xref: /linux/drivers/pwm/pwm-tegra.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/pwm/pwm-tegra.c
4  *
5  * Tegra pulse-width-modulation controller driver
6  *
7  * Copyright (c) 2010-2020, NVIDIA Corporation.
8  * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9  *
10  * Overview of Tegra Pulse Width Modulator Register:
11  * 1. 13-bit: Frequency division (SCALE)
12  * 2. 8-bit : Pulse division (DUTY)
13  * 3. 1-bit : Enable bit
14  *
15  * The PWM clock frequency is divided by 256 before subdividing it based
16  * on the programmable frequency division value to generate the required
17  * frequency for PWM output. The maximum output frequency that can be
18  * achieved is (max rate of source clock) / 256.
19  * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20  * 408 MHz/256 = 1.6 MHz.
21  * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22  *
23  * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24  * To achieve 100% duty cycle, program Bit [24] of this register to
25  * 1’b1. In which case the other bits [23:16] are set to don't care.
26  *
27  * Limitations:
28  * -	When PWM is disabled, the output is driven to inactive.
29  * -	It does not allow the current PWM period to complete and
30  *	stops abruptly.
31  *
32  * -	If the register is reconfigured while PWM is running,
33  *	it does not complete the currently running period.
34  *
35  * -	If the user input duty is beyond acceptible limits,
36  *	-EINVAL is returned.
37  */
38 
39 #include <linux/clk.h>
40 #include <linux/err.h>
41 #include <linux/io.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/pm_opp.h>
45 #include <linux/pwm.h>
46 #include <linux/platform_device.h>
47 #include <linux/pinctrl/consumer.h>
48 #include <linux/pm_runtime.h>
49 #include <linux/slab.h>
50 #include <linux/reset.h>
51 
52 #include <soc/tegra/common.h>
53 
54 #define PWM_ENABLE	(1 << 31)
55 #define PWM_DUTY_WIDTH	8
56 #define PWM_DUTY_SHIFT	16
57 #define PWM_SCALE_WIDTH	13
58 #define PWM_SCALE_SHIFT	0
59 
60 struct tegra_pwm_soc {
61 	unsigned int num_channels;
62 
63 	/* Maximum IP frequency for given SoCs */
64 	unsigned long max_frequency;
65 };
66 
67 struct tegra_pwm_chip {
68 	struct clk *clk;
69 	struct reset_control*rst;
70 
71 	unsigned long clk_rate;
72 	unsigned long min_period_ns;
73 
74 	void __iomem *regs;
75 
76 	const struct tegra_pwm_soc *soc;
77 };
78 
79 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
80 {
81 	return pwmchip_get_drvdata(chip);
82 }
83 
84 static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
85 {
86 	return readl(pc->regs + (offset << 4));
87 }
88 
89 static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
90 {
91 	writel(value, pc->regs + (offset << 4));
92 }
93 
94 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
95 			    int duty_ns, int period_ns)
96 {
97 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
98 	unsigned long long c = duty_ns;
99 	unsigned long rate, required_clk_rate;
100 	u32 val = 0;
101 	int err;
102 
103 	/*
104 	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
105 	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
106 	 * nearest integer during division.
107 	 */
108 	c *= (1 << PWM_DUTY_WIDTH);
109 	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
110 
111 	val = (u32)c << PWM_DUTY_SHIFT;
112 
113 	/*
114 	 *  min period = max clock limit >> PWM_DUTY_WIDTH
115 	 */
116 	if (period_ns < pc->min_period_ns)
117 		return -EINVAL;
118 
119 	/*
120 	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
121 	 * cycles at the PWM clock rate will take period_ns nanoseconds.
122 	 *
123 	 * num_channels: If single instance of PWM controller has multiple
124 	 * channels (e.g. Tegra210 or older) then it is not possible to
125 	 * configure separate clock rates to each of the channels, in such
126 	 * case the value stored during probe will be referred.
127 	 *
128 	 * If every PWM controller instance has one channel respectively, i.e.
129 	 * nums_channels == 1 then only the clock rate can be modified
130 	 * dynamically (e.g. Tegra186 or Tegra194).
131 	 */
132 	if (pc->soc->num_channels == 1) {
133 		/*
134 		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
135 		 * with the maximum possible rate that the controller can
136 		 * provide. Any further lower value can be derived by setting
137 		 * PFM bits[0:12].
138 		 *
139 		 * required_clk_rate is a reference rate for source clock and
140 		 * it is derived based on user requested period. By setting the
141 		 * source clock rate as required_clk_rate, PWM controller will
142 		 * be able to configure the requested period.
143 		 */
144 		required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH,
145 						     period_ns);
146 
147 		if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate))
148 			/*
149 			 * required_clk_rate is a lower bound for the input
150 			 * rate; for lower rates there is no value for PWM_SCALE
151 			 * that yields a period less than or equal to the
152 			 * requested period. Hence, for lower rates, double the
153 			 * required_clk_rate to get a clock rate that can meet
154 			 * the requested period.
155 			 */
156 			required_clk_rate *= 2;
157 
158 		err = dev_pm_opp_set_rate(pwmchip_parent(chip), required_clk_rate);
159 		if (err < 0)
160 			return -EINVAL;
161 
162 		/* Store the new rate for further references */
163 		pc->clk_rate = clk_get_rate(pc->clk);
164 	}
165 
166 	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
167 	rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
168 				   (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
169 
170 	/*
171 	 * Since the actual PWM divider is the register's frequency divider
172 	 * field plus 1, we need to decrement to get the correct value to
173 	 * write to the register.
174 	 */
175 	if (rate > 0)
176 		rate--;
177 	else
178 		return -EINVAL;
179 
180 	/*
181 	 * Make sure that the rate will fit in the register's frequency
182 	 * divider field.
183 	 */
184 	if (rate >> PWM_SCALE_WIDTH)
185 		return -EINVAL;
186 
187 	val |= rate << PWM_SCALE_SHIFT;
188 
189 	/*
190 	 * If the PWM channel is disabled, make sure to turn on the clock
191 	 * before writing the register. Otherwise, keep it enabled.
192 	 */
193 	if (!pwm_is_enabled(pwm)) {
194 		err = pm_runtime_resume_and_get(pwmchip_parent(chip));
195 		if (err)
196 			return err;
197 	} else
198 		val |= PWM_ENABLE;
199 
200 	pwm_writel(pc, pwm->hwpwm, val);
201 
202 	/*
203 	 * If the PWM is not enabled, turn the clock off again to save power.
204 	 */
205 	if (!pwm_is_enabled(pwm))
206 		pm_runtime_put(pwmchip_parent(chip));
207 
208 	return 0;
209 }
210 
211 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
212 {
213 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
214 	int rc = 0;
215 	u32 val;
216 
217 	rc = pm_runtime_resume_and_get(pwmchip_parent(chip));
218 	if (rc)
219 		return rc;
220 
221 	val = pwm_readl(pc, pwm->hwpwm);
222 	val |= PWM_ENABLE;
223 	pwm_writel(pc, pwm->hwpwm, val);
224 
225 	return 0;
226 }
227 
228 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
229 {
230 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
231 	u32 val;
232 
233 	val = pwm_readl(pc, pwm->hwpwm);
234 	val &= ~PWM_ENABLE;
235 	pwm_writel(pc, pwm->hwpwm, val);
236 
237 	pm_runtime_put_sync(pwmchip_parent(chip));
238 }
239 
240 static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
241 			   const struct pwm_state *state)
242 {
243 	int err;
244 	bool enabled = pwm->state.enabled;
245 
246 	if (state->polarity != PWM_POLARITY_NORMAL)
247 		return -EINVAL;
248 
249 	if (!state->enabled) {
250 		if (enabled)
251 			tegra_pwm_disable(chip, pwm);
252 
253 		return 0;
254 	}
255 
256 	err = tegra_pwm_config(chip, pwm, state->duty_cycle, state->period);
257 	if (err)
258 		return err;
259 
260 	if (!enabled)
261 		err = tegra_pwm_enable(chip, pwm);
262 
263 	return err;
264 }
265 
266 static const struct pwm_ops tegra_pwm_ops = {
267 	.apply = tegra_pwm_apply,
268 };
269 
270 static int tegra_pwm_probe(struct platform_device *pdev)
271 {
272 	struct pwm_chip *chip;
273 	struct tegra_pwm_chip *pc;
274 	const struct tegra_pwm_soc *soc;
275 	int ret;
276 
277 	soc = of_device_get_match_data(&pdev->dev);
278 
279 	chip = devm_pwmchip_alloc(&pdev->dev, soc->num_channels, sizeof(*pc));
280 	if (IS_ERR(chip))
281 		return PTR_ERR(chip);
282 	pc = to_tegra_pwm_chip(chip);
283 
284 	pc->soc = soc;
285 
286 	pc->regs = devm_platform_ioremap_resource(pdev, 0);
287 	if (IS_ERR(pc->regs))
288 		return PTR_ERR(pc->regs);
289 
290 	platform_set_drvdata(pdev, chip);
291 
292 	pc->clk = devm_clk_get(&pdev->dev, NULL);
293 	if (IS_ERR(pc->clk))
294 		return PTR_ERR(pc->clk);
295 
296 	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
297 	if (ret)
298 		return ret;
299 
300 	pm_runtime_enable(&pdev->dev);
301 	ret = pm_runtime_resume_and_get(&pdev->dev);
302 	if (ret)
303 		return ret;
304 
305 	/* Set maximum frequency of the IP */
306 	ret = dev_pm_opp_set_rate(&pdev->dev, pc->soc->max_frequency);
307 	if (ret < 0) {
308 		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
309 		goto put_pm;
310 	}
311 
312 	/*
313 	 * The requested and configured frequency may differ due to
314 	 * clock register resolutions. Get the configured frequency
315 	 * so that PWM period can be calculated more accurately.
316 	 */
317 	pc->clk_rate = clk_get_rate(pc->clk);
318 
319 	/* Set minimum limit of PWM period for the IP */
320 	pc->min_period_ns =
321 	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
322 
323 	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
324 	if (IS_ERR(pc->rst)) {
325 		ret = PTR_ERR(pc->rst);
326 		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
327 		goto put_pm;
328 	}
329 
330 	reset_control_deassert(pc->rst);
331 
332 	chip->ops = &tegra_pwm_ops;
333 
334 	ret = pwmchip_add(chip);
335 	if (ret < 0) {
336 		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
337 		reset_control_assert(pc->rst);
338 		goto put_pm;
339 	}
340 
341 	pm_runtime_put(&pdev->dev);
342 
343 	return 0;
344 put_pm:
345 	pm_runtime_put_sync_suspend(&pdev->dev);
346 	pm_runtime_force_suspend(&pdev->dev);
347 	return ret;
348 }
349 
350 static void tegra_pwm_remove(struct platform_device *pdev)
351 {
352 	struct pwm_chip *chip = platform_get_drvdata(pdev);
353 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
354 
355 	pwmchip_remove(chip);
356 
357 	reset_control_assert(pc->rst);
358 
359 	pm_runtime_force_suspend(&pdev->dev);
360 }
361 
362 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
363 {
364 	struct pwm_chip *chip = dev_get_drvdata(dev);
365 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
366 	int err;
367 
368 	clk_disable_unprepare(pc->clk);
369 
370 	err = pinctrl_pm_select_sleep_state(dev);
371 	if (err) {
372 		clk_prepare_enable(pc->clk);
373 		return err;
374 	}
375 
376 	return 0;
377 }
378 
379 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
380 {
381 	struct pwm_chip *chip = dev_get_drvdata(dev);
382 	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
383 	int err;
384 
385 	err = pinctrl_pm_select_default_state(dev);
386 	if (err)
387 		return err;
388 
389 	err = clk_prepare_enable(pc->clk);
390 	if (err) {
391 		pinctrl_pm_select_sleep_state(dev);
392 		return err;
393 	}
394 
395 	return 0;
396 }
397 
398 static const struct tegra_pwm_soc tegra20_pwm_soc = {
399 	.num_channels = 4,
400 	.max_frequency = 48000000UL,
401 };
402 
403 static const struct tegra_pwm_soc tegra186_pwm_soc = {
404 	.num_channels = 1,
405 	.max_frequency = 102000000UL,
406 };
407 
408 static const struct tegra_pwm_soc tegra194_pwm_soc = {
409 	.num_channels = 1,
410 	.max_frequency = 408000000UL,
411 };
412 
413 static const struct of_device_id tegra_pwm_of_match[] = {
414 	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
415 	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
416 	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
417 	{ }
418 };
419 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
420 
421 static const struct dev_pm_ops tegra_pwm_pm_ops = {
422 	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
423 			   NULL)
424 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
425 				pm_runtime_force_resume)
426 };
427 
428 static struct platform_driver tegra_pwm_driver = {
429 	.driver = {
430 		.name = "tegra-pwm",
431 		.of_match_table = tegra_pwm_of_match,
432 		.pm = &tegra_pwm_pm_ops,
433 	},
434 	.probe = tegra_pwm_probe,
435 	.remove_new = tegra_pwm_remove,
436 };
437 
438 module_platform_driver(tegra_pwm_driver);
439 
440 MODULE_LICENSE("GPL");
441 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
442 MODULE_DESCRIPTION("Tegra PWM controller driver");
443 MODULE_ALIAS("platform:tegra-pwm");
444