1 #include <linux/mm.h> 2 #include <linux/gfp.h> 3 #include <linux/kernel.h> 4 5 #include <asm/mce.h> 6 7 #include "debugfs.h" 8 9 /* 10 * RAS Correctable Errors Collector 11 * 12 * This is a simple gadget which collects correctable errors and counts their 13 * occurrence per physical page address. 14 * 15 * We've opted for possibly the simplest data structure to collect those - an 16 * array of the size of a memory page. It stores 512 u64's with the following 17 * structure: 18 * 19 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0] 20 * 21 * The generation in the two highest order bits is two bits which are set to 11b 22 * on every insertion. During the course of each entry's existence, the 23 * generation field gets decremented during spring cleaning to 10b, then 01b and 24 * then 00b. 25 * 26 * This way we're employing the natural numeric ordering to make sure that newly 27 * inserted/touched elements have higher 12-bit counts (which we've manufactured) 28 * and thus iterating over the array initially won't kick out those elements 29 * which were inserted last. 30 * 31 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of 32 * elements entered into the array, during which, we're decaying all elements. 33 * If, after decay, an element gets inserted again, its generation is set to 11b 34 * to make sure it has higher numerical count than other, older elements and 35 * thus emulate an an LRU-like behavior when deleting elements to free up space 36 * in the page. 37 * 38 * When an element reaches it's max count of count_threshold, we try to poison 39 * it by assuming that errors triggered count_threshold times in a single page 40 * are excessive and that page shouldn't be used anymore. count_threshold is 41 * initialized to COUNT_MASK which is the maximum. 42 * 43 * That error event entry causes cec_add_elem() to return !0 value and thus 44 * signal to its callers to log the error. 45 * 46 * To the question why we've chosen a page and moving elements around with 47 * memmove(), it is because it is a very simple structure to handle and max data 48 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable. 49 * We wanted to avoid the pointer traversal of more complex structures like a 50 * linked list or some sort of a balancing search tree. 51 * 52 * Deleting an element takes O(n) but since it is only a single page, it should 53 * be fast enough and it shouldn't happen all too often depending on error 54 * patterns. 55 */ 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) "RAS: " fmt 59 60 /* 61 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long 62 * elements have stayed in the array without having been accessed again. 63 */ 64 #define DECAY_BITS 2 65 #define DECAY_MASK ((1ULL << DECAY_BITS) - 1) 66 #define MAX_ELEMS (PAGE_SIZE / sizeof(u64)) 67 68 /* 69 * Threshold amount of inserted elements after which we start spring 70 * cleaning. 71 */ 72 #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS) 73 74 /* Bits which count the number of errors happened in this 4K page. */ 75 #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS) 76 #define COUNT_MASK ((1ULL << COUNT_BITS) - 1) 77 #define FULL_COUNT_MASK (PAGE_SIZE - 1) 78 79 /* 80 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ] 81 */ 82 83 #define PFN(e) ((e) >> PAGE_SHIFT) 84 #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK) 85 #define COUNT(e) ((unsigned int)(e) & COUNT_MASK) 86 #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1)) 87 88 static struct ce_array { 89 u64 *array; /* container page */ 90 unsigned int n; /* number of elements in the array */ 91 92 unsigned int decay_count; /* 93 * number of element insertions/increments 94 * since the last spring cleaning. 95 */ 96 97 u64 pfns_poisoned; /* 98 * number of PFNs which got poisoned. 99 */ 100 101 u64 ces_entered; /* 102 * The number of correctable errors 103 * entered into the collector. 104 */ 105 106 u64 decays_done; /* 107 * Times we did spring cleaning. 108 */ 109 110 union { 111 struct { 112 __u32 disabled : 1, /* cmdline disabled */ 113 __resv : 31; 114 }; 115 __u32 flags; 116 }; 117 } ce_arr; 118 119 static DEFINE_MUTEX(ce_mutex); 120 static u64 dfs_pfn; 121 122 /* Amount of errors after which we offline */ 123 static unsigned int count_threshold = COUNT_MASK; 124 125 /* 126 * The timer "decays" element count each timer_interval which is 24hrs by 127 * default. 128 */ 129 130 #define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */ 131 #define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */ 132 #define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */ 133 static struct timer_list cec_timer; 134 static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL; 135 136 /* 137 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an 138 * element in the array. On insertion and any access, it gets reset to max. 139 */ 140 static void do_spring_cleaning(struct ce_array *ca) 141 { 142 int i; 143 144 for (i = 0; i < ca->n; i++) { 145 u8 decay = DECAY(ca->array[i]); 146 147 if (!decay) 148 continue; 149 150 decay--; 151 152 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS); 153 ca->array[i] |= (decay << COUNT_BITS); 154 } 155 ca->decay_count = 0; 156 ca->decays_done++; 157 } 158 159 /* 160 * @interval in seconds 161 */ 162 static void cec_mod_timer(struct timer_list *t, unsigned long interval) 163 { 164 unsigned long iv; 165 166 iv = interval * HZ + jiffies; 167 168 mod_timer(t, round_jiffies(iv)); 169 } 170 171 static void cec_timer_fn(unsigned long data) 172 { 173 struct ce_array *ca = (struct ce_array *)data; 174 175 do_spring_cleaning(ca); 176 177 cec_mod_timer(&cec_timer, timer_interval); 178 } 179 180 /* 181 * @to: index of the smallest element which is >= then @pfn. 182 * 183 * Return the index of the pfn if found, otherwise negative value. 184 */ 185 static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 186 { 187 u64 this_pfn; 188 int min = 0, max = ca->n; 189 190 while (min < max) { 191 int tmp = (max + min) >> 1; 192 193 this_pfn = PFN(ca->array[tmp]); 194 195 if (this_pfn < pfn) 196 min = tmp + 1; 197 else if (this_pfn > pfn) 198 max = tmp; 199 else { 200 min = tmp; 201 break; 202 } 203 } 204 205 if (to) 206 *to = min; 207 208 this_pfn = PFN(ca->array[min]); 209 210 if (this_pfn == pfn) 211 return min; 212 213 return -ENOKEY; 214 } 215 216 static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) 217 { 218 WARN_ON(!to); 219 220 if (!ca->n) { 221 *to = 0; 222 return -ENOKEY; 223 } 224 return __find_elem(ca, pfn, to); 225 } 226 227 static void del_elem(struct ce_array *ca, int idx) 228 { 229 /* Save us a function call when deleting the last element. */ 230 if (ca->n - (idx + 1)) 231 memmove((void *)&ca->array[idx], 232 (void *)&ca->array[idx + 1], 233 (ca->n - (idx + 1)) * sizeof(u64)); 234 235 ca->n--; 236 } 237 238 static u64 del_lru_elem_unlocked(struct ce_array *ca) 239 { 240 unsigned int min = FULL_COUNT_MASK; 241 int i, min_idx = 0; 242 243 for (i = 0; i < ca->n; i++) { 244 unsigned int this = FULL_COUNT(ca->array[i]); 245 246 if (min > this) { 247 min = this; 248 min_idx = i; 249 } 250 } 251 252 del_elem(ca, min_idx); 253 254 return PFN(ca->array[min_idx]); 255 } 256 257 /* 258 * We return the 0th pfn in the error case under the assumption that it cannot 259 * be poisoned and excessive CEs in there are a serious deal anyway. 260 */ 261 static u64 __maybe_unused del_lru_elem(void) 262 { 263 struct ce_array *ca = &ce_arr; 264 u64 pfn; 265 266 if (!ca->n) 267 return 0; 268 269 mutex_lock(&ce_mutex); 270 pfn = del_lru_elem_unlocked(ca); 271 mutex_unlock(&ce_mutex); 272 273 return pfn; 274 } 275 276 277 int cec_add_elem(u64 pfn) 278 { 279 struct ce_array *ca = &ce_arr; 280 unsigned int to; 281 int count, ret = 0; 282 283 /* 284 * We can be called very early on the identify_cpu() path where we are 285 * not initialized yet. We ignore the error for simplicity. 286 */ 287 if (!ce_arr.array || ce_arr.disabled) 288 return -ENODEV; 289 290 ca->ces_entered++; 291 292 mutex_lock(&ce_mutex); 293 294 if (ca->n == MAX_ELEMS) 295 WARN_ON(!del_lru_elem_unlocked(ca)); 296 297 ret = find_elem(ca, pfn, &to); 298 if (ret < 0) { 299 /* 300 * Shift range [to-end] to make room for one more element. 301 */ 302 memmove((void *)&ca->array[to + 1], 303 (void *)&ca->array[to], 304 (ca->n - to) * sizeof(u64)); 305 306 ca->array[to] = (pfn << PAGE_SHIFT) | 307 (DECAY_MASK << COUNT_BITS) | 1; 308 309 ca->n++; 310 311 ret = 0; 312 313 goto decay; 314 } 315 316 count = COUNT(ca->array[to]); 317 318 if (count < count_threshold) { 319 ca->array[to] |= (DECAY_MASK << COUNT_BITS); 320 ca->array[to]++; 321 322 ret = 0; 323 } else { 324 u64 pfn = ca->array[to] >> PAGE_SHIFT; 325 326 if (!pfn_valid(pfn)) { 327 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn); 328 } else { 329 /* We have reached max count for this page, soft-offline it. */ 330 pr_err("Soft-offlining pfn: 0x%llx\n", pfn); 331 memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE); 332 ca->pfns_poisoned++; 333 } 334 335 del_elem(ca, to); 336 337 /* 338 * Return a >0 value to denote that we've reached the offlining 339 * threshold. 340 */ 341 ret = 1; 342 343 goto unlock; 344 } 345 346 decay: 347 ca->decay_count++; 348 349 if (ca->decay_count >= CLEAN_ELEMS) 350 do_spring_cleaning(ca); 351 352 unlock: 353 mutex_unlock(&ce_mutex); 354 355 return ret; 356 } 357 358 static int u64_get(void *data, u64 *val) 359 { 360 *val = *(u64 *)data; 361 362 return 0; 363 } 364 365 static int pfn_set(void *data, u64 val) 366 { 367 *(u64 *)data = val; 368 369 return cec_add_elem(val); 370 } 371 372 DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n"); 373 374 static int decay_interval_set(void *data, u64 val) 375 { 376 *(u64 *)data = val; 377 378 if (val < CEC_TIMER_MIN_INTERVAL) 379 return -EINVAL; 380 381 if (val > CEC_TIMER_MAX_INTERVAL) 382 return -EINVAL; 383 384 timer_interval = val; 385 386 cec_mod_timer(&cec_timer, timer_interval); 387 return 0; 388 } 389 DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n"); 390 391 static int count_threshold_set(void *data, u64 val) 392 { 393 *(u64 *)data = val; 394 395 if (val > COUNT_MASK) 396 val = COUNT_MASK; 397 398 count_threshold = val; 399 400 return 0; 401 } 402 DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n"); 403 404 static int array_dump(struct seq_file *m, void *v) 405 { 406 struct ce_array *ca = &ce_arr; 407 u64 prev = 0; 408 int i; 409 410 mutex_lock(&ce_mutex); 411 412 seq_printf(m, "{ n: %d\n", ca->n); 413 for (i = 0; i < ca->n; i++) { 414 u64 this = PFN(ca->array[i]); 415 416 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i])); 417 418 WARN_ON(prev > this); 419 420 prev = this; 421 } 422 423 seq_printf(m, "}\n"); 424 425 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n", 426 ca->ces_entered, ca->pfns_poisoned); 427 428 seq_printf(m, "Flags: 0x%x\n", ca->flags); 429 430 seq_printf(m, "Timer interval: %lld seconds\n", timer_interval); 431 seq_printf(m, "Decays: %lld\n", ca->decays_done); 432 433 seq_printf(m, "Action threshold: %d\n", count_threshold); 434 435 mutex_unlock(&ce_mutex); 436 437 return 0; 438 } 439 440 static int array_open(struct inode *inode, struct file *filp) 441 { 442 return single_open(filp, array_dump, NULL); 443 } 444 445 static const struct file_operations array_ops = { 446 .owner = THIS_MODULE, 447 .open = array_open, 448 .read = seq_read, 449 .llseek = seq_lseek, 450 .release = single_release, 451 }; 452 453 static int __init create_debugfs_nodes(void) 454 { 455 struct dentry *d, *pfn, *decay, *count, *array; 456 457 d = debugfs_create_dir("cec", ras_debugfs_dir); 458 if (!d) { 459 pr_warn("Error creating cec debugfs node!\n"); 460 return -1; 461 } 462 463 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops); 464 if (!pfn) { 465 pr_warn("Error creating pfn debugfs node!\n"); 466 goto err; 467 } 468 469 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops); 470 if (!array) { 471 pr_warn("Error creating array debugfs node!\n"); 472 goto err; 473 } 474 475 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d, 476 &timer_interval, &decay_interval_ops); 477 if (!decay) { 478 pr_warn("Error creating decay_interval debugfs node!\n"); 479 goto err; 480 } 481 482 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d, 483 &count_threshold, &count_threshold_ops); 484 if (!decay) { 485 pr_warn("Error creating count_threshold debugfs node!\n"); 486 goto err; 487 } 488 489 490 return 0; 491 492 err: 493 debugfs_remove_recursive(d); 494 495 return 1; 496 } 497 498 void __init cec_init(void) 499 { 500 if (ce_arr.disabled) 501 return; 502 503 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL); 504 if (!ce_arr.array) { 505 pr_err("Error allocating CE array page!\n"); 506 return; 507 } 508 509 if (create_debugfs_nodes()) 510 return; 511 512 setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr); 513 cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL); 514 515 pr_info("Correctable Errors collector initialized.\n"); 516 } 517 518 int __init parse_cec_param(char *str) 519 { 520 if (!str) 521 return 0; 522 523 if (*str == '=') 524 str++; 525 526 if (!strncmp(str, "cec_disable", 7)) 527 ce_arr.disabled = 1; 528 else 529 return 0; 530 531 return 1; 532 } 533