1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2016 4 * 5 * Author: Gerald Baeza <gerald.baeza@st.com> 6 * 7 * Inspired by timer-stm32.c from Maxime Coquelin 8 * pwm-atmel.c from Bo Shen 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/mfd/stm32-timers.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/pinctrl/consumer.h> 16 #include <linux/platform_device.h> 17 #include <linux/pwm.h> 18 19 #define CCMR_CHANNEL_SHIFT 8 20 #define CCMR_CHANNEL_MASK 0xFF 21 #define MAX_BREAKINPUT 2 22 #define STM32_MAX_PWM_OUTPUT 4 23 24 struct stm32_breakinput { 25 u32 index; 26 u32 level; 27 u32 filter; 28 }; 29 30 struct stm32_pwm { 31 struct mutex lock; /* protect pwm config/enable */ 32 struct clk *clk; 33 struct regmap *regmap; 34 u32 max_arr; 35 bool have_complementary_output; 36 struct stm32_breakinput breakinputs[MAX_BREAKINPUT]; 37 unsigned int num_breakinputs; 38 u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ 39 }; 40 41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) 42 { 43 return pwmchip_get_drvdata(chip); 44 } 45 46 static u32 active_channels(struct stm32_pwm *dev) 47 { 48 u32 ccer; 49 50 regmap_read(dev->regmap, TIM_CCER, &ccer); 51 52 return ccer & TIM_CCER_CCXE; 53 } 54 55 struct stm32_pwm_waveform { 56 u32 ccer; 57 u32 psc; 58 u32 arr; 59 u32 ccr; 60 }; 61 62 static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip, 63 struct pwm_device *pwm, 64 const struct pwm_waveform *wf, 65 void *_wfhw) 66 { 67 struct stm32_pwm_waveform *wfhw = _wfhw; 68 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 69 unsigned int ch = pwm->hwpwm; 70 unsigned long rate; 71 u64 ccr, duty; 72 int ret; 73 74 if (wf->period_length_ns == 0) { 75 *wfhw = (struct stm32_pwm_waveform){ 76 .ccer = 0, 77 }; 78 79 return 0; 80 } 81 82 ret = clk_enable(priv->clk); 83 if (ret) 84 return ret; 85 86 wfhw->ccer = TIM_CCER_CCxE(ch + 1); 87 if (priv->have_complementary_output) 88 wfhw->ccer |= TIM_CCER_CCxNE(ch + 1); 89 90 rate = clk_get_rate(priv->clk); 91 92 if (active_channels(priv) & ~TIM_CCER_CCxE(ch + 1)) { 93 u64 arr; 94 95 /* 96 * Other channels are already enabled, so the configured PSC and 97 * ARR must be used for this channel, too. 98 */ 99 ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); 100 if (ret) 101 goto out; 102 103 ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); 104 if (ret) 105 goto out; 106 107 arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, 108 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 109 if (arr <= wfhw->arr) { 110 /* 111 * requested period is smaller than the currently 112 * configured and unchangable period, report back the smallest 113 * possible period, i.e. the current state and return 1 114 * to indicate the wrong rounding direction. 115 */ 116 ret = 1; 117 } 118 119 } else { 120 /* 121 * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so 122 * the calculations here won't overflow. 123 * First we need to find the minimal value for prescaler such that 124 * 125 * period_ns * clkrate 126 * ------------------------------ < max_arr + 1 127 * NSEC_PER_SEC * (prescaler + 1) 128 * 129 * This equation is equivalent to 130 * 131 * period_ns * clkrate 132 * ---------------------------- < prescaler + 1 133 * NSEC_PER_SEC * (max_arr + 1) 134 * 135 * Using integer division and knowing that the right hand side is 136 * integer, this is further equivalent to 137 * 138 * (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler 139 */ 140 u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate, 141 (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1)); 142 u64 arr; 143 144 wfhw->psc = min_t(u64, psc, MAX_TIM_PSC); 145 146 arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, 147 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 148 if (!arr) { 149 /* 150 * requested period is too small, report back the smallest 151 * possible period, i.e. ARR = 0. The only valid CCR 152 * value is then zero, too. 153 */ 154 wfhw->arr = 0; 155 wfhw->ccr = 0; 156 ret = 1; 157 goto out; 158 } 159 160 /* 161 * ARR is limited intentionally to values less than 162 * priv->max_arr to allow 100% duty cycle. 163 */ 164 wfhw->arr = min_t(u64, arr, priv->max_arr) - 1; 165 } 166 167 duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate, 168 (u64)NSEC_PER_SEC * (wfhw->psc + 1)); 169 duty = min_t(u64, duty, wfhw->arr + 1); 170 171 if (wf->duty_length_ns && wf->duty_offset_ns && 172 wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) { 173 wfhw->ccer |= TIM_CCER_CCxP(ch + 1); 174 if (priv->have_complementary_output) 175 wfhw->ccer |= TIM_CCER_CCxNP(ch + 1); 176 177 ccr = wfhw->arr + 1 - duty; 178 } else { 179 ccr = duty; 180 } 181 182 wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1); 183 184 out: 185 dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n", 186 pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 187 rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr); 188 189 clk_disable(priv->clk); 190 191 return ret; 192 } 193 194 /* 195 * This should be moved to lib/math/div64.c. Currently there are some changes 196 * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles. 197 */ 198 static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c) 199 { 200 u64 res = mul_u64_u64_div_u64(a, b, c); 201 /* Those multiplications might overflow but it doesn't matter */ 202 u64 rem = a * b - c * res; 203 204 if (rem) 205 res += 1; 206 207 return res; 208 } 209 210 static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip, 211 struct pwm_device *pwm, 212 const void *_wfhw, 213 struct pwm_waveform *wf) 214 { 215 const struct stm32_pwm_waveform *wfhw = _wfhw; 216 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 217 unsigned long rate = clk_get_rate(priv->clk); 218 unsigned int ch = pwm->hwpwm; 219 220 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 221 u64 ccr_ns; 222 223 /* The result doesn't overflow for rate >= 15259 */ 224 wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1), 225 NSEC_PER_SEC, rate); 226 227 ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr, 228 NSEC_PER_SEC, rate); 229 230 if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) { 231 wf->duty_length_ns = 232 stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr), 233 NSEC_PER_SEC, rate); 234 235 wf->duty_offset_ns = ccr_ns; 236 } else { 237 wf->duty_length_ns = ccr_ns; 238 wf->duty_offset_ns = 0; 239 } 240 } else { 241 *wf = (struct pwm_waveform){ 242 .period_length_ns = 0, 243 }; 244 } 245 246 dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n", 247 pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate, 248 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); 249 250 return 0; 251 } 252 253 static int stm32_pwm_read_waveform(struct pwm_chip *chip, 254 struct pwm_device *pwm, 255 void *_wfhw) 256 { 257 struct stm32_pwm_waveform *wfhw = _wfhw; 258 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 259 unsigned int ch = pwm->hwpwm; 260 int ret; 261 262 ret = clk_enable(priv->clk); 263 if (ret) 264 return ret; 265 266 ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer); 267 if (ret) 268 goto out; 269 270 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 271 ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); 272 if (ret) 273 goto out; 274 275 ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); 276 if (ret) 277 goto out; 278 279 if (wfhw->arr == U32_MAX) 280 wfhw->arr -= 1; 281 282 ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr); 283 if (ret) 284 goto out; 285 286 if (wfhw->ccr > wfhw->arr + 1) 287 wfhw->ccr = wfhw->arr + 1; 288 } 289 290 out: 291 clk_disable(priv->clk); 292 293 return ret; 294 } 295 296 static int stm32_pwm_write_waveform(struct pwm_chip *chip, 297 struct pwm_device *pwm, 298 const void *_wfhw) 299 { 300 const struct stm32_pwm_waveform *wfhw = _wfhw; 301 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 302 unsigned int ch = pwm->hwpwm; 303 int ret; 304 305 ret = clk_enable(priv->clk); 306 if (ret) 307 return ret; 308 309 if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { 310 u32 ccer, mask; 311 unsigned int shift; 312 u32 ccmr; 313 314 ret = regmap_read(priv->regmap, TIM_CCER, &ccer); 315 if (ret) 316 goto out; 317 318 /* If there are other channels enabled, don't update PSC and ARR */ 319 if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) { 320 u32 psc, arr; 321 322 ret = regmap_read(priv->regmap, TIM_PSC, &psc); 323 if (ret) 324 goto out; 325 326 if (psc != wfhw->psc) { 327 ret = -EBUSY; 328 goto out; 329 } 330 331 ret = regmap_read(priv->regmap, TIM_ARR, &arr); 332 if (ret) 333 goto out; 334 335 if (arr != wfhw->arr) { 336 ret = -EBUSY; 337 goto out; 338 } 339 } else { 340 ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc); 341 if (ret) 342 goto out; 343 344 ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr); 345 if (ret) 346 goto out; 347 348 ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE); 349 if (ret) 350 goto out; 351 352 } 353 354 /* set polarity */ 355 mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1); 356 ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer); 357 if (ret) 358 goto out; 359 360 ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr); 361 if (ret) 362 goto out; 363 364 /* Configure output mode */ 365 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; 366 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; 367 mask = CCMR_CHANNEL_MASK << shift; 368 369 if (ch < 2) 370 ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); 371 else 372 ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); 373 if (ret) 374 goto out; 375 376 ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE); 377 if (ret) 378 goto out; 379 380 if (!(ccer & TIM_CCER_CCxE(ch + 1))) { 381 mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1); 382 383 ret = clk_enable(priv->clk); 384 if (ret) 385 goto out; 386 387 ccer = (ccer & ~mask) | (wfhw->ccer & mask); 388 regmap_write(priv->regmap, TIM_CCER, ccer); 389 390 /* Make sure that registers are updated */ 391 regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); 392 393 /* Enable controller */ 394 regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 395 } 396 397 } else { 398 /* disable channel */ 399 u32 mask, ccer; 400 401 mask = TIM_CCER_CCxE(ch + 1); 402 if (priv->have_complementary_output) 403 mask |= TIM_CCER_CCxNE(ch + 1); 404 405 ret = regmap_read(priv->regmap, TIM_CCER, &ccer); 406 if (ret) 407 goto out; 408 409 if (ccer & mask) { 410 ccer = ccer & ~mask; 411 412 ret = regmap_write(priv->regmap, TIM_CCER, ccer); 413 if (ret) 414 goto out; 415 416 if (!(ccer & TIM_CCER_CCXE)) { 417 /* When all channels are disabled, we can disable the controller */ 418 ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 419 if (ret) 420 goto out; 421 } 422 423 clk_disable(priv->clk); 424 } 425 } 426 427 out: 428 clk_disable(priv->clk); 429 430 return ret; 431 } 432 433 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) 434 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) 435 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) 436 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) 437 438 /* 439 * Capture using PWM input mode: 440 * ___ ___ 441 * TI[1, 2, 3 or 4]: ........._| |________| 442 * ^0 ^1 ^2 443 * . . . 444 * . . XXXXX 445 * . . XXXXX | 446 * . XXXXX . | 447 * XXXXX . . | 448 * COUNTER: ______XXXXX . . . |_XXX 449 * start^ . . . ^stop 450 * . . . . 451 * v v . v 452 * v 453 * CCR1/CCR3: tx..........t0...........t2 454 * CCR2/CCR4: tx..............t1......... 455 * 456 * DMA burst transfer: | | 457 * v v 458 * DMA buffer: { t0, tx } { t2, t1 } 459 * DMA done: ^ 460 * 461 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 462 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) 463 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 464 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 465 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) 466 * 467 * DMA done, compute: 468 * - Period = t2 - t0 469 * - Duty cycle = t1 - t0 470 */ 471 static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm, 472 unsigned long tmo_ms, u32 *raw_prd, 473 u32 *raw_dty) 474 { 475 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 476 struct device *parent = pwmchip_parent(chip)->parent; 477 enum stm32_timers_dmas dma_id; 478 u32 ccen, ccr; 479 int ret; 480 481 /* Ensure registers have been updated, enable counter and capture */ 482 regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); 483 regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 484 485 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ 486 dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; 487 ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; 488 ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; 489 regmap_set_bits(priv->regmap, TIM_CCER, ccen); 490 491 /* 492 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both 493 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. 494 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } 495 * or { CCR3, CCR4 }, { CCR3, CCR4 } 496 */ 497 ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, 498 2, tmo_ms); 499 if (ret) 500 goto stop; 501 502 /* Period: t2 - t0 (take care of counter overflow) */ 503 if (priv->capture[0] <= priv->capture[2]) 504 *raw_prd = priv->capture[2] - priv->capture[0]; 505 else 506 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; 507 508 /* Duty cycle capture requires at least two capture units */ 509 if (pwm->chip->npwm < 2) 510 *raw_dty = 0; 511 else if (priv->capture[0] <= priv->capture[3]) 512 *raw_dty = priv->capture[3] - priv->capture[0]; 513 else 514 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; 515 516 if (*raw_dty > *raw_prd) { 517 /* 518 * Race beetween PWM input and DMA: it may happen 519 * falling edge triggers new capture on TI2/4 before DMA 520 * had a chance to read CCR2/4. It means capture[1] 521 * contains period + duty_cycle. So, subtract period. 522 */ 523 *raw_dty -= *raw_prd; 524 } 525 526 stop: 527 regmap_clear_bits(priv->regmap, TIM_CCER, ccen); 528 regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); 529 530 return ret; 531 } 532 533 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, 534 struct pwm_capture *result, unsigned long tmo_ms) 535 { 536 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 537 unsigned long long prd, div, dty; 538 unsigned long rate; 539 unsigned int psc = 0, icpsc, scale; 540 u32 raw_prd = 0, raw_dty = 0; 541 int ret = 0; 542 543 mutex_lock(&priv->lock); 544 545 if (active_channels(priv)) { 546 ret = -EBUSY; 547 goto unlock; 548 } 549 550 ret = clk_enable(priv->clk); 551 if (ret) { 552 dev_err(pwmchip_parent(chip), "failed to enable counter clock\n"); 553 goto unlock; 554 } 555 556 rate = clk_get_rate(priv->clk); 557 if (!rate) { 558 ret = -EINVAL; 559 goto clk_dis; 560 } 561 562 /* prescaler: fit timeout window provided by upper layer */ 563 div = (unsigned long long)rate * (unsigned long long)tmo_ms; 564 do_div(div, MSEC_PER_SEC); 565 prd = div; 566 while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { 567 psc++; 568 div = prd; 569 do_div(div, psc + 1); 570 } 571 regmap_write(priv->regmap, TIM_ARR, priv->max_arr); 572 regmap_write(priv->regmap, TIM_PSC, psc); 573 574 /* Reset input selector to its default input and disable slave mode */ 575 regmap_write(priv->regmap, TIM_TISEL, 0x0); 576 regmap_write(priv->regmap, TIM_SMCR, 0x0); 577 578 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ 579 regmap_update_bits(priv->regmap, 580 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 581 TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? 582 TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : 583 TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); 584 585 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ 586 regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? 587 TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? 588 TIM_CCER_CC2P : TIM_CCER_CC4P); 589 590 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); 591 if (ret) 592 goto stop; 593 594 /* 595 * Got a capture. Try to improve accuracy at high rates: 596 * - decrease counter clock prescaler, scale up to max rate. 597 * - use input prescaler, capture once every /2 /4 or /8 edges. 598 */ 599 if (raw_prd) { 600 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ 601 602 scale = max_arr / min(max_arr, raw_prd); 603 } else { 604 scale = priv->max_arr; /* below resolution, use max scale */ 605 } 606 607 if (psc && scale > 1) { 608 /* 2nd measure with new scale */ 609 psc /= scale; 610 regmap_write(priv->regmap, TIM_PSC, psc); 611 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, 612 &raw_dty); 613 if (ret) 614 goto stop; 615 } 616 617 /* Compute intermediate period not to exceed timeout at low rates */ 618 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; 619 do_div(prd, rate); 620 621 for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { 622 /* input prescaler: also keep arbitrary margin */ 623 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) 624 break; 625 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) 626 break; 627 } 628 629 if (!icpsc) 630 goto done; 631 632 /* Last chance to improve period accuracy, using input prescaler */ 633 regmap_update_bits(priv->regmap, 634 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 635 TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, 636 FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | 637 FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); 638 639 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); 640 if (ret) 641 goto stop; 642 643 if (raw_dty >= (raw_prd >> icpsc)) { 644 /* 645 * We may fall here using input prescaler, when input 646 * capture starts on high side (before falling edge). 647 * Example with icpsc to capture on each 4 events: 648 * 649 * start 1st capture 2nd capture 650 * v v v 651 * ___ _____ _____ _____ _____ ____ 652 * TI1..4 |__| |__| |__| |__| |__| 653 * v v . . . . . v v 654 * icpsc1/3: . 0 . 1 . 2 . 3 . 0 655 * icpsc2/4: 0 1 2 3 0 656 * v v v v 657 * CCR1/3 ......t0..............................t2 658 * CCR2/4 ..t1..............................t1'... 659 * . . . 660 * Capture0: .<----------------------------->. 661 * Capture1: .<-------------------------->. . 662 * . . . 663 * Period: .<------> . . 664 * Low side: .<>. 665 * 666 * Result: 667 * - Period = Capture0 / icpsc 668 * - Duty = Period - Low side = Period - (Capture0 - Capture1) 669 */ 670 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); 671 } 672 673 done: 674 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; 675 result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); 676 dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; 677 result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); 678 stop: 679 regmap_write(priv->regmap, TIM_CCER, 0); 680 regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); 681 regmap_write(priv->regmap, TIM_PSC, 0); 682 clk_dis: 683 clk_disable(priv->clk); 684 unlock: 685 mutex_unlock(&priv->lock); 686 687 return ret; 688 } 689 690 static const struct pwm_ops stm32pwm_ops = { 691 .sizeof_wfhw = sizeof(struct stm32_pwm_waveform), 692 .round_waveform_tohw = stm32_pwm_round_waveform_tohw, 693 .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw, 694 .read_waveform = stm32_pwm_read_waveform, 695 .write_waveform = stm32_pwm_write_waveform, 696 697 .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, 698 }; 699 700 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, 701 const struct stm32_breakinput *bi) 702 { 703 u32 shift = TIM_BDTR_BKF_SHIFT(bi->index); 704 u32 bke = TIM_BDTR_BKE(bi->index); 705 u32 bkp = TIM_BDTR_BKP(bi->index); 706 u32 bkf = TIM_BDTR_BKF(bi->index); 707 u32 mask = bkf | bkp | bke; 708 u32 bdtr; 709 710 bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke; 711 712 if (bi->level) 713 bdtr |= bkp; 714 715 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); 716 717 regmap_read(priv->regmap, TIM_BDTR, &bdtr); 718 719 return (bdtr & bke) ? 0 : -EINVAL; 720 } 721 722 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv) 723 { 724 unsigned int i; 725 int ret; 726 727 for (i = 0; i < priv->num_breakinputs; i++) { 728 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]); 729 if (ret < 0) 730 return ret; 731 } 732 733 return 0; 734 } 735 736 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, 737 struct device_node *np) 738 { 739 int nb, ret, array_size; 740 unsigned int i; 741 742 nb = of_property_count_elems_of_size(np, "st,breakinput", 743 sizeof(struct stm32_breakinput)); 744 745 /* 746 * Because "st,breakinput" parameter is optional do not make probe 747 * failed if it doesn't exist. 748 */ 749 if (nb <= 0) 750 return 0; 751 752 if (nb > MAX_BREAKINPUT) 753 return -EINVAL; 754 755 priv->num_breakinputs = nb; 756 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); 757 ret = of_property_read_u32_array(np, "st,breakinput", 758 (u32 *)priv->breakinputs, array_size); 759 if (ret) 760 return ret; 761 762 for (i = 0; i < priv->num_breakinputs; i++) { 763 if (priv->breakinputs[i].index > 1 || 764 priv->breakinputs[i].level > 1 || 765 priv->breakinputs[i].filter > 15) 766 return -EINVAL; 767 } 768 769 return stm32_pwm_apply_breakinputs(priv); 770 } 771 772 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv, struct stm32_timers *ddata) 773 { 774 u32 ccer; 775 776 if (ddata->ipidr) { 777 u32 val; 778 779 /* Simply read from HWCFGR the number of complementary outputs (MP25). */ 780 regmap_read(priv->regmap, TIM_HWCFGR1, &val); 781 priv->have_complementary_output = !!FIELD_GET(TIM_HWCFGR1_NB_OF_DT, val); 782 return; 783 } 784 785 /* 786 * If complementary bit doesn't exist writing 1 will have no 787 * effect so we can detect it. 788 */ 789 regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); 790 regmap_read(priv->regmap, TIM_CCER, &ccer); 791 regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); 792 793 priv->have_complementary_output = (ccer != 0); 794 } 795 796 static unsigned int stm32_pwm_detect_channels(struct stm32_timers *ddata, 797 unsigned int *num_enabled) 798 { 799 struct regmap *regmap = ddata->regmap; 800 u32 ccer, ccer_backup; 801 802 regmap_read(regmap, TIM_CCER, &ccer_backup); 803 *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE); 804 805 if (ddata->ipidr) { 806 u32 hwcfgr; 807 unsigned int npwm; 808 809 /* Deduce from HWCFGR the number of outputs (MP25). */ 810 regmap_read(regmap, TIM_HWCFGR1, &hwcfgr); 811 812 /* 813 * Timers may have more capture/compare channels than the 814 * actual number of PWM channel outputs (e.g. TIM_CH[1..4]). 815 */ 816 npwm = FIELD_GET(TIM_HWCFGR1_NB_OF_CC, hwcfgr); 817 818 return npwm < STM32_MAX_PWM_OUTPUT ? npwm : STM32_MAX_PWM_OUTPUT; 819 } 820 821 /* 822 * If channels enable bits don't exist writing 1 will have no 823 * effect so we can detect and count them. 824 */ 825 regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE); 826 regmap_read(regmap, TIM_CCER, &ccer); 827 regmap_write(regmap, TIM_CCER, ccer_backup); 828 829 return hweight32(ccer & TIM_CCER_CCXE); 830 } 831 832 static int stm32_pwm_probe(struct platform_device *pdev) 833 { 834 struct device *dev = &pdev->dev; 835 struct device_node *np = dev->of_node; 836 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); 837 struct pwm_chip *chip; 838 struct stm32_pwm *priv; 839 unsigned int npwm, num_enabled; 840 unsigned int i; 841 int ret; 842 843 npwm = stm32_pwm_detect_channels(ddata, &num_enabled); 844 845 chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv)); 846 if (IS_ERR(chip)) 847 return PTR_ERR(chip); 848 priv = to_stm32_pwm_dev(chip); 849 850 mutex_init(&priv->lock); 851 priv->regmap = ddata->regmap; 852 priv->clk = ddata->clk; 853 priv->max_arr = ddata->max_arr; 854 855 if (!priv->regmap || !priv->clk) 856 return dev_err_probe(dev, -EINVAL, "Failed to get %s\n", 857 priv->regmap ? "clk" : "regmap"); 858 859 ret = stm32_pwm_probe_breakinputs(priv, np); 860 if (ret) 861 return dev_err_probe(dev, ret, 862 "Failed to configure breakinputs\n"); 863 864 stm32_pwm_detect_complementary(priv, ddata); 865 866 ret = devm_clk_rate_exclusive_get(dev, priv->clk); 867 if (ret) 868 return dev_err_probe(dev, ret, "Failed to lock clock\n"); 869 870 /* 871 * With the clk running with not more than 1 GHz the calculations in 872 * .apply() won't overflow. 873 */ 874 if (clk_get_rate(priv->clk) > 1000000000) 875 return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n", 876 clk_get_rate(priv->clk)); 877 878 chip->ops = &stm32pwm_ops; 879 880 /* Initialize clock refcount to number of enabled PWM channels. */ 881 for (i = 0; i < num_enabled; i++) { 882 ret = clk_enable(priv->clk); 883 if (ret) 884 return ret; 885 } 886 887 ret = devm_pwmchip_add(dev, chip); 888 if (ret < 0) 889 return dev_err_probe(dev, ret, 890 "Failed to register pwmchip\n"); 891 892 platform_set_drvdata(pdev, chip); 893 894 return 0; 895 } 896 897 static int stm32_pwm_suspend(struct device *dev) 898 { 899 struct pwm_chip *chip = dev_get_drvdata(dev); 900 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 901 unsigned int i; 902 u32 ccer, mask; 903 904 /* Look for active channels */ 905 ccer = active_channels(priv); 906 907 for (i = 0; i < chip->npwm; i++) { 908 mask = TIM_CCER_CCxE(i + 1); 909 if (ccer & mask) { 910 dev_err(dev, "PWM %u still in use by consumer %s\n", 911 i, chip->pwms[i].label); 912 return -EBUSY; 913 } 914 } 915 916 return pinctrl_pm_select_sleep_state(dev); 917 } 918 919 static int stm32_pwm_resume(struct device *dev) 920 { 921 struct pwm_chip *chip = dev_get_drvdata(dev); 922 struct stm32_pwm *priv = to_stm32_pwm_dev(chip); 923 int ret; 924 925 ret = pinctrl_pm_select_default_state(dev); 926 if (ret) 927 return ret; 928 929 /* restore breakinput registers that may have been lost in low power */ 930 return stm32_pwm_apply_breakinputs(priv); 931 } 932 933 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); 934 935 static const struct of_device_id stm32_pwm_of_match[] = { 936 { .compatible = "st,stm32-pwm", }, 937 { .compatible = "st,stm32mp25-pwm", }, 938 { /* end node */ }, 939 }; 940 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); 941 942 static struct platform_driver stm32_pwm_driver = { 943 .probe = stm32_pwm_probe, 944 .driver = { 945 .name = "stm32-pwm", 946 .of_match_table = stm32_pwm_of_match, 947 .pm = pm_ptr(&stm32_pwm_pm_ops), 948 }, 949 }; 950 module_platform_driver(stm32_pwm_driver); 951 952 MODULE_ALIAS("platform:stm32-pwm"); 953 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); 954 MODULE_LICENSE("GPL v2"); 955