1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2016 4 * 5 * Author: Gerald Baeza <gerald.baeza@st.com> 6 * 7 * Inspired by timer-stm32.c from Maxime Coquelin 8 * pwm-atmel.c from Bo Shen 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/mfd/stm32-timers.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/pinctrl/consumer.h> 16 #include <linux/platform_device.h> 17 #include <linux/pwm.h> 18 19 #define CCMR_CHANNEL_SHIFT 8 20 #define CCMR_CHANNEL_MASK 0xFF 21 #define MAX_BREAKINPUT 2 22 23 struct stm32_breakinput { 24 u32 index; 25 u32 level; 26 u32 filter; 27 }; 28 29 struct stm32_pwm { 30 struct mutex lock; /* protect pwm config/enable */ 31 struct clk *clk; 32 struct regmap *regmap; 33 u32 max_arr; 34 bool have_complementary_output; 35 struct stm32_breakinput breakinputs[MAX_BREAKINPUT]; 36 unsigned int num_breakinputs; 37 u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ 38 }; 39 40 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) 41 { 42 return pwmchip_get_drvdata(chip); 43 } 44 45 static u32 active_channels(struct stm32_pwm *dev) 46 { 47 u32 ccer; 48 49 regmap_read(dev->regmap, TIM_CCER, &ccer); 50 51 return ccer & TIM_CCER_CCXE; 52 } 53 54 struct stm32_pwm_waveform { 55 u32 ccer; 56 u32 psc; 57 u32 arr; 58 u32 ccr; 59 }; 60 61 static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip, 62 struct pwm_device *pwm, 63 const struct pwm_waveform *wf, 64 void *_wfhw) 65 { 66 struct stm32_pwm_waveform *wfhw = _wfhw; 67 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 68 unsigned int ch = pwm->hwpwm; 69 unsigned long rate; 70 u64 ccr, duty; 71 int ret; 72 73 if (wf->period_length_ns == 0) { 74 *wfhw = (struct stm32_pwm_waveform){ 75 .ccer = 0, 76 }; 77 78 return 0; 79 } 80 81 ret = clk_enable(priv->clk); 82 if (ret) 83 return ret; 84 85 wfhw->ccer = TIM_CCER_CCxE(ch + 1); 86 if (priv->have_complementary_output) 87 wfhw->ccer |= TIM_CCER_CCxNE(ch + 1); 88 89 rate = clk_get_rate(priv->clk); 90 91 if (active_channels(priv) & ~(1 << ch * 4)) { 92 u64 arr; 93 94 /* 95 * Other channels are already enabled, so the configured PSC and 96 * ARR must be used for this channel, too. 97 */ 98 ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); 99 if (ret) 100 goto out; 101 102 ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); 103 if (ret) 104 goto out; 105 106 /* 107 * calculate the best value for ARR for the given PSC, refuse if 108 * the resulting period gets bigger than the requested one. 109 */ 110 arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, 111 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 112 if (arr <= wfhw->arr) { 113 /* 114 * requested period is small than the currently 115 * configured and unchangable period, report back the smallest 116 * possible period, i.e. the current state; Initialize 117 * ccr to anything valid. 118 */ 119 wfhw->ccr = 0; 120 ret = 1; 121 goto out; 122 } 123 124 } else { 125 /* 126 * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so 127 * the calculations here won't overflow. 128 * First we need to find the minimal value for prescaler such that 129 * 130 * period_ns * clkrate 131 * ------------------------------ < max_arr + 1 132 * NSEC_PER_SEC * (prescaler + 1) 133 * 134 * This equation is equivalent to 135 * 136 * period_ns * clkrate 137 * ---------------------------- < prescaler + 1 138 * NSEC_PER_SEC * (max_arr + 1) 139 * 140 * Using integer division and knowing that the right hand side is 141 * integer, this is further equivalent to 142 * 143 * (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler 144 */ 145 u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate, 146 (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1)); 147 u64 arr; 148 149 wfhw->psc = min_t(u64, psc, MAX_TIM_PSC); 150 151 arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, 152 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 153 if (!arr) { 154 /* 155 * requested period is too small, report back the smallest 156 * possible period, i.e. ARR = 0. The only valid CCR 157 * value is then zero, too. 158 */ 159 wfhw->arr = 0; 160 wfhw->ccr = 0; 161 ret = 1; 162 goto out; 163 } 164 165 /* 166 * ARR is limited intentionally to values less than 167 * priv->max_arr to allow 100% duty cycle. 168 */ 169 wfhw->arr = min_t(u64, arr, priv->max_arr) - 1; 170 } 171 172 duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate, 173 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 174 duty = min_t(u64, duty, wfhw->arr + 1); 175 176 if (wf->duty_length_ns && wf->duty_offset_ns && 177 wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) { 178 wfhw->ccer |= TIM_CCER_CCxP(ch + 1); 179 if (priv->have_complementary_output) 180 wfhw->ccer |= TIM_CCER_CCxNP(ch + 1); 181 182 ccr = wfhw->arr + 1 - duty; 183 } else { 184 ccr = duty; 185 } 186 187 wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1); 188 189 dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n", 190 pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 191 rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr); 192 193 out: 194 clk_disable(priv->clk); 195 196 return ret; 197 } 198 199 /* 200 * This should be moved to lib/math/div64.c. Currently there are some changes 201 * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles. 202 */ 203 static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c) 204 { 205 u64 res = mul_u64_u64_div_u64(a, b, c); 206 /* Those multiplications might overflow but it doesn't matter */ 207 u64 rem = a * b - c * res; 208 209 if (rem) 210 res += 1; 211 212 return res; 213 } 214 215 static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip, 216 struct pwm_device *pwm, 217 const void *_wfhw, 218 struct pwm_waveform *wf) 219 { 220 const struct stm32_pwm_waveform *wfhw = _wfhw; 221 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 222 unsigned int ch = pwm->hwpwm; 223 224 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 225 unsigned long rate = clk_get_rate(priv->clk); 226 u64 ccr_ns; 227 228 /* The result doesn't overflow for rate >= 15259 */ 229 wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1), 230 NSEC_PER_SEC, rate); 231 232 ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr, 233 NSEC_PER_SEC, rate); 234 235 if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) { 236 wf->duty_length_ns = 237 stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr), 238 NSEC_PER_SEC, rate); 239 240 wf->duty_offset_ns = ccr_ns; 241 } else { 242 wf->duty_length_ns = ccr_ns; 243 wf->duty_offset_ns = 0; 244 } 245 246 dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n", 247 pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate, 248 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); 249 250 } else { 251 *wf = (struct pwm_waveform){ 252 .period_length_ns = 0, 253 }; 254 } 255 256 return 0; 257 } 258 259 static int stm32_pwm_read_waveform(struct pwm_chip *chip, 260 struct pwm_device *pwm, 261 void *_wfhw) 262 { 263 struct stm32_pwm_waveform *wfhw = _wfhw; 264 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 265 unsigned int ch = pwm->hwpwm; 266 int ret; 267 268 ret = clk_enable(priv->clk); 269 if (ret) 270 return ret; 271 272 ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer); 273 if (ret) 274 goto out; 275 276 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 277 ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); 278 if (ret) 279 goto out; 280 281 ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); 282 if (ret) 283 goto out; 284 285 if (wfhw->arr == U32_MAX) 286 wfhw->arr -= 1; 287 288 ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr); 289 if (ret) 290 goto out; 291 292 if (wfhw->ccr > wfhw->arr + 1) 293 wfhw->ccr = wfhw->arr + 1; 294 } 295 296 out: 297 clk_disable(priv->clk); 298 299 return ret; 300 } 301 302 static int stm32_pwm_write_waveform(struct pwm_chip *chip, 303 struct pwm_device *pwm, 304 const void *_wfhw) 305 { 306 const struct stm32_pwm_waveform *wfhw = _wfhw; 307 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 308 unsigned int ch = pwm->hwpwm; 309 int ret; 310 311 ret = clk_enable(priv->clk); 312 if (ret) 313 return ret; 314 315 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 316 u32 ccer, mask; 317 unsigned int shift; 318 u32 ccmr; 319 320 ret = regmap_read(priv->regmap, TIM_CCER, &ccer); 321 if (ret) 322 goto out; 323 324 /* If there are other channels enabled, don't update PSC and ARR */ 325 if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) { 326 u32 psc, arr; 327 328 ret = regmap_read(priv->regmap, TIM_PSC, &psc); 329 if (ret) 330 goto out; 331 332 if (psc != wfhw->psc) { 333 ret = -EBUSY; 334 goto out; 335 } 336 337 ret = regmap_read(priv->regmap, TIM_ARR, &arr); 338 if (ret) 339 goto out; 340 341 if (arr != wfhw->arr) { 342 ret = -EBUSY; 343 goto out; 344 } 345 } else { 346 ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc); 347 if (ret) 348 goto out; 349 350 ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr); 351 if (ret) 352 goto out; 353 354 ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE); 355 if (ret) 356 goto out; 357 358 } 359 360 /* set polarity */ 361 mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1); 362 ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer); 363 if (ret) 364 goto out; 365 366 ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr); 367 if (ret) 368 goto out; 369 370 /* Configure output mode */ 371 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; 372 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; 373 mask = CCMR_CHANNEL_MASK << shift; 374 375 if (ch < 2) 376 ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); 377 else 378 ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); 379 if (ret) 380 goto out; 381 382 ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE); 383 if (ret) 384 goto out; 385 386 if (!(ccer & TIM_CCER_CCxE(ch + 1))) { 387 mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1); 388 389 ret = clk_enable(priv->clk); 390 if (ret) 391 goto out; 392 393 ccer = (ccer & ~mask) | (wfhw->ccer & mask); 394 regmap_write(priv->regmap, TIM_CCER, ccer); 395 396 /* Make sure that registers are updated */ 397 regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); 398 399 /* Enable controller */ 400 regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 401 } 402 403 } else { 404 /* disable channel */ 405 u32 mask, ccer; 406 407 mask = TIM_CCER_CCxE(ch + 1); 408 if (priv->have_complementary_output) 409 mask |= TIM_CCER_CCxNE(ch + 1); 410 411 ret = regmap_read(priv->regmap, TIM_CCER, &ccer); 412 if (ret) 413 goto out; 414 415 if (ccer & mask) { 416 ccer = ccer & ~mask; 417 418 ret = regmap_write(priv->regmap, TIM_CCER, ccer); 419 if (ret) 420 goto out; 421 422 if (!(ccer & TIM_CCER_CCXE)) { 423 /* When all channels are disabled, we can disable the controller */ 424 ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 425 if (ret) 426 goto out; 427 } 428 429 clk_disable(priv->clk); 430 } 431 } 432 433 out: 434 clk_disable(priv->clk); 435 436 return ret; 437 } 438 439 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) 440 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) 441 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) 442 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) 443 444 /* 445 * Capture using PWM input mode: 446 * ___ ___ 447 * TI[1, 2, 3 or 4]: ........._| |________| 448 * ^0 ^1 ^2 449 * . . . 450 * . . XXXXX 451 * . . XXXXX | 452 * . XXXXX . | 453 * XXXXX . . | 454 * COUNTER: ______XXXXX . . . |_XXX 455 * start^ . . . ^stop 456 * . . . . 457 * v v . v 458 * v 459 * CCR1/CCR3: tx..........t0...........t2 460 * CCR2/CCR4: tx..............t1......... 461 * 462 * DMA burst transfer: | | 463 * v v 464 * DMA buffer: { t0, tx } { t2, t1 } 465 * DMA done: ^ 466 * 467 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 468 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) 469 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 470 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 471 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) 472 * 473 * DMA done, compute: 474 * - Period = t2 - t0 475 * - Duty cycle = t1 - t0 476 */ 477 static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm, 478 unsigned long tmo_ms, u32 *raw_prd, 479 u32 *raw_dty) 480 { 481 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 482 struct device *parent = pwmchip_parent(chip)->parent; 483 enum stm32_timers_dmas dma_id; 484 u32 ccen, ccr; 485 int ret; 486 487 /* Ensure registers have been updated, enable counter and capture */ 488 regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); 489 regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 490 491 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ 492 dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; 493 ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; 494 ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; 495 regmap_set_bits(priv->regmap, TIM_CCER, ccen); 496 497 /* 498 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both 499 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. 500 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } 501 * or { CCR3, CCR4 }, { CCR3, CCR4 } 502 */ 503 ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, 504 2, tmo_ms); 505 if (ret) 506 goto stop; 507 508 /* Period: t2 - t0 (take care of counter overflow) */ 509 if (priv->capture[0] <= priv->capture[2]) 510 *raw_prd = priv->capture[2] - priv->capture[0]; 511 else 512 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; 513 514 /* Duty cycle capture requires at least two capture units */ 515 if (pwm->chip->npwm < 2) 516 *raw_dty = 0; 517 else if (priv->capture[0] <= priv->capture[3]) 518 *raw_dty = priv->capture[3] - priv->capture[0]; 519 else 520 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; 521 522 if (*raw_dty > *raw_prd) { 523 /* 524 * Race beetween PWM input and DMA: it may happen 525 * falling edge triggers new capture on TI2/4 before DMA 526 * had a chance to read CCR2/4. It means capture[1] 527 * contains period + duty_cycle. So, subtract period. 528 */ 529 *raw_dty -= *raw_prd; 530 } 531 532 stop: 533 regmap_clear_bits(priv->regmap, TIM_CCER, ccen); 534 regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 535 536 return ret; 537 } 538 539 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, 540 struct pwm_capture *result, unsigned long tmo_ms) 541 { 542 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 543 unsigned long long prd, div, dty; 544 unsigned long rate; 545 unsigned int psc = 0, icpsc, scale; 546 u32 raw_prd = 0, raw_dty = 0; 547 int ret = 0; 548 549 mutex_lock(&priv->lock); 550 551 if (active_channels(priv)) { 552 ret = -EBUSY; 553 goto unlock; 554 } 555 556 ret = clk_enable(priv->clk); 557 if (ret) { 558 dev_err(pwmchip_parent(chip), "failed to enable counter clock\n"); 559 goto unlock; 560 } 561 562 rate = clk_get_rate(priv->clk); 563 if (!rate) { 564 ret = -EINVAL; 565 goto clk_dis; 566 } 567 568 /* prescaler: fit timeout window provided by upper layer */ 569 div = (unsigned long long)rate * (unsigned long long)tmo_ms; 570 do_div(div, MSEC_PER_SEC); 571 prd = div; 572 while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { 573 psc++; 574 div = prd; 575 do_div(div, psc + 1); 576 } 577 regmap_write(priv->regmap, TIM_ARR, priv->max_arr); 578 regmap_write(priv->regmap, TIM_PSC, psc); 579 580 /* Reset input selector to its default input and disable slave mode */ 581 regmap_write(priv->regmap, TIM_TISEL, 0x0); 582 regmap_write(priv->regmap, TIM_SMCR, 0x0); 583 584 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ 585 regmap_update_bits(priv->regmap, 586 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 587 TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? 588 TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : 589 TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); 590 591 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ 592 regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? 593 TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? 594 TIM_CCER_CC2P : TIM_CCER_CC4P); 595 596 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); 597 if (ret) 598 goto stop; 599 600 /* 601 * Got a capture. Try to improve accuracy at high rates: 602 * - decrease counter clock prescaler, scale up to max rate. 603 * - use input prescaler, capture once every /2 /4 or /8 edges. 604 */ 605 if (raw_prd) { 606 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ 607 608 scale = max_arr / min(max_arr, raw_prd); 609 } else { 610 scale = priv->max_arr; /* below resolution, use max scale */ 611 } 612 613 if (psc && scale > 1) { 614 /* 2nd measure with new scale */ 615 psc /= scale; 616 regmap_write(priv->regmap, TIM_PSC, psc); 617 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, 618 &raw_dty); 619 if (ret) 620 goto stop; 621 } 622 623 /* Compute intermediate period not to exceed timeout at low rates */ 624 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; 625 do_div(prd, rate); 626 627 for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { 628 /* input prescaler: also keep arbitrary margin */ 629 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) 630 break; 631 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) 632 break; 633 } 634 635 if (!icpsc) 636 goto done; 637 638 /* Last chance to improve period accuracy, using input prescaler */ 639 regmap_update_bits(priv->regmap, 640 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 641 TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, 642 FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | 643 FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); 644 645 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); 646 if (ret) 647 goto stop; 648 649 if (raw_dty >= (raw_prd >> icpsc)) { 650 /* 651 * We may fall here using input prescaler, when input 652 * capture starts on high side (before falling edge). 653 * Example with icpsc to capture on each 4 events: 654 * 655 * start 1st capture 2nd capture 656 * v v v 657 * ___ _____ _____ _____ _____ ____ 658 * TI1..4 |__| |__| |__| |__| |__| 659 * v v . . . . . v v 660 * icpsc1/3: . 0 . 1 . 2 . 3 . 0 661 * icpsc2/4: 0 1 2 3 0 662 * v v v v 663 * CCR1/3 ......t0..............................t2 664 * CCR2/4 ..t1..............................t1'... 665 * . . . 666 * Capture0: .<----------------------------->. 667 * Capture1: .<-------------------------->. . 668 * . . . 669 * Period: .<------> . . 670 * Low side: .<>. 671 * 672 * Result: 673 * - Period = Capture0 / icpsc 674 * - Duty = Period - Low side = Period - (Capture0 - Capture1) 675 */ 676 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); 677 } 678 679 done: 680 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; 681 result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); 682 dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; 683 result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); 684 stop: 685 regmap_write(priv->regmap, TIM_CCER, 0); 686 regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); 687 regmap_write(priv->regmap, TIM_PSC, 0); 688 clk_dis: 689 clk_disable(priv->clk); 690 unlock: 691 mutex_unlock(&priv->lock); 692 693 return ret; 694 } 695 696 static const struct pwm_ops stm32pwm_ops = { 697 .sizeof_wfhw = sizeof(struct stm32_pwm_waveform), 698 .round_waveform_tohw = stm32_pwm_round_waveform_tohw, 699 .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw, 700 .read_waveform = stm32_pwm_read_waveform, 701 .write_waveform = stm32_pwm_write_waveform, 702 703 .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, 704 }; 705 706 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, 707 const struct stm32_breakinput *bi) 708 { 709 u32 shift = TIM_BDTR_BKF_SHIFT(bi->index); 710 u32 bke = TIM_BDTR_BKE(bi->index); 711 u32 bkp = TIM_BDTR_BKP(bi->index); 712 u32 bkf = TIM_BDTR_BKF(bi->index); 713 u32 mask = bkf | bkp | bke; 714 u32 bdtr; 715 716 bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke; 717 718 if (bi->level) 719 bdtr |= bkp; 720 721 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); 722 723 regmap_read(priv->regmap, TIM_BDTR, &bdtr); 724 725 return (bdtr & bke) ? 0 : -EINVAL; 726 } 727 728 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv) 729 { 730 unsigned int i; 731 int ret; 732 733 for (i = 0; i < priv->num_breakinputs; i++) { 734 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]); 735 if (ret < 0) 736 return ret; 737 } 738 739 return 0; 740 } 741 742 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, 743 struct device_node *np) 744 { 745 int nb, ret, array_size; 746 unsigned int i; 747 748 nb = of_property_count_elems_of_size(np, "st,breakinput", 749 sizeof(struct stm32_breakinput)); 750 751 /* 752 * Because "st,breakinput" parameter is optional do not make probe 753 * failed if it doesn't exist. 754 */ 755 if (nb <= 0) 756 return 0; 757 758 if (nb > MAX_BREAKINPUT) 759 return -EINVAL; 760 761 priv->num_breakinputs = nb; 762 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); 763 ret = of_property_read_u32_array(np, "st,breakinput", 764 (u32 *)priv->breakinputs, array_size); 765 if (ret) 766 return ret; 767 768 for (i = 0; i < priv->num_breakinputs; i++) { 769 if (priv->breakinputs[i].index > 1 || 770 priv->breakinputs[i].level > 1 || 771 priv->breakinputs[i].filter > 15) 772 return -EINVAL; 773 } 774 775 return stm32_pwm_apply_breakinputs(priv); 776 } 777 778 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) 779 { 780 u32 ccer; 781 782 /* 783 * If complementary bit doesn't exist writing 1 will have no 784 * effect so we can detect it. 785 */ 786 regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); 787 regmap_read(priv->regmap, TIM_CCER, &ccer); 788 regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); 789 790 priv->have_complementary_output = (ccer != 0); 791 } 792 793 static unsigned int stm32_pwm_detect_channels(struct regmap *regmap, 794 unsigned int *num_enabled) 795 { 796 u32 ccer, ccer_backup; 797 798 /* 799 * If channels enable bits don't exist writing 1 will have no 800 * effect so we can detect and count them. 801 */ 802 regmap_read(regmap, TIM_CCER, &ccer_backup); 803 regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE); 804 regmap_read(regmap, TIM_CCER, &ccer); 805 regmap_write(regmap, TIM_CCER, ccer_backup); 806 807 *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE); 808 809 return hweight32(ccer & TIM_CCER_CCXE); 810 } 811 812 static int stm32_pwm_probe(struct platform_device *pdev) 813 { 814 struct device *dev = &pdev->dev; 815 struct device_node *np = dev->of_node; 816 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); 817 struct pwm_chip *chip; 818 struct stm32_pwm *priv; 819 unsigned int npwm, num_enabled; 820 unsigned int i; 821 int ret; 822 823 npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled); 824 825 chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv)); 826 if (IS_ERR(chip)) 827 return PTR_ERR(chip); 828 priv = to_stm32_pwm_dev(chip); 829 830 mutex_init(&priv->lock); 831 priv->regmap = ddata->regmap; 832 priv->clk = ddata->clk; 833 priv->max_arr = ddata->max_arr; 834 835 if (!priv->regmap || !priv->clk) 836 return dev_err_probe(dev, -EINVAL, "Failed to get %s\n", 837 priv->regmap ? "clk" : "regmap"); 838 839 ret = stm32_pwm_probe_breakinputs(priv, np); 840 if (ret) 841 return dev_err_probe(dev, ret, 842 "Failed to configure breakinputs\n"); 843 844 stm32_pwm_detect_complementary(priv); 845 846 ret = devm_clk_rate_exclusive_get(dev, priv->clk); 847 if (ret) 848 return dev_err_probe(dev, ret, "Failed to lock clock\n"); 849 850 /* 851 * With the clk running with not more than 1 GHz the calculations in 852 * .apply() won't overflow. 853 */ 854 if (clk_get_rate(priv->clk) > 1000000000) 855 return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n", 856 clk_get_rate(priv->clk)); 857 858 chip->ops = &stm32pwm_ops; 859 860 /* Initialize clock refcount to number of enabled PWM channels. */ 861 for (i = 0; i < num_enabled; i++) { 862 ret = clk_enable(priv->clk); 863 if (ret) 864 return ret; 865 } 866 867 ret = devm_pwmchip_add(dev, chip); 868 if (ret < 0) 869 return dev_err_probe(dev, ret, 870 "Failed to register pwmchip\n"); 871 872 platform_set_drvdata(pdev, chip); 873 874 return 0; 875 } 876 877 static int stm32_pwm_suspend(struct device *dev) 878 { 879 struct pwm_chip *chip = dev_get_drvdata(dev); 880 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 881 unsigned int i; 882 u32 ccer, mask; 883 884 /* Look for active channels */ 885 ccer = active_channels(priv); 886 887 for (i = 0; i < chip->npwm; i++) { 888 mask = TIM_CCER_CCxE(i + 1); 889 if (ccer & mask) { 890 dev_err(dev, "PWM %u still in use by consumer %s\n", 891 i, chip->pwms[i].label); 892 return -EBUSY; 893 } 894 } 895 896 return pinctrl_pm_select_sleep_state(dev); 897 } 898 899 static int stm32_pwm_resume(struct device *dev) 900 { 901 struct pwm_chip *chip = dev_get_drvdata(dev); 902 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 903 int ret; 904 905 ret = pinctrl_pm_select_default_state(dev); 906 if (ret) 907 return ret; 908 909 /* restore breakinput registers that may have been lost in low power */ 910 return stm32_pwm_apply_breakinputs(priv); 911 } 912 913 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); 914 915 static const struct of_device_id stm32_pwm_of_match[] = { 916 { .compatible = "st,stm32-pwm", }, 917 { /* end node */ }, 918 }; 919 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); 920 921 static struct platform_driver stm32_pwm_driver = { 922 .probe = stm32_pwm_probe, 923 .driver = { 924 .name = "stm32-pwm", 925 .of_match_table = stm32_pwm_of_match, 926 .pm = pm_ptr(&stm32_pwm_pm_ops), 927 }, 928 }; 929 module_platform_driver(stm32_pwm_driver); 930 931 MODULE_ALIAS("platform:stm32-pwm"); 932 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); 933 MODULE_LICENSE("GPL v2"); 934