 		return regulator;
2256 	}
2257 
2258 	if (!try_module_get(rdev->owner)) {
2259 		regulator = ERR_PTR(-EPROBE_DEFER);
2260 		put_device(&rdev->dev);
2261 		return regulator;
2262 	}
2263 
2264 	regulator_lock(rdev);
2265 	regulator = create_regulator(rdev, dev, id);
2266 	regulator_unlock(rdev);
2267 	if (regulator == NULL) {
2268 		regulator = ERR_PTR(-ENOMEM);
2269 		module_put(rdev->owner);
2270 		put_device(&rdev->dev);
2271 		return regulator;
2272 	}
2273 
2274 	rdev->open_count++;
2275 	if (get_type == EXCLUSIVE_GET) {
2276 		rdev->exclusive = 1;
2277 
2278 		ret = _regulator_is_enabled(rdev);
2279 		if (ret > 0) {
2280 			rdev->use_count = 1;
2281 			regulator->enable_count = 1;
2282 
2283 			/* Propagate the regulator state to its supply */
2284 			if (rdev->supply) {
2285 				ret = regulator_enable(rdev->supply);
2286 				if (ret < 0) {
2287 					destroy_regulator(regulator);
2288 					module_put(rdev->owner);
2289 					put_device(&rdev->dev);
2290 					return ERR_PTR(ret);
2291 				}
2292 			}
2293 		} else {
2294 			rdev->use_count = 0;
2295 			regulator->enable_count = 0;
2296 		}
2297 	}
2298 
2299 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 	if (!IS_ERR_OR_NULL(link))
2301 		regulator->device_link = true;
2302 
2303 	return regulator;
2304 }
2305 
2306 /**
2307  * regulator_get - lookup and obtain a reference to a regulator.
2308  * @dev: device for regulator "consumer"
2309  * @id: Supply name or regulator ID.
2310  *
2311  * Returns a struct regulator corresponding to the regulator producer,
2312  * or IS_ERR() condition containing errno.
2313  *
2314  * Use of supply names configured via set_consumer_device_supply() is
2315  * strongly encouraged.  It is recommended that the supply name used
2316  * should match the name used for the supply and/or the relevant
2317  * device pins in the datasheet.
2318  */
2319 struct regulator *regulator_get(struct device *dev, const char *id)
2320 {
2321 	return _regulator_get(dev, id, NORMAL_GET);
2322 }
2323 EXPORT_SYMBOL_GPL(regulator_get);
2324 
2325 /**
2326  * regulator_get_exclusive - obtain exclusive access to a regulator.
2327  * @dev: device for regulator "consumer"
2328  * @id: Supply name or regulator ID.
2329  *
2330  * Returns a struct regulator corresponding to the regulator producer,
2331  * or IS_ERR() condition containing errno.  Other consumers will be
2332  * unable to obtain this regulator while this reference is held and the
2333  * use count for the regulator will be initialised to reflect the current
2334  * state of the regulator.
2335  *
2336  * This is intended for use by consumers which cannot tolerate shared
2337  * use of the regulator such as those which need to force the
2338  * regulator off for correct operation of the hardware they are
2339  * controlling.
2340  *
2341  * Use of supply names configured via set_consumer_device_supply() is
2342  * strongly encouraged.  It is recommended that the supply name used
2343  * should match the name used for the supply and/or the relevant
2344  * device pins in the datasheet.
2345  */
2346 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347 {
2348 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2349 }
2350 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351 
2352 /**
2353  * regulator_get_optional - obtain optional access to a regulator.
2354  * @dev: device for regulator "consumer"
2355  * @id: Supply name or regulator ID.
2356  *
2357  * Returns a struct regulator corresponding to the regulator producer,
2358  * or IS_ERR() condition containing errno.
2359  *
2360  * This is intended for use by consumers for devices which can have
2361  * some supplies unconnected in normal use, such as some MMC devices.
2362  * It can allow the regulator core to provide stub supplies for other
2363  * supplies requested using normal regulator_get() calls without
2364  * disrupting the operation of drivers that can handle absent
2365  * supplies.
2366  *
2367  * Use of supply names configured via set_consumer_device_supply() is
2368  * strongly encouraged.  It is recommended that the supply name used
2369  * should match the name used for the supply and/or the relevant
2370  * device pins in the datasheet.
2371  */
2372 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373 {
2374 	return _regulator_get(dev, id, OPTIONAL_GET);
2375 }
2376 EXPORT_SYMBOL_GPL(regulator_get_optional);
2377 
2378 static void destroy_regulator(struct regulator *regulator)
2379 {
2380 	struct regulator_dev *rdev = regulator->rdev;
2381 
2382 	debugfs_remove_recursive(regulator->debugfs);
2383 
2384 	if (regulator->dev) {
2385 		if (regulator->device_link)
2386 			device_link_remove(regulator->dev, &rdev->dev);
2387 
2388 		/* remove any sysfs entries */
2389 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2390 	}
2391 
2392 	regulator_lock(rdev);
2393 	list_del(&regulator->list);
2394 
2395 	rdev->open_count--;
2396 	rdev->exclusive = 0;
2397 	regulator_unlock(rdev);
2398 
2399 	kfree_const(regulator->supply_name);
2400 	kfree(regulator);
2401 }
2402 
2403 /* regulator_list_mutex lock held by regulator_put() */
2404 static void _regulator_put(struct regulator *regulator)
2405 {
2406 	struct regulator_dev *rdev;
2407 
2408 	if (IS_ERR_OR_NULL(regulator))
2409 		return;
2410 
2411 	lockdep_assert_held_once(&regulator_list_mutex);
2412 
2413 	/* Docs say you must disable before calling regulator_put() */
2414 	WARN_ON(regulator->enable_count);
2415 
2416 	rdev = regulator->rdev;
2417 
2418 	destroy_regulator(regulator);
2419 
2420 	module_put(rdev->owner);
2421 	put_device(&rdev->dev);
2422 }
2423 
2424 /**
2425  * regulator_put - "free" the regulator source
2426  * @regulator: regulator source
2427  *
2428  * Note: drivers must ensure that all regulator_enable calls made on this
2429  * regulator source are balanced by regulator_disable calls prior to calling
2430  * this function.
2431  */
2432 void regulator_put(struct regulator *regulator)
2433 {
2434 	mutex_lock(&regulator_list_mutex);
2435 	_regulator_put(regulator);
2436 	mutex_unlock(&regulator_list_mutex);
2437 }
2438 EXPORT_SYMBOL_GPL(regulator_put);
2439 
2440 /**
2441  * regulator_register_supply_alias - Provide device alias for supply lookup
2442  *
2443  * @dev: device that will be given as the regulator "consumer"
2444  * @id: Supply name or regulator ID
2445  * @alias_dev: device that should be used to lookup the supply
2446  * @alias_id: Supply name or regulator ID that should be used to lookup the
2447  * supply
2448  *
2449  * All lookups for id on dev will instead be conducted for alias_id on
2450  * alias_dev.
2451  */
2452 int regulator_register_supply_alias(struct device *dev, const char *id,
2453 				    struct device *alias_dev,
2454 				    const char *alias_id)
2455 {
2456 	struct regulator_supply_alias *map;
2457 
2458 	map = regulator_find_supply_alias(dev, id);
2459 	if (map)
2460 		return -EEXIST;
2461 
2462 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 	if (!map)
2464 		return -ENOMEM;
2465 
2466 	map->src_dev = dev;
2467 	map->src_supply = id;
2468 	map->alias_dev = alias_dev;
2469 	map->alias_supply = alias_id;
2470 
2471 	list_add(&map->list, &regulator_supply_alias_list);
2472 
2473 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2475 
2476 	return 0;
2477 }
2478 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479 
2480 /**
2481  * regulator_unregister_supply_alias - Remove device alias
2482  *
2483  * @dev: device that will be given as the regulator "consumer"
2484  * @id: Supply name or regulator ID
2485  *
2486  * Remove a lookup alias if one exists for id on dev.
2487  */
2488 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489 {
2490 	struct regulator_supply_alias *map;
2491 
2492 	map = regulator_find_supply_alias(dev, id);
2493 	if (map) {
2494 		list_del(&map->list);
2495 		kfree(map);
2496 	}
2497 }
2498 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499 
2500 /**
2501  * regulator_bulk_register_supply_alias - register multiple aliases
2502  *
2503  * @dev: device that will be given as the regulator "consumer"
2504  * @id: List of supply names or regulator IDs
2505  * @alias_dev: device that should be used to lookup the supply
2506  * @alias_id: List of supply names or regulator IDs that should be used to
2507  * lookup the supply
2508  * @num_id: Number of aliases to register
2509  *
2510  * @return 0 on success, an errno on failure.
2511  *
2512  * This helper function allows drivers to register several supply
2513  * aliases in one operation.  If any of the aliases cannot be
2514  * registered any aliases that were registered will be removed
2515  * before returning to the caller.
2516  */
2517 int regulator_bulk_register_supply_alias(struct device *dev,
2518 					 const char *const *id,
2519 					 struct device *alias_dev,
2520 					 const char *const *alias_id,
2521 					 int num_id)
2522 {
2523 	int i;
2524 	int ret;
2525 
2526 	for (i = 0; i < num_id; ++i) {
2527 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 						      alias_id[i]);
2529 		if (ret < 0)
2530 			goto err;
2531 	}
2532 
2533 	return 0;
2534 
2535 err:
2536 	dev_err(dev,
2537 		"Failed to create supply alias %s,%s -> %s,%s\n",
2538 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539 
2540 	while (--i >= 0)
2541 		regulator_unregister_supply_alias(dev, id[i]);
2542 
2543 	return ret;
2544 }
2545 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546 
2547 /**
2548  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549  *
2550  * @dev: device that will be given as the regulator "consumer"
2551  * @id: List of supply names or regulator IDs
2552  * @num_id: Number of aliases to unregister
2553  *
2554  * This helper function allows drivers to unregister several supply
2555  * aliases in one operation.
2556  */
2557 void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 					    const char *const *id,
2559 					    int num_id)
2560 {
2561 	int i;
2562 
2563 	for (i = 0; i < num_id; ++i)
2564 		regulator_unregister_supply_alias(dev, id[i]);
2565 }
2566 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567 
2568 
2569 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 				const struct regulator_config *config)
2572 {
2573 	struct regulator_enable_gpio *pin, *new_pin;
2574 	struct gpio_desc *gpiod;
2575 
2576 	gpiod = config->ena_gpiod;
2577 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578 
2579 	mutex_lock(&regulator_list_mutex);
2580 
2581 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2582 		if (pin->gpiod == gpiod) {
2583 			rdev_dbg(rdev, "GPIO is already used\n");
2584 			goto update_ena_gpio_to_rdev;
2585 		}
2586 	}
2587 
2588 	if (new_pin == NULL) {
2589 		mutex_unlock(&regulator_list_mutex);
2590 		return -ENOMEM;
2591 	}
2592 
2593 	pin = new_pin;
2594 	new_pin = NULL;
2595 
2596 	pin->gpiod = gpiod;
2597 	list_add(&pin->list, &regulator_ena_gpio_list);
2598 
2599 update_ena_gpio_to_rdev:
2600 	pin->request_count++;
2601 	rdev->ena_pin = pin;
2602 
2603 	mutex_unlock(&regulator_list_mutex);
2604 	kfree(new_pin);
2605 
2606 	return 0;
2607 }
2608 
2609 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610 {
2611 	struct regulator_enable_gpio *pin, *n;
2612 
2613 	if (!rdev->ena_pin)
2614 		return;
2615 
2616 	/* Free the GPIO only in case of no use */
2617 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2618 		if (pin != rdev->ena_pin)
2619 			continue;
2620 
2621 		if (--pin->request_count)
2622 			break;
2623 
2624 		gpiod_put(pin->gpiod);
2625 		list_del(&pin->list);
2626 		kfree(pin);
2627 		break;
2628 	}
2629 
2630 	rdev->ena_pin = NULL;
2631 }
2632 
2633 /**
2634  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635  * @rdev: regulator_dev structure
2636  * @enable: enable GPIO at initial use?
2637  *
2638  * GPIO is enabled in case of initial use. (enable_count is 0)
2639  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640  */
2641 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642 {
2643 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2644 
2645 	if (!pin)
2646 		return -EINVAL;
2647 
2648 	if (enable) {
2649 		/* Enable GPIO at initial use */
2650 		if (pin->enable_count == 0)
2651 			gpiod_set_value_cansleep(pin->gpiod, 1);
2652 
2653 		pin->enable_count++;
2654 	} else {
2655 		if (pin->enable_count > 1) {
2656 			pin->enable_count--;
2657 			return 0;
2658 		}
2659 
2660 		/* Disable GPIO if not used */
2661 		if (pin->enable_count <= 1) {
2662 			gpiod_set_value_cansleep(pin->gpiod, 0);
2663 			pin->enable_count = 0;
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * _regulator_delay_helper - a delay helper function
2672  * @delay: time to delay in microseconds
2673  *
2674  * Delay for the requested amount of time as per the guidelines in:
2675  *
2676  *     Documentation/timers/timers-howto.rst
2677  *
2678  * The assumption here is that these regulator operations will never used in
2679  * atomic context and therefore sleeping functions can be used.
2680  */
2681 static void _regulator_delay_helper(unsigned int delay)
2682 {
2683 	unsigned int ms = delay / 1000;
2684 	unsigned int us = delay % 1000;
2685 
2686 	if (ms > 0) {
2687 		/*
2688 		 * For small enough values, handle super-millisecond
2689 		 * delays in the usleep_range() call below.
2690 		 */
2691 		if (ms < 20)
2692 			us += ms * 1000;
2693 		else
2694 			msleep(ms);
2695 	}
2696 
2697 	/*
2698 	 * Give the scheduler some room to coalesce with any other
2699 	 * wakeup sources. For delays shorter than 10 us, don't even
2700 	 * bother setting up high-resolution timers and just busy-
2701 	 * loop.
2702 	 */
2703 	if (us >= 10)
2704 		usleep_range(us, us + 100);
2705 	else
2706 		udelay(us);
2707 }
2708 
2709 /**
2710  * _regulator_check_status_enabled
2711  *
2712  * A helper function to check if the regulator status can be interpreted
2713  * as 'regulator is enabled'.
2714  * @rdev: the regulator device to check
2715  *
2716  * Return:
2717  * * 1			- if status shows regulator is in enabled state
2718  * * 0			- if not enabled state
2719  * * Error Value	- as received from ops->get_status()
2720  */
2721 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722 {
2723 	int ret = rdev->desc->ops->get_status(rdev);
2724 
2725 	if (ret < 0) {
2726 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 		return ret;
2728 	}
2729 
2730 	switch (ret) {
2731 	case REGULATOR_STATUS_OFF:
2732 	case REGULATOR_STATUS_ERROR:
2733 	case REGULATOR_STATUS_UNDEFINED:
2734 		return 0;
2735 	default:
2736 		return 1;
2737 	}
2738 }
2739 
2740 static int _regulator_do_enable(struct regulator_dev *rdev)
2741 {
2742 	int ret, delay;
2743 
2744 	/* Query before enabling in case configuration dependent.  */
2745 	ret = _regulator_get_enable_time(rdev);
2746 	if (ret >= 0) {
2747 		delay = ret;
2748 	} else {
2749 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 		delay = 0;
2751 	}
2752 
2753 	trace_regulator_enable(rdev_get_name(rdev));
2754 
2755 	if (rdev->desc->off_on_delay) {
2756 		/* if needed, keep a distance of off_on_delay from last time
2757 		 * this regulator was disabled.
2758 		 */
2759 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2761 
2762 		if (remaining > 0)
2763 			_regulator_delay_helper(remaining);
2764 	}
2765 
2766 	if (rdev->ena_pin) {
2767 		if (!rdev->ena_gpio_state) {
2768 			ret = regulator_ena_gpio_ctrl(rdev, true);
2769 			if (ret < 0)
2770 				return ret;
2771 			rdev->ena_gpio_state = 1;
2772 		}
2773 	} else if (rdev->desc->ops->enable) {
2774 		ret = rdev->desc->ops->enable(rdev);
2775 		if (ret < 0)
2776 			return ret;
2777 	} else {
2778 		return -EINVAL;
2779 	}
2780 
2781 	/* Allow the regulator to ramp; it would be useful to extend
2782 	 * this for bulk operations so that the regulators can ramp
2783 	 * together.
2784 	 */
2785 	trace_regulator_enable_delay(rdev_get_name(rdev));
2786 
2787 	/* If poll_enabled_time is set, poll upto the delay calculated
2788 	 * above, delaying poll_enabled_time uS to check if the regulator
2789 	 * actually got enabled.
2790 	 * If the regulator isn't enabled after our delay helper has expired,
2791 	 * return -ETIMEDOUT.
2792 	 */
2793 	if (rdev->desc->poll_enabled_time) {
2794 		int time_remaining = delay;
2795 
2796 		while (time_remaining > 0) {
2797 			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2798 
2799 			if (rdev->desc->ops->get_status) {
2800 				ret = _regulator_check_status_enabled(rdev);
2801 				if (ret < 0)
2802 					return ret;
2803 				else if (ret)
2804 					break;
2805 			} else if (rdev->desc->ops->is_enabled(rdev))
2806 				break;
2807 
2808 			time_remaining -= rdev->desc->poll_enabled_time;
2809 		}
2810 
2811 		if (time_remaining <= 0) {
2812 			rdev_err(rdev, "Enabled check timed out\n");
2813 			return -ETIMEDOUT;
2814 		}
2815 	} else {
2816 		_regulator_delay_helper(delay);
2817 	}
2818 
2819 	trace_regulator_enable_complete(rdev_get_name(rdev));
2820 
2821 	return 0;
2822 }
2823 
2824 /**
2825  * _regulator_handle_consumer_enable - handle that a consumer enabled
2826  * @regulator: regulator source
2827  *
2828  * Some things on a regulator consumer (like the contribution towards total
2829  * load on the regulator) only have an effect when the consumer wants the
2830  * regulator enabled.  Explained in example with two consumers of the same
2831  * regulator:
2832  *   consumer A: set_load(100);       => total load = 0
2833  *   consumer A: regulator_enable();  => total load = 100
2834  *   consumer B: set_load(1000);      => total load = 100
2835  *   consumer B: regulator_enable();  => total load = 1100
2836  *   consumer A: regulator_disable(); => total_load = 1000
2837  *
2838  * This function (together with _regulator_handle_consumer_disable) is
2839  * responsible for keeping track of the refcount for a given regulator consumer
2840  * and applying / unapplying these things.
2841  *
2842  * Returns 0 upon no error; -error upon error.
2843  */
2844 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845 {
2846 	int ret;
2847 	struct regulator_dev *rdev = regulator->rdev;
2848 
2849 	lockdep_assert_held_once(&rdev->mutex.base);
2850 
2851 	regulator->enable_count++;
2852 	if (regulator->uA_load && regulator->enable_count == 1) {
2853 		ret = drms_uA_update(rdev);
2854 		if (ret)
2855 			regulator->enable_count--;
2856 		return ret;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 /**
2863  * _regulator_handle_consumer_disable - handle that a consumer disabled
2864  * @regulator: regulator source
2865  *
2866  * The opposite of _regulator_handle_consumer_enable().
2867  *
2868  * Returns 0 upon no error; -error upon error.
2869  */
2870 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871 {
2872 	struct regulator_dev *rdev = regulator->rdev;
2873 
2874 	lockdep_assert_held_once(&rdev->mutex.base);
2875 
2876 	if (!regulator->enable_count) {
2877 		rdev_err(rdev, "Underflow of regulator enable count\n");
2878 		return -EINVAL;
2879 	}
2880 
2881 	regulator->enable_count--;
2882 	if (regulator->uA_load && regulator->enable_count == 0)
2883 		return drms_uA_update(rdev);
2884 
2885 	return 0;
2886 }
2887 
2888 /* locks held by regulator_enable() */
2889 static int _regulator_enable(struct regulator *regulator)
2890 {
2891 	struct regulator_dev *rdev = regulator->rdev;
2892 	int ret;
2893 
2894 	lockdep_assert_held_once(&rdev->mutex.base);
2895 
2896 	if (rdev->use_count == 0 && rdev->supply) {
2897 		ret = _regulator_enable(rdev->supply);
2898 		if (ret < 0)
2899 			return ret;
2900 	}
2901 
2902 	/* balance only if there are regulators coupled */
2903 	if (rdev->coupling_desc.n_coupled > 1) {
2904 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 		if (ret < 0)
2906 			goto err_disable_supply;
2907 	}
2908 
2909 	ret = _regulator_handle_consumer_enable(regulator);
2910 	if (ret < 0)
2911 		goto err_disable_supply;
2912 
2913 	if (rdev->use_count == 0) {
2914 		/*
2915 		 * The regulator may already be enabled if it's not switchable
2916 		 * or was left on
2917 		 */
2918 		ret = _regulator_is_enabled(rdev);
2919 		if (ret == -EINVAL || ret == 0) {
2920 			if (!regulator_ops_is_valid(rdev,
2921 					REGULATOR_CHANGE_STATUS)) {
2922 				ret = -EPERM;
2923 				goto err_consumer_disable;
2924 			}
2925 
2926 			ret = _regulator_do_enable(rdev);
2927 			if (ret < 0)
2928 				goto err_consumer_disable;
2929 
2930 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 					     NULL);
2932 		} else if (ret < 0) {
2933 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 			goto err_consumer_disable;
2935 		}
2936 		/* Fallthrough on positive return values - already enabled */
2937 	}
2938 
2939 	if (regulator->enable_count == 1)
2940 		rdev->use_count++;
2941 
2942 	return 0;
2943 
2944 err_consumer_disable:
2945 	_regulator_handle_consumer_disable(regulator);
2946 
2947 err_disable_supply:
2948 	if (rdev->use_count == 0 && rdev->supply)
2949 		_regulator_disable(rdev->supply);
2950 
2951 	return ret;
2952 }
2953 
2954 /**
2955  * regulator_enable - enable regulator output
2956  * @regulator: regulator source
2957  *
2958  * Request that the regulator be enabled with the regulator output at
2959  * the predefined voltage or current value.  Calls to regulator_enable()
2960  * must be balanced with calls to regulator_disable().
2961  *
2962  * NOTE: the output value can be set by other drivers, boot loader or may be
2963  * hardwired in the regulator.
2964  */
2965 int regulator_enable(struct regulator *regulator)
2966 {
2967 	struct regulator_dev *rdev = regulator->rdev;
2968 	struct ww_acquire_ctx ww_ctx;
2969 	int ret;
2970 
2971 	regulator_lock_dependent(rdev, &ww_ctx);
2972 	ret = _regulator_enable(regulator);
2973 	regulator_unlock_dependent(rdev, &ww_ctx);
2974 
2975 	return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(regulator_enable);
2978 
2979 static int _regulator_do_disable(struct regulator_dev *rdev)
2980 {
2981 	int ret;
2982 
2983 	trace_regulator_disable(rdev_get_name(rdev));
2984 
2985 	if (rdev->ena_pin) {
2986 		if (rdev->ena_gpio_state) {
2987 			ret = regulator_ena_gpio_ctrl(rdev, false);
2988 			if (ret < 0)
2989 				return ret;
2990 			rdev->ena_gpio_state = 0;
2991 		}
2992 
2993 	} else if (rdev->desc->ops->disable) {
2994 		ret = rdev->desc->ops->disable(rdev);
2995 		if (ret != 0)
2996 			return ret;
2997 	}
2998 
2999 	if (rdev->desc->off_on_delay)
3000 		rdev->last_off = ktime_get_boottime();
3001 
3002 	trace_regulator_disable_complete(rdev_get_name(rdev));
3003 
3004 	return 0;
3005 }
3006 
3007 /* locks held by regulator_disable() */
3008 static int _regulator_disable(struct regulator *regulator)
3009 {
3010 	struct regulator_dev *rdev = regulator->rdev;
3011 	int ret = 0;
3012 
3013 	lockdep_assert_held_once(&rdev->mutex.base);
3014 
3015 	if (WARN(regulator->enable_count == 0,
3016 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 		return -EIO;
3018 
3019 	if (regulator->enable_count == 1) {
3020 	/* disabling last enable_count from this regulator */
3021 		/* are we the last user and permitted to disable ? */
3022 		if (rdev->use_count == 1 &&
3023 		    (rdev->constraints && !rdev->constraints->always_on)) {
3024 
3025 			/* we are last user */
3026 			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 				ret = _notifier_call_chain(rdev,
3028 							   REGULATOR_EVENT_PRE_DISABLE,
3029 							   NULL);
3030 				if (ret & NOTIFY_STOP_MASK)
3031 					return -EINVAL;
3032 
3033 				ret = _regulator_do_disable(rdev);
3034 				if (ret < 0) {
3035 					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 					_notifier_call_chain(rdev,
3037 							REGULATOR_EVENT_ABORT_DISABLE,
3038 							NULL);
3039 					return ret;
3040 				}
3041 				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 						NULL);
3043 			}
3044 
3045 			rdev->use_count = 0;
3046 		} else if (rdev->use_count > 1) {
3047 			rdev->use_count--;
3048 		}
3049 	}
3050 
3051 	if (ret == 0)
3052 		ret = _regulator_handle_consumer_disable(regulator);
3053 
3054 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3056 
3057 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 		ret = _regulator_disable(rdev->supply);
3059 
3060 	return ret;
3061 }
3062 
3063 /**
3064  * regulator_disable - disable regulator output
3065  * @regulator: regulator source
3066  *
3067  * Disable the regulator output voltage or current.  Calls to
3068  * regulator_enable() must be balanced with calls to
3069  * regulator_disable().
3070  *
3071  * NOTE: this will only disable the regulator output if no other consumer
3072  * devices have it enabled, the regulator device supports disabling and
3073  * machine constraints permit this operation.
3074  */
3075 int regulator_disable(struct regulator *regulator)
3076 {
3077 	struct regulator_dev *rdev = regulator->rdev;
3078 	struct ww_acquire_ctx ww_ctx;
3079 	int ret;
3080 
3081 	regulator_lock_dependent(rdev, &ww_ctx);
3082 	ret = _regulator_disable(regulator);
3083 	regulator_unlock_dependent(rdev, &ww_ctx);
3084 
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regulator_disable);
3088 
3089 /* locks held by regulator_force_disable() */
3090 static int _regulator_force_disable(struct regulator_dev *rdev)
3091 {
3092 	int ret = 0;
3093 
3094 	lockdep_assert_held_once(&rdev->mutex.base);
3095 
3096 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 			REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 	if (ret & NOTIFY_STOP_MASK)
3099 		return -EINVAL;
3100 
3101 	ret = _regulator_do_disable(rdev);
3102 	if (ret < 0) {
3103 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 		return ret;
3107 	}
3108 
3109 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 			REGULATOR_EVENT_DISABLE, NULL);
3111 
3112 	return 0;
3113 }
3114 
3115 /**
3116  * regulator_force_disable - force disable regulator output
3117  * @regulator: regulator source
3118  *
3119  * Forcibly disable the regulator output voltage or current.
3120  * NOTE: this *will* disable the regulator output even if other consumer
3121  * devices have it enabled. This should be used for situations when device
3122  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123  */
3124 int regulator_force_disable(struct regulator *regulator)
3125 {
3126 	struct regulator_dev *rdev = regulator->rdev;
3127 	struct ww_acquire_ctx ww_ctx;
3128 	int ret;
3129 
3130 	regulator_lock_dependent(rdev, &ww_ctx);
3131 
3132 	ret = _regulator_force_disable(regulator->rdev);
3133 
3134 	if (rdev->coupling_desc.n_coupled > 1)
3135 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136 
3137 	if (regulator->uA_load) {
3138 		regulator->uA_load = 0;
3139 		ret = drms_uA_update(rdev);
3140 	}
3141 
3142 	if (rdev->use_count != 0 && rdev->supply)
3143 		_regulator_disable(rdev->supply);
3144 
3145 	regulator_unlock_dependent(rdev, &ww_ctx);
3146 
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(regulator_force_disable);
3150 
3151 static void regulator_disable_work(struct work_struct *work)
3152 {
3153 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 						  disable_work.work);
3155 	struct ww_acquire_ctx ww_ctx;
3156 	int count, i, ret;
3157 	struct regulator *regulator;
3158 	int total_count = 0;
3159 
3160 	regulator_lock_dependent(rdev, &ww_ctx);
3161 
3162 	/*
3163 	 * Workqueue functions queue the new work instance while the previous
3164 	 * work instance is being processed. Cancel the queued work instance
3165 	 * as the work instance under processing does the job of the queued
3166 	 * work instance.
3167 	 */
3168 	cancel_delayed_work(&rdev->disable_work);
3169 
3170 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 		count = regulator->deferred_disables;
3172 
3173 		if (!count)
3174 			continue;
3175 
3176 		total_count += count;
3177 		regulator->deferred_disables = 0;
3178 
3179 		for (i = 0; i < count; i++) {
3180 			ret = _regulator_disable(regulator);
3181 			if (ret != 0)
3182 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 					 ERR_PTR(ret));
3184 		}
3185 	}
3186 	WARN_ON(!total_count);
3187 
3188 	if (rdev->coupling_desc.n_coupled > 1)
3189 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190 
3191 	regulator_unlock_dependent(rdev, &ww_ctx);
3192 }
3193 
3194 /**
3195  * regulator_disable_deferred - disable regulator output with delay
3196  * @regulator: regulator source
3197  * @ms: milliseconds until the regulator is disabled
3198  *
3199  * Execute regulator_disable() on the regulator after a delay.  This
3200  * is intended for use with devices that require some time to quiesce.
3201  *
3202  * NOTE: this will only disable the regulator output if no other consumer
3203  * devices have it enabled, the regulator device supports disabling and
3204  * machine constraints permit this operation.
3205  */
3206 int regulator_disable_deferred(struct regulator *regulator, int ms)
3207 {
3208 	struct regulator_dev *rdev = regulator->rdev;
3209 
3210 	if (!ms)
3211 		return regulator_disable(regulator);
3212 
3213 	regulator_lock(rdev);
3214 	regulator->deferred_disables++;
3215 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 			 msecs_to_jiffies(ms));
3217 	regulator_unlock(rdev);
3218 
3219 	return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222 
3223 static int _regulator_is_enabled(struct regulator_dev *rdev)
3224 {
3225 	/* A GPIO control always takes precedence */
3226 	if (rdev->ena_pin)
3227 		return rdev->ena_gpio_state;
3228 
3229 	/* If we don't know then assume that the regulator is always on */
3230 	if (!rdev->desc->ops->is_enabled)
3231 		return 1;
3232 
3233 	return rdev->desc->ops->is_enabled(rdev);
3234 }
3235 
3236 static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 				   unsigned selector, int lock)
3238 {
3239 	const struct regulator_ops *ops = rdev->desc->ops;
3240 	int ret;
3241 
3242 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 		return rdev->desc->fixed_uV;
3244 
3245 	if (ops->list_voltage) {
3246 		if (selector >= rdev->desc->n_voltages)
3247 			return -EINVAL;
3248 		if (selector < rdev->desc->linear_min_sel)
3249 			return 0;
3250 		if (lock)
3251 			regulator_lock(rdev);
3252 		ret = ops->list_voltage(rdev, selector);
3253 		if (lock)
3254 			regulator_unlock(rdev);
3255 	} else if (rdev->is_switch && rdev->supply) {
3256 		ret = _regulator_list_voltage(rdev->supply->rdev,
3257 					      selector, lock);
3258 	} else {
3259 		return -EINVAL;
3260 	}
3261 
3262 	if (ret > 0) {
3263 		if (ret < rdev->constraints->min_uV)
3264 			ret = 0;
3265 		else if (ret > rdev->constraints->max_uV)
3266 			ret = 0;
3267 	}
3268 
3269 	return ret;
3270 }
3271 
3272 /**
3273  * regulator_is_enabled - is the regulator output enabled
3274  * @regulator: regulator source
3275  *
3276  * Returns positive if the regulator driver backing the source/client
3277  * has requested that the device be enabled, zero if it hasn't, else a
3278  * negative errno code.
3279  *
3280  * Note that the device backing this regulator handle can have multiple
3281  * users, so it might be enabled even if regulator_enable() was never
3282  * called for this particular source.
3283  */
3284 int regulator_is_enabled(struct regulator *regulator)
3285 {
3286 	int ret;
3287 
3288 	if (regulator->always_on)
3289 		return 1;
3290 
3291 	regulator_lock(regulator->rdev);
3292 	ret = _regulator_is_enabled(regulator->rdev);
3293 	regulator_unlock(regulator->rdev);
3294 
3295 	return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298 
3299 /**
3300  * regulator_count_voltages - count regulator_list_voltage() selectors
3301  * @regulator: regulator source
3302  *
3303  * Returns number of selectors, or negative errno.  Selectors are
3304  * numbered starting at zero, and typically correspond to bitfields
3305  * in hardware registers.
3306  */
3307 int regulator_count_voltages(struct regulator *regulator)
3308 {
3309 	struct regulator_dev	*rdev = regulator->rdev;
3310 
3311 	if (rdev->desc->n_voltages)
3312 		return rdev->desc->n_voltages;
3313 
3314 	if (!rdev->is_switch || !rdev->supply)
3315 		return -EINVAL;
3316 
3317 	return regulator_count_voltages(rdev->supply);
3318 }
3319 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320 
3321 /**
3322  * regulator_list_voltage - enumerate supported voltages
3323  * @regulator: regulator source
3324  * @selector: identify voltage to list
3325  * Context: can sleep
3326  *
3327  * Returns a voltage that can be passed to @regulator_set_voltage(),
3328  * zero if this selector code can't be used on this system, or a
3329  * negative errno.
3330  */
3331 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332 {
3333 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336 
3337 /**
3338  * regulator_get_regmap - get the regulator's register map
3339  * @regulator: regulator source
3340  *
3341  * Returns the register map for the given regulator, or an ERR_PTR value
3342  * if the regulator doesn't use regmap.
3343  */
3344 struct regmap *regulator_get_regmap(struct regulator *regulator)
3345 {
3346 	struct regmap *map = regulator->rdev->regmap;
3347 
3348 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3349 }
3350 
3351 /**
3352  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3353  * @regulator: regulator source
3354  * @vsel_reg: voltage selector register, output parameter
3355  * @vsel_mask: mask for voltage selector bitfield, output parameter
3356  *
3357  * Returns the hardware register offset and bitmask used for setting the
3358  * regulator voltage. This might be useful when configuring voltage-scaling
3359  * hardware or firmware that can make I2C requests behind the kernel's back,
3360  * for example.
3361  *
3362  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3363  * and 0 is returned, otherwise a negative errno is returned.
3364  */
3365 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3366 					 unsigned *vsel_reg,
3367 					 unsigned *vsel_mask)
3368 {
3369 	struct regulator_dev *rdev = regulator->rdev;
3370 	const struct regulator_ops *ops = rdev->desc->ops;
3371 
3372 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3373 		return -EOPNOTSUPP;
3374 
3375 	*vsel_reg = rdev->desc->vsel_reg;
3376 	*vsel_mask = rdev->desc->vsel_mask;
3377 
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3381 
3382 /**
3383  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3384  * @regulator: regulator source
3385  * @selector: identify voltage to list
3386  *
3387  * Converts the selector to a hardware-specific voltage selector that can be
3388  * directly written to the regulator registers. The address of the voltage
3389  * register can be determined by calling @regulator_get_hardware_vsel_register.
3390  *
3391  * On error a negative errno is returned.
3392  */
3393 int regulator_list_hardware_vsel(struct regulator *regulator,
3394 				 unsigned selector)
3395 {
3396 	struct regulator_dev *rdev = regulator->rdev;
3397 	const struct regulator_ops *ops = rdev->desc->ops;
3398 
3399 	if (selector >= rdev->desc->n_voltages)
3400 		return -EINVAL;
3401 	if (selector < rdev->desc->linear_min_sel)
3402 		return 0;
3403 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3404 		return -EOPNOTSUPP;
3405 
3406 	return selector;
3407 }
3408 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3409 
3410 /**
3411  * regulator_get_linear_step - return the voltage step size between VSEL values
3412  * @regulator: regulator source
3413  *
3414  * Returns the voltage step size between VSEL values for linear
3415  * regulators, or return 0 if the regulator isn't a linear regulator.
3416  */
3417 unsigned int regulator_get_linear_step(struct regulator *regulator)
3418 {
3419 	struct regulator_dev *rdev = regulator->rdev;
3420 
3421 	return rdev->desc->uV_step;
3422 }
3423 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3424 
3425 /**
3426  * regulator_is_supported_voltage - check if a voltage range can be supported
3427  *
3428  * @regulator: Regulator to check.
3429  * @min_uV: Minimum required voltage in uV.
3430  * @max_uV: Maximum required voltage in uV.
3431  *
3432  * Returns a boolean.
3433  */
3434 int regulator_is_supported_voltage(struct regulator *regulator,
3435 				   int min_uV, int max_uV)
3436 {
3437 	struct regulator_dev *rdev = regulator->rdev;
3438 	int i, voltages, ret;
3439 
3440 	/* If we can't change voltage check the current voltage */
3441 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3442 		ret = regulator_get_voltage(regulator);
3443 		if (ret >= 0)
3444 			return min_uV <= ret && ret <= max_uV;
3445 		else
3446 			return ret;
3447 	}
3448 
3449 	/* Any voltage within constrains range is fine? */
3450 	if (rdev->desc->continuous_voltage_range)
3451 		return min_uV >= rdev->constraints->min_uV &&
3452 				max_uV <= rdev->constraints->max_uV;
3453 
3454 	ret = regulator_count_voltages(regulator);
3455 	if (ret < 0)
3456 		return 0;
3457 	voltages = ret;
3458 
3459 	for (i = 0; i < voltages; i++) {
3460 		ret = regulator_list_voltage(regulator, i);
3461 
3462 		if (ret >= min_uV && ret <= max_uV)
3463 			return 1;
3464 	}
3465 
3466 	return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3469 
3470 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3471 				 int max_uV)
3472 {
3473 	const struct regulator_desc *desc = rdev->desc;
3474 
3475 	if (desc->ops->map_voltage)
3476 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3477 
3478 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3479 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3480 
3481 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3482 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3483 
3484 	if (desc->ops->list_voltage ==
3485 		regulator_list_voltage_pickable_linear_range)
3486 		return regulator_map_voltage_pickable_linear_range(rdev,
3487 							min_uV, max_uV);
3488 
3489 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3490 }
3491 
3492 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3493 				       int min_uV, int max_uV,
3494 				       unsigned *selector)
3495 {
3496 	struct pre_voltage_change_data data;
3497 	int ret;
3498 
3499 	data.old_uV = regulator_get_voltage_rdev(rdev);
3500 	data.min_uV = min_uV;
3501 	data.max_uV = max_uV;
3502 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3503 				   &data);
3504 	if (ret & NOTIFY_STOP_MASK)
3505 		return -EINVAL;
3506 
3507 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3508 	if (ret >= 0)
3509 		return ret;
3510 
3511 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3512 			     (void *)data.old_uV);
3513 
3514 	return ret;
3515 }
3516 
3517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3518 					   int uV, unsigned selector)
3519 {
3520 	struct pre_voltage_change_data data;
3521 	int ret;
3522 
3523 	data.old_uV = regulator_get_voltage_rdev(rdev);
3524 	data.min_uV = uV;
3525 	data.max_uV = uV;
3526 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3527 				   &data);
3528 	if (ret & NOTIFY_STOP_MASK)
3529 		return -EINVAL;
3530 
3531 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3532 	if (ret >= 0)
3533 		return ret;
3534 
3535 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3536 			     (void *)data.old_uV);
3537 
3538 	return ret;
3539 }
3540 
3541 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3542 					   int uV, int new_selector)
3543 {
3544 	const struct regulator_ops *ops = rdev->desc->ops;
3545 	int diff, old_sel, curr_sel, ret;
3546 
3547 	/* Stepping is only needed if the regulator is enabled. */
3548 	if (!_regulator_is_enabled(rdev))
3549 		goto final_set;
3550 
3551 	if (!ops->get_voltage_sel)
3552 		return -EINVAL;
3553 
3554 	old_sel = ops->get_voltage_sel(rdev);
3555 	if (old_sel < 0)
3556 		return old_sel;
3557 
3558 	diff = new_selector - old_sel;
3559 	if (diff == 0)
3560 		return 0; /* No change needed. */
3561 
3562 	if (diff > 0) {
3563 		/* Stepping up. */
3564 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3565 		     curr_sel < new_selector;
3566 		     curr_sel += rdev->desc->vsel_step) {
3567 			/*
3568 			 * Call the callback directly instead of using
3569 			 * _regulator_call_set_voltage_sel() as we don't
3570 			 * want to notify anyone yet. Same in the branch
3571 			 * below.
3572 			 */
3573 			ret = ops->set_voltage_sel(rdev, curr_sel);
3574 			if (ret)
3575 				goto try_revert;
3576 		}
3577 	} else {
3578 		/* Stepping down. */
3579 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3580 		     curr_sel > new_selector;
3581 		     curr_sel -= rdev->desc->vsel_step) {
3582 			ret = ops->set_voltage_sel(rdev, curr_sel);
3583 			if (ret)
3584 				goto try_revert;
3585 		}
3586 	}
3587 
3588 final_set:
3589 	/* The final selector will trigger the notifiers. */
3590 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3591 
3592 try_revert:
3593 	/*
3594 	 * At least try to return to the previous voltage if setting a new
3595 	 * one failed.
3596 	 */
3597 	(void)ops->set_voltage_sel(rdev, old_sel);
3598 	return ret;
3599 }
3600 
3601 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3602 				       int old_uV, int new_uV)
3603 {
3604 	unsigned int ramp_delay = 0;
3605 
3606 	if (rdev->constraints->ramp_delay)
3607 		ramp_delay = rdev->constraints->ramp_delay;
3608 	else if (rdev->desc->ramp_delay)
3609 		ramp_delay = rdev->desc->ramp_delay;
3610 	else if (rdev->constraints->settling_time)
3611 		return rdev->constraints->settling_time;
3612 	else if (rdev->constraints->settling_time_up &&
3613 		 (new_uV > old_uV))
3614 		return rdev->constraints->settling_time_up;
3615 	else if (rdev->constraints->settling_time_down &&
3616 		 (new_uV < old_uV))
3617 		return rdev->constraints->settling_time_down;
3618 
3619 	if (ramp_delay == 0)
3620 		return 0;
3621 
3622 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3623 }
3624 
3625 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3626 				     int min_uV, int max_uV)
3627 {
3628 	int ret;
3629 	int delay = 0;
3630 	int best_val = 0;
3631 	unsigned int selector;
3632 	int old_selector = -1;
3633 	const struct regulator_ops *ops = rdev->desc->ops;
3634 	int old_uV = regulator_get_voltage_rdev(rdev);
3635 
3636 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3637 
3638 	min_uV += rdev->constraints->uV_offset;
3639 	max_uV += rdev->constraints->uV_offset;
3640 
3641 	/*
3642 	 * If we can't obtain the old selector there is not enough
3643 	 * info to call set_voltage_time_sel().
3644 	 */
3645 	if (_regulator_is_enabled(rdev) &&
3646 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3647 		old_selector = ops->get_voltage_sel(rdev);
3648 		if (old_selector < 0)
3649 			return old_selector;
3650 	}
3651 
3652 	if (ops->set_voltage) {
3653 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3654 						  &selector);
3655 
3656 		if (ret >= 0) {
3657 			if (ops->list_voltage)
3658 				best_val = ops->list_voltage(rdev,
3659 							     selector);
3660 			else
3661 				best_val = regulator_get_voltage_rdev(rdev);
3662 		}
3663 
3664 	} else if (ops->set_voltage_sel) {
3665 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3666 		if (ret >= 0) {
3667 			best_val = ops->list_voltage(rdev, ret);
3668 			if (min_uV <= best_val && max_uV >= best_val) {
3669 				selector = ret;
3670 				if (old_selector == selector)
3671 					ret = 0;
3672 				else if (rdev->desc->vsel_step)
3673 					ret = _regulator_set_voltage_sel_step(
3674 						rdev, best_val, selector);
3675 				else
3676 					ret = _regulator_call_set_voltage_sel(
3677 						rdev, best_val, selector);
3678 			} else {
3679 				ret = -EINVAL;
3680 			}
3681 		}
3682 	} else {
3683 		ret = -EINVAL;
3684 	}
3685 
3686 	if (ret)
3687 		goto out;
3688 
3689 	if (ops->set_voltage_time_sel) {
3690 		/*
3691 		 * Call set_voltage_time_sel if successfully obtained
3692 		 * old_selector
3693 		 */
3694 		if (old_selector >= 0 && old_selector != selector)
3695 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3696 							  selector);
3697 	} else {
3698 		if (old_uV != best_val) {
3699 			if (ops->set_voltage_time)
3700 				delay = ops->set_voltage_time(rdev, old_uV,
3701 							      best_val);
3702 			else
3703 				delay = _regulator_set_voltage_time(rdev,
3704 								    old_uV,
3705 								    best_val);
3706 		}
3707 	}
3708 
3709 	if (delay < 0) {
3710 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3711 		delay = 0;
3712 	}
3713 
3714 	/* Insert any necessary delays */
3715 	_regulator_delay_helper(delay);
3716 
3717 	if (best_val >= 0) {
3718 		unsigned long data = best_val;
3719 
3720 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3721 				     (void *)data);
3722 	}
3723 
3724 out:
3725 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3726 
3727 	return ret;
3728 }
3729 
3730 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3731 				  int min_uV, int max_uV, suspend_state_t state)
3732 {
3733 	struct regulator_state *rstate;
3734 	int uV, sel;
3735 
3736 	rstate = regulator_get_suspend_state(rdev, state);
3737 	if (rstate == NULL)
3738 		return -EINVAL;
3739 
3740 	if (min_uV < rstate->min_uV)
3741 		min_uV = rstate->min_uV;
3742 	if (max_uV > rstate->max_uV)
3743 		max_uV = rstate->max_uV;
3744 
3745 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3746 	if (sel < 0)
3747 		return sel;
3748 
3749 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3750 	if (uV >= min_uV && uV <= max_uV)
3751 		rstate->uV = uV;
3752 
3753 	return 0;
3754 }
3755 
3756 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3757 					  int min_uV, int max_uV,
3758 					  suspend_state_t state)
3759 {
3760 	struct regulator_dev *rdev = regulator->rdev;
3761 	struct regulator_voltage *voltage = &regulator->voltage[state];
3762 	int ret = 0;
3763 	int old_min_uV, old_max_uV;
3764 	int current_uV;
3765 
3766 	/* If we're setting the same range as last time the change
3767 	 * should be a noop (some cpufreq implementations use the same
3768 	 * voltage for multiple frequencies, for example).
3769 	 */
3770 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3771 		goto out;
3772 
3773 	/* If we're trying to set a range that overlaps the current voltage,
3774 	 * return successfully even though the regulator does not support
3775 	 * changing the voltage.
3776 	 */
3777 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3778 		current_uV = regulator_get_voltage_rdev(rdev);
3779 		if (min_uV <= current_uV && current_uV <= max_uV) {
3780 			voltage->min_uV = min_uV;
3781 			voltage->max_uV = max_uV;
3782 			goto out;
3783 		}
3784 	}
3785 
3786 	/* sanity check */
3787 	if (!rdev->desc->ops->set_voltage &&
3788 	    !rdev->desc->ops->set_voltage_sel) {
3789 		ret = -EINVAL;
3790 		goto out;
3791 	}
3792 
3793 	/* constraints check */
3794 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3795 	if (ret < 0)
3796 		goto out;
3797 
3798 	/* restore original values in case of error */
3799 	old_min_uV = voltage->min_uV;
3800 	old_max_uV = voltage->max_uV;
3801 	voltage->min_uV = min_uV;
3802 	voltage->max_uV = max_uV;
3803 
3804 	/* for not coupled regulators this will just set the voltage */
3805 	ret = regulator_balance_voltage(rdev, state);
3806 	if (ret < 0) {
3807 		voltage->min_uV = old_min_uV;
3808 		voltage->max_uV = old_max_uV;
3809 	}
3810 
3811 out:
3812 	return ret;
3813 }
3814 
3815 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3816 			       int max_uV, suspend_state_t state)
3817 {
3818 	int best_supply_uV = 0;
3819 	int supply_change_uV = 0;
3820 	int ret;
3821 
3822 	if (rdev->supply &&
3823 	    regulator_ops_is_valid(rdev->supply->rdev,
3824 				   REGULATOR_CHANGE_VOLTAGE) &&
3825 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3826 					   rdev->desc->ops->get_voltage_sel))) {
3827 		int current_supply_uV;
3828 		int selector;
3829 
3830 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3831 		if (selector < 0) {
3832 			ret = selector;
3833 			goto out;
3834 		}
3835 
3836 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3837 		if (best_supply_uV < 0) {
3838 			ret = best_supply_uV;
3839 			goto out;
3840 		}
3841 
3842 		best_supply_uV += rdev->desc->min_dropout_uV;
3843 
3844 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3845 		if (current_supply_uV < 0) {
3846 			ret = current_supply_uV;
3847 			goto out;
3848 		}
3849 
3850 		supply_change_uV = best_supply_uV - current_supply_uV;
3851 	}
3852 
3853 	if (supply_change_uV > 0) {
3854 		ret = regulator_set_voltage_unlocked(rdev->supply,
3855 				best_supply_uV, INT_MAX, state);
3856 		if (ret) {
3857 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3858 				ERR_PTR(ret));
3859 			goto out;
3860 		}
3861 	}
3862 
3863 	if (state == PM_SUSPEND_ON)
3864 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3865 	else
3866 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3867 							max_uV, state);
3868 	if (ret < 0)
3869 		goto out;
3870 
3871 	if (supply_change_uV < 0) {
3872 		ret = regulator_set_voltage_unlocked(rdev->supply,
3873 				best_supply_uV, INT_MAX, state);
3874 		if (ret)
3875 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3876 				 ERR_PTR(ret));
3877 		/* No need to fail here */
3878 		ret = 0;
3879 	}
3880 
3881 out:
3882 	return ret;
3883 }
3884 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3885 
3886 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3887 					int *current_uV, int *min_uV)
3888 {
3889 	struct regulation_constraints *constraints = rdev->constraints;
3890 
3891 	/* Limit voltage change only if necessary */
3892 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3893 		return 1;
3894 
3895 	if (*current_uV < 0) {
3896 		*current_uV = regulator_get_voltage_rdev(rdev);
3897 
3898 		if (*current_uV < 0)
3899 			return *current_uV;
3900 	}
3901 
3902 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3903 		return 1;
3904 
3905 	/* Clamp target voltage within the given step */
3906 	if (*current_uV < *min_uV)
3907 		*min_uV = min(*current_uV + constraints->max_uV_step,
3908 			      *min_uV);
3909 	else
3910 		*min_uV = max(*current_uV - constraints->max_uV_step,
3911 			      *min_uV);
3912 
3913 	return 0;
3914 }
3915 
3916 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3917 					 int *current_uV,
3918 					 int *min_uV, int *max_uV,
3919 					 suspend_state_t state,
3920 					 int n_coupled)
3921 {
3922 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3923 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3924 	struct regulation_constraints *constraints = rdev->constraints;
3925 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3926 	int max_current_uV = 0, min_current_uV = INT_MAX;
3927 	int highest_min_uV = 0, target_uV, possible_uV;
3928 	int i, ret, max_spread;
3929 	bool done;
3930 
3931 	*current_uV = -1;
3932 
3933 	/*
3934 	 * If there are no coupled regulators, simply set the voltage
3935 	 * demanded by consumers.
3936 	 */
3937 	if (n_coupled == 1) {
3938 		/*
3939 		 * If consumers don't provide any demands, set voltage
3940 		 * to min_uV
3941 		 */
3942 		desired_min_uV = constraints->min_uV;
3943 		desired_max_uV = constraints->max_uV;
3944 
3945 		ret = regulator_check_consumers(rdev,
3946 						&desired_min_uV,
3947 						&desired_max_uV, state);
3948 		if (ret < 0)
3949 			return ret;
3950 
3951 		done = true;
3952 
3953 		goto finish;
3954 	}
3955 
3956 	/* Find highest min desired voltage */
3957 	for (i = 0; i < n_coupled; i++) {
3958 		int tmp_min = 0;
3959 		int tmp_max = INT_MAX;
3960 
3961 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3962 
3963 		ret = regulator_check_consumers(c_rdevs[i],
3964 						&tmp_min,
3965 						&tmp_max, state);
3966 		if (ret < 0)
3967 			return ret;
3968 
3969 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3970 		if (ret < 0)
3971 			return ret;
3972 
3973 		highest_min_uV = max(highest_min_uV, tmp_min);
3974 
3975 		if (i == 0) {
3976 			desired_min_uV = tmp_min;
3977 			desired_max_uV = tmp_max;
3978 		}
3979 	}
3980 
3981 	max_spread = constraints->max_spread[0];
3982 
3983 	/*
3984 	 * Let target_uV be equal to the desired one if possible.
3985 	 * If not, set it to minimum voltage, allowed by other coupled
3986 	 * regulators.
3987 	 */
3988 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3989 
3990 	/*
3991 	 * Find min and max voltages, which currently aren't violating
3992 	 * max_spread.
3993 	 */
3994 	for (i = 1; i < n_coupled; i++) {
3995 		int tmp_act;
3996 
3997 		if (!_regulator_is_enabled(c_rdevs[i]))
3998 			continue;
3999 
4000 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4001 		if (tmp_act < 0)
4002 			return tmp_act;
4003 
4004 		min_current_uV = min(tmp_act, min_current_uV);
4005 		max_current_uV = max(tmp_act, max_current_uV);
4006 	}
4007 
4008 	/* There aren't any other regulators enabled */
4009 	if (max_current_uV == 0) {
4010 		possible_uV = target_uV;
4011 	} else {
4012 		/*
4013 		 * Correct target voltage, so as it currently isn't
4014 		 * violating max_spread
4015 		 */
4016 		possible_uV = max(target_uV, max_current_uV - max_spread);
4017 		possible_uV = min(possible_uV, min_current_uV + max_spread);
4018 	}
4019 
4020 	if (possible_uV > desired_max_uV)
4021 		return -EINVAL;
4022 
4023 	done = (possible_uV == target_uV);
4024 	desired_min_uV = possible_uV;
4025 
4026 finish:
4027 	/* Apply max_uV_step constraint if necessary */
4028 	if (state == PM_SUSPEND_ON) {
4029 		ret = regulator_limit_voltage_step(rdev, current_uV,
4030 						   &desired_min_uV);
4031 		if (ret < 0)
4032 			return ret;
4033 
4034 		if (ret == 0)
4035 			done = false;
4036 	}
4037 
4038 	/* Set current_uV if wasn't done earlier in the code and if necessary */
4039 	if (n_coupled > 1 && *current_uV == -1) {
4040 
4041 		if (_regulator_is_enabled(rdev)) {
4042 			ret = regulator_get_voltage_rdev(rdev);
4043 			if (ret < 0)
4044 				return ret;
4045 
4046 			*current_uV = ret;
4047 		} else {
4048 			*current_uV = desired_min_uV;
4049 		}
4050 	}
4051 
4052 	*min_uV = desired_min_uV;
4053 	*max_uV = desired_max_uV;
4054 
4055 	return done;
4056 }
4057 
4058 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4059 				 suspend_state_t state, bool skip_coupled)
4060 {
4061 	struct regulator_dev **c_rdevs;
4062 	struct regulator_dev *best_rdev;
4063 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4064 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4065 	unsigned int delta, best_delta;
4066 	unsigned long c_rdev_done = 0;
4067 	bool best_c_rdev_done;
4068 
4069 	c_rdevs = c_desc->coupled_rdevs;
4070 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4071 
4072 	/*
4073 	 * Find the best possible voltage change on each loop. Leave the loop
4074 	 * if there isn't any possible change.
4075 	 */
4076 	do {
4077 		best_c_rdev_done = false;
4078 		best_delta = 0;
4079 		best_min_uV = 0;
4080 		best_max_uV = 0;
4081 		best_c_rdev = 0;
4082 		best_rdev = NULL;
4083 
4084 		/*
4085 		 * Find highest difference between optimal voltage
4086 		 * and current voltage.
4087 		 */
4088 		for (i = 0; i < n_coupled; i++) {
4089 			/*
4090 			 * optimal_uV is the best voltage that can be set for
4091 			 * i-th regulator at the moment without violating
4092 			 * max_spread constraint in order to balance
4093 			 * the coupled voltages.
4094 			 */
4095 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4096 
4097 			if (test_bit(i, &c_rdev_done))
4098 				continue;
4099 
4100 			ret = regulator_get_optimal_voltage(c_rdevs[i],
4101 							    &current_uV,
4102 							    &optimal_uV,
4103 							    &optimal_max_uV,
4104 							    state, n_coupled);
4105 			if (ret < 0)
4106 				goto out;
4107 
4108 			delta = abs(optimal_uV - current_uV);
4109 
4110 			if (delta && best_delta <= delta) {
4111 				best_c_rdev_done = ret;
4112 				best_delta = delta;
4113 				best_rdev = c_rdevs[i];
4114 				best_min_uV = optimal_uV;
4115 				best_max_uV = optimal_max_uV;
4116 				best_c_rdev = i;
4117 			}
4118 		}
4119 
4120 		/* Nothing to change, return successfully */
4121 		if (!best_rdev) {
4122 			ret = 0;
4123 			goto out;
4124 		}
4125 
4126 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4127 						 best_max_uV, state);
4128 
4129 		if (ret < 0)
4130 			goto out;
4131 
4132 		if (best_c_rdev_done)
4133 			set_bit(best_c_rdev, &c_rdev_done);
4134 
4135 	} while (n_coupled > 1);
4136 
4137 out:
4138 	return ret;
4139 }
4140 
4141 static int regulator_balance_voltage(struct regulator_dev *rdev,
4142 				     suspend_state_t state)
4143 {
4144 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4145 	struct regulator_coupler *coupler = c_desc->coupler;
4146 	bool skip_coupled = false;
4147 
4148 	/*
4149 	 * If system is in a state other than PM_SUSPEND_ON, don't check
4150 	 * other coupled regulators.
4151 	 */
4152 	if (state != PM_SUSPEND_ON)
4153 		skip_coupled = true;
4154 
4155 	if (c_desc->n_resolved < c_desc->n_coupled) {
4156 		rdev_err(rdev, "Not all coupled regulators registered\n");
4157 		return -EPERM;
4158 	}
4159 
4160 	/* Invoke custom balancer for customized couplers */
4161 	if (coupler && coupler->balance_voltage)
4162 		return coupler->balance_voltage(coupler, rdev, state);
4163 
4164 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4165 }
4166 
4167 /**
4168  * regulator_set_voltage - set regulator output voltage
4169  * @regulator: regulator source
4170  * @min_uV: Minimum required voltage in uV
4171  * @max_uV: Maximum acceptable voltage in uV
4172  *
4173  * Sets a voltage regulator to the desired output voltage. This can be set
4174  * during any regulator state. IOW, regulator can be disabled or enabled.
4175  *
4176  * If the regulator is enabled then the voltage will change to the new value
4177  * immediately otherwise if the regulator is disabled the regulator will
4178  * output at the new voltage when enabled.
4179  *
4180  * NOTE: If the regulator is shared between several devices then the lowest
4181  * request voltage that meets the system constraints will be used.
4182  * Regulator system constraints must be set for this regulator before
4183  * calling this function otherwise this call will fail.
4184  */
4185 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4186 {
4187 	struct ww_acquire_ctx ww_ctx;
4188 	int ret;
4189 
4190 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4191 
4192 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4193 					     PM_SUSPEND_ON);
4194 
4195 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4196 
4197 	return ret;
4198 }
4199 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4200 
4201 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4202 					   suspend_state_t state, bool en)
4203 {
4204 	struct regulator_state *rstate;
4205 
4206 	rstate = regulator_get_suspend_state(rdev, state);
4207 	if (rstate == NULL)
4208 		return -EINVAL;
4209 
4210 	if (!rstate->changeable)
4211 		return -EPERM;
4212 
4213 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4214 
4215 	return 0;
4216 }
4217 
4218 int regulator_suspend_enable(struct regulator_dev *rdev,
4219 				    suspend_state_t state)
4220 {
4221 	return regulator_suspend_toggle(rdev, state, true);
4222 }
4223 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4224 
4225 int regulator_suspend_disable(struct regulator_dev *rdev,
4226 				     suspend_state_t state)
4227 {
4228 	struct regulator *regulator;
4229 	struct regulator_voltage *voltage;
4230 
4231 	/*
4232 	 * if any consumer wants this regulator device keeping on in
4233 	 * suspend states, don't set it as disabled.
4234 	 */
4235 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4236 		voltage = &regulator->voltage[state];
4237 		if (voltage->min_uV || voltage->max_uV)
4238 			return 0;
4239 	}
4240 
4241 	return regulator_suspend_toggle(rdev, state, false);
4242 }
4243 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4244 
4245 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4246 					  int min_uV, int max_uV,
4247 					  suspend_state_t state)
4248 {
4249 	struct regulator_dev *rdev = regulator->rdev;
4250 	struct regulator_state *rstate;
4251 
4252 	rstate = regulator_get_suspend_state(rdev, state);
4253 	if (rstate == NULL)
4254 		return -EINVAL;
4255 
4256 	if (rstate->min_uV == rstate->max_uV) {
4257 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4258 		return -EPERM;
4259 	}
4260 
4261 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4262 }
4263 
4264 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4265 				  int max_uV, suspend_state_t state)
4266 {
4267 	struct ww_acquire_ctx ww_ctx;
4268 	int ret;
4269 
4270 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4271 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4272 		return -EINVAL;
4273 
4274 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4275 
4276 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4277 					     max_uV, state);
4278 
4279 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4280 
4281 	return ret;
4282 }
4283 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4284 
4285 /**
4286  * regulator_set_voltage_time - get raise/fall time
4287  * @regulator: regulator source
4288  * @old_uV: starting voltage in microvolts
4289  * @new_uV: target voltage in microvolts
4290  *
4291  * Provided with the starting and ending voltage, this function attempts to
4292  * calculate the time in microseconds required to rise or fall to this new
4293  * voltage.
4294  */
4295 int regulator_set_voltage_time(struct regulator *regulator,
4296 			       int old_uV, int new_uV)
4297 {
4298 	struct regulator_dev *rdev = regulator->rdev;
4299 	const struct regulator_ops *ops = rdev->desc->ops;
4300 	int old_sel = -1;
4301 	int new_sel = -1;
4302 	int voltage;
4303 	int i;
4304 
4305 	if (ops->set_voltage_time)
4306 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4307 	else if (!ops->set_voltage_time_sel)
4308 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4309 
4310 	/* Currently requires operations to do this */
4311 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4312 		return -EINVAL;
4313 
4314 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4315 		/* We only look for exact voltage matches here */
4316 		if (i < rdev->desc->linear_min_sel)
4317 			continue;
4318 
4319 		if (old_sel >= 0 && new_sel >= 0)
4320 			break;
4321 
4322 		voltage = regulator_list_voltage(regulator, i);
4323 		if (voltage < 0)
4324 			return -EINVAL;
4325 		if (voltage == 0)
4326 			continue;
4327 		if (voltage == old_uV)
4328 			old_sel = i;
4329 		if (voltage == new_uV)
4330 			new_sel = i;
4331 	}
4332 
4333 	if (old_sel < 0 || new_sel < 0)
4334 		return -EINVAL;
4335 
4336 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4337 }
4338 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4339 
4340 /**
4341  * regulator_set_voltage_time_sel - get raise/fall time
4342  * @rdev: regulator source device
4343  * @old_selector: selector for starting voltage
4344  * @new_selector: selector for target voltage
4345  *
4346  * Provided with the starting and target voltage selectors, this function
4347  * returns time in microseconds required to rise or fall to this new voltage
4348  *
4349  * Drivers providing ramp_delay in regulation_constraints can use this as their
4350  * set_voltage_time_sel() operation.
4351  */
4352 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4353 				   unsigned int old_selector,
4354 				   unsigned int new_selector)
4355 {
4356 	int old_volt, new_volt;
4357 
4358 	/* sanity check */
4359 	if (!rdev->desc->ops->list_voltage)
4360 		return -EINVAL;
4361 
4362 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4363 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4364 
4365 	if (rdev->desc->ops->set_voltage_time)
4366 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4367 							 new_volt);
4368 	else
4369 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4370 }
4371 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4372 
4373 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4374 {
4375 	int ret;
4376 
4377 	regulator_lock(rdev);
4378 
4379 	if (!rdev->desc->ops->set_voltage &&
4380 	    !rdev->desc->ops->set_voltage_sel) {
4381 		ret = -EINVAL;
4382 		goto out;
4383 	}
4384 
4385 	/* balance only, if regulator is coupled */
4386 	if (rdev->coupling_desc.n_coupled > 1)
4387 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4388 	else
4389 		ret = -EOPNOTSUPP;
4390 
4391 out:
4392 	regulator_unlock(rdev);
4393 	return ret;
4394 }
4395 
4396 /**
4397  * regulator_sync_voltage - re-apply last regulator output voltage
4398  * @regulator: regulator source
4399  *
4400  * Re-apply the last configured voltage.  This is intended to be used
4401  * where some external control source the consumer is cooperating with
4402  * has caused the configured voltage to change.
4403  */
4404 int regulator_sync_voltage(struct regulator *regulator)
4405 {
4406 	struct regulator_dev *rdev = regulator->rdev;
4407 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4408 	int ret, min_uV, max_uV;
4409 
4410 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4411 		return 0;
4412 
4413 	regulator_lock(rdev);
4414 
4415 	if (!rdev->desc->ops->set_voltage &&
4416 	    !rdev->desc->ops->set_voltage_sel) {
4417 		ret = -EINVAL;
4418 		goto out;
4419 	}
4420 
4421 	/* This is only going to work if we've had a voltage configured. */
4422 	if (!voltage->min_uV && !voltage->max_uV) {
4423 		ret = -EINVAL;
4424 		goto out;
4425 	}
4426 
4427 	min_uV = voltage->min_uV;
4428 	max_uV = voltage->max_uV;
4429 
4430 	/* This should be a paranoia check... */
4431 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4432 	if (ret < 0)
4433 		goto out;
4434 
4435 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4436 	if (ret < 0)
4437 		goto out;
4438 
4439 	/* balance only, if regulator is coupled */
4440 	if (rdev->coupling_desc.n_coupled > 1)
4441 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4442 	else
4443 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4444 
4445 out:
4446 	regulator_unlock(rdev);
4447 	return ret;
4448 }
4449 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4450 
4451 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4452 {
4453 	int sel, ret;
4454 	bool bypassed;
4455 
4456 	if (rdev->desc->ops->get_bypass) {
4457 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4458 		if (ret < 0)
4459 			return ret;
4460 		if (bypassed) {
4461 			/* if bypassed the regulator must have a supply */
4462 			if (!rdev->supply) {
4463 				rdev_err(rdev,
4464 					 "bypassed regulator has no supply!\n");
4465 				return -EPROBE_DEFER;
4466 			}
4467 
4468 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4469 		}
4470 	}
4471 
4472 	if (rdev->desc->ops->get_voltage_sel) {
4473 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4474 		if (sel < 0)
4475 			return sel;
4476 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4477 	} else if (rdev->desc->ops->get_voltage) {
4478 		ret = rdev->desc->ops->get_voltage(rdev);
4479 	} else if (rdev->desc->ops->list_voltage) {
4480 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4481 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4482 		ret = rdev->desc->fixed_uV;
4483 	} else if (rdev->supply) {
4484 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4485 	} else if (rdev->supply_name) {
4486 		return -EPROBE_DEFER;
4487 	} else {
4488 		return -EINVAL;
4489 	}
4490 
4491 	if (ret < 0)
4492 		return ret;
4493 	return ret - rdev->constraints->uV_offset;
4494 }
4495 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4496 
4497 /**
4498  * regulator_get_voltage - get regulator output voltage
4499  * @regulator: regulator source
4500  *
4501  * This returns the current regulator voltage in uV.
4502  *
4503  * NOTE: If the regulator is disabled it will return the voltage value. This
4504  * function should not be used to determine regulator state.
4505  */
4506 int regulator_get_voltage(struct regulator *regulator)
4507 {
4508 	struct ww_acquire_ctx ww_ctx;
4509 	int ret;
4510 
4511 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4512 	ret = regulator_get_voltage_rdev(regulator->rdev);
4513 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4514 
4515 	return ret;
4516 }
4517 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4518 
4519 /**
4520  * regulator_set_current_limit - set regulator output current limit
4521  * @regulator: regulator source
4522  * @min_uA: Minimum supported current in uA
4523  * @max_uA: Maximum supported current in uA
4524  *
4525  * Sets current sink to the desired output current. This can be set during
4526  * any regulator state. IOW, regulator can be disabled or enabled.
4527  *
4528  * If the regulator is enabled then the current will change to the new value
4529  * immediately otherwise if the regulator is disabled the regulator will
4530  * output at the new current when enabled.
4531  *
4532  * NOTE: Regulator system constraints must be set for this regulator before
4533  * calling this function otherwise this call will fail.
4534  */
4535 int regulator_set_current_limit(struct regulator *regulator,
4536 			       int min_uA, int max_uA)
4537 {
4538 	struct regulator_dev *rdev = regulator->rdev;
4539 	int ret;
4540 
4541 	regulator_lock(rdev);
4542 
4543 	/* sanity check */
4544 	if (!rdev->desc->ops->set_current_limit) {
4545 		ret = -EINVAL;
4546 		goto out;
4547 	}
4548 
4549 	/* constraints check */
4550 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4551 	if (ret < 0)
4552 		goto out;
4553 
4554 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4555 out:
4556 	regulator_unlock(rdev);
4557 	return ret;
4558 }
4559 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4560 
4561 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4562 {
4563 	/* sanity check */
4564 	if (!rdev->desc->ops->get_current_limit)
4565 		return -EINVAL;
4566 
4567 	return rdev->desc->ops->get_current_limit(rdev);
4568 }
4569 
4570 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4571 {
4572 	int ret;
4573 
4574 	regulator_lock(rdev);
4575 	ret = _regulator_get_current_limit_unlocked(rdev);
4576 	regulator_unlock(rdev);
4577 
4578 	return ret;
4579 }
4580 
4581 /**
4582  * regulator_get_current_limit - get regulator output current
4583  * @regulator: regulator source
4584  *
4585  * This returns the current supplied by the specified current sink in uA.
4586  *
4587  * NOTE: If the regulator is disabled it will return the current value. This
4588  * function should not be used to determine regulator state.
4589  */
4590 int regulator_get_current_limit(struct regulator *regulator)
4591 {
4592 	return _regulator_get_current_limit(regulator->rdev);
4593 }
4594 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4595 
4596 /**
4597  * regulator_set_mode - set regulator operating mode
4598  * @regulator: regulator source
4599  * @mode: operating mode - one of the REGULATOR_MODE constants
4600  *
4601  * Set regulator operating mode to increase regulator efficiency or improve
4602  * regulation performance.
4603  *
4604  * NOTE: Regulator system constraints must be set for this regulator before
4605  * calling this function otherwise this call will fail.
4606  */
4607 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4608 {
4609 	struct regulator_dev *rdev = regulator->rdev;
4610 	int ret;
4611 	int regulator_curr_mode;
4612 
4613 	regulator_lock(rdev);
4614 
4615 	/* sanity check */
4616 	if (!rdev->desc->ops->set_mode) {
4617 		ret = -EINVAL;
4618 		goto out;
4619 	}
4620 
4621 	/* return if the same mode is requested */
4622 	if (rdev->desc->ops->get_mode) {
4623 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4624 		if (regulator_curr_mode == mode) {
4625 			ret = 0;
4626 			goto out;
4627 		}
4628 	}
4629 
4630 	/* constraints check */
4631 	ret = regulator_mode_constrain(rdev, &mode);
4632 	if (ret < 0)
4633 		goto out;
4634 
4635 	ret = rdev->desc->ops->set_mode(rdev, mode);
4636 out:
4637 	regulator_unlock(rdev);
4638 	return ret;
4639 }
4640 EXPORT_SYMBOL_GPL(regulator_set_mode);
4641 
4642 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4643 {
4644 	/* sanity check */
4645 	if (!rdev->desc->ops->get_mode)
4646 		return -EINVAL;
4647 
4648 	return rdev->desc->ops->get_mode(rdev);
4649 }
4650 
4651 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4652 {
4653 	int ret;
4654 
4655 	regulator_lock(rdev);
4656 	ret = _regulator_get_mode_unlocked(rdev);
4657 	regulator_unlock(rdev);
4658 
4659 	return ret;
4660 }
4661 
4662 /**
4663  * regulator_get_mode - get regulator operating mode
4664  * @regulator: regulator source
4665  *
4666  * Get the current regulator operating mode.
4667  */
4668 unsigned int regulator_get_mode(struct regulator *regulator)
4669 {
4670 	return _regulator_get_mode(regulator->rdev);
4671 }
4672 EXPORT_SYMBOL_GPL(regulator_get_mode);
4673 
4674 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4675 {
4676 	int ret = 0;
4677 
4678 	if (rdev->use_cached_err) {
4679 		spin_lock(&rdev->err_lock);
4680 		ret = rdev->cached_err;
4681 		spin_unlock(&rdev->err_lock);
4682 	}
4683 	return ret;
4684 }
4685 
4686 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4687 					unsigned int *flags)
4688 {
4689 	int cached_flags, ret = 0;
4690 
4691 	regulator_lock(rdev);
4692 
4693 	cached_flags = rdev_get_cached_err_flags(rdev);
4694 
4695 	if (rdev->desc->ops->get_error_flags)
4696 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4697 	else if (!rdev->use_cached_err)
4698 		ret = -EINVAL;
4699 
4700 	*flags |= cached_flags;
4701 
4702 	regulator_unlock(rdev);
4703 
4704 	return ret;
4705 }
4706 
4707 /**
4708  * regulator_get_error_flags - get regulator error information
4709  * @regulator: regulator source
4710  * @flags: pointer to store error flags
4711  *
4712  * Get the current regulator error information.
4713  */
4714 int regulator_get_error_flags(struct regulator *regulator,
4715 				unsigned int *flags)
4716 {
4717 	return _regulator_get_error_flags(regulator->rdev, flags);
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720 
4721 /**
4722  * regulator_set_load - set regulator load
4723  * @regulator: regulator source
4724  * @uA_load: load current
4725  *
4726  * Notifies the regulator core of a new device load. This is then used by
4727  * DRMS (if enabled by constraints) to set the most efficient regulator
4728  * operating mode for the new regulator loading.
4729  *
4730  * Consumer devices notify their supply regulator of the maximum power
4731  * they will require (can be taken from device datasheet in the power
4732  * consumption tables) when they change operational status and hence power
4733  * state. Examples of operational state changes that can affect power
4734  * consumption are :-
4735  *
4736  *    o Device is opened / closed.
4737  *    o Device I/O is about to begin or has just finished.
4738  *    o Device is idling in between work.
4739  *
4740  * This information is also exported via sysfs to userspace.
4741  *
4742  * DRMS will sum the total requested load on the regulator and change
4743  * to the most efficient operating mode if platform constraints allow.
4744  *
4745  * NOTE: when a regulator consumer requests to have a regulator
4746  * disabled then any load that consumer requested no longer counts
4747  * toward the total requested load.  If the regulator is re-enabled
4748  * then the previously requested load will start counting again.
4749  *
4750  * If a regulator is an always-on regulator then an individual consumer's
4751  * load will still be removed if that consumer is fully disabled.
4752  *
4753  * On error a negative errno is returned.
4754  */
4755 int regulator_set_load(struct regulator *regulator, int uA_load)
4756 {
4757 	struct regulator_dev *rdev = regulator->rdev;
4758 	int old_uA_load;
4759 	int ret = 0;
4760 
4761 	regulator_lock(rdev);
4762 	old_uA_load = regulator->uA_load;
4763 	regulator->uA_load = uA_load;
4764 	if (regulator->enable_count && old_uA_load != uA_load) {
4765 		ret = drms_uA_update(rdev);
4766 		if (ret < 0)
4767 			regulator->uA_load = old_uA_load;
4768 	}
4769 	regulator_unlock(rdev);
4770 
4771 	return ret;
4772 }
4773 EXPORT_SYMBOL_GPL(regulator_set_load);
4774 
4775 /**
4776  * regulator_allow_bypass - allow the regulator to go into bypass mode
4777  *
4778  * @regulator: Regulator to configure
4779  * @enable: enable or disable bypass mode
4780  *
4781  * Allow the regulator to go into bypass mode if all other consumers
4782  * for the regulator also enable bypass mode and the machine
4783  * constraints allow this.  Bypass mode means that the regulator is
4784  * simply passing the input directly to the output with no regulation.
4785  */
4786 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787 {
4788 	struct regulator_dev *rdev = regulator->rdev;
4789 	const char *name = rdev_get_name(rdev);
4790 	int ret = 0;
4791 
4792 	if (!rdev->desc->ops->set_bypass)
4793 		return 0;
4794 
4795 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796 		return 0;
4797 
4798 	regulator_lock(rdev);
4799 
4800 	if (enable && !regulator->bypass) {
4801 		rdev->bypass_count++;
4802 
4803 		if (rdev->bypass_count == rdev->open_count) {
4804 			trace_regulator_bypass_enable(name);
4805 
4806 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4807 			if (ret != 0)
4808 				rdev->bypass_count--;
4809 			else
4810 				trace_regulator_bypass_enable_complete(name);
4811 		}
4812 
4813 	} else if (!enable && regulator->bypass) {
4814 		rdev->bypass_count--;
4815 
4816 		if (rdev->bypass_count != rdev->open_count) {
4817 			trace_regulator_bypass_disable(name);
4818 
4819 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4820 			if (ret != 0)
4821 				rdev->bypass_count++;
4822 			else
4823 				trace_regulator_bypass_disable_complete(name);
4824 		}
4825 	}
4826 
4827 	if (ret == 0)
4828 		regulator->bypass = enable;
4829 
4830 	regulator_unlock(rdev);
4831 
4832 	return ret;
4833 }
4834 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835 
4836 /**
4837  * regulator_register_notifier - register regulator event notifier
4838  * @regulator: regulator source
4839  * @nb: notifier block
4840  *
4841  * Register notifier block to receive regulator events.
4842  */
4843 int regulator_register_notifier(struct regulator *regulator,
4844 			      struct notifier_block *nb)
4845 {
4846 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4847 						nb);
4848 }
4849 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4850 
4851 /**
4852  * regulator_unregister_notifier - unregister regulator event notifier
4853  * @regulator: regulator source
4854  * @nb: notifier block
4855  *
4856  * Unregister regulator event notifier block.
4857  */
4858 int regulator_unregister_notifier(struct regulator *regulator,
4859 				struct notifier_block *nb)
4860 {
4861 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4862 						  nb);
4863 }
4864 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4865 
4866 /* notify regulator consumers and downstream regulator consumers.
4867  * Note mutex must be held by caller.
4868  */
4869 static int _notifier_call_chain(struct regulator_dev *rdev,
4870 				  unsigned long event, void *data)
4871 {
4872 	/* call rdev chain first */
4873 	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4874 
4875 	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4876 		struct device *parent = rdev->dev.parent;
4877 		const char *rname = rdev_get_name(rdev);
4878 		char name[32];
4879 
4880 		/* Avoid duplicate debugfs directory names */
4881 		if (parent && rname == rdev->desc->name) {
4882 			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4883 				 rname);
4884 			rname = name;
4885 		}
4886 		reg_generate_netlink_event(rname, event);
4887 	}
4888 
4889 	return ret;
4890 }
4891 
4892 int _regulator_bulk_get(struct device *dev, int num_consumers,
4893 			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4894 {
4895 	int i;
4896 	int ret;
4897 
4898 	for (i = 0; i < num_consumers; i++)
4899 		consumers[i].consumer = NULL;
4900 
4901 	for (i = 0; i < num_consumers; i++) {
4902 		consumers[i].consumer = _regulator_get(dev,
4903 						       consumers[i].supply, get_type);
4904 		if (IS_ERR(consumers[i].consumer)) {
4905 			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4906 					    "Failed to get supply '%s'",
4907 					    consumers[i].supply);
4908 			consumers[i].consumer = NULL;
4909 			goto err;
4910 		}
4911 
4912 		if (consumers[i].init_load_uA > 0) {
4913 			ret = regulator_set_load(consumers[i].consumer,
4914 						 consumers[i].init_load_uA);
4915 			if (ret) {
4916 				i++;
4917 				goto err;
4918 			}
4919 		}
4920 	}
4921 
4922 	return 0;
4923 
4924 err:
4925 	while (--i >= 0)
4926 		regulator_put(consumers[i].consumer);
4927 
4928 	return ret;
4929 }
4930 
4931 /**
4932  * regulator_bulk_get - get multiple regulator consumers
4933  *
4934  * @dev:           Device to supply
4935  * @num_consumers: Number of consumers to register
4936  * @consumers:     Configuration of consumers; clients are stored here.
4937  *
4938  * @return 0 on success, an errno on failure.
4939  *
4940  * This helper function allows drivers to get several regulator
4941  * consumers in one operation.  If any of the regulators cannot be
4942  * acquired then any regulators that were allocated will be freed
4943  * before returning to the caller.
4944  */
4945 int regulator_bulk_get(struct device *dev, int num_consumers,
4946 		       struct regulator_bulk_data *consumers)
4947 {
4948 	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4949 }
4950 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4951 
4952 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4953 {
4954 	struct regulator_bulk_data *bulk = data;
4955 
4956 	bulk->ret = regulator_enable(bulk->consumer);
4957 }
4958 
4959 /**
4960  * regulator_bulk_enable - enable multiple regulator consumers
4961  *
4962  * @num_consumers: Number of consumers
4963  * @consumers:     Consumer data; clients are stored here.
4964  * @return         0 on success, an errno on failure
4965  *
4966  * This convenience API allows consumers to enable multiple regulator
4967  * clients in a single API call.  If any consumers cannot be enabled
4968  * then any others that were enabled will be disabled again prior to
4969  * return.
4970  */
4971 int regulator_bulk_enable(int num_consumers,
4972 			  struct regulator_bulk_data *consumers)
4973 {
4974 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4975 	int i;
4976 	int ret = 0;
4977 
4978 	for (i = 0; i < num_consumers; i++) {
4979 		async_schedule_domain(regulator_bulk_enable_async,
4980 				      &consumers[i], &async_domain);
4981 	}
4982 
4983 	async_synchronize_full_domain(&async_domain);
4984 
4985 	/* If any consumer failed we need to unwind any that succeeded */
4986 	for (i = 0; i < num_consumers; i++) {
4987 		if (consumers[i].ret != 0) {
4988 			ret = consumers[i].ret;
4989 			goto err;
4990 		}
4991 	}
4992 
4993 	return 0;
4994 
4995 err:
4996 	for (i = 0; i < num_consumers; i++) {
4997 		if (consumers[i].ret < 0)
4998 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4999 			       ERR_PTR(consumers[i].ret));
5000 		else
5001 			regulator_disable(consumers[i].consumer);
5002 	}
5003 
5004 	return ret;
5005 }
5006 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5007 
5008 /**
5009  * regulator_bulk_disable - disable multiple regulator consumers
5010  *
5011  * @num_consumers: Number of consumers
5012  * @consumers:     Consumer data; clients are stored here.
5013  * @return         0 on success, an errno on failure
5014  *
5015  * This convenience API allows consumers to disable multiple regulator
5016  * clients in a single API call.  If any consumers cannot be disabled
5017  * then any others that were disabled will be enabled again prior to
5018  * return.
5019  */
5020 int regulator_bulk_disable(int num_consumers,
5021 			   struct regulator_bulk_data *consumers)
5022 {
5023 	int i;
5024 	int ret, r;
5025 
5026 	for (i = num_consumers - 1; i >= 0; --i) {
5027 		ret = regulator_disable(consumers[i].consumer);
5028 		if (ret != 0)
5029 			goto err;
5030 	}
5031 
5032 	return 0;
5033 
5034 err:
5035 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5036 	for (++i; i < num_consumers; ++i) {
5037 		r = regulator_enable(consumers[i].consumer);
5038 		if (r != 0)
5039 			pr_err("Failed to re-enable %s: %pe\n",
5040 			       consumers[i].supply, ERR_PTR(r));
5041 	}
5042 
5043 	return ret;
5044 }
5045 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5046 
5047 /**
5048  * regulator_bulk_force_disable - force disable multiple regulator consumers
5049  *
5050  * @num_consumers: Number of consumers
5051  * @consumers:     Consumer data; clients are stored here.
5052  * @return         0 on success, an errno on failure
5053  *
5054  * This convenience API allows consumers to forcibly disable multiple regulator
5055  * clients in a single API call.
5056  * NOTE: This should be used for situations when device damage will
5057  * likely occur if the regulators are not disabled (e.g. over temp).
5058  * Although regulator_force_disable function call for some consumers can
5059  * return error numbers, the function is called for all consumers.
5060  */
5061 int regulator_bulk_force_disable(int num_consumers,
5062 			   struct regulator_bulk_data *consumers)
5063 {
5064 	int i;
5065 	int ret = 0;
5066 
5067 	for (i = 0; i < num_consumers; i++) {
5068 		consumers[i].ret =
5069 			    regulator_force_disable(consumers[i].consumer);
5070 
5071 		/* Store first error for reporting */
5072 		if (consumers[i].ret && !ret)
5073 			ret = consumers[i].ret;
5074 	}
5075 
5076 	return ret;
5077 }
5078 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5079 
5080 /**
5081  * regulator_bulk_free - free multiple regulator consumers
5082  *
5083  * @num_consumers: Number of consumers
5084  * @consumers:     Consumer data; clients are stored here.
5085  *
5086  * This convenience API allows consumers to free multiple regulator
5087  * clients in a single API call.
5088  */
5089 void regulator_bulk_free(int num_consumers,
5090 			 struct regulator_bulk_data *consumers)
5091 {
5092 	int i;
5093 
5094 	for (i = 0; i < num_consumers; i++) {
5095 		regulator_put(consumers[i].consumer);
5096 		consumers[i].consumer = NULL;
5097 	}
5098 }
5099 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5100 
5101 /**
5102  * regulator_handle_critical - Handle events for system-critical regulators.
5103  * @rdev: The regulator device.
5104  * @event: The event being handled.
5105  *
5106  * This function handles critical events such as under-voltage, over-current,
5107  * and unknown errors for regulators deemed system-critical. On detecting such
5108  * events, it triggers a hardware protection shutdown with a defined timeout.
5109  */
5110 static void regulator_handle_critical(struct regulator_dev *rdev,
5111 				      unsigned long event)
5112 {
5113 	const char *reason = NULL;
5114 
5115 	if (!rdev->constraints->system_critical)
5116 		return;
5117 
5118 	switch (event) {
5119 	case REGULATOR_EVENT_UNDER_VOLTAGE:
5120 		reason = "System critical regulator: voltage drop detected";
5121 		break;
5122 	case REGULATOR_EVENT_OVER_CURRENT:
5123 		reason = "System critical regulator: over-current detected";
5124 		break;
5125 	case REGULATOR_EVENT_FAIL:
5126 		reason = "System critical regulator: unknown error";
5127 	}
5128 
5129 	if (!reason)
5130 		return;
5131 
5132 	hw_protection_shutdown(reason,
5133 			       rdev->constraints->uv_less_critical_window_ms);
5134 }
5135 
5136 /**
5137  * regulator_notifier_call_chain - call regulator event notifier
5138  * @rdev: regulator source
5139  * @event: notifier block
5140  * @data: callback-specific data.
5141  *
5142  * Called by regulator drivers to notify clients a regulator event has
5143  * occurred.
5144  */
5145 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5146 				  unsigned long event, void *data)
5147 {
5148 	regulator_handle_critical(rdev, event);
5149 
5150 	_notifier_call_chain(rdev, event, data);
5151 	return NOTIFY_DONE;
5152 
5153 }
5154 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5155 
5156 /**
5157  * regulator_mode_to_status - convert a regulator mode into a status
5158  *
5159  * @mode: Mode to convert
5160  *
5161  * Convert a regulator mode into a status.
5162  */
5163 int regulator_mode_to_status(unsigned int mode)
5164 {
5165 	switch (mode) {
5166 	case REGULATOR_MODE_FAST:
5167 		return REGULATOR_STATUS_FAST;
5168 	case REGULATOR_MODE_NORMAL:
5169 		return REGULATOR_STATUS_NORMAL;
5170 	case REGULATOR_MODE_IDLE:
5171 		return REGULATOR_STATUS_IDLE;
5172 	case REGULATOR_MODE_STANDBY:
5173 		return REGULATOR_STATUS_STANDBY;
5174 	default:
5175 		return REGULATOR_STATUS_UNDEFINED;
5176 	}
5177 }
5178 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5179 
5180 static struct attribute *regulator_dev_attrs[] = {
5181 	&dev_attr_name.attr,
5182 	&dev_attr_num_users.attr,
5183 	&dev_attr_type.attr,
5184 	&dev_attr_microvolts.attr,
5185 	&dev_attr_microamps.attr,
5186 	&dev_attr_opmode.attr,
5187 	&dev_attr_state.attr,
5188 	&dev_attr_status.attr,
5189 	&dev_attr_bypass.attr,
5190 	&dev_attr_requested_microamps.attr,
5191 	&dev_attr_min_microvolts.attr,
5192 	&dev_attr_max_microvolts.attr,
5193 	&dev_attr_min_microamps.attr,
5194 	&dev_attr_max_microamps.attr,
5195 	&dev_attr_under_voltage.attr,
5196 	&dev_attr_over_current.attr,
5197 	&dev_attr_regulation_out.attr,
5198 	&dev_attr_fail.attr,
5199 	&dev_attr_over_temp.attr,
5200 	&dev_attr_under_voltage_warn.attr,
5201 	&dev_attr_over_current_warn.attr,
5202 	&dev_attr_over_voltage_warn.attr,
5203 	&dev_attr_over_temp_warn.attr,
5204 	&dev_attr_suspend_standby_state.attr,
5205 	&dev_attr_suspend_mem_state.attr,
5206 	&dev_attr_suspend_disk_state.attr,
5207 	&dev_attr_suspend_standby_microvolts.attr,
5208 	&dev_attr_suspend_mem_microvolts.attr,
5209 	&dev_attr_suspend_disk_microvolts.attr,
5210 	&dev_attr_suspend_standby_mode.attr,
5211 	&dev_attr_suspend_mem_mode.attr,
5212 	&dev_attr_suspend_disk_mode.attr,
5213 	NULL
5214 };
5215 
5216 /*
5217  * To avoid cluttering sysfs (and memory) with useless state, only
5218  * create attributes that can be meaningfully displayed.
5219  */
5220 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5221 					 struct attribute *attr, int idx)
5222 {
5223 	struct device *dev = kobj_to_dev(kobj);
5224 	struct regulator_dev *rdev = dev_to_rdev(dev);
5225 	const struct regulator_ops *ops = rdev->desc->ops;
5226 	umode_t mode = attr->mode;
5227 
5228 	/* these three are always present */
5229 	if (attr == &dev_attr_name.attr ||
5230 	    attr == &dev_attr_num_users.attr ||
5231 	    attr == &dev_attr_type.attr)
5232 		return mode;
5233 
5234 	/* some attributes need specific methods to be displayed */
5235 	if (attr == &dev_attr_microvolts.attr) {
5236 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5237 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5238 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5239 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5240 			return mode;
5241 		return 0;
5242 	}
5243 
5244 	if (attr == &dev_attr_microamps.attr)
5245 		return ops->get_current_limit ? mode : 0;
5246 
5247 	if (attr == &dev_attr_opmode.attr)
5248 		return ops->get_mode ? mode : 0;
5249 
5250 	if (attr == &dev_attr_state.attr)
5251 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5252 
5253 	if (attr == &dev_attr_status.attr)
5254 		return ops->get_status ? mode : 0;
5255 
5256 	if (attr == &dev_attr_bypass.attr)
5257 		return ops->get_bypass ? mode : 0;
5258 
5259 	if (attr == &dev_attr_under_voltage.attr ||
5260 	    attr == &dev_attr_over_current.attr ||
5261 	    attr == &dev_attr_regulation_out.attr ||
5262 	    attr == &dev_attr_fail.attr ||
5263 	    attr == &dev_attr_over_temp.attr ||
5264 	    attr == &dev_attr_under_voltage_warn.attr ||
5265 	    attr == &dev_attr_over_current_warn.attr ||
5266 	    attr == &dev_attr_over_voltage_warn.attr ||
5267 	    attr == &dev_attr_over_temp_warn.attr)
5268 		return ops->get_error_flags ? mode : 0;
5269 
5270 	/* constraints need specific supporting methods */
5271 	if (attr == &dev_attr_min_microvolts.attr ||
5272 	    attr == &dev_attr_max_microvolts.attr)
5273 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5274 
5275 	if (attr == &dev_attr_min_microamps.attr ||
5276 	    attr == &dev_attr_max_microamps.attr)
5277 		return ops->set_current_limit ? mode : 0;
5278 
5279 	if (attr == &dev_attr_suspend_standby_state.attr ||
5280 	    attr == &dev_attr_suspend_mem_state.attr ||
5281 	    attr == &dev_attr_suspend_disk_state.attr)
5282 		return mode;
5283 
5284 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5285 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5286 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5287 		return ops->set_suspend_voltage ? mode : 0;
5288 
5289 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5290 	    attr == &dev_attr_suspend_mem_mode.attr ||
5291 	    attr == &dev_attr_suspend_disk_mode.attr)
5292 		return ops->set_suspend_mode ? mode : 0;
5293 
5294 	return mode;
5295 }
5296 
5297 static const struct attribute_group regulator_dev_group = {
5298 	.attrs = regulator_dev_attrs,
5299 	.is_visible = regulator_attr_is_visible,
5300 };
5301 
5302 static const struct attribute_group *regulator_dev_groups[] = {
5303 	&regulator_dev_group,
5304 	NULL
5305 };
5306 
5307 static void regulator_dev_release(struct device *dev)
5308 {
5309 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5310 
5311 	debugfs_remove_recursive(rdev->debugfs);
5312 	kfree(rdev->constraints);
5313 	of_node_put(rdev->dev.of_node);
5314 	kfree(rdev);
5315 }
5316 
5317 static void rdev_init_debugfs(struct regulator_dev *rdev)
5318 {
5319 	struct device *parent = rdev->dev.parent;
5320 	const char *rname = rdev_get_name(rdev);
5321 	char name[NAME_MAX];
5322 
5323 	/* Avoid duplicate debugfs directory names */
5324 	if (parent && rname == rdev->desc->name) {
5325 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5326 			 rname);
5327 		rname = name;
5328 	}
5329 
5330 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5331 	if (IS_ERR(rdev->debugfs))
5332 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5333 
5334 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5335 			   &rdev->use_count);
5336 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5337 			   &rdev->open_count);
5338 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5339 			   &rdev->bypass_count);
5340 }
5341 
5342 static int regulator_register_resolve_supply(struct device *dev, void *data)
5343 {
5344 	struct regulator_dev *rdev = dev_to_rdev(dev);
5345 
5346 	if (regulator_resolve_supply(rdev))
5347 		rdev_dbg(rdev, "unable to resolve supply\n");
5348 
5349 	return 0;
5350 }
5351 
5352 int regulator_coupler_register(struct regulator_coupler *coupler)
5353 {
5354 	mutex_lock(&regulator_list_mutex);
5355 	list_add_tail(&coupler->list, &regulator_coupler_list);
5356 	mutex_unlock(&regulator_list_mutex);
5357 
5358 	return 0;
5359 }
5360 
5361 static struct regulator_coupler *
5362 regulator_find_coupler(struct regulator_dev *rdev)
5363 {
5364 	struct regulator_coupler *coupler;
5365 	int err;
5366 
5367 	/*
5368 	 * Note that regulators are appended to the list and the generic
5369 	 * coupler is registered first, hence it will be attached at last
5370 	 * if nobody cared.
5371 	 */
5372 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5373 		err = coupler->attach_regulator(coupler, rdev);
5374 		if (!err) {
5375 			if (!coupler->balance_voltage &&
5376 			    rdev->coupling_desc.n_coupled > 2)
5377 				goto err_unsupported;
5378 
5379 			return coupler;
5380 		}
5381 
5382 		if (err < 0)
5383 			return ERR_PTR(err);
5384 
5385 		if (err == 1)
5386 			continue;
5387 
5388 		break;
5389 	}
5390 
5391 	return ERR_PTR(-EINVAL);
5392 
5393 err_unsupported:
5394 	if (coupler->detach_regulator)
5395 		coupler->detach_regulator(coupler, rdev);
5396 
5397 	rdev_err(rdev,
5398 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5399 
5400 	return ERR_PTR(-EPERM);
5401 }
5402 
5403 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5404 {
5405 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5406 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5407 	int n_coupled = c_desc->n_coupled;
5408 	struct regulator_dev *c_rdev;
5409 	int i;
5410 
5411 	for (i = 1; i < n_coupled; i++) {
5412 		/* already resolved */
5413 		if (c_desc->coupled_rdevs[i])
5414 			continue;
5415 
5416 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5417 
5418 		if (!c_rdev)
5419 			continue;
5420 
5421 		if (c_rdev->coupling_desc.coupler != coupler) {
5422 			rdev_err(rdev, "coupler mismatch with %s\n",
5423 				 rdev_get_name(c_rdev));
5424 			return;
5425 		}
5426 
5427 		c_desc->coupled_rdevs[i] = c_rdev;
5428 		c_desc->n_resolved++;
5429 
5430 		regulator_resolve_coupling(c_rdev);
5431 	}
5432 }
5433 
5434 static void regulator_remove_coupling(struct regulator_dev *rdev)
5435 {
5436 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5437 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5438 	struct regulator_dev *__c_rdev, *c_rdev;
5439 	unsigned int __n_coupled, n_coupled;
5440 	int i, k;
5441 	int err;
5442 
5443 	n_coupled = c_desc->n_coupled;
5444 
5445 	for (i = 1; i < n_coupled; i++) {
5446 		c_rdev = c_desc->coupled_rdevs[i];
5447 
5448 		if (!c_rdev)
5449 			continue;
5450 
5451 		regulator_lock(c_rdev);
5452 
5453 		__c_desc = &c_rdev->coupling_desc;
5454 		__n_coupled = __c_desc->n_coupled;
5455 
5456 		for (k = 1; k < __n_coupled; k++) {
5457 			__c_rdev = __c_desc->coupled_rdevs[k];
5458 
5459 			if (__c_rdev == rdev) {
5460 				__c_desc->coupled_rdevs[k] = NULL;
5461 				__c_desc->n_resolved--;
5462 				break;
5463 			}
5464 		}
5465 
5466 		regulator_unlock(c_rdev);
5467 
5468 		c_desc->coupled_rdevs[i] = NULL;
5469 		c_desc->n_resolved--;
5470 	}
5471 
5472 	if (coupler && coupler->detach_regulator) {
5473 		err = coupler->detach_regulator(coupler, rdev);
5474 		if (err)
5475 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5476 				 ERR_PTR(err));
5477 	}
5478 
5479 	kfree(rdev->coupling_desc.coupled_rdevs);
5480 	rdev->coupling_desc.coupled_rdevs = NULL;
5481 }
5482 
5483 static int regulator_init_coupling(struct regulator_dev *rdev)
5484 {
5485 	struct regulator_dev **coupled;
5486 	int err, n_phandles;
5487 
5488 	if (!IS_ENABLED(CONFIG_OF))
5489 		n_phandles = 0;
5490 	else
5491 		n_phandles = of_get_n_coupled(rdev);
5492 
5493 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5494 	if (!coupled)
5495 		return -ENOMEM;
5496 
5497 	rdev->coupling_desc.coupled_rdevs = coupled;
5498 
5499 	/*
5500 	 * Every regulator should always have coupling descriptor filled with
5501 	 * at least pointer to itself.
5502 	 */
5503 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5504 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5505 	rdev->coupling_desc.n_resolved++;
5506 
5507 	/* regulator isn't coupled */
5508 	if (n_phandles == 0)
5509 		return 0;
5510 
5511 	if (!of_check_coupling_data(rdev))
5512 		return -EPERM;
5513 
5514 	mutex_lock(&regulator_list_mutex);
5515 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5516 	mutex_unlock(&regulator_list_mutex);
5517 
5518 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5519 		err = PTR_ERR(rdev->coupling_desc.coupler);
5520 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5521 		return err;
5522 	}
5523 
5524 	return 0;
5525 }
5526 
5527 static int generic_coupler_attach(struct regulator_coupler *coupler,
5528 				  struct regulator_dev *rdev)
5529 {
5530 	if (rdev->coupling_desc.n_coupled > 2) {
5531 		rdev_err(rdev,
5532 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5533 		return -EPERM;
5534 	}
5535 
5536 	if (!rdev->constraints->always_on) {
5537 		rdev_err(rdev,
5538 			 "Coupling of a non always-on regulator is unimplemented\n");
5539 		return -ENOTSUPP;
5540 	}
5541 
5542 	return 0;
5543 }
5544 
5545 static struct regulator_coupler generic_regulator_coupler = {
5546 	.attach_regulator = generic_coupler_attach,
5547 };
5548 
5549 /**
5550  * regulator_register - register regulator
5551  * @dev: the device that drive the regulator
5552  * @regulator_desc: regulator to register
5553  * @cfg: runtime configuration for regulator
5554  *
5555  * Called by regulator drivers to register a regulator.
5556  * Returns a valid pointer to struct regulator_dev on success
5557  * or an ERR_PTR() on error.
5558  */
5559 struct regulator_dev *
5560 regulator_register(struct device *dev,
5561 		   const struct regulator_desc *regulator_desc,
5562 		   const struct regulator_config *cfg)
5563 {
5564 	const struct regulator_init_data *init_data;
5565 	struct regulator_config *config = NULL;
5566 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5567 	struct regulator_dev *rdev;
5568 	bool dangling_cfg_gpiod = false;
5569 	bool dangling_of_gpiod = false;
5570 	int ret, i;
5571 	bool resolved_early = false;
5572 
5573 	if (cfg == NULL)
5574 		return ERR_PTR(-EINVAL);
5575 	if (cfg->ena_gpiod)
5576 		dangling_cfg_gpiod = true;
5577 	if (regulator_desc == NULL) {
5578 		ret = -EINVAL;
5579 		goto rinse;
5580 	}
5581 
5582 	WARN_ON(!dev || !cfg->dev);
5583 
5584 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5585 		ret = -EINVAL;
5586 		goto rinse;
5587 	}
5588 
5589 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5590 	    regulator_desc->type != REGULATOR_CURRENT) {
5591 		ret = -EINVAL;
5592 		goto rinse;
5593 	}
5594 
5595 	/* Only one of each should be implemented */
5596 	WARN_ON(regulator_desc->ops->get_voltage &&
5597 		regulator_desc->ops->get_voltage_sel);
5598 	WARN_ON(regulator_desc->ops->set_voltage &&
5599 		regulator_desc->ops->set_voltage_sel);
5600 
5601 	/* If we're using selectors we must implement list_voltage. */
5602 	if (regulator_desc->ops->get_voltage_sel &&
5603 	    !regulator_desc->ops->list_voltage) {
5604 		ret = -EINVAL;
5605 		goto rinse;
5606 	}
5607 	if (regulator_desc->ops->set_voltage_sel &&
5608 	    !regulator_desc->ops->list_voltage) {
5609 		ret = -EINVAL;
5610 		goto rinse;
5611 	}
5612 
5613 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5614 	if (rdev == NULL) {
5615 		ret = -ENOMEM;
5616 		goto rinse;
5617 	}
5618 	device_initialize(&rdev->dev);
5619 	dev_set_drvdata(&rdev->dev, rdev);
5620 	rdev->dev.class = &regulator_class;
5621 	spin_lock_init(&rdev->err_lock);
5622 
5623 	/*
5624 	 * Duplicate the config so the driver could override it after
5625 	 * parsing init data.
5626 	 */
5627 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5628 	if (config == NULL) {
5629 		ret = -ENOMEM;
5630 		goto clean;
5631 	}
5632 
5633 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5634 					       &rdev->dev.of_node);
5635 
5636 	/*
5637 	 * Sometimes not all resources are probed already so we need to take
5638 	 * that into account. This happens most the time if the ena_gpiod comes
5639 	 * from a gpio extender or something else.
5640 	 */
5641 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5642 		ret = -EPROBE_DEFER;
5643 		goto clean;
5644 	}
5645 
5646 	/*
5647 	 * We need to keep track of any GPIO descriptor coming from the
5648 	 * device tree until we have handled it over to the core. If the
5649 	 * config that was passed in to this function DOES NOT contain
5650 	 * a descriptor, and the config after this call DOES contain
5651 	 * a descriptor, we definitely got one from parsing the device
5652 	 * tree.
5653 	 */
5654 	if (!cfg->ena_gpiod && config->ena_gpiod)
5655 		dangling_of_gpiod = true;
5656 	if (!init_data) {
5657 		init_data = config->init_data;
5658 		rdev->dev.of_node = of_node_get(config->of_node);
5659 	}
5660 
5661 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5662 	rdev->reg_data = config->driver_data;
5663 	rdev->owner = regulator_desc->owner;
5664 	rdev->desc = regulator_desc;
5665 	if (config->regmap)
5666 		rdev->regmap = config->regmap;
5667 	else if (dev_get_regmap(dev, NULL))
5668 		rdev->regmap = dev_get_regmap(dev, NULL);
5669 	else if (dev->parent)
5670 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5671 	INIT_LIST_HEAD(&rdev->consumer_list);
5672 	INIT_LIST_HEAD(&rdev->list);
5673 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5674 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5675 
5676 	if (init_data && init_data->supply_regulator)
5677 		rdev->supply_name = init_data->supply_regulator;
5678 	else if (regulator_desc->supply_name)
5679 		rdev->supply_name = regulator_desc->supply_name;
5680 
5681 	/* register with sysfs */
5682 	rdev->dev.parent = config->dev;
5683 	dev_set_name(&rdev->dev, "regulator.%lu",
5684 		    (unsigned long) atomic_inc_return(&regulator_no));
5685 
5686 	/* set regulator constraints */
5687 	if (init_data)
5688 		rdev->constraints = kmemdup(&init_data->constraints,
5689 					    sizeof(*rdev->constraints),
5690 					    GFP_KERNEL);
5691 	else
5692 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5693 					    GFP_KERNEL);
5694 	if (!rdev->constraints) {
5695 		ret = -ENOMEM;
5696 		goto wash;
5697 	}
5698 
5699 	if ((rdev->supply_name && !rdev->supply) &&
5700 		(rdev->constraints->always_on ||
5701 		 rdev->constraints->boot_on)) {
5702 		ret = regulator_resolve_supply(rdev);
5703 		if (ret)
5704 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5705 					 ERR_PTR(ret));
5706 
5707 		resolved_early = true;
5708 	}
5709 
5710 	/* perform any regulator specific init */
5711 	if (init_data && init_data->regulator_init) {
5712 		ret = init_data->regulator_init(rdev->reg_data);
5713 		if (ret < 0)
5714 			goto wash;
5715 	}
5716 
5717 	if (config->ena_gpiod) {
5718 		ret = regulator_ena_gpio_request(rdev, config);
5719 		if (ret != 0) {
5720 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5721 				 ERR_PTR(ret));
5722 			goto wash;
5723 		}
5724 		/* The regulator core took over the GPIO descriptor */
5725 		dangling_cfg_gpiod = false;
5726 		dangling_of_gpiod = false;
5727 	}
5728 
5729 	ret = set_machine_constraints(rdev);
5730 	if (ret == -EPROBE_DEFER && !resolved_early) {
5731 		/* Regulator might be in bypass mode and so needs its supply
5732 		 * to set the constraints
5733 		 */
5734 		/* FIXME: this currently triggers a chicken-and-egg problem
5735 		 * when creating -SUPPLY symlink in sysfs to a regulator
5736 		 * that is just being created
5737 		 */
5738 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5739 			 rdev->supply_name);
5740 		ret = regulator_resolve_supply(rdev);
5741 		if (!ret)
5742 			ret = set_machine_constraints(rdev);
5743 		else
5744 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5745 				 ERR_PTR(ret));
5746 	}
5747 	if (ret < 0)
5748 		goto wash;
5749 
5750 	ret = regulator_init_coupling(rdev);
5751 	if (ret < 0)
5752 		goto wash;
5753 
5754 	/* add consumers devices */
5755 	if (init_data) {
5756 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5757 			ret = set_consumer_device_supply(rdev,
5758 				init_data->consumer_supplies[i].dev_name,
5759 				init_data->consumer_supplies[i].supply);
5760 			if (ret < 0) {
5761 				dev_err(dev, "Failed to set supply %s\n",
5762 					init_data->consumer_supplies[i].supply);
5763 				goto unset_supplies;
5764 			}
5765 		}
5766 	}
5767 
5768 	if (!rdev->desc->ops->get_voltage &&
5769 	    !rdev->desc->ops->list_voltage &&
5770 	    !rdev->desc->fixed_uV)
5771 		rdev->is_switch = true;
5772 
5773 	ret = device_add(&rdev->dev);
5774 	if (ret != 0)
5775 		goto unset_supplies;
5776 
5777 	rdev_init_debugfs(rdev);
5778 
5779 	/* try to resolve regulators coupling since a new one was registered */
5780 	mutex_lock(&regulator_list_mutex);
5781 	regulator_resolve_coupling(rdev);
5782 	mutex_unlock(&regulator_list_mutex);
5783 
5784 	/* try to resolve regulators supply since a new one was registered */
5785 	class_for_each_device(&regulator_class, NULL, NULL,
5786 			      regulator_register_resolve_supply);
5787 	kfree(config);
5788 	return rdev;
5789 
5790 unset_supplies:
5791 	mutex_lock(&regulator_list_mutex);
5792 	unset_regulator_supplies(rdev);
5793 	regulator_remove_coupling(rdev);
5794 	mutex_unlock(&regulator_list_mutex);
5795 wash:
5796 	regulator_put(rdev->supply);
5797 	kfree(rdev->coupling_desc.coupled_rdevs);
5798 	mutex_lock(&regulator_list_mutex);
5799 	regulator_ena_gpio_free(rdev);
5800 	mutex_unlock(&regulator_list_mutex);
5801 clean:
5802 	if (dangling_of_gpiod)
5803 		gpiod_put(config->ena_gpiod);
5804 	kfree(config);
5805 	put_device(&rdev->dev);
5806 rinse:
5807 	if (dangling_cfg_gpiod)
5808 		gpiod_put(cfg->ena_gpiod);
5809 	return ERR_PTR(ret);
5810 }
5811 EXPORT_SYMBOL_GPL(regulator_register);
5812 
5813 /**
5814  * regulator_unregister - unregister regulator
5815  * @rdev: regulator to unregister
5816  *
5817  * Called by regulator drivers to unregister a regulator.
5818  */
5819 void regulator_unregister(struct regulator_dev *rdev)
5820 {
5821 	if (rdev == NULL)
5822 		return;
5823 
5824 	if (rdev->supply) {
5825 		while (rdev->use_count--)
5826 			regulator_disable(rdev->supply);
5827 		regulator_put(rdev->supply);
5828 	}
5829 
5830 	flush_work(&rdev->disable_work.work);
5831 
5832 	mutex_lock(&regulator_list_mutex);
5833 
5834 	WARN_ON(rdev->open_count);
5835 	regulator_remove_coupling(rdev);
5836 	unset_regulator_supplies(rdev);
5837 	list_del(&rdev->list);
5838 	regulator_ena_gpio_free(rdev);
5839 	device_unregister(&rdev->dev);
5840 
5841 	mutex_unlock(&regulator_list_mutex);
5842 }
5843 EXPORT_SYMBOL_GPL(regulator_unregister);
5844 
5845 #ifdef CONFIG_SUSPEND
5846 /**
5847  * regulator_suspend - prepare regulators for system wide suspend
5848  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5849  *
5850  * Configure each regulator with it's suspend operating parameters for state.
5851  */
5852 static int regulator_suspend(struct device *dev)
5853 {
5854 	struct regulator_dev *rdev = dev_to_rdev(dev);
5855 	suspend_state_t state = pm_suspend_target_state;
5856 	int ret;
5857 	const struct regulator_state *rstate;
5858 
5859 	rstate = regulator_get_suspend_state_check(rdev, state);
5860 	if (!rstate)
5861 		return 0;
5862 
5863 	regulator_lock(rdev);
5864 	ret = __suspend_set_state(rdev, rstate);
5865 	regulator_unlock(rdev);
5866 
5867 	return ret;
5868 }
5869 
5870 static int regulator_resume(struct device *dev)
5871 {
5872 	suspend_state_t state = pm_suspend_target_state;
5873 	struct regulator_dev *rdev = dev_to_rdev(dev);
5874 	struct regulator_state *rstate;
5875 	int ret = 0;
5876 
5877 	rstate = regulator_get_suspend_state(rdev, state);
5878 	if (rstate == NULL)
5879 		return 0;
5880 
5881 	/* Avoid grabbing the lock if we don't need to */
5882 	if (!rdev->desc->ops->resume)
5883 		return 0;
5884 
5885 	regulator_lock(rdev);
5886 
5887 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5888 	    rstate->enabled == DISABLE_IN_SUSPEND)
5889 		ret = rdev->desc->ops->resume(rdev);
5890 
5891 	regulator_unlock(rdev);
5892 
5893 	return ret;
5894 }
5895 #else /* !CONFIG_SUSPEND */
5896 
5897 #define regulator_suspend	NULL
5898 #define regulator_resume	NULL
5899 
5900 #endif /* !CONFIG_SUSPEND */
5901 
5902 #ifdef CONFIG_PM
5903 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5904 	.suspend	= regulator_suspend,
5905 	.resume		= regulator_resume,
5906 };
5907 #endif
5908 
5909 const struct class regulator_class = {
5910 	.name = "regulator",
5911 	.dev_release = regulator_dev_release,
5912 	.dev_groups = regulator_dev_groups,
5913 #ifdef CONFIG_PM
5914 	.pm = &regulator_pm_ops,
5915 #endif
5916 };
5917 /**
5918  * regulator_has_full_constraints - the system has fully specified constraints
5919  *
5920  * Calling this function will cause the regulator API to disable all
5921  * regulators which have a zero use count and don't have an always_on
5922  * constraint in a late_initcall.
5923  *
5924  * The intention is that this will become the default behaviour in a
5925  * future kernel release so users are encouraged to use this facility
5926  * now.
5927  */
5928 void regulator_has_full_constraints(void)
5929 {
5930 	has_full_constraints = 1;
5931 }
5932 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5933 
5934 /**
5935  * rdev_get_drvdata - get rdev regulator driver data
5936  * @rdev: regulator
5937  *
5938  * Get rdev regulator driver private data. This call can be used in the
5939  * regulator driver context.
5940  */
5941 void *rdev_get_drvdata(struct regulator_dev *rdev)
5942 {
5943 	return rdev->reg_data;
5944 }
5945 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5946 
5947 /**
5948  * regulator_get_drvdata - get regulator driver data
5949  * @regulator: regulator
5950  *
5951  * Get regulator driver private data. This call can be used in the consumer
5952  * driver context when non API regulator specific functions need to be called.
5953  */
5954 void *regulator_get_drvdata(struct regulator *regulator)
5955 {
5956 	return regulator->rdev->reg_data;
5957 }
5958 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5959 
5960 /**
5961  * regulator_set_drvdata - set regulator driver data
5962  * @regulator: regulator
5963  * @data: data
5964  */
5965 void regulator_set_drvdata(struct regulator *regulator, void *data)
5966 {
5967 	regulator->rdev->reg_data = data;
5968 }
5969 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5970 
5971 /**
5972  * rdev_get_id - get regulator ID
5973  * @rdev: regulator
5974  */
5975 int rdev_get_id(struct regulator_dev *rdev)
5976 {
5977 	return rdev->desc->id;
5978 }
5979 EXPORT_SYMBOL_GPL(rdev_get_id);
5980 
5981 struct device *rdev_get_dev(struct regulator_dev *rdev)
5982 {
5983 	return &rdev->dev;
5984 }
5985 EXPORT_SYMBOL_GPL(rdev_get_dev);
5986 
5987 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5988 {
5989 	return rdev->regmap;
5990 }
5991 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5992 
5993 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5994 {
5995 	return reg_init_data->driver_data;
5996 }
5997 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5998 
5999 #ifdef CONFIG_DEBUG_FS
6000 static int supply_map_show(struct seq_file *sf, void *data)
6001 {
6002 	struct regulator_map *map;
6003 
6004 	list_for_each_entry(map, &regulator_map_list, list) {
6005 		seq_printf(sf, "%s -> %s.%s\n",
6006 				rdev_get_name(map->regulator), map->dev_name,
6007 				map->supply);
6008 	}
6009 
6010 	return 0;
6011 }
6012 DEFINE_SHOW_ATTRIBUTE(supply_map);
6013 
6014 struct summary_data {
6015 	struct seq_file *s;
6016 	struct regulator_dev *parent;
6017 	int level;
6018 };
6019 
6020 static void regulator_summary_show_subtree(struct seq_file *s,
6021 					   struct regulator_dev *rdev,
6022 					   int level);
6023 
6024 static int regulator_summary_show_children(struct device *dev, void *data)
6025 {
6026 	struct regulator_dev *rdev = dev_to_rdev(dev);
6027 	struct summary_data *summary_data = data;
6028 
6029 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6030 		regulator_summary_show_subtree(summary_data->s, rdev,
6031 					       summary_data->level + 1);
6032 
6033 	return 0;
6034 }
6035 
6036 static void regulator_summary_show_subtree(struct seq_file *s,
6037 					   struct regulator_dev *rdev,
6038 					   int level)
6039 {
6040 	struct regulation_constraints *c;
6041 	struct regulator *consumer;
6042 	struct summary_data summary_data;
6043 	unsigned int opmode;
6044 
6045 	if (!rdev)
6046 		return;
6047 
6048 	opmode = _regulator_get_mode_unlocked(rdev);
6049 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6050 		   level * 3 + 1, "",
6051 		   30 - level * 3, rdev_get_name(rdev),
6052 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6053 		   regulator_opmode_to_str(opmode));
6054 
6055 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6056 	seq_printf(s, "%5dmA ",
6057 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6058 
6059 	c = rdev->constraints;
6060 	if (c) {
6061 		switch (rdev->desc->type) {
6062 		case REGULATOR_VOLTAGE:
6063 			seq_printf(s, "%5dmV %5dmV ",
6064 				   c->min_uV / 1000, c->max_uV / 1000);
6065 			break;
6066 		case REGULATOR_CURRENT:
6067 			seq_printf(s, "%5dmA %5dmA ",
6068 				   c->min_uA / 1000, c->max_uA / 1000);
6069 			break;
6070 		}
6071 	}
6072 
6073 	seq_puts(s, "\n");
6074 
6075 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6076 		if (consumer->dev && consumer->dev->class == &regulator_class)
6077 			continue;
6078 
6079 		seq_printf(s, "%*s%-*s ",
6080 			   (level + 1) * 3 + 1, "",
6081 			   30 - (level + 1) * 3,
6082 			   consumer->supply_name ? consumer->supply_name :
6083 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6084 
6085 		switch (rdev->desc->type) {
6086 		case REGULATOR_VOLTAGE:
6087 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6088 				   consumer->enable_count,
6089 				   consumer->uA_load / 1000,
6090 				   consumer->uA_load && !consumer->enable_count ?
6091 				   '*' : ' ',
6092 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6093 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6094 			break;
6095 		case REGULATOR_CURRENT:
6096 			break;
6097 		}
6098 
6099 		seq_puts(s, "\n");
6100 	}
6101 
6102 	summary_data.s = s;
6103 	summary_data.level = level;
6104 	summary_data.parent = rdev;
6105 
6106 	class_for_each_device(&regulator_class, NULL, &summary_data,
6107 			      regulator_summary_show_children);
6108 }
6109 
6110 struct summary_lock_data {
6111 	struct ww_acquire_ctx *ww_ctx;
6112 	struct regulator_dev **new_contended_rdev;
6113 	struct regulator_dev **old_contended_rdev;
6114 };
6115 
6116 static int regulator_summary_lock_one(struct device *dev, void *data)
6117 {
6118 	struct regulator_dev *rdev = dev_to_rdev(dev);
6119 	struct summary_lock_data *lock_data = data;
6120 	int ret = 0;
6121 
6122 	if (rdev != *lock_data->old_contended_rdev) {
6123 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6124 
6125 		if (ret == -EDEADLK)
6126 			*lock_data->new_contended_rdev = rdev;
6127 		else
6128 			WARN_ON_ONCE(ret);
6129 	} else {
6130 		*lock_data->old_contended_rdev = NULL;
6131 	}
6132 
6133 	return ret;
6134 }
6135 
6136 static int regulator_summary_unlock_one(struct device *dev, void *data)
6137 {
6138 	struct regulator_dev *rdev = dev_to_rdev(dev);
6139 	struct summary_lock_data *lock_data = data;
6140 
6141 	if (lock_data) {
6142 		if (rdev == *lock_data->new_contended_rdev)
6143 			return -EDEADLK;
6144 	}
6145 
6146 	regulator_unlock(rdev);
6147 
6148 	return 0;
6149 }
6150 
6151 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6152 				      struct regulator_dev **new_contended_rdev,
6153 				      struct regulator_dev **old_contended_rdev)
6154 {
6155 	struct summary_lock_data lock_data;
6156 	int ret;
6157 
6158 	lock_data.ww_ctx = ww_ctx;
6159 	lock_data.new_contended_rdev = new_contended_rdev;
6160 	lock_data.old_contended_rdev = old_contended_rdev;
6161 
6162 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6163 				    regulator_summary_lock_one);
6164 	if (ret)
6165 		class_for_each_device(&regulator_class, NULL, &lock_data,
6166 				      regulator_summary_unlock_one);
6167 
6168 	return ret;
6169 }
6170 
6171 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6172 {
6173 	struct regulator_dev *new_contended_rdev = NULL;
6174 	struct regulator_dev *old_contended_rdev = NULL;
6175 	int err;
6176 
6177 	mutex_lock(&regulator_list_mutex);
6178 
6179 	ww_acquire_init(ww_ctx, &regulator_ww_class);
6180 
6181 	do {
6182 		if (new_contended_rdev) {
6183 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6184 			old_contended_rdev = new_contended_rdev;
6185 			old_contended_rdev->ref_cnt++;
6186 			old_contended_rdev->mutex_owner = current;
6187 		}
6188 
6189 		err = regulator_summary_lock_all(ww_ctx,
6190 						 &new_contended_rdev,
6191 						 &old_contended_rdev);
6192 
6193 		if (old_contended_rdev)
6194 			regulator_unlock(old_contended_rdev);
6195 
6196 	} while (err == -EDEADLK);
6197 
6198 	ww_acquire_done(ww_ctx);
6199 }
6200 
6201 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6202 {
6203 	class_for_each_device(&regulator_class, NULL, NULL,
6204 			      regulator_summary_unlock_one);
6205 	ww_acquire_fini(ww_ctx);
6206 
6207 	mutex_unlock(&regulator_list_mutex);
6208 }
6209 
6210 static int regulator_summary_show_roots(struct device *dev, void *data)
6211 {
6212 	struct regulator_dev *rdev = dev_to_rdev(dev);
6213 	struct seq_file *s = data;
6214 
6215 	if (!rdev->supply)
6216 		regulator_summary_show_subtree(s, rdev, 0);
6217 
6218 	return 0;
6219 }
6220 
6221 static int regulator_summary_show(struct seq_file *s, void *data)
6222 {
6223 	struct ww_acquire_ctx ww_ctx;
6224 
6225 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6226 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6227 
6228 	regulator_summary_lock(&ww_ctx);
6229 
6230 	class_for_each_device(&regulator_class, NULL, s,
6231 			      regulator_summary_show_roots);
6232 
6233 	regulator_summary_unlock(&ww_ctx);
6234 
6235 	return 0;
6236 }
6237 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6238 #endif /* CONFIG_DEBUG_FS */
6239 
6240 static int __init regulator_init(void)
6241 {
6242 	int ret;
6243 
6244 	ret = class_register(&regulator_class);
6245 
6246 	debugfs_root = debugfs_create_dir("regulator", NULL);
6247 	if (IS_ERR(debugfs_root))
6248 		pr_debug("regulator: Failed to create debugfs directory\n");
6249 
6250 #ifdef CONFIG_DEBUG_FS
6251 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6252 			    &supply_map_fops);
6253 
6254 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6255 			    NULL, &regulator_summary_fops);
6256 #endif
6257 	regulator_dummy_init();
6258 
6259 	regulator_coupler_register(&generic_regulator_coupler);
6260 
6261 	return ret;
6262 }
6263 
6264 /* init early to allow our consumers to complete system booting */
6265 core_initcall(regulator_init);
6266 
6267 static int regulator_late_cleanup(struct device *dev, void *data)
6268 {
6269 	struct regulator_dev *rdev = dev_to_rdev(dev);
6270 	struct regulation_constraints *c = rdev->constraints;
6271 	int ret;
6272 
6273 	if (c && c->always_on)
6274 		return 0;
6275 
6276 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6277 		return 0;
6278 
6279 	regulator_lock(rdev);
6280 
6281 	if (rdev->use_count)
6282 		goto unlock;
6283 
6284 	/* If reading the status failed, assume that it's off. */
6285 	if (_regulator_is_enabled(rdev) <= 0)
6286 		goto unlock;
6287 
6288 	if (have_full_constraints()) {
6289 		/* We log since this may kill the system if it goes
6290 		 * wrong.
6291 		 */
6292 		rdev_info(rdev, "disabling\n");
6293 		ret = _regulator_do_disable(rdev);
6294 		if (ret != 0)
6295 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6296 	} else {
6297 		/* The intention is that in future we will
6298 		 * assume that full constraints are provided
6299 		 * so warn even if we aren't going to do
6300 		 * anything here.
6301 		 */
6302 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6303 	}
6304 
6305 unlock:
6306 	regulator_unlock(rdev);
6307 
6308 	return 0;
6309 }
6310 
6311 static bool regulator_ignore_unused;
6312 static int __init regulator_ignore_unused_setup(char *__unused)
6313 {
6314 	regulator_ignore_unused = true;
6315 	return 1;
6316 }
6317 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6318 
6319 static void regulator_init_complete_work_function(struct work_struct *work)
6320 {
6321 	/*
6322 	 * Regulators may had failed to resolve their input supplies
6323 	 * when were registered, either because the input supply was
6324 	 * not registered yet or because its parent device was not
6325 	 * bound yet. So attempt to resolve the input supplies for
6326 	 * pending regulators before trying to disable unused ones.
6327 	 */
6328 	class_for_each_device(&regulator_class, NULL, NULL,
6329 			      regulator_register_resolve_supply);
6330 
6331 	/*
6332 	 * For debugging purposes, it may be useful to prevent unused
6333 	 * regulators from being disabled.
6334 	 */
6335 	if (regulator_ignore_unused) {
6336 		pr_warn("regulator: Not disabling unused regulators\n");
6337 		return;
6338 	}
6339 
6340 	/* If we have a full configuration then disable any regulators
6341 	 * we have permission to change the status for and which are
6342 	 * not in use or always_on.  This is effectively the default
6343 	 * for DT and ACPI as they have full constraints.
6344 	 */
6345 	class_for_each_device(&regulator_class, NULL, NULL,
6346 			      regulator_late_cleanup);
6347 }
6348 
6349 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6350 			    regulator_init_complete_work_function);
6351 
6352 static int __init regulator_init_complete(void)
6353 {
6354 	/*
6355 	 * Since DT doesn't provide an idiomatic mechanism for
6356 	 * enabling full constraints and since it's much more natural
6357 	 * with DT to provide them just assume that a DT enabled
6358 	 * system has full constraints.
6359 	 */
6360 	if (of_have_populated_dt())
6361 		has_full_constraints = true;
6362 
6363 	/*
6364 	 * We punt completion for an arbitrary amount of time since
6365 	 * systems like distros will load many drivers from userspace
6366 	 * so consumers might not always be ready yet, this is
6367 	 * particularly an issue with laptops where this might bounce
6368 	 * the display off then on.  Ideally we'd get a notification
6369 	 * from userspace when this happens but we don't so just wait
6370 	 * a bit and hope we waited long enough.  It'd be better if
6371 	 * we'd only do this on systems that need it, and a kernel
6372 	 * command line option might be useful.
6373 	 */
6374 	schedule_delayed_work(&regulator_init_complete_work,
6375 			      msecs_to_jiffies(30000));
6376 
6377 	return 0;
6378 }
6379 late_initcall_sync(regulator_init_complete);
6380