xref: /linux/drivers/pwm/pwm-sti.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PWM device driver for ST SoCs
4  *
5  * Copyright (C) 2013-2016 STMicroelectronics (R&D) Limited
6  *
7  * Author: Ajit Pal Singh <ajitpal.singh@st.com>
8  *         Lee Jones <lee.jones@linaro.org>
9  */
10 
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/math64.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/regmap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/wait.h>
24 
25 #define PWM_OUT_VAL(x)	(0x00 + (4 * (x))) /* Device's Duty Cycle register */
26 #define PWM_CPT_VAL(x)	(0x10 + (4 * (x))) /* Capture value */
27 #define PWM_CPT_EDGE(x) (0x30 + (4 * (x))) /* Edge to capture on */
28 
29 #define STI_PWM_CTRL		0x50	/* Control/Config register */
30 #define STI_INT_EN		0x54	/* Interrupt Enable/Disable register */
31 #define STI_INT_STA		0x58	/* Interrupt Status register */
32 #define PWM_INT_ACK		0x5c
33 #define PWM_PRESCALE_LOW_MASK	0x0f
34 #define PWM_PRESCALE_HIGH_MASK	0xf0
35 #define PWM_CPT_EDGE_MASK	0x03
36 #define PWM_INT_ACK_MASK	0x1ff
37 
38 #define STI_MAX_CPT_DEVS	4
39 #define CPT_DC_MAX		0xff
40 
41 /* Regfield IDs */
42 enum {
43 	/* Bits in PWM_CTRL*/
44 	PWMCLK_PRESCALE_LOW,
45 	PWMCLK_PRESCALE_HIGH,
46 	CPTCLK_PRESCALE,
47 
48 	PWM_OUT_EN,
49 	PWM_CPT_EN,
50 
51 	PWM_CPT_INT_EN,
52 	PWM_CPT_INT_STAT,
53 
54 	/* Keep last */
55 	MAX_REGFIELDS
56 };
57 
58 /*
59  * Each capture input can be programmed to detect rising-edge, falling-edge,
60  * either edge or neither egde.
61  */
62 enum sti_cpt_edge {
63 	CPT_EDGE_DISABLED,
64 	CPT_EDGE_RISING,
65 	CPT_EDGE_FALLING,
66 	CPT_EDGE_BOTH,
67 };
68 
69 struct sti_cpt_ddata {
70 	u32 snapshot[3];
71 	unsigned int index;
72 	struct mutex lock;
73 	wait_queue_head_t wait;
74 };
75 
76 struct sti_pwm_compat_data {
77 	const struct reg_field *reg_fields;
78 	unsigned int pwm_num_devs;
79 	unsigned int cpt_num_devs;
80 	unsigned int max_pwm_cnt;
81 	unsigned int max_prescale;
82 	struct sti_cpt_ddata *ddata;
83 };
84 
85 struct sti_pwm_chip {
86 	struct device *dev;
87 	struct clk *pwm_clk;
88 	struct clk *cpt_clk;
89 	struct regmap *regmap;
90 	struct sti_pwm_compat_data *cdata;
91 	struct regmap_field *prescale_low;
92 	struct regmap_field *prescale_high;
93 	struct regmap_field *pwm_out_en;
94 	struct regmap_field *pwm_cpt_en;
95 	struct regmap_field *pwm_cpt_int_en;
96 	struct regmap_field *pwm_cpt_int_stat;
97 	struct pwm_device *cur;
98 	unsigned long configured;
99 	unsigned int en_count;
100 	struct mutex sti_pwm_lock; /* To sync between enable/disable calls */
101 	void __iomem *mmio;
102 };
103 
104 static const struct reg_field sti_pwm_regfields[MAX_REGFIELDS] = {
105 	[PWMCLK_PRESCALE_LOW] = REG_FIELD(STI_PWM_CTRL, 0, 3),
106 	[PWMCLK_PRESCALE_HIGH] = REG_FIELD(STI_PWM_CTRL, 11, 14),
107 	[CPTCLK_PRESCALE] = REG_FIELD(STI_PWM_CTRL, 4, 8),
108 	[PWM_OUT_EN] = REG_FIELD(STI_PWM_CTRL, 9, 9),
109 	[PWM_CPT_EN] = REG_FIELD(STI_PWM_CTRL, 10, 10),
110 	[PWM_CPT_INT_EN] = REG_FIELD(STI_INT_EN, 1, 4),
111 	[PWM_CPT_INT_STAT] = REG_FIELD(STI_INT_STA, 1, 4),
112 };
113 
114 static inline struct sti_pwm_chip *to_sti_pwmchip(struct pwm_chip *chip)
115 {
116 	return pwmchip_get_drvdata(chip);
117 }
118 
119 /*
120  * Calculate the prescaler value corresponding to the period.
121  */
122 static int sti_pwm_get_prescale(struct sti_pwm_chip *pc, unsigned long period,
123 				unsigned int *prescale)
124 {
125 	struct sti_pwm_compat_data *cdata = pc->cdata;
126 	unsigned long clk_rate;
127 	unsigned long value;
128 	unsigned int ps;
129 
130 	clk_rate = clk_get_rate(pc->pwm_clk);
131 	if (!clk_rate) {
132 		dev_err(pc->dev, "failed to get clock rate\n");
133 		return -EINVAL;
134 	}
135 
136 	/*
137 	 * prescale = ((period_ns * clk_rate) / (10^9 * (max_pwm_cnt + 1)) - 1
138 	 */
139 	value = NSEC_PER_SEC / clk_rate;
140 	value *= cdata->max_pwm_cnt + 1;
141 
142 	if (period % value)
143 		return -EINVAL;
144 
145 	ps  = period / value - 1;
146 	if (ps > cdata->max_prescale)
147 		return -EINVAL;
148 
149 	*prescale = ps;
150 
151 	return 0;
152 }
153 
154 /*
155  * For STiH4xx PWM IP, the PWM period is fixed to 256 local clock cycles. The
156  * only way to change the period (apart from changing the PWM input clock) is
157  * to change the PWM clock prescaler.
158  *
159  * The prescaler is of 8 bits, so 256 prescaler values and hence 256 possible
160  * period values are supported (for a particular clock rate). The requested
161  * period will be applied only if it matches one of these 256 values.
162  */
163 static int sti_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
164 			  int duty_ns, int period_ns)
165 {
166 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
167 	struct sti_pwm_compat_data *cdata = pc->cdata;
168 	unsigned int ncfg, value, prescale = 0;
169 	struct pwm_device *cur = pc->cur;
170 	struct device *dev = pc->dev;
171 	bool period_same = false;
172 	int ret;
173 
174 	ncfg = hweight_long(pc->configured);
175 	if (ncfg)
176 		period_same = (period_ns == pwm_get_period(cur));
177 
178 	/*
179 	 * Allow configuration changes if one of the following conditions
180 	 * satisfy.
181 	 * 1. No devices have been configured.
182 	 * 2. Only one device has been configured and the new request is for
183 	 *    the same device.
184 	 * 3. Only one device has been configured and the new request is for
185 	 *    a new device and period of the new device is same as the current
186 	 *    configured period.
187 	 * 4. More than one devices are configured and period of the new
188 	 *    requestis the same as the current period.
189 	 */
190 	if (!ncfg ||
191 	    ((ncfg == 1) && (pwm->hwpwm == cur->hwpwm)) ||
192 	    ((ncfg == 1) && (pwm->hwpwm != cur->hwpwm) && period_same) ||
193 	    ((ncfg > 1) && period_same)) {
194 		/* Enable clock before writing to PWM registers. */
195 		ret = clk_enable(pc->pwm_clk);
196 		if (ret)
197 			return ret;
198 
199 		ret = clk_enable(pc->cpt_clk);
200 		if (ret)
201 			return ret;
202 
203 		if (!period_same) {
204 			ret = sti_pwm_get_prescale(pc, period_ns, &prescale);
205 			if (ret)
206 				goto clk_dis;
207 
208 			value = prescale & PWM_PRESCALE_LOW_MASK;
209 
210 			ret = regmap_field_write(pc->prescale_low, value);
211 			if (ret)
212 				goto clk_dis;
213 
214 			value = (prescale & PWM_PRESCALE_HIGH_MASK) >> 4;
215 
216 			ret = regmap_field_write(pc->prescale_high, value);
217 			if (ret)
218 				goto clk_dis;
219 		}
220 
221 		/*
222 		 * When PWMVal == 0, PWM pulse = 1 local clock cycle.
223 		 * When PWMVal == max_pwm_count,
224 		 * PWM pulse = (max_pwm_count + 1) local cycles,
225 		 * that is continuous pulse: signal never goes low.
226 		 */
227 		value = cdata->max_pwm_cnt * duty_ns / period_ns;
228 
229 		ret = regmap_write(pc->regmap, PWM_OUT_VAL(pwm->hwpwm), value);
230 		if (ret)
231 			goto clk_dis;
232 
233 		ret = regmap_field_write(pc->pwm_cpt_int_en, 0);
234 
235 		set_bit(pwm->hwpwm, &pc->configured);
236 		pc->cur = pwm;
237 
238 		dev_dbg(dev, "prescale:%u, period:%i, duty:%i, value:%u\n",
239 			prescale, period_ns, duty_ns, value);
240 	} else {
241 		return -EINVAL;
242 	}
243 
244 clk_dis:
245 	clk_disable(pc->pwm_clk);
246 	clk_disable(pc->cpt_clk);
247 	return ret;
248 }
249 
250 static int sti_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
251 {
252 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
253 	struct device *dev = pc->dev;
254 	int ret = 0;
255 
256 	/*
257 	 * Since we have a common enable for all PWM devices, do not enable if
258 	 * already enabled.
259 	 */
260 	mutex_lock(&pc->sti_pwm_lock);
261 
262 	if (!pc->en_count) {
263 		ret = clk_enable(pc->pwm_clk);
264 		if (ret)
265 			goto out;
266 
267 		ret = clk_enable(pc->cpt_clk);
268 		if (ret)
269 			goto out;
270 
271 		ret = regmap_field_write(pc->pwm_out_en, 1);
272 		if (ret) {
273 			dev_err(dev, "failed to enable PWM device %u: %d\n",
274 				pwm->hwpwm, ret);
275 			goto out;
276 		}
277 	}
278 
279 	pc->en_count++;
280 
281 out:
282 	mutex_unlock(&pc->sti_pwm_lock);
283 	return ret;
284 }
285 
286 static void sti_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
287 {
288 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
289 
290 	mutex_lock(&pc->sti_pwm_lock);
291 
292 	if (--pc->en_count) {
293 		mutex_unlock(&pc->sti_pwm_lock);
294 		return;
295 	}
296 
297 	regmap_field_write(pc->pwm_out_en, 0);
298 
299 	clk_disable(pc->pwm_clk);
300 	clk_disable(pc->cpt_clk);
301 
302 	mutex_unlock(&pc->sti_pwm_lock);
303 }
304 
305 static void sti_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
306 {
307 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
308 
309 	clear_bit(pwm->hwpwm, &pc->configured);
310 }
311 
312 static int sti_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
313 			   struct pwm_capture *result, unsigned long timeout)
314 {
315 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
316 	struct sti_pwm_compat_data *cdata = pc->cdata;
317 	struct sti_cpt_ddata *ddata = &cdata->ddata[pwm->hwpwm];
318 	struct device *dev = pc->dev;
319 	unsigned int effective_ticks;
320 	unsigned long long high, low;
321 	int ret;
322 
323 	if (pwm->hwpwm >= cdata->cpt_num_devs) {
324 		dev_err(dev, "device %u is not valid\n", pwm->hwpwm);
325 		return -EINVAL;
326 	}
327 
328 	mutex_lock(&ddata->lock);
329 	ddata->index = 0;
330 
331 	/* Prepare capture measurement */
332 	regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_RISING);
333 	regmap_field_write(pc->pwm_cpt_int_en, BIT(pwm->hwpwm));
334 
335 	/* Enable capture */
336 	ret = regmap_field_write(pc->pwm_cpt_en, 1);
337 	if (ret) {
338 		dev_err(dev, "failed to enable PWM capture %u: %d\n",
339 			pwm->hwpwm, ret);
340 		goto out;
341 	}
342 
343 	ret = wait_event_interruptible_timeout(ddata->wait, ddata->index > 1,
344 					       msecs_to_jiffies(timeout));
345 
346 	regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_DISABLED);
347 
348 	if (ret == -ERESTARTSYS)
349 		goto out;
350 
351 	switch (ddata->index) {
352 	case 0:
353 	case 1:
354 		/*
355 		 * Getting here could mean:
356 		 *  - input signal is constant of less than 1 Hz
357 		 *  - there is no input signal at all
358 		 *
359 		 * In such case the frequency is rounded down to 0
360 		 */
361 		result->period = 0;
362 		result->duty_cycle = 0;
363 
364 		break;
365 
366 	case 2:
367 		/* We have everying we need */
368 		high = ddata->snapshot[1] - ddata->snapshot[0];
369 		low = ddata->snapshot[2] - ddata->snapshot[1];
370 
371 		effective_ticks = clk_get_rate(pc->cpt_clk);
372 
373 		result->period = (high + low) * NSEC_PER_SEC;
374 		result->period /= effective_ticks;
375 
376 		result->duty_cycle = high * NSEC_PER_SEC;
377 		result->duty_cycle /= effective_ticks;
378 
379 		break;
380 
381 	default:
382 		dev_err(dev, "internal error\n");
383 		break;
384 	}
385 
386 out:
387 	/* Disable capture */
388 	regmap_field_write(pc->pwm_cpt_en, 0);
389 
390 	mutex_unlock(&ddata->lock);
391 	return ret;
392 }
393 
394 static int sti_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
395 			 const struct pwm_state *state)
396 {
397 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
398 	struct sti_pwm_compat_data *cdata = pc->cdata;
399 	struct device *dev = pc->dev;
400 	int err;
401 
402 	if (pwm->hwpwm >= cdata->pwm_num_devs) {
403 		dev_err(dev, "device %u is not valid for pwm mode\n",
404 			pwm->hwpwm);
405 		return -EINVAL;
406 	}
407 
408 	if (state->polarity != PWM_POLARITY_NORMAL)
409 		return -EINVAL;
410 
411 	if (!state->enabled) {
412 		if (pwm->state.enabled)
413 			sti_pwm_disable(chip, pwm);
414 
415 		return 0;
416 	}
417 
418 	err = sti_pwm_config(chip, pwm, state->duty_cycle, state->period);
419 	if (err)
420 		return err;
421 
422 	if (!pwm->state.enabled)
423 		err = sti_pwm_enable(chip, pwm);
424 
425 	return err;
426 }
427 
428 static const struct pwm_ops sti_pwm_ops = {
429 	.capture = sti_pwm_capture,
430 	.apply = sti_pwm_apply,
431 	.free = sti_pwm_free,
432 };
433 
434 static irqreturn_t sti_pwm_interrupt(int irq, void *data)
435 {
436 	struct sti_pwm_chip *pc = data;
437 	struct device *dev = pc->dev;
438 	struct sti_cpt_ddata *ddata;
439 	int devicenum;
440 	unsigned int cpt_int_stat;
441 	unsigned int reg;
442 	int ret = IRQ_NONE;
443 
444 	ret = regmap_field_read(pc->pwm_cpt_int_stat, &cpt_int_stat);
445 	if (ret)
446 		return ret;
447 
448 	while (cpt_int_stat) {
449 		devicenum = ffs(cpt_int_stat) - 1;
450 
451 		ddata = &pc->cdata->ddata[devicenum];
452 
453 		/*
454 		 * Capture input:
455 		 *    _______                   _______
456 		 *   |       |                 |       |
457 		 * __|       |_________________|       |________
458 		 *   ^0      ^1                ^2
459 		 *
460 		 * Capture start by the first available rising edge. When a
461 		 * capture event occurs, capture value (CPT_VALx) is stored,
462 		 * index incremented, capture edge changed.
463 		 *
464 		 * After the capture, if the index > 1, we have collected the
465 		 * necessary data so we signal the thread waiting for it and
466 		 * disable the capture by setting capture edge to none
467 		 */
468 
469 		regmap_read(pc->regmap,
470 			    PWM_CPT_VAL(devicenum),
471 			    &ddata->snapshot[ddata->index]);
472 
473 		switch (ddata->index) {
474 		case 0:
475 		case 1:
476 			regmap_read(pc->regmap, PWM_CPT_EDGE(devicenum), &reg);
477 			reg ^= PWM_CPT_EDGE_MASK;
478 			regmap_write(pc->regmap, PWM_CPT_EDGE(devicenum), reg);
479 
480 			ddata->index++;
481 			break;
482 
483 		case 2:
484 			regmap_write(pc->regmap,
485 				     PWM_CPT_EDGE(devicenum),
486 				     CPT_EDGE_DISABLED);
487 			wake_up(&ddata->wait);
488 			break;
489 
490 		default:
491 			dev_err(dev, "Internal error\n");
492 		}
493 
494 		cpt_int_stat &= ~BIT_MASK(devicenum);
495 
496 		ret = IRQ_HANDLED;
497 	}
498 
499 	/* Just ACK everything */
500 	regmap_write(pc->regmap, PWM_INT_ACK, PWM_INT_ACK_MASK);
501 
502 	return ret;
503 }
504 
505 static int sti_pwm_probe_dt(struct sti_pwm_chip *pc)
506 {
507 	struct device *dev = pc->dev;
508 	const struct reg_field *reg_fields;
509 	struct sti_pwm_compat_data *cdata = pc->cdata;
510 
511 	reg_fields = cdata->reg_fields;
512 
513 	pc->prescale_low = devm_regmap_field_alloc(dev, pc->regmap,
514 					reg_fields[PWMCLK_PRESCALE_LOW]);
515 	if (IS_ERR(pc->prescale_low))
516 		return PTR_ERR(pc->prescale_low);
517 
518 	pc->prescale_high = devm_regmap_field_alloc(dev, pc->regmap,
519 					reg_fields[PWMCLK_PRESCALE_HIGH]);
520 	if (IS_ERR(pc->prescale_high))
521 		return PTR_ERR(pc->prescale_high);
522 
523 	pc->pwm_out_en = devm_regmap_field_alloc(dev, pc->regmap,
524 						 reg_fields[PWM_OUT_EN]);
525 	if (IS_ERR(pc->pwm_out_en))
526 		return PTR_ERR(pc->pwm_out_en);
527 
528 	pc->pwm_cpt_en = devm_regmap_field_alloc(dev, pc->regmap,
529 						 reg_fields[PWM_CPT_EN]);
530 	if (IS_ERR(pc->pwm_cpt_en))
531 		return PTR_ERR(pc->pwm_cpt_en);
532 
533 	pc->pwm_cpt_int_en = devm_regmap_field_alloc(dev, pc->regmap,
534 						reg_fields[PWM_CPT_INT_EN]);
535 	if (IS_ERR(pc->pwm_cpt_int_en))
536 		return PTR_ERR(pc->pwm_cpt_int_en);
537 
538 	pc->pwm_cpt_int_stat = devm_regmap_field_alloc(dev, pc->regmap,
539 						reg_fields[PWM_CPT_INT_STAT]);
540 	if (PTR_ERR_OR_ZERO(pc->pwm_cpt_int_stat))
541 		return PTR_ERR(pc->pwm_cpt_int_stat);
542 
543 	return 0;
544 }
545 
546 static const struct regmap_config sti_pwm_regmap_config = {
547 	.reg_bits = 32,
548 	.val_bits = 32,
549 	.reg_stride = 4,
550 };
551 
552 static int sti_pwm_probe(struct platform_device *pdev)
553 {
554 	struct device *dev = &pdev->dev;
555 	struct device_node *np = dev->of_node;
556 	u32 num_devs;
557 	unsigned int pwm_num_devs = 0;
558 	unsigned int cpt_num_devs = 0;
559 	struct sti_pwm_compat_data *cdata;
560 	struct pwm_chip *chip;
561 	struct sti_pwm_chip *pc;
562 	unsigned int i;
563 	int irq, ret;
564 
565 	ret = of_property_read_u32(np, "st,pwm-num-chan", &num_devs);
566 	if (!ret)
567 		pwm_num_devs = num_devs;
568 
569 	ret = of_property_read_u32(np, "st,capture-num-chan", &num_devs);
570 	if (!ret)
571 		cpt_num_devs = num_devs;
572 
573 	if (!pwm_num_devs && !cpt_num_devs) {
574 		dev_err(dev, "No channels configured\n");
575 		return -EINVAL;
576 	}
577 
578 	chip = devm_pwmchip_alloc(dev, max(pwm_num_devs, cpt_num_devs), sizeof(*pc));
579 	if (IS_ERR(chip))
580 		return PTR_ERR(chip);
581 	pc = to_sti_pwmchip(chip);
582 
583 	cdata = devm_kzalloc(dev, sizeof(*cdata), GFP_KERNEL);
584 	if (!cdata)
585 		return -ENOMEM;
586 
587 	pc->mmio = devm_platform_ioremap_resource(pdev, 0);
588 	if (IS_ERR(pc->mmio))
589 		return PTR_ERR(pc->mmio);
590 
591 	pc->regmap = devm_regmap_init_mmio(dev, pc->mmio,
592 					   &sti_pwm_regmap_config);
593 	if (IS_ERR(pc->regmap))
594 		return PTR_ERR(pc->regmap);
595 
596 	irq = platform_get_irq(pdev, 0);
597 	if (irq < 0)
598 		return irq;
599 
600 	ret = devm_request_irq(&pdev->dev, irq, sti_pwm_interrupt, 0,
601 			       pdev->name, pc);
602 	if (ret < 0) {
603 		dev_err(&pdev->dev, "Failed to request IRQ\n");
604 		return ret;
605 	}
606 
607 	/*
608 	 * Setup PWM data with default values: some values could be replaced
609 	 * with specific ones provided from Device Tree.
610 	 */
611 	cdata->reg_fields = sti_pwm_regfields;
612 	cdata->max_prescale = 0xff;
613 	cdata->max_pwm_cnt = 255;
614 	cdata->pwm_num_devs = pwm_num_devs;
615 	cdata->cpt_num_devs = cpt_num_devs;
616 
617 	pc->cdata = cdata;
618 	pc->dev = dev;
619 	pc->en_count = 0;
620 	mutex_init(&pc->sti_pwm_lock);
621 
622 	ret = sti_pwm_probe_dt(pc);
623 	if (ret)
624 		return ret;
625 
626 	if (cdata->pwm_num_devs) {
627 		pc->pwm_clk = of_clk_get_by_name(dev->of_node, "pwm");
628 		if (IS_ERR(pc->pwm_clk)) {
629 			dev_err(dev, "failed to get PWM clock\n");
630 			return PTR_ERR(pc->pwm_clk);
631 		}
632 
633 		ret = clk_prepare(pc->pwm_clk);
634 		if (ret) {
635 			dev_err(dev, "failed to prepare clock\n");
636 			return ret;
637 		}
638 	}
639 
640 	if (cdata->cpt_num_devs) {
641 		pc->cpt_clk = of_clk_get_by_name(dev->of_node, "capture");
642 		if (IS_ERR(pc->cpt_clk)) {
643 			dev_err(dev, "failed to get PWM capture clock\n");
644 			return PTR_ERR(pc->cpt_clk);
645 		}
646 
647 		ret = clk_prepare(pc->cpt_clk);
648 		if (ret) {
649 			dev_err(dev, "failed to prepare clock\n");
650 			return ret;
651 		}
652 
653 		cdata->ddata = devm_kzalloc(dev, cdata->cpt_num_devs * sizeof(*cdata->ddata), GFP_KERNEL);
654 		if (!cdata->ddata)
655 			return -ENOMEM;
656 	}
657 
658 	chip->ops = &sti_pwm_ops;
659 
660 	for (i = 0; i < cdata->cpt_num_devs; i++) {
661 		struct sti_cpt_ddata *ddata = &cdata->ddata[i];
662 
663 		init_waitqueue_head(&ddata->wait);
664 		mutex_init(&ddata->lock);
665 	}
666 
667 	ret = pwmchip_add(chip);
668 	if (ret < 0) {
669 		clk_unprepare(pc->pwm_clk);
670 		clk_unprepare(pc->cpt_clk);
671 		return ret;
672 	}
673 
674 	platform_set_drvdata(pdev, chip);
675 
676 	return 0;
677 }
678 
679 static void sti_pwm_remove(struct platform_device *pdev)
680 {
681 	struct pwm_chip *chip = platform_get_drvdata(pdev);
682 	struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
683 
684 	pwmchip_remove(chip);
685 
686 	clk_unprepare(pc->pwm_clk);
687 	clk_unprepare(pc->cpt_clk);
688 }
689 
690 static const struct of_device_id sti_pwm_of_match[] = {
691 	{ .compatible = "st,sti-pwm", },
692 	{ /* sentinel */ }
693 };
694 MODULE_DEVICE_TABLE(of, sti_pwm_of_match);
695 
696 static struct platform_driver sti_pwm_driver = {
697 	.driver = {
698 		.name = "sti-pwm",
699 		.of_match_table = sti_pwm_of_match,
700 	},
701 	.probe = sti_pwm_probe,
702 	.remove_new = sti_pwm_remove,
703 };
704 module_platform_driver(sti_pwm_driver);
705 
706 MODULE_AUTHOR("Ajit Pal Singh <ajitpal.singh@st.com>");
707 MODULE_DESCRIPTION("STMicroelectronics ST PWM driver");
708 MODULE_LICENSE("GPL");
709