xref: /linux/drivers/pwm/pwm-stm32.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18 
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22 
23 struct stm32_breakinput {
24 	u32 index;
25 	u32 level;
26 	u32 filter;
27 };
28 
29 struct stm32_pwm {
30 	struct mutex lock; /* protect pwm config/enable */
31 	struct clk *clk;
32 	struct regmap *regmap;
33 	u32 max_arr;
34 	bool have_complementary_output;
35 	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
36 	unsigned int num_breakinputs;
37 	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
38 };
39 
40 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
41 {
42 	return pwmchip_get_drvdata(chip);
43 }
44 
45 static u32 active_channels(struct stm32_pwm *dev)
46 {
47 	u32 ccer;
48 
49 	regmap_read(dev->regmap, TIM_CCER, &ccer);
50 
51 	return ccer & TIM_CCER_CCXE;
52 }
53 
54 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
55 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
56 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
57 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
58 
59 /*
60  * Capture using PWM input mode:
61  *                              ___          ___
62  * TI[1, 2, 3 or 4]: ........._|   |________|
63  *                             ^0  ^1       ^2
64  *                              .   .        .
65  *                              .   .        XXXXX
66  *                              .   .   XXXXX     |
67  *                              .  XXXXX     .    |
68  *                            XXXXX .        .    |
69  * COUNTER:        ______XXXXX  .   .        .    |_XXX
70  *                 start^       .   .        .        ^stop
71  *                      .       .   .        .
72  *                      v       v   .        v
73  *                                  v
74  * CCR1/CCR3:       tx..........t0...........t2
75  * CCR2/CCR4:       tx..............t1.........
76  *
77  * DMA burst transfer:          |            |
78  *                              v            v
79  * DMA buffer:                  { t0, tx }   { t2, t1 }
80  * DMA done:                                 ^
81  *
82  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
83  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
84  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
85  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
86  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
87  *
88  * DMA done, compute:
89  * - Period     = t2 - t0
90  * - Duty cycle = t1 - t0
91  */
92 static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
93 				 unsigned long tmo_ms, u32 *raw_prd,
94 				 u32 *raw_dty)
95 {
96 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
97 	struct device *parent = pwmchip_parent(chip)->parent;
98 	enum stm32_timers_dmas dma_id;
99 	u32 ccen, ccr;
100 	int ret;
101 
102 	/* Ensure registers have been updated, enable counter and capture */
103 	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
104 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
105 
106 	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
107 	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
108 	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
109 	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
110 	regmap_set_bits(priv->regmap, TIM_CCER, ccen);
111 
112 	/*
113 	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
114 	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
115 	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
116 	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
117 	 */
118 	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
119 					  2, tmo_ms);
120 	if (ret)
121 		goto stop;
122 
123 	/* Period: t2 - t0 (take care of counter overflow) */
124 	if (priv->capture[0] <= priv->capture[2])
125 		*raw_prd = priv->capture[2] - priv->capture[0];
126 	else
127 		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
128 
129 	/* Duty cycle capture requires at least two capture units */
130 	if (pwm->chip->npwm < 2)
131 		*raw_dty = 0;
132 	else if (priv->capture[0] <= priv->capture[3])
133 		*raw_dty = priv->capture[3] - priv->capture[0];
134 	else
135 		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
136 
137 	if (*raw_dty > *raw_prd) {
138 		/*
139 		 * Race beetween PWM input and DMA: it may happen
140 		 * falling edge triggers new capture on TI2/4 before DMA
141 		 * had a chance to read CCR2/4. It means capture[1]
142 		 * contains period + duty_cycle. So, subtract period.
143 		 */
144 		*raw_dty -= *raw_prd;
145 	}
146 
147 stop:
148 	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
149 	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
150 
151 	return ret;
152 }
153 
154 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
155 			     struct pwm_capture *result, unsigned long tmo_ms)
156 {
157 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
158 	unsigned long long prd, div, dty;
159 	unsigned long rate;
160 	unsigned int psc = 0, icpsc, scale;
161 	u32 raw_prd = 0, raw_dty = 0;
162 	int ret = 0;
163 
164 	mutex_lock(&priv->lock);
165 
166 	if (active_channels(priv)) {
167 		ret = -EBUSY;
168 		goto unlock;
169 	}
170 
171 	ret = clk_enable(priv->clk);
172 	if (ret) {
173 		dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
174 		goto unlock;
175 	}
176 
177 	rate = clk_get_rate(priv->clk);
178 	if (!rate) {
179 		ret = -EINVAL;
180 		goto clk_dis;
181 	}
182 
183 	/* prescaler: fit timeout window provided by upper layer */
184 	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
185 	do_div(div, MSEC_PER_SEC);
186 	prd = div;
187 	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
188 		psc++;
189 		div = prd;
190 		do_div(div, psc + 1);
191 	}
192 	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
193 	regmap_write(priv->regmap, TIM_PSC, psc);
194 
195 	/* Reset input selector to its default input and disable slave mode */
196 	regmap_write(priv->regmap, TIM_TISEL, 0x0);
197 	regmap_write(priv->regmap, TIM_SMCR, 0x0);
198 
199 	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
200 	regmap_update_bits(priv->regmap,
201 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
202 			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
203 			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
204 			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
205 
206 	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
207 	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
208 			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
209 			   TIM_CCER_CC2P : TIM_CCER_CC4P);
210 
211 	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
212 	if (ret)
213 		goto stop;
214 
215 	/*
216 	 * Got a capture. Try to improve accuracy at high rates:
217 	 * - decrease counter clock prescaler, scale up to max rate.
218 	 * - use input prescaler, capture once every /2 /4 or /8 edges.
219 	 */
220 	if (raw_prd) {
221 		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
222 
223 		scale = max_arr / min(max_arr, raw_prd);
224 	} else {
225 		scale = priv->max_arr; /* bellow resolution, use max scale */
226 	}
227 
228 	if (psc && scale > 1) {
229 		/* 2nd measure with new scale */
230 		psc /= scale;
231 		regmap_write(priv->regmap, TIM_PSC, psc);
232 		ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
233 					    &raw_dty);
234 		if (ret)
235 			goto stop;
236 	}
237 
238 	/* Compute intermediate period not to exceed timeout at low rates */
239 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
240 	do_div(prd, rate);
241 
242 	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
243 		/* input prescaler: also keep arbitrary margin */
244 		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
245 			break;
246 		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
247 			break;
248 	}
249 
250 	if (!icpsc)
251 		goto done;
252 
253 	/* Last chance to improve period accuracy, using input prescaler */
254 	regmap_update_bits(priv->regmap,
255 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
256 			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
257 			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
258 			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
259 
260 	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
261 	if (ret)
262 		goto stop;
263 
264 	if (raw_dty >= (raw_prd >> icpsc)) {
265 		/*
266 		 * We may fall here using input prescaler, when input
267 		 * capture starts on high side (before falling edge).
268 		 * Example with icpsc to capture on each 4 events:
269 		 *
270 		 *       start   1st capture                     2nd capture
271 		 *         v     v                               v
272 		 *         ___   _____   _____   _____   _____   ____
273 		 * TI1..4     |__|    |__|    |__|    |__|    |__|
274 		 *            v  v    .  .    .  .    .       v  v
275 		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
276 		 * icpsc2/4:  0       1       2       3       0
277 		 *            v  v                            v  v
278 		 * CCR1/3  ......t0..............................t2
279 		 * CCR2/4  ..t1..............................t1'...
280 		 *               .                            .  .
281 		 * Capture0:     .<----------------------------->.
282 		 * Capture1:     .<-------------------------->.  .
283 		 *               .                            .  .
284 		 * Period:       .<------>                    .  .
285 		 * Low side:                                  .<>.
286 		 *
287 		 * Result:
288 		 * - Period = Capture0 / icpsc
289 		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
290 		 */
291 		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
292 	}
293 
294 done:
295 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
296 	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
297 	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
298 	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
299 stop:
300 	regmap_write(priv->regmap, TIM_CCER, 0);
301 	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
302 	regmap_write(priv->regmap, TIM_PSC, 0);
303 clk_dis:
304 	clk_disable(priv->clk);
305 unlock:
306 	mutex_unlock(&priv->lock);
307 
308 	return ret;
309 }
310 
311 static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
312 			    u64 duty_ns, u64 period_ns)
313 {
314 	unsigned long long prd, dty;
315 	unsigned long long prescaler;
316 	u32 ccmr, mask, shift;
317 
318 	/*
319 	 * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
320 	 * the calculations here won't overflow.
321 	 * First we need to find the minimal value for prescaler such that
322 	 *
323 	 *        period_ns * clkrate
324 	 *   ------------------------------
325 	 *   NSEC_PER_SEC * (prescaler + 1)
326 	 *
327 	 * isn't bigger than max_arr.
328 	 */
329 
330 	prescaler = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
331 					(u64)NSEC_PER_SEC * priv->max_arr);
332 	if (prescaler > 0)
333 		prescaler -= 1;
334 
335 	if (prescaler > MAX_TIM_PSC)
336 		return -EINVAL;
337 
338 	prd = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
339 				  (u64)NSEC_PER_SEC * (prescaler + 1));
340 
341 	/*
342 	 * All channels share the same prescaler and counter so when two
343 	 * channels are active at the same time we can't change them
344 	 */
345 	if (active_channels(priv) & ~(1 << ch * 4)) {
346 		u32 psc, arr;
347 
348 		regmap_read(priv->regmap, TIM_PSC, &psc);
349 		regmap_read(priv->regmap, TIM_ARR, &arr);
350 
351 		if ((psc != prescaler) || (arr != prd - 1))
352 			return -EBUSY;
353 	}
354 
355 	regmap_write(priv->regmap, TIM_PSC, prescaler);
356 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
357 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
358 
359 	/* Calculate the duty cycles */
360 	dty = mul_u64_u64_div_u64(duty_ns, clk_get_rate(priv->clk),
361 				  (u64)NSEC_PER_SEC * (prescaler + 1));
362 
363 	regmap_write(priv->regmap, TIM_CCR1 + 4 * ch, dty);
364 
365 	/* Configure output mode */
366 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
367 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
368 	mask = CCMR_CHANNEL_MASK << shift;
369 
370 	if (ch < 2)
371 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
372 	else
373 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
374 
375 	regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
376 
377 	return 0;
378 }
379 
380 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
381 				  enum pwm_polarity polarity)
382 {
383 	u32 mask;
384 
385 	mask = TIM_CCER_CC1P << (ch * 4);
386 	if (priv->have_complementary_output)
387 		mask |= TIM_CCER_CC1NP << (ch * 4);
388 
389 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
390 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
391 
392 	return 0;
393 }
394 
395 static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
396 {
397 	u32 mask;
398 	int ret;
399 
400 	ret = clk_enable(priv->clk);
401 	if (ret)
402 		return ret;
403 
404 	/* Enable channel */
405 	mask = TIM_CCER_CC1E << (ch * 4);
406 	if (priv->have_complementary_output)
407 		mask |= TIM_CCER_CC1NE << (ch * 4);
408 
409 	regmap_set_bits(priv->regmap, TIM_CCER, mask);
410 
411 	/* Make sure that registers are updated */
412 	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
413 
414 	/* Enable controller */
415 	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
416 
417 	return 0;
418 }
419 
420 static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
421 {
422 	u32 mask;
423 
424 	/* Disable channel */
425 	mask = TIM_CCER_CC1E << (ch * 4);
426 	if (priv->have_complementary_output)
427 		mask |= TIM_CCER_CC1NE << (ch * 4);
428 
429 	regmap_clear_bits(priv->regmap, TIM_CCER, mask);
430 
431 	/* When all channels are disabled, we can disable the controller */
432 	if (!active_channels(priv))
433 		regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
434 
435 	clk_disable(priv->clk);
436 }
437 
438 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
439 			   const struct pwm_state *state)
440 {
441 	bool enabled;
442 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
443 	int ret;
444 
445 	enabled = pwm->state.enabled;
446 
447 	if (enabled && !state->enabled) {
448 		stm32_pwm_disable(priv, pwm->hwpwm);
449 		return 0;
450 	}
451 
452 	if (state->polarity != pwm->state.polarity)
453 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
454 
455 	ret = stm32_pwm_config(priv, pwm->hwpwm,
456 			       state->duty_cycle, state->period);
457 	if (ret)
458 		return ret;
459 
460 	if (!enabled && state->enabled)
461 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
462 
463 	return ret;
464 }
465 
466 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
467 				  const struct pwm_state *state)
468 {
469 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
470 	int ret;
471 
472 	/* protect common prescaler for all active channels */
473 	mutex_lock(&priv->lock);
474 	ret = stm32_pwm_apply(chip, pwm, state);
475 	mutex_unlock(&priv->lock);
476 
477 	return ret;
478 }
479 
480 static int stm32_pwm_get_state(struct pwm_chip *chip,
481 			       struct pwm_device *pwm, struct pwm_state *state)
482 {
483 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
484 	int ch = pwm->hwpwm;
485 	unsigned long rate;
486 	u32 ccer, psc, arr, ccr;
487 	u64 dty, prd;
488 	int ret;
489 
490 	mutex_lock(&priv->lock);
491 
492 	ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
493 	if (ret)
494 		goto out;
495 
496 	state->enabled = ccer & (TIM_CCER_CC1E << (ch * 4));
497 	state->polarity = (ccer & (TIM_CCER_CC1P << (ch * 4))) ?
498 			  PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
499 	ret = regmap_read(priv->regmap, TIM_PSC, &psc);
500 	if (ret)
501 		goto out;
502 	ret = regmap_read(priv->regmap, TIM_ARR, &arr);
503 	if (ret)
504 		goto out;
505 	ret = regmap_read(priv->regmap, TIM_CCR1 + 4 * ch, &ccr);
506 	if (ret)
507 		goto out;
508 
509 	rate = clk_get_rate(priv->clk);
510 
511 	prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
512 	state->period = DIV_ROUND_UP_ULL(prd, rate);
513 	dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
514 	state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
515 
516 out:
517 	mutex_unlock(&priv->lock);
518 	return ret;
519 }
520 
521 static const struct pwm_ops stm32pwm_ops = {
522 	.apply = stm32_pwm_apply_locked,
523 	.get_state = stm32_pwm_get_state,
524 	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
525 };
526 
527 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
528 				    const struct stm32_breakinput *bi)
529 {
530 	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
531 	u32 bke = TIM_BDTR_BKE(bi->index);
532 	u32 bkp = TIM_BDTR_BKP(bi->index);
533 	u32 bkf = TIM_BDTR_BKF(bi->index);
534 	u32 mask = bkf | bkp | bke;
535 	u32 bdtr;
536 
537 	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
538 
539 	if (bi->level)
540 		bdtr |= bkp;
541 
542 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
543 
544 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
545 
546 	return (bdtr & bke) ? 0 : -EINVAL;
547 }
548 
549 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
550 {
551 	unsigned int i;
552 	int ret;
553 
554 	for (i = 0; i < priv->num_breakinputs; i++) {
555 		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
556 		if (ret < 0)
557 			return ret;
558 	}
559 
560 	return 0;
561 }
562 
563 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
564 				       struct device_node *np)
565 {
566 	int nb, ret, array_size;
567 	unsigned int i;
568 
569 	nb = of_property_count_elems_of_size(np, "st,breakinput",
570 					     sizeof(struct stm32_breakinput));
571 
572 	/*
573 	 * Because "st,breakinput" parameter is optional do not make probe
574 	 * failed if it doesn't exist.
575 	 */
576 	if (nb <= 0)
577 		return 0;
578 
579 	if (nb > MAX_BREAKINPUT)
580 		return -EINVAL;
581 
582 	priv->num_breakinputs = nb;
583 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
584 	ret = of_property_read_u32_array(np, "st,breakinput",
585 					 (u32 *)priv->breakinputs, array_size);
586 	if (ret)
587 		return ret;
588 
589 	for (i = 0; i < priv->num_breakinputs; i++) {
590 		if (priv->breakinputs[i].index > 1 ||
591 		    priv->breakinputs[i].level > 1 ||
592 		    priv->breakinputs[i].filter > 15)
593 			return -EINVAL;
594 	}
595 
596 	return stm32_pwm_apply_breakinputs(priv);
597 }
598 
599 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
600 {
601 	u32 ccer;
602 
603 	/*
604 	 * If complementary bit doesn't exist writing 1 will have no
605 	 * effect so we can detect it.
606 	 */
607 	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
608 	regmap_read(priv->regmap, TIM_CCER, &ccer);
609 	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
610 
611 	priv->have_complementary_output = (ccer != 0);
612 }
613 
614 static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
615 					      unsigned int *num_enabled)
616 {
617 	u32 ccer, ccer_backup;
618 
619 	/*
620 	 * If channels enable bits don't exist writing 1 will have no
621 	 * effect so we can detect and count them.
622 	 */
623 	regmap_read(regmap, TIM_CCER, &ccer_backup);
624 	regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
625 	regmap_read(regmap, TIM_CCER, &ccer);
626 	regmap_write(regmap, TIM_CCER, ccer_backup);
627 
628 	*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
629 
630 	return hweight32(ccer & TIM_CCER_CCXE);
631 }
632 
633 static int stm32_pwm_probe(struct platform_device *pdev)
634 {
635 	struct device *dev = &pdev->dev;
636 	struct device_node *np = dev->of_node;
637 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
638 	struct pwm_chip *chip;
639 	struct stm32_pwm *priv;
640 	unsigned int npwm, num_enabled;
641 	unsigned int i;
642 	int ret;
643 
644 	npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
645 
646 	chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
647 	if (IS_ERR(chip))
648 		return PTR_ERR(chip);
649 	priv = to_stm32_pwm_dev(chip);
650 
651 	mutex_init(&priv->lock);
652 	priv->regmap = ddata->regmap;
653 	priv->clk = ddata->clk;
654 	priv->max_arr = ddata->max_arr;
655 
656 	if (!priv->regmap || !priv->clk)
657 		return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
658 				     priv->regmap ? "clk" : "regmap");
659 
660 	ret = stm32_pwm_probe_breakinputs(priv, np);
661 	if (ret)
662 		return dev_err_probe(dev, ret,
663 				     "Failed to configure breakinputs\n");
664 
665 	stm32_pwm_detect_complementary(priv);
666 
667 	ret = devm_clk_rate_exclusive_get(dev, priv->clk);
668 	if (ret)
669 		return dev_err_probe(dev, ret, "Failed to lock clock\n");
670 
671 	/*
672 	 * With the clk running with not more than 1 GHz the calculations in
673 	 * .apply() won't overflow.
674 	 */
675 	if (clk_get_rate(priv->clk) > 1000000000)
676 		return dev_err_probe(dev, -EINVAL, "Failed to lock clock\n");
677 
678 	chip->ops = &stm32pwm_ops;
679 
680 	/* Initialize clock refcount to number of enabled PWM channels. */
681 	for (i = 0; i < num_enabled; i++)
682 		clk_enable(priv->clk);
683 
684 	ret = devm_pwmchip_add(dev, chip);
685 	if (ret < 0)
686 		return dev_err_probe(dev, ret,
687 				     "Failed to register pwmchip\n");
688 
689 	platform_set_drvdata(pdev, chip);
690 
691 	return 0;
692 }
693 
694 static int stm32_pwm_suspend(struct device *dev)
695 {
696 	struct pwm_chip *chip = dev_get_drvdata(dev);
697 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
698 	unsigned int i;
699 	u32 ccer, mask;
700 
701 	/* Look for active channels */
702 	ccer = active_channels(priv);
703 
704 	for (i = 0; i < chip->npwm; i++) {
705 		mask = TIM_CCER_CC1E << (i * 4);
706 		if (ccer & mask) {
707 			dev_err(dev, "PWM %u still in use by consumer %s\n",
708 				i, chip->pwms[i].label);
709 			return -EBUSY;
710 		}
711 	}
712 
713 	return pinctrl_pm_select_sleep_state(dev);
714 }
715 
716 static int stm32_pwm_resume(struct device *dev)
717 {
718 	struct pwm_chip *chip = dev_get_drvdata(dev);
719 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
720 	int ret;
721 
722 	ret = pinctrl_pm_select_default_state(dev);
723 	if (ret)
724 		return ret;
725 
726 	/* restore breakinput registers that may have been lost in low power */
727 	return stm32_pwm_apply_breakinputs(priv);
728 }
729 
730 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
731 
732 static const struct of_device_id stm32_pwm_of_match[] = {
733 	{ .compatible = "st,stm32-pwm",	},
734 	{ /* end node */ },
735 };
736 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
737 
738 static struct platform_driver stm32_pwm_driver = {
739 	.probe	= stm32_pwm_probe,
740 	.driver	= {
741 		.name = "stm32-pwm",
742 		.of_match_table = stm32_pwm_of_match,
743 		.pm = pm_ptr(&stm32_pwm_pm_ops),
744 	},
745 };
746 module_platform_driver(stm32_pwm_driver);
747 
748 MODULE_ALIAS("platform:stm32-pwm");
749 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
750 MODULE_LICENSE("GPL v2");
751