xref: /linux/drivers/rapidio/rio.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * RapidIO interconnect services
3  * (RapidIO Interconnect Specification, http://www.rapidio.org)
4  *
5  * Copyright 2005 MontaVista Software, Inc.
6  * Matt Porter <mporter@kernel.crashing.org>
7  *
8  * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9  * Alex Bounine <alexandre.bounine@idt.com>
10  *
11  * This program is free software; you can redistribute  it and/or modify it
12  * under  the terms of  the GNU General  Public License as published by the
13  * Free Software Foundation;  either version 2 of the  License, or (at your
14  * option) any later version.
15  */
16 
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 
31 #include "rio.h"
32 
33 /*
34  * struct rio_pwrite - RIO portwrite event
35  * @node:    Node in list of doorbell events
36  * @pwcback: Doorbell event callback
37  * @context: Handler specific context to pass on event
38  */
39 struct rio_pwrite {
40 	struct list_head node;
41 
42 	int (*pwcback)(struct rio_mport *mport, void *context,
43 		       union rio_pw_msg *msg, int step);
44 	void *context;
45 };
46 
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
51 
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 	"Destination ID assignment to local RapidIO controllers");
57 
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
61 
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
67 
68 /**
69  * rio_local_get_device_id - Get the base/extended device id for a port
70  * @port: RIO master port from which to get the deviceid
71  *
72  * Reads the base/extended device id from the local device
73  * implementing the master port. Returns the 8/16-bit device
74  * id.
75  */
76 u16 rio_local_get_device_id(struct rio_mport *port)
77 {
78 	u32 result;
79 
80 	rio_local_read_config_32(port, RIO_DID_CSR, &result);
81 
82 	return (RIO_GET_DID(port->sys_size, result));
83 }
84 
85 /**
86  * rio_query_mport - Query mport device attributes
87  * @port: mport device to query
88  * @mport_attr: mport attributes data structure
89  *
90  * Returns attributes of specified mport through the
91  * pointer to attributes data structure.
92  */
93 int rio_query_mport(struct rio_mport *port,
94 		    struct rio_mport_attr *mport_attr)
95 {
96 	if (!port->ops->query_mport)
97 		return -ENODATA;
98 	return port->ops->query_mport(port, mport_attr);
99 }
100 EXPORT_SYMBOL(rio_query_mport);
101 
102 /**
103  * rio_alloc_net- Allocate and initialize a new RIO network data structure
104  * @mport: Master port associated with the RIO network
105  *
106  * Allocates a RIO network structure, initializes per-network
107  * list heads, and adds the associated master port to the
108  * network list of associated master ports. Returns a
109  * RIO network pointer on success or %NULL on failure.
110  */
111 struct rio_net *rio_alloc_net(struct rio_mport *mport)
112 {
113 	struct rio_net *net;
114 
115 	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
116 	if (net) {
117 		INIT_LIST_HEAD(&net->node);
118 		INIT_LIST_HEAD(&net->devices);
119 		INIT_LIST_HEAD(&net->switches);
120 		INIT_LIST_HEAD(&net->mports);
121 		mport->net = net;
122 	}
123 	return net;
124 }
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
126 
127 int rio_add_net(struct rio_net *net)
128 {
129 	int err;
130 
131 	err = device_register(&net->dev);
132 	if (err)
133 		return err;
134 	spin_lock(&rio_global_list_lock);
135 	list_add_tail(&net->node, &rio_nets);
136 	spin_unlock(&rio_global_list_lock);
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(rio_add_net);
141 
142 void rio_free_net(struct rio_net *net)
143 {
144 	spin_lock(&rio_global_list_lock);
145 	if (!list_empty(&net->node))
146 		list_del(&net->node);
147 	spin_unlock(&rio_global_list_lock);
148 	if (net->release)
149 		net->release(net);
150 	device_unregister(&net->dev);
151 }
152 EXPORT_SYMBOL_GPL(rio_free_net);
153 
154 /**
155  * rio_local_set_device_id - Set the base/extended device id for a port
156  * @port: RIO master port
157  * @did: Device ID value to be written
158  *
159  * Writes the base/extended device id from a device.
160  */
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
162 {
163 	rio_local_write_config_32(port, RIO_DID_CSR,
164 				  RIO_SET_DID(port->sys_size, did));
165 }
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
167 
168 /**
169  * rio_add_device- Adds a RIO device to the device model
170  * @rdev: RIO device
171  *
172  * Adds the RIO device to the global device list and adds the RIO
173  * device to the RIO device list.  Creates the generic sysfs nodes
174  * for an RIO device.
175  */
176 int rio_add_device(struct rio_dev *rdev)
177 {
178 	int err;
179 
180 	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 	err = device_register(&rdev->dev);
182 	if (err)
183 		return err;
184 
185 	spin_lock(&rio_global_list_lock);
186 	list_add_tail(&rdev->global_list, &rio_devices);
187 	if (rdev->net) {
188 		list_add_tail(&rdev->net_list, &rdev->net->devices);
189 		if (rdev->pef & RIO_PEF_SWITCH)
190 			list_add_tail(&rdev->rswitch->node,
191 				      &rdev->net->switches);
192 	}
193 	spin_unlock(&rio_global_list_lock);
194 
195 	rio_create_sysfs_dev_files(rdev);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(rio_add_device);
200 
201 /*
202  * rio_del_device - removes a RIO device from the device model
203  * @rdev: RIO device
204  * @state: device state to set during removal process
205  *
206  * Removes the RIO device to the kernel device list and subsystem's device list.
207  * Clears sysfs entries for the removed device.
208  */
209 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
210 {
211 	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
212 	atomic_set(&rdev->state, state);
213 	spin_lock(&rio_global_list_lock);
214 	list_del(&rdev->global_list);
215 	if (rdev->net) {
216 		list_del(&rdev->net_list);
217 		if (rdev->pef & RIO_PEF_SWITCH) {
218 			list_del(&rdev->rswitch->node);
219 			kfree(rdev->rswitch->route_table);
220 		}
221 	}
222 	spin_unlock(&rio_global_list_lock);
223 	rio_remove_sysfs_dev_files(rdev);
224 	device_unregister(&rdev->dev);
225 }
226 EXPORT_SYMBOL_GPL(rio_del_device);
227 
228 /**
229  * rio_request_inb_mbox - request inbound mailbox service
230  * @mport: RIO master port from which to allocate the mailbox resource
231  * @dev_id: Device specific pointer to pass on event
232  * @mbox: Mailbox number to claim
233  * @entries: Number of entries in inbound mailbox queue
234  * @minb: Callback to execute when inbound message is received
235  *
236  * Requests ownership of an inbound mailbox resource and binds
237  * a callback function to the resource. Returns %0 on success.
238  */
239 int rio_request_inb_mbox(struct rio_mport *mport,
240 			 void *dev_id,
241 			 int mbox,
242 			 int entries,
243 			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
244 				       int slot))
245 {
246 	int rc = -ENOSYS;
247 	struct resource *res;
248 
249 	if (mport->ops->open_inb_mbox == NULL)
250 		goto out;
251 
252 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
253 
254 	if (res) {
255 		rio_init_mbox_res(res, mbox, mbox);
256 
257 		/* Make sure this mailbox isn't in use */
258 		if ((rc =
259 		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
260 				      res)) < 0) {
261 			kfree(res);
262 			goto out;
263 		}
264 
265 		mport->inb_msg[mbox].res = res;
266 
267 		/* Hook the inbound message callback */
268 		mport->inb_msg[mbox].mcback = minb;
269 
270 		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
271 	} else
272 		rc = -ENOMEM;
273 
274       out:
275 	return rc;
276 }
277 
278 /**
279  * rio_release_inb_mbox - release inbound mailbox message service
280  * @mport: RIO master port from which to release the mailbox resource
281  * @mbox: Mailbox number to release
282  *
283  * Releases ownership of an inbound mailbox resource. Returns 0
284  * if the request has been satisfied.
285  */
286 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
287 {
288 	if (mport->ops->close_inb_mbox) {
289 		mport->ops->close_inb_mbox(mport, mbox);
290 
291 		/* Release the mailbox resource */
292 		return release_resource(mport->inb_msg[mbox].res);
293 	} else
294 		return -ENOSYS;
295 }
296 
297 /**
298  * rio_request_outb_mbox - request outbound mailbox service
299  * @mport: RIO master port from which to allocate the mailbox resource
300  * @dev_id: Device specific pointer to pass on event
301  * @mbox: Mailbox number to claim
302  * @entries: Number of entries in outbound mailbox queue
303  * @moutb: Callback to execute when outbound message is sent
304  *
305  * Requests ownership of an outbound mailbox resource and binds
306  * a callback function to the resource. Returns 0 on success.
307  */
308 int rio_request_outb_mbox(struct rio_mport *mport,
309 			  void *dev_id,
310 			  int mbox,
311 			  int entries,
312 			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
313 {
314 	int rc = -ENOSYS;
315 	struct resource *res;
316 
317 	if (mport->ops->open_outb_mbox == NULL)
318 		goto out;
319 
320 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
321 
322 	if (res) {
323 		rio_init_mbox_res(res, mbox, mbox);
324 
325 		/* Make sure this outbound mailbox isn't in use */
326 		if ((rc =
327 		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
328 				      res)) < 0) {
329 			kfree(res);
330 			goto out;
331 		}
332 
333 		mport->outb_msg[mbox].res = res;
334 
335 		/* Hook the inbound message callback */
336 		mport->outb_msg[mbox].mcback = moutb;
337 
338 		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
339 	} else
340 		rc = -ENOMEM;
341 
342       out:
343 	return rc;
344 }
345 
346 /**
347  * rio_release_outb_mbox - release outbound mailbox message service
348  * @mport: RIO master port from which to release the mailbox resource
349  * @mbox: Mailbox number to release
350  *
351  * Releases ownership of an inbound mailbox resource. Returns 0
352  * if the request has been satisfied.
353  */
354 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
355 {
356 	if (mport->ops->close_outb_mbox) {
357 		mport->ops->close_outb_mbox(mport, mbox);
358 
359 		/* Release the mailbox resource */
360 		return release_resource(mport->outb_msg[mbox].res);
361 	} else
362 		return -ENOSYS;
363 }
364 
365 /**
366  * rio_setup_inb_dbell - bind inbound doorbell callback
367  * @mport: RIO master port to bind the doorbell callback
368  * @dev_id: Device specific pointer to pass on event
369  * @res: Doorbell message resource
370  * @dinb: Callback to execute when doorbell is received
371  *
372  * Adds a doorbell resource/callback pair into a port's
373  * doorbell event list. Returns 0 if the request has been
374  * satisfied.
375  */
376 static int
377 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
378 		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
379 				  u16 info))
380 {
381 	int rc = 0;
382 	struct rio_dbell *dbell;
383 
384 	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
385 		rc = -ENOMEM;
386 		goto out;
387 	}
388 
389 	dbell->res = res;
390 	dbell->dinb = dinb;
391 	dbell->dev_id = dev_id;
392 
393 	mutex_lock(&mport->lock);
394 	list_add_tail(&dbell->node, &mport->dbells);
395 	mutex_unlock(&mport->lock);
396 
397       out:
398 	return rc;
399 }
400 
401 /**
402  * rio_request_inb_dbell - request inbound doorbell message service
403  * @mport: RIO master port from which to allocate the doorbell resource
404  * @dev_id: Device specific pointer to pass on event
405  * @start: Doorbell info range start
406  * @end: Doorbell info range end
407  * @dinb: Callback to execute when doorbell is received
408  *
409  * Requests ownership of an inbound doorbell resource and binds
410  * a callback function to the resource. Returns 0 if the request
411  * has been satisfied.
412  */
413 int rio_request_inb_dbell(struct rio_mport *mport,
414 			  void *dev_id,
415 			  u16 start,
416 			  u16 end,
417 			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
418 					u16 dst, u16 info))
419 {
420 	int rc = 0;
421 
422 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
423 
424 	if (res) {
425 		rio_init_dbell_res(res, start, end);
426 
427 		/* Make sure these doorbells aren't in use */
428 		if ((rc =
429 		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
430 				      res)) < 0) {
431 			kfree(res);
432 			goto out;
433 		}
434 
435 		/* Hook the doorbell callback */
436 		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
437 	} else
438 		rc = -ENOMEM;
439 
440       out:
441 	return rc;
442 }
443 
444 /**
445  * rio_release_inb_dbell - release inbound doorbell message service
446  * @mport: RIO master port from which to release the doorbell resource
447  * @start: Doorbell info range start
448  * @end: Doorbell info range end
449  *
450  * Releases ownership of an inbound doorbell resource and removes
451  * callback from the doorbell event list. Returns 0 if the request
452  * has been satisfied.
453  */
454 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
455 {
456 	int rc = 0, found = 0;
457 	struct rio_dbell *dbell;
458 
459 	mutex_lock(&mport->lock);
460 	list_for_each_entry(dbell, &mport->dbells, node) {
461 		if ((dbell->res->start == start) && (dbell->res->end == end)) {
462 			list_del(&dbell->node);
463 			found = 1;
464 			break;
465 		}
466 	}
467 	mutex_unlock(&mport->lock);
468 
469 	/* If we can't find an exact match, fail */
470 	if (!found) {
471 		rc = -EINVAL;
472 		goto out;
473 	}
474 
475 	/* Release the doorbell resource */
476 	rc = release_resource(dbell->res);
477 
478 	/* Free the doorbell event */
479 	kfree(dbell);
480 
481       out:
482 	return rc;
483 }
484 
485 /**
486  * rio_request_outb_dbell - request outbound doorbell message range
487  * @rdev: RIO device from which to allocate the doorbell resource
488  * @start: Doorbell message range start
489  * @end: Doorbell message range end
490  *
491  * Requests ownership of a doorbell message range. Returns a resource
492  * if the request has been satisfied or %NULL on failure.
493  */
494 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
495 					u16 end)
496 {
497 	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
498 
499 	if (res) {
500 		rio_init_dbell_res(res, start, end);
501 
502 		/* Make sure these doorbells aren't in use */
503 		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
504 		    < 0) {
505 			kfree(res);
506 			res = NULL;
507 		}
508 	}
509 
510 	return res;
511 }
512 
513 /**
514  * rio_release_outb_dbell - release outbound doorbell message range
515  * @rdev: RIO device from which to release the doorbell resource
516  * @res: Doorbell resource to be freed
517  *
518  * Releases ownership of a doorbell message range. Returns 0 if the
519  * request has been satisfied.
520  */
521 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
522 {
523 	int rc = release_resource(res);
524 
525 	kfree(res);
526 
527 	return rc;
528 }
529 
530 /**
531  * rio_add_mport_pw_handler - add port-write message handler into the list
532  *                            of mport specific pw handlers
533  * @mport:   RIO master port to bind the portwrite callback
534  * @context: Handler specific context to pass on event
535  * @pwcback: Callback to execute when portwrite is received
536  *
537  * Returns 0 if the request has been satisfied.
538  */
539 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
540 			     int (*pwcback)(struct rio_mport *mport,
541 			     void *context, union rio_pw_msg *msg, int step))
542 {
543 	int rc = 0;
544 	struct rio_pwrite *pwrite;
545 
546 	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
547 	if (!pwrite) {
548 		rc = -ENOMEM;
549 		goto out;
550 	}
551 
552 	pwrite->pwcback = pwcback;
553 	pwrite->context = context;
554 	mutex_lock(&mport->lock);
555 	list_add_tail(&pwrite->node, &mport->pwrites);
556 	mutex_unlock(&mport->lock);
557 out:
558 	return rc;
559 }
560 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
561 
562 /**
563  * rio_del_mport_pw_handler - remove port-write message handler from the list
564  *                            of mport specific pw handlers
565  * @mport:   RIO master port to bind the portwrite callback
566  * @context: Registered handler specific context to pass on event
567  * @pwcback: Registered callback function
568  *
569  * Returns 0 if the request has been satisfied.
570  */
571 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
572 			     int (*pwcback)(struct rio_mport *mport,
573 			     void *context, union rio_pw_msg *msg, int step))
574 {
575 	int rc = -EINVAL;
576 	struct rio_pwrite *pwrite;
577 
578 	mutex_lock(&mport->lock);
579 	list_for_each_entry(pwrite, &mport->pwrites, node) {
580 		if (pwrite->pwcback == pwcback && pwrite->context == context) {
581 			list_del(&pwrite->node);
582 			kfree(pwrite);
583 			rc = 0;
584 			break;
585 		}
586 	}
587 	mutex_unlock(&mport->lock);
588 
589 	return rc;
590 }
591 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
592 
593 /**
594  * rio_request_inb_pwrite - request inbound port-write message service for
595  *                          specific RapidIO device
596  * @rdev: RIO device to which register inbound port-write callback routine
597  * @pwcback: Callback routine to execute when port-write is received
598  *
599  * Binds a port-write callback function to the RapidIO device.
600  * Returns 0 if the request has been satisfied.
601  */
602 int rio_request_inb_pwrite(struct rio_dev *rdev,
603 	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
604 {
605 	int rc = 0;
606 
607 	spin_lock(&rio_global_list_lock);
608 	if (rdev->pwcback != NULL)
609 		rc = -ENOMEM;
610 	else
611 		rdev->pwcback = pwcback;
612 
613 	spin_unlock(&rio_global_list_lock);
614 	return rc;
615 }
616 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
617 
618 /**
619  * rio_release_inb_pwrite - release inbound port-write message service
620  *                          associated with specific RapidIO device
621  * @rdev: RIO device which registered for inbound port-write callback
622  *
623  * Removes callback from the rio_dev structure. Returns 0 if the request
624  * has been satisfied.
625  */
626 int rio_release_inb_pwrite(struct rio_dev *rdev)
627 {
628 	int rc = -ENOMEM;
629 
630 	spin_lock(&rio_global_list_lock);
631 	if (rdev->pwcback) {
632 		rdev->pwcback = NULL;
633 		rc = 0;
634 	}
635 
636 	spin_unlock(&rio_global_list_lock);
637 	return rc;
638 }
639 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
640 
641 /**
642  * rio_pw_enable - Enables/disables port-write handling by a master port
643  * @mport: Master port associated with port-write handling
644  * @enable:  1=enable,  0=disable
645  */
646 void rio_pw_enable(struct rio_mport *mport, int enable)
647 {
648 	if (mport->ops->pwenable) {
649 		mutex_lock(&mport->lock);
650 
651 		if ((enable && ++mport->pwe_refcnt == 1) ||
652 		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
653 			mport->ops->pwenable(mport, enable);
654 		mutex_unlock(&mport->lock);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(rio_pw_enable);
658 
659 /**
660  * rio_map_inb_region -- Map inbound memory region.
661  * @mport: Master port.
662  * @local: physical address of memory region to be mapped
663  * @rbase: RIO base address assigned to this window
664  * @size: Size of the memory region
665  * @rflags: Flags for mapping.
666  *
667  * Return: 0 -- Success.
668  *
669  * This function will create the mapping from RIO space to local memory.
670  */
671 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
672 			u64 rbase, u32 size, u32 rflags)
673 {
674 	int rc = 0;
675 	unsigned long flags;
676 
677 	if (!mport->ops->map_inb)
678 		return -1;
679 	spin_lock_irqsave(&rio_mmap_lock, flags);
680 	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
681 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
682 	return rc;
683 }
684 EXPORT_SYMBOL_GPL(rio_map_inb_region);
685 
686 /**
687  * rio_unmap_inb_region -- Unmap the inbound memory region
688  * @mport: Master port
689  * @lstart: physical address of memory region to be unmapped
690  */
691 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
692 {
693 	unsigned long flags;
694 	if (!mport->ops->unmap_inb)
695 		return;
696 	spin_lock_irqsave(&rio_mmap_lock, flags);
697 	mport->ops->unmap_inb(mport, lstart);
698 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
699 }
700 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
701 
702 /**
703  * rio_map_outb_region -- Map outbound memory region.
704  * @mport: Master port.
705  * @destid: destination id window points to
706  * @rbase: RIO base address window translates to
707  * @size: Size of the memory region
708  * @rflags: Flags for mapping.
709  * @local: physical address of memory region mapped
710  *
711  * Return: 0 -- Success.
712  *
713  * This function will create the mapping from RIO space to local memory.
714  */
715 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
716 			u32 size, u32 rflags, dma_addr_t *local)
717 {
718 	int rc = 0;
719 	unsigned long flags;
720 
721 	if (!mport->ops->map_outb)
722 		return -ENODEV;
723 
724 	spin_lock_irqsave(&rio_mmap_lock, flags);
725 	rc = mport->ops->map_outb(mport, destid, rbase, size,
726 		rflags, local);
727 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
728 
729 	return rc;
730 }
731 EXPORT_SYMBOL_GPL(rio_map_outb_region);
732 
733 /**
734  * rio_unmap_inb_region -- Unmap the inbound memory region
735  * @mport: Master port
736  * @destid: destination id mapping points to
737  * @rstart: RIO base address window translates to
738  */
739 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
740 {
741 	unsigned long flags;
742 
743 	if (!mport->ops->unmap_outb)
744 		return;
745 
746 	spin_lock_irqsave(&rio_mmap_lock, flags);
747 	mport->ops->unmap_outb(mport, destid, rstart);
748 	spin_unlock_irqrestore(&rio_mmap_lock, flags);
749 }
750 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
751 
752 /**
753  * rio_mport_get_physefb - Helper function that returns register offset
754  *                      for Physical Layer Extended Features Block.
755  * @port: Master port to issue transaction
756  * @local: Indicate a local master port or remote device access
757  * @destid: Destination ID of the device
758  * @hopcount: Number of switch hops to the device
759  */
760 u32
761 rio_mport_get_physefb(struct rio_mport *port, int local,
762 		      u16 destid, u8 hopcount)
763 {
764 	u32 ext_ftr_ptr;
765 	u32 ftr_header;
766 
767 	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
768 
769 	while (ext_ftr_ptr)  {
770 		if (local)
771 			rio_local_read_config_32(port, ext_ftr_ptr,
772 						 &ftr_header);
773 		else
774 			rio_mport_read_config_32(port, destid, hopcount,
775 						 ext_ftr_ptr, &ftr_header);
776 
777 		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
778 		switch (ftr_header) {
779 
780 		case RIO_EFB_SER_EP_ID_V13P:
781 		case RIO_EFB_SER_EP_REC_ID_V13P:
782 		case RIO_EFB_SER_EP_FREE_ID_V13P:
783 		case RIO_EFB_SER_EP_ID:
784 		case RIO_EFB_SER_EP_REC_ID:
785 		case RIO_EFB_SER_EP_FREE_ID:
786 		case RIO_EFB_SER_EP_FREC_ID:
787 
788 			return ext_ftr_ptr;
789 
790 		default:
791 			break;
792 		}
793 
794 		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
795 						hopcount, ext_ftr_ptr);
796 	}
797 
798 	return ext_ftr_ptr;
799 }
800 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
801 
802 /**
803  * rio_get_comptag - Begin or continue searching for a RIO device by component tag
804  * @comp_tag: RIO component tag to match
805  * @from: Previous RIO device found in search, or %NULL for new search
806  *
807  * Iterates through the list of known RIO devices. If a RIO device is
808  * found with a matching @comp_tag, a pointer to its device
809  * structure is returned. Otherwise, %NULL is returned. A new search
810  * is initiated by passing %NULL to the @from argument. Otherwise, if
811  * @from is not %NULL, searches continue from next device on the global
812  * list.
813  */
814 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
815 {
816 	struct list_head *n;
817 	struct rio_dev *rdev;
818 
819 	spin_lock(&rio_global_list_lock);
820 	n = from ? from->global_list.next : rio_devices.next;
821 
822 	while (n && (n != &rio_devices)) {
823 		rdev = rio_dev_g(n);
824 		if (rdev->comp_tag == comp_tag)
825 			goto exit;
826 		n = n->next;
827 	}
828 	rdev = NULL;
829 exit:
830 	spin_unlock(&rio_global_list_lock);
831 	return rdev;
832 }
833 EXPORT_SYMBOL_GPL(rio_get_comptag);
834 
835 /**
836  * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
837  * @rdev: Pointer to RIO device control structure
838  * @pnum: Switch port number to set LOCKOUT bit
839  * @lock: Operation : set (=1) or clear (=0)
840  */
841 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
842 {
843 	u32 regval;
844 
845 	rio_read_config_32(rdev,
846 				 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
847 				 &regval);
848 	if (lock)
849 		regval |= RIO_PORT_N_CTL_LOCKOUT;
850 	else
851 		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
852 
853 	rio_write_config_32(rdev,
854 				  rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
855 				  regval);
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
859 
860 /**
861  * rio_enable_rx_tx_port - enable input receiver and output transmitter of
862  * given port
863  * @port: Master port associated with the RIO network
864  * @local: local=1 select local port otherwise a far device is reached
865  * @destid: Destination ID of the device to check host bit
866  * @hopcount: Number of hops to reach the target
867  * @port_num: Port (-number on switch) to enable on a far end device
868  *
869  * Returns 0 or 1 from on General Control Command and Status Register
870  * (EXT_PTR+0x3C)
871  */
872 int rio_enable_rx_tx_port(struct rio_mport *port,
873 			  int local, u16 destid,
874 			  u8 hopcount, u8 port_num)
875 {
876 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
877 	u32 regval;
878 	u32 ext_ftr_ptr;
879 
880 	/*
881 	* enable rx input tx output port
882 	*/
883 	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
884 		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
885 
886 	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
887 
888 	if (local) {
889 		rio_local_read_config_32(port, ext_ftr_ptr +
890 				RIO_PORT_N_CTL_CSR(0),
891 				&regval);
892 	} else {
893 		if (rio_mport_read_config_32(port, destid, hopcount,
894 		ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
895 			return -EIO;
896 	}
897 
898 	if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
899 		/* serial */
900 		regval = regval | RIO_PORT_N_CTL_EN_RX_SER
901 				| RIO_PORT_N_CTL_EN_TX_SER;
902 	} else {
903 		/* parallel */
904 		regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
905 				| RIO_PORT_N_CTL_EN_TX_PAR;
906 	}
907 
908 	if (local) {
909 		rio_local_write_config_32(port, ext_ftr_ptr +
910 					  RIO_PORT_N_CTL_CSR(0), regval);
911 	} else {
912 		if (rio_mport_write_config_32(port, destid, hopcount,
913 		    ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
914 			return -EIO;
915 	}
916 #endif
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
920 
921 
922 /**
923  * rio_chk_dev_route - Validate route to the specified device.
924  * @rdev:  RIO device failed to respond
925  * @nrdev: Last active device on the route to rdev
926  * @npnum: nrdev's port number on the route to rdev
927  *
928  * Follows a route to the specified RIO device to determine the last available
929  * device (and corresponding RIO port) on the route.
930  */
931 static int
932 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
933 {
934 	u32 result;
935 	int p_port, rc = -EIO;
936 	struct rio_dev *prev = NULL;
937 
938 	/* Find switch with failed RIO link */
939 	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
940 		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
941 			prev = rdev->prev;
942 			break;
943 		}
944 		rdev = rdev->prev;
945 	}
946 
947 	if (prev == NULL)
948 		goto err_out;
949 
950 	p_port = prev->rswitch->route_table[rdev->destid];
951 
952 	if (p_port != RIO_INVALID_ROUTE) {
953 		pr_debug("RIO: link failed on [%s]-P%d\n",
954 			 rio_name(prev), p_port);
955 		*nrdev = prev;
956 		*npnum = p_port;
957 		rc = 0;
958 	} else
959 		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
960 err_out:
961 	return rc;
962 }
963 
964 /**
965  * rio_mport_chk_dev_access - Validate access to the specified device.
966  * @mport: Master port to send transactions
967  * @destid: Device destination ID in network
968  * @hopcount: Number of hops into the network
969  */
970 int
971 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
972 {
973 	int i = 0;
974 	u32 tmp;
975 
976 	while (rio_mport_read_config_32(mport, destid, hopcount,
977 					RIO_DEV_ID_CAR, &tmp)) {
978 		i++;
979 		if (i == RIO_MAX_CHK_RETRY)
980 			return -EIO;
981 		mdelay(1);
982 	}
983 
984 	return 0;
985 }
986 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
987 
988 /**
989  * rio_chk_dev_access - Validate access to the specified device.
990  * @rdev: Pointer to RIO device control structure
991  */
992 static int rio_chk_dev_access(struct rio_dev *rdev)
993 {
994 	return rio_mport_chk_dev_access(rdev->net->hport,
995 					rdev->destid, rdev->hopcount);
996 }
997 
998 /**
999  * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1000  *                        returns link-response (if requested).
1001  * @rdev: RIO devive to issue Input-status command
1002  * @pnum: Device port number to issue the command
1003  * @lnkresp: Response from a link partner
1004  */
1005 static int
1006 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1007 {
1008 	u32 regval;
1009 	int checkcount;
1010 
1011 	if (lnkresp) {
1012 		/* Read from link maintenance response register
1013 		 * to clear valid bit */
1014 		rio_read_config_32(rdev,
1015 			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1016 			&regval);
1017 		udelay(50);
1018 	}
1019 
1020 	/* Issue Input-status command */
1021 	rio_write_config_32(rdev,
1022 		rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
1023 		RIO_MNT_REQ_CMD_IS);
1024 
1025 	/* Exit if the response is not expected */
1026 	if (lnkresp == NULL)
1027 		return 0;
1028 
1029 	checkcount = 3;
1030 	while (checkcount--) {
1031 		udelay(50);
1032 		rio_read_config_32(rdev,
1033 			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1034 			&regval);
1035 		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1036 			*lnkresp = regval;
1037 			return 0;
1038 		}
1039 	}
1040 
1041 	return -EIO;
1042 }
1043 
1044 /**
1045  * rio_clr_err_stopped - Clears port Error-stopped states.
1046  * @rdev: Pointer to RIO device control structure
1047  * @pnum: Switch port number to clear errors
1048  * @err_status: port error status (if 0 reads register from device)
1049  */
1050 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1051 {
1052 	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1053 	u32 regval;
1054 	u32 far_ackid, far_linkstat, near_ackid;
1055 
1056 	if (err_status == 0)
1057 		rio_read_config_32(rdev,
1058 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1059 			&err_status);
1060 
1061 	if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
1062 		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1063 		/*
1064 		 * Send a Link-Request/Input-Status control symbol
1065 		 */
1066 		if (rio_get_input_status(rdev, pnum, &regval)) {
1067 			pr_debug("RIO_EM: Input-status response timeout\n");
1068 			goto rd_err;
1069 		}
1070 
1071 		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1072 			 pnum, regval);
1073 		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1074 		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1075 		rio_read_config_32(rdev,
1076 			rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1077 			&regval);
1078 		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1079 		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1080 		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1081 			 " near_ackID=0x%02x\n",
1082 			pnum, far_ackid, far_linkstat, near_ackid);
1083 
1084 		/*
1085 		 * If required, synchronize ackIDs of near and
1086 		 * far sides.
1087 		 */
1088 		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1089 		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1090 			/* Align near outstanding/outbound ackIDs with
1091 			 * far inbound.
1092 			 */
1093 			rio_write_config_32(rdev,
1094 				rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1095 				(near_ackid << 24) |
1096 					(far_ackid << 8) | far_ackid);
1097 			/* Align far outstanding/outbound ackIDs with
1098 			 * near inbound.
1099 			 */
1100 			far_ackid++;
1101 			if (nextdev)
1102 				rio_write_config_32(nextdev,
1103 					nextdev->phys_efptr +
1104 					RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
1105 					(far_ackid << 24) |
1106 					(near_ackid << 8) | near_ackid);
1107 			else
1108 				pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
1109 		}
1110 rd_err:
1111 		rio_read_config_32(rdev,
1112 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1113 			&err_status);
1114 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1115 	}
1116 
1117 	if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
1118 		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1119 		rio_get_input_status(nextdev,
1120 				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1121 		udelay(50);
1122 
1123 		rio_read_config_32(rdev,
1124 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1125 			&err_status);
1126 		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1127 	}
1128 
1129 	return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1130 			      RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
1131 }
1132 
1133 /**
1134  * rio_inb_pwrite_handler - inbound port-write message handler
1135  * @mport:  mport device associated with port-write
1136  * @pw_msg: pointer to inbound port-write message
1137  *
1138  * Processes an inbound port-write message. Returns 0 if the request
1139  * has been satisfied.
1140  */
1141 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1142 {
1143 	struct rio_dev *rdev;
1144 	u32 err_status, em_perrdet, em_ltlerrdet;
1145 	int rc, portnum;
1146 	struct rio_pwrite *pwrite;
1147 
1148 #ifdef DEBUG_PW
1149 	{
1150 		u32 i;
1151 
1152 		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1153 		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1154 			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1155 				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1156 				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1157 		}
1158 	}
1159 #endif
1160 
1161 	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1162 	if (rdev) {
1163 		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1164 	} else {
1165 		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1166 			__func__, pw_msg->em.comptag);
1167 	}
1168 
1169 	/* Call a device-specific handler (if it is registered for the device).
1170 	 * This may be the service for endpoints that send device-specific
1171 	 * port-write messages. End-point messages expected to be handled
1172 	 * completely by EP specific device driver.
1173 	 * For switches rc==0 signals that no standard processing required.
1174 	 */
1175 	if (rdev && rdev->pwcback) {
1176 		rc = rdev->pwcback(rdev, pw_msg, 0);
1177 		if (rc == 0)
1178 			return 0;
1179 	}
1180 
1181 	mutex_lock(&mport->lock);
1182 	list_for_each_entry(pwrite, &mport->pwrites, node)
1183 		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1184 	mutex_unlock(&mport->lock);
1185 
1186 	if (!rdev)
1187 		return 0;
1188 
1189 	/*
1190 	 * FIXME: The code below stays as it was before for now until we decide
1191 	 * how to do default PW handling in combination with per-mport callbacks
1192 	 */
1193 
1194 	portnum = pw_msg->em.is_port & 0xFF;
1195 
1196 	/* Check if device and route to it are functional:
1197 	 * Sometimes devices may send PW message(s) just before being
1198 	 * powered down (or link being lost).
1199 	 */
1200 	if (rio_chk_dev_access(rdev)) {
1201 		pr_debug("RIO: device access failed - get link partner\n");
1202 		/* Scan route to the device and identify failed link.
1203 		 * This will replace device and port reported in PW message.
1204 		 * PW message should not be used after this point.
1205 		 */
1206 		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1207 			pr_err("RIO: Route trace for %s failed\n",
1208 				rio_name(rdev));
1209 			return -EIO;
1210 		}
1211 		pw_msg = NULL;
1212 	}
1213 
1214 	/* For End-point devices processing stops here */
1215 	if (!(rdev->pef & RIO_PEF_SWITCH))
1216 		return 0;
1217 
1218 	if (rdev->phys_efptr == 0) {
1219 		pr_err("RIO_PW: Bad switch initialization for %s\n",
1220 			rio_name(rdev));
1221 		return 0;
1222 	}
1223 
1224 	/*
1225 	 * Process the port-write notification from switch
1226 	 */
1227 	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1228 		rdev->rswitch->ops->em_handle(rdev, portnum);
1229 
1230 	rio_read_config_32(rdev,
1231 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1232 			&err_status);
1233 	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1234 
1235 	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1236 
1237 		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1238 			rdev->rswitch->port_ok |= (1 << portnum);
1239 			rio_set_port_lockout(rdev, portnum, 0);
1240 			/* Schedule Insertion Service */
1241 			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1242 			       rio_name(rdev), portnum);
1243 		}
1244 
1245 		/* Clear error-stopped states (if reported).
1246 		 * Depending on the link partner state, two attempts
1247 		 * may be needed for successful recovery.
1248 		 */
1249 		if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1250 				  RIO_PORT_N_ERR_STS_PW_INP_ES)) {
1251 			if (rio_clr_err_stopped(rdev, portnum, err_status))
1252 				rio_clr_err_stopped(rdev, portnum, 0);
1253 		}
1254 	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1255 
1256 		if (rdev->rswitch->port_ok & (1 << portnum)) {
1257 			rdev->rswitch->port_ok &= ~(1 << portnum);
1258 			rio_set_port_lockout(rdev, portnum, 1);
1259 
1260 			rio_write_config_32(rdev,
1261 				rdev->phys_efptr +
1262 					RIO_PORT_N_ACK_STS_CSR(portnum),
1263 				RIO_PORT_N_ACK_CLEAR);
1264 
1265 			/* Schedule Extraction Service */
1266 			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1267 			       rio_name(rdev), portnum);
1268 		}
1269 	}
1270 
1271 	rio_read_config_32(rdev,
1272 		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1273 	if (em_perrdet) {
1274 		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1275 			 portnum, em_perrdet);
1276 		/* Clear EM Port N Error Detect CSR */
1277 		rio_write_config_32(rdev,
1278 			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1279 	}
1280 
1281 	rio_read_config_32(rdev,
1282 		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1283 	if (em_ltlerrdet) {
1284 		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1285 			 em_ltlerrdet);
1286 		/* Clear EM L/T Layer Error Detect CSR */
1287 		rio_write_config_32(rdev,
1288 			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1289 	}
1290 
1291 	/* Clear remaining error bits and Port-Write Pending bit */
1292 	rio_write_config_32(rdev,
1293 			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1294 			err_status);
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1299 
1300 /**
1301  * rio_mport_get_efb - get pointer to next extended features block
1302  * @port: Master port to issue transaction
1303  * @local: Indicate a local master port or remote device access
1304  * @destid: Destination ID of the device
1305  * @hopcount: Number of switch hops to the device
1306  * @from: Offset of  current Extended Feature block header (if 0 starts
1307  * from	ExtFeaturePtr)
1308  */
1309 u32
1310 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1311 		      u8 hopcount, u32 from)
1312 {
1313 	u32 reg_val;
1314 
1315 	if (from == 0) {
1316 		if (local)
1317 			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1318 						 &reg_val);
1319 		else
1320 			rio_mport_read_config_32(port, destid, hopcount,
1321 						 RIO_ASM_INFO_CAR, &reg_val);
1322 		return reg_val & RIO_EXT_FTR_PTR_MASK;
1323 	} else {
1324 		if (local)
1325 			rio_local_read_config_32(port, from, &reg_val);
1326 		else
1327 			rio_mport_read_config_32(port, destid, hopcount,
1328 						 from, &reg_val);
1329 		return RIO_GET_BLOCK_ID(reg_val);
1330 	}
1331 }
1332 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1333 
1334 /**
1335  * rio_mport_get_feature - query for devices' extended features
1336  * @port: Master port to issue transaction
1337  * @local: Indicate a local master port or remote device access
1338  * @destid: Destination ID of the device
1339  * @hopcount: Number of switch hops to the device
1340  * @ftr: Extended feature code
1341  *
1342  * Tell if a device supports a given RapidIO capability.
1343  * Returns the offset of the requested extended feature
1344  * block within the device's RIO configuration space or
1345  * 0 in case the device does not support it.  Possible
1346  * values for @ftr:
1347  *
1348  * %RIO_EFB_PAR_EP_ID		LP/LVDS EP Devices
1349  *
1350  * %RIO_EFB_PAR_EP_REC_ID	LP/LVDS EP Recovery Devices
1351  *
1352  * %RIO_EFB_PAR_EP_FREE_ID	LP/LVDS EP Free Devices
1353  *
1354  * %RIO_EFB_SER_EP_ID		LP/Serial EP Devices
1355  *
1356  * %RIO_EFB_SER_EP_REC_ID	LP/Serial EP Recovery Devices
1357  *
1358  * %RIO_EFB_SER_EP_FREE_ID	LP/Serial EP Free Devices
1359  */
1360 u32
1361 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1362 		      u8 hopcount, int ftr)
1363 {
1364 	u32 asm_info, ext_ftr_ptr, ftr_header;
1365 
1366 	if (local)
1367 		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1368 	else
1369 		rio_mport_read_config_32(port, destid, hopcount,
1370 					 RIO_ASM_INFO_CAR, &asm_info);
1371 
1372 	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1373 
1374 	while (ext_ftr_ptr) {
1375 		if (local)
1376 			rio_local_read_config_32(port, ext_ftr_ptr,
1377 						 &ftr_header);
1378 		else
1379 			rio_mport_read_config_32(port, destid, hopcount,
1380 						 ext_ftr_ptr, &ftr_header);
1381 		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1382 			return ext_ftr_ptr;
1383 		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1384 			break;
1385 	}
1386 
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1390 
1391 /**
1392  * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1393  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1394  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1395  * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1396  * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1397  * @from: Previous RIO device found in search, or %NULL for new search
1398  *
1399  * Iterates through the list of known RIO devices. If a RIO device is
1400  * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1401  * count to the device is incrememted and a pointer to its device
1402  * structure is returned. Otherwise, %NULL is returned. A new search
1403  * is initiated by passing %NULL to the @from argument. Otherwise, if
1404  * @from is not %NULL, searches continue from next device on the global
1405  * list. The reference count for @from is always decremented if it is
1406  * not %NULL.
1407  */
1408 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1409 			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1410 {
1411 	struct list_head *n;
1412 	struct rio_dev *rdev;
1413 
1414 	WARN_ON(in_interrupt());
1415 	spin_lock(&rio_global_list_lock);
1416 	n = from ? from->global_list.next : rio_devices.next;
1417 
1418 	while (n && (n != &rio_devices)) {
1419 		rdev = rio_dev_g(n);
1420 		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1421 		    (did == RIO_ANY_ID || rdev->did == did) &&
1422 		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1423 		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1424 			goto exit;
1425 		n = n->next;
1426 	}
1427 	rdev = NULL;
1428       exit:
1429 	rio_dev_put(from);
1430 	rdev = rio_dev_get(rdev);
1431 	spin_unlock(&rio_global_list_lock);
1432 	return rdev;
1433 }
1434 
1435 /**
1436  * rio_get_device - Begin or continue searching for a RIO device by vid/did
1437  * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1438  * @did: RIO did to match or %RIO_ANY_ID to match all dids
1439  * @from: Previous RIO device found in search, or %NULL for new search
1440  *
1441  * Iterates through the list of known RIO devices. If a RIO device is
1442  * found with a matching @vid and @did, the reference count to the
1443  * device is incrememted and a pointer to its device structure is returned.
1444  * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1445  * to the @from argument. Otherwise, if @from is not %NULL, searches
1446  * continue from next device on the global list. The reference count for
1447  * @from is always decremented if it is not %NULL.
1448  */
1449 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1450 {
1451 	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1452 }
1453 
1454 /**
1455  * rio_std_route_add_entry - Add switch route table entry using standard
1456  *   registers defined in RIO specification rev.1.3
1457  * @mport: Master port to issue transaction
1458  * @destid: Destination ID of the device
1459  * @hopcount: Number of switch hops to the device
1460  * @table: routing table ID (global or port-specific)
1461  * @route_destid: destID entry in the RT
1462  * @route_port: destination port for specified destID
1463  */
1464 static int
1465 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1466 			u16 table, u16 route_destid, u8 route_port)
1467 {
1468 	if (table == RIO_GLOBAL_TABLE) {
1469 		rio_mport_write_config_32(mport, destid, hopcount,
1470 				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1471 				(u32)route_destid);
1472 		rio_mport_write_config_32(mport, destid, hopcount,
1473 				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1474 				(u32)route_port);
1475 	}
1476 
1477 	udelay(10);
1478 	return 0;
1479 }
1480 
1481 /**
1482  * rio_std_route_get_entry - Read switch route table entry (port number)
1483  *   associated with specified destID using standard registers defined in RIO
1484  *   specification rev.1.3
1485  * @mport: Master port to issue transaction
1486  * @destid: Destination ID of the device
1487  * @hopcount: Number of switch hops to the device
1488  * @table: routing table ID (global or port-specific)
1489  * @route_destid: destID entry in the RT
1490  * @route_port: returned destination port for specified destID
1491  */
1492 static int
1493 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1494 			u16 table, u16 route_destid, u8 *route_port)
1495 {
1496 	u32 result;
1497 
1498 	if (table == RIO_GLOBAL_TABLE) {
1499 		rio_mport_write_config_32(mport, destid, hopcount,
1500 				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1501 		rio_mport_read_config_32(mport, destid, hopcount,
1502 				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1503 
1504 		*route_port = (u8)result;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 /**
1511  * rio_std_route_clr_table - Clear swotch route table using standard registers
1512  *   defined in RIO specification rev.1.3.
1513  * @mport: Master port to issue transaction
1514  * @destid: Destination ID of the device
1515  * @hopcount: Number of switch hops to the device
1516  * @table: routing table ID (global or port-specific)
1517  */
1518 static int
1519 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1520 			u16 table)
1521 {
1522 	u32 max_destid = 0xff;
1523 	u32 i, pef, id_inc = 1, ext_cfg = 0;
1524 	u32 port_sel = RIO_INVALID_ROUTE;
1525 
1526 	if (table == RIO_GLOBAL_TABLE) {
1527 		rio_mport_read_config_32(mport, destid, hopcount,
1528 					 RIO_PEF_CAR, &pef);
1529 
1530 		if (mport->sys_size) {
1531 			rio_mport_read_config_32(mport, destid, hopcount,
1532 						 RIO_SWITCH_RT_LIMIT,
1533 						 &max_destid);
1534 			max_destid &= RIO_RT_MAX_DESTID;
1535 		}
1536 
1537 		if (pef & RIO_PEF_EXT_RT) {
1538 			ext_cfg = 0x80000000;
1539 			id_inc = 4;
1540 			port_sel = (RIO_INVALID_ROUTE << 24) |
1541 				   (RIO_INVALID_ROUTE << 16) |
1542 				   (RIO_INVALID_ROUTE << 8) |
1543 				   RIO_INVALID_ROUTE;
1544 		}
1545 
1546 		for (i = 0; i <= max_destid;) {
1547 			rio_mport_write_config_32(mport, destid, hopcount,
1548 					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1549 					ext_cfg | i);
1550 			rio_mport_write_config_32(mport, destid, hopcount,
1551 					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1552 					port_sel);
1553 			i += id_inc;
1554 		}
1555 	}
1556 
1557 	udelay(10);
1558 	return 0;
1559 }
1560 
1561 /**
1562  * rio_lock_device - Acquires host device lock for specified device
1563  * @port: Master port to send transaction
1564  * @destid: Destination ID for device/switch
1565  * @hopcount: Hopcount to reach switch
1566  * @wait_ms: Max wait time in msec (0 = no timeout)
1567  *
1568  * Attepts to acquire host device lock for specified device
1569  * Returns 0 if device lock acquired or EINVAL if timeout expires.
1570  */
1571 int rio_lock_device(struct rio_mport *port, u16 destid,
1572 		    u8 hopcount, int wait_ms)
1573 {
1574 	u32 result;
1575 	int tcnt = 0;
1576 
1577 	/* Attempt to acquire device lock */
1578 	rio_mport_write_config_32(port, destid, hopcount,
1579 				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1580 	rio_mport_read_config_32(port, destid, hopcount,
1581 				 RIO_HOST_DID_LOCK_CSR, &result);
1582 
1583 	while (result != port->host_deviceid) {
1584 		if (wait_ms != 0 && tcnt == wait_ms) {
1585 			pr_debug("RIO: timeout when locking device %x:%x\n",
1586 				destid, hopcount);
1587 			return -EINVAL;
1588 		}
1589 
1590 		/* Delay a bit */
1591 		mdelay(1);
1592 		tcnt++;
1593 		/* Try to acquire device lock again */
1594 		rio_mport_write_config_32(port, destid,
1595 			hopcount,
1596 			RIO_HOST_DID_LOCK_CSR,
1597 			port->host_deviceid);
1598 		rio_mport_read_config_32(port, destid,
1599 			hopcount,
1600 			RIO_HOST_DID_LOCK_CSR, &result);
1601 	}
1602 
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL_GPL(rio_lock_device);
1606 
1607 /**
1608  * rio_unlock_device - Releases host device lock for specified device
1609  * @port: Master port to send transaction
1610  * @destid: Destination ID for device/switch
1611  * @hopcount: Hopcount to reach switch
1612  *
1613  * Returns 0 if device lock released or EINVAL if fails.
1614  */
1615 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1616 {
1617 	u32 result;
1618 
1619 	/* Release device lock */
1620 	rio_mport_write_config_32(port, destid,
1621 				  hopcount,
1622 				  RIO_HOST_DID_LOCK_CSR,
1623 				  port->host_deviceid);
1624 	rio_mport_read_config_32(port, destid, hopcount,
1625 		RIO_HOST_DID_LOCK_CSR, &result);
1626 	if ((result & 0xffff) != 0xffff) {
1627 		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1628 			 destid, hopcount);
1629 		return -EINVAL;
1630 	}
1631 
1632 	return 0;
1633 }
1634 EXPORT_SYMBOL_GPL(rio_unlock_device);
1635 
1636 /**
1637  * rio_route_add_entry- Add a route entry to a switch routing table
1638  * @rdev: RIO device
1639  * @table: Routing table ID
1640  * @route_destid: Destination ID to be routed
1641  * @route_port: Port number to be routed
1642  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1643  *
1644  * If available calls the switch specific add_entry() method to add a route
1645  * entry into a switch routing table. Otherwise uses standard RT update method
1646  * as defined by RapidIO specification. A specific routing table can be selected
1647  * using the @table argument if a switch has per port routing tables or
1648  * the standard (or global) table may be used by passing
1649  * %RIO_GLOBAL_TABLE in @table.
1650  *
1651  * Returns %0 on success or %-EINVAL on failure.
1652  */
1653 int rio_route_add_entry(struct rio_dev *rdev,
1654 			u16 table, u16 route_destid, u8 route_port, int lock)
1655 {
1656 	int rc = -EINVAL;
1657 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1658 
1659 	if (lock) {
1660 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1661 				     rdev->hopcount, 1000);
1662 		if (rc)
1663 			return rc;
1664 	}
1665 
1666 	spin_lock(&rdev->rswitch->lock);
1667 
1668 	if (ops == NULL || ops->add_entry == NULL) {
1669 		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1670 					     rdev->hopcount, table,
1671 					     route_destid, route_port);
1672 	} else if (try_module_get(ops->owner)) {
1673 		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1674 				    rdev->hopcount, table, route_destid,
1675 				    route_port);
1676 		module_put(ops->owner);
1677 	}
1678 
1679 	spin_unlock(&rdev->rswitch->lock);
1680 
1681 	if (lock)
1682 		rio_unlock_device(rdev->net->hport, rdev->destid,
1683 				  rdev->hopcount);
1684 
1685 	return rc;
1686 }
1687 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1688 
1689 /**
1690  * rio_route_get_entry- Read an entry from a switch routing table
1691  * @rdev: RIO device
1692  * @table: Routing table ID
1693  * @route_destid: Destination ID to be routed
1694  * @route_port: Pointer to read port number into
1695  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1696  *
1697  * If available calls the switch specific get_entry() method to fetch a route
1698  * entry from a switch routing table. Otherwise uses standard RT read method
1699  * as defined by RapidIO specification. A specific routing table can be selected
1700  * using the @table argument if a switch has per port routing tables or
1701  * the standard (or global) table may be used by passing
1702  * %RIO_GLOBAL_TABLE in @table.
1703  *
1704  * Returns %0 on success or %-EINVAL on failure.
1705  */
1706 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1707 			u16 route_destid, u8 *route_port, int lock)
1708 {
1709 	int rc = -EINVAL;
1710 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1711 
1712 	if (lock) {
1713 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1714 				     rdev->hopcount, 1000);
1715 		if (rc)
1716 			return rc;
1717 	}
1718 
1719 	spin_lock(&rdev->rswitch->lock);
1720 
1721 	if (ops == NULL || ops->get_entry == NULL) {
1722 		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1723 					     rdev->hopcount, table,
1724 					     route_destid, route_port);
1725 	} else if (try_module_get(ops->owner)) {
1726 		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1727 				    rdev->hopcount, table, route_destid,
1728 				    route_port);
1729 		module_put(ops->owner);
1730 	}
1731 
1732 	spin_unlock(&rdev->rswitch->lock);
1733 
1734 	if (lock)
1735 		rio_unlock_device(rdev->net->hport, rdev->destid,
1736 				  rdev->hopcount);
1737 	return rc;
1738 }
1739 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1740 
1741 /**
1742  * rio_route_clr_table - Clear a switch routing table
1743  * @rdev: RIO device
1744  * @table: Routing table ID
1745  * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1746  *
1747  * If available calls the switch specific clr_table() method to clear a switch
1748  * routing table. Otherwise uses standard RT write method as defined by RapidIO
1749  * specification. A specific routing table can be selected using the @table
1750  * argument if a switch has per port routing tables or the standard (or global)
1751  * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1752  *
1753  * Returns %0 on success or %-EINVAL on failure.
1754  */
1755 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1756 {
1757 	int rc = -EINVAL;
1758 	struct rio_switch_ops *ops = rdev->rswitch->ops;
1759 
1760 	if (lock) {
1761 		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1762 				     rdev->hopcount, 1000);
1763 		if (rc)
1764 			return rc;
1765 	}
1766 
1767 	spin_lock(&rdev->rswitch->lock);
1768 
1769 	if (ops == NULL || ops->clr_table == NULL) {
1770 		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1771 					     rdev->hopcount, table);
1772 	} else if (try_module_get(ops->owner)) {
1773 		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1774 				    rdev->hopcount, table);
1775 
1776 		module_put(ops->owner);
1777 	}
1778 
1779 	spin_unlock(&rdev->rswitch->lock);
1780 
1781 	if (lock)
1782 		rio_unlock_device(rdev->net->hport, rdev->destid,
1783 				  rdev->hopcount);
1784 
1785 	return rc;
1786 }
1787 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1788 
1789 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1790 
1791 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1792 {
1793 	struct rio_mport *mport = arg;
1794 
1795 	/* Check that DMA device belongs to the right MPORT */
1796 	return mport == container_of(chan->device, struct rio_mport, dma);
1797 }
1798 
1799 /**
1800  * rio_request_mport_dma - request RapidIO capable DMA channel associated
1801  *   with specified local RapidIO mport device.
1802  * @mport: RIO mport to perform DMA data transfers
1803  *
1804  * Returns pointer to allocated DMA channel or NULL if failed.
1805  */
1806 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1807 {
1808 	dma_cap_mask_t mask;
1809 
1810 	dma_cap_zero(mask);
1811 	dma_cap_set(DMA_SLAVE, mask);
1812 	return dma_request_channel(mask, rio_chan_filter, mport);
1813 }
1814 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1815 
1816 /**
1817  * rio_request_dma - request RapidIO capable DMA channel that supports
1818  *   specified target RapidIO device.
1819  * @rdev: RIO device associated with DMA transfer
1820  *
1821  * Returns pointer to allocated DMA channel or NULL if failed.
1822  */
1823 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1824 {
1825 	return rio_request_mport_dma(rdev->net->hport);
1826 }
1827 EXPORT_SYMBOL_GPL(rio_request_dma);
1828 
1829 /**
1830  * rio_release_dma - release specified DMA channel
1831  * @dchan: DMA channel to release
1832  */
1833 void rio_release_dma(struct dma_chan *dchan)
1834 {
1835 	dma_release_channel(dchan);
1836 }
1837 EXPORT_SYMBOL_GPL(rio_release_dma);
1838 
1839 /**
1840  * rio_dma_prep_xfer - RapidIO specific wrapper
1841  *   for device_prep_slave_sg callback defined by DMAENGINE.
1842  * @dchan: DMA channel to configure
1843  * @destid: target RapidIO device destination ID
1844  * @data: RIO specific data descriptor
1845  * @direction: DMA data transfer direction (TO or FROM the device)
1846  * @flags: dmaengine defined flags
1847  *
1848  * Initializes RapidIO capable DMA channel for the specified data transfer.
1849  * Uses DMA channel private extension to pass information related to remote
1850  * target RIO device.
1851  * Returns pointer to DMA transaction descriptor or NULL if failed.
1852  */
1853 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1854 	u16 destid, struct rio_dma_data *data,
1855 	enum dma_transfer_direction direction, unsigned long flags)
1856 {
1857 	struct rio_dma_ext rio_ext;
1858 
1859 	if (dchan->device->device_prep_slave_sg == NULL) {
1860 		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1861 		return NULL;
1862 	}
1863 
1864 	rio_ext.destid = destid;
1865 	rio_ext.rio_addr_u = data->rio_addr_u;
1866 	rio_ext.rio_addr = data->rio_addr;
1867 	rio_ext.wr_type = data->wr_type;
1868 
1869 	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1870 				     direction, flags, &rio_ext);
1871 }
1872 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1873 
1874 /**
1875  * rio_dma_prep_slave_sg - RapidIO specific wrapper
1876  *   for device_prep_slave_sg callback defined by DMAENGINE.
1877  * @rdev: RIO device control structure
1878  * @dchan: DMA channel to configure
1879  * @data: RIO specific data descriptor
1880  * @direction: DMA data transfer direction (TO or FROM the device)
1881  * @flags: dmaengine defined flags
1882  *
1883  * Initializes RapidIO capable DMA channel for the specified data transfer.
1884  * Uses DMA channel private extension to pass information related to remote
1885  * target RIO device.
1886  * Returns pointer to DMA transaction descriptor or NULL if failed.
1887  */
1888 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1889 	struct dma_chan *dchan, struct rio_dma_data *data,
1890 	enum dma_transfer_direction direction, unsigned long flags)
1891 {
1892 	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1893 }
1894 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1895 
1896 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1897 
1898 /**
1899  * rio_find_mport - find RIO mport by its ID
1900  * @mport_id: number (ID) of mport device
1901  *
1902  * Given a RIO mport number, the desired mport is located
1903  * in the global list of mports. If the mport is found, a pointer to its
1904  * data structure is returned.  If no mport is found, %NULL is returned.
1905  */
1906 struct rio_mport *rio_find_mport(int mport_id)
1907 {
1908 	struct rio_mport *port;
1909 
1910 	mutex_lock(&rio_mport_list_lock);
1911 	list_for_each_entry(port, &rio_mports, node) {
1912 		if (port->id == mport_id)
1913 			goto found;
1914 	}
1915 	port = NULL;
1916 found:
1917 	mutex_unlock(&rio_mport_list_lock);
1918 
1919 	return port;
1920 }
1921 
1922 /**
1923  * rio_register_scan - enumeration/discovery method registration interface
1924  * @mport_id: mport device ID for which fabric scan routine has to be set
1925  *            (RIO_MPORT_ANY = set for all available mports)
1926  * @scan_ops: enumeration/discovery operations structure
1927  *
1928  * Registers enumeration/discovery operations with RapidIO subsystem and
1929  * attaches it to the specified mport device (or all available mports
1930  * if RIO_MPORT_ANY is specified).
1931  *
1932  * Returns error if the mport already has an enumerator attached to it.
1933  * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1934  */
1935 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1936 {
1937 	struct rio_mport *port;
1938 	struct rio_scan_node *scan;
1939 	int rc = 0;
1940 
1941 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1942 
1943 	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1944 	    !scan_ops)
1945 		return -EINVAL;
1946 
1947 	mutex_lock(&rio_mport_list_lock);
1948 
1949 	/*
1950 	 * Check if there is another enumerator already registered for
1951 	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1952 	 * for the same mport ID are not supported.
1953 	 */
1954 	list_for_each_entry(scan, &rio_scans, node) {
1955 		if (scan->mport_id == mport_id) {
1956 			rc = -EBUSY;
1957 			goto err_out;
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * Allocate and initialize new scan registration node.
1963 	 */
1964 	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1965 	if (!scan) {
1966 		rc = -ENOMEM;
1967 		goto err_out;
1968 	}
1969 
1970 	scan->mport_id = mport_id;
1971 	scan->ops = scan_ops;
1972 
1973 	/*
1974 	 * Traverse the list of registered mports to attach this new scan.
1975 	 *
1976 	 * The new scan with matching mport ID overrides any previously attached
1977 	 * scan assuming that old scan (if any) is the default one (based on the
1978 	 * enumerator registration check above).
1979 	 * If the new scan is the global one, it will be attached only to mports
1980 	 * that do not have their own individual operations already attached.
1981 	 */
1982 	list_for_each_entry(port, &rio_mports, node) {
1983 		if (port->id == mport_id) {
1984 			port->nscan = scan_ops;
1985 			break;
1986 		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1987 			port->nscan = scan_ops;
1988 	}
1989 
1990 	list_add_tail(&scan->node, &rio_scans);
1991 
1992 err_out:
1993 	mutex_unlock(&rio_mport_list_lock);
1994 
1995 	return rc;
1996 }
1997 EXPORT_SYMBOL_GPL(rio_register_scan);
1998 
1999 /**
2000  * rio_unregister_scan - removes enumeration/discovery method from mport
2001  * @mport_id: mport device ID for which fabric scan routine has to be
2002  *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2003  *            the specified scan_ops)
2004  * @scan_ops: enumeration/discovery operations structure
2005  *
2006  * Removes enumeration or discovery method assigned to the specified mport
2007  * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2008  * all mports that have them attached.
2009  */
2010 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2011 {
2012 	struct rio_mport *port;
2013 	struct rio_scan_node *scan;
2014 
2015 	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2016 
2017 	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2018 		return -EINVAL;
2019 
2020 	mutex_lock(&rio_mport_list_lock);
2021 
2022 	list_for_each_entry(port, &rio_mports, node)
2023 		if (port->id == mport_id ||
2024 		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2025 			port->nscan = NULL;
2026 
2027 	list_for_each_entry(scan, &rio_scans, node) {
2028 		if (scan->mport_id == mport_id) {
2029 			list_del(&scan->node);
2030 			kfree(scan);
2031 			break;
2032 		}
2033 	}
2034 
2035 	mutex_unlock(&rio_mport_list_lock);
2036 
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2040 
2041 /**
2042  * rio_mport_scan - execute enumeration/discovery on the specified mport
2043  * @mport_id: number (ID) of mport device
2044  */
2045 int rio_mport_scan(int mport_id)
2046 {
2047 	struct rio_mport *port = NULL;
2048 	int rc;
2049 
2050 	mutex_lock(&rio_mport_list_lock);
2051 	list_for_each_entry(port, &rio_mports, node) {
2052 		if (port->id == mport_id)
2053 			goto found;
2054 	}
2055 	mutex_unlock(&rio_mport_list_lock);
2056 	return -ENODEV;
2057 found:
2058 	if (!port->nscan) {
2059 		mutex_unlock(&rio_mport_list_lock);
2060 		return -EINVAL;
2061 	}
2062 
2063 	if (!try_module_get(port->nscan->owner)) {
2064 		mutex_unlock(&rio_mport_list_lock);
2065 		return -ENODEV;
2066 	}
2067 
2068 	mutex_unlock(&rio_mport_list_lock);
2069 
2070 	if (port->host_deviceid >= 0)
2071 		rc = port->nscan->enumerate(port, 0);
2072 	else
2073 		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2074 
2075 	module_put(port->nscan->owner);
2076 	return rc;
2077 }
2078 
2079 static void rio_fixup_device(struct rio_dev *dev)
2080 {
2081 }
2082 
2083 static int rio_init(void)
2084 {
2085 	struct rio_dev *dev = NULL;
2086 
2087 	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2088 		rio_fixup_device(dev);
2089 	}
2090 	return 0;
2091 }
2092 
2093 static struct workqueue_struct *rio_wq;
2094 
2095 struct rio_disc_work {
2096 	struct work_struct	work;
2097 	struct rio_mport	*mport;
2098 };
2099 
2100 static void disc_work_handler(struct work_struct *_work)
2101 {
2102 	struct rio_disc_work *work;
2103 
2104 	work = container_of(_work, struct rio_disc_work, work);
2105 	pr_debug("RIO: discovery work for mport %d %s\n",
2106 		 work->mport->id, work->mport->name);
2107 	if (try_module_get(work->mport->nscan->owner)) {
2108 		work->mport->nscan->discover(work->mport, 0);
2109 		module_put(work->mport->nscan->owner);
2110 	}
2111 }
2112 
2113 int rio_init_mports(void)
2114 {
2115 	struct rio_mport *port;
2116 	struct rio_disc_work *work;
2117 	int n = 0;
2118 
2119 	if (!next_portid)
2120 		return -ENODEV;
2121 
2122 	/*
2123 	 * First, run enumerations and check if we need to perform discovery
2124 	 * on any of the registered mports.
2125 	 */
2126 	mutex_lock(&rio_mport_list_lock);
2127 	list_for_each_entry(port, &rio_mports, node) {
2128 		if (port->host_deviceid >= 0) {
2129 			if (port->nscan && try_module_get(port->nscan->owner)) {
2130 				port->nscan->enumerate(port, 0);
2131 				module_put(port->nscan->owner);
2132 			}
2133 		} else
2134 			n++;
2135 	}
2136 	mutex_unlock(&rio_mport_list_lock);
2137 
2138 	if (!n)
2139 		goto no_disc;
2140 
2141 	/*
2142 	 * If we have mports that require discovery schedule a discovery work
2143 	 * for each of them. If the code below fails to allocate needed
2144 	 * resources, exit without error to keep results of enumeration
2145 	 * process (if any).
2146 	 * TODO: Implement restart of discovery process for all or
2147 	 * individual discovering mports.
2148 	 */
2149 	rio_wq = alloc_workqueue("riodisc", 0, 0);
2150 	if (!rio_wq) {
2151 		pr_err("RIO: unable allocate rio_wq\n");
2152 		goto no_disc;
2153 	}
2154 
2155 	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2156 	if (!work) {
2157 		pr_err("RIO: no memory for work struct\n");
2158 		destroy_workqueue(rio_wq);
2159 		goto no_disc;
2160 	}
2161 
2162 	n = 0;
2163 	mutex_lock(&rio_mport_list_lock);
2164 	list_for_each_entry(port, &rio_mports, node) {
2165 		if (port->host_deviceid < 0 && port->nscan) {
2166 			work[n].mport = port;
2167 			INIT_WORK(&work[n].work, disc_work_handler);
2168 			queue_work(rio_wq, &work[n].work);
2169 			n++;
2170 		}
2171 	}
2172 
2173 	flush_workqueue(rio_wq);
2174 	mutex_unlock(&rio_mport_list_lock);
2175 	pr_debug("RIO: destroy discovery workqueue\n");
2176 	destroy_workqueue(rio_wq);
2177 	kfree(work);
2178 
2179 no_disc:
2180 	rio_init();
2181 
2182 	return 0;
2183 }
2184 
2185 static int rio_get_hdid(int index)
2186 {
2187 	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2188 		return -1;
2189 
2190 	return hdid[index];
2191 }
2192 
2193 int rio_mport_initialize(struct rio_mport *mport)
2194 {
2195 	if (next_portid >= RIO_MAX_MPORTS) {
2196 		pr_err("RIO: reached specified max number of mports\n");
2197 		return -ENODEV;
2198 	}
2199 
2200 	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2201 	mport->id = next_portid++;
2202 	mport->host_deviceid = rio_get_hdid(mport->id);
2203 	mport->nscan = NULL;
2204 	mutex_init(&mport->lock);
2205 	mport->pwe_refcnt = 0;
2206 	INIT_LIST_HEAD(&mport->pwrites);
2207 
2208 	return 0;
2209 }
2210 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2211 
2212 int rio_register_mport(struct rio_mport *port)
2213 {
2214 	struct rio_scan_node *scan = NULL;
2215 	int res = 0;
2216 
2217 	mutex_lock(&rio_mport_list_lock);
2218 
2219 	/*
2220 	 * Check if there are any registered enumeration/discovery operations
2221 	 * that have to be attached to the added mport.
2222 	 */
2223 	list_for_each_entry(scan, &rio_scans, node) {
2224 		if (port->id == scan->mport_id ||
2225 		    scan->mport_id == RIO_MPORT_ANY) {
2226 			port->nscan = scan->ops;
2227 			if (port->id == scan->mport_id)
2228 				break;
2229 		}
2230 	}
2231 
2232 	list_add_tail(&port->node, &rio_mports);
2233 	mutex_unlock(&rio_mport_list_lock);
2234 
2235 	dev_set_name(&port->dev, "rapidio%d", port->id);
2236 	port->dev.class = &rio_mport_class;
2237 	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2238 
2239 	res = device_register(&port->dev);
2240 	if (res)
2241 		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2242 			port->id, res);
2243 	else
2244 		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2245 
2246 	return res;
2247 }
2248 EXPORT_SYMBOL_GPL(rio_register_mport);
2249 
2250 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2251 {
2252 	struct rio_dev *rdev = to_rio_dev(dev);
2253 
2254 	if (dev->bus == &rio_bus_type)
2255 		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2256 	return 0;
2257 }
2258 
2259 static int rio_net_remove_children(struct rio_net *net)
2260 {
2261 	/*
2262 	 * Unregister all RapidIO devices residing on this net (this will
2263 	 * invoke notification of registered subsystem interfaces as well).
2264 	 */
2265 	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2266 	return 0;
2267 }
2268 
2269 int rio_unregister_mport(struct rio_mport *port)
2270 {
2271 	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2272 
2273 	/* Transition mport to the SHUTDOWN state */
2274 	if (atomic_cmpxchg(&port->state,
2275 			   RIO_DEVICE_RUNNING,
2276 			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2277 		pr_err("RIO: %s unexpected state transition for mport %s\n",
2278 			__func__, port->name);
2279 	}
2280 
2281 	if (port->net && port->net->hport == port) {
2282 		rio_net_remove_children(port->net);
2283 		rio_free_net(port->net);
2284 	}
2285 
2286 	/*
2287 	 * Unregister all RapidIO devices attached to this mport (this will
2288 	 * invoke notification of registered subsystem interfaces as well).
2289 	 */
2290 	mutex_lock(&rio_mport_list_lock);
2291 	list_del(&port->node);
2292 	mutex_unlock(&rio_mport_list_lock);
2293 	device_unregister(&port->dev);
2294 
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2298 
2299 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2300 EXPORT_SYMBOL_GPL(rio_get_device);
2301 EXPORT_SYMBOL_GPL(rio_get_asm);
2302 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2303 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2304 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2305 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2306 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2307 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2308 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2309 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2310 EXPORT_SYMBOL_GPL(rio_init_mports);
2311