1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Allwinner sun4i Pulse Width Modulation Controller 4 * 5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com> 6 * 7 * Limitations: 8 * - When outputing the source clock directly, the PWM logic will be bypassed 9 * and the currently running period is not guaranteed to be completed 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/err.h> 16 #include <linux/io.h> 17 #include <linux/jiffies.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/platform_device.h> 21 #include <linux/pwm.h> 22 #include <linux/reset.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/time.h> 26 27 #define PWM_CTRL_REG 0x0 28 29 #define PWM_CH_PRD_BASE 0x4 30 #define PWM_CH_PRD_OFFSET 0x4 31 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) 32 33 #define PWMCH_OFFSET 15 34 #define PWM_PRESCAL_MASK GENMASK(3, 0) 35 #define PWM_PRESCAL_OFF 0 36 #define PWM_EN BIT(4) 37 #define PWM_ACT_STATE BIT(5) 38 #define PWM_CLK_GATING BIT(6) 39 #define PWM_MODE BIT(7) 40 #define PWM_PULSE BIT(8) 41 #define PWM_BYPASS BIT(9) 42 43 #define PWM_RDY_BASE 28 44 #define PWM_RDY_OFFSET 1 45 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) 46 47 #define PWM_PRD(prd) (((prd) - 1) << 16) 48 #define PWM_PRD_MASK GENMASK(15, 0) 49 50 #define PWM_DTY_MASK GENMASK(15, 0) 51 52 #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1) 53 #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK) 54 #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK) 55 56 #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET)) 57 58 static const u32 prescaler_table[] = { 59 120, 60 180, 61 240, 62 360, 63 480, 64 0, 65 0, 66 0, 67 12000, 68 24000, 69 36000, 70 48000, 71 72000, 72 0, 73 0, 74 0, /* Actually 1 but tested separately */ 75 }; 76 77 struct sun4i_pwm_data { 78 bool has_prescaler_bypass; 79 bool has_direct_mod_clk_output; 80 unsigned int npwm; 81 }; 82 83 struct sun4i_pwm_chip { 84 struct pwm_chip chip; 85 struct clk *bus_clk; 86 struct clk *clk; 87 struct reset_control *rst; 88 void __iomem *base; 89 spinlock_t ctrl_lock; 90 const struct sun4i_pwm_data *data; 91 }; 92 93 static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) 94 { 95 return container_of(chip, struct sun4i_pwm_chip, chip); 96 } 97 98 static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip, 99 unsigned long offset) 100 { 101 return readl(chip->base + offset); 102 } 103 104 static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip, 105 u32 val, unsigned long offset) 106 { 107 writel(val, chip->base + offset); 108 } 109 110 static int sun4i_pwm_get_state(struct pwm_chip *chip, 111 struct pwm_device *pwm, 112 struct pwm_state *state) 113 { 114 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); 115 u64 clk_rate, tmp; 116 u32 val; 117 unsigned int prescaler; 118 119 clk_rate = clk_get_rate(sun4i_pwm->clk); 120 if (!clk_rate) 121 return -EINVAL; 122 123 val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); 124 125 /* 126 * PWM chapter in H6 manual has a diagram which explains that if bypass 127 * bit is set, no other setting has any meaning. Even more, experiment 128 * proved that also enable bit is ignored in this case. 129 */ 130 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) && 131 sun4i_pwm->data->has_direct_mod_clk_output) { 132 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate); 133 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2); 134 state->polarity = PWM_POLARITY_NORMAL; 135 state->enabled = true; 136 return 0; 137 } 138 139 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) && 140 sun4i_pwm->data->has_prescaler_bypass) 141 prescaler = 1; 142 else 143 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)]; 144 145 if (prescaler == 0) 146 return -EINVAL; 147 148 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm)) 149 state->polarity = PWM_POLARITY_NORMAL; 150 else 151 state->polarity = PWM_POLARITY_INVERSED; 152 153 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) == 154 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) 155 state->enabled = true; 156 else 157 state->enabled = false; 158 159 val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm)); 160 161 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val); 162 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); 163 164 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val); 165 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); 166 167 return 0; 168 } 169 170 static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm, 171 const struct pwm_state *state, 172 u32 *dty, u32 *prd, unsigned int *prsclr, 173 bool *bypass) 174 { 175 u64 clk_rate, div = 0; 176 unsigned int prescaler = 0; 177 178 clk_rate = clk_get_rate(sun4i_pwm->clk); 179 180 *bypass = sun4i_pwm->data->has_direct_mod_clk_output && 181 state->enabled && 182 (state->period * clk_rate >= NSEC_PER_SEC) && 183 (state->period * clk_rate < 2 * NSEC_PER_SEC) && 184 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC); 185 186 /* Skip calculation of other parameters if we bypass them */ 187 if (*bypass) 188 return 0; 189 190 if (sun4i_pwm->data->has_prescaler_bypass) { 191 /* First, test without any prescaler when available */ 192 prescaler = PWM_PRESCAL_MASK; 193 /* 194 * When not using any prescaler, the clock period in nanoseconds 195 * is not an integer so round it half up instead of 196 * truncating to get less surprising values. 197 */ 198 div = clk_rate * state->period + NSEC_PER_SEC / 2; 199 do_div(div, NSEC_PER_SEC); 200 if (div - 1 > PWM_PRD_MASK) 201 prescaler = 0; 202 } 203 204 if (prescaler == 0) { 205 /* Go up from the first divider */ 206 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { 207 unsigned int pval = prescaler_table[prescaler]; 208 209 if (!pval) 210 continue; 211 212 div = clk_rate; 213 do_div(div, pval); 214 div = div * state->period; 215 do_div(div, NSEC_PER_SEC); 216 if (div - 1 <= PWM_PRD_MASK) 217 break; 218 } 219 220 if (div - 1 > PWM_PRD_MASK) 221 return -EINVAL; 222 } 223 224 *prd = div; 225 div *= state->duty_cycle; 226 do_div(div, state->period); 227 *dty = div; 228 *prsclr = prescaler; 229 230 return 0; 231 } 232 233 static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 234 const struct pwm_state *state) 235 { 236 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip); 237 struct pwm_state cstate; 238 u32 ctrl, duty = 0, period = 0, val; 239 int ret; 240 unsigned int delay_us, prescaler = 0; 241 bool bypass; 242 243 pwm_get_state(pwm, &cstate); 244 245 if (!cstate.enabled) { 246 ret = clk_prepare_enable(sun4i_pwm->clk); 247 if (ret) { 248 dev_err(chip->dev, "failed to enable PWM clock\n"); 249 return ret; 250 } 251 } 252 253 ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler, 254 &bypass); 255 if (ret) { 256 dev_err(chip->dev, "period exceeds the maximum value\n"); 257 if (!cstate.enabled) 258 clk_disable_unprepare(sun4i_pwm->clk); 259 return ret; 260 } 261 262 spin_lock(&sun4i_pwm->ctrl_lock); 263 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); 264 265 if (sun4i_pwm->data->has_direct_mod_clk_output) { 266 if (bypass) { 267 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm); 268 /* We can skip other parameter */ 269 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); 270 spin_unlock(&sun4i_pwm->ctrl_lock); 271 return 0; 272 } 273 274 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm); 275 } 276 277 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) { 278 /* Prescaler changed, the clock has to be gated */ 279 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); 280 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); 281 282 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); 283 ctrl |= BIT_CH(prescaler, pwm->hwpwm); 284 } 285 286 val = (duty & PWM_DTY_MASK) | PWM_PRD(period); 287 sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm)); 288 289 if (state->polarity != PWM_POLARITY_NORMAL) 290 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); 291 else 292 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); 293 294 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); 295 296 if (state->enabled) 297 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm); 298 299 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); 300 301 spin_unlock(&sun4i_pwm->ctrl_lock); 302 303 if (state->enabled) 304 return 0; 305 306 /* We need a full period to elapse before disabling the channel. */ 307 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC); 308 if ((delay_us / 500) > MAX_UDELAY_MS) 309 msleep(delay_us / 1000 + 1); 310 else 311 usleep_range(delay_us, delay_us * 2); 312 313 spin_lock(&sun4i_pwm->ctrl_lock); 314 ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG); 315 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); 316 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); 317 sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG); 318 spin_unlock(&sun4i_pwm->ctrl_lock); 319 320 clk_disable_unprepare(sun4i_pwm->clk); 321 322 return 0; 323 } 324 325 static const struct pwm_ops sun4i_pwm_ops = { 326 .apply = sun4i_pwm_apply, 327 .get_state = sun4i_pwm_get_state, 328 }; 329 330 static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = { 331 .has_prescaler_bypass = false, 332 .npwm = 2, 333 }; 334 335 static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = { 336 .has_prescaler_bypass = true, 337 .npwm = 2, 338 }; 339 340 static const struct sun4i_pwm_data sun4i_pwm_single_bypass = { 341 .has_prescaler_bypass = true, 342 .npwm = 1, 343 }; 344 345 static const struct sun4i_pwm_data sun50i_a64_pwm_data = { 346 .has_prescaler_bypass = true, 347 .has_direct_mod_clk_output = true, 348 .npwm = 1, 349 }; 350 351 static const struct sun4i_pwm_data sun50i_h6_pwm_data = { 352 .has_prescaler_bypass = true, 353 .has_direct_mod_clk_output = true, 354 .npwm = 2, 355 }; 356 357 static const struct of_device_id sun4i_pwm_dt_ids[] = { 358 { 359 .compatible = "allwinner,sun4i-a10-pwm", 360 .data = &sun4i_pwm_dual_nobypass, 361 }, { 362 .compatible = "allwinner,sun5i-a10s-pwm", 363 .data = &sun4i_pwm_dual_bypass, 364 }, { 365 .compatible = "allwinner,sun5i-a13-pwm", 366 .data = &sun4i_pwm_single_bypass, 367 }, { 368 .compatible = "allwinner,sun7i-a20-pwm", 369 .data = &sun4i_pwm_dual_bypass, 370 }, { 371 .compatible = "allwinner,sun8i-h3-pwm", 372 .data = &sun4i_pwm_single_bypass, 373 }, { 374 .compatible = "allwinner,sun50i-a64-pwm", 375 .data = &sun50i_a64_pwm_data, 376 }, { 377 .compatible = "allwinner,sun50i-h6-pwm", 378 .data = &sun50i_h6_pwm_data, 379 }, { 380 /* sentinel */ 381 }, 382 }; 383 MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); 384 385 static int sun4i_pwm_probe(struct platform_device *pdev) 386 { 387 struct sun4i_pwm_chip *sun4ichip; 388 int ret; 389 390 sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL); 391 if (!sun4ichip) 392 return -ENOMEM; 393 394 sun4ichip->data = of_device_get_match_data(&pdev->dev); 395 if (!sun4ichip->data) 396 return -ENODEV; 397 398 sun4ichip->base = devm_platform_ioremap_resource(pdev, 0); 399 if (IS_ERR(sun4ichip->base)) 400 return PTR_ERR(sun4ichip->base); 401 402 /* 403 * All hardware variants need a source clock that is divided and 404 * then feeds the counter that defines the output wave form. In the 405 * device tree this clock is either unnamed or called "mod". 406 * Some variants (e.g. H6) need another clock to access the 407 * hardware registers; this is called "bus". 408 * So we request "mod" first (and ignore the corner case that a 409 * parent provides a "mod" clock while the right one would be the 410 * unnamed one of the PWM device) and if this is not found we fall 411 * back to the first clock of the PWM. 412 */ 413 sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod"); 414 if (IS_ERR(sun4ichip->clk)) 415 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), 416 "get mod clock failed\n"); 417 418 if (!sun4ichip->clk) { 419 sun4ichip->clk = devm_clk_get(&pdev->dev, NULL); 420 if (IS_ERR(sun4ichip->clk)) 421 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), 422 "get unnamed clock failed\n"); 423 } 424 425 sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); 426 if (IS_ERR(sun4ichip->bus_clk)) 427 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk), 428 "get bus clock failed\n"); 429 430 sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); 431 if (IS_ERR(sun4ichip->rst)) 432 return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst), 433 "get reset failed\n"); 434 435 /* Deassert reset */ 436 ret = reset_control_deassert(sun4ichip->rst); 437 if (ret) { 438 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n", 439 ERR_PTR(ret)); 440 return ret; 441 } 442 443 /* 444 * We're keeping the bus clock on for the sake of simplicity. 445 * Actually it only needs to be on for hardware register accesses. 446 */ 447 ret = clk_prepare_enable(sun4ichip->bus_clk); 448 if (ret) { 449 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n", 450 ERR_PTR(ret)); 451 goto err_bus; 452 } 453 454 sun4ichip->chip.dev = &pdev->dev; 455 sun4ichip->chip.ops = &sun4i_pwm_ops; 456 sun4ichip->chip.npwm = sun4ichip->data->npwm; 457 458 spin_lock_init(&sun4ichip->ctrl_lock); 459 460 ret = pwmchip_add(&sun4ichip->chip); 461 if (ret < 0) { 462 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); 463 goto err_pwm_add; 464 } 465 466 platform_set_drvdata(pdev, sun4ichip); 467 468 return 0; 469 470 err_pwm_add: 471 clk_disable_unprepare(sun4ichip->bus_clk); 472 err_bus: 473 reset_control_assert(sun4ichip->rst); 474 475 return ret; 476 } 477 478 static void sun4i_pwm_remove(struct platform_device *pdev) 479 { 480 struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev); 481 482 pwmchip_remove(&sun4ichip->chip); 483 484 clk_disable_unprepare(sun4ichip->bus_clk); 485 reset_control_assert(sun4ichip->rst); 486 } 487 488 static struct platform_driver sun4i_pwm_driver = { 489 .driver = { 490 .name = "sun4i-pwm", 491 .of_match_table = sun4i_pwm_dt_ids, 492 }, 493 .probe = sun4i_pwm_probe, 494 .remove_new = sun4i_pwm_remove, 495 }; 496 module_platform_driver(sun4i_pwm_driver); 497 498 MODULE_ALIAS("platform:sun4i-pwm"); 499 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); 500 MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); 501 MODULE_LICENSE("GPL v2"); 502