xref: /linux/drivers/pwm/pwm-sun4i.c (revision 5ce42b5de461c3154f61a023b191dd6b77ee66c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Allwinner sun4i Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6  *
7  * Limitations:
8  * - When outputing the source clock directly, the PWM logic will be bypassed
9  *   and the currently running period is not guaranteed to be completed
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/jiffies.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pwm.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/time.h>
26 
27 #define PWM_CTRL_REG		0x0
28 
29 #define PWM_CH_PRD_BASE		0x4
30 #define PWM_CH_PRD_OFFSET	0x4
31 #define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
32 
33 #define PWMCH_OFFSET		15
34 #define PWM_PRESCAL_MASK	GENMASK(3, 0)
35 #define PWM_PRESCAL_OFF		0
36 #define PWM_EN			BIT(4)
37 #define PWM_ACT_STATE		BIT(5)
38 #define PWM_CLK_GATING		BIT(6)
39 #define PWM_MODE		BIT(7)
40 #define PWM_PULSE		BIT(8)
41 #define PWM_BYPASS		BIT(9)
42 
43 #define PWM_RDY_BASE		28
44 #define PWM_RDY_OFFSET		1
45 #define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
46 
47 #define PWM_PRD(prd)		(((prd) - 1) << 16)
48 #define PWM_PRD_MASK		GENMASK(15, 0)
49 
50 #define PWM_DTY_MASK		GENMASK(15, 0)
51 
52 #define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
53 #define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
54 #define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
55 
56 #define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
57 
58 static const u32 prescaler_table[] = {
59 	120,
60 	180,
61 	240,
62 	360,
63 	480,
64 	0,
65 	0,
66 	0,
67 	12000,
68 	24000,
69 	36000,
70 	48000,
71 	72000,
72 	0,
73 	0,
74 	0, /* Actually 1 but tested separately */
75 };
76 
77 struct sun4i_pwm_data {
78 	bool has_prescaler_bypass;
79 	bool has_direct_mod_clk_output;
80 	unsigned int npwm;
81 };
82 
83 struct sun4i_pwm_chip {
84 	struct clk *bus_clk;
85 	struct clk *clk;
86 	struct reset_control *rst;
87 	void __iomem *base;
88 	spinlock_t ctrl_lock;
89 	const struct sun4i_pwm_data *data;
90 };
91 
92 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
93 {
94 	return pwmchip_get_drvdata(chip);
95 }
96 
97 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *sun4ichip,
98 				  unsigned long offset)
99 {
100 	return readl(sun4ichip->base + offset);
101 }
102 
103 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *sun4ichip,
104 				    u32 val, unsigned long offset)
105 {
106 	writel(val, sun4ichip->base + offset);
107 }
108 
109 static int sun4i_pwm_get_state(struct pwm_chip *chip,
110 			       struct pwm_device *pwm,
111 			       struct pwm_state *state)
112 {
113 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
114 	u64 clk_rate, tmp;
115 	u32 val;
116 	unsigned int prescaler;
117 
118 	clk_rate = clk_get_rate(sun4ichip->clk);
119 	if (!clk_rate)
120 		return -EINVAL;
121 
122 	val = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
123 
124 	/*
125 	 * PWM chapter in H6 manual has a diagram which explains that if bypass
126 	 * bit is set, no other setting has any meaning. Even more, experiment
127 	 * proved that also enable bit is ignored in this case.
128 	 */
129 	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
130 	    sun4ichip->data->has_direct_mod_clk_output) {
131 		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
132 		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
133 		state->polarity = PWM_POLARITY_NORMAL;
134 		state->enabled = true;
135 		return 0;
136 	}
137 
138 	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
139 	    sun4ichip->data->has_prescaler_bypass)
140 		prescaler = 1;
141 	else
142 		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
143 
144 	if (prescaler == 0)
145 		return -EINVAL;
146 
147 	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
148 		state->polarity = PWM_POLARITY_NORMAL;
149 	else
150 		state->polarity = PWM_POLARITY_INVERSED;
151 
152 	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
153 	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
154 		state->enabled = true;
155 	else
156 		state->enabled = false;
157 
158 	val = sun4i_pwm_readl(sun4ichip, PWM_CH_PRD(pwm->hwpwm));
159 
160 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
161 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
162 
163 	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
164 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
165 
166 	return 0;
167 }
168 
169 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4ichip,
170 			       const struct pwm_state *state,
171 			       u32 *dty, u32 *prd, unsigned int *prsclr,
172 			       bool *bypass)
173 {
174 	u64 clk_rate, div = 0;
175 	unsigned int prescaler = 0;
176 
177 	clk_rate = clk_get_rate(sun4ichip->clk);
178 
179 	*bypass = sun4ichip->data->has_direct_mod_clk_output &&
180 		  state->enabled &&
181 		  (state->period * clk_rate >= NSEC_PER_SEC) &&
182 		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
183 		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
184 
185 	/* Skip calculation of other parameters if we bypass them */
186 	if (*bypass)
187 		return 0;
188 
189 	if (sun4ichip->data->has_prescaler_bypass) {
190 		/* First, test without any prescaler when available */
191 		prescaler = PWM_PRESCAL_MASK;
192 		/*
193 		 * When not using any prescaler, the clock period in nanoseconds
194 		 * is not an integer so round it half up instead of
195 		 * truncating to get less surprising values.
196 		 */
197 		div = clk_rate * state->period + NSEC_PER_SEC / 2;
198 		do_div(div, NSEC_PER_SEC);
199 		if (div - 1 > PWM_PRD_MASK)
200 			prescaler = 0;
201 	}
202 
203 	if (prescaler == 0) {
204 		/* Go up from the first divider */
205 		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
206 			unsigned int pval = prescaler_table[prescaler];
207 
208 			if (!pval)
209 				continue;
210 
211 			div = clk_rate;
212 			do_div(div, pval);
213 			div = div * state->period;
214 			do_div(div, NSEC_PER_SEC);
215 			if (div - 1 <= PWM_PRD_MASK)
216 				break;
217 		}
218 
219 		if (div - 1 > PWM_PRD_MASK)
220 			return -EINVAL;
221 	}
222 
223 	*prd = div;
224 	div *= state->duty_cycle;
225 	do_div(div, state->period);
226 	*dty = div;
227 	*prsclr = prescaler;
228 
229 	return 0;
230 }
231 
232 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
233 			   const struct pwm_state *state)
234 {
235 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
236 	struct pwm_state cstate;
237 	u32 ctrl, duty = 0, period = 0, val;
238 	int ret;
239 	unsigned int delay_us, prescaler = 0;
240 	bool bypass;
241 
242 	pwm_get_state(pwm, &cstate);
243 
244 	if (!cstate.enabled) {
245 		ret = clk_prepare_enable(sun4ichip->clk);
246 		if (ret) {
247 			dev_err(pwmchip_parent(chip), "failed to enable PWM clock\n");
248 			return ret;
249 		}
250 	}
251 
252 	ret = sun4i_pwm_calculate(sun4ichip, state, &duty, &period, &prescaler,
253 				  &bypass);
254 	if (ret) {
255 		dev_err(pwmchip_parent(chip), "period exceeds the maximum value\n");
256 		if (!cstate.enabled)
257 			clk_disable_unprepare(sun4ichip->clk);
258 		return ret;
259 	}
260 
261 	spin_lock(&sun4ichip->ctrl_lock);
262 	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
263 
264 	if (sun4ichip->data->has_direct_mod_clk_output) {
265 		if (bypass) {
266 			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267 			/* We can skip other parameter */
268 			sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
269 			spin_unlock(&sun4ichip->ctrl_lock);
270 			return 0;
271 		}
272 
273 		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274 	}
275 
276 	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277 		/* Prescaler changed, the clock has to be gated */
278 		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279 		sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
280 
281 		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282 		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283 	}
284 
285 	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286 	sun4i_pwm_writel(sun4ichip, val, PWM_CH_PRD(pwm->hwpwm));
287 
288 	if (state->polarity != PWM_POLARITY_NORMAL)
289 		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
290 	else
291 		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292 
293 	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
294 
295 	if (state->enabled)
296 		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
297 
298 	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
299 
300 	spin_unlock(&sun4ichip->ctrl_lock);
301 
302 	if (state->enabled)
303 		return 0;
304 
305 	/* We need a full period to elapse before disabling the channel. */
306 	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
307 	if ((delay_us / 500) > MAX_UDELAY_MS)
308 		msleep(delay_us / 1000 + 1);
309 	else
310 		usleep_range(delay_us, delay_us * 2);
311 
312 	spin_lock(&sun4ichip->ctrl_lock);
313 	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
314 	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
315 	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
316 	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
317 	spin_unlock(&sun4ichip->ctrl_lock);
318 
319 	clk_disable_unprepare(sun4ichip->clk);
320 
321 	return 0;
322 }
323 
324 static const struct pwm_ops sun4i_pwm_ops = {
325 	.apply = sun4i_pwm_apply,
326 	.get_state = sun4i_pwm_get_state,
327 };
328 
329 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
330 	.has_prescaler_bypass = false,
331 	.npwm = 2,
332 };
333 
334 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
335 	.has_prescaler_bypass = true,
336 	.npwm = 2,
337 };
338 
339 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
340 	.has_prescaler_bypass = true,
341 	.npwm = 1,
342 };
343 
344 static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
345 	.has_prescaler_bypass = true,
346 	.has_direct_mod_clk_output = true,
347 	.npwm = 1,
348 };
349 
350 static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
351 	.has_prescaler_bypass = true,
352 	.has_direct_mod_clk_output = true,
353 	.npwm = 2,
354 };
355 
356 static const struct of_device_id sun4i_pwm_dt_ids[] = {
357 	{
358 		.compatible = "allwinner,sun4i-a10-pwm",
359 		.data = &sun4i_pwm_dual_nobypass,
360 	}, {
361 		.compatible = "allwinner,sun5i-a10s-pwm",
362 		.data = &sun4i_pwm_dual_bypass,
363 	}, {
364 		.compatible = "allwinner,sun5i-a13-pwm",
365 		.data = &sun4i_pwm_single_bypass,
366 	}, {
367 		.compatible = "allwinner,sun7i-a20-pwm",
368 		.data = &sun4i_pwm_dual_bypass,
369 	}, {
370 		.compatible = "allwinner,sun8i-h3-pwm",
371 		.data = &sun4i_pwm_single_bypass,
372 	}, {
373 		.compatible = "allwinner,sun50i-a64-pwm",
374 		.data = &sun50i_a64_pwm_data,
375 	}, {
376 		.compatible = "allwinner,sun50i-h6-pwm",
377 		.data = &sun50i_h6_pwm_data,
378 	}, {
379 		/* sentinel */
380 	},
381 };
382 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
383 
384 static int sun4i_pwm_probe(struct platform_device *pdev)
385 {
386 	struct pwm_chip *chip;
387 	const struct sun4i_pwm_data *data;
388 	struct sun4i_pwm_chip *sun4ichip;
389 	int ret;
390 
391 	data = of_device_get_match_data(&pdev->dev);
392 	if (!data)
393 		return -ENODEV;
394 
395 	chip = devm_pwmchip_alloc(&pdev->dev, data->npwm, sizeof(*sun4ichip));
396 	if (IS_ERR(chip))
397 		return PTR_ERR(chip);
398 	sun4ichip = to_sun4i_pwm_chip(chip);
399 
400 	sun4ichip->data = data;
401 	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
402 	if (IS_ERR(sun4ichip->base))
403 		return PTR_ERR(sun4ichip->base);
404 
405 	/*
406 	 * All hardware variants need a source clock that is divided and
407 	 * then feeds the counter that defines the output wave form. In the
408 	 * device tree this clock is either unnamed or called "mod".
409 	 * Some variants (e.g. H6) need another clock to access the
410 	 * hardware registers; this is called "bus".
411 	 * So we request "mod" first (and ignore the corner case that a
412 	 * parent provides a "mod" clock while the right one would be the
413 	 * unnamed one of the PWM device) and if this is not found we fall
414 	 * back to the first clock of the PWM.
415 	 */
416 	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
417 	if (IS_ERR(sun4ichip->clk))
418 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
419 				     "get mod clock failed\n");
420 
421 	if (!sun4ichip->clk) {
422 		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
423 		if (IS_ERR(sun4ichip->clk))
424 			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
425 					     "get unnamed clock failed\n");
426 	}
427 
428 	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
429 	if (IS_ERR(sun4ichip->bus_clk))
430 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
431 				     "get bus clock failed\n");
432 
433 	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
434 	if (IS_ERR(sun4ichip->rst))
435 		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
436 				     "get reset failed\n");
437 
438 	/* Deassert reset */
439 	ret = reset_control_deassert(sun4ichip->rst);
440 	if (ret) {
441 		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
442 			ERR_PTR(ret));
443 		return ret;
444 	}
445 
446 	/*
447 	 * We're keeping the bus clock on for the sake of simplicity.
448 	 * Actually it only needs to be on for hardware register accesses.
449 	 */
450 	ret = clk_prepare_enable(sun4ichip->bus_clk);
451 	if (ret) {
452 		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
453 			ERR_PTR(ret));
454 		goto err_bus;
455 	}
456 
457 	chip->ops = &sun4i_pwm_ops;
458 
459 	spin_lock_init(&sun4ichip->ctrl_lock);
460 
461 	ret = pwmchip_add(chip);
462 	if (ret < 0) {
463 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
464 		goto err_pwm_add;
465 	}
466 
467 	platform_set_drvdata(pdev, chip);
468 
469 	return 0;
470 
471 err_pwm_add:
472 	clk_disable_unprepare(sun4ichip->bus_clk);
473 err_bus:
474 	reset_control_assert(sun4ichip->rst);
475 
476 	return ret;
477 }
478 
479 static void sun4i_pwm_remove(struct platform_device *pdev)
480 {
481 	struct pwm_chip *chip = platform_get_drvdata(pdev);
482 	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
483 
484 	pwmchip_remove(chip);
485 
486 	clk_disable_unprepare(sun4ichip->bus_clk);
487 	reset_control_assert(sun4ichip->rst);
488 }
489 
490 static struct platform_driver sun4i_pwm_driver = {
491 	.driver = {
492 		.name = "sun4i-pwm",
493 		.of_match_table = sun4i_pwm_dt_ids,
494 	},
495 	.probe = sun4i_pwm_probe,
496 	.remove = sun4i_pwm_remove,
497 };
498 module_platform_driver(sun4i_pwm_driver);
499 
500 MODULE_ALIAS("platform:sun4i-pwm");
501 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
502 MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
503 MODULE_LICENSE("GPL v2");
504