1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com> 4 * 5 * Limitations: 6 * - When changing both duty cycle and period, we may end up with one cycle 7 * with the old duty cycle and the new period. This is because the counters 8 * may only be reloaded by first stopping them, or by letting them be 9 * automatically reloaded at the end of a cycle. If this automatic reload 10 * happens after we set TLR0 but before we set TLR1 then we will have a 11 * bad cycle. This could probably be fixed by reading TCR0 just before 12 * reprogramming, but I think it would add complexity for little gain. 13 * - Cannot produce 100% duty cycle by configuring the TLRs. This might be 14 * possible by stopping the counters at an appropriate point in the cycle, 15 * but this is not (yet) implemented. 16 * - Only produces "normal" output. 17 * - Always produces low output if disabled. 18 */ 19 20 #include <clocksource/timer-xilinx.h> 21 #include <linux/clk.h> 22 #include <linux/clk-provider.h> 23 #include <linux/device.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/pwm.h> 28 #include <linux/regmap.h> 29 30 /* 31 * The following functions are "common" to drivers for this device, and may be 32 * exported at a future date. 33 */ 34 u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr, 35 u64 cycles) 36 { 37 WARN_ON(cycles < 2 || cycles - 2 > priv->max); 38 39 if (tcsr & TCSR_UDT) 40 return cycles - 2; 41 return priv->max - cycles + 2; 42 } 43 44 unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv, 45 u32 tlr, u32 tcsr) 46 { 47 u64 cycles; 48 49 if (tcsr & TCSR_UDT) 50 cycles = tlr + 2; 51 else 52 cycles = (u64)priv->max - tlr + 2; 53 54 /* cycles has a max of 2^32 + 2, so we can't overflow */ 55 return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC, 56 clk_get_rate(priv->clk)); 57 } 58 59 /* 60 * The idea here is to capture whether the PWM is actually running (e.g. 61 * because we or the bootloader set it up) and we need to be careful to ensure 62 * we don't cause a glitch. According to the data sheet, to enable the PWM we 63 * need to 64 * 65 * - Set both timers to generate mode (MDT=1) 66 * - Set both timers to PWM mode (PWMA=1) 67 * - Enable the generate out signals (GENT=1) 68 * 69 * In addition, 70 * 71 * - The timer must be running (ENT=1) 72 * - The timer must auto-reload TLR into TCR (ARHT=1) 73 * - We must not be in the process of loading TLR into TCR (LOAD=0) 74 * - Cascade mode must be disabled (CASC=0) 75 * 76 * If any of these differ from usual, then the PWM is either disabled, or is 77 * running in a mode that this driver does not support. 78 */ 79 #define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA) 80 #define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD) 81 #define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR) 82 83 struct xilinx_pwm_device { 84 struct pwm_chip chip; 85 struct xilinx_timer_priv priv; 86 }; 87 88 static inline struct xilinx_timer_priv 89 *xilinx_pwm_chip_to_priv(struct pwm_chip *chip) 90 { 91 return &container_of(chip, struct xilinx_pwm_device, chip)->priv; 92 } 93 94 static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1) 95 { 96 return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET && 97 (TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET; 98 } 99 100 static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused, 101 const struct pwm_state *state) 102 { 103 struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip); 104 u32 tlr0, tlr1, tcsr0, tcsr1; 105 u64 period_cycles, duty_cycles; 106 unsigned long rate; 107 108 if (state->polarity != PWM_POLARITY_NORMAL) 109 return -EINVAL; 110 111 /* 112 * To be representable by TLR, cycles must be between 2 and 113 * priv->max + 2. To enforce this we can reduce the cycles, but we may 114 * not increase them. Caveat emptor: while this does result in more 115 * predictable rounding, it may also result in a completely different 116 * duty cycle (% high time) than what was requested. 117 */ 118 rate = clk_get_rate(priv->clk); 119 /* Avoid overflow */ 120 period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC); 121 period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC); 122 period_cycles = min_t(u64, period_cycles, priv->max + 2); 123 if (period_cycles < 2) 124 return -ERANGE; 125 126 /* Same thing for duty cycles */ 127 duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC); 128 duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC); 129 duty_cycles = min_t(u64, duty_cycles, priv->max + 2); 130 131 /* 132 * If we specify 100% duty cycle, we will get 0% instead, so decrease 133 * the duty cycle count by one. 134 */ 135 if (duty_cycles >= period_cycles) 136 duty_cycles = period_cycles - 1; 137 138 /* Round down to 0% duty cycle for unrepresentable duty cycles */ 139 if (duty_cycles < 2) 140 duty_cycles = period_cycles; 141 142 regmap_read(priv->map, TCSR0, &tcsr0); 143 regmap_read(priv->map, TCSR1, &tcsr1); 144 tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles); 145 tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles); 146 regmap_write(priv->map, TLR0, tlr0); 147 regmap_write(priv->map, TLR1, tlr1); 148 149 if (state->enabled) { 150 /* 151 * If the PWM is already running, then the counters will be 152 * reloaded at the end of the current cycle. 153 */ 154 if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) { 155 /* Load TLR into TCR */ 156 regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD); 157 regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD); 158 /* Enable timers all at once with ENALL */ 159 tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT); 160 tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT); 161 regmap_write(priv->map, TCSR0, tcsr0); 162 regmap_write(priv->map, TCSR1, tcsr1); 163 } 164 } else { 165 regmap_write(priv->map, TCSR0, 0); 166 regmap_write(priv->map, TCSR1, 0); 167 } 168 169 return 0; 170 } 171 172 static void xilinx_pwm_get_state(struct pwm_chip *chip, 173 struct pwm_device *unused, 174 struct pwm_state *state) 175 { 176 struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip); 177 u32 tlr0, tlr1, tcsr0, tcsr1; 178 179 regmap_read(priv->map, TLR0, &tlr0); 180 regmap_read(priv->map, TLR1, &tlr1); 181 regmap_read(priv->map, TCSR0, &tcsr0); 182 regmap_read(priv->map, TCSR1, &tcsr1); 183 state->period = xilinx_timer_get_period(priv, tlr0, tcsr0); 184 state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1); 185 state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1); 186 state->polarity = PWM_POLARITY_NORMAL; 187 188 /* 189 * 100% duty cycle results in constant low output. This may be (very) 190 * wrong if rate > 1 GHz, so fix this if you have such hardware :) 191 */ 192 if (state->period == state->duty_cycle) 193 state->duty_cycle = 0; 194 } 195 196 static const struct pwm_ops xilinx_pwm_ops = { 197 .apply = xilinx_pwm_apply, 198 .get_state = xilinx_pwm_get_state, 199 .owner = THIS_MODULE, 200 }; 201 202 static const struct regmap_config xilinx_pwm_regmap_config = { 203 .reg_bits = 32, 204 .reg_stride = 4, 205 .val_bits = 32, 206 .val_format_endian = REGMAP_ENDIAN_LITTLE, 207 .max_register = TCR1, 208 }; 209 210 static int xilinx_pwm_probe(struct platform_device *pdev) 211 { 212 int ret; 213 struct device *dev = &pdev->dev; 214 struct device_node *np = dev->of_node; 215 struct xilinx_timer_priv *priv; 216 struct xilinx_pwm_device *xilinx_pwm; 217 u32 pwm_cells, one_timer, width; 218 void __iomem *regs; 219 220 /* If there are no PWM cells, this binding is for a timer */ 221 ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells); 222 if (ret == -EINVAL) 223 return -ENODEV; 224 if (ret) 225 return dev_err_probe(dev, ret, "could not read #pwm-cells\n"); 226 227 xilinx_pwm = devm_kzalloc(dev, sizeof(*xilinx_pwm), GFP_KERNEL); 228 if (!xilinx_pwm) 229 return -ENOMEM; 230 platform_set_drvdata(pdev, xilinx_pwm); 231 priv = &xilinx_pwm->priv; 232 233 regs = devm_platform_ioremap_resource(pdev, 0); 234 if (IS_ERR(regs)) 235 return PTR_ERR(regs); 236 237 priv->map = devm_regmap_init_mmio(dev, regs, 238 &xilinx_pwm_regmap_config); 239 if (IS_ERR(priv->map)) 240 return dev_err_probe(dev, PTR_ERR(priv->map), 241 "Could not create regmap\n"); 242 243 ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer); 244 if (ret) 245 return dev_err_probe(dev, ret, 246 "Could not read xlnx,one-timer-only\n"); 247 248 if (one_timer) 249 return dev_err_probe(dev, -EINVAL, 250 "Two timers required for PWM mode\n"); 251 252 ret = of_property_read_u32(np, "xlnx,count-width", &width); 253 if (ret == -EINVAL) 254 width = 32; 255 else if (ret) 256 return dev_err_probe(dev, ret, 257 "Could not read xlnx,count-width\n"); 258 259 if (width != 8 && width != 16 && width != 32) 260 return dev_err_probe(dev, -EINVAL, 261 "Invalid counter width %d\n", width); 262 priv->max = BIT_ULL(width) - 1; 263 264 /* 265 * The polarity of the Generate Out signals must be active high for PWM 266 * mode to work. We could determine this from the device tree, but 267 * alas, such properties are not allowed to be used. 268 */ 269 270 priv->clk = devm_clk_get(dev, "s_axi_aclk"); 271 if (IS_ERR(priv->clk)) 272 return dev_err_probe(dev, PTR_ERR(priv->clk), 273 "Could not get clock\n"); 274 275 ret = clk_prepare_enable(priv->clk); 276 if (ret) 277 return dev_err_probe(dev, ret, "Clock enable failed\n"); 278 clk_rate_exclusive_get(priv->clk); 279 280 xilinx_pwm->chip.dev = dev; 281 xilinx_pwm->chip.ops = &xilinx_pwm_ops; 282 xilinx_pwm->chip.npwm = 1; 283 ret = pwmchip_add(&xilinx_pwm->chip); 284 if (ret) { 285 clk_rate_exclusive_put(priv->clk); 286 clk_disable_unprepare(priv->clk); 287 return dev_err_probe(dev, ret, "Could not register PWM chip\n"); 288 } 289 290 return 0; 291 } 292 293 static int xilinx_pwm_remove(struct platform_device *pdev) 294 { 295 struct xilinx_pwm_device *xilinx_pwm = platform_get_drvdata(pdev); 296 297 pwmchip_remove(&xilinx_pwm->chip); 298 clk_rate_exclusive_put(xilinx_pwm->priv.clk); 299 clk_disable_unprepare(xilinx_pwm->priv.clk); 300 return 0; 301 } 302 303 static const struct of_device_id xilinx_pwm_of_match[] = { 304 { .compatible = "xlnx,xps-timer-1.00.a", }, 305 {}, 306 }; 307 MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match); 308 309 static struct platform_driver xilinx_pwm_driver = { 310 .probe = xilinx_pwm_probe, 311 .remove = xilinx_pwm_remove, 312 .driver = { 313 .name = "xilinx-pwm", 314 .of_match_table = of_match_ptr(xilinx_pwm_of_match), 315 }, 316 }; 317 module_platform_driver(xilinx_pwm_driver); 318 319 MODULE_ALIAS("platform:xilinx-pwm"); 320 MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer"); 321 MODULE_LICENSE("GPL"); 322