xref: /linux/drivers/pwm/pwm-xilinx.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
4  *
5  * Limitations:
6  * - When changing both duty cycle and period, we may end up with one cycle
7  *   with the old duty cycle and the new period. This is because the counters
8  *   may only be reloaded by first stopping them, or by letting them be
9  *   automatically reloaded at the end of a cycle. If this automatic reload
10  *   happens after we set TLR0 but before we set TLR1 then we will have a
11  *   bad cycle. This could probably be fixed by reading TCR0 just before
12  *   reprogramming, but I think it would add complexity for little gain.
13  * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
14  *   possible by stopping the counters at an appropriate point in the cycle,
15  *   but this is not (yet) implemented.
16  * - Only produces "normal" output.
17  * - Always produces low output if disabled.
18  */
19 
20 #include <clocksource/timer-xilinx.h>
21 #include <linux/clk.h>
22 #include <linux/clk-provider.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pwm.h>
28 #include <linux/regmap.h>
29 
30 /*
31  * The following functions are "common" to drivers for this device, and may be
32  * exported at a future date.
33  */
34 u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
35 			    u64 cycles)
36 {
37 	WARN_ON(cycles < 2 || cycles - 2 > priv->max);
38 
39 	if (tcsr & TCSR_UDT)
40 		return cycles - 2;
41 	return priv->max - cycles + 2;
42 }
43 
44 unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
45 				     u32 tlr, u32 tcsr)
46 {
47 	u64 cycles;
48 
49 	if (tcsr & TCSR_UDT)
50 		cycles = tlr + 2;
51 	else
52 		cycles = (u64)priv->max - tlr + 2;
53 
54 	/* cycles has a max of 2^32 + 2, so we can't overflow */
55 	return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
56 				  clk_get_rate(priv->clk));
57 }
58 
59 /*
60  * The idea here is to capture whether the PWM is actually running (e.g.
61  * because we or the bootloader set it up) and we need to be careful to ensure
62  * we don't cause a glitch. According to the data sheet, to enable the PWM we
63  * need to
64  *
65  * - Set both timers to generate mode (MDT=1)
66  * - Set both timers to PWM mode (PWMA=1)
67  * - Enable the generate out signals (GENT=1)
68  *
69  * In addition,
70  *
71  * - The timer must be running (ENT=1)
72  * - The timer must auto-reload TLR into TCR (ARHT=1)
73  * - We must not be in the process of loading TLR into TCR (LOAD=0)
74  * - Cascade mode must be disabled (CASC=0)
75  *
76  * If any of these differ from usual, then the PWM is either disabled, or is
77  * running in a mode that this driver does not support.
78  */
79 #define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
80 #define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
81 #define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
82 
83 static inline struct xilinx_timer_priv
84 *xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
85 {
86 	return pwmchip_get_drvdata(chip);
87 }
88 
89 static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
90 {
91 	return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
92 		(TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
93 }
94 
95 static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
96 			    const struct pwm_state *state)
97 {
98 	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
99 	u32 tlr0, tlr1, tcsr0, tcsr1;
100 	u64 period_cycles, duty_cycles;
101 	unsigned long rate;
102 
103 	if (state->polarity != PWM_POLARITY_NORMAL)
104 		return -EINVAL;
105 
106 	/*
107 	 * To be representable by TLR, cycles must be between 2 and
108 	 * priv->max + 2. To enforce this we can reduce the cycles, but we may
109 	 * not increase them. Caveat emptor: while this does result in more
110 	 * predictable rounding, it may also result in a completely different
111 	 * duty cycle (% high time) than what was requested.
112 	 */
113 	rate = clk_get_rate(priv->clk);
114 	/* Avoid overflow */
115 	period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
116 	period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
117 	period_cycles = min_t(u64, period_cycles, priv->max + 2);
118 	if (period_cycles < 2)
119 		return -ERANGE;
120 
121 	/* Same thing for duty cycles */
122 	duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
123 	duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
124 	duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
125 
126 	/*
127 	 * If we specify 100% duty cycle, we will get 0% instead, so decrease
128 	 * the duty cycle count by one.
129 	 */
130 	if (duty_cycles >= period_cycles)
131 		duty_cycles = period_cycles - 1;
132 
133 	/* Round down to 0% duty cycle for unrepresentable duty cycles */
134 	if (duty_cycles < 2)
135 		duty_cycles = period_cycles;
136 
137 	regmap_read(priv->map, TCSR0, &tcsr0);
138 	regmap_read(priv->map, TCSR1, &tcsr1);
139 	tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
140 	tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
141 	regmap_write(priv->map, TLR0, tlr0);
142 	regmap_write(priv->map, TLR1, tlr1);
143 
144 	if (state->enabled) {
145 		/*
146 		 * If the PWM is already running, then the counters will be
147 		 * reloaded at the end of the current cycle.
148 		 */
149 		if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
150 			/* Load TLR into TCR */
151 			regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
152 			regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
153 			/* Enable timers all at once with ENALL */
154 			tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
155 			tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
156 			regmap_write(priv->map, TCSR0, tcsr0);
157 			regmap_write(priv->map, TCSR1, tcsr1);
158 		}
159 	} else {
160 		regmap_write(priv->map, TCSR0, 0);
161 		regmap_write(priv->map, TCSR1, 0);
162 	}
163 
164 	return 0;
165 }
166 
167 static int xilinx_pwm_get_state(struct pwm_chip *chip,
168 				struct pwm_device *unused,
169 				struct pwm_state *state)
170 {
171 	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
172 	u32 tlr0, tlr1, tcsr0, tcsr1;
173 
174 	regmap_read(priv->map, TLR0, &tlr0);
175 	regmap_read(priv->map, TLR1, &tlr1);
176 	regmap_read(priv->map, TCSR0, &tcsr0);
177 	regmap_read(priv->map, TCSR1, &tcsr1);
178 	state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
179 	state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
180 	state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
181 	state->polarity = PWM_POLARITY_NORMAL;
182 
183 	/*
184 	 * 100% duty cycle results in constant low output. This may be (very)
185 	 * wrong if rate > 1 GHz, so fix this if you have such hardware :)
186 	 */
187 	if (state->period == state->duty_cycle)
188 		state->duty_cycle = 0;
189 
190 	return 0;
191 }
192 
193 static const struct pwm_ops xilinx_pwm_ops = {
194 	.apply = xilinx_pwm_apply,
195 	.get_state = xilinx_pwm_get_state,
196 };
197 
198 static const struct regmap_config xilinx_pwm_regmap_config = {
199 	.reg_bits = 32,
200 	.reg_stride = 4,
201 	.val_bits = 32,
202 	.val_format_endian = REGMAP_ENDIAN_LITTLE,
203 	.max_register = TCR1,
204 };
205 
206 static int xilinx_pwm_probe(struct platform_device *pdev)
207 {
208 	int ret;
209 	struct device *dev = &pdev->dev;
210 	struct device_node *np = dev->of_node;
211 	struct xilinx_timer_priv *priv;
212 	struct pwm_chip *chip;
213 	u32 pwm_cells, one_timer, width;
214 	void __iomem *regs;
215 
216 	/* If there are no PWM cells, this binding is for a timer */
217 	ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
218 	if (ret == -EINVAL)
219 		return -ENODEV;
220 	if (ret)
221 		return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
222 
223 	chip = devm_pwmchip_alloc(dev, 1, sizeof(*priv));
224 	if (IS_ERR(chip))
225 		return PTR_ERR(chip);
226 	priv = xilinx_pwm_chip_to_priv(chip);
227 	platform_set_drvdata(pdev, chip);
228 
229 	regs = devm_platform_ioremap_resource(pdev, 0);
230 	if (IS_ERR(regs))
231 		return PTR_ERR(regs);
232 
233 	priv->map = devm_regmap_init_mmio(dev, regs,
234 					  &xilinx_pwm_regmap_config);
235 	if (IS_ERR(priv->map))
236 		return dev_err_probe(dev, PTR_ERR(priv->map),
237 				     "Could not create regmap\n");
238 
239 	ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
240 	if (ret)
241 		return dev_err_probe(dev, ret,
242 				     "Could not read xlnx,one-timer-only\n");
243 
244 	if (one_timer)
245 		return dev_err_probe(dev, -EINVAL,
246 				     "Two timers required for PWM mode\n");
247 
248 	ret = of_property_read_u32(np, "xlnx,count-width", &width);
249 	if (ret == -EINVAL)
250 		width = 32;
251 	else if (ret)
252 		return dev_err_probe(dev, ret,
253 				     "Could not read xlnx,count-width\n");
254 
255 	if (width != 8 && width != 16 && width != 32)
256 		return dev_err_probe(dev, -EINVAL,
257 				     "Invalid counter width %d\n", width);
258 	priv->max = BIT_ULL(width) - 1;
259 
260 	/*
261 	 * The polarity of the Generate Out signals must be active high for PWM
262 	 * mode to work. We could determine this from the device tree, but
263 	 * alas, such properties are not allowed to be used.
264 	 */
265 
266 	priv->clk = devm_clk_get(dev, "s_axi_aclk");
267 	if (IS_ERR(priv->clk))
268 		return dev_err_probe(dev, PTR_ERR(priv->clk),
269 				     "Could not get clock\n");
270 
271 	ret = clk_prepare_enable(priv->clk);
272 	if (ret)
273 		return dev_err_probe(dev, ret, "Clock enable failed\n");
274 	clk_rate_exclusive_get(priv->clk);
275 
276 	chip->ops = &xilinx_pwm_ops;
277 	ret = pwmchip_add(chip);
278 	if (ret) {
279 		clk_rate_exclusive_put(priv->clk);
280 		clk_disable_unprepare(priv->clk);
281 		return dev_err_probe(dev, ret, "Could not register PWM chip\n");
282 	}
283 
284 	return 0;
285 }
286 
287 static void xilinx_pwm_remove(struct platform_device *pdev)
288 {
289 	struct pwm_chip *chip = platform_get_drvdata(pdev);
290 	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
291 
292 	pwmchip_remove(chip);
293 	clk_rate_exclusive_put(priv->clk);
294 	clk_disable_unprepare(priv->clk);
295 }
296 
297 static const struct of_device_id xilinx_pwm_of_match[] = {
298 	{ .compatible = "xlnx,xps-timer-1.00.a", },
299 	{},
300 };
301 MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
302 
303 static struct platform_driver xilinx_pwm_driver = {
304 	.probe = xilinx_pwm_probe,
305 	.remove_new = xilinx_pwm_remove,
306 	.driver = {
307 		.name = "xilinx-pwm",
308 		.of_match_table = of_match_ptr(xilinx_pwm_of_match),
309 	},
310 };
311 module_platform_driver(xilinx_pwm_driver);
312 
313 MODULE_ALIAS("platform:xilinx-pwm");
314 MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
315 MODULE_LICENSE("GPL");
316