1 /* 2 * RapidIO interconnect services 3 * (RapidIO Interconnect Specification, http://www.rapidio.org) 4 * 5 * Copyright 2005 MontaVista Software, Inc. 6 * Matt Porter <mporter@kernel.crashing.org> 7 * 8 * Copyright 2009 - 2013 Integrated Device Technology, Inc. 9 * Alex Bounine <alexandre.bounine@idt.com> 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 */ 16 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/rio.h> 23 #include <linux/rio_drv.h> 24 #include <linux/rio_ids.h> 25 #include <linux/rio_regs.h> 26 #include <linux/module.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> 30 31 #include "rio.h" 32 33 /* 34 * struct rio_pwrite - RIO portwrite event 35 * @node: Node in list of doorbell events 36 * @pwcback: Doorbell event callback 37 * @context: Handler specific context to pass on event 38 */ 39 struct rio_pwrite { 40 struct list_head node; 41 42 int (*pwcback)(struct rio_mport *mport, void *context, 43 union rio_pw_msg *msg, int step); 44 void *context; 45 }; 46 47 MODULE_DESCRIPTION("RapidIO Subsystem Core"); 48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); 49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>"); 50 MODULE_LICENSE("GPL"); 51 52 static int hdid[RIO_MAX_MPORTS]; 53 static int ids_num; 54 module_param_array(hdid, int, &ids_num, 0); 55 MODULE_PARM_DESC(hdid, 56 "Destination ID assignment to local RapidIO controllers"); 57 58 static LIST_HEAD(rio_devices); 59 static LIST_HEAD(rio_nets); 60 static DEFINE_SPINLOCK(rio_global_list_lock); 61 62 static LIST_HEAD(rio_mports); 63 static LIST_HEAD(rio_scans); 64 static DEFINE_MUTEX(rio_mport_list_lock); 65 static unsigned char next_portid; 66 static DEFINE_SPINLOCK(rio_mmap_lock); 67 68 /** 69 * rio_local_get_device_id - Get the base/extended device id for a port 70 * @port: RIO master port from which to get the deviceid 71 * 72 * Reads the base/extended device id from the local device 73 * implementing the master port. Returns the 8/16-bit device 74 * id. 75 */ 76 u16 rio_local_get_device_id(struct rio_mport *port) 77 { 78 u32 result; 79 80 rio_local_read_config_32(port, RIO_DID_CSR, &result); 81 82 return (RIO_GET_DID(port->sys_size, result)); 83 } 84 85 /** 86 * rio_query_mport - Query mport device attributes 87 * @port: mport device to query 88 * @mport_attr: mport attributes data structure 89 * 90 * Returns attributes of specified mport through the 91 * pointer to attributes data structure. 92 */ 93 int rio_query_mport(struct rio_mport *port, 94 struct rio_mport_attr *mport_attr) 95 { 96 if (!port->ops->query_mport) 97 return -ENODATA; 98 return port->ops->query_mport(port, mport_attr); 99 } 100 EXPORT_SYMBOL(rio_query_mport); 101 102 /** 103 * rio_alloc_net- Allocate and initialize a new RIO network data structure 104 * @mport: Master port associated with the RIO network 105 * 106 * Allocates a RIO network structure, initializes per-network 107 * list heads, and adds the associated master port to the 108 * network list of associated master ports. Returns a 109 * RIO network pointer on success or %NULL on failure. 110 */ 111 struct rio_net *rio_alloc_net(struct rio_mport *mport) 112 { 113 struct rio_net *net; 114 115 net = kzalloc(sizeof(struct rio_net), GFP_KERNEL); 116 if (net) { 117 INIT_LIST_HEAD(&net->node); 118 INIT_LIST_HEAD(&net->devices); 119 INIT_LIST_HEAD(&net->switches); 120 INIT_LIST_HEAD(&net->mports); 121 mport->net = net; 122 } 123 return net; 124 } 125 EXPORT_SYMBOL_GPL(rio_alloc_net); 126 127 int rio_add_net(struct rio_net *net) 128 { 129 int err; 130 131 err = device_register(&net->dev); 132 if (err) 133 return err; 134 spin_lock(&rio_global_list_lock); 135 list_add_tail(&net->node, &rio_nets); 136 spin_unlock(&rio_global_list_lock); 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(rio_add_net); 141 142 void rio_free_net(struct rio_net *net) 143 { 144 spin_lock(&rio_global_list_lock); 145 if (!list_empty(&net->node)) 146 list_del(&net->node); 147 spin_unlock(&rio_global_list_lock); 148 if (net->release) 149 net->release(net); 150 device_unregister(&net->dev); 151 } 152 EXPORT_SYMBOL_GPL(rio_free_net); 153 154 /** 155 * rio_local_set_device_id - Set the base/extended device id for a port 156 * @port: RIO master port 157 * @did: Device ID value to be written 158 * 159 * Writes the base/extended device id from a device. 160 */ 161 void rio_local_set_device_id(struct rio_mport *port, u16 did) 162 { 163 rio_local_write_config_32(port, RIO_DID_CSR, 164 RIO_SET_DID(port->sys_size, did)); 165 } 166 EXPORT_SYMBOL_GPL(rio_local_set_device_id); 167 168 /** 169 * rio_add_device- Adds a RIO device to the device model 170 * @rdev: RIO device 171 * 172 * Adds the RIO device to the global device list and adds the RIO 173 * device to the RIO device list. Creates the generic sysfs nodes 174 * for an RIO device. 175 */ 176 int rio_add_device(struct rio_dev *rdev) 177 { 178 int err; 179 180 atomic_set(&rdev->state, RIO_DEVICE_RUNNING); 181 err = device_register(&rdev->dev); 182 if (err) 183 return err; 184 185 spin_lock(&rio_global_list_lock); 186 list_add_tail(&rdev->global_list, &rio_devices); 187 if (rdev->net) { 188 list_add_tail(&rdev->net_list, &rdev->net->devices); 189 if (rdev->pef & RIO_PEF_SWITCH) 190 list_add_tail(&rdev->rswitch->node, 191 &rdev->net->switches); 192 } 193 spin_unlock(&rio_global_list_lock); 194 195 return 0; 196 } 197 EXPORT_SYMBOL_GPL(rio_add_device); 198 199 /* 200 * rio_del_device - removes a RIO device from the device model 201 * @rdev: RIO device 202 * @state: device state to set during removal process 203 * 204 * Removes the RIO device to the kernel device list and subsystem's device list. 205 * Clears sysfs entries for the removed device. 206 */ 207 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state) 208 { 209 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev)); 210 atomic_set(&rdev->state, state); 211 spin_lock(&rio_global_list_lock); 212 list_del(&rdev->global_list); 213 if (rdev->net) { 214 list_del(&rdev->net_list); 215 if (rdev->pef & RIO_PEF_SWITCH) { 216 list_del(&rdev->rswitch->node); 217 kfree(rdev->rswitch->route_table); 218 } 219 } 220 spin_unlock(&rio_global_list_lock); 221 device_unregister(&rdev->dev); 222 } 223 EXPORT_SYMBOL_GPL(rio_del_device); 224 225 /** 226 * rio_request_inb_mbox - request inbound mailbox service 227 * @mport: RIO master port from which to allocate the mailbox resource 228 * @dev_id: Device specific pointer to pass on event 229 * @mbox: Mailbox number to claim 230 * @entries: Number of entries in inbound mailbox queue 231 * @minb: Callback to execute when inbound message is received 232 * 233 * Requests ownership of an inbound mailbox resource and binds 234 * a callback function to the resource. Returns %0 on success. 235 */ 236 int rio_request_inb_mbox(struct rio_mport *mport, 237 void *dev_id, 238 int mbox, 239 int entries, 240 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox, 241 int slot)) 242 { 243 int rc = -ENOSYS; 244 struct resource *res; 245 246 if (mport->ops->open_inb_mbox == NULL) 247 goto out; 248 249 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 250 251 if (res) { 252 rio_init_mbox_res(res, mbox, mbox); 253 254 /* Make sure this mailbox isn't in use */ 255 if ((rc = 256 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE], 257 res)) < 0) { 258 kfree(res); 259 goto out; 260 } 261 262 mport->inb_msg[mbox].res = res; 263 264 /* Hook the inbound message callback */ 265 mport->inb_msg[mbox].mcback = minb; 266 267 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries); 268 if (rc) { 269 mport->inb_msg[mbox].mcback = NULL; 270 mport->inb_msg[mbox].res = NULL; 271 release_resource(res); 272 kfree(res); 273 } 274 } else 275 rc = -ENOMEM; 276 277 out: 278 return rc; 279 } 280 281 /** 282 * rio_release_inb_mbox - release inbound mailbox message service 283 * @mport: RIO master port from which to release the mailbox resource 284 * @mbox: Mailbox number to release 285 * 286 * Releases ownership of an inbound mailbox resource. Returns 0 287 * if the request has been satisfied. 288 */ 289 int rio_release_inb_mbox(struct rio_mport *mport, int mbox) 290 { 291 int rc; 292 293 if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res) 294 return -EINVAL; 295 296 mport->ops->close_inb_mbox(mport, mbox); 297 mport->inb_msg[mbox].mcback = NULL; 298 299 rc = release_resource(mport->inb_msg[mbox].res); 300 if (rc) 301 return rc; 302 303 kfree(mport->inb_msg[mbox].res); 304 mport->inb_msg[mbox].res = NULL; 305 306 return 0; 307 } 308 309 /** 310 * rio_request_outb_mbox - request outbound mailbox service 311 * @mport: RIO master port from which to allocate the mailbox resource 312 * @dev_id: Device specific pointer to pass on event 313 * @mbox: Mailbox number to claim 314 * @entries: Number of entries in outbound mailbox queue 315 * @moutb: Callback to execute when outbound message is sent 316 * 317 * Requests ownership of an outbound mailbox resource and binds 318 * a callback function to the resource. Returns 0 on success. 319 */ 320 int rio_request_outb_mbox(struct rio_mport *mport, 321 void *dev_id, 322 int mbox, 323 int entries, 324 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot)) 325 { 326 int rc = -ENOSYS; 327 struct resource *res; 328 329 if (mport->ops->open_outb_mbox == NULL) 330 goto out; 331 332 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 333 334 if (res) { 335 rio_init_mbox_res(res, mbox, mbox); 336 337 /* Make sure this outbound mailbox isn't in use */ 338 if ((rc = 339 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE], 340 res)) < 0) { 341 kfree(res); 342 goto out; 343 } 344 345 mport->outb_msg[mbox].res = res; 346 347 /* Hook the inbound message callback */ 348 mport->outb_msg[mbox].mcback = moutb; 349 350 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries); 351 if (rc) { 352 mport->outb_msg[mbox].mcback = NULL; 353 mport->outb_msg[mbox].res = NULL; 354 release_resource(res); 355 kfree(res); 356 } 357 } else 358 rc = -ENOMEM; 359 360 out: 361 return rc; 362 } 363 364 /** 365 * rio_release_outb_mbox - release outbound mailbox message service 366 * @mport: RIO master port from which to release the mailbox resource 367 * @mbox: Mailbox number to release 368 * 369 * Releases ownership of an inbound mailbox resource. Returns 0 370 * if the request has been satisfied. 371 */ 372 int rio_release_outb_mbox(struct rio_mport *mport, int mbox) 373 { 374 int rc; 375 376 if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res) 377 return -EINVAL; 378 379 mport->ops->close_outb_mbox(mport, mbox); 380 mport->outb_msg[mbox].mcback = NULL; 381 382 rc = release_resource(mport->outb_msg[mbox].res); 383 if (rc) 384 return rc; 385 386 kfree(mport->outb_msg[mbox].res); 387 mport->outb_msg[mbox].res = NULL; 388 389 return 0; 390 } 391 392 /** 393 * rio_setup_inb_dbell - bind inbound doorbell callback 394 * @mport: RIO master port to bind the doorbell callback 395 * @dev_id: Device specific pointer to pass on event 396 * @res: Doorbell message resource 397 * @dinb: Callback to execute when doorbell is received 398 * 399 * Adds a doorbell resource/callback pair into a port's 400 * doorbell event list. Returns 0 if the request has been 401 * satisfied. 402 */ 403 static int 404 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res, 405 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst, 406 u16 info)) 407 { 408 int rc = 0; 409 struct rio_dbell *dbell; 410 411 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) { 412 rc = -ENOMEM; 413 goto out; 414 } 415 416 dbell->res = res; 417 dbell->dinb = dinb; 418 dbell->dev_id = dev_id; 419 420 mutex_lock(&mport->lock); 421 list_add_tail(&dbell->node, &mport->dbells); 422 mutex_unlock(&mport->lock); 423 424 out: 425 return rc; 426 } 427 428 /** 429 * rio_request_inb_dbell - request inbound doorbell message service 430 * @mport: RIO master port from which to allocate the doorbell resource 431 * @dev_id: Device specific pointer to pass on event 432 * @start: Doorbell info range start 433 * @end: Doorbell info range end 434 * @dinb: Callback to execute when doorbell is received 435 * 436 * Requests ownership of an inbound doorbell resource and binds 437 * a callback function to the resource. Returns 0 if the request 438 * has been satisfied. 439 */ 440 int rio_request_inb_dbell(struct rio_mport *mport, 441 void *dev_id, 442 u16 start, 443 u16 end, 444 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, 445 u16 dst, u16 info)) 446 { 447 int rc = 0; 448 449 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL); 450 451 if (res) { 452 rio_init_dbell_res(res, start, end); 453 454 /* Make sure these doorbells aren't in use */ 455 if ((rc = 456 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE], 457 res)) < 0) { 458 kfree(res); 459 goto out; 460 } 461 462 /* Hook the doorbell callback */ 463 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb); 464 } else 465 rc = -ENOMEM; 466 467 out: 468 return rc; 469 } 470 471 /** 472 * rio_release_inb_dbell - release inbound doorbell message service 473 * @mport: RIO master port from which to release the doorbell resource 474 * @start: Doorbell info range start 475 * @end: Doorbell info range end 476 * 477 * Releases ownership of an inbound doorbell resource and removes 478 * callback from the doorbell event list. Returns 0 if the request 479 * has been satisfied. 480 */ 481 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end) 482 { 483 int rc = 0, found = 0; 484 struct rio_dbell *dbell; 485 486 mutex_lock(&mport->lock); 487 list_for_each_entry(dbell, &mport->dbells, node) { 488 if ((dbell->res->start == start) && (dbell->res->end == end)) { 489 list_del(&dbell->node); 490 found = 1; 491 break; 492 } 493 } 494 mutex_unlock(&mport->lock); 495 496 /* If we can't find an exact match, fail */ 497 if (!found) { 498 rc = -EINVAL; 499 goto out; 500 } 501 502 /* Release the doorbell resource */ 503 rc = release_resource(dbell->res); 504 505 /* Free the doorbell event */ 506 kfree(dbell); 507 508 out: 509 return rc; 510 } 511 512 /** 513 * rio_request_outb_dbell - request outbound doorbell message range 514 * @rdev: RIO device from which to allocate the doorbell resource 515 * @start: Doorbell message range start 516 * @end: Doorbell message range end 517 * 518 * Requests ownership of a doorbell message range. Returns a resource 519 * if the request has been satisfied or %NULL on failure. 520 */ 521 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start, 522 u16 end) 523 { 524 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL); 525 526 if (res) { 527 rio_init_dbell_res(res, start, end); 528 529 /* Make sure these doorbells aren't in use */ 530 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res) 531 < 0) { 532 kfree(res); 533 res = NULL; 534 } 535 } 536 537 return res; 538 } 539 540 /** 541 * rio_release_outb_dbell - release outbound doorbell message range 542 * @rdev: RIO device from which to release the doorbell resource 543 * @res: Doorbell resource to be freed 544 * 545 * Releases ownership of a doorbell message range. Returns 0 if the 546 * request has been satisfied. 547 */ 548 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res) 549 { 550 int rc = release_resource(res); 551 552 kfree(res); 553 554 return rc; 555 } 556 557 /** 558 * rio_add_mport_pw_handler - add port-write message handler into the list 559 * of mport specific pw handlers 560 * @mport: RIO master port to bind the portwrite callback 561 * @context: Handler specific context to pass on event 562 * @pwcback: Callback to execute when portwrite is received 563 * 564 * Returns 0 if the request has been satisfied. 565 */ 566 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context, 567 int (*pwcback)(struct rio_mport *mport, 568 void *context, union rio_pw_msg *msg, int step)) 569 { 570 int rc = 0; 571 struct rio_pwrite *pwrite; 572 573 pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL); 574 if (!pwrite) { 575 rc = -ENOMEM; 576 goto out; 577 } 578 579 pwrite->pwcback = pwcback; 580 pwrite->context = context; 581 mutex_lock(&mport->lock); 582 list_add_tail(&pwrite->node, &mport->pwrites); 583 mutex_unlock(&mport->lock); 584 out: 585 return rc; 586 } 587 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler); 588 589 /** 590 * rio_del_mport_pw_handler - remove port-write message handler from the list 591 * of mport specific pw handlers 592 * @mport: RIO master port to bind the portwrite callback 593 * @context: Registered handler specific context to pass on event 594 * @pwcback: Registered callback function 595 * 596 * Returns 0 if the request has been satisfied. 597 */ 598 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context, 599 int (*pwcback)(struct rio_mport *mport, 600 void *context, union rio_pw_msg *msg, int step)) 601 { 602 int rc = -EINVAL; 603 struct rio_pwrite *pwrite; 604 605 mutex_lock(&mport->lock); 606 list_for_each_entry(pwrite, &mport->pwrites, node) { 607 if (pwrite->pwcback == pwcback && pwrite->context == context) { 608 list_del(&pwrite->node); 609 kfree(pwrite); 610 rc = 0; 611 break; 612 } 613 } 614 mutex_unlock(&mport->lock); 615 616 return rc; 617 } 618 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler); 619 620 /** 621 * rio_request_inb_pwrite - request inbound port-write message service for 622 * specific RapidIO device 623 * @rdev: RIO device to which register inbound port-write callback routine 624 * @pwcback: Callback routine to execute when port-write is received 625 * 626 * Binds a port-write callback function to the RapidIO device. 627 * Returns 0 if the request has been satisfied. 628 */ 629 int rio_request_inb_pwrite(struct rio_dev *rdev, 630 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step)) 631 { 632 int rc = 0; 633 634 spin_lock(&rio_global_list_lock); 635 if (rdev->pwcback != NULL) 636 rc = -ENOMEM; 637 else 638 rdev->pwcback = pwcback; 639 640 spin_unlock(&rio_global_list_lock); 641 return rc; 642 } 643 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite); 644 645 /** 646 * rio_release_inb_pwrite - release inbound port-write message service 647 * associated with specific RapidIO device 648 * @rdev: RIO device which registered for inbound port-write callback 649 * 650 * Removes callback from the rio_dev structure. Returns 0 if the request 651 * has been satisfied. 652 */ 653 int rio_release_inb_pwrite(struct rio_dev *rdev) 654 { 655 int rc = -ENOMEM; 656 657 spin_lock(&rio_global_list_lock); 658 if (rdev->pwcback) { 659 rdev->pwcback = NULL; 660 rc = 0; 661 } 662 663 spin_unlock(&rio_global_list_lock); 664 return rc; 665 } 666 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite); 667 668 /** 669 * rio_pw_enable - Enables/disables port-write handling by a master port 670 * @mport: Master port associated with port-write handling 671 * @enable: 1=enable, 0=disable 672 */ 673 void rio_pw_enable(struct rio_mport *mport, int enable) 674 { 675 if (mport->ops->pwenable) { 676 mutex_lock(&mport->lock); 677 678 if ((enable && ++mport->pwe_refcnt == 1) || 679 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0)) 680 mport->ops->pwenable(mport, enable); 681 mutex_unlock(&mport->lock); 682 } 683 } 684 EXPORT_SYMBOL_GPL(rio_pw_enable); 685 686 /** 687 * rio_map_inb_region -- Map inbound memory region. 688 * @mport: Master port. 689 * @local: physical address of memory region to be mapped 690 * @rbase: RIO base address assigned to this window 691 * @size: Size of the memory region 692 * @rflags: Flags for mapping. 693 * 694 * Return: 0 -- Success. 695 * 696 * This function will create the mapping from RIO space to local memory. 697 */ 698 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local, 699 u64 rbase, u32 size, u32 rflags) 700 { 701 int rc = 0; 702 unsigned long flags; 703 704 if (!mport->ops->map_inb) 705 return -1; 706 spin_lock_irqsave(&rio_mmap_lock, flags); 707 rc = mport->ops->map_inb(mport, local, rbase, size, rflags); 708 spin_unlock_irqrestore(&rio_mmap_lock, flags); 709 return rc; 710 } 711 EXPORT_SYMBOL_GPL(rio_map_inb_region); 712 713 /** 714 * rio_unmap_inb_region -- Unmap the inbound memory region 715 * @mport: Master port 716 * @lstart: physical address of memory region to be unmapped 717 */ 718 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart) 719 { 720 unsigned long flags; 721 if (!mport->ops->unmap_inb) 722 return; 723 spin_lock_irqsave(&rio_mmap_lock, flags); 724 mport->ops->unmap_inb(mport, lstart); 725 spin_unlock_irqrestore(&rio_mmap_lock, flags); 726 } 727 EXPORT_SYMBOL_GPL(rio_unmap_inb_region); 728 729 /** 730 * rio_map_outb_region -- Map outbound memory region. 731 * @mport: Master port. 732 * @destid: destination id window points to 733 * @rbase: RIO base address window translates to 734 * @size: Size of the memory region 735 * @rflags: Flags for mapping. 736 * @local: physical address of memory region mapped 737 * 738 * Return: 0 -- Success. 739 * 740 * This function will create the mapping from RIO space to local memory. 741 */ 742 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase, 743 u32 size, u32 rflags, dma_addr_t *local) 744 { 745 int rc = 0; 746 unsigned long flags; 747 748 if (!mport->ops->map_outb) 749 return -ENODEV; 750 751 spin_lock_irqsave(&rio_mmap_lock, flags); 752 rc = mport->ops->map_outb(mport, destid, rbase, size, 753 rflags, local); 754 spin_unlock_irqrestore(&rio_mmap_lock, flags); 755 756 return rc; 757 } 758 EXPORT_SYMBOL_GPL(rio_map_outb_region); 759 760 /** 761 * rio_unmap_inb_region -- Unmap the inbound memory region 762 * @mport: Master port 763 * @destid: destination id mapping points to 764 * @rstart: RIO base address window translates to 765 */ 766 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart) 767 { 768 unsigned long flags; 769 770 if (!mport->ops->unmap_outb) 771 return; 772 773 spin_lock_irqsave(&rio_mmap_lock, flags); 774 mport->ops->unmap_outb(mport, destid, rstart); 775 spin_unlock_irqrestore(&rio_mmap_lock, flags); 776 } 777 EXPORT_SYMBOL_GPL(rio_unmap_outb_region); 778 779 /** 780 * rio_mport_get_physefb - Helper function that returns register offset 781 * for Physical Layer Extended Features Block. 782 * @port: Master port to issue transaction 783 * @local: Indicate a local master port or remote device access 784 * @destid: Destination ID of the device 785 * @hopcount: Number of switch hops to the device 786 * @rmap: pointer to location to store register map type info 787 */ 788 u32 789 rio_mport_get_physefb(struct rio_mport *port, int local, 790 u16 destid, u8 hopcount, u32 *rmap) 791 { 792 u32 ext_ftr_ptr; 793 u32 ftr_header; 794 795 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0); 796 797 while (ext_ftr_ptr) { 798 if (local) 799 rio_local_read_config_32(port, ext_ftr_ptr, 800 &ftr_header); 801 else 802 rio_mport_read_config_32(port, destid, hopcount, 803 ext_ftr_ptr, &ftr_header); 804 805 ftr_header = RIO_GET_BLOCK_ID(ftr_header); 806 switch (ftr_header) { 807 808 case RIO_EFB_SER_EP_ID: 809 case RIO_EFB_SER_EP_REC_ID: 810 case RIO_EFB_SER_EP_FREE_ID: 811 case RIO_EFB_SER_EP_M1_ID: 812 case RIO_EFB_SER_EP_SW_M1_ID: 813 case RIO_EFB_SER_EPF_M1_ID: 814 case RIO_EFB_SER_EPF_SW_M1_ID: 815 *rmap = 1; 816 return ext_ftr_ptr; 817 818 case RIO_EFB_SER_EP_M2_ID: 819 case RIO_EFB_SER_EP_SW_M2_ID: 820 case RIO_EFB_SER_EPF_M2_ID: 821 case RIO_EFB_SER_EPF_SW_M2_ID: 822 *rmap = 2; 823 return ext_ftr_ptr; 824 825 default: 826 break; 827 } 828 829 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, 830 hopcount, ext_ftr_ptr); 831 } 832 833 return ext_ftr_ptr; 834 } 835 EXPORT_SYMBOL_GPL(rio_mport_get_physefb); 836 837 /** 838 * rio_get_comptag - Begin or continue searching for a RIO device by component tag 839 * @comp_tag: RIO component tag to match 840 * @from: Previous RIO device found in search, or %NULL for new search 841 * 842 * Iterates through the list of known RIO devices. If a RIO device is 843 * found with a matching @comp_tag, a pointer to its device 844 * structure is returned. Otherwise, %NULL is returned. A new search 845 * is initiated by passing %NULL to the @from argument. Otherwise, if 846 * @from is not %NULL, searches continue from next device on the global 847 * list. 848 */ 849 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from) 850 { 851 struct list_head *n; 852 struct rio_dev *rdev; 853 854 spin_lock(&rio_global_list_lock); 855 n = from ? from->global_list.next : rio_devices.next; 856 857 while (n && (n != &rio_devices)) { 858 rdev = rio_dev_g(n); 859 if (rdev->comp_tag == comp_tag) 860 goto exit; 861 n = n->next; 862 } 863 rdev = NULL; 864 exit: 865 spin_unlock(&rio_global_list_lock); 866 return rdev; 867 } 868 EXPORT_SYMBOL_GPL(rio_get_comptag); 869 870 /** 871 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port. 872 * @rdev: Pointer to RIO device control structure 873 * @pnum: Switch port number to set LOCKOUT bit 874 * @lock: Operation : set (=1) or clear (=0) 875 */ 876 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock) 877 { 878 u32 regval; 879 880 rio_read_config_32(rdev, 881 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum), 882 ®val); 883 if (lock) 884 regval |= RIO_PORT_N_CTL_LOCKOUT; 885 else 886 regval &= ~RIO_PORT_N_CTL_LOCKOUT; 887 888 rio_write_config_32(rdev, 889 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum), 890 regval); 891 return 0; 892 } 893 EXPORT_SYMBOL_GPL(rio_set_port_lockout); 894 895 /** 896 * rio_enable_rx_tx_port - enable input receiver and output transmitter of 897 * given port 898 * @port: Master port associated with the RIO network 899 * @local: local=1 select local port otherwise a far device is reached 900 * @destid: Destination ID of the device to check host bit 901 * @hopcount: Number of hops to reach the target 902 * @port_num: Port (-number on switch) to enable on a far end device 903 * 904 * Returns 0 or 1 from on General Control Command and Status Register 905 * (EXT_PTR+0x3C) 906 */ 907 int rio_enable_rx_tx_port(struct rio_mport *port, 908 int local, u16 destid, 909 u8 hopcount, u8 port_num) 910 { 911 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS 912 u32 regval; 913 u32 ext_ftr_ptr; 914 u32 rmap; 915 916 /* 917 * enable rx input tx output port 918 */ 919 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = " 920 "%d, port_num = %d)\n", local, destid, hopcount, port_num); 921 922 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, 923 hopcount, &rmap); 924 925 if (local) { 926 rio_local_read_config_32(port, 927 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), 928 ®val); 929 } else { 930 if (rio_mport_read_config_32(port, destid, hopcount, 931 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap), 932 ®val) < 0) 933 return -EIO; 934 } 935 936 regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX; 937 938 if (local) { 939 rio_local_write_config_32(port, 940 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval); 941 } else { 942 if (rio_mport_write_config_32(port, destid, hopcount, 943 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap), 944 regval) < 0) 945 return -EIO; 946 } 947 #endif 948 return 0; 949 } 950 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port); 951 952 953 /** 954 * rio_chk_dev_route - Validate route to the specified device. 955 * @rdev: RIO device failed to respond 956 * @nrdev: Last active device on the route to rdev 957 * @npnum: nrdev's port number on the route to rdev 958 * 959 * Follows a route to the specified RIO device to determine the last available 960 * device (and corresponding RIO port) on the route. 961 */ 962 static int 963 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum) 964 { 965 u32 result; 966 int p_port, rc = -EIO; 967 struct rio_dev *prev = NULL; 968 969 /* Find switch with failed RIO link */ 970 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) { 971 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) { 972 prev = rdev->prev; 973 break; 974 } 975 rdev = rdev->prev; 976 } 977 978 if (prev == NULL) 979 goto err_out; 980 981 p_port = prev->rswitch->route_table[rdev->destid]; 982 983 if (p_port != RIO_INVALID_ROUTE) { 984 pr_debug("RIO: link failed on [%s]-P%d\n", 985 rio_name(prev), p_port); 986 *nrdev = prev; 987 *npnum = p_port; 988 rc = 0; 989 } else 990 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev)); 991 err_out: 992 return rc; 993 } 994 995 /** 996 * rio_mport_chk_dev_access - Validate access to the specified device. 997 * @mport: Master port to send transactions 998 * @destid: Device destination ID in network 999 * @hopcount: Number of hops into the network 1000 */ 1001 int 1002 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount) 1003 { 1004 int i = 0; 1005 u32 tmp; 1006 1007 while (rio_mport_read_config_32(mport, destid, hopcount, 1008 RIO_DEV_ID_CAR, &tmp)) { 1009 i++; 1010 if (i == RIO_MAX_CHK_RETRY) 1011 return -EIO; 1012 mdelay(1); 1013 } 1014 1015 return 0; 1016 } 1017 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access); 1018 1019 /** 1020 * rio_chk_dev_access - Validate access to the specified device. 1021 * @rdev: Pointer to RIO device control structure 1022 */ 1023 static int rio_chk_dev_access(struct rio_dev *rdev) 1024 { 1025 return rio_mport_chk_dev_access(rdev->net->hport, 1026 rdev->destid, rdev->hopcount); 1027 } 1028 1029 /** 1030 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and 1031 * returns link-response (if requested). 1032 * @rdev: RIO devive to issue Input-status command 1033 * @pnum: Device port number to issue the command 1034 * @lnkresp: Response from a link partner 1035 */ 1036 static int 1037 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp) 1038 { 1039 u32 regval; 1040 int checkcount; 1041 1042 if (lnkresp) { 1043 /* Read from link maintenance response register 1044 * to clear valid bit */ 1045 rio_read_config_32(rdev, 1046 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum), 1047 ®val); 1048 udelay(50); 1049 } 1050 1051 /* Issue Input-status command */ 1052 rio_write_config_32(rdev, 1053 RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum), 1054 RIO_MNT_REQ_CMD_IS); 1055 1056 /* Exit if the response is not expected */ 1057 if (lnkresp == NULL) 1058 return 0; 1059 1060 checkcount = 3; 1061 while (checkcount--) { 1062 udelay(50); 1063 rio_read_config_32(rdev, 1064 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum), 1065 ®val); 1066 if (regval & RIO_PORT_N_MNT_RSP_RVAL) { 1067 *lnkresp = regval; 1068 return 0; 1069 } 1070 } 1071 1072 return -EIO; 1073 } 1074 1075 /** 1076 * rio_clr_err_stopped - Clears port Error-stopped states. 1077 * @rdev: Pointer to RIO device control structure 1078 * @pnum: Switch port number to clear errors 1079 * @err_status: port error status (if 0 reads register from device) 1080 * 1081 * TODO: Currently this routine is not compatible with recovery process 1082 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed 1083 * to implement universal recovery process that is compatible full range 1084 * off available devices. 1085 * IDT gen3 switch driver now implements HW-specific error handler that 1086 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs. 1087 */ 1088 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status) 1089 { 1090 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum]; 1091 u32 regval; 1092 u32 far_ackid, far_linkstat, near_ackid; 1093 1094 if (err_status == 0) 1095 rio_read_config_32(rdev, 1096 RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), 1097 &err_status); 1098 1099 if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) { 1100 pr_debug("RIO_EM: servicing Output Error-Stopped state\n"); 1101 /* 1102 * Send a Link-Request/Input-Status control symbol 1103 */ 1104 if (rio_get_input_status(rdev, pnum, ®val)) { 1105 pr_debug("RIO_EM: Input-status response timeout\n"); 1106 goto rd_err; 1107 } 1108 1109 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n", 1110 pnum, regval); 1111 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5; 1112 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT; 1113 rio_read_config_32(rdev, 1114 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum), 1115 ®val); 1116 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval); 1117 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24; 1118 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \ 1119 " near_ackID=0x%02x\n", 1120 pnum, far_ackid, far_linkstat, near_ackid); 1121 1122 /* 1123 * If required, synchronize ackIDs of near and 1124 * far sides. 1125 */ 1126 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) || 1127 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) { 1128 /* Align near outstanding/outbound ackIDs with 1129 * far inbound. 1130 */ 1131 rio_write_config_32(rdev, 1132 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum), 1133 (near_ackid << 24) | 1134 (far_ackid << 8) | far_ackid); 1135 /* Align far outstanding/outbound ackIDs with 1136 * near inbound. 1137 */ 1138 far_ackid++; 1139 if (!nextdev) { 1140 pr_debug("RIO_EM: nextdev pointer == NULL\n"); 1141 goto rd_err; 1142 } 1143 1144 rio_write_config_32(nextdev, 1145 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev, 1146 RIO_GET_PORT_NUM(nextdev->swpinfo)), 1147 (far_ackid << 24) | 1148 (near_ackid << 8) | near_ackid); 1149 } 1150 rd_err: 1151 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), 1152 &err_status); 1153 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 1154 } 1155 1156 if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) { 1157 pr_debug("RIO_EM: servicing Input Error-Stopped state\n"); 1158 rio_get_input_status(nextdev, 1159 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL); 1160 udelay(50); 1161 1162 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum), 1163 &err_status); 1164 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status); 1165 } 1166 1167 return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES | 1168 RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0; 1169 } 1170 1171 /** 1172 * rio_inb_pwrite_handler - inbound port-write message handler 1173 * @mport: mport device associated with port-write 1174 * @pw_msg: pointer to inbound port-write message 1175 * 1176 * Processes an inbound port-write message. Returns 0 if the request 1177 * has been satisfied. 1178 */ 1179 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg) 1180 { 1181 struct rio_dev *rdev; 1182 u32 err_status, em_perrdet, em_ltlerrdet; 1183 int rc, portnum; 1184 struct rio_pwrite *pwrite; 1185 1186 #ifdef DEBUG_PW 1187 { 1188 u32 i; 1189 1190 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id); 1191 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) { 1192 pr_debug("0x%02x: %08x %08x %08x %08x\n", 1193 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1], 1194 pw_msg->raw[i + 2], pw_msg->raw[i + 3]); 1195 } 1196 } 1197 #endif 1198 1199 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL); 1200 if (rdev) { 1201 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev)); 1202 } else { 1203 pr_debug("RIO: %s No matching device for CTag 0x%08x\n", 1204 __func__, pw_msg->em.comptag); 1205 } 1206 1207 /* Call a device-specific handler (if it is registered for the device). 1208 * This may be the service for endpoints that send device-specific 1209 * port-write messages. End-point messages expected to be handled 1210 * completely by EP specific device driver. 1211 * For switches rc==0 signals that no standard processing required. 1212 */ 1213 if (rdev && rdev->pwcback) { 1214 rc = rdev->pwcback(rdev, pw_msg, 0); 1215 if (rc == 0) 1216 return 0; 1217 } 1218 1219 mutex_lock(&mport->lock); 1220 list_for_each_entry(pwrite, &mport->pwrites, node) 1221 pwrite->pwcback(mport, pwrite->context, pw_msg, 0); 1222 mutex_unlock(&mport->lock); 1223 1224 if (!rdev) 1225 return 0; 1226 1227 /* 1228 * FIXME: The code below stays as it was before for now until we decide 1229 * how to do default PW handling in combination with per-mport callbacks 1230 */ 1231 1232 portnum = pw_msg->em.is_port & 0xFF; 1233 1234 /* Check if device and route to it are functional: 1235 * Sometimes devices may send PW message(s) just before being 1236 * powered down (or link being lost). 1237 */ 1238 if (rio_chk_dev_access(rdev)) { 1239 pr_debug("RIO: device access failed - get link partner\n"); 1240 /* Scan route to the device and identify failed link. 1241 * This will replace device and port reported in PW message. 1242 * PW message should not be used after this point. 1243 */ 1244 if (rio_chk_dev_route(rdev, &rdev, &portnum)) { 1245 pr_err("RIO: Route trace for %s failed\n", 1246 rio_name(rdev)); 1247 return -EIO; 1248 } 1249 pw_msg = NULL; 1250 } 1251 1252 /* For End-point devices processing stops here */ 1253 if (!(rdev->pef & RIO_PEF_SWITCH)) 1254 return 0; 1255 1256 if (rdev->phys_efptr == 0) { 1257 pr_err("RIO_PW: Bad switch initialization for %s\n", 1258 rio_name(rdev)); 1259 return 0; 1260 } 1261 1262 /* 1263 * Process the port-write notification from switch 1264 */ 1265 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle) 1266 rdev->rswitch->ops->em_handle(rdev, portnum); 1267 1268 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum), 1269 &err_status); 1270 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status); 1271 1272 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) { 1273 1274 if (!(rdev->rswitch->port_ok & (1 << portnum))) { 1275 rdev->rswitch->port_ok |= (1 << portnum); 1276 rio_set_port_lockout(rdev, portnum, 0); 1277 /* Schedule Insertion Service */ 1278 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n", 1279 rio_name(rdev), portnum); 1280 } 1281 1282 /* Clear error-stopped states (if reported). 1283 * Depending on the link partner state, two attempts 1284 * may be needed for successful recovery. 1285 */ 1286 if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES | 1287 RIO_PORT_N_ERR_STS_INP_ES)) { 1288 if (rio_clr_err_stopped(rdev, portnum, err_status)) 1289 rio_clr_err_stopped(rdev, portnum, 0); 1290 } 1291 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */ 1292 1293 if (rdev->rswitch->port_ok & (1 << portnum)) { 1294 rdev->rswitch->port_ok &= ~(1 << portnum); 1295 rio_set_port_lockout(rdev, portnum, 1); 1296 1297 if (rdev->phys_rmap == 1) { 1298 rio_write_config_32(rdev, 1299 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum), 1300 RIO_PORT_N_ACK_CLEAR); 1301 } else { 1302 rio_write_config_32(rdev, 1303 RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum), 1304 RIO_PORT_N_OB_ACK_CLEAR); 1305 rio_write_config_32(rdev, 1306 RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum), 1307 0); 1308 } 1309 1310 /* Schedule Extraction Service */ 1311 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n", 1312 rio_name(rdev), portnum); 1313 } 1314 } 1315 1316 rio_read_config_32(rdev, 1317 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet); 1318 if (em_perrdet) { 1319 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n", 1320 portnum, em_perrdet); 1321 /* Clear EM Port N Error Detect CSR */ 1322 rio_write_config_32(rdev, 1323 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0); 1324 } 1325 1326 rio_read_config_32(rdev, 1327 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet); 1328 if (em_ltlerrdet) { 1329 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n", 1330 em_ltlerrdet); 1331 /* Clear EM L/T Layer Error Detect CSR */ 1332 rio_write_config_32(rdev, 1333 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0); 1334 } 1335 1336 /* Clear remaining error bits and Port-Write Pending bit */ 1337 rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum), 1338 err_status); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler); 1343 1344 /** 1345 * rio_mport_get_efb - get pointer to next extended features block 1346 * @port: Master port to issue transaction 1347 * @local: Indicate a local master port or remote device access 1348 * @destid: Destination ID of the device 1349 * @hopcount: Number of switch hops to the device 1350 * @from: Offset of current Extended Feature block header (if 0 starts 1351 * from ExtFeaturePtr) 1352 */ 1353 u32 1354 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid, 1355 u8 hopcount, u32 from) 1356 { 1357 u32 reg_val; 1358 1359 if (from == 0) { 1360 if (local) 1361 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, 1362 ®_val); 1363 else 1364 rio_mport_read_config_32(port, destid, hopcount, 1365 RIO_ASM_INFO_CAR, ®_val); 1366 return reg_val & RIO_EXT_FTR_PTR_MASK; 1367 } else { 1368 if (local) 1369 rio_local_read_config_32(port, from, ®_val); 1370 else 1371 rio_mport_read_config_32(port, destid, hopcount, 1372 from, ®_val); 1373 return RIO_GET_BLOCK_ID(reg_val); 1374 } 1375 } 1376 EXPORT_SYMBOL_GPL(rio_mport_get_efb); 1377 1378 /** 1379 * rio_mport_get_feature - query for devices' extended features 1380 * @port: Master port to issue transaction 1381 * @local: Indicate a local master port or remote device access 1382 * @destid: Destination ID of the device 1383 * @hopcount: Number of switch hops to the device 1384 * @ftr: Extended feature code 1385 * 1386 * Tell if a device supports a given RapidIO capability. 1387 * Returns the offset of the requested extended feature 1388 * block within the device's RIO configuration space or 1389 * 0 in case the device does not support it. 1390 */ 1391 u32 1392 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid, 1393 u8 hopcount, int ftr) 1394 { 1395 u32 asm_info, ext_ftr_ptr, ftr_header; 1396 1397 if (local) 1398 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info); 1399 else 1400 rio_mport_read_config_32(port, destid, hopcount, 1401 RIO_ASM_INFO_CAR, &asm_info); 1402 1403 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK; 1404 1405 while (ext_ftr_ptr) { 1406 if (local) 1407 rio_local_read_config_32(port, ext_ftr_ptr, 1408 &ftr_header); 1409 else 1410 rio_mport_read_config_32(port, destid, hopcount, 1411 ext_ftr_ptr, &ftr_header); 1412 if (RIO_GET_BLOCK_ID(ftr_header) == ftr) 1413 return ext_ftr_ptr; 1414 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header))) 1415 break; 1416 } 1417 1418 return 0; 1419 } 1420 EXPORT_SYMBOL_GPL(rio_mport_get_feature); 1421 1422 /** 1423 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did 1424 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1425 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1426 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids 1427 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids 1428 * @from: Previous RIO device found in search, or %NULL for new search 1429 * 1430 * Iterates through the list of known RIO devices. If a RIO device is 1431 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference 1432 * count to the device is incrememted and a pointer to its device 1433 * structure is returned. Otherwise, %NULL is returned. A new search 1434 * is initiated by passing %NULL to the @from argument. Otherwise, if 1435 * @from is not %NULL, searches continue from next device on the global 1436 * list. The reference count for @from is always decremented if it is 1437 * not %NULL. 1438 */ 1439 struct rio_dev *rio_get_asm(u16 vid, u16 did, 1440 u16 asm_vid, u16 asm_did, struct rio_dev *from) 1441 { 1442 struct list_head *n; 1443 struct rio_dev *rdev; 1444 1445 WARN_ON(in_interrupt()); 1446 spin_lock(&rio_global_list_lock); 1447 n = from ? from->global_list.next : rio_devices.next; 1448 1449 while (n && (n != &rio_devices)) { 1450 rdev = rio_dev_g(n); 1451 if ((vid == RIO_ANY_ID || rdev->vid == vid) && 1452 (did == RIO_ANY_ID || rdev->did == did) && 1453 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) && 1454 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did)) 1455 goto exit; 1456 n = n->next; 1457 } 1458 rdev = NULL; 1459 exit: 1460 rio_dev_put(from); 1461 rdev = rio_dev_get(rdev); 1462 spin_unlock(&rio_global_list_lock); 1463 return rdev; 1464 } 1465 1466 /** 1467 * rio_get_device - Begin or continue searching for a RIO device by vid/did 1468 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids 1469 * @did: RIO did to match or %RIO_ANY_ID to match all dids 1470 * @from: Previous RIO device found in search, or %NULL for new search 1471 * 1472 * Iterates through the list of known RIO devices. If a RIO device is 1473 * found with a matching @vid and @did, the reference count to the 1474 * device is incrememted and a pointer to its device structure is returned. 1475 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL 1476 * to the @from argument. Otherwise, if @from is not %NULL, searches 1477 * continue from next device on the global list. The reference count for 1478 * @from is always decremented if it is not %NULL. 1479 */ 1480 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from) 1481 { 1482 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from); 1483 } 1484 1485 /** 1486 * rio_std_route_add_entry - Add switch route table entry using standard 1487 * registers defined in RIO specification rev.1.3 1488 * @mport: Master port to issue transaction 1489 * @destid: Destination ID of the device 1490 * @hopcount: Number of switch hops to the device 1491 * @table: routing table ID (global or port-specific) 1492 * @route_destid: destID entry in the RT 1493 * @route_port: destination port for specified destID 1494 */ 1495 static int 1496 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1497 u16 table, u16 route_destid, u8 route_port) 1498 { 1499 if (table == RIO_GLOBAL_TABLE) { 1500 rio_mport_write_config_32(mport, destid, hopcount, 1501 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1502 (u32)route_destid); 1503 rio_mport_write_config_32(mport, destid, hopcount, 1504 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1505 (u32)route_port); 1506 } 1507 1508 udelay(10); 1509 return 0; 1510 } 1511 1512 /** 1513 * rio_std_route_get_entry - Read switch route table entry (port number) 1514 * associated with specified destID using standard registers defined in RIO 1515 * specification rev.1.3 1516 * @mport: Master port to issue transaction 1517 * @destid: Destination ID of the device 1518 * @hopcount: Number of switch hops to the device 1519 * @table: routing table ID (global or port-specific) 1520 * @route_destid: destID entry in the RT 1521 * @route_port: returned destination port for specified destID 1522 */ 1523 static int 1524 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount, 1525 u16 table, u16 route_destid, u8 *route_port) 1526 { 1527 u32 result; 1528 1529 if (table == RIO_GLOBAL_TABLE) { 1530 rio_mport_write_config_32(mport, destid, hopcount, 1531 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid); 1532 rio_mport_read_config_32(mport, destid, hopcount, 1533 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result); 1534 1535 *route_port = (u8)result; 1536 } 1537 1538 return 0; 1539 } 1540 1541 /** 1542 * rio_std_route_clr_table - Clear swotch route table using standard registers 1543 * defined in RIO specification rev.1.3. 1544 * @mport: Master port to issue transaction 1545 * @destid: Destination ID of the device 1546 * @hopcount: Number of switch hops to the device 1547 * @table: routing table ID (global or port-specific) 1548 */ 1549 static int 1550 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount, 1551 u16 table) 1552 { 1553 u32 max_destid = 0xff; 1554 u32 i, pef, id_inc = 1, ext_cfg = 0; 1555 u32 port_sel = RIO_INVALID_ROUTE; 1556 1557 if (table == RIO_GLOBAL_TABLE) { 1558 rio_mport_read_config_32(mport, destid, hopcount, 1559 RIO_PEF_CAR, &pef); 1560 1561 if (mport->sys_size) { 1562 rio_mport_read_config_32(mport, destid, hopcount, 1563 RIO_SWITCH_RT_LIMIT, 1564 &max_destid); 1565 max_destid &= RIO_RT_MAX_DESTID; 1566 } 1567 1568 if (pef & RIO_PEF_EXT_RT) { 1569 ext_cfg = 0x80000000; 1570 id_inc = 4; 1571 port_sel = (RIO_INVALID_ROUTE << 24) | 1572 (RIO_INVALID_ROUTE << 16) | 1573 (RIO_INVALID_ROUTE << 8) | 1574 RIO_INVALID_ROUTE; 1575 } 1576 1577 for (i = 0; i <= max_destid;) { 1578 rio_mport_write_config_32(mport, destid, hopcount, 1579 RIO_STD_RTE_CONF_DESTID_SEL_CSR, 1580 ext_cfg | i); 1581 rio_mport_write_config_32(mport, destid, hopcount, 1582 RIO_STD_RTE_CONF_PORT_SEL_CSR, 1583 port_sel); 1584 i += id_inc; 1585 } 1586 } 1587 1588 udelay(10); 1589 return 0; 1590 } 1591 1592 /** 1593 * rio_lock_device - Acquires host device lock for specified device 1594 * @port: Master port to send transaction 1595 * @destid: Destination ID for device/switch 1596 * @hopcount: Hopcount to reach switch 1597 * @wait_ms: Max wait time in msec (0 = no timeout) 1598 * 1599 * Attepts to acquire host device lock for specified device 1600 * Returns 0 if device lock acquired or EINVAL if timeout expires. 1601 */ 1602 int rio_lock_device(struct rio_mport *port, u16 destid, 1603 u8 hopcount, int wait_ms) 1604 { 1605 u32 result; 1606 int tcnt = 0; 1607 1608 /* Attempt to acquire device lock */ 1609 rio_mport_write_config_32(port, destid, hopcount, 1610 RIO_HOST_DID_LOCK_CSR, port->host_deviceid); 1611 rio_mport_read_config_32(port, destid, hopcount, 1612 RIO_HOST_DID_LOCK_CSR, &result); 1613 1614 while (result != port->host_deviceid) { 1615 if (wait_ms != 0 && tcnt == wait_ms) { 1616 pr_debug("RIO: timeout when locking device %x:%x\n", 1617 destid, hopcount); 1618 return -EINVAL; 1619 } 1620 1621 /* Delay a bit */ 1622 mdelay(1); 1623 tcnt++; 1624 /* Try to acquire device lock again */ 1625 rio_mport_write_config_32(port, destid, 1626 hopcount, 1627 RIO_HOST_DID_LOCK_CSR, 1628 port->host_deviceid); 1629 rio_mport_read_config_32(port, destid, 1630 hopcount, 1631 RIO_HOST_DID_LOCK_CSR, &result); 1632 } 1633 1634 return 0; 1635 } 1636 EXPORT_SYMBOL_GPL(rio_lock_device); 1637 1638 /** 1639 * rio_unlock_device - Releases host device lock for specified device 1640 * @port: Master port to send transaction 1641 * @destid: Destination ID for device/switch 1642 * @hopcount: Hopcount to reach switch 1643 * 1644 * Returns 0 if device lock released or EINVAL if fails. 1645 */ 1646 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount) 1647 { 1648 u32 result; 1649 1650 /* Release device lock */ 1651 rio_mport_write_config_32(port, destid, 1652 hopcount, 1653 RIO_HOST_DID_LOCK_CSR, 1654 port->host_deviceid); 1655 rio_mport_read_config_32(port, destid, hopcount, 1656 RIO_HOST_DID_LOCK_CSR, &result); 1657 if ((result & 0xffff) != 0xffff) { 1658 pr_debug("RIO: badness when releasing device lock %x:%x\n", 1659 destid, hopcount); 1660 return -EINVAL; 1661 } 1662 1663 return 0; 1664 } 1665 EXPORT_SYMBOL_GPL(rio_unlock_device); 1666 1667 /** 1668 * rio_route_add_entry- Add a route entry to a switch routing table 1669 * @rdev: RIO device 1670 * @table: Routing table ID 1671 * @route_destid: Destination ID to be routed 1672 * @route_port: Port number to be routed 1673 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1674 * 1675 * If available calls the switch specific add_entry() method to add a route 1676 * entry into a switch routing table. Otherwise uses standard RT update method 1677 * as defined by RapidIO specification. A specific routing table can be selected 1678 * using the @table argument if a switch has per port routing tables or 1679 * the standard (or global) table may be used by passing 1680 * %RIO_GLOBAL_TABLE in @table. 1681 * 1682 * Returns %0 on success or %-EINVAL on failure. 1683 */ 1684 int rio_route_add_entry(struct rio_dev *rdev, 1685 u16 table, u16 route_destid, u8 route_port, int lock) 1686 { 1687 int rc = -EINVAL; 1688 struct rio_switch_ops *ops = rdev->rswitch->ops; 1689 1690 if (lock) { 1691 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1692 rdev->hopcount, 1000); 1693 if (rc) 1694 return rc; 1695 } 1696 1697 spin_lock(&rdev->rswitch->lock); 1698 1699 if (ops == NULL || ops->add_entry == NULL) { 1700 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid, 1701 rdev->hopcount, table, 1702 route_destid, route_port); 1703 } else if (try_module_get(ops->owner)) { 1704 rc = ops->add_entry(rdev->net->hport, rdev->destid, 1705 rdev->hopcount, table, route_destid, 1706 route_port); 1707 module_put(ops->owner); 1708 } 1709 1710 spin_unlock(&rdev->rswitch->lock); 1711 1712 if (lock) 1713 rio_unlock_device(rdev->net->hport, rdev->destid, 1714 rdev->hopcount); 1715 1716 return rc; 1717 } 1718 EXPORT_SYMBOL_GPL(rio_route_add_entry); 1719 1720 /** 1721 * rio_route_get_entry- Read an entry from a switch routing table 1722 * @rdev: RIO device 1723 * @table: Routing table ID 1724 * @route_destid: Destination ID to be routed 1725 * @route_port: Pointer to read port number into 1726 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1727 * 1728 * If available calls the switch specific get_entry() method to fetch a route 1729 * entry from a switch routing table. Otherwise uses standard RT read method 1730 * as defined by RapidIO specification. A specific routing table can be selected 1731 * using the @table argument if a switch has per port routing tables or 1732 * the standard (or global) table may be used by passing 1733 * %RIO_GLOBAL_TABLE in @table. 1734 * 1735 * Returns %0 on success or %-EINVAL on failure. 1736 */ 1737 int rio_route_get_entry(struct rio_dev *rdev, u16 table, 1738 u16 route_destid, u8 *route_port, int lock) 1739 { 1740 int rc = -EINVAL; 1741 struct rio_switch_ops *ops = rdev->rswitch->ops; 1742 1743 if (lock) { 1744 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1745 rdev->hopcount, 1000); 1746 if (rc) 1747 return rc; 1748 } 1749 1750 spin_lock(&rdev->rswitch->lock); 1751 1752 if (ops == NULL || ops->get_entry == NULL) { 1753 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid, 1754 rdev->hopcount, table, 1755 route_destid, route_port); 1756 } else if (try_module_get(ops->owner)) { 1757 rc = ops->get_entry(rdev->net->hport, rdev->destid, 1758 rdev->hopcount, table, route_destid, 1759 route_port); 1760 module_put(ops->owner); 1761 } 1762 1763 spin_unlock(&rdev->rswitch->lock); 1764 1765 if (lock) 1766 rio_unlock_device(rdev->net->hport, rdev->destid, 1767 rdev->hopcount); 1768 return rc; 1769 } 1770 EXPORT_SYMBOL_GPL(rio_route_get_entry); 1771 1772 /** 1773 * rio_route_clr_table - Clear a switch routing table 1774 * @rdev: RIO device 1775 * @table: Routing table ID 1776 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock) 1777 * 1778 * If available calls the switch specific clr_table() method to clear a switch 1779 * routing table. Otherwise uses standard RT write method as defined by RapidIO 1780 * specification. A specific routing table can be selected using the @table 1781 * argument if a switch has per port routing tables or the standard (or global) 1782 * table may be used by passing %RIO_GLOBAL_TABLE in @table. 1783 * 1784 * Returns %0 on success or %-EINVAL on failure. 1785 */ 1786 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock) 1787 { 1788 int rc = -EINVAL; 1789 struct rio_switch_ops *ops = rdev->rswitch->ops; 1790 1791 if (lock) { 1792 rc = rio_lock_device(rdev->net->hport, rdev->destid, 1793 rdev->hopcount, 1000); 1794 if (rc) 1795 return rc; 1796 } 1797 1798 spin_lock(&rdev->rswitch->lock); 1799 1800 if (ops == NULL || ops->clr_table == NULL) { 1801 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid, 1802 rdev->hopcount, table); 1803 } else if (try_module_get(ops->owner)) { 1804 rc = ops->clr_table(rdev->net->hport, rdev->destid, 1805 rdev->hopcount, table); 1806 1807 module_put(ops->owner); 1808 } 1809 1810 spin_unlock(&rdev->rswitch->lock); 1811 1812 if (lock) 1813 rio_unlock_device(rdev->net->hport, rdev->destid, 1814 rdev->hopcount); 1815 1816 return rc; 1817 } 1818 EXPORT_SYMBOL_GPL(rio_route_clr_table); 1819 1820 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 1821 1822 static bool rio_chan_filter(struct dma_chan *chan, void *arg) 1823 { 1824 struct rio_mport *mport = arg; 1825 1826 /* Check that DMA device belongs to the right MPORT */ 1827 return mport == container_of(chan->device, struct rio_mport, dma); 1828 } 1829 1830 /** 1831 * rio_request_mport_dma - request RapidIO capable DMA channel associated 1832 * with specified local RapidIO mport device. 1833 * @mport: RIO mport to perform DMA data transfers 1834 * 1835 * Returns pointer to allocated DMA channel or NULL if failed. 1836 */ 1837 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport) 1838 { 1839 dma_cap_mask_t mask; 1840 1841 dma_cap_zero(mask); 1842 dma_cap_set(DMA_SLAVE, mask); 1843 return dma_request_channel(mask, rio_chan_filter, mport); 1844 } 1845 EXPORT_SYMBOL_GPL(rio_request_mport_dma); 1846 1847 /** 1848 * rio_request_dma - request RapidIO capable DMA channel that supports 1849 * specified target RapidIO device. 1850 * @rdev: RIO device associated with DMA transfer 1851 * 1852 * Returns pointer to allocated DMA channel or NULL if failed. 1853 */ 1854 struct dma_chan *rio_request_dma(struct rio_dev *rdev) 1855 { 1856 return rio_request_mport_dma(rdev->net->hport); 1857 } 1858 EXPORT_SYMBOL_GPL(rio_request_dma); 1859 1860 /** 1861 * rio_release_dma - release specified DMA channel 1862 * @dchan: DMA channel to release 1863 */ 1864 void rio_release_dma(struct dma_chan *dchan) 1865 { 1866 dma_release_channel(dchan); 1867 } 1868 EXPORT_SYMBOL_GPL(rio_release_dma); 1869 1870 /** 1871 * rio_dma_prep_xfer - RapidIO specific wrapper 1872 * for device_prep_slave_sg callback defined by DMAENGINE. 1873 * @dchan: DMA channel to configure 1874 * @destid: target RapidIO device destination ID 1875 * @data: RIO specific data descriptor 1876 * @direction: DMA data transfer direction (TO or FROM the device) 1877 * @flags: dmaengine defined flags 1878 * 1879 * Initializes RapidIO capable DMA channel for the specified data transfer. 1880 * Uses DMA channel private extension to pass information related to remote 1881 * target RIO device. 1882 * 1883 * Returns: pointer to DMA transaction descriptor if successful, 1884 * error-valued pointer or NULL if failed. 1885 */ 1886 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan, 1887 u16 destid, struct rio_dma_data *data, 1888 enum dma_transfer_direction direction, unsigned long flags) 1889 { 1890 struct rio_dma_ext rio_ext; 1891 1892 if (dchan->device->device_prep_slave_sg == NULL) { 1893 pr_err("%s: prep_rio_sg == NULL\n", __func__); 1894 return NULL; 1895 } 1896 1897 rio_ext.destid = destid; 1898 rio_ext.rio_addr_u = data->rio_addr_u; 1899 rio_ext.rio_addr = data->rio_addr; 1900 rio_ext.wr_type = data->wr_type; 1901 1902 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len, 1903 direction, flags, &rio_ext); 1904 } 1905 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer); 1906 1907 /** 1908 * rio_dma_prep_slave_sg - RapidIO specific wrapper 1909 * for device_prep_slave_sg callback defined by DMAENGINE. 1910 * @rdev: RIO device control structure 1911 * @dchan: DMA channel to configure 1912 * @data: RIO specific data descriptor 1913 * @direction: DMA data transfer direction (TO or FROM the device) 1914 * @flags: dmaengine defined flags 1915 * 1916 * Initializes RapidIO capable DMA channel for the specified data transfer. 1917 * Uses DMA channel private extension to pass information related to remote 1918 * target RIO device. 1919 * 1920 * Returns: pointer to DMA transaction descriptor if successful, 1921 * error-valued pointer or NULL if failed. 1922 */ 1923 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev, 1924 struct dma_chan *dchan, struct rio_dma_data *data, 1925 enum dma_transfer_direction direction, unsigned long flags) 1926 { 1927 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags); 1928 } 1929 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg); 1930 1931 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */ 1932 1933 /** 1934 * rio_find_mport - find RIO mport by its ID 1935 * @mport_id: number (ID) of mport device 1936 * 1937 * Given a RIO mport number, the desired mport is located 1938 * in the global list of mports. If the mport is found, a pointer to its 1939 * data structure is returned. If no mport is found, %NULL is returned. 1940 */ 1941 struct rio_mport *rio_find_mport(int mport_id) 1942 { 1943 struct rio_mport *port; 1944 1945 mutex_lock(&rio_mport_list_lock); 1946 list_for_each_entry(port, &rio_mports, node) { 1947 if (port->id == mport_id) 1948 goto found; 1949 } 1950 port = NULL; 1951 found: 1952 mutex_unlock(&rio_mport_list_lock); 1953 1954 return port; 1955 } 1956 1957 /** 1958 * rio_register_scan - enumeration/discovery method registration interface 1959 * @mport_id: mport device ID for which fabric scan routine has to be set 1960 * (RIO_MPORT_ANY = set for all available mports) 1961 * @scan_ops: enumeration/discovery operations structure 1962 * 1963 * Registers enumeration/discovery operations with RapidIO subsystem and 1964 * attaches it to the specified mport device (or all available mports 1965 * if RIO_MPORT_ANY is specified). 1966 * 1967 * Returns error if the mport already has an enumerator attached to it. 1968 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error). 1969 */ 1970 int rio_register_scan(int mport_id, struct rio_scan *scan_ops) 1971 { 1972 struct rio_mport *port; 1973 struct rio_scan_node *scan; 1974 int rc = 0; 1975 1976 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 1977 1978 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) || 1979 !scan_ops) 1980 return -EINVAL; 1981 1982 mutex_lock(&rio_mport_list_lock); 1983 1984 /* 1985 * Check if there is another enumerator already registered for 1986 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators 1987 * for the same mport ID are not supported. 1988 */ 1989 list_for_each_entry(scan, &rio_scans, node) { 1990 if (scan->mport_id == mport_id) { 1991 rc = -EBUSY; 1992 goto err_out; 1993 } 1994 } 1995 1996 /* 1997 * Allocate and initialize new scan registration node. 1998 */ 1999 scan = kzalloc(sizeof(*scan), GFP_KERNEL); 2000 if (!scan) { 2001 rc = -ENOMEM; 2002 goto err_out; 2003 } 2004 2005 scan->mport_id = mport_id; 2006 scan->ops = scan_ops; 2007 2008 /* 2009 * Traverse the list of registered mports to attach this new scan. 2010 * 2011 * The new scan with matching mport ID overrides any previously attached 2012 * scan assuming that old scan (if any) is the default one (based on the 2013 * enumerator registration check above). 2014 * If the new scan is the global one, it will be attached only to mports 2015 * that do not have their own individual operations already attached. 2016 */ 2017 list_for_each_entry(port, &rio_mports, node) { 2018 if (port->id == mport_id) { 2019 port->nscan = scan_ops; 2020 break; 2021 } else if (mport_id == RIO_MPORT_ANY && !port->nscan) 2022 port->nscan = scan_ops; 2023 } 2024 2025 list_add_tail(&scan->node, &rio_scans); 2026 2027 err_out: 2028 mutex_unlock(&rio_mport_list_lock); 2029 2030 return rc; 2031 } 2032 EXPORT_SYMBOL_GPL(rio_register_scan); 2033 2034 /** 2035 * rio_unregister_scan - removes enumeration/discovery method from mport 2036 * @mport_id: mport device ID for which fabric scan routine has to be 2037 * unregistered (RIO_MPORT_ANY = apply to all mports that use 2038 * the specified scan_ops) 2039 * @scan_ops: enumeration/discovery operations structure 2040 * 2041 * Removes enumeration or discovery method assigned to the specified mport 2042 * device. If RIO_MPORT_ANY is specified, removes the specified operations from 2043 * all mports that have them attached. 2044 */ 2045 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops) 2046 { 2047 struct rio_mport *port; 2048 struct rio_scan_node *scan; 2049 2050 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id); 2051 2052 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) 2053 return -EINVAL; 2054 2055 mutex_lock(&rio_mport_list_lock); 2056 2057 list_for_each_entry(port, &rio_mports, node) 2058 if (port->id == mport_id || 2059 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops)) 2060 port->nscan = NULL; 2061 2062 list_for_each_entry(scan, &rio_scans, node) { 2063 if (scan->mport_id == mport_id) { 2064 list_del(&scan->node); 2065 kfree(scan); 2066 break; 2067 } 2068 } 2069 2070 mutex_unlock(&rio_mport_list_lock); 2071 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(rio_unregister_scan); 2075 2076 /** 2077 * rio_mport_scan - execute enumeration/discovery on the specified mport 2078 * @mport_id: number (ID) of mport device 2079 */ 2080 int rio_mport_scan(int mport_id) 2081 { 2082 struct rio_mport *port = NULL; 2083 int rc; 2084 2085 mutex_lock(&rio_mport_list_lock); 2086 list_for_each_entry(port, &rio_mports, node) { 2087 if (port->id == mport_id) 2088 goto found; 2089 } 2090 mutex_unlock(&rio_mport_list_lock); 2091 return -ENODEV; 2092 found: 2093 if (!port->nscan) { 2094 mutex_unlock(&rio_mport_list_lock); 2095 return -EINVAL; 2096 } 2097 2098 if (!try_module_get(port->nscan->owner)) { 2099 mutex_unlock(&rio_mport_list_lock); 2100 return -ENODEV; 2101 } 2102 2103 mutex_unlock(&rio_mport_list_lock); 2104 2105 if (port->host_deviceid >= 0) 2106 rc = port->nscan->enumerate(port, 0); 2107 else 2108 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT); 2109 2110 module_put(port->nscan->owner); 2111 return rc; 2112 } 2113 2114 static void rio_fixup_device(struct rio_dev *dev) 2115 { 2116 } 2117 2118 static int rio_init(void) 2119 { 2120 struct rio_dev *dev = NULL; 2121 2122 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) { 2123 rio_fixup_device(dev); 2124 } 2125 return 0; 2126 } 2127 2128 static struct workqueue_struct *rio_wq; 2129 2130 struct rio_disc_work { 2131 struct work_struct work; 2132 struct rio_mport *mport; 2133 }; 2134 2135 static void disc_work_handler(struct work_struct *_work) 2136 { 2137 struct rio_disc_work *work; 2138 2139 work = container_of(_work, struct rio_disc_work, work); 2140 pr_debug("RIO: discovery work for mport %d %s\n", 2141 work->mport->id, work->mport->name); 2142 if (try_module_get(work->mport->nscan->owner)) { 2143 work->mport->nscan->discover(work->mport, 0); 2144 module_put(work->mport->nscan->owner); 2145 } 2146 } 2147 2148 int rio_init_mports(void) 2149 { 2150 struct rio_mport *port; 2151 struct rio_disc_work *work; 2152 int n = 0; 2153 2154 if (!next_portid) 2155 return -ENODEV; 2156 2157 /* 2158 * First, run enumerations and check if we need to perform discovery 2159 * on any of the registered mports. 2160 */ 2161 mutex_lock(&rio_mport_list_lock); 2162 list_for_each_entry(port, &rio_mports, node) { 2163 if (port->host_deviceid >= 0) { 2164 if (port->nscan && try_module_get(port->nscan->owner)) { 2165 port->nscan->enumerate(port, 0); 2166 module_put(port->nscan->owner); 2167 } 2168 } else 2169 n++; 2170 } 2171 mutex_unlock(&rio_mport_list_lock); 2172 2173 if (!n) 2174 goto no_disc; 2175 2176 /* 2177 * If we have mports that require discovery schedule a discovery work 2178 * for each of them. If the code below fails to allocate needed 2179 * resources, exit without error to keep results of enumeration 2180 * process (if any). 2181 * TODO: Implement restart of discovery process for all or 2182 * individual discovering mports. 2183 */ 2184 rio_wq = alloc_workqueue("riodisc", 0, 0); 2185 if (!rio_wq) { 2186 pr_err("RIO: unable allocate rio_wq\n"); 2187 goto no_disc; 2188 } 2189 2190 work = kcalloc(n, sizeof *work, GFP_KERNEL); 2191 if (!work) { 2192 pr_err("RIO: no memory for work struct\n"); 2193 destroy_workqueue(rio_wq); 2194 goto no_disc; 2195 } 2196 2197 n = 0; 2198 mutex_lock(&rio_mport_list_lock); 2199 list_for_each_entry(port, &rio_mports, node) { 2200 if (port->host_deviceid < 0 && port->nscan) { 2201 work[n].mport = port; 2202 INIT_WORK(&work[n].work, disc_work_handler); 2203 queue_work(rio_wq, &work[n].work); 2204 n++; 2205 } 2206 } 2207 2208 flush_workqueue(rio_wq); 2209 mutex_unlock(&rio_mport_list_lock); 2210 pr_debug("RIO: destroy discovery workqueue\n"); 2211 destroy_workqueue(rio_wq); 2212 kfree(work); 2213 2214 no_disc: 2215 rio_init(); 2216 2217 return 0; 2218 } 2219 2220 static int rio_get_hdid(int index) 2221 { 2222 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS) 2223 return -1; 2224 2225 return hdid[index]; 2226 } 2227 2228 int rio_mport_initialize(struct rio_mport *mport) 2229 { 2230 if (next_portid >= RIO_MAX_MPORTS) { 2231 pr_err("RIO: reached specified max number of mports\n"); 2232 return -ENODEV; 2233 } 2234 2235 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING); 2236 mport->id = next_portid++; 2237 mport->host_deviceid = rio_get_hdid(mport->id); 2238 mport->nscan = NULL; 2239 mutex_init(&mport->lock); 2240 mport->pwe_refcnt = 0; 2241 INIT_LIST_HEAD(&mport->pwrites); 2242 2243 return 0; 2244 } 2245 EXPORT_SYMBOL_GPL(rio_mport_initialize); 2246 2247 int rio_register_mport(struct rio_mport *port) 2248 { 2249 struct rio_scan_node *scan = NULL; 2250 int res = 0; 2251 2252 mutex_lock(&rio_mport_list_lock); 2253 2254 /* 2255 * Check if there are any registered enumeration/discovery operations 2256 * that have to be attached to the added mport. 2257 */ 2258 list_for_each_entry(scan, &rio_scans, node) { 2259 if (port->id == scan->mport_id || 2260 scan->mport_id == RIO_MPORT_ANY) { 2261 port->nscan = scan->ops; 2262 if (port->id == scan->mport_id) 2263 break; 2264 } 2265 } 2266 2267 list_add_tail(&port->node, &rio_mports); 2268 mutex_unlock(&rio_mport_list_lock); 2269 2270 dev_set_name(&port->dev, "rapidio%d", port->id); 2271 port->dev.class = &rio_mport_class; 2272 atomic_set(&port->state, RIO_DEVICE_RUNNING); 2273 2274 res = device_register(&port->dev); 2275 if (res) 2276 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n", 2277 port->id, res); 2278 else 2279 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id); 2280 2281 return res; 2282 } 2283 EXPORT_SYMBOL_GPL(rio_register_mport); 2284 2285 static int rio_mport_cleanup_callback(struct device *dev, void *data) 2286 { 2287 struct rio_dev *rdev = to_rio_dev(dev); 2288 2289 if (dev->bus == &rio_bus_type) 2290 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN); 2291 return 0; 2292 } 2293 2294 static int rio_net_remove_children(struct rio_net *net) 2295 { 2296 /* 2297 * Unregister all RapidIO devices residing on this net (this will 2298 * invoke notification of registered subsystem interfaces as well). 2299 */ 2300 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback); 2301 return 0; 2302 } 2303 2304 int rio_unregister_mport(struct rio_mport *port) 2305 { 2306 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id); 2307 2308 /* Transition mport to the SHUTDOWN state */ 2309 if (atomic_cmpxchg(&port->state, 2310 RIO_DEVICE_RUNNING, 2311 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) { 2312 pr_err("RIO: %s unexpected state transition for mport %s\n", 2313 __func__, port->name); 2314 } 2315 2316 if (port->net && port->net->hport == port) { 2317 rio_net_remove_children(port->net); 2318 rio_free_net(port->net); 2319 } 2320 2321 /* 2322 * Unregister all RapidIO devices attached to this mport (this will 2323 * invoke notification of registered subsystem interfaces as well). 2324 */ 2325 mutex_lock(&rio_mport_list_lock); 2326 list_del(&port->node); 2327 mutex_unlock(&rio_mport_list_lock); 2328 device_unregister(&port->dev); 2329 2330 return 0; 2331 } 2332 EXPORT_SYMBOL_GPL(rio_unregister_mport); 2333 2334 EXPORT_SYMBOL_GPL(rio_local_get_device_id); 2335 EXPORT_SYMBOL_GPL(rio_get_device); 2336 EXPORT_SYMBOL_GPL(rio_get_asm); 2337 EXPORT_SYMBOL_GPL(rio_request_inb_dbell); 2338 EXPORT_SYMBOL_GPL(rio_release_inb_dbell); 2339 EXPORT_SYMBOL_GPL(rio_request_outb_dbell); 2340 EXPORT_SYMBOL_GPL(rio_release_outb_dbell); 2341 EXPORT_SYMBOL_GPL(rio_request_inb_mbox); 2342 EXPORT_SYMBOL_GPL(rio_release_inb_mbox); 2343 EXPORT_SYMBOL_GPL(rio_request_outb_mbox); 2344 EXPORT_SYMBOL_GPL(rio_release_outb_mbox); 2345 EXPORT_SYMBOL_GPL(rio_init_mports); 2346